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Summary 

 

Many glaciers in high mountain areas all over the world are retreating because of the 

increasing temperatures. Following glacial retreat, glacial debris is continuously deposited 

in the whole retreat area allowing us to study early soil and ecosystem development with a 

space-for-time substitution approach. Fast vegetation succession in the globally expanding 

glacial retreat areas helps to prevent mountain risks such as landslides, erosion, or flooding. 

Although pioneer plants usually start colonizing young surfaces a few years after glacier 

melt, it usually takes various decades, if not centuries, to develop a full vegetation cover. 

Surprisingly, in the subtropical Hailuogou glacial retreat area (ca. 3000 m a.s.l., 1950 mm 

precipitation, mean annual temperature 4.2 °C), Sichuan, southwest China, a development 

from bare soil to full coniferous forest occurred in only 80 yr. A striking difference to many 

other glacial retreat areas, where vegetation development is slow, is the presence of a low 

concentration of carbonates in the mainly granitic moraine material, which are dissolved in 

~50 yr.  

In this thesis, I studied a possible link between soil properties and vegetation development 

along the Hailuogou glacial retreat chronosequence. To this end, I (i) evaluated a possible 

relationship between base metal (Ca, Mg, K and Na) supply and vegetation establishment, 

(ii) determined soil and plant base metal stocks, (iii) estimated the size of the main base 

metal fluxes, (iv) characterized the composition of the glacial debris to elucidate the sources 

of base cations, (v) determined the base cation release kinetics from topsoils along the 

chronosequence with a weathering experiment, and (vi) measured stable Mg isotope ratios 

in different compartments. 

Total ecosystem Ca and Mg stocks decreased along the chronosequence, while those of K 

and Na were unrelated with ecosystem age. The decrease in Ca and Mg stocks mostly 

occurred during the first 47 years, when Ca and Mg were leached at rates of 130±10.6 and 

35±3.1 g m-2 year-1, respectively. Carbonate weathering determined the rapid initial Ca 

release but not that of Mg, which was attributed to the weathering of silicate minerals. The 

base cation release kinetics in the mineral soil followed the order Ca>>Mg>K>>Na. The 

initial high Ca bioavailability because of the moderately alkaline soil pH and carbonate 

depletion, together with the dissolution of easily-weatherable silicates providing enough 

Mg and K to the pioneer vegetation, contributed to the rapid establishment of a deciduous 

forest in less than 47 years. After the carbonates were leached, the net weathering rates 

decreased because less soluble minerals remained in the soil, which occurred in line with 

the vegetation change from deciduous to coniferous trees and their associated lower 

nutrient demand and slower nutrient cycle. The Mg depletion rate from the mineral topsoil 

along the chronosequence could be traced by the measurement of Mg isotope ratios, which 

could also be used to identify chlorite as the major source of the fast initial Mg loss. 

My results suggest that the well synchronized interplay between carbonate and silicate 

weathering facilitated the fast vegetation succession along the glacial retreat 

chronosequence. In addition, I found that Mg isotope ratios can be used to estimate Mg loss 

rates from the topsoil during the early phase of soil development and to identify the sources 

of this loss. 
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Zusammenfassung 

 

Weltweit ziehen sich Gletscher in Hochgebirgsregionen aufgrund steigender Temperaturen 

zurück. In ihrem Rückzugsgebiet hinterlassen sie Till, auf dem sich ein neues Ökosystem 

entwickelt. Die Entwicklung der Ökosystem-Sukzession kann mit Hilfe der Raum-für-Zeit-

Substitution untersucht werden. Eine schnelle Vegetationssukzession in den global größer 

werdenden Gletscherrückzugsgebieten verringert Gebirgsrisiken wie Erdrutsche, Erosion 

oder Überschwemmungen. Obwohl sich in der Regel bereits wenige Jahre nach der 

Gletscherschmelze Pionierpflanzen auf den jungen Rückzugsflächen ansiedeln, dauert es 

oft Jahrzehnte, wenn nicht Jahrhunderte, bis sich eine vollständige Vegetationsdecke 

entwickelt hat. Überraschenderweise hat sich im von mir untersuchten subtropischen 

Hailuogou-Gletscherrückzugsgebiet (ca. 3000 m ü. NN, 1950 mm Niederschlag, 

Jahresmitteltemperatur 4,2 °C) in Sichuan, Südwestchina in nur 80 Jahren ein reifer 

Nadelwald entwickelt. Ein auffälliger Unterschied zu vielen anderen 

Gletscherrückzugsgebieten, in denen sich die Vegetation langsam entwickelt, ist die 

Präsenz eines niedrigen Karbonat-Gehalts im überwiegend granitischen Moränenmaterial 

Diese Karbonate werden innerhalb von ca. 50 Jahren aufgelöst.  

In meiner Dissertation habe ich einen möglichen Zusammenhang zwischen den 

Bodeneigenschaften und der schnellen Vegetationsentwicklung entlang der Hailuogou- 

Chronosequenz untersucht. Dazu habe ich (i) einen möglichen Zusammenhang zwischen 

der Freisetzung von basischen Kationen (Ca, Mg, K und Na) und der 

Vegetationsentwicklung untersucht, (ii) die Vorräte an basischen Kationen im Boden und 

in den Pflanzen bestimmt, (iii) die wichtigsten Flüsse der basischen Kationen quantifiziert, 

(iv) die Zusammensetzung des Tills untersucht, um die Mineral-Quellen der basische 

Kationen zu identifizieren, (v) die Freisetzungskinetik der basischen Kationen aus den 

Oberböden entlang der Chronosequenz mit einem Verwitterungsexperiment bestimmt und 

(vi) stabile Mg-Isotopenverhältnisse in verschiedenen Kompartimenten entlang der 

Chronosequenz gemessen.  

Die Gesamtvorräte an Ca und Mg im Ökosystem nahmen entlang der Chronosequenz ab, 

während die Vorräte an K und Na nicht mit dem Alter des Ökosystems zusammenhingen. 

Der Rückgang der Ca- und Mg-Vorräte erfolgte hauptsächlich in den ersten 47 Jahren, in 

denen Ca und Mg mit Raten von 130±10,6 und 35±3,1 g m-2 Jahr-1 ausgewaschen wurden. 

Die Karbonatverwitterung war für die rasche anfängliche Freisetzung von Ca, nicht aber 

von Mg verantwortlich. Die schnelle anfängliche Freisetzung von Mg erfolgte aus leicht 

verwitterbaren Silikaten. Die Kinetik der Freisetzung von basischen Kationen im 

Mineralboden folgte der Reihenfolge Ca>>Mg>K>>Na. Die anfänglich hohe Ca-

Bioverfügbarkeit aufgrund des mäßig alkalischen pH-Werts des Bodens und der 

Karbonatauswaschung trugen zusammen mit der Auflösung von leicht verwitterbaren 

Silikaten, die der Pioniervegetation genügend Mg und K lieferten, zur raschen Etablierung 

eines Laubwaldes in weniger als 47 Jahren bei. Nach der Auswaschung der Karbonate 

nahmen die Nettoverwitterungsraten ab, weil weniger lösliche Mineralien im Boden 

verblieben, was mit dem Vegetationswechsel von Laub- zu Nadelbäumen und dem damit 

verbundenen geringeren Nährstoffbedarf und langsameren Nährstoffkreislauf 

zusammenhing. Die Mg-Verarmungsrate aus dem mineralischen Oberboden entlang der 

Chronosequenz konnte durch die Messung von Mg-Isotopenverhältnissen nachvollzogen 
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werden, mit deren Hilfe außerdem Chlorit als Hauptquelle der anfänglich schnellen Mg-

Freisetzung identifiziert wurde. 

Meine Ergebnisse deuten darauf hin, dass das gut synchronisierte Zusammenspiel von 

Karbonat- und Silikatverwitterung die schnelle Vegetationssukzession entlang der 

untersuchten Gletscherrückzugs-Chronosequenz ermöglicht hat. Außerdem fand ich, dass 

die Mg-Isotopenverhältnisse die Schätzung der Mg-Verluste aus dem Oberboden während 

der frühen Phase der Bodenentwicklung ermöglichen und verwendet werden können, um 

die Mineral-Quellen des Mg-Verlustes zu identifizieren. 
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1. Introduction 

The ongoing increase in global average temperatures since the end of the Little Ice Age 

(LIA; IPCC 2021) have resulted in the retreat of high mountain glaciers from polar to 

tropical regions in the past few decades. Particularly, the rate at which glaciers outside ice 

sheet peripheries (i.e., Antarctica and Greenland) are retreating has doubled over the past 

two decades (Hugonnet et al. 2021). Glacial retreat is expected to continue during the 

twenty-first century (Hock et al. 2019; Nogués-Bravo et al. 2007). Following glacial retreat, 

glacial debris is continuously deposited in the retreat areas serving as new substrate for soil 

and ecosystem development. The abundance of unconsolidated material and the lack of a 

vegetation cover render these regions especially susceptible to natural hazards such as 

landslides, debris flows and erosion, and water risks such as flooding and sediment loading 

of rivers, mainly derived from the lack of transpiration, higher surface runoff and reduced 

infiltration on the newly formed bare soil areas. Thus, the knowledge of the processes that 

drive vegetation succession is crucial to cope with the risks originating from the globally 

increasing glacial retreat areas. 

Chronosequences and associated space-for-time substitution approaches consist of a 

set of sites formed on similar parent materials and relief developing under the same climatic 

conditions, that differ in the time since they were formed (soil age), so that the observed 

changes can be interpreted as a sole consequence of the different ages (Schaetzl and 

Anderson 2005; Walker et al. 2010). This approach has been widely used in the past years 

for studying temporal dynamics of soil development and plant succession across multiple 

time scales and many landscapes (Bockheim 1980; Huggett 1998; Walker et al. 2010).  

For the subtropical Gongga region, a remote location in the Chinese Province of 

Sichuan on the eastern rim of the Tibetan plateau, Wu et al. (2013) have shown that the 

annual precipitation decreased while the annual mean temperature increased in the past two 

decades. This resulted in the retreat of the Hailuogou glacier, one of the largest glaciers at 

the foot of the Gongga Mountain (summit: 7,556 m a.s.l.; Zhou et al. 2013). The Gongga 

massif is mainly composed of a granitoid complex (i.e., granite and granodiorite) intruded 

into the Palaeozoic-Triassic meta-sediments and meta-volcanic rocks of the Songpan-

Ganze terrane (Roger et al. 1995; Searle et al. 2016). Many young primary successions 

developed under different climates are dominated by pioneer mosses, dwarf shrubs and 

shrubs but lack fully developed forests (see compilation of studies in Table B-S1). 
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However, the primary succession developing along the Hailuogou glacial retreat area has 

surprisingly achieved the average biomass estimated for mature temperate coniferous 

forests (307 tones ha-1, Cole and Rapp 1981) within a period of only ~80 years (Luo et al. 

2004). 

Previous research on biologically relevant elements in the Hailuogou region have 

mainly focused on the change in C, N and P concentrations, stoichiometric ratios and stocks 

(e.g., Bing et al. 2016, He and Tang 2008; Wu et al. 2015; Yang et al. 2021; Zhang et al. 

2021; Zhou et al. 2013). Although N and P are considered the most commonly limiting 

nutrients affecting biomass production in terrestrial ecosystems (Elser et al. 2007; LeBauer 

and Treseder 2008; Vitousek and Howarth 1991; Lei et al. 2021; Yang et al. 2021), previous 

studies have also shown that Ca, Mg and K can have a great influence on tree growth and 

vegetation development (Baribault et al. 2012; Burstrom 1968; Epron et al. 2012; Federer 

et al. 1989; McLaughlin and Wimmer 1999; Paoli and Curran 2007; Wright et al. 2011). 

The mobilization of nutrients from parent materials by chemical weathering plays a 

key role in vegetation succession (Chadwick et al. 1999). Among the rock-bound elements, 

calcium (Ca), magnesium (Mg) and potassium (K) are three macronutrients with crucial 

physiological and structural functions in plants. Calcium is needed by all plants for the 

formation of cell walls and cell membranes, controlling the mechanisms of plant growth 

and development (Wyn Jones and Lunt 1967; Burstrom 1968). Magnesium is required 

mainly for chlorophyll and protein synthesis, as well as enzyme activation, while K 

promotes metabolism, is needed for photosynthesis and participates in regulating water 

flow for stomatal aperture in leaves (Epron et al. 2015, Tränker et al. 2018). Sodium (Na) 

can also be taken up and used by plants (Amtmann and Sanders 1999). Sodium regulates 

cellular osmotic balance of microorganisms and thereby influences the decomposition of 

soil organic matter (Jia et al. 2015; Kaspari et al. 2009, 2014) and the resupply of 

bioavailable mineral nutrients. However, at high concentrations in soil (>1 mg kg-1; 

Marschner 2012) Na can hinder plant growth, interfere with K and Ca nutrition and disturb 

efficient stomatal regulation (Tavakkoli et al. 2010). Moreover, high concentrations of any 

of these elements (i.e., Ca, Mg, K and/or Na) can lower or even inhibit the uptake of the 

others, which is known as cationic antagonistic effect (Diem and Godbold 1993; Ertiftik 

and Zengin 2017; Fageria 1983; Rhodes et al. 2018). During mineral weathering processes, 

these elements are released from minerals to soil solution as cations, which can readily 

move between the various geochemical and biological reservoirs and be lost with stream 
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water (Fantle and Tipper 2014). Plants influence the biogeochemical cycle of nutrients by 

affecting their bioavailability in soils, taking up nutrients from the soil solution via their 

roots and their associations with mycorrhiza, storing them in tissues, and finally returning 

them to the soil system and to streams via canopy leaching, litterfall, and organic matter 

decomposition (Vogt et al. 1986). The formation of a soil organic layer on top of the mineral 

soil also plays an important role in forest nutrition, because it stores nutrients which can be 

slowly released and reiteratively taken up by plants (Lilienfein et al. 2001; Wilcke et al. 

2002). 

The elemental analysis of different tree and plant compartments (i.e., bark, wood, 

branches, roots and leaves/needles) and organic and mineral soil horizons, complemented 

with measurements of tree biomass, bulk density of the soils, and thickness of the soil 

horizons allow us to calculate elemental budgets and to estimate element fluxes at each 

ecosystem age, and to study their development with time by applying a space-for-time 

substitution.  

Batch and column techniques are widely used to examine buffer capacities and 

reaction kinetics of soils (e.g., Alt et al. 2013; Hacker et al. 2017; Selim and Amacher 

1997). Frequently, the analyzed mineral material is exposed to a constant elevated H+ 

pressure in so-called pHstat experiments, which can be realized as a batch experiment with 

ion exchangers or in automatic titroprocessors. In experiments with tritroprocessors, the 

released ions accumulate in the solution with the risk that secondary mineral precipitation 

occurs if dissolution constants are surpassed. However, in the pHstat method of 

Kaupenjohann and Wilcke (1995) ions are released into solution during H+ buffering at 

constant pH and immediately removed from the system using ion exchange resins, not 

affecting further reactions (Alt et al. 2013; Hacker et al. 2017; Schwarz et al. 1999). Süsser 

(1987) described buffer reactions in soils during pHstat experiments as the sum of two 

independent reactions both following first order kinetics. This allows to distinguish a fast- 

and a slow-reacting mineral pool and the release rate constants associated to each of them 

by applying a nonlinear regression model. The combination of this approach with our 

space-for-time substitution allows us to study the change in pool size and the base cation 

release kinetics all along the glacial retreat area. 

Furthermore, the access to the stable isotope ratios of “non-traditional” isotopes (i.e., 

isotopes beyond C, H, O, N, and S), which became increasingly available in the beginning 
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of this century, offers the opportunity to deepen our understanding of the processes 

underlying temporal changes such as weathering and the mobilization of nutrients into the 

biotic cycles. As one of the most abundant elements in the Earth’s continental crust, 

magnesium (Mg) is widely distributed among the lithosphere, hydrosphere, and biosphere 

(Rudnick and Gao, 2003; Taylor and McLennan, 1985). Three stable Mg isotopes exist in 

nature: 24Mg (79%), 25Mg (10%) and 26Mg (11%) (Mejia et al. 2013), which are 

fractionated through diverse processes, such as weathering of the continental crust (Pogge 

von Strandmann et al. 2008; Teng et al. 2010; Tipper et al. 2006), Mg incorporation in 

secondary Mg-bearing minerals (Opfergelt et al. 2012), magma differentiation (Teng et al. 

2007; Richter et al. 2008; Ryu et al. 2011), plant uptake (Black et al. 2008; Bolou-Bi et al. 

2010), or chlorophyll biosynthesis (Black et al. 2006). The resulting natural variation in 

Mg isotope ratios of different mineral and ecosystem pools may be used to elucidate the 

origin of Mg pools with different isotopic composition and to trace ecosystem processes.  

Different dissolution rates of the diverse minerals in the parent material of soils have 

also an effect on the fractionation of Mg isotopes in soil through weathering. Previous 

studies showed that rivers draining carbonate watersheds have a similar Mg isotope 

composition as the carbonate bedrock (Galy et al. 2002; Tipper et al. 2008), while Mg in 

watersheds draining silicate bedrock, which dissolves more slowly (Lasaga 1984), is 

usually isotopically lighter (Brenot et al. 2008, Lee et al. 2014; Tipper et al. 2008). 

Conversely, some studies reported that during silicate weathering lighter Mg isotopes are 

preferentially incorporated into secondary phases (e.g., Pogge von Strandmann et al. 2008; 

Wimpenny et al. 2010) resulting in higher δ26Mg values in solution. This suggests that the 

direction of Mg isotope fractionation during weathering might depend on the dissolution 

and formation of specific minerals (Pogge von Strandmann et al. 2008; Hindshaw et al. 

2019, 2020). The Mg isotope fractionation associated with cation exchange in soil leaves 

isotopically light Mg in the exchangeable Mg pool because of the preferential removal of 

heavy Mg isotopes during adsorption-desorption processes (e.g., Gao et al. 2018; Huang et 

al. 2012; Opfergelt et al. 2014).  

Likewise, Mg isotopes are fractionated during plant uptake and during Mg 

retranslocation through the various plant compartments. Typically, the Mg in plant roots is 

isotopically heavier than in the soil solution, while the light Mg isotopes are preferentially 

incorporated into chlorophyll and thus accumulate in leaves and shoots (Black et al. 2008; 
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Bolou-Bi et al. 2010, 2012). The return of this isotopically light Mg pools via litterfall can 

influence the Mg isotopic composition of the topsoils. 

The overall goal of this thesis was to improve the understanding of the drivers of 

vegetation development on glacial debris. To this end, I addressed the following research 

questions: 

(1) Is there a link between base metal (Ca, Mg, K and Na) supply and 

vegetation establishment along the 127-year Hailuogou glacial retreat 

chronosequence? (Section B) 

(2) Which are the main base metal sources and how are base metals released 

along the Hailuogou chronosequence? (Sections B and C)  

(3) Can stable Mg isotope ratios be used to elucidate the mineral sources of 

Mg release by weathering and as tracer of Mg loss from the soil? (Section D) 

(4) Do stable Mg isotope ratios in ecosystem compartments reflect the 

increasing incorporation of Mg into biotic cycles with advancing vegetation succession? 

(Section 3.4) 

 

 

2. Materials and methods 

2.1. Study area and field sampling 

Located on the eastern slope of the Gongga Mountain, in the transition zone of the Sichuan 

Basin and the Tibetan Plateau (southwest China), the Hailuogou Glacier has markedly 

retreated since late 19th century (Li et al. 2010), developing a 2 km long and 50–200 m wide 

chronosequence, which spans an elevational range from 2800 to 2950 m a.s.l. (Figure A-1). 

The parent material of soil formation is moraine and consists mainly of a mixture of 

silicates (87%), including plagioclase (28.5%), quartz (24.5%), biotite (12%), hornblende 

(12%) and K-feldspar (10%), carbonates (<10%), and a minor contribution of apatite 

(<2.1%) (Yang et al. 2015; Zhou et al. 2016a). The short time of pedogenesis (<130 years) 

formed soils without B horizon classified from youngest to oldest as Leptic Calcaric to 

Folic Dystric Regosols (IUSS Working Group WRB, 2022; Figure A-2). With increasing 

time, the soils have developed A and O horizons of increasing thickness. The mean annual 
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temperature and precipitation are 4.2 °C and 1947 mm, respectively. Rain falls mainly 

during the vegetation period (May to September, Wu et al. 2013).  

Our study included seven sites, de-glaciated between 0 (Site 1; 2982 m a.s.l.) and 

127 years ago (Site 7; 2855 m a.s.l.; Figure A-3), previously described by Zhou et al. 

(2013). A primary vegetation succession has developed along the chronosequence, from 

pioneer shrubs (i.e., Hippophae rhamnoides L., Site 3; 37 yr-old site), over half mature 

broad-leaved tree forests dominated by Populus purdomii Rehder (Site 4; 47 yr-old site), 

to a full forest dominated by Abies fabri (Mast.) Craib (Sites 5-6; 59 and 87 yr-old sites, 

respectively) and Picea brachytyla (Franch.) E. Pritz. (Site 7; 127 yr-old site).  

 

 

Figure A-1. Aerial view of the Hailuogou Chronosequence. 
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Figure A-2. View of the bare 0-yr old site (a) and the fully developed conifer-dominated 

mixed forest at the 87-yr old site (b) of the Hailuogou chronosequence, together with 

characteristic soil profiles, i.e., a Leptic Calcaric Regosol (5-yr old site; c) and a Folic 

Dystric Regosol (87-yr old site; d).  

 

a) b) 

c) d) 
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Figure A-3. Location of the Hailuogou Chronosequence and study sites. 

 

Soil samples were collected in August 2017 from the seven ecosystem succession 

stages, which were exposed for 0, 5, 37, 47, 59, 87 and 127 years since glacial retreat 

(Figure A-3). Each ecosystem succession stage was sampled in triplicate. The distance 

between the sampled soil profiles was at least 20 m, except at the 0 and 5 year-old sites, 

where the distance was reduced to 10 m because the studied valley is narrower in the 

proximity of the glacier. Soil profiles were hand-dug and five soil horizons sampled: Oi 

(fresh litter), Oe (shredded litter), Oa (dark layer of decomposed humus), A (surface 
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mineral soil with humus enrichment), and C (weathered soil parent material). No organic 

layers were present at the 0 and 5 year-old sites. Sixteen different rock samples were 

collected close to the current glacier front, which were considered as representative of the 

composition of the glacial debris forming the substrate for soil development (Figure A-4).  

 

 

Figure A-4 Samples of granite (a) and meta-sedimentary rock (b) collected from the glacial 

debris of the Hailuogou chronosequence. Foto Credit: Qingqing He. 

 

Between August and October 2017, we collected freshly cut leaves, 1 and 3 year-old 

needles, bark, branches, trunk, and roots of the dominant tree and shrub species in the 

surrounding of our replicate soil profiles. To achieve a more representative sample of each 

replicate, a minimum of three individuals were randomly sampled from the trees of the 

same area. Four species were sampled along the chronosequence: H. rhamnoides (Site 3, 

37 years), P. purdomii (Site 4, 47 years), A. fabri (Sites 5-6, 59 and 87 years), and P. 

brachytyla (Site 7, 127 years). Tree branches were randomly sampled from the tree canopy 

using pole shears. Bark samples were collected using an outdoor knife. The depth of cut 

was adjusted depending on the bark thickness in order to take a representative sample 

without reaching the cambium. Trunk samples were collected using a tree corer. 

Soil samples (mineral and organic horizons) were air-dried to constant weight in a 

drying room located in the research station. Mineral samples were sieved to collect the two 

fractions fine earth (<2 mm) and stones (>2 mm). To collect unweathered rock material, 

we removed the outer shell of each rock sample by cutting with an automated core slabbing 

saw. Leaf, needle, branch, bark, trunk and root samples were oven-dried to constant weight 
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at 40°C during 72 hours and stored in sealed bags. Trunk and root samples were manually 

homogenized using an agate pestle and mortar. Bark and branch samples were 

homogenized using a blade grinder equipped with a 3.0 mm sieve. Aliquots of all samples 

were ground using a ball mill equipped with a zirconium oxide jar. The stone fraction of 

the soils (>2 mm) and the rock samples were ground in an agate grinding set using a 

vibratory disk mill. 

 

2.2. Chemical analysis 

Soil pH was determined by a glass electrode in a 1:5 (v/v) air-dried fine earth 

(<2 mm):water suspension. The carbonate concentration (CO3
2-) in the fine earth was 

determined by measuring the volume of emitted carbon dioxide after reaction of the sample 

with 10% HCl in a Scheibler calcimeter. The grain-size distribution of the fine earth was 

determined according to DIN ISO 11277:2002-08. The effective cation-exchange capacity 

(ECEC) was determined by summing the charge equivalents of K, Na, Ca, Mg and Al after 

extraction with 1M NH4NO3 (1:25 soil:solution ratio; Zeien and Brümmer 1989). Total 

element concentrations in the organic horizon, fine earth and stones were determined after 

complete digestion with concentrated HNO3/HF/H2O2 (4:1.5:1, v:v:v) and in the plant 

compartments after complete digestion with 8 mL of concentrated HNO3 and 2 mL of 

concentrated H2O2 in a microwave oven (MARS6Xpress, CEM). Elemental concentrations 

in the digests were analyzed using an inductively-coupled plasma optical-emission 

spectrometer (ICP-OES, 5100 VDV, Agilent). The inorganic C concentrations and δ13C 

values in the rocks were determined with an Elemental Analyzer – Isotope Ratio Mass 

Spectrometer (Flash 2000 HT Plus-Delta V Advantage, ThermoFisher Scientific) after 

muffling the samples at 550°C. Loss on ignition (LOI) was determined by weighing before 

and after muffling the samples at 550°C (Sections B and C).  

To determine the release kinetics of the base cations (i.e., Ca, Mg, K, and Na), I 

conducted a weathering experiment using the resin-based pHstat approach of Schwarz et al. 

(1999) including modifications of Alt et al. (2013) to handle the carbonates. Briefly, the 

base cations were released from the fine earth into solution during H+ buffering at constant 

pH, and removed from the system using a mixed ion-exchange resin, which was further 

extracted with 2 M HNO3. Samples were shaken during 10 min, 30 min, 1 h, 2 h, 4 h, 12 h, 

24 h, 48 h, 96 h and 168 h, respectively, to determine the element release over time. Based 
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on the element release over time, I applied a nonlinear regression model to estimate the size 

of two differently reactive pools (slow/fast) and the corresponding release rate constants. 

At each site age, I analyzed three independent soil samples collected from the uppermost 

10 cm of the soils. In total, 210 samples were processed (7 sites x 3 replicates x 10 aliquots 

for the different shaking times). Exchanged element concentrations were determined by 

ICP-OES. (Section C). 

For Mg isotope analysis, soil samples were digested with concentrated HF-HNO3 (3:1) 

in Teflon Savillex screw-top beakers on a hot plate at 120°C for 72 h, and dried down, 

before they were purified. I produced and purified digests of bulk soils (<2mm) from the 

C1 and C2 mineral horizon at the 0 yr-old site, the A and C mineral horizons at the 37, 47, 

87 and 127 yr-old sites, the exchangeable Mg fraction along the chronosequence (5 

samples) and resin extracts derived from the pHstat experiment corresponding to the three 

independent soil samples collected at each of the 0 yr- and 127 yr-old sites, extracted at 

three different times (after 30 min, 48 h, and 168 h). The remaining residues were treated 

with concentrated HCl-HNO3 (3:1) at 120°C for 24 h, evaporated to dryness, and taken up 

in 1 M HNO3. Aliquots of the exchangeable cation extracts were dried down and treated 

with HCl-HNO3 (3:1, v:v) at 120°C for 24 h in order to digest the high salt concentration 

of the matrix (1 M NH4NO3), before re-dissolution in 10 M HCl. A fraction of each sample 

containing 10-15 µg of Mg was evaporated and taken up in the acid needed for purification 

(i.e., 2 mL 1 M HNO3 – resin extracts – or 0.25 mL 10 M HCl – mineral soil digests and 

exchangeable Mg fraction – Section D).  

Resin extracts derived from the pHstat experiment were purified for Mg isotope analysis 

according to the procedure described by Teng et al. (2007), in which I used slightly longer 

columns to increase the retention time of the eluted elements and obtain sharper 

breakthrough curves. Following this method, the Mg fraction and the potential interferences 

(e.g., Na, Ca or Ti; Table A-1), were eluted from the column at different times using 

1 M HNO3 as eluent. Sodium was eluted with the first 10 mL after loading the sample, Mg 

was collected in the next 16 mL, and Ca was lastly eluted (Figure A-5). The procedure was 

repeated 2-3 times for each sample to obtain a pure Mg solution (i.e., showing a ratio of the 

concentration of the interferences to that of Mg <0.05). However, because of the more 

complex matrix of our soil samples, I found that when using the method of Teng et al. 

(2007) part of the Ti contained in the samples was eluted at the same time as the Mg, which 
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potentially creates an interference on the stable isotope ratio of Mg because the double 

charged ions of Ti (48Ti2+, 50Ti2+) have the same mass/charge ratio as Mg isotopes (Table 

A-1). Therefore, soil samples and soil exchangeable fractions were purified following the 

two-step method described by Opfergelt et al. (2012), in which most of the Fe and Ca was 

removed from the sample using 10 M HCl as eluent in the first step. The second step 

separates Mg from the rest of the matrix with successively 0.4 M HCl, 0.15 M HF, 

95% acetone/0.5 M HCl and 1 M HCl as eluents (Figure A-6). The resin was cleaned with 

1 M HCl, 4 M HCl, 1 M HNO3, and deionized water >18.2 MΩ cm-1 before filled into 

columns (10 mL Bio-Rad® polypropylene columns), and further cleaned in the columns 

with 20 mL of 4 M HCl and 10 mL of deionized water before it was conditioned with the 

required acid (1 M HNO3 or 10 M HCl) prior to loading the sample (Section D).  

 

Figure A-5. Elution curves of Na, Al, K, and Mg for a resin extract derived from the pHstat 

experiment according to the procedure described by Teng et al. (2007), in which we used 

slightly longer columns (filled with 1.2 mL of resin instead of 1 mL). 
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Figure A-6. Elution curves of Mg and potentially interfering elements for Step 1 (a) and 

Step 2 (b) of a mineral soil sample analyzed in this study following the method of Opfergelt 

et al. (2012). 
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2.3. Mg isotope measurements 

 

 

 

 

The three stable Mg isotope signals (24Mg, 25Mg and 26Mg) were measured simultaneously 

with a Thermo Scientific Neptune MC-ICP-MS (Figure A-7) on Faraday detectors using a 

1011 Ohm Faraday cup current amplifier in five blocks of 30 cycles per block, with an 

integration time of 4 s per cycle. All samples and standards were introduced into the plasma 

dissolved in 0.37 M HNO3 at Mg concentrations of 500 ppb to avoid instrumental mass 

bias (Teng and Yang, 2014), and were measured using the standard-sample bracketing 

technique. Magnesium isotope data are reported relative to DSM-3 (Galy et al. 2003, 

Eq. A-1): 

δxMg = {[xMg/24Mg)sample / (
xMg/24Mg)DSM-3] -1} x 103                                        (A-1) 

where x is either mass 26 or 25. 

An in-house Mg(NO3)2 standard was used for the bracketing. The composition of the 

in-house standard was determined by repeated measurements (n=45) relative to ERM-

AE143, which has recently been used as new reference material for δ26Mg values (Vogl et 

al. 2016) after the DSM-3 standard established by Galy et al. (2003) was exhausted, and 

had a δ26Mg value of 3.61 ± 0.24‰ and a δ25Mg value of 1.87 ± 0.14‰ (± 2 standard 

deviations, SD). The data relative to ERM-AE143 were normalized to the international 

DSM-3 Mg standard scale according to González de Vega et al. (2020) by subtracting 

3.295±0.064 for δ26Mg and 1.666±0.043 for δ25Mg.  

Figure A-7: Thermo 

Scientific Neptune 

MC-ICP-MS in the Soil 

Biogeochemistry laboratory 

of the KIT-Institute of 

Geography and 

Geoecology. 

 



 

A. Summarizing overview                                                                                                                                    

16 
 

All samples analyzed in this study showed a mass-dependent isotope fractionation, as 

indicated by the positive correlation of the δ26Mg with the δ25Mg values. The regression 

line of the δ25Mg on the δ26Mg values showed a slope of 0.521±0.012 (2 SD); Figure A-8), 

in line with the theoretical kinetic slope of 0.511 and the theoretical equilibrium slope of 

0.521 (Young and Galy 2004). 

 

Figure A-8 Magnesium three-isotope plot of all samples analyzed in this study. The solid 

line represents the mass-dependent fractionation, in line with the theoretical kinetic slope 

of 0.511 and the theoretical equilibrium slope of 0.521 (Young and Galy 2004). The error 

bars indicate 2SD of repeated measurements. The slope and intercept of the regression 

equation are shown with their errors (2SD).   

 

2.4. Calculations and statistical analysis 

A detailed description of the equations used in this study to calculate Ca, Mg, K and Na 

stocks in the different compartments (leaves/needles, branches, trunk, bark, roots, organic 

and mineral horizons) along the Hailuogou chronosequence, as well as the associated fluxes 

(atmospheric deposition, plant uptake, accumulation in the organic layer and export with 

the stream) can be found in Section B-3. Briefly, I used the element concentrations I 
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measured in the considered compartments and relied on existing data concerning biomass 

and soil bulk density from our Chinese partners. Total biomass was estimated for our study 

sites based on total biomass measured by Luo et al. (2004), after applying a logistic fitting 

to account for the increasing biomass until the year 2017, when our samples were collected. 

Similarly, the net primary productivity (NPP) was calculated for our sites from data 

published by Luo et al. (2004) for the same study area. The proportional contribution of the 

different tree compartments (trunk, bark, branches, leaves, roots) to the total tree biomass 

was taken from Zhou (2013). Bulk density of the soils and stone volume were taken from 

Zhou et al. (2016a) and Wang et al. (2020), who studied the same sites. Thickness of the 

organic and mineral horizons was measured at each of the soil profiles before sampling. I 

calculated the total soil and ecosystem stocks to a mineral soil depth of 0.1 m. Total stocks 

(g m-2) at each plot were calculated by summing the individual stocks of the different plant 

compartments, the organic horizons and the uppermost mineral horizons. For the estimation 

of the fluxes, we obtained bulk deposition data from the Gongga Mountain Alpine 

Ecosystem Observation Station (Zhou et al. 2016b), mean annual precipitation from Wu et 

al. (2013), and base cation concentrations of the stream water of the Hailuogou region 

together with the mineral composition of our study soils from Zhou et al. (2016a) 

(Section B). 

The release kinetics of the base cations in soils was described as a two-step first-order 

reaction by Süsser (1987). Therefore, I applied Eq. A-2 to determine the release kinetics of 

Ca, Mg, K and Na along the chronosequence, based on the samples derived from the pHstat 

experiment. 

Y(t) = Pool A (1-e-kat) + Pool B (1-e-kbt)                                                                (A-2) 

where Y(t) represents the element release from soil (mg kg-1) at time t. Pool A and Pool B 

are the estimates of the two differently reactive pools (slow/fast; mg kg-1) and ka and kb are 

the corresponding rate constants (h-1) of each pool, estimated by a nonlinear regression 

model using sequential quadratic optimization. We used the coefficient of determination 

(R²) as measure of the fit between our data and the function (Section C). 

I applied a two-end-member mixing model (Eq. A-3 and Eq. A-4) to calculate the 

δ26Mg value of the upper 10 cm of the mineral soil (δ26Mg10cm) and to calculate the δ26Mg 

composition of the slow-reacting Mg pool (Section D). 
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δ26MgM =  fA δ
26MgA + fB δ26MgB                                                                                                                (A-3) 

1 = fA+ fB                                                                                                                (A-4) 

In which A and B represent the different end members contributing to the total mixture (M) 

and f represents the respective contribution of each source. 

Normal distribution of the data was checked with the Shapiro-Wilk test. Pearson 

correlation, linear regression, and non-linear function fitting were used to evaluate 

relationships between variables. Significant differences between paired samples were 

tested with a t-test. One-way analysis of variance (ANOVA) followed by Tukey’s HSD 

post-hoc test was applied to detect significant differences in mean total stocks, sizes of the 

modelled pools and ka and kb values among the various study sites. Normal distribution of 

residuals was visually inspected. Homoscedasticity was confirmed for our data after 

applying the Levene’s test. Significance was set at p < 0.05 (Sections B to D). 

 

3. Results and discussion 

3.1. Base metal stocks and fluxes (Section B) 

To improve our understanding of the fast vegetation development along the Hailuogou 

chronosequence, I studied the influence of base cation (Ca, Mg, K and Na) supply and 

vegetation establishment along the Hailuogou chronosequence (Figure A-9). Total 

ecosystem Ca and Mg stocks decreased along the chronosequence. Fortyfour and 30% of 

the initial stocks of Ca and Mg, respectively, were leached during the first 47 years, at rates 

of 130±10.6 g m-2 year-1 Ca and 35±3.1 g m-2 year-1 Mg, paralleling the pH decrease from 

8.0 to 5.8 in the mineral topsoil and the loss of carbonates, mainly calcite. The Mg release 

could not be attributed to the carbonate weathering because the low dolomite 

concentrations did not change along the chronosequence (Zhou et al. 2016) and no other 

Mg carbonate mineral was detected in the parent material.  
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Figure A-9. Stocks (boxes) and fluxes (arrows) of Ca (A, left), Mg (A, right), K (B, left) 

and Na (B, right) at the 47 yr-old site with P. purdomii-dominated forest. 
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Therefore, the fast initial Mg release must be related to other easily weatherable 

Mg-containing minerals such as biotite, hornblende or chloride. Stocks of K and Na were 

unrelated with ecosystem age and remained similar at on average 5162 ± 710 g m-2 K and 

3530 ± 429 g m-2 Na along the chronosequence. 

The organic layer accumulated at a mean rate of 288 g m-2 year-1 providing a 

bioavailable base metal stock, in which the accumulation of base cations decreased in the 

order Ca > K > Mg > Na along the chronosequence. Annual losses of Ca and Mg via the 

stream were between one and two orders of magnitude higher than the estimated bulk 

deposition, while those of K and Na were in a similar range. Annual plant uptake did not 

show a consistent temporal trend along the chronosequence and was higher at those sites 

where deciduous trees were growing (37 to 59 year-old sites) than at the older sites (> 87 

years), after the stabilization of a conifer-dominated mixed forest.  

 

3.2. Base cation sources, pool sizes and release kinetics (Section C) 

To explore the reasons for the fast depletion of Ca and Mg in only a few decades, while the 

K and Na stocks remained similar, I conducted a weathering experiment using a resin-based 

pHstat approach, in which ions were released into solution during H+ buffering at constant 

pH and removed from the system using ion exchange resins. I found that the main source 

of weathered Ca was calcite (CaCO3), which was mainly present in the pores of 

metasedimentary rocks, as revealed by the visual analysis of photomicrographs of thin 

sections of rocks collected at the terminus of the glacier (Figures A-10 and C-2). Low 

concentrations of carbonates were also detected in granites (3 – 57 g kg-1 CaCO3), while 

the sample with the highest calcite concentration was the meta-volcanic rock (300 g kg-1 

CaCO3), which was characterized by layers mainly consisting of calcite, plagioclase and 

quartz (Figures A-11 and C-2).The size of the fast-reacting Ca pool decreased with 

increasing site age, in line with the rapid weathering of CaCO3. After carbonates had been 

leached (>47 yr), the size of the fast-reacting Ca pool was comparable to that of the 

exchangeable Ca pool. The release rate constant associated with the slow-reacting pool of 

Ca, kb_Ca, did not significantly change with increasing site age, although the size of the pool 

tended to decrease, indicating that the slow-reacting Ca pool was weathered at a constant 

rate along the chronosequence.  
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Figure A-10. Reaction to adding some drops of 10% HCl to a meta-sedimentary rock 

collected at Site 1 (0 years old) at the Hailuogou chronosequence, observed by optical 

microscopy. 

 

 

Figure A-11. Meta-volcanic rock before (a) and after (b) addition of 10% HCl, observed 

by optical microscopy. The reaction CaCO3 + 2HCl → Ca2+ + 2Cl- + H2O + CO2 occurred 

only along a defined cross section of the rock. 
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The main sources of weathered Mg, K and Na were silicate minerals, whose release 

rates followed the order Mg > K >> Na. The release rate constant associated with the fast-

reacting Mg pool, ka_Mg, did not significantly change along the chronosequence, nor did the 

size of the fast-reacting Mg pool. The size of the fast-reacting Mg pool correlated with the 

exchangeable Mg concentration in soil, except at the younger sites (0 and 5 years old), 

where the fast-reacting Mg pool was significantly larger than the exchangeable Mg pool, 

indicating the contribution of one or more easily weatherable Mg-containing mineral(s) to 

that pool. The release rate constant associated with the slow-reacting Mg pool, kb_Mg, 

marginally significantly (p <0.1) decreased with time. The slow-reacting Mg pool seemed 

to only become active 4-12 hours after the start of the experiment and not simultaneously 

with the fast pool as was the case for Ca, K and Na, which may indicate that the little 

reactive Mg was more strongly bound in soil than the little reactive Ca, K and Na. The latter 

was corroborated by the finding that 2 h after the start of the pHstat experiment, before the 

slow-reacting pool of Mg was activated, the molar K:Mg ratio significantly decreased with 

site age from 3.4±0.2 to 1.2±0.3, while after 168 h the K:Mg ratios did not correlate with 

site age anymore and averaged to 0.4±0.1. This indicated that more Mg was leached relative 

to K, although more K than Mg was originally stored in the mineral soil (K:Mg ratio in the 

mineral soil: 1.3±0.1). 

 

3.3. Mg isotope ratios of minerals and soil Mg pools (Section D) 

In the third section of my thesis, I tried to reveal if Mg isotope ratios can be used to further 

elucidate the mineral sources of Mg release by weathering, and as tracer of Mg loss from 

the soil along the 127-yr old glacial retreat chronosequence. To achieve that, I determined 

the δ26Mg values of bulk soils and exchangeable Mg along the chronosequence, and in the 

differently reactive pools derived from the pHstat experiment. I found a close negative 

correlation between the δ26Mg values of the bulk topsoils (0-10 cm) and annual Mg 

depletion rates (r=0.98, p<0.001). The particularly fast Mg loss in the first 37 yr was 

attributable to leaching of exchangeable Mg and the fast dissolution of labile chlorite as 

revealed by the lower δ26Mg values of the fast- (-1.28±0.10‰) than the slow-reacting 

(-0.64±0.11‰) Mg pool at the 0 yr-old site. The different δ26Mg values of the fast-reacting 

Mg pool in the youngest and oldest soils indicated that the mineral sources of this pool also 

changed with time. The fact that the δ26Mg values of the exchangeable Mg pool correlated 
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significantly with the release rate constant of the slow-reacting pool in the five oldest soils 

illustrated that the exchangeable pool was continuously fed by the weathering of biotite and 

hornblende, once the labile chlorite, with a lighter Mg isotopic composition, was dissolved. 

Therefore, these results support that the δ26Mg values can be used as proxy of Mg loss and 

to identify the mineral sources of this loss during the early phase of soil development. 

 

3.4. Mg isotope ratios of plant compartments 

I have also analyzed the Mg isotope ratios of the organic horizon as well as diverse plant 

compartments (i.e., leaves, needles and roots) of the dominant tree species growing along 

the Hailuogou Chronosequence (Figure A-12), in order to further elucidate the increasing 

Mg incorporation into the biotic cycles with increasing vegetation biomass. 

The tree roots were Mg-isotopically heavier than the exchangeable Mg pool in the 

mineral soil, supporting previous findings that plants prefer to incorporate 26Mg relative to 

24Mg via root uptake, mainly because of the equilibrium fractionation by Mg binding to the 

root surfaces prior to uptake into the cells (Black et al. 2008; Bolou-Bi et al. 2010, 2012; 

Uhlig et al. 2017). With increasing ecosystem age, the roots increasingly accumulated 

isotopically heavy Mg, which is in line with the fact that the bioavailable Mg pool became 

isotopically heavier (Section D). 

The δ26Mg values of the organic layer remained mostly unchanged along the 

chronosequence at an average of -0.34 ± 0.10 ‰ (n=15). These δ26Mg values were similar 

to the δ26Mg values in tree leaves (-0.37 ± 0.27 ‰, n=9) and higher than the δ26Mg values 

in old needles (-1.18 ± 0.27 ‰, n=15).   

In A. fabri, the Mg concentration in 1 year-old needles was higher than in 3 year-old 

needles (Figure A-13). For the synthesis of new needles, conifers primarily acquire Mg 

from two sources. They take up Mg2+ from the soil solution through the roots (via xylem 

sap) or remobilize it from old to new compartments (via phloem sap). The Mg 

remobilization from old to young plant compartments mainly occurs as organo-complex. 

In organo-complexes Mg2+ forms highly coordinated, strong covalent bonds. For this 

reason, at chemical and isotope equilibrium, organo-Mg complexes prefer 26Mg relative to 

24Mg that accumulates in the free cytosolic Mg2+ (Pokharel et al. 2017). The δ26Mg values 

were higher in young (δ26Mg = -0.59 ± 0.23, n=12) than in old needles (δ26Mg = -1.26 ± 
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0.21, n=12) presumably because their major Mg source was the retranslocation of 

Mg-isotopically heavy organo-Mg complexes from older tissue. The latter might have been 

favored by the pronounced plant uptake of K, which was an order of magnitude larger than 

that of Mg along the chronosequence (Section C), because high plant K concentrations 

promote the Mg redistribution as organo-complexes from leaves prior to abscission or from 

old to young needles (Mengel et al. 2001). The even higher δ26Mg value of leaves of the 

deciduous tree P. purdomii than of the one year-old needles might indicate that most of the 

comparatively high Mg demand of the leaves of this species is covered by Mg, which was 

retranslocated prior to leaf abscission and reused by the following generation of leaves, 

while less Mg was taken up from the exchangeable soil pool with its light δ26Mg value 

(-0.86 ± 0.13‰; Figure A-13). 

 

Figure A-12.  Mean δ26Mg values of the organic horizons (O horizon), roots, and leaves 

and needles of the dominant tree species i.e., the deciduous shrub Hippophae rhamnoides 

L. (Site 3, 37 yr) and tree Populus purdomii Rehder (Site 4, 47 yr) and the coniferous trees 

Abies fabri (Mast.) Craib (Site 5, 59 yr and Site 6, 87 yr) and Picea brachytyla (Franch.) E. 

Pritz. (Site 7, 127 yr). δ26Mg values of needles of A. fabri at Site 4 (47 yr) and site 7 (127 yr) 

and leaves of P. purdomii at site 5 (59 yr) are additionally shown. The upper yellow 

rhombus showing the mean δ26Mg values of 3 yr-old needles at site 7 (127 yr) corresponds 

to P. brachytyla and the lower yellow rhombus to A. fabri. Error bars represent the standard 

error of three spatially independent replicates (n=3). 
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Figure A-13.  Mean δ26Mg values of leaves (P. purdomii and H. rhamnoides) and needles 

(A. fabri and P. brachytyla) of the dominant tree species growing along the Hailuogou 

chronosequence in relation to their Mg concentration (g kg-1 dry matter). Error bars 

represent the standard error of three spatially independent replicates (n=3).  

 

 

 

 

 

 

 

 

 



 

A. Summarizing overview                                                                                                                                    

26 
 

3.5. Error discussion 

In combined field and laboratory work, errors can occur during sampling and in the 

laboratory. To limit the sampling errors, replicates are necessary to account for the natural 

spatial heterogeneity. To limit measurement errors, a quality control including the 

determination of possible background contaminations, accuracy (or trueness) and precision 

is necessary. 

3.5.1. Sampling errors 

Natural heterogeneity may affect the results and the conclusions drawn from them if the 

sampling is not sufficiently representative. To account for the spatial heterogeneity of our 

research area, each study ecosystem succession stage was sampled in triplicate. To achieve 

a thoroughly representative sample of each replicate of the diverse plant compartments (i.e., 

leaves, needles, bark, branches, trunk, and roots), a minimum of three individuals were 

randomly sampled from the trees of the same area, and mixed well to create a composite 

sample before grinding. Three soil profiles were dug and each horizon was manually 

sampled. To account for the heterogeneity of the soil surface, the distance between soil 

profiles at each ecosystem age was at least 20 m, except at the younger sites (0 and 5 years 

old), that was reduced to 10 m because the valley is narrower in the proximity of the glacier. 

The differences in element concentrations measured in the diverse ecosystem 

compartments among the plots of the same ecosystem age site is frequently larger than 

measurement errors.  

In my thesis, fluxes have been estimated by measuring changes in the respective pool 

sizes with increasing site age, based on the base metal stocks described in Section B. I 

relied on existing climate data from our partners from the Chinese Academy of Sciences to 

estimate total element deposition and element leaching fluxes, and on previously published 

net primary productivity and biomass data to estimate annual plant uptake and plant stocks 

along the chronosequence. My estimate of the base metal leaching losses is based on the 

assumptions that all water passes through the deep subsoil and that during this passage 

chemical equilibrium of the soil solution with the substrate is reached, which is reasonable 

because the length of the water path from the study soils to the stream is longer than 1 m. 

Uncertainties were calculated by error propagation, considering the uncertainties reported 

in the publications of my colleagues. When the error was not reported, a standard deviation 

of 10% of the value was assumed (Section B). 
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3.5.2. Contaminations, accuracy and precision 

Different matrices (e.g., mineral soil, organic horizons, plant material, etc.) and even 

different acid digestion methods can release a different fraction of elements from the matrix 

(Chen and Lena 2001), potentially resulting in too low measured element concentrations if 

the digestion is not complete. To prevent this, all digests were visually checked and only 

accepted if they were translucent and no solids could be observed (Sections B and D).  

Sample preparation for Mg isotope ratio analysis, purification and measurements were 

performed in a clean air lab to avoid sample contamination. We used distilled acids 

(DST-1000 Savillex ®) to remove any impurities. All labware used during sample 

treatment was previously acid-cleaned and rinsed with deionized water to prevent sample 

contamination. The 24Mg signal of the procedural blanks was < 0.5% of the total 24Mg 

signal and was therefore considered negligible (Section D). 

Commercial resins usually contain impurities that can affect our results. Since base 

cations are usually ubiquitous, I carefully cleaned the mixed ion-exchange resin used for 

the pHstat experiment (Amberlite MB-20, Rohm and Haas) before loading it into the 

homemade PE-bags. In general, 250 g of resin were shaken with 500 mL of 2 M HNO3 for 

at least 2 hours and rinsed with deionized water (>18.2 MΩ cm−1). After repeating this 

procedure for 5 times, I achieved concentrations of Ca, Mg, K and Na that were below the 

detection limit of our measurement, confirming that the resin will not be a source of 

contamination. I performed preliminary tests with standard solutions to achieve a complete 

element recovery from the resin. The most satisfying results were achieved using 30 mL of 

2 M HNO3 for 10 min in the first and second step and for 30 min in the last one (Ca: 101 ± 

3%, Mg: 99 ± 1%, K: 106 ± 3%, Na: 99 ± 1%; n = 3). I also measured the extract 

corresponding to the fourth step, which contained none of the analytes. Therefore, the 

results achieved with the performed extractions were satisfying for all the studied elements 

(Section C). 

Mg purification from matrix elements was achieved by cation-exchange 

chromatography, using Bio-Rad AG50W-X8 resin, which I also carefully cleaned with 1 

M HCl, 4 M HCl, 1 M HNO3, and deionized water >18.2 MΩ cm-1 before I filled the resin 

into columns. Once in the columns, I further cleaned the resin with 30 mL of 4 M HCl and 

10 mL of deionized water before it was conditioned with the acid required for sample 

purification (Section D).  
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In each rack (with between 15 and 30 samples) of microwave-digested samples, at least 

one certified reference material matching the matrix of the samples was included (i.e., 

SRM1547 and SRM1515 for organic samples and BCR-2 for soil samples), as well as one 

replicate of a selected sample, and one blank to control for background contamination. 

Average recoveries ± SD were 100 ± 10% for all certified element concentrations and the 

relative standard deviation between duplicate measurements of the same sample was <5%. 

Therefore, elemental concentrations reported in this thesis are considered sufficiently 

accurate and precise (Section B). 

Accuracy and precision of the whole clean air lab procedure was assessed by digestion 

and purification of the certified reference materials BCR-2 and NIST 1515. The results 

obtained with our method were δ26Mg = -0.25±0.06‰ and δ25Mg = -0.10±0.02‰ (2 SD, 

n=13) for BCR-2, and δ26Mg = -1.22±0.13‰ and δ25Mg = -0.59±0.08‰ for NIST 1515 

(2 SD, n=8). These results are in close agreement with corresponding measurements 

reported by previous studies (e.g., δ26Mg = -0.27±0.03 ‰ and δ25Mg = -0.12±0.02‰ for 

BCR-2, Teng, 2017 and δ26Mg = -1.22±0.05‰ and δ25Mg = -0.62±0.05‰ and for NIST 

SRM 1515, Shalev et al. 2017) (Section D). 

The most important isobaric interferences on the measurement of Mg isotopes include 

molecular ones (e.g., C2
+, CN+ and NaH+) and double charged ions with the same 

mass/charge ratios as the Mg isotopes (e.g., 48Ca2+, 48Ti2+, 50Ti2+, 50V2+, 50Cr2+ and 52Cr2+; 

Table A-1). The accuracy of the Mg cut in soil extracts and digests with different matrices 

was checked by measuring the Mg concentration in 1 mL before and 3 mL after the Mg 

cut, in a sample with high and a sample with low CaCO3 concentration. The Mg recovery 

in this test was ~98% and the Mg recovery in the pre- and after-cut was <1% (Section D).  

Mg isotopes can be fractionated during ion-exchange reactions with heavy Mg isotopes 

eluted first from the column (Teng et al. 2007), therefore, I accepted a chromatographic run 

for purification only if the Mg recovery was >95% and if the ratio of any potential 

interference to that of Mg was lower than 0.05. If all these requirements were not achieved, 

the whole purification procedure was repeated (Section D). 
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Table A-1: Potential elemental and molecular interferences on the measurement of Mg 

isotopes with Inductively-coupled Plasma Multicollector Mass Spectrometry. 

24Mg 25Mg 26Mg 

Mass Formula Mass Formula Mass Formula 

23.47588 47Ti2+ 24.47393 49Ti2+ 25.47198 51V2+ 

23.97398 48Ti2+ 24.97239 50Ti2+ 25.97025 52Cr2+ 

23.97627 48Ca2+ 24.97303 50Cr2+ 25.98260 Mg+ 

23.98504 Mg+ 24.97358 50V2+ 26.00307 14N12C+ 

23.99760 23Na1H+ 24.98584 Mg+ 26.00670 13C13C+ 

24.00000 12C12C + 25.00335 12C13C+ 26.00785 10B16O+ 

24.01229 9Be15N+ 25.00387 23Na2H+ 26.00942 11B15N+ 

24.01266 11B13C+ 25.00709 9Be16O+ 26.01131 9Be17O+ 

24.01428 6Li18O+ 25.01238 11B14N+ 26.01440 7Li19F+ 

24.01513 7Li17O+ 25.01305 10B15N+ 26.01492 9Be16O1H+ 

24.01601 10B14N+ 25.01352 6Li19F+ 26.02021 11B14N1H+ 

24.01874 7Li16O1H+ 25.01516 7Li18O+ 26.02299 7Li18O1H+ 

24.02308 9Be14N1H+ 25.02012 9Be15N1H+ 26.47033 53Cr2+ 

24.47393 49Ti2+ 25.02211 6Li18O1H+   

  25.02296 7Li17O1H+   

  25.02384 10B14N1H+   

  25.02501 7Li16O2H+   

  25.47198 51V2+   

 

Instrumental mass bias, which is caused by differential transmission of the different 

Mg isotopes during the measurement with MC-ICP-MS, was corrected by applying the 

sample-standard bracketing technique. Because Mg has only three stable isotopes (24Mg, 

25Mg and 26Mg), double-spike methods, which require at least four stable isotopes of the 

same element, could not be applied. I used an in-house Mg(NO3)2 standard for our sample 

bracketing. The Mg-isotopic composition of the in-house Mg(NO3)2 standard was 

determined by repeated measurements (n=45) relative to ERM-AE143. The in-house 

standard had a δ26Mg value of 3.61 ± 0.24‰ and a δ25Mg value of 1.87 ± 0.14‰ (2 SD). 

The long-term reproducibility of the Mg isotope ratio measurements was checked by 

performing repeated measurements (n=16) of the in-house Mg(NO3)2 standard of the 

Observatoire Midi-Pyrenées/Laboratoire Geosciences Environnement Toulouse (GET), 

France. My values of δ26Mg = 0.28±0.13‰ and δ25Mg = 0.18±0.09‰ matched those 
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reported by Stamm et al. (2022) well (δ26Mg = 0.32±0.14‰ and δ25Mg = 0.16±0.08‰). 

Since differences in the Mg concentrations between samples and standards can also affect 

instrumental mass bias and deteriorate the quality of the Mg isotope analysis, all samples 

and standards were introduced into the plasma dissolved in 0.37 M HNO3 at Mg 

concentrations of 500 ppb. Mg isotope signals (24Mg, 25Mg and 26Mg) were measured 

simultaneously on Faraday detectors using a 1011 Ohm Faraday cup current amplifier in 

five blocks of 30 cycles per block, with an integration time of 4 s per cycle (Section D). 

 

4. General conclusions 

The initial high Ca bioavailability because of the moderate alkaline soil pH and carbonate 

depletion together with the dissolution of easily weatherable silicates providing enough Mg 

and K to the pioneer vegetation contributed to the establishment of a deciduous forest in 

the early stage of the Hailuogou chronosequence. The slower element release by weathering 

after leaching of carbonates occurred synchronously with the vegetation change from 

deciduous to coniferous forests, which usually have a lower nutrient demand. 

Consequently, nutrient supply by weathering and nutrient demand by the vegetation 

seemed to be well synchronized to promote vegetation development along the Hailuogou 

glacial retreat chronosequence (Section B). 

Calcite (CaCO3) occurred in the mainly granitic substrate of the Hailuogou 

chronosequence, which originated from meta-sedimentary and meta-volcanic rocks in the 

glacial debris and provided a high amount of bioavailable Ca in the early stage of the 

chronosequence. Carbonate weathering determined the rapid initial Ca but not Mg release. 

The latter was attributed to the easily weatherable Mg-containing silicate mineral chlorite. 

Although less Mg than K was originally stored in the mineral soil, Mg was leached faster. 

The main sources of weathered K and Na were silicate minerals. The release of K was one 

order of magnitude higher than that of Na, although the total concentrations of both 

elements were similar in the parent material. The base cation release rates along the 

chronosequence followed the order Ca >> Mg > K >> Na (Sections B and C). 

The significant negative correlation between the δ26Mg values of bulk soils and the Mg 

depletion rates along the chronosequence suggest that Mg isotope ratios can be used to 

trace Mg loss from the topsoil during the early phase of soil development. The different 
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δ26Mg values of the minerals contained in the parent material combined with the δ26Mg 

values of the two differently reactive Mg pools (fast/slow) could be used to identify the 

mineral sources of this loss. Because the low δ26Mg value of chlorite explained the similarly 

low δ26Mg values of the fast-reacting Mg pool of the weathering experiment (pHstat), 

chlorite was confirmed as the major Mg source in the young soils (Section D). 

With increasing ecosystem age, roots and young needles accumulated isotopically 

heavy Mg, probably as a result of the decreasing size of the Mg-isotopically light 

bioavailable pool and its increasing δ26Mg value. Generally, increasing Mg concentrations 

in leaves and needles resulted in 26Mg enrichment, regardless of tree species (Section 

A-3.4). 

In my thesis, I found promising relationships between the δ26Mg values of soils and 

plant compartments that might be used as tracers of Mg fluxes in ecosystems including e.g., 

the Mg loss from the entire ecosystem or the Mg uptake by plants. However, my findings 

are based on a limited number of sites along a comparatively homogeneous chronosequence 

of young ecosystems. Therefore, future research should address the question whether my 

findings can be extrapolated to more diverse soils and longer time scales by studying longer 

chronosequences on diverse parent materials.  
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1 Abstract 

Aims The retreat of glaciers is exposing new terrains to primary plant succession 

around the globe. To improve the understanding of vegetation development along a glacier 

retreat chronosequence, we (i) evaluated a possible link between base metal (Ca, Mg, K, 

Na) supply and vegetation establishment, (ii) determined the rates of the establishment of 

soil and plant base metal stocks, and (iii) estimated the size of the main base metal fluxes. 

Methods We determined base metal stocks in the soil organic layer, the mineral 

topsoil (0-10 cm), and in leaves/needles, trunk, bark, branches and roots of the dominating 

shrub and tree species and estimated fluxes of atmospheric deposition, plant uptake and 

leaching losses along the 127-yr Hailuogou chronosequence.  

Results Total ecosystem Ca and Mg stocks decreased along the chronosequence, 

while those of K and Na were unrelated with ecosystem age. Fortyfour and 30% of the 

initial stocks of Ca and Mg, respectively, were leached during the first 47 years, at rates of 

130±10.6 g m-2 year-1 Ca and 35±3.1 g m-2 year-1 Mg. The organic layer accumulated at a 

mean rate of 288 g m-2 year-1 providing a bioavailable base metal stock, which was 

especially important for K cycling.  

Conclusions We suggest that the initial high Ca bioavailability because of a 

moderately alkaline soil pH and carbonate depletion in 47 years, together with the 

dissolution of easily-weatherable silicates providing enough Mg and K to the pioneer 

vegetation, contributed to the establishment of the mature forest in ca. 80 years. 
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2. Introduction 

The worldwide increasing temperatures since the end of the Little Ice Age (LIA; IPCC 

2021) have resulted in the retreat of high mountain glaciers in polar (Kabala and Zapart 

2012; Moreau et al. 2008; Wietrzyk et al. 2018) and tropical regions (Cullen et al. 2013; 

Seehaus et al. 2019). Following glacial retreat, glacial debris is continuously deposited in 

the retreat areas serving as new substrate for soil and ecosystem development. Particularly 

during the time between deposition of the glacial debris and establishment of a vegetation 

cover, there is an enhanced risk of natural hazards typical for mountain areas, such as 

landslides, debris flows, erosion, and flooding. The main causes of this are the abundance 

of unconsolidated material and the lack of a vegetation cover which reduces surface runoff 

and wind and water erosion (Crozier 2010; Haeberli et al. 2017; Keiler et al. 2010; Portes 

et al. 2018; Richardson and Reynolds 2000). The similar climatic and geological conditions 

of a glacial retreat area allow us to apply space-for-time substitution approaches (Pickett 

1989). Studies on primary succession on glacial moraines have been performed since the 

end of the 19th century (e.g., Coaz 1887; Crocker and Major 1955; Dickson BA and Crocker 

1953; Friedel 1938) and continue to date (see compilation of studies in Table B-S1). 

Glacial retreat has accelerated during the second half of the 20th century (Zemp et al. 2008; 

Zhou et al. 2013) and is expected to continue for global mountain systems during the 21st 

century (Hock et al. 2019; Nogués-Bravo et al. 2007). Thus, the knowledge of the processes 

that drive vegetation succession is crucial to cope with the risks originating from the 

globally increasing glacial retreat areas. 

Because of the harsh, high-elevation site conditions, glacier forelands are challenging 

environments for vegetation development. Although pioneer plants usually start colonizing 

young surfaces a few years after glacier melt, it needs various decades, if not centuries to 

develop a full vegetation cover (Burga et al. 2010; Conen et al. 2007; Vilmundardóttir et 

al. 2015). Many young primary successions (<200 yr) developing on different parent 

materials in different climate zones are dominated by pioneer mosses, dwarf shrubs and 

shrubs but lack fully developed forests (see compilation of studies in Table B-S1). The 

primary succession developing in the Hailuogou glacial retreat area has, however, 

surprisingly achieved the average biomass estimated for mature temperate coniferous 

forests (307 tones ha-1, Cole and Rapp 1981) within a period of ~ 80 years (Figure B-S1, 

Luo et al. 2004).  
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Besides nitrogen (N) supply by microbial fixation from the atmosphere, the release 

of nutrients from parent materials by chemical weathering also plays a key role in 

vegetation succession (Chadwick et al. 1999). During chemical weathering processes, 

nutrients are released from minerals to soil solution as ions, which can readily move among 

the various geochemical and biological reservoirs and be lost via deep infiltration and  

stream water (Likens 2013). Plants can influence chemical weathering rates by a factor of 

two to five compared to the rates when plants are absent (Berner et al. 2004; Drever and 

Stillings 1997). Plants influence the biogeochemical cycle of nutrients by affecting their 

bioavailability in soils, taking up nutrients from the soil solution via their roots and their 

associations with mycorrhiza, storing them in tissues, and finally returning them to the soil 

via canopy leaching, litterfall, and organic matter decomposition. In this context, the 

formation of a soil organic layer on top of the mineral soil plays an important role, because 

it stores nutrients and slowly releases them for re-use by plants (Lilienfein et al. 2001; 

Wilcke et al. 2002). Different tree species can further influence nutrient cycling in soil, 

because of their different nutrient requirements (Larcher 2003). Deciduous tree species 

usually have higher Ca, Mg and K concentration in leaves and greater foliar biomass than 

coniferous tree species (Ericsson 1994), which causes larger metal fluxes with litterfall in 

deciduous than coniferous forests (Carnol and Bazgir 2013). Although N and phosphorous 

(P) are considered the most commonly limiting nutrients affecting biomass production in 

terrestrial ecosystems (Elser et al. 2007; LeBauer and Treseder 2008; Vitousek and 

Howarth 1991; Lei et al. 2021; Yang et al. 2021), previous studies have shown that Ca, Mg 

and K can have a great influence on tree growth and vegetation development (Baribault et 

al. 2012; Burstrom 1968; Epron et al. 2012; Federer et al. 1989; McLaughlin and Wimmer 

1999; Paoli and Curran 2007; Wright et al. 2011). Sodium (Na) can also be taken up and 

used by vegetation (Amtmann and Sanders 1999). Sodium regulates cellular osmotic 

balance of microorganisms and thereby influences the decomposition of soil organic matter 

(Jia et al. 2015; Kaspari et al. 2009, 2014) and the resupply of bioavailable mineral 

nutrients. However, when high concentrations accumulate in the cytoplasm, Na interferes 

with K and Ca nutrition and disturbs efficient stomatal regulation (Marschner 2012; 

Tavakkoli et al. 2010). Moreover, high concentrations of any of these elements (i.e., Ca, 

Mg, K and/or Na) can lower or even inhibit the uptake of the others, which is known as 

cationic antagonistic effect (Diem and Godbold 1993; Ertiftik and Zengin 2017; Fageria 

https://link.springer.com/article/10.1007/s11104-009-0076-0#ref-CR1
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1983; Rhodes et al. 2018). Thus, at high Ca availability, e.g., in soils on limestone, Mg and 

K uptake can be limited (Ertiftik and Zengin 2017). 

Our overall goal was to improve the understanding of the drivers of vegetation 

development on glacial debris. We hypothesized that (i) the vegetation establishment in the 

Hailuogou area, which surprisingly reaches the stage of a mature forest in only ~80 years, 

is linked with changes in total base metal stocks of the ecosystems attributable to a high 

initial bioavailability of Ca, Mg, K and Na, because the carbonic acid/carbonate buffer 

system maintains a near-neutral soil pH with a high base saturation in the early phase of 

the vegetation establishment. (ii) This high base metal availability allowed for the faster 

buildup of large base metal stocks in plants and in the soil organic layers than at other <200 

yr-old glacial retreat chronosequences (Table B-S1), driven by particularly high base metal 

fluxes between soils and plants. (iii) After the carbonates and easily weatherable silicates 

have been dissolved, the base metal supply decreases considerably. However, this is 

compensated by the presence of an organic layer which provides plant-available nutrients 

to the vegetation and by a shift in the vegetation composition from deciduous to coniferous 

trees which reduces the base metal demand of the vegetation. The Hailuogou 

chronosequence has not been strongly disturbed by human activities, making this an ideal 

area to study biogeochemical element cycling in the early stage of soil and vegetation 

development at decadal scale. 

 

3. Materials and methods 

3.1. Study Area 

The Hailuogou Glacier flows down the eastern slope of the Gongga Mountain, in the 

transition zone of the Sichuan Basin and the Tibetan Plateau, southwest China (Figure 

A-3). Because of a temperature increase, the Hailuogou Glacier has markedly retreated 

since the late 19th century (Li et al. 2010), developing an approximately 2 km-long, 50–200 

m wide chronosequence, with an elevational difference of ~130 m. The climate is mainly 

controlled by the Southeast Monsoon. The mean annual temperature and precipitation at 

the Gongga Mountain Alpine Ecosystem Observation Station, Chinese Academy of 

Sciences, which is located in the same Hailuogou catchment (Figure A-3) are 4.2 °C and 

1947 mm, respectively. For the eastern slope of the Gongga Mountain, where our study site 
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is located, Zhou et al. (2016) have reported a mean annual temperature of 5.6°C and 3.9°C 

at 2772 m.a.s.l. and 3060 m.a.s.l., i.e., an elevational temperature gradient of ca. 0.006°C 

m-1 or 0.77°C for the ca. 130 m elevational difference. In the same study, the mean annual 

precipitation was 1923 mm at 2772 m.a.s.l. and 1933 mm at 3060 m.a.s.l. resulting in a 

difference of ca. 4.5 mm (or 0.23% of the rainfall at 2772 m a.s.l.) between the youngest 

and oldest study sites. Rain falls mainly during the vegetation period (May to September; 

Wu et al. 2013). The parent material of soil formation is moraine and is mainly composed 

of silicates, including plagioclase (285 mg g-1), quartz (245 mg g-1), biotite (120 mg g-1), 

hornblende (120 mg g-1) and K-feldspar (100 mg g-1) and non-silicatic carbonates (<103 

mg g-1) and apatite (<21 mg g-1) (Yang et al. 2015; Zhou et al. 2016). The short time of 

pedogenesis (<130 years) resulted in the formation of initial soils without B horizon 

classified from the youngest to the oldest soils as Leptic Calcaric to Folic Dystric Regosols 

according to the World Reference Base for Soil Resources (IUSS Working Group WRB, 

2014). The intense carbonate weathering and the rapid establishment of the vegetation 

decreased the pH of the mineral soil from 8.3 to 6.0 in only 47 years (Table B-S2). 

Exposure ages of the different sites and trees ages at the Hailuogou Chronosequence 

have been determined based on historic records including aerial fotos and tree rings, 

respectively (Zhong et al. 1999). This study includes seven dated sites, de-glaciated 

between 0 (Site 1; 2982 m a.s.l.) and 127 years before our sampling (Site 7; 2855 m), which 

were previously described by Zhou et al. (2013). A complete primary vegetation 

successional sequence has rapidly developed along the retreat area, from bare land with 

pioneer mosses via a bush stage to forests successively dominated by the shrub species 

Hippophae rhamnoides L., which had a tree-like habit (i.e., it showed a single main trunk), 

reaching heights >5 m (Site 3, 37 yr, ~35% canopy cover, accompanied by scarce Populus 

purdomii Rehder and Salix spp. trees and the herb Astragalus adsurgens Pall. with a growth 

height <40 cm and 10% uncovered soil), the broad-leaved tree species Populus purdomii 

Rehder (Site 4, 47 yr, ~50% canopy coverage accompanied by the deciduous tree Betula 

albosinensis Burkill and scarce H. rhamnoides shrubs and Abies fabri (Mast.) Craib trees; 

Site 5, 59 yr, ~40% canopy coverage), and the coniferous tree species Abies fabri (Mast.) 

Craib (Site 5, 59 yr, ~40% canopy coverage; Site 6, 87 yr, ~60% canopy coverage; Site 7, 

127 yr, ~40% canopy coverage) and Picea brachytyla (Franch.) E. Pritz. (Site 6, 20% 

canopy coverage; Site 7, 127 yr, 40% canopy coverage) (Table B-1). The percent canopy 

cover was estimated visually for each individual tree on three replicate 20 m x 20 m plots 

at each site by Luo et al. (2014). 
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Table B-1. Dominant tree species and their percentage cover, pH and CO3
2- concentrations 

in the uppermost 10 cm of the mineral soil at the study sites of the Hailuogou 

chronosequence. 

Site number 1 2 3 4 5 6 7 

Site age (years) 0 5 37 47 59 87 127 

Dominant tree 

species (percentage 

cover) 

Bare 

land 

Bare 

land 

H. 

rhamnoides 

L. (30%) 

P.purdomii 

R. (50%) 

A. fabri 

(40%) 

A. fabri 

(60%) 

P.brachytyla 

(Franch.) 

(40%) 

pH(H2O) 8.0 ± 0 8.1 ± 0 6.1 ± 0.1 5.8 ± 0.2 5.9 ± 0.1 4.9 ± 0.1 5.2 ±  0.2 

CO3
2- (mg g-1) 19 ± 1 17 ± 1 2 ± 1 

Not 

detected 

Not 

detected 
< 0.5 0.2 ± 0.1 

 

 

Previous research on biologically relevant elements in the Hailuogou region focused 

on the change in C, N and P mass ratios and stocks (e.g., Bing et al. 2016b, He and Tang 

2008; Wu et al. 2015; Yang et al. 2021; Zhang et al. 2021; Zhou et al. 2013) or 

contamination by trace metals (e.g. Bing et al. 2016a, 2019; Luo et al. 2015; Wang et al. 

2020a). The latter studies described a rapid accumulation of organic matter and N in the 

topsoil, while the soil formation rate along the Hailuogou chronosequence decreased with 

increasing ecosystem age (He and Tang 2008). Zhou et al. (2016) reported that weathering 

processes in the Hailuogou are initially dominated by the weathering of carbonates 

followed by a more intense biogeochemical weathering (>80 yr) because of lower pH 

values. In a recent study, Yang et al. (2021) suggested that N is the main growth-limiting 

element in the Hailuogou area based on N:P stoichiometric ratios in leaves. Wang et al. 

(2021) recently reported a positive effect of pioneer N2-fixing plants on the establishment 

of other non-N2-fixing species after glacier retreat. However, the relationship between the 

bioavailability of base metals (Ca, Mg, K, Na) and vegetation development in this area have 

not yet been evaluated. 

 

3.2. Field sampling  

Soil samples were collected in August 2017 from seven ecosystem succession stages (Sites 

1-7), which were exposed for 0, 5, 37, 47, 59, 87 and 127 years since glacier retreat (Figure 

A-3). Each ecosystem succession stage was sampled in triplicate. The distance between the 

sampled soil profiles was at least 20 m, except at Sites 1 and 2, where the distance was 

reduced to 10 m because the studied valley is narrower in the proximity of the glacier. Soil 
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profiles were hand-dug and five soil horizons sampled: Oi (fresh litter), Oe (shredded litter), 

Oa (dark layer of decomposed humus), A (surface mineral soil with humus enrichment), 

and C (weathered soil parent material). No organic layers were present at Sites 1 and 2 (0 

and 5 years old, respectively).  

Freshly cut leaves, 3-year-old needles, bark, branches, trunk, and roots of the 

dominant tree and shrub species were collected in triplicate for elemental analysis, in the 

surrounding of our replicate soil profiles, between August and October 2017 at each study 

site. To achieve a more representative sample of each replicate, a minimum of three 

individuals were randomly sampled from the trees of the same area. Four species were 

sampled along the chronosequence: H. rhamnoides (Site 3, 37 years), P. purdomii (Site 4, 

47 years), A. fabri (Sites 5-6, 59 and 87 years), and P. brachytyla (Site 7, 127 years). Tree 

branches were randomly sampled from the tree canopy using pole shears. Bark samples 

were collected using an outdoor knife. The depth of cut was adjusted depending on the bark 

thickness in order to take a representative sample without reaching the cambium. Trunk 

samples equivalent to the radius of the sampled tree were collected using a tree corer with 

a diameter of 5.15 cm. Roots were manually washed out of a soil sample with defined 

volume.  

Soil samples (mineral and organic horizons) were air-dried to constant weight in a 

drying room located in the research station. Mineral samples were sieved to collect the two 

fractions fine earth (<2 mm) and stones (soil >2 mm). Plant residues were removed from 

the soil. Leaf, needle, branch, bark, trunk and root samples were oven-dried to constant 

weight at 40°C during 72 hours and stored in sealed bags. Trunk and root samples were 

manually homogenized using an agate pestle and mortar. Bark and branch samples were 

homogenized using a blade grinding (Polymix PX-MFC 90 D) equipped with a 3.0 mm 

mesh size sieve. Aliquots of all samples were ground using a ball mill equipped with a 

zirconium oxide jar. 

 

3.3. Chemical analyses 

Soil pH was determined from the air-dried samples (<2 mm) by a glass electrode (WTW 

SenTix 81) in a 1:5 (v/v) soil:water suspension. Total element concentrations in the organic 

horizon, fine earth and stones were determined after digestion with concentrated 

HNO3/HF/H2O2 (4:1.5:1, v:v:v) and in the plant compartments after digestion with 8 mL 
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of concentrated HNO3 and 2 mL of concentrated H2O2 in a microwave oven 

(MARS6Xpress, CEM, Kamp-Lintfort, Germany). Elemental concentrations in the digests 

were analyzed using an inductively-coupled plasma optical-emission spectrometer (5100 

VDV ICP-OES, Agilent, Waldbronn, Germany). Accuracy was assessed by the analysis of 

certified reference materials: SRM1547 (peach leaves) and SRM1515 (apple leaves) for 

organic samples and BCR2 (Columbia River Basalt 2) for soil samples. Average recoveries 

± single standard deviation were 100 ± 10% for all certified element concentrations. 

Precision determined by duplicate measurements was <5%.  

Carbonate content (CO3
2-) in the fine earth was determined by measuring the volume 

of emitted carbon dioxide after reaction of the sample with 10% HCl in a Scheibler 

calcimeter. Inorganic C concentrations in the stones were measured with an elemental 

analyser (EuroEA Elemental Analyzer, HEKAtech, Wegberg, Germany), after muffling at 

550°C.  

Exchangeable cations (Ca, Mg, K, Na, and Al) in the mineral soil (2 g) were extracted 

with 1 M NH4NO3 in a 1:25 soil to solution ratio following the method described by Zeien 

and Brümmer (1989) and measured by ICP-OES. All our element concentrations and stocks 

refer to the air-dry mass of the samples. 

 

3.4. Calculations and statistical analyses 

Stocks 

Stocks (Eplant compartment) of the respective element E (i. e., Ca, Mg, K or Na) in the different 

tree compartments (leaves/needles, branches, trunk, bark and roots) of the dominant shrub 

or tree species at each site were calculated by multiplying the corresponding compartment 

biomass (Bc) with the element concentrations measured in the different compartments (CE) 

(Eq. B-1).  

Eplant compartment (g m-2) = Bc (g m-2) x CE (g g-1)                                                               (B-1) 

The Bc was calculated by multiplying the total biomass at each plot (Table B-S3), 

estimated for our study site from Luo et al. (2004) after applying a logistic fitting (Figure 

B-S1), with the proportional contribution of the tree compartments to total biomass taken 

from Zhou (2013) and for partitioning between trunk and bark from Wilcke and Lilienfein 

(2004) (Table B-S4). Tree biomass published by Luo et al. (2004) was calculated with the 
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allometric equations reported by Zhong et al. (1997), which are based on tree height and 

diameter at breast height. The biomass of the shrub species was obtained by Luo et al. 

(2004) through destructive sampling after harvesting and drying. With this approach, we 

assumed that the mean base metal concentrations of the dominant species was 

representative for the whole vegetation on the considered plot. To support this assumption, 

we calculated according to the mass contributions of the various tree compartments 

(leaves/needles, branches, bark, trunk, roots) weighted mean base metal concentrations of 

the dominant species (Figure B-S2). The results illustrate that the nutrient concentrations 

in the shrub and trees were low at Sites 3, 6, and 7 and higher at Sites 4 and 5. The 

coniferous tree species A. fabri showed significantly higher base metal concentrations at 

Site 5 than at Site 6. Moreover, at Site 3 the tree-like shrub H. rhamnoides contributed more 

to the total biomass than can be expected from its cover (Table B-1), because of its multiple 

branches and much taller stature than the second most abundant herb A. adsurgens. At Sites 

6 and 7, the cover of the two coniferous tree species A. fabri and P. brachytyla together 

was >80% of the total cover, which we took as approximate measure of the contribution of 

the individual species to the total biomass on the respective plot. The two coniferous tree 

species did not show significantly different mass-weighted mean base metal concentrations 

(Figure B-S2). With respect to our extrapolation, the most critical study sites were Sites 4 

and 5 with a mixed vegetation. To assess the validity of our extrapolation, we compared 

the base metal stocks of an assumed 100% cover of A. fabri with an assumed 100% cover 

of P. purdomii and did not find significant differences in the Ca, Mg and K stocks in the 

biomass (Figure B-S3). The estimate of the Ca, Mg and K stock in P. purdomii on Site 5 

is based on the assumption that the lack of a difference in the concentrations of these 

elements in the leaves between Sites 4 and 5 implies that the concentrations in all other 

plant compartments are also similar. 

Element stock in each soil organic layer (EOa/Oe/Oi) was calculated considering the 

elemental concentration (CE Oa/Oe/Oi), the bulk density (BDi) and the thickness (Ti) of the 

respective horizon (Oa, Oe, Oi) (Eq. B-2). Total organic horizon stock at each plot was 

calculated by summing up all individual horizons (Eq. B-3). 

 EOa/Oe/Oi (g m-2) = CE Oa/Oe/Oi (g g-1) x BDi (g m-3) x Ti (m)                                   (B-2)     

Eorganic horizons = EOa + EOe + EOi                                                                                                                                    (B-3) 
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Soil mineral stocks (E A/C) were calculated considering the contribution of the stones 

(χi stones, vol.%) in the soils along the chronosequence, Ti, BDi, and the elemental 

concentration in the stones (>2mm, CEi stones) and in the fine earth (fe <2mm, CEi fs), for the 

A and C horizons, respectively (Eq. B-4).  

EA/C (g m-2) = EA/C stones (g m-2) x χi stones + EA/C fe(g m-2) x (1-χi stones)                         (B-4) 

where: 

EA/C fe (g m-2) = CEi fe (g g-1) x BDi (g m-3) x Ti (m)                       (B-5)      

EA/C stones (g m-2) = CEi stones (g g-1) x 2.65 x 106 (g m-3) x Ti (m)                 (B-6) 

Bulk densities (BDi) and stone volume were taken from Zhou et al. (2016) and Wang 

et al. (2020c), who studied the same sites as in our study. The soil particle density was 

assumed as 2.65 g cm-3 (Eq. B-6; Zhou et al. 2016). To calculate stocks of the extractable 

cations in the mineral soil, we only considered the fine earth, assuming that no extractable 

cations were present in the stones. 

To account for the decrease in bulk density of the A horizon related with the 

loosening of soil during pedogenesis by weathering and ecosystem succession, the 

thickness of the C horizon (TC) underlying the A horizon was adjusted in our stock 

calculation using Eq. B-7,  

TC (m) = 0.1 (m) – TA (m) x 
𝐵𝐷𝐴 (g m−3)

𝐵𝐷𝐶(g m−3)
                                                                (B-7) 

where TA is the thickness of the A horizon, 0.1 m is the initial mineral soil depth and BDA 

and BDC are the field bulk densities of the local A and C horizons, respectively. Total 

mineral soil stock (Emineral horizons) was calculated by summing up the individual A and C 

horizon stocks. Additionally, we calculated the stocks of the mineral soil assuming that the 

density of the C horizon was initially the same at all the sites (BDC = BDC at Site 1, along 

the chronosequence) (Figure B-S4). There were no significant differences between the two 

approaches so that we only present the results of Eq. B-7. 

Total stock (g m-2) at each plot was calculated by summing up the individual stocks 

of the different plant compartments, (Eplant compartment; leaves/needles, branch, trunk, bark 

and root) and organic and mineral horizons (Eq. B-8). 

Etotal stock = Eplant compartment + Eorganic horizons + Emineral horizons                                           (B-8) 
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Fluxes 

Annual plant uptake of base metals was calculated by multiplying the annual net primary 

productivity (NPP) (Table B-S3) with the mass-weighted mean element concentration of 

the plant (CE plant) (Eq. B-9). NPP was taken from Luo et al. (2004), who derived it from 

measurements of the tree diameter growth at breast height of all individual trees or shrubs 

on a study plot, which was translated into biomass growth with the help of the allometric 

equations of Zhong et al. (1997). 

Eplant uptake (g m-2 year-1) = NPP (g m-2 year-1) x CE plant (g g-1) (B-9) 

Total deposition (TDE, g m-2 year-1) for any element E was calculated with Eq. B-10 

TDE = BDepE + DDE        (B-10) 

where BDepE represents the bulk deposition measured with a Hellmann-type rain collector 

and DDE is the estimation of the fine particulate dry deposition. Data of BDepE were 

obtained from the Gongga Mountain Alpine Ecosystem Observation Station (3000 m above 

sea level), Chinese Academy of Sciences (Zhou et al. 2016), which is located in the 

Hailuogou river catchment, where our study sites are. Dry deposition (DDE) was roughly 

estimated by multiplying the relationship DD/BDepE published by Wilcke et al. (2017), 

calculated using the canopy budget method from Ulrich (1983) in a tropical forest with 

similar precipitation than that in the Hailuogou area. Because the scavenging of fine 

particulates from the atmosphere is related with the size of the plant surface of the forest 

canopy (Freer-Smith et al. 2005; Song et al. 2015), we scaled the DD/BDepE ratio by 

multiplying with the ratio of biomass at each individual site to that at Site 7 (127 years). 

This assumes that only the forest at Site 7 had a similar DD/BDepE ratio than the native 

montane forest in Ecuador used as reference and that the scavenging surface of the canopy 

is proportional to the biomass. 

Leaching of the element E (LE) from the soil to the stream (= element export with the 

stream) was estimated from the concentration in the stream water (CE SW, data from Zhou 

et al. 2016), the mean annual precipitation (Pr, data from Wu et al. 2013) and the fraction 

of rainfall lost via the stream (α) (Eq. B-11). The runoff coefficient α was individually 

adjusted to each of our sites by multiplying the transpiration of a mature forest taken from 

Sun et al. (2013) with the ratio of biomass at each individual site to that at Site 7. The 

canopy interception loss was also taken from Sun et al. (2013), who provided interception 

loss values for different succession stages of our chronosequence allowing for interpolating 

data for two sites for which no data were available (Table B-S3). The fraction of rainfall 
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lost via the stream near the glacier forefront was estimated at 86% (Brock et al. 2010; Small 

et al. 2018). 

LE (g m-2 year-1) = CE SW (g L-1) x Pr (L m-2 year-1) x α                                            (B-11) 

Our estimate of the base metal leaching losses is based on the assumptions that all 

water passes through the deep subsoil, which consists of the unchanged glacial debris at all 

study sites and that during this passage chemical equilibrium of the soil solution with the 

substrate is reached via almost instantaneous cation exchange and mineral precipitation 

processes because any water flow through the debris and soils takes long enough to reach 

these fast equilibria. This assumption is reasonable because the length of the water path 

from the study soils to the stream is at least in the range of >1 m so that even at a high water 

conductivity of 10-4 m s-1, it would take the water >160 h to pass from the soil to the stream 

and thus long enough for equilibration. As a consequence, the base metal output of our 

study sites only depended on the fraction of water percolating through the subsoil to the 

stream described by α and the mean base metal concentration in stream water. 

Mean depletion rates (g m-2 year-1) of the Ca and Mg stocks in the total ecosystem 

along the first stage of the chronosequence (from 0 to 47 years) were approximated by 

fitting a linear relationship of the total stocks versus time. Mg and K release from the 

depletion of biotite and hornblende was estimated from mineral composition data taken 

from Zhou et al. (2016) for the same study sites.   

In order to compare the budget of the independently estimated ecosystem fluxes 

(input: atmospheric deposition; outputs: loss with stream flow, accumulation in the organic 

layer and biomass; all in g m-2 year-1) with the cumulative stock change in the mineral 

topsoil (uppermost 10 cm, in g m-2), we multiplied the respective flux by the site age.  

Statistical evaluation 

Normal distribution of the data was checked with the Shapiro-Wilk test. Pearson 

correlation, linear regression, and non-linear function fitting were used to evaluate 

relationships between variables. Calculation of total stocks using (i) the local BDc (Eq. 

B-7) or (ii) assuming that the density of the C horizon was initially the same at all sites (i.e., 

equal to the glacial debris, 0 yr old site) were tested for significant differences with 

independent two-sample t-tests at each site. One-way analysis of variance (ANOVA) and 

a Tukey’s HSD post-hoc test were applied to detect significant differences between total 

stocks among the various study sites. Normal distribution of residuals was visually 
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inspected. Homoscedasticity was confirmed for our data after applying the Levene’s test. 

Statistical analyses were conducted with the statistical software R (R Core Team, 2019). 

Tukey’s HSD post hoc tests following ANOVA were performed with the ‘agricolae’ 

package (de Mendiburu 2021). Significance was set at p < 0.05. 

 

4. Results 

4.1. Base metal depletion rates in the entire ecosystem  

Total ecosystem stocks of Ca and Mg decreased along the chronosequence (Figure B-1a, 

b). Most of the depletion of Ca and Mg occurred during the first 47 years of soil exposure, 

paralleling the pH decrease from 8.0 to 5.8 in the mineral topsoil and the loss of carbonates 

(Table B-1), likely mainly calcite (CaCO3) (Zhou et al. 2016). Ca and Mg stocks decreased 

at rates of 130 ± 10.6 g m-2 and 35 ± 3.1 g m-2 over the first 47 years of soil development, 

respectively. This entailed that 44% of the initial stock of Ca was leached during the first 

47 years after glacier retreat, accompanied by 30% of the initial Mg stock. After most of 

the carbonates were dissolved and the pH decreased to the strong acid/aluminum oxide 

buffer range, the annual depletion of Ca and Mg slowed down (Figure B-1a, b; Table 

B-1).  

Contrary to Ca and Mg, there was no clear relationship between K and Na total 

ecosystem stocks and development time (Figure B-1c, d). Instead, K and Na total stocks 

remained similar at on average 5162 ± 710 g m-2 K and 3530 ± 429 g m-2 Na along the 

chronosequence.  
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Table B-2. Fluxes of Ca, Mg, K and Na along the Hailuogou chronosequence (g m-2 year-1) 

at each study site along the Hailuogou glacier retreat chronosequence. Atmospheric 

deposition includes bulk and estimated fine particulate dry deposition. Element release 

from carbonates was calculated from the difference in carbonate concentrations between 

two consecutive sites divided by the difference in site age in years, considering the amount 

of the inorganic C that is present as CaCO3 or as CaMg(CO3)2 (Zhou et al. 2016). Carbonate 

export after >59 years was negligible (not detected, ND). Release from carbonates, plant 

uptake and accumulation in the organic layer (Oa + Oe + Oi) are presented as means ± 

single standard deviations (n=3). 

 

 Site age (year) 0 37 47 59 87 127 

Ca Atmospheric deposition 1.3 ± 0.3 2.1 ± 0.3 2.3 ± 0.3 2.6 ± 0.3 3.0 ± 0.3 3.2 ± 0.3 

 Plant uptake 

Accumulation in the org. layer 

Stream export 

 

 

 

31 

 

31 ± 6 

6.8 ± 2.8 

77 

 

64 ± 6 

12.2 ± 0.6 

59 

 

62 ± 2.0 

8.0 ± 0.5 

55 

 

22 ± 3.0 

2.5 ± 0.5 

48 

 

39 ± 6.5 

3.7 ± 0.7 

40 

 

Mg Atmospheric deposition 

Plant uptake 

Accumulation in the org. layer 

Stream export 

0.3 ± 0.2 

 

 

0.8 

 

0.5 ± 0.2 

2.1 ± 0.2 

2.2 ± 1.4 

5.5 

0.5 ± 0.2 

4.8 ± 1.5 

4.0 ± 0.7 

4.8 

0.6 ± 0.2 

3.5 ± 0.2 

2.6 ± 0.8 

5.2 

0.7 ± 0.2 

2.4 ± 0.3 

0.7 ± 0.3 

5.5 

0.7 ± 0.2 

3.5 ± 0.3 

0.9 ± 0.2 

4.1 

K Atmospheric deposition 

Plant uptake 

Accumulation in the org. layer 

Stream export 

3.6 ± 0.5 

 

 

5.0 

 

5.3 ± 0.5 

34 ± 1.9 

2.6 ± 2.0 

7.0 

6.0 ± 0.5 

44.± 2.7 

5.5 ± 0.7 

5.9 

6.7 ± 0.6 

36 ± 5.8 

3.9 ± 1.5 

6.2 

7.5 ± 0.6 

29 ± 1.5 

1.2 ± 0.4 

4.7 

8.0 ± 0.6 

29 ± 3.6 

1.4 ± 0.3 

2.7 

Na Atmospheric deposition 

Plant uptake 

Accumulation in the org. layer 

Stream export 

0.3 ± 0.1 

 

 

0.4 

0.5 ± 0.1 

0.1 

1.7 ± 1.4 

1.4 

0.6 ± 0.1 

<0.1 

3.4 ± 0.7 

1.1 

0.6 ± 0.1 

<0.1 

2.1 ± 1.1 

1.0 

0.7 ± 0.1 

<0.1 

0.8 ± 0.5 

1.0 

0.8 ± 0.1 

<0.1 

0.6 ± 0.1 

0.8 
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Figure B-1. Total stocks, including above and belowground biomass, the organic layer, 

and the upper 10 cm of the mineral soil (fine earth + stones), of Ca (a), Mg (b), K (c) and 

Na (d) along the Hailuogou chronosequence. Different points at each site age represent 

spatially independent replicates. 

 

4.2. Base metal stocks in the soils 

Most of the total element (i.e. Ca, Mg, K and Na) stock was stored in the mineral topsoil 

(0-10 cm; Table B-S5). The initial weathering of carbonates and subsequent loss of Ca 

(Tables B-1 and B-2) accounted for 40-60% of the total loss of Ca in the mineral topsoil 

along the chronosequence, compared to the immediate glacier forefield (0 yr-old site). Mg 

stocks in the mineral topsoil soil decreased from 4990 ± 196 g m-2 to 2620 ± 202 g m-2 over 

the first 47 years, and further decreased only slightly from 47 to 127 years (Table B-S5). 

K and Na mineral soil stocks remained similar at on average 5075 ± 700 g m-2 K and 3459 

± 420 g m-2 Na along the whole chronosequence. 

The exchangeable Mg stock in the mineral soil consistently increased along the 

chronosequence from 0.7 ± 0.0 g m-2 to 2.3 ± 0.5 g m-2, while no trend was found in the 

exchangeable K and Na concentrations with time (Table B-S5). It was not possible to 

quantify exchangeable Ca in the carbonate-containing soils, because of the partial 

dissolution of calcite in our extract (Tessier et al. 1979, Klimova et al. 2011).  



  
                                                                                                                    B. Base cation stocks and fluxes 
 

59 
 

The accumulation of organic matter on top of the mineral soil, which increased at a 

mean annual rate of 288 g m-2 over the studied time span, promoted the formation of an 

organic horizon of increasing thickness (Table B-S2) that stores a large amount of nutrients 

(Table B-S5). The strongest element accumulation in the combined organic horizons 

occurred from 37 to 47 years after glacier retreat (Figure B-2), accompanied by the 

establishment of a young P. purdommii-dominated forest. After the establishment of the 

coniferous forest, 87 years after deglaciation, the annual accumulation sharply decreased 

for all the studied elements (Table B-2). The mean concentration of the base metals in the 

organic horizons increased with depth (i.e., Oi < Oe < Oa) (Figure B-2).  

 

 

Figure B-2. Mean annual accumulation of Ca (a), Mg (b), K (c), and Na (d) in the different 

organic horizons: Oi (fresh litter), Oe (shredded litter) and Oa (dark layer of decomposed 

humus) along the Hailuogou chronosequence. Error bars represent single standard errors of 

the total annual accumulation of all organic layers combined (n = 3 spatially independent 

replicates). Letters indicate significant differences among the annual base metal 

accumulation along the chronosequence according to Tukey’s HSD post-hoc test. 
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4.3. Base metal stocks in the plants 

Total stocks in aboveground and belowground biomass ranged from 77 ± 17 to 259 ± 26 g 

m-2 Ca, 5.3 ± 0.7 to 18.6 ± 11.8 g m-2 Mg and 92 ± 7 to 144 ± 33 g m-2 K, and were 

consistently highest at the 47 and at the 59 year-old sites (Table B-S5). The distribution of 

base metals varied among different tree compartments with tree species and site (Figure 

B-S2). The largest stocks of Ca and Mg resided in the bark (Ca: 24-39% of the stock in the 

aboveground and belowground biomass, Mg: 8-24%), roots (Ca: 11-39%, Mg: 15-42%), 

and trunk (Ca: 5-35%, Mg: 5-53%), while K was mainly stored in branches (19-46%), trunk 

(4-29%) and roots (14-24%). The Na stocks in the different aboveground plant 

compartments were < 0.04 g m-2 and averaged 0.2 ± 0.1 g m-2 in the roots.  

The plant compartment contributing most to the biomass was the trunk, which 

accounted for 45% of the total biomass in the shrub and the deciduous trees and 58%  in 

the coniferous trees (Table B-S4), followed by the branches (23% in the shrub and 

deciduous trees and 13% in the coniferous trees). The leaves/needles contributed the least, 

accounting for only 4% of the total biomass in all considered tree and shrub species. 

 

4.4. Base metal fluxes 

Annual atmospheric deposition to the whole study area varied from 1.3 - 3.2 g m-2 Ca, 0.3 

– 0.7 g m-2 Mg, 3.6 – 8.0 g m-2 K, and 0.3 – 0.8 g m-2 Na (Table B-2). The estimated dry 

deposition increased along the chronosequence, since the scavenging of fine particulates 

from the atmosphere by the vegetation increases with increasing surface area of the canopy 

(Freer-Smith et al. 2005; Song et al. 2015), which we approximated by biomass (Table B-

2). Annual losses of Ca and Mg via the stream were between one and two orders of 

magnitude higher than the estimated bulk deposition, while those of K and Na were in a 

similar range in bulk deposition and stream export (Table B-2; Figure B-3). 

Total aboveground and belowground plant biomass increased with site age along the 

chronosequence (Figure B-S5) at rates of 380 ± 33 g m-2 year-1. Annual plant uptake ranged 

from 22 - 64 g m-2 Ca, 2.1 - 4.8 g m-2 Mg and 29 - 44 g m-2 K, but did not show a consistent 

temporal trend along the chronosequence (Table B-2). Because Ca, Mg, and K 

concentrations were considerably higher in P. purdomii foliage than in all other sampled 

tree species, sites where P. purdomii was growing usually showed the highest plant uptake 
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of base metals. Annual Na uptake ranged from not detected to 0.1 g m-2. The accumulation 

of base metals in the organic horizons along the chronosequence generally decreased in the 

order Ca > K > Mg > Na (Table B-2). 

 

Figure B-3. Main fluxes of Ca (a), Mg (b), K (c) and Na (d) into and out of the uppermost 

10 cm of the mineral soil along the Hailuogou chronosequence. Error bars in the columns 

represent single standard deviations (n=3). A standard deviation of 10% of the value was 

assumed for atmospheric deposition and stream. Inputs have positive and outputs negative 

values. 

 

To determine whether the individual fluxes matched the total base metal loss, we 

compared the release of base metals in the mineral topsoil (0-10 cm), which represented 

the part of the mineral soil where most of the roots were located, with the budgets of the 

independently determined individual fluxes along the chronosequence (Figure B-4). 

Moreover, we included the part of the change in the Ca, Mg and K stocks, which was 

attributable to the loss of easily weatherable minerals (calcite, biotite and hornblende). The 

CO3
2- concentrations decreased in the topsoil at a rate of 113 ± 15 g m-2 yr-1 CO3

2- during 
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the first 47 years after glacier retreat and was then gone (Table B-1). This resulted in a Ca 

depletion of 79 g m-2 yr-1. The Mg depletion in the mineral topsoil (0-10 cm) attributed to 

the loss of hornblende + biotite was 21 g m-2 yr-1 in the first 47 years of the chronosequence, 

during which the pH dropped markedly (Table B-1) and 8 g m-2 yr-1 in the later 80 years. 

The K depletion attributed to the loss of biotite was 19 g m-2 yr-1 (0-47 yr) and 6 g m-2 yr-1 

(47-127 yr). 

 

Figure B-4. Release of Ca (a), Mg (b), K (c) and Na (d) from the mineral topsoil (-10 cm) 

compared with the budget of the independently determined individual fluxes including the 

inputs atmospheric deposition and the outputs accumulation in the different tree 

compartments and organic layers and export with the stream (sum of the fluxes shown in 

Figure B-3). We also included the release of Ca, Mg and K attributed to calcite (Ca), biotite 

(Mg and K) and hornblende (Mg) depletion (CaCO3 + Bt + Hbl) relative to the 0 yr-old 

site. Error bars represent single standard deviations of three replicate plots at each site, 

which was in the case of the flux budget calculated by Gaussian error propagation from the 

standard errors of the individual fluxes. 

 

Other minerals included in the glacial debris and containing Mg or K, such as chlorite 

or K-feldspar, have not been included in this estimation because their concentration hardly 

changed after 127 years. The chlorite concentration decreased from 40 to 30 mg g-1 in the 

topsoil while that of K-feldspar varied inconsistently from 67 (37 year-old site) to 120 mg 

g-1 (87 year-old site, Zhou et al. 2016). Figure B-4 illustrates that the budgets of the fluxes 



  
                                                                                                                    B. Base cation stocks and fluxes 
 

63 
 

shown in Figure B-3 only explained a small part of the changes in the stocks of Ca and 

Mg, while the loss of the considered easily weatherable mineral explained a large part. 

 

5. Discussion 

5.1. Change in the total and soil base metal stocks and fluxes  

The most rapidly depleted element from the mineral topsoil along the chronosequence was 

Ca, followed by Mg, while K and Na stocks remained similar (Figure B-1). We attribute 

the higher loss of Ca relative to the other elements to the depletion of carbonates (Tables 

B-S2 and B-S5), dominated by calcite (CaCO3, Zhou et al. 2016). The CO3
2- decrease rate 

in the topsoil of 113 ± 15 g m-2 yr-1 CO3
2- during the first 47 years after glacier retreat was 

higher than in other soil chronosequences evolving from parent materials containing a 

broad range of CaCO3 concentrations (20-340 mg g-1), where the loss of CO3
2- ranged from 

14 to 65 g m-2 year-1 (Van Breemen and Protz 1988). However, our CO3
2- dissolution rate 

was in the range of that found in older soils (>10.000 years) in Switzerland (91 – 136 g m-

2 year-1 CO3
2-; Egli and Fitze 2001) and slightly lower than in ~193 yr old Calcaric Regosols 

soils in the Alps, which, in contrast to our study site, originally contained more carbonates 

(70-180 mg g-1 of CO3
2-) in the topsoil (Egli and Fitze 2001). The higher temperatures and 

higher precipitation together with the influence of the fast vegetation succession may have 

contributed to the more rapid CO3
2- depletion at the Hailuogou chronosequence compared 

to other proglacial areas (Table B-S1). Because the dolomite concentrations remained 

constant at ca. 20 mg g-1 along the chronosequence (Yang et al. 2015; Zhou et al. 2016), 

the Mg release cannot be directly attributed to the carbonate weathering but must be related 

with other easily weatherable minerals (such as e.g., biotite and hornblende). 

The order of the element release at the beginning of soil development was consistent 

with the order of mineral dissolution (i.e., carbonate minerals > ferromagnesian minerals > 

feldspars; Lichter 1998; White et al. 1996; Zhou et al. 2016). However, our findings are not 

consistent with the sequence of the ion release by weathering  inferred from open-system 

element budgets at other chronosequences, where Na and K are the most easily leached 

ions (Bain et al. 1993, Harden 1988). We attribute this discrepancy to the low concentration 

of K and Na in easily weatherable minerals which release high quantities of Ca and Mg in 

the early stage of the chronosequence but little K and Na. Mg-rich minerals, such as 
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hornblende and biotite (which also contain K), are more readily weathered than those that 

contain high K and Na concentrations but little Mg, e.g., orthoclase and albite (Clow and 

Drever 1996; Wilson 2004). At the Hailuogou chronosequence, the dissolution of Mg-rich 

silicate minerals contributed to the faster decrease of Mg (Figure B-S1b) than K stocks 

(Figure B-S1c), which is in line with the findings of Zhou et al. (2016). Moreover, the 

release of Mg from hornblende and biotite had a similar size as the total Mg loss from the 

studied ecosystems (Figure B-4).  The strong mineral soil acidification indicated by the 

drop in soil pH along the chronosequence (Tables B-S2 and B-S5), accompanied by the 

establishment of a coniferous forest, may have further intensified the weathering of silicate 

minerals in the older stages of the chronosequence, promoting Mg and K release. 

The one order of magnitude higher K than Mg atmospheric deposition (Table B-2) 

but similar Mg and K export with the stream (Figure B-3b, c) kept K stocks nearly constant 

along the chronosequence (Figure B-1c), while those of Mg decreased (Figure B-1b). The 

accumulation of K in biomass and in the organic horizons (Figure B-3c) contributed to the 

slight decrease of K in the mineral soil along the chronosequence (Figure B-4c), but 

compensated the total ecosystem stocks which remained unrelated with ecosystem age 

(Figure B-1c). In line with our observations, Lichter (1998) reported that K showed a 

negligible depletion during the first 1,000 years of soil development but the K stock linearly 

decreased in the longer term (> 4,000 years) along a sand dune chronosequence in 

Wilderness State Park (Michigan, US), in which the dissolution of carbonates also 

promoted a rapid decrease in pH from 8.5 to 4.3.  

Because of the low Ca and Mg deposition from the atmosphere, the accumulation of 

deposited Ca and Mg contributed little to the total stock of Ca and Mg (Table B-2). Annual 

losses of Ca and Mg via the stream were between one and two orders of magnitude higher 

than the estimated bulk deposition (Table B-2), which contributed to the stock decrease of 

both elements along the chronosequence (Figure B-1a,b). Na inputs and outputs were low 

(Figure B-3d) and fluxes hardly changed along the chronosequence (Table B-2) explaining 

that the Na stocks remained nearly unchanged (Figure B-1d). We attribute this to the 

prevalence of Na in little weatherable minerals such as e.g., albite. 

The finding that the flux budget did not explain the total losses of Ca, Mg and K from 

the ecosystems of the Hailuogou chronosquence (Figure B-4) indicates that we missed 

output fluxes. We speculate that an important missing flux might be leaching into the 
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subsoil (i.e. the C horizons), where the elements are stored in the exchangeable pool or as 

re-precipitated minerals. 

We explain the low K and Na stock 37 years after glacial retreat and the related 

apparent strong depletion of K and Na between 5 and 37 years and later accumulation 

between 37 and 47 years to the spatial heterogeneity of the glacial debris (Figure B-1c, d), 

which might have resulted in a locally lower initial stock of K and Na in the parent material 

of the 37 yr-old site (Table B-1). Because Ca and Mg are associated with other minerals 

(and rocks) than K and Na, the heterogeneity of the glacial debris does not necessarily affect 

all elements in the same way. 

 

5.2. Biological stocks and fluxes of base metals 

The high release of Ca from the intense initial carbonate weathering enabled the build-up 

of a large biomass stock of Ca (Table B-S5), which was supported by the release of 

sufficient Mg and K to soil solution via weathering of easily weatherable silicate minerals, 

such as biotite and hornblende. Ca and K stocks in the foliage of the tree species developing 

at Hailuogou ranged from 5.4 to 13.3 g m-2 and 7.2 to 18.8 g m-2, respectively (Table B-S5), 

and were mostly higher than observed in different similarly aged forests of the temperate 

zone, for which we found comparison values, e.g., the 70 year-old forests in the Walker 

Branch watershed (Tennessee, US) on acidic soils developed from paleozoic dolomitic 

bedrock, while Mg stocks ranged from 0.6 to 2.1 g m-2 and were slightly below those in the 

Walker Branch watershed or in the same range (5.8 - 7.5 g m-2 Ca, 3.6 - 5.3 g m-2 K, 

1.2 - 2.1 g m-2 Mg, Johnson & Henderson, 1989). Along the Hailuogou chronosequence, 

plant biomass reached up to 40,630 g m-2 within only 127 years of ecosystem development 

(calculated from Luo et al. 2004; Figure B-S5). Total biomass estimated at the different 70 

year-old forests in the Walker Branch watershed ranged between 16,380 and 19,770 g m-2 

(Edwards et al. 1989), which is less than the total biomass at the Hailuogou region within 

only 47 years (Figure B-S5). The higher biomass production and metal uptake at the 

Hailuogou chronosequence occurs in spite of less favorable climatic conditions for forest 

growth than at the Walker Branch watershed (mean annual precipitation of 1947 mm and 

mean annual temperature of 4.2°C at Hailuogou (Wu et al. 2013) vs. 1410 mm and 14°C at 

the Walker Branch watershed (Edwards et al. 1989). Cool temperature and a higher risk of 

waterlogging at the Hailuogou chronosequence should have reduced biomass production 
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(Eamus 2003). The aboveground biomass in another young (55 year-old) forest developed 

on glacial till originating from the local metasedimentary and magmatic rocks (Barton et 

al. 1997) in the Hubbard Brook Valley with a mean annual temperature of 3.7-6.7°C and a 

mean annual precipitation of 1326 to 1607 mm (Campbell, 2021), which should be again 

more favorable for forest growth than at the Hailuogou chronosequence showed also 

considerably lower element stocks (38.3 g  m-2 Ca, 3.6 g m-2 Mg and 15.5 g m-2 K; Likens 

2013) and, consequently, lower annual vegetation uptake (6.2 g m-2 year-1 Ca, 0.9 g m-2 

year-1 Mg and 6.4 g m-2 year-1 K; Likens 2013) than the >47 year-old Hailuogou sites. This 

comparison indicates that the vegetation along the Hailuogou glacial retreat 

chronosequence took up nutrients more rapidly than other young forests, which is strongly 

associated with the faster rate of biomass production. Moreover, nutrient release by 

weathering of the young carbonatic glacial debris was likely faster than on the older 

substrates at the forest sites used for comparison. 

 

5.3. Coincidence of carbonate depletion and shift from deciduous to coniferous 

forest 

After the reactive carbonates were leached as indicated by the drop of the mineral topsoil 

pH from 8.0 to 5.8 from the 0 yr to the 47 yr-old site (Table B-S2), net weathering rates 

decreased because less soluble minerals remained in the soil. This occurred in line with the 

vegetation change from deciduous to coniferous trees and their associated lower nutrient 

demand and slower nutrient cycling (Table B-2; Carnol and Bazgir 2013; Ericsson 1994). 

As a consequence, nutrient supply by weathering and nutrient demand by the vegetation 

seemed to match well. Because the differences in mean annual climatic conditions between 

the youngest and the oldest study site separated by ca. 130 m elevation difference were 

small (0.77°C, 4.5 mm), we assume that climate played a minor role in explaining the 

changing vegetation composition. 

The most rapid elemental accumulation in organic horizons occurred between 37 and 

47 years after glacier retreat, accompanied by the stabilization of a half-mature 

P. purdommii forest and sharply decreased after the stabilization of a coniferous forest, 

87 years after deglaciation (Figure B-2), likely because of the lower element concentration 

in foliage of coniferous than deciduous trees (Richardson and Friedland 2016). The rapid 

initial accumulation of organic matter in the organic layer on top of the mineral soil created 
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an important reservoir of nutrients for the ecosystem, because the decomposition of organic 

matter mineralizes nutrients which can be reused for plant uptake (Lilienfein et al. 2001; 

Wilcke et al. 2002). Calcium availability in the forest floor has been shown to be directly 

related with tree growth (Baribault et al. 2010; Gradowski and Thomas 2008; Long et al. 

1997) and K availability contributes to a higher N uptake (Stevens et al. 1993) and 

water-use efficiency (Bradbury and Malcolm 1977), promoting faster vegetation growth. 

The high K uptake in the early stage of the vegetation succession (0-47 yr) and the low K 

export with the stream at the older sites (47-127 yr) indicated that this nutrient was 

efficiently internally recycled in our study ecosystems. This together with the release of 

other essential nutrients from easily weatherable minerals, that we did not study, might 

have contributed to allow the likely N-limited forest to make full use of the fixed N2 

facilitating the fast establishment of a deciduous forest in the early stage of the 

chronosequence. The faster vegetation development than at many other glacier retreat 

chronosequences (Table B-S1) might have been further supported by the higher mean 

annual temperature at the Hailuogou sites. 

 

6. Conclusions 

The fast development from bare soil to mature forest along the 127-year old 

Hailuogou glacier retreat chronosequence was linked with a strong soil acidification and 

an intense loss of carbonates in the first 47 years of vegetation succession. This 

development was associated with a decrease in total stocks of Ca and Mg, mainly because 

of the dissolution of carbonates and easily weatherable Mg-containing minerals, while the 

stocks of K and Na changed little.  

Part of the released Ca and Mg was incorporated into the growing aboveground 

biomass and thereby retained in the ecosystem. The smaller K release than that of Ca and 

Mg in the early stage of the chronosequence was compensated by higher K inputs with 

atmospheric deposition, which were in the same order of magnitude than K losses through 

the stream.  We suggest that the strong supply of Ca and Mg and a closed K cycling 

contributed to the fast establishment of a deciduous forest, which contributed to allow the 

likely N-limited forest to make full use of the fixed N2. 

The slower element release by weathering after leaching of carbonates occurred 

synchronously with the vegetation change from deciduous to coniferous forest with its 
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lower nutrient demand, while climatic differences along the chronosequence were minor. 

The rapid vegetation development resulted in the formation of an organic layer on top of 

the mineral soils with increasing thickness along the chronosequence that stored a large 

quantity of nutrients. The storage of K in the organic layers was particularly important, 

since this element was internally cycled through the vegetation (i.e., via plant uptake and 

return to the soil via throughfall and litterfall). As a consequence, nutrient supply by 

weathering and nutrient demand by vegetation combined to promote a fast vegetation 

development along the Hailuogou chronosequence. 
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8. Supplementary material 

Table B-S1. Vegetation development and parent material geology in glacier forelands with similar 

age in the world. 

No. Site Age 

(yr) 

Elevation 

(m a.s.l.) 

MAT 

(°C) 

MAP 

(mm) 

Parent material Vegetation Source 

 Hailuogou 127 2800-

3000 

4.2 1947 Granite 
Calcite (~5.6%) 

0 yr: coarse and gravelly sand 

37 yr: Hippophae rhamnoides L.  

47 yr: Populus purdomii Rehder 

59 yr: Abies fabri (Mast.) Craib, Populus 

purdomii Rehder 

87 yr: A. fabri, Picea brachytyla (Franch.) 

E.Pritz 

127 yr: P. brachytyla , A. fabri 

 

(Zhou et al. 2016) 

1 Damma 

Glacier, Swiss 

Alps 

140 1950-

2150 

0.5 2400 Granite  6-13 yr: scarce vegetation, with mosses 

lichens, forbs and grasses: Agrostis gigantea 

Roth, Rumex scutatus L., Cerastium  

uniflorum Thom. ex Reichb., and Oxyria 

digyna Hill 

57-79 yr: A. gigantea, Salix spp; 

Deschampsia cespitosa (L.) Roem.& 

Schult., and Athyrium alpestre (Hoppe) 

Milde (57-79yrs). 

108-140 yr: Rhododendron ferrugineum L., 

Salix spp. A. gigantea and Festuca rubra L. 

 

(Bernasconi et al. 

2011) 

2 Morteratsch 

Glacier, Swiss 

Alps 

150 1900-

2150 

0.5 1000-

1300 

Granite, 

granodiorite 
Calcite (<1%) 

7 yr: Epilobium fleischeri Hochst. 

12 yr: Oxyrietum digynae Lüdi 

27 yr: E. fleischeri 

77 yr: Larici-Pinetum cembrae 

 

(Mavris et al. 

2010) 

3 Ried forefield, 

Swiss Alps 

50 2060 6.4 NA 
Apr-

Oct: 

322 
mm 

Granitoid gneiss Salicaceae species, subsequently replaced 

by R. ferrugineum,  

 L. decidua , 

 

(Conen et al. 

2007) 

4 Skaftafellsjök

ull, Iceland  

120 100 5.1 NA Basalt, 

hyaloclastite, 

tephra 

Mosses, dwarf shrubs and shrubs. 

120 yr: willows (Salix lanata L. and Salix 

phylicifolia L.) and downy birch (Betula 

pubescens Ehrh.) 

 

(Vilmundardóttir 

et al. 2014) 

5 Werenskiold 

Glacier, 

Norway 

80 25-75 -4.4 430 Metamorphic 

rocks: schists 

1 yr: No vegetation 

6 yr: Saxifraga oppositifolia L. Saxifraga 

cespitosa L. 

> 12 yr: S. oppositifolia, S. caespitosa, 

lichens  

 

(Kabala and 

Zapart 2012) 

6 Glacier Bay,  

Alaska 

220 750-800 4.9 1800 Diorite, granite, 

volcanic rocks, 

schist, marble, 

dolomite, 

graywacke, 

argillite, and 

limestone 

15-25 yr: woody species including Dryas 

drummondii Richards, several willows 

(including Salix sitchensis Sanson, Salix 

barclayi Anderss., Salix commutata Bebb., 

and Salix alaxensis Coville, black 

cottonwood, and Sitka alder (Alnus sinuata 

[Reg.] Rydb.).  

> 35: A. sinuata and shrubs. 

 

(Fastie 1995) 

7 Midui Glacier, 

China 

90 3770-

3810 

8.7 835 Granite <50 yr: Pioneer tree species (H. rhamnoides, 

Populus pseudoglauca Z.Wang & P.Y.Fu 

and Populus davidiana Dode).  

> 50 yr: Abies georgei Orr 

(Wang et al. 

2020b) 

(Liu et al. 2014) 
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Table B-S1. Extended. 

No. Site Age 

(yr) 

Elevation 

(m a.s.l.) 

MAT 

(°C) 

MAP 

(mm) 

Parent material Vegetation Source 

8 Santa Inés 

island, Chile 

382 24-63 6.9 2777 Granitoid rocks Shrubs, herbs and non-vascular 

vegetation.  

33-83 yr: deciduous Nothofagus antarctica 

Oerst 

> 200 yr: evergreen Nothofagus betuloides 

Blume 

 

(Pérez et al. 

2014) 

9 Alexandra 

Fiord, 

Ellesmere 

island, Canada  

44 500-700 -15.2 100-

200 

Gneiss-granite Mosses, graminoid-forb, deciduous shrub-

moss, evergreen dwarf-shrub-moss. 

(Labine 1994) 

(Jones and 

Henry 2003) 

10 Robson 

Glacier, 

Rocky 

Mountain, 

Canada 

193 ~1976 2.1 737 Sedimentary 

rocks 

(quartzites, 

limestones and 

dolomites) 

< 79 yr: Pioneer Hedysarum mackenzii 

Richardson, 

Dryas octopetala L., Castilleja 

pullida,Velenovsky, Epilobium latifolia 

Reiche and some willow species (e.g. Salix 

glauca L., Salix vestita Pursh., and Salix 

brachycarpa Nutt.) 

79-193 yr: dispersed Picea engelmannii 

Engelm.,Arctostaphylos rubra´(Rehder & 

E.H.Wilson) Fernand, Betual glandulosa, 

Michx., Aster alpinus L., Pyrola bracteata, 

Hook., Pedicularis bracteosa Benth., Carex 

scirpoidea Michx. 

 

(Sondheim 

and Standish 

1983) 

11 Midtre 

Lovénbreen, 

Svalbard 

100 395 -6.3 386 Metamorphic 

rocks 

<30 yr: pioneer species in small frequencies 

dominated by S. oppositifolia 

30-70 yr: Bistorta vivípara (L.) Gray, Carex 

nardina Fr., Pedicularis hirsuta Haenke, 

Arenaria pseudofrigida (Ostenf. & 

O.C.Dahl) Juz. ex. Schischk. & Knorring, 

Minuartia rubella (Wahlenb.) Hiern and 

Salix polaris Wahlenb. 

70-100 yr: Silene acaulis (L.) L., A. 

pseudofrigida, S. polaris. At this stage 

bryophytes and lichens have the same 

frequency. 

 

(Moreau et al. 

2008) 

12 Frías Glacier,  

Argentina  

140 ~3100 7.6 4300 Granodiorite <84 yr: pioneer lichens Stereocaulon 

speciosum I.M.Lamb, Placopsis 

perrugosa(Nyl.) Nyl., Placopsis stenophylla 

(Hue) I.M.Lamb and Rhizocarpon 

geminatumKörb. moss Racomitrium 

lanuginosum (Hedw.) Brid.,, Andreaea sp., 

small herbs Senecio argyreus Phil. and 

shrubs Baccharis racemosa DC. And 

Gaultheria pumila (L.f.) D.J.Middleton 

84 yr: moss Andreaea sp. and R. 

lanuginosum, lichen P. perrugosa, 

Placopsis bicolor (Tuck.) B.de Lesd. 

Cladonia lepidophora Ahti. & Kashiw., 

Stereocaulon spp, Rhizocarpon 

geographicum (L.) DC, graminae 

Rhytidosperma picta, herbs Senecio 

argyreus Phil. and shrubs G. pumila 

84-140 yr: moss Andreaea sp. and R. 

lanuginosum, lichen P. perrugosa, C. 

lepidophora, and Stereocaulon spp. 

140 yr: lichen Cladonia subchordalis 

A.Evans, herb Quinchamalium chilense 

Willd., shrubs G. pumila, Berberis buxifolia 

Lam., and Empetrum rubrum Vahl ex. Willd 

(Garibotti et 

al. 2011) 
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Table B-S1. Extended. 

No. Site Age 

(yr) 

Elevation 

(m a.s.l.) 

MAT 

(°C) 

MAP 

(mm) 

Parent material Vegetation Source 

13 Yanamarey 

Glacier, 

Cordillera 

Blanca, Perú 

44 4600 2.1 800-

1200 

Metamorphic 

rocks (quartzite 

and hornfels)  

Sparse mosses and grasses (López-

Moreno et al. 

2017) 

14 Lys Glacier, 

NW Italian 

Alps 

260 1990-

2480 

-3 1200 

 

Granitic gneiss 

with minor 

mafic inclusions 

5-7 yr: pioneer E. fleischeri 

7-60 yr: Festuca varia Haenke, Trifolium 

pallescens DC., Myosotis alpestris 

F.W.Schmidt, Juncus trifidus L., and 

Vaccinium uliginosum subsp. gaultherioides 

(Bigelow) S.B.Young 

190 yr: herbs M. alpestris and F. varia 

260 yr: shrubs Loiseleuria procumbens (L.) 

Desv. and V. uliginosum subsp. 

gaultherioides  

(D’Amico et 

al. 2014) 

15 Tyndall 

Glacier, 

Mount 

Kenya, 

Kenya 

~90 4360-

4520 

0 2250-

2500 

Basalt, 

phonolite, 

trachyte, syenite 

 

Pioneer Senecio keniophytum R.E.Fr., 

Arabis alpine Krock. ex Steudt, R 

geographicum, and Agrostis trachyphylla. 

Pilg. 

Scarce large plants as Lobelia telekii 

Schweinf. ex. Engl. and Senecio 

keniodendron R.E.Fr. & T.C.E.Fr. 

(Mizuno 

1998) 

16 Lyman 

Glacier 

forefield, 

Washington, 

USA 

~100 1100 

 

NA 2750 Heterogeneous 

glacial till 

20-30 yr: scattered individuals or small 

patches of Juncus drummondii E.Mey, 

Juncus Mertensianus Bong., Luzula piperi, 

M.E.Jones Saxifraga ferruginea Graham 

and Saxifraga tolmiei Torr. & A.Gray 

30-70 yr: scattered willow shrubs (Salix 

phylicifolia L. and Salix commutata Bebb), 

and Pinaceae mixed with herbaceous 

communities 

70-100 yr: transition from low herbaceous 

to early stages of the heath shrub and lush 

meadow parkland communities containing 

individuals of Abies lasiocarpa (Hook.) 

Nutt., Larix lyallii Parl and Tsuga 

mertensiana (Bong.) Sarg among patches 

dominated by several members of 

Ericaceae. 

 

(Jumpponen 

et al. 1998) 

17 Glacier 15α, 

Antisana, 

Ecuador 

290 1854-

5720 

0.5-2 ~1300 Heterogeneous 

volcanic 

material 

Cushion plants and short-stem grasses with 

a patchy vegetation cover 

(Moret et al. 

2020) 

MAT is mean annual temperature; MAP is mean annual precipitation; NA is not available. 

 

 

 

  



 

 
 

Table B-S2. Soil properties along the Hailuogou chronosequence, SW China.  

Site Site age 

(yr) 

Elevation 

(m a.s.l.) 

Soil horizon / 

thickness 

(cm) 

pH CO3
2- 

(mg g-1) 

Bulk density 

(g cm-3) 

Rock 

fragments 

(wt.%) 

Organic C 

(g kg-1) 

Total N 

(g kg-1) 

Fine earth (<2 mm) (%) ECEC 

(mmolc kg-1) 

 Clay 

(<2µm) 

Silt 

(2-63µm) 

Sand 

(63-2000 µm) 

S1 0 2982 C1: 0.5 ± 0 

C2: 9.5 ± 0 a 

8.0 ± 0 

8.3 ± 0 

19 ± 1 

25 ± 1 

1.80 

1.80 

20.5 

20.5 

6.5 ± 1.2 

3.9 ± 0.1 

0.3 ± 0.1 

0.1 ± 0.0 

3.0 

3.2 

22.8 

21.6 

74.2 

75.2 

138.7 ± 0.3 

82.2 ± 0.2 

S2 5 2948 A: 0.5 ± 0 

C: 9.5 ± 0  a 

8.1 ± 0 

8.3 ± 0 

17 ± 1 

27 ± 1 

1.84 

1.84 

20.5 

20.5 

11.6 ± 2.2 

3.5 ± 0.1 

0.5 ± 0.1 

0.1 ± 0.0 

3.0 

3.5 

24.3 

24.0 

72.7 

72.5 

81.2 ± 0.7 

68.1 ± 0.2 

S3 37 2942 Oi: 1.5 ± 0.5 

Oe: 2.8 ± 0.8 

Oa: 2.3 ± 1.3 

A: 1 ± 0 

C:  9.3 ± 0 a 

6.4 ± 0.1 

5.8 ± 0.3 

5.2 ± 0.3 

6.1 ± 0.1 

6.9 ± 0.1 

 

 

 

2 ± 1 

7 ± 3 

0.12 

0.12 

0.22 

0.96 

1.37 

 

 

 

21.4 

27.5 

447 ± 4 

405 ± 16 

181 ± 13 

16.9 ± 2.7 

7.8 ± 1.7 

25 ± 2 

25 ± 2 

12 ± 2 

1 ± 0.1 

0.5 ± 0.2 

 

 

 

2.1 

1.6 

 

 

 

18.9 

12.8 

 

 

 

79.1 

85.5 

 

 

 

46.1 ± 0.3 

31.7 ± 1.9 

S4 47 2922 Oi: 1.3 ± 0.3 

Oe:  4.3 ± 0.9 

Oa:  4.7 ± 0.9 

A:  3.0 ± 0.6 

C:  9.3 ± 0.1 a 

6.2 ± 0.1 

5.6 ± 0.1 

5.2 ± 0.2 

5.8 ± 0.2 

6.0 ± 0.1 

 

 

 

ND 

< 0.2 

0.18 

0.18 

0.29 

0.35 

1.44 

 

 

 

16.8 

15.3 

449 ± 9 

351 ± 27 

254 ± 55 

14.1 ± 1.2 

8.3 ± 0.7 

24 ± 1 

22 ± 3 

17 ± 3 

1.2 ± 0.3 

0.0 ± 0.0 

 

 

 

3.6 

4.9 

 

 

 

18.5 

26.3 

 

 

 

77.9 

68.8 

 

 

 

171.9 ± 7.0 

115.9 ± 8.9 

S5 59 2912 Oi: 2.3 ± 0.3 

Oe: 5.7 ± 0.3 

Oa: 5.3 ± 0.3 

A:  3.7 ± 0.3 

C:  8.7 ± 0.1 a 

5.9 ± 0.2 

5.7 ± 0.3 

5.4 ± 0.1 

5.9 ± 0.1 

6.3 ± 0.1 

 

 

 

ND 

< 0.2 

0.13 

0.13 

0.13 

0.49 

1.43 

 

 

 

13.5 

11.2 

437 ± 22 

357 ± 58 

298 ± 39 

10.8 ± 2.8 

3.8 ± 0.7 

20 ± 3 

20 ± 3 

20 ± 3 

0.8 ± 0.2 

0.0 ± 0.0 

 

 

 

1.0 

3.4 

 

 

 

13.8 

29.6 

 

 

 

85.2 

67.1 

 

 

 

116.8 ± 23.1 

59.2 ± 5.5 

S6 87 2883 Oi: 1.5 ± 0.3 

Oe: 6.7 ± 0.7 

Oa: 4.7 ± 0.9 

A: 4.5 ± 0.8 

C: 7.4 ± 0.4 a 

5.2 ± 0.2 

4.6 ± 0.2 

4.1 ± 0.2 

4.9 ± 0.1 

5.6 ± 0.1 

 

 

 

< 0.5 

0.6 ± 0.4 

0.12 

0.12 

0.13 

0.72 

1.27 

 

 

 

18.9 

26.5 

468 ± 3 

409 ± 29 

327 ± 44 

28.9 ± 10.4 

16.2 ± 4.6 

15 ± 2 

16 ± 1 

18 ± 2 

1.9 ± 0.7 

0.7 ± 0.1 

 

 

 

3.5 

2.5 

 

 

 

14.1 

13.0 

 

 

 

82.4 

84.5 

 

 

 

170.0 ± 33.0 

107.6 ± 6.6 

S7 127 2855 Oi: 2.9 ± 0.1 

Oe: 9.0 ± 0.6 

Oa: 6.8 ± 0.2 

A: 6.0 ± 0.0 

C: 7.2 ± 0.0 a 

5.8 ± 0.1 

5.8 ± 0.1 

5.0 ± 0.1 

5.2 ± 0.2 

5.5 ± 0.1 

 

 

 

0.2 ± 0.1 

0.2 ± 0.1 

0.11 

0.11 

0.14 

0.61 

1.33 

 

 

 

18.6 

29.9 

451 ± 7 

435 ± 6 

304 ± 26 

47.7 ± 20.5 

10.9 ± 1.3 

20 ± 1 

20 ± 0 

19 ± 1 

3.4 ± 1.5 

0.7 ± 0.1 

 

 

 

4.3 

1.5 

 

 

 

18.6 

6.2 

 

 

 

77.1 

92.3 

 

 

 

237.0 ± 34.3 

88.4 ± 12.4 

Data are shown as means or mean ± standard error (n=3). a Thickness of the C horizon used in this study. Bulk density and weight% of rock fragments were taken from Zhou et al. (2016) and 

Wang et al. (2020c). 
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Table B-S3. Plant biomass, net primary productivity (NPP), age of the vegetation, and 

fraction of rainfall lost by transpiration, by canopy interception and by the stream (runoff 

coefficient α) calculated for our sites. 

Site age (years) 0 37 47 59 87 127 

Biomass (g m-2) - 16282 22291 28539 36811 40626 

NPP (g m-2 year-1) - 788.6 925.6 1052.0 1220.4 1287.1 

Vegetation age (year) - 25 35 47 74 112 
Fraction of rainfall lost by transpiration 0.14 0.17 0.23 0.29 0.38 0.42 

Fraction of rainfall lost by canopy interception - 0.17a* 0.23a 0.16b* 0.21b 0.25c 

α 0.86 0.66 0.54 0.55 0.41 0.33 

Plant biomass and net primary productivity (NPP) calculated for our sites from data published by 

Luo et al. (2004) for the same study area (Fig. B-S1). Age of the vegetation was estimated from 

Zhou et al. (2013). Estimated fraction of rainfall lost via the stream (runoff coefficient α) was 

calculated by multiplying the transpiration of a mature forest at our study site taken from Sun et al. 

(2020), with the ratio of biomass at each ecosystem site to that at the 127 yr-old site. The fraction 

of rainfall lost via the stream at the glacier forefront was estimated at 86% (Brock et al. 2010; Small 

et al. 2018). Canopy interception was taken from Sun et al. (2013) for a young (30-40 yr) A. fabri 

and P. purdomii mixed forest (a), a middle-aged (70-80 yr) A. fabri dominant forest (b) and a mature 

(100-120 yr) A. fabri dominant forest (c). We interpolated the data for the 37-yr and 59-yr sites (*) 

considering the biomass. The runoff coefficient α represents the total fraction of rainfall lost via the 

stream. 

 

 

 

Table B-S4. Proportional contribution of the different tree compartments to the total tree 

biomass. (Leaf, branch, trunk+bark and root: data from Zhou 2013; partitioning between 

trunk and bark: estimated for our study area from Wilcke and Lilienfein, 2004). 

Tree compartments Leaf Branch Trunk Bark Root 

Coniferous treesa 4% 13% 58% 12% 13% 

Evergreen and deciduous broad-leaved treesb  4% 23% 45% 9% 20% 

a: used for Abies fabri (Mast.) Craib and Picea brachytyla (Franch.) E. Pritz.; 

b: used for Hippophae rhamnoides L. and Populus purdomii Rehder 
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Table B-S5. Base metal stocks along the Hailuogou chronosequence (g m-2). 

Site age (years) 0 5 37 47 59 87 127 

Ca 

Leaves 

   

5.4 ± 1.6 

 

13 ± 3.0 

 

9.1 ± 1.9 

 

8.5 ± 2.5 

 

13 ± 1.3 

Branches   10 ± 1.8 41 ± 10 31 ± 3.6 14 ± 3.3 19 ± 3.3 

Trunk   3.6 ± 0.5 63 ± 34 90 ± 18 17 ± 0.5 44 ± 31 

Bark   28 ± 13 54 ± 6.6 100 ± 18 22 ± 3.0 46 ± 18 

Roots   30 ± 10 59 ± 23 28 ± 4.7 19 ± 15 40 ± 7.6 

Total biomass   77.0 ± 17 230 ± 43 260 ± 26 80 ± 16 160 ± 37 

Oi   35 ± 22 49 ± 19 60 ± 12 24 ± 11 60 ± 21 

Oe   63 ± 20 180 ± 62 180 ± 51 84 ± 13 180 ± 26 

Oa   152 ± 120 350 ± 59 235.0 ± 50.6 110 ± 41 230 ± 56 

Total organic horizons   250 ± 120 570 ± 87 470 ± 73 220 ± 45 470 ± 65 

Ca exchangeable 

Fine earth (0-10 cm) 

Stones (0-10 cm)  

n.a. 

9530 ± 130 

3500 ± 390 

n.a. 

9830 ± 770 

3490 ± 160 

n.a. 

5750 ± 620 

2600 ± 700 

5.7 ± 7.4 

5190 ± 400 

1310 ± 290 

16 ± 3.5 

5920 ± 380 

970 ± 250 

21 ± 7.3 

4450 ± 380 

1340 ± 99 

24 ± 6.7 

4440 ± 300 

1900 ± 170 

Total mineral soil (0-10 cm) 

 

13030 ± 410 13320 

± 780 

8350. 

± 930 

6500 

± 500 

6890 

± 460 

5790 

± 390 

6340 

± 350 

Mg        

Leaves   0.7 ± 0.1 2.1 ± 0.4 0.6 ± 0.1 0.7 ± 0.1 1.3 ± 0.2 

Branches   1.2 ± 0.1 2.4 ± 0.2 2.7 ± 0.6 2.8 ± 0.7 3.2 ± 0.5 

Trunk   0.2 ± 0.1 9.8 ± 11.7 6.0 ± 0.9 1.8 ± 0.1 3.1 ± 1.5 

Bark   1.0 ± 0.5 1.6 ± 0.2 3.7 ± 0.5 1.4 ± 0.4 1.9 ± 0.5 

Roots   2.2 ± 0.5 2.8 ± 1.6 2.7 ± 0.3 2.4 ± 0.9 4.3 ± 0.6 

Total biomass   5.3 + 0.7 19 ± 12 16 ± 1.2 9.1 ± 1.2 14 ± 1.7 

Oi   4.2 ± 2.4 6.1 ± 3.7 11 ± 2.2 3.2 ± 1.0 6.5 ± 0.2 

Oe   11 ± 2.5 51 ± 14 52 ± 33 24 ± 7.4 31 ± 3.5 

Oa   67 ± 52 130 ± 39 91 ± 23 35 ± 17 78 ± 25 

Total organic horizons   82 ± 52 190 ± 41 150 ± 40 62 ± 19 120 ± 25 

Mg exchangeable  0.7 ± 0.0 0.7 ± 0.0 0.8 ± 0.2 0.7 ± 0.5 0.8 ± 0.2 1.6 ± 0.5 2.3 ± 0.5 

Fine earth (0-10 cm) 

Stones (0-10 cm) 

Total mineral soil (0-10 cm) 

 

3740 ± 22 

1260 ± 190 

4990 

± 196 

3770 ± 319 

1290 ± 31 

5060 

± 320 

2870 ± 85 

853 ± 84 

3720 

± 119 

2620 ± 202 

640 ± 64 

3260 

± 212 

2660 ± 251 

480 ± 96 

3140 

± 268 

1950 ± 176 

638 ± 60 

2590 

± 186 

1960 ± 213 

872 ± 65 

2830 

± 223 

K        

Leaves   10 ± 1.3 19 ± 5.9 7.2 ± 0.9 9.4 ± 1.6 9.8 ± 0.9 

Branches   42 ± 5.2 55 ± 9.5 45 ± 19 43 ± 5.2 24 ± 2.2 

Trunk   4.1 ± 1.6 31 ± 30 40 ± 8.6 28 ± 5.6 33 ± 5.1 

Bark   13 ± 3.4 13 ± 4.6 27 ± 3.8 18 ± 4.1 23 ± 3.4 

Roots   23 ± 2.2 27 ± 3.6 20 ± 1.9 15 ± 4.9 33 ± 12 

Total biomass   92 ± 6.9 144 ± 33. 138 ± 22 113 ± 10 121 ± 13 

Oi   6.4 ± 4.0 11 ± 7.3 16 ± 4.0 4.7 ± 1.1 8.2 ± 2.0 

Oe   14 ± 3.2 72 ± 17 82 ± 59 39 ± 12 42 ± 8.3 

Oa   77 ± 75 177.0 ± 43 130 ± 32 58 ± 230 125 ± 35 

Total organic horizons   98 ± 75 260 ± 47 230 ± 67 100 ± 32 175 ± 36 

K exchangeable 

Fine earth (0-10 cm) 

Stones (0-10 cm) 

0.6 ± 0.0 

4190 ± 182 

1390 ± 148 

0.7 ± 0.0 

4240 ± 262 

1500 ± 76 

0.8 ± 0.3 

2910 ± 340 

971 ± 110 

0.7 ± 0.2 

4130 ± 573 

1121 ± 154 

0.6 ± 0.3 

4310 ± 534 

762 ± 25 

0.4 ± 0.2 

3250 ± 369 

931 ± 92 

0.6 ± 0.1 

3520 ± 301 

1430 ± 69 

Total mineral soil (0-10 cm) 

 

5580 

± 234 

5740 

± 273 

3890 

± 357 

5250 

± 594 

5070 

± 535 

4180 

± 381 

4960 

± 309 

Na        

Roots   0.2 ± 0.0 0.2 ± 0.1 0.2 ± 0.0 0.1 ± 0.1 0.1 ± 0.0 

Oi   2.0 ± 1.7 3.5 ± 2.6 7.0 ± 3.7 1.1 ± 0.3 1.8 ± 0.6 

Oe   5.7 ± 1.1 36 ± 11 44 ± 41 20 ± 11 15 ± 3.2 

Oa   56 ± 50 120 ± 40 73 ± 25 48 ± 32 63 ± 18 

Total organic horizons   63 ± 50 160 ± 41 123 ± 49 69 ± 34 79 ± 18 

Na exchangeable 

Fine earth (0-10 cm) 

Stones (0-10 cm) 

0.1 ± 0.0 

2750 ± 23 

1010 ± 44 

0.1 ± 0.0 

2720 ± 244 

1020 ± 160 

0.1 ± 0.0 

2050 ± 155 

630 ± 120 

0.0 ± 0.0 

2870 ± 435 

746 ± 100 

0.1 ± 0.0 

3020 ± 216 

511 ± 50 

0.1 ± 0.0 

2670 ± 245 

659 ± 97 

0.1 ± 0.0 

2620 ± 168 

952 ± 76 

Total mineral soil (0-10 cm) 3750 

± 49 

3740 

± 296 

2680 

±196 

3620 

± 446 

3530 

± 222 

3330 

± 264 

35670 

± 184 

Na stocks in the different organs of the aboveground biomass were < 0.04 g m-2. n.a. is not analyzed. 

Ox represent the different organic horizons: Oi (fresh litter), Oe (shredded litter) and Oa (dark layer of decomposed humus). 
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Figure B-S1. Logistic fitting of the relationship between site age and biomass (A) and 

between site age and net primary production (B) along the Hailuogou chronosequence. Data 

from Luo et al. (2004). 
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Figure B-S2. Mass-weighted mean concentrations of Ca (a), Mg (b), and K(c) in the 

dominant tree and shrub species along the Hailuogou chronosequence, i.e., Hippophae 

rhamnoides L. (Hr; 37 yr), Populus purdomii Rehder (Pp; 47 yr), Abies fabri (Mast.) Craib 

(Af; 59 yr and 87 yr) and Picea brachytyla (Franch.) E.Pritz (Pb; 127 yr). Letters indicate 

significant differences according to Tukey’s HSD post-hoc test. 
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Figure B-S3. Stocks of Ca, Mg and K in the different plant compartments of the trees at 

Site 5 (59 years) of the Hailuogou chronosequence assuming a cover of 100% Abies fabri 

(Mast.) Craib (Af, left bars) and Populus purdomii Rehder (Pp, right bars). The data for P. 

purdormii were taken from Site 4 except for the leaves, which were sampled on Site 5. The 

element concentrations of the leaves of P. purdomii did not significantly differ between 

Sites 4 and 5 (t-test). Error lines represent single standard deviations calculated by Gaussian 

error propagation 

  



 
 

 

 

 

Figure B-S4. Comparison of total stocks calculated by adjusting the thickness of the C horizon in the different plots with the help of the local 

C horizon density at each site (Px-Px) and by assuming that the density of the C horizon did not change along the chronosequence and equaled 

that of the local C horizon density of the original glacial debris at Site 1 (Px-P1). Error bars represent standard deviations (n=3). 
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Figure B-S5. Biomass development individually specified for the different tree organs (g 

m-2; Tables B-S3 and B-S4) and net primary production, NPP (g m-2 year-1; Table B-S3) 

along the Hailuogou chronosequence. Biomass and NPP data were calculated for our study 

sites from Luo et al. (2004; Figure B-S1) and proportional contributions of the different 

tree organs to total tree biomass from Zhou (2013) and Wilcke and Lilienfein (2004, 

partitioning between trunk and bark). 
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Figure B-S6. Mean distribution of base metals (a: Ca, b: Mg, c: K) among the different 

tree organs of the dominant tree species along the Hailuogou chronosequence, i.e., 

Hippophae rhamnoides L. (37-yr), Populus purdomii Rehder (47-yr), Abies fabri (Mast.) 

Craib (59-yr and 87-yr) and Picea brachytyla (Franch.) E.Pritz (127-yr). 
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1. Abstract 

At the Hailuogou glacial retreat chronosequence, a mature forest has surprisingly fast 

developed in ~120 years, although the glacial debris is dominated by nutrient-poor granite 

with a small contribution of carbonate minerals. In previous work, we hypothesized that 

the fast vegetation development is synchronized with initial fast carbonate weathering 

followed by slow silicate weathering. To test this hypothesis, we (i) characterized the 

composition of the glacial debris to elucidate the sources of base cations and (ii) determined 

the base cation release kinetics from topsoils (0-10 cm) along the chronosequence with a 

weathering experiment at a constant pH value (pHstat). Besides granitic rocks, the glacial 

debris contained some meta-sedimentary and meta-volcanic calc-silicate rocks, 

amphibolite, mica schist, and quartzite. Although the total Ca concentration of the glacial 

debris was only about double that of Mg, K, and Na, during the first day of the pHstat 

experiment, the released mass of Ca was >10 times higher than that of Mg and K, and even 

ca. 100 times higher than that of Na. The size of the fast-reacting Ca-carbonate pool 

decreased quickly in the first ca. 40 yr, after which a slow-reacting Ca-silicate pool matched 

the fast-reacting pool with a size of 1.9±0.6 mg g-1 Ca. In contrast, for Mg, K, and Na the 

slow-reacting pool dominated from the beginning, suggesting that these elements mainly 

originated from silicate weathering. Our findings support the view that the 

well-synchronized interplay between carbonate and silicate weathering facilitated the fast 

vegetation succession.  

 

 

Core ideas:  

Calcite occurred in the mainly granitic substrate of the Hailuogou chronosequence. 

The calcite originated from meta-sedimentary and meta-volcanic rocks in the glacial debris. 

Carbonate weathering determined the rapid initial Ca but not Mg release. 

The main sources of weathered Mg, K, and Na were silicate minerals. 

Base cation release kinetics followed the order, Ca>>Mg>K>>Na. 
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2. Introduction 

Chronosequences and associated space-for-time substitutions have been widely used to 

study the soil development and plant succession across multiple time scales and many 

landscapes (Bockheim, 1980; Huggett, 1998; Walker et al., 2010). The parent material 

determines the original element concentrations of the evolved soils and directly influences 

the balance between nutrient availability, loss, and retention (Anderson, 1988; Eimil-Fraga 

et al., 2014; Jesse Hahm et al., 2014; Augusto et al., 2017). The weathering of parent 

materials releases nutrients into the soil solution at variable rates, depending on mineral 

properties, climatic conditions, topographic position, time and biota (Jenny, 1941; Harley 

and Gilkes, 2000; Wilson, 2004). Except for N which usually enters the soil via microbial 

fixation from the atmosphere, mineral weathering releases all macronutrients (i.e. K, Ca, 

Mg, P, and S) as well as trace elements which are necessary for plant growth (Barker et al., 

1997; Marschner, 2012; Tripler et al., 2006; Vitousek and Sanford, 1986; White and 

Broadley, 2003).  

In the subtropical high mountainous Gongga region, located at the southeastern edge 

of the Tibetan Plateau, the decrease in the mean annual precipitation and increase in the 

mean annual temperature in the past two decades (Wu et al., 2013) accelerated the retreat 

of the Hailuogou glacier, one of the largest glaciers at the foot of the Gongga Mountain 

(Zhou et al., 2013), which started in the late 19th century (Li et al., 2010). The successive 

ecosystem development created a natural soil and vegetation chronosequence, which has 

been little disturbed by human activities. The fast vegetation succession is surprising, 

because the Gongga Mountain and the derived glacial debris is mainly composed of granite 

(Searle et al., 2016), a nutrient-poor substrate, particularly with respect to Ca and Mg 

(Schmitt et al., 2012). However, the Hailuogou glacial debris also contains carbonates 

originating from meta-sedimentary rocks (Roger et al., 1995; Searle et al., 2016), which are 

leached out of the topsoil in 47 years after glacial retreat (Basdediós et al., 2022). 

The major rock-forming mineral groups in the Earth’s crust are quartz, feldspars (i.e., 

K-feldspar and plagioclase) and ferromagnesian minerals (e.g., biotite and hornblende). 

Quartz contains low concentrations of plant nutrients and is little weatherable (Barker et 

al., 1997). Feldspars persist in strongly weathered soils in which other primary minerals 

have been altered to secondary minerals, providing a slow release of K and Ca (Allen and 

Hajek, 1989). In contrast, ferromagnesian minerals are considered to be relatively unstable 
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among the common rock minerals and can release large quantities of Mg and K (Allen and 

Hajek, 1989). Minerals with higher solubility in water than silicates, such as carbonates, 

are the most easily weathered (Smith and Huyck, 1999). Fast initial weathering of CaCO3 

and the subsequent release of available nutrients may contribute to the development of 

primary vegetation successions, especially in glacial environments, because chemical 

weathering is strongly influenced by carbonate minerals even if they are present in only 

small amounts (~1%) in the parent material (Blum et al., 1998). 

The presence of carbonate minerals buffers the pH near neutral values and usually 

releases  Ca and if dolomite or magnesite are present also Mg at high rates through 

weathering (Mavris et al., 2010; Zamanian et al., 2016). The soil pH influences many 

biogeochemical processes which drive vegetation succession, such as microbial turnover 

of organic matter and related N release (Andersson and Nilsson, 2001), P availability 

(Hinsinger, 2001; Sohrt et al., 2017), and the release of nutrient cations by mineral 

weathering (Chadwick and Chorover 2001). Weathering of carbonate and silicate minerals 

can be described as an acid-base reaction, with the difference that carbonate minerals 

dissolve completely whereas silicate weathering usually results in the formation of 

secondary clay minerals outside the inner (per-)humid tropics with their desilicating 

weathering regime. A mix of mineral constituents in the parent material, e.g., carbonates 

and easily weatherable silicates, might release a wide variety of nutrients through 

weathering that become easily available for plant uptake. Once a soil organic layer is 

established, it can store and supply a large quantity of the nutrients required by the 

vegetation (Basdediós et al., 2022; Jobbágy and Jackson, 2004; Lilienfein et al., 2001; 

Wilcke et al., 2002). Because at the beginning of the vegetation succession on glacial debris 

the soil is usually free of organic matter, mineral weathering together with the nutrient input 

by atmospheric deposition drives the supply of all macronutrients but N, which is acquired 

by microbial N2 fixation from the atmosphere except in bituminous sediments and 

metamorphites (Houlton et al., 2018). Therefore, weathering rates play a crucial role in 

enabling plant growth. Likewise, plants can influence weathering rates compared with the 

rates when plants are absent (Berner et al., 2004). Plants cause physical weathering by root 

growth and influence chemical weathering of minerals to mobilize nutrients from the soil, 

partly assisted by mycorrhizal fungi with which plant roots are associated. Roots can also 

excrete organic acids and chelates into the rhizosphere, which help plants to access specific 

nutrients or to form non-toxic complexes in soils (Drever and Stillings, 1997; Meyer et al., 
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2009). In a previous study at the Hailuogou glacial retreat chronosequence, Basdediós et 

al. (2022) suggested that the synchronization of weathering rates with vegetation 

development facilitated the fast succession. They hypothesized that in the early phase of 

the ecosystem succession, weathering of carbonates and easily weatherable silicates 

released high amounts of Ca and to a lesser degree Mg. After carbonates were dissolved, 

the onset of slower silicate weathering concurring with the shift from deciduous to 

coniferous forest slowed the nutrient cycle. While the total stocks of Ca and Mg decreased 

along the chronosequence in response to the loss of carbonates and easily weatherable 

silicates within a few decades, those of K and Na were unrelated with ecosystem age. To 

explain the lack of a relationship between ecosystem age and K and Na stocks, Basdediós 

et al. (2022) suggested that K and Na were constantly released from silicate mineral pools 

at low rates which were taken up by the organisms of the ecosystem with little losses. 

Batch and column techniques are used to examine buffer capacities and reaction 

kinetics of rocks and soils (Selim and Amacher, 1997; Alt et al., 2013; Hacker et al., 2017). 

Frequently, the analyzed mineral material is exposed to a constant elevated H+ pressure in 

so-called pHstat experiments, which can be realized in automatic titroprocessors or as batch 

experiment with ion exchangers. In automatic titroprocessors, the proton activity in the 

reaction solution is kept constant at a higher level than soil equilibrium pH by measuring 

pH continuously and replacing buffered protons by the addition of mineral acid (Süsser, 

1987; van de Sand and Fischer, 1994). In experiments with tritroprocessors, the released 

ions accumulate in the solution with the risk that secondary mineral precipitation occurs if 

dissolution constants are surpassed. Titroprocessor experiments therefore mimic conditions 

with a stagnant solution phase. In the pHstat method of Kaupenjohann and Wilcke (1995) 

ions released into solution during H+ buffering are removed from the system with the help 

of ion exchange resins and therefore do not affect further reactions. Ion exchange resin 

approaches mimic conditions in which water percolates through the soil and removes 

weathering products (Schwarz et al., 1999; Alt et al., 2013; Hacker et al., 2017). Süsser 

(1987) described buffer reactions in soils during pHstat experiments as the sum of two 

independent reactions both following first order kinetics. This allows to distinguish a 

fast- and a slow-reacting mineral pool and release rate constants associated with these 

pools. 
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Our overall objective was to (i) identify the origin of the carbonate minerals in the 

granite-dominates glacial debris of the Hailuogou glacier and test the hypotheses that (ii) 

CaCO3 determines initial Ca release and contributes, to a minor degree, to that of Mg, (iii) 

the weathering release rates of Ca and Mg decrease with increasing soil age, because of the 

fast loss of initially present carbonates and easily weatherable silicate minerals as reflected 

by strongly decreasing fast-reacting Ca and Mg pools. Once the carbonates are gone, the 

slower silicate weathering takes over and releases Ca and Mg at lower rates than initially, 

which is synchronized with the ecosystem development from deciduous to coniferous 

forest. (iv) K and Na are only weathered from silicate minerals such as mica during the 

whole ecosystem development and thus show constant release rates and slightly decreasing 

pool sizes. 

 

3. Materials and methods 

3.1. Study area 

The Gongga Mountain (summit: 7556 m a.s.l., Figure A-3) is formed from the Gongga 

batholith, which extends for more than 100 km in the transition zone of the Sichuan Basin 

and the Tibetan Plateau, Southwest China. The massif is mainly composed of a granitoid 

complex (i.e., granite and granodiorite) intruded into the Palaeozoic-Triassic meta-

sediments and meta-volcanic rocks of the Songpan-Ganze terrane (Roger et al., 1995; 

Searle et al., 2016). Located on the eastern slope of the Gongga Mountain, the Hailuogou 

Glacier has markedly retreated since late 19th century (Li et al., 2010), developing a 2 km 

long and 50–200 m wide chronosequence, which spans an elevational range from 

2800-2950 m a.s.l.. The short time of pedogenesis (<130 years) formed soils without B 

horizon classified from youngest to oldest as Leptic Calcaric to Folic Dystric Regosols 

(IUSS Working Group WRB 2014). The parent material of soil formation is moraine and 

consists mainly of a mixture of silicates (87%), including plagioclase (28.5%), quartz 

(24.5%), biotite (12%), hornblende (12%) and K-feldspar (10%), carbonates (<10%), and 

a minor contribution of apatite (<2.1%) (Yang et al., 2015; Zhou et al., 2016). The mean 

annual temperature and precipitation are 4.2 °C and 1947 mm, respectively. Rain falls 

mainly during the summer growing season (May to September, Wu et al., 2013). 
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Our study included seven sites, de-glaciated between 0 (Site 1; 2982 m a.s.l.) and 127 

years ago (Site 7; 2855 m a.s.l.; Figure A-3), previously described by Zhou et al. (2013). 

A primary vegetation succession has developed along the chronosequence, from pioneer 

shrubs (i.e., Hippophae rhamnoides L., Site 3: 37 yr), over half mature broad-leaved tree 

forests dominated by poplar (Populus purdomii Rehder; Site 4: 47 yr), to a full conifer 

forest dominated by Faber’s fir (Abies fabri (Mast.) Craib; Sites 5 and 6: 59 and 87 yr, 

respectively) and Sargent spruce (Picea brachytyla (Franch.) E. Pritz.; Site 7: 127 yr). With 

increasing time, the soils have developed A and O horizons of increasing thickness. The 

intense carbonate weathering in the early stage of the chronosequence and the rapid 

establishment of the vegetation decreased soil pH from 8.0 to 5.8 in only 47 years 

(Basdediós et al., 2022). 

 

3.2. Field sampling 

At all seven study sites, we collected samples of the A and C horizons and from the 0-10 

cm topsoil layer, which included the uppermost part of the C horizons because the 

morphologically recognizable A horizons were only 0.5-6.5 cm thick or even absent at 

Site 1 in August 2017 (Figure A-2; Table C-1). Each ecosystem succession stage was 

sampled in triplicate. The distance between the sampled soil profiles was at least 20 m, 

except at Sites 1 and 2, where the distance was reduced to 10 m because of the narrower 

valley in the proximity of the glacier. Mineral soil samples were air-dried to constant weight 

and sieved to two different fractions: fine earth (<2 mm) and stones (>2mm). Plant residues 

were removed manually. At Site 1 (0 yr), we additionally collected 16 different rock 

samples from the surface which we considered as representative of the composition of the 

glacial debris forming the substrate for soil development. 

 

3.3. Optical and chemical analyses 

To determine the type of the collected rocks, photomicrographs of thin sections (30 µm 

thick) were taken with an Axiocam 105 attached to a Zeiss Axiolab optical microscope 

(1.5x; Carl Zeiss AG, Oberkochen, Germany). To collect unweathered rock material, we 

removed the outer shell of each rock sample by cutting with an automated core slabbing 

saw. Aliquots of the soil samples were ground using a Retsch MM 400 ball mill (Retsch 
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GmbH, Haan, Germany). The stone fraction of the soils (>2 mm) and the rock samples 

were ground in an agate grinding set using a vibratory disk mill (Siebtechnik GmbH, 

Mülheim an der Ruhr, Germany). 

 

Table C-1. Mean loss on ignition (LOI) and element concentrations with standard errors 

in parentheses (n=3) of the stone fraction (>2mm) in the soil profiles along the Hailuogou 

chronosequence. 

Site age Soil 

horizon 
LOI Inorganic C S Ca Mg K Na 

(yr)  (%) (g kg-1) 

5 

37 

47 

59 

87 

127 

5 

37 

47 

59 

87 

127 

0 

0 

A 

A 

A 

A 

A 

A 

C 

C 

C 

C 

C 

C 

C1 

C2 

4.38 (1.5) 

0.51 (0.0) 

0.69 (0.1) 

1.27 (0.3) 

1.68 (0.8) 

5.59 (4.5) 

0.20 (0.0) 

0.45 (0.1) 

0.27 (0.1) 

0.57 (0.0) 

0.73 (0.2) 

0.37 (0.1) 

1.58 (0.3) 

0.41 (0.1) 

7.4 (1.0) 

7.3 (0.8) 

2.0 (0.7) 

2.6 (0.7) 

1.5 (0.2) 

2.0 (0.3) 

9.7 (0.2) 

10.2 (3.7) 

1.6 (0.7) 

3.4 (1.1) 

2.4 (0.6) 

1.8 (0.7) 

6.7 (0.8) 

9.5 (2.8) 

0.7 (0.2) 

0.3 (0.2) 

0.1 (0.0) 

0.3 (0.1) 

0.2 (0.1) 

0.3 (0.1) 

0.7 (0.3) 

0.3 (0.1) 

0.1 (0.0) 

0.2 (0.1) 

0.2 (0.1) 

0.3 (0.2) 

0.3 (0.1) 

0.5 (0.3) 

74.5 (4.2) 

70.2 (9.6) 

65.7 (2.2) 

57.1 (5.5) 

45.3 (1.3) 

42.9 (4.7) 

87.4 (2.4) 

60.3 (10.0) 

53.6 (8.1) 

57.7 (6.7) 

35.3 (1.5) 

46.2 (2.7) 

79.7 (11.5) 

88.9 (6.0) 

32.1 (1.2) 

36.3 (5.1) 

31.2 (0.6) 

30.4 (4.1) 

20.5 (2.2) 

19.2 (2.3) 

32.2 (0.5) 

21.8 (4.0) 

26.2 (1.8) 

27.7 (3.0) 

17.0 (0.9) 

21.2 (1.0) 

31.4 (2.9) 

31.8 (3.0) 

36.1 (3.0) 

36.5 (3.4) 

49.2 (2.9) 

40.4 (4.0) 

28.4 (1.9) 

28.9 (0.6) 

37.6 (1.1) 

21.9 (1.6) 

46.6 (3.5) 

39.9 (3.6) 

25.2 (1.9) 

35.5 (1.2) 

34.1 (3.0) 

35.2 (2.3) 

26.1 (1.3) 

24.3 (2.2) 

36.8 (4.5) 

26.9 (3.3) 

21.5 (0.9) 

19.2 (0.9) 

25.3 (2.4) 

14.2 (1.7) 

30.6 (2.4) 

26.4 (3.0) 

17.4 (1.5) 

23.6 (1.3) 

28.5 (1.7) 

25.3 (0.7) 

 

Total element concentrations in fine earth (<2 mm), the stone fraction (> 2mm), and 

rocks from the glacial debris, were determined after total digestion with concentrated 

HNO3/HF/H2O2 (4:1.5:1, v/v) in a microwave oven (MARS6Xpress, CEM) by 

measurement with an inductively-coupled plasma optical-emission spectrometer 

(ICP-OES, 5100 VDV, Agilent). Accuracy was assessed by the analysis of a certified 

reference material (BCR-2, Basalt, Columbia River). Average recoveries±standard 

deviations were 100±10% for all certified elements. 

Soil pH, effective cation-exchange capacity (ECEC), concentrations of exchangeable 

Ca, Mg, K, and Na, and Ca carbonate concentrations were taken from Basdediós et al. 

(2022). The inorganic C (i.e., after muffling the samples at 550°C to remove organic matter) 

and total S concentrations of the stone fraction were determined by combustion in a CNS 

Elemental Analyzer (EuroEA, HEKAtech GmbH). The inorganic C concentrations and 

δ13C values in the rocks were determined with an Elemental Analyzer – Isotope Ratio Mass 

Spectrometer (Flash 2000 HT Plus-Delta V Advantage, ThermoFisher Scientific) after 
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muffling the samples at 550°C. Loss on ignition (LOI) was determined by weighing before 

and after muffling the samples at 550°C. 

To determine the release kinetics of the base cations (i.e., Ca, Mg, K, and Na) we 

followed the method of Schwarz et al. (1999) and included modifications of Alt et al. (2013) 

to handle the carbonates. We inserted 2 g of a mixed ion-exchange resin (Amberlite MB-20, 

Rohm and Haas, Philadelphia, PA, USA) into 3 cm-wide 4 cm-long homemade 

polyethylene (PE) bags, which were permeable to fluids (mesh width 100 µm). Before 

starting the experiment, the resin was saturated with HNO3 and rinsed with deionized water 

(DI, >18 MΩ cm-1) to remove free acid. We added 100 mL of DI water to 1 g of fine earth 

in a 125- mL PE bottle. The soil-water suspension was shaken during 1 hour and the initial 

pH was measured. The resin bag and 1 mL of Ba(NO3)2 of varying concentrations were 

added at the same time to the soil-water suspension in equilibrium to start the experiment. 

We supplied as many Ba equivalents as were theoretically necessary to lower the pH to 3.0 

by releasing exchanged H+ from the resin. Ba equivalents were calculated as the H+ 

concentration in the solution at pH 3.0 minus that in the equilibrium soil suspension, 

assuming that each mol of Ba2+ releases 2 mol of H+. The bottles were shaken during 10 

min, 30 min, 1 h, 2 h, 4 h, 12 h, 24 h, 48 h, 96 h and 168 h, respectively, to determine the 

element release over time. Therefore, 10 PE bottles were prepared per soil sample. At each 

site age, we analyzed three independent soil samples collected from the uppermost 10 cm 

of the soils. In total, 7 sites x 3 replicates x 10 aliquots for the different shaking times = 210 

samples were processed. After the extraction time had passed, the resin bags were removed 

and the pH of the soil suspension was immediately measured in an aliquot that was 

afterwards discarded because of the release of K by the glass electrode. After rinsing the 

resin bags thoroughly with DI water, the ions adsorbed to the resin were extracted in three 

steps with 30 mL of 2M HNO3 for 10 min in the first and second step and for 30 min in the 

last one. Exchanged element concentrations were determined by ICP-OES. Preliminary 

tests of the element recovery from the resins with standard solutions were satisfying for all 

studied elements (Ca: 101±3%, Mg: 99±1%, K: 106±3%, Na: 99±1%; n=3). 
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3.4. Calculations and statistical analyses 

The initial number of moles of H+ that had to be released from the resin to decrease the 

initial pH (pHi) to 3.0 by exchange with Ba2+ ions was calculated with Equation C-1.  

H+ = (10-3 – 10-pHi) / 2                                                                                           (C-1) 

The base cation release kinetics were described by a two-step first-order reaction 

(Equation C-2, Süsser, 1987; Schwarz et al., 1999). 

Y(t) = Pool A (1-e-kat) + Pool B (1-e-kbt)                                                    (C-2) 

where Y(t) represents the element release from soil (mg kg-1) at time t. Pool A and Pool B 

are the estimates of the two differently reactive pools (slow/fast; mg kg-1) and ka and kb are 

the corresponding rate constants (h-1) of each pool, estimated by a nonlinear regression 

model using sequential quadratic optimization. We used the coefficient of determination 

(R²) as measure of the fit between our data and the function.  

Linear regression and Pearson correlation were used to evaluate the relationships 

between variables. Significant differences between the fast-reacting pool (Pool A) of each 

base cation (i.e., Ca, Mg, K, and Na) and its respective exchangeable element concentration 

extracted with 1M NH4NO3 were tested with independent two-sample t-tests at each site. 

One-way analysis of variance (ANOVA) and Tukey’s HSD post-hoc test were applied to 

find significant differences in Pool A, Pool B, ka and kb among the seven study sites. 

Normal distribution of residuals was visually inspected. Homoscedasticity was tested with 

Levene’s test. Statistical analyses were conducted with the statistical software R (R Core 

Team, 2019). Significance was set at p < 0.05. 

 

4. Results  

4.1. Rock types and source of carbonates 

The 16 rocks we collected at Site 1 included four samples of granite, six samples of calc-

silicate rocks of which five were meta-sedimentary (MS) and one meta-volcanic (MV), 

three samples of amphibolite, one sample of mica schist and one sample of quartzite. Our 
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visual impression in the field was that meta-volcanic rocks occurred rarely in the study 

area, while metasedimentary rocks were more frequent. 

We detected inorganic C in all collected rock types (Figure C-1). Assuming that all 

the inorganic C is present as calcite (CaCO3), the studied rocks contained up to 19% of 

calcite. The sample with the highest calcite concentration was the meta-volcanic rock (MV, 

Figure C-1). The second highest inorganic C concentrations were detected in the more 

frequent metasedimentary rocks (MS). In these rocks, calcite was present together with 

quartz and amphibole (Figure C-2a), epidote (Figure C-2b), biotite (Figure C-2c), and 

traces of zoisite (Figure C-2d). Optical microscopy images revealed that the calcite 

occurred mainly in the pores of the rocks, as interstitial calcite between the grains (Figure 

C-2e). The meta-volcanic rock was characterized by layering mainly consisting of calcite, 

plagioclase, amphibole, feldspar, and traces of quartz (Figure C-2f). 

Total metal concentrations of the rocks varied widely (Figure C-1). Calcium 

concentrations correlated significantly with the inorganic C concentrations in the 

calc-silicate rocks and granites (r = 0.88, p < 0.001, n = 10). However, this was not the case 

in amphibolite, mica-schist, or quartzite. The total Mg, K, and Na concentration in rocks 

did not correlate with the inorganic C concentrations. The δ13C values ranged from -2.43 

to -10.4‰ in all rocks except for amphibolite and mica schist, which were lower (–11.5 to 

-22.5‰). The rapid carbonate depletion from the parent material was reflected by the fast 

decrease in inorganic C concentrations in the stone fraction along the chronosequence, 

which fell by one order of magnitude during the first 47 years (Table C-1). 
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Figure C-1. Mean concentrations of inorganic C, Ca, Mg, K, Na, Al, and Fe in the sampled 

rock types of the Hailuogou glacial debris. Error bars indicate the standard deviation of 

three (granite and amphibolite) or six (calc-silicate rock) replicate samples. Lacking error 

bars indicate that only one sample was available. MS, metasedimentary rock; MV, 

metavolcanic rock. 
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Figure C-2. Photomicrograph of thin sections of selected rocks collected from the 

Hailuogou glacial debris. Metasedimentary rocks (a–e) contained (a) calcite (Cc), 

amphibole (Amph), and titanite (Tit), (b) Epidote (Epi), (c) biotite (Bio), and quartz (Qtz), 

(d) some zoisite (Zoi), and (e) high amounts of interstitial calcite between the grains. (f) 

The only meta-volcanic rock collected contained a carbonate layer (Cc), few quartz layers 

(Qtz) and plagioclase (Plag). The red line in f illustrates the banding/layering by separating 

the coarser grained upper part from the finer grained lower part of the photomicrograph of 

the meta-volcanic rock 
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4.2. Base cation release kinetics 

From Site 1 to Site 3 (soils containing carbonates), the target pH of 3.0 was reached in 4 to 

12 hours after starting the experiment, while from Site 4 to Site 7, the target pH was reached 

in 30 minutes to 1 hour. At Sites 1 (0 yr) and 2 (5 yr), the release kinetics of Ca were 

converged to a one-pool kinetic equation instead of to a two-pool kinetic equation (Pool B 

= 0 or ka=kb). The goodness of the fit (R2 values) ranged from 0.89 to 0.99, 0.97 to 0.99, 

0.96 to 0.99 and 0.96 to 0.99 for Ca, Mg, K, and Na, respectively (Figure C-3). 

The size of the fast-reacting pool (Pool A) of Ca dropped substantially along the 

chronosequence (Figure C-4a) and correlated significantly positively with the CaCO3 and 

exchangeable and total Ca concentrations (Table C-2). Pool A of Mg, K, and Na did not 

change with site age and was generally smaller than their corresponding slow-reacting Pool 

B (Figure C-4b, c, d). Pools A of Mg and K were significantly and marginally significantly 

(p < 0.1) correlated with the exchangeable Mg and K concentrations in soil, respectively 

(Table C-2). Pool B of K correlated positively with the exchangeable K concentrations 

(Table C-2). Pool B of Na increased significantly with decreasing CaCO3 concentrations. 

The modeled release rate constant associated with the fast-reacting Pool A, ka, did 

not significantly change with site age for any of the studied elements and varied from 

0.3-0.7, 1.7–8.2, 0.4–0.8, and 0.1–39 h-1 for Ca, Mg, K and Na, respectively. Similarly, the 

modeled release rate constant associated with the slow-reacting Pool B, kb, of Ca, Mg and 

Na was not correlated with site age, and varied from 0.02-0.04, 0.01–0.02 and 0.01-0.03 h-1, 

respectively. Only kb of K decreased significantly with site age, from 0.08 (Site 1, 0 yr) to 

0.02 h-1 (Site 7, 127 yr). The ka values of Ca correlated significantly negatively with the 

total Ca concentrations, while the ka values of Na correlated significantly negatively with 

the CaCO3 concentrations. The kb values of Mg and K correlated significantly positively 

with pH and CaCO3 concentrations (r and p values shown in Table C-2). 
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Table C-2. Pearson coefficient (r) and p values of the correlations of site age, exchangeable 

element concentrations (exch.) extracted with 1M NH4NO3, CaCO3 concentration, and total 

element concentrations in the fine earth (soil <2 mm) with Pools A and B and release rate 

constants ka and kb, which were modeled based on the results of a pHstat experiment at pH 

3 on the topsoils (0-10 cm) along the Hailuogou chronosequence. 

   Release rate constants (h-1) 

  Pool A (mg kg-1) Pool B (mg kg-1) ka  kb  

 Properties r p r p r p r p 

Ca Site age (yr) -0.81 < 0.001 -0.50 0.06 0.42 0.06 0.23 0.40 

 Exch. Ca (mg kg-1) 0.93 < 0.001 0.58 < 0.05 -0.38 0.09 0.29 0.29 

 CaCO3 (g kg-1) 0.99 < 0.001 0.47 0.08 -0.38 0.08 0.35 0.20 

 Total Ca soil (g kg-1) 

 

0.94 < 0.001 0.58 < 0.05 -0.54 < 0.05 -0.06 0.84 

Mg Site age (yr) 0.17 0.47 -0.27 0.24 -0.32 0.16 -0.40 0.07 

 Exch. Mg (mg kg-1) 0.54 < 0.05 -0.12 0.61 -0.38 0.09 -0.18 0.43 

 CaCO3 (g kg-1) 0.04 0.86 -0.10 0.67 0.17 0.47 0.47 < 0.05 

 Total Mg soil (g kg-1) 

 

-0.18 0.45 0.28 0.22 0.13 0.56 0.30 0.19 

K Site age (yr) -0.32 0.16 -0.40 0.07 -0.26 0.25 -0.62 < 0.05 

 Exch. K (mg kg-1) 0.38 0.09 0.50 < 0.05 0.15 0.53 -0.02 0.93 

 CaCO3 (g kg-1) 0.07 0.76 -0.04 0.88 0.35 0.12 0.74 < 0.001 

 Total K soil (g kg-1) 

 

-0.21 0.37 -0.12 0.60 0.11 0.62 -0.25 0.27 

Na Site age (yr) 0.16 0.49 0.32 0.16 0.26 0.26 -0.31 0.17 

 Exch. Na (mg kg-1) -0.06 0.81 -0.21 0.36 0.36 0.11 0.18 0.44 

 CaCO3 (g kg-1) 0.00 0.99 -0.50 < 0.05 -0.48 < 0.05 0.30 0.18 

 Total Na soil (g kg-1) -0.13 0.57 0.40 0.07 0.28 0.21 -0.21 0.37 

 

The size of the Pools A of Ca and Mg generally did not significantly differ from the 

respective size of the exchangeable element concentrations at most sites (Figure C-5a, b). 

However, at Sites 1 and 2 the Pool A of Mg was significantly larger than the exchangeable 

Mg concentration and at Site 5 Pools A of Ca and Mg were significantly larger than the 

respective exchangeable element concentrations. The exchangeable Ca concentration in the 

carbonate-containing soils (Site 1 to 3) could not be determined with the used standard 

method because of the partial dissolution of calcite in the extract. The size of Pools A of K 

and Na was significantly larger than the respective exchangeable concentrations at all study 

sites (Figure C-5c, d). 

The slow-reacting Pool B of Mg only started to release Mg after 4-12 h and was 

significantly correlated with the total Mg concentration in the soil (r = 0.59). Pools B of 

Mg and K correlated significantly with each other (r = 0.65, p = 0.001) but not with those 

of Ca or Na. At the end of the experiment (t = 168 h), the total mass of released Mg strongly 
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correlated with that of Fe (r = 0.96, p < 0.001), Al (r = 0.89, p < 0.001), and K (r = 0.84, 

p < 0.001). However, there was no correlation between the total mass of released Ca and 

Na and that of Fe or Al. The released K:Mg ratio 1 h after starting the experiment linearly 

decreased from 3.1 ± 0.3 (Site 1) to 0.9 ± 0.2 (Site 7, r = 0.79, p < 0.005), while it averaged 

0.4±0.1 at the end of the experiment with little variation (Figure C-6a). Similarly, the molar 

K:Mg ratio in aboveground biomass tended to decrease from Site 3 to 7, although the 

correlation between site age and molar K:Mg ratio was not significant (Figure C-6b). The 

molar K:Mg ratio varied little with site age in the organic layer and the mineral soil (0-10 

cm). 

 

 

Figure C-3. Release kinetics of (a) Ca, (b) Mg, (c) K, and (d) Na during a pHstat experiment 

at pH 3 in topsoils (0–10 cm) from Site 1 (0 yr) to Site 7 (127 yr) of the Hailuogou 

chronosequence. Error bars represent standard errors (n = 3). The dotted and dashed lines 

illustrate the biexponential fit. 
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5. Discussion  

5.1. Source of carbonates 

The plutonic component of the Hailuogou glacial debris was expected from geological 

maps showing that the Gongga Mountain peak is composed of granitic rocks. Paleozoic 

sedimentary rocks with high-grade metamorphism can be found in the surroundings, 

~10 km from the main peak (Roger et al., 1995). Searle et al. (2016) also reported the 

presence of metasediments at the eastern margin of the Gongga batholith, which also 

belongs to the source area of the Hailuogou glacial debris. 

Our suggestion that the inorganic carbon detected in all sampled rocks (Figure C-1) 

was mainly calcite (Figure C-2) is supported by its δ13C values, which was similar to that 

reported for carbonates in metamorphic and igneous rocks of -11.9 to +3.1‰ (Deines and 

Gold, 1973) and of -16 to +2‰ in calc-silicate rocks (Schwarcz, 1969). However, the 

amphibolite and mica schist samples which had δ13C values <-16‰, may have contained 

graphite, for which δ13C values down to -41‰ are reported (Deines, 1980; Ghent and 

O’Neil, 1985). This assumption is supported by the finding that no strong reaction was 

observed after application of diluted HCl to the amphibolite and mica schist samples.  

Optical microscopy images revealed that calcite was mainly present in the pores of 

the metasedimentary rocks as interstitial calcite between the grains (Figure C-2e), which 

is in line with findings of White et al. (1999) who reported that calcite can occur as fillings 

in cracks and microfractures within the silicate matrix. Moreover, in some of our samples 

the saussuritization process by which primary rock-forming plagioclase is partially 

transformed into other minerals, such as epidote, zoisite, albite, or calcite could also have 

occurred. Saussuritization was observed in other mainly granitic proglacial areas such as 

the Morteratsch glacial retreat area in the Canton of Grisons, Switzerland (Mavris et al., 

2010). The Morteratsch glacial retreat area is one of the few locations we know of, where 

similar to the Hailuogou region, a fast vegetation cover has developed within few decades 

after glacial retreat. However, the CaCO3 concentration in the Morteratsch glacial debris is 

with only 0.2±0.3% (Mavris et al., 2010) one order of magnitude lower than at Hailuogou 

(5.6%, Zhou et al., 2016).  
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We even detected low concentrations of carbonates in the abundant coarse-grained 

granites (3 - 7 mg g-1 CaCO3, Figure C-1) and higher ones in the fine-grained granite from 

the Hailuogou area (57 mg g-1 CaCO3, Figure C-1). Up to now, the petrogenesis of calcite 

in granitoid rocks has received little attention. White et al. (2005) stated that calcite is 

universally present in granitoid rocks in a concentration ranging from 0.028 to 18.8 mg g-1, 

with a mean of 2.52 mg g-1. To explain the ubiquitous presence of accessory calcite in 

granitoid rocks, White et al. (2005) suggested that calcite might be included during 

late-magmatic growth or subsolidus replacement during magmatic processes. However, 

specific calcite occurrences can also be related to external inputs, such as from carbonate 

wall rocks or hydrothermal alteration (White et al., 2005). Geothermal mid-temperate 

springs (T~60°C) are scattered across the Hailuogou National Forest Park (Qi et al., 2017). 

Because of the presence of Paleozoic sedimentary rocks in the eastern catchment area of 

the Hailuogou glacier (Searle et al., 2016) in combination with hydrothermal sources in the 

surroundings of the study area (Qi et al., 2017), we suggest that the detected inorganic C in 

the granite samples of the Hailuogou chronosequence can be attributed to a mix of 

magmatic processes and external inputs. 

 

 

5.2. Role of carbonates and easily weatherable silicates for the release of Ca and 

Mg 

The release of all studied base cations by acid hydrolysis initially proceeded fast, followed 

by a slower reaction (Figure C-3). Although the total Ca concentration of the parent 

substrate was only about double that of Mg, K, and Na (Table C-1), during the first day of 

the pHstat experiment, a >10 times higher mass of Ca was released than of Mg and K and 

even a ca. 100 times higher mass of Ca than of Na (Figure C-3).  Rapid element release at 

the beginning of a pHstat experiment is likely related to cation-exchange reactions and 

unstable solid phases that are easily dissolved upon acidification, e.g., carbonates 

(Cappuyns and Swennen, 2008, Alt et al., 2013). The fact that along the Hailuogou 

chronosequence, the size of the fast-reacting Ca pool (Pool A) correlated positively with 

the carbonate (CO3
2-), exchangeable Ca, and total Ca concentrations in soil, while the 

fast-reacting Mg pool only correlated with the exchangeable Mg concentrations in soil 

(Table C-2), suggested that the Mg release along the chronosequence was not associated 
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with the weathering of Mg-containing carbonate minerals, such as dolomite or magnesite, 

but with cation-exchange reactions. 

Along the chronosequence, the size of the fast-reacting Ca and Mg pools did not 

significantly differ from the respective sizes of the exchangeable element pools (Figure 

C-5a, b), except for Mg in the younger soils (Sites 1-2), where the Pool A was larger than 

the exchangeable Mg concentrations (Figure C-5b). This may be attributed to the release 

of Mg from other labile minerals, such as chlorite (Zhou et al., 2016) during the pHstat 

experiment.  

 

 

 

Figure C-4. Sizes of (a) Ca, (b) Mg, (c) K, and (d) Na Pools A (fast) and B (slow) in 

topsoils (0–10 cm) calculated with the biexponential function in Equation 2 along the 

Hailuogou chronosequence. Uppercase and lowercase letters denote significant differences 

in the sizes of Pools A and B, respectively, among the sites (p < .05). Error bars represent 

standard errors (n = 3). 
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Figure C-5. Sizes of the fast-reacting Pool A of (a) Ca, (b) Mg, (c) K, and (d) Na and size 

of the respective exchangeable element pools extracted with 1 M NH4NO3 from topsoils 

(0–10 cm). The exchangeable Ca concentration in the carbonate-containing soils (Sites 1-3) 

could not be determined with the used standard method because of the partial dissolution 

of calcite in the extract. 

 

5.3. Changes of Ca and Mg weathering rates with ecosystem development 

The comparison of the release kinetics of the four base cations between Site 1 and Site 7 

revealed a general slowdown of the weathering for all studied elements, except for Na 

(Figure C-3). However, the difference in the release kinetics between Sites 1 and 7 was 

particularly pronounced for Ca and comparatively weak and similar for the other three 

elements. We attribute this to the loss of carbonates within a few decades, from which only 

Ca was released to a considerable extent. 

The release rate constant associated with the fast-reacting Ca pool, ka_Ca, increased 

with decreasing Ca concentration in soil and marginally significantly with soil age 
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(Table C-2). This occurred in line with the rapid weathering of carbonates reported by 

Basdediós et al. (2022). After carbonates were leached (>47 yr), the size of the fast-reacting 

Ca pool was comparable to that of the exchangeable Ca pool (Figure C-5a). The release 

rate constant associated with the slow-reacting Pool B of Ca, kb_Ca, did not significantly 

change with increasing site age, although the size of Pool B tended to decrease (Table C-2). 

This indicated that the slow-reacting Ca pool was weathered at a constant rate along the 

chronosequence. We suggest that Ca-Al sorosilicates, such as titanite and epidote 

(Figure C-2a, b), contributed to the slow-reacting pool of Ca (Figure C-4a).   

The release rate constant associated with the fast-reacting Mg pool, ka_Mg, did not 

significantly change along the chronosequence, while that associated with the slow-reacting 

Mg pool, kb_Mg, marginally significantly (p <0.1) decreased with time. Unexpectedly, the 

slow-reacting Mg pool seemed to only become active 4-12 hours after the start of the 

experiment and not simultaneously with the fast pool as was the case for Ca, K, and Na 

(Figure C-3), which may indicate that Mg was more strongly bound in soil, e.g., by 

association with highly insoluble soil constituents (Cappuyns and Swennens, 2008). The 

acid target pH of 3.0 in our pHstat experiment intensified the weathering of minerals such 

as the micas biotite and muscovite leading to a release of Mg and K into soil solution, which 

may have contributed to the large slow-reacting pool of both elements. Weathering of micas 

is a gradual transformation of their structures by removal of Mg, Fe and K (Stoch and 

Sikora, 1976). During biotite weathering in the pH range of 2 to 6, Mg and Fe are 

preferentially released (Bray et al., 2015), likely together with K. In the Hailuogou region, 

the Mg release was closely correlated with that of Fe and Al, but not with the CO3
2- 

concentrations indicating that most of the released Mg was associated with silicate 

weathering. 

Contrary to our hypothesis, the fast-reacting Pool A of Mg did not significantly 

change with time and was consistently smaller than the slow-reacting Pool B of Mg along 

the chronosequence (Figure C-4b). The size of Pool A of Mg correlated with the 

exchangeable Mg concentration in soil (Table C-2). Only in the younger soils (Sites 1 and 

2), Pool A was significantly larger than the exchangeable Mg pool, which we attribute to a 

slightly higher chlorite concentration at Sites 1 and 2 (4%, Zhou et al., 2016), because 

chlorite is easily weatherable and can be quickly lost from the topsoil (Terhorst et al., 2012). 

The finding that 2 h after the start, before the slow-reacting pool of Mg was activated, the 



 

C. Base cations release                                                                                                                           

116 
 

molar K : Mg ratio significantly decreased with site age from 3.4±0.2 (Site 1) to 1.2±0.3 

(Site 7) (Figure C-6), while after 168 h the K : Mg ratios did not correlate with site age 

anymore indicated that more Mg was leached relative to K, although more K than Mg was 

originally stored in the mineral soil (K : Mg ratio in the mineral soil: 1.3±0.1, Figure C-6b). 

This was in line with the findings of Basdediós et al. (2022), who reported a decrease in the 

total stocks of Mg along the chronosequence, while those of K were not related to 

ecosystem age.  

 

Figure C-6. (a) Released molar K/Mg ratios 1 and 168 h after starting the pHstat experiment 

and (b) molar K/Mg ratios in the upper 10 cm of the mineral soil, the organic layer, and the 

aboveground biomass along the chronosequence. For each site age, we ran three 

independent batch experiments and collected three independent samples, which are 

individually shown. The regression line in a was calculated for the means of each site age. 

Data of b were taken from Basdediós et al. (2022). 
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We suggest that Ca was initially mainly released from calcite, while Mg was released 

from chlorite. At later stages of the chronosequence, bioavailable (fast-reacting) Ca and 

Mg were stored in the exchangeable pools, which was replenished by the slow weathering 

of silicate minerals of intermediate stability such as titanite for Ca and hornblende and 

biotite for Mg. After 127 yr, the contributions of hornblende and biotite to the total mineral 

mass had decreased from 11.8 to 8.5% and from 18.0 to 9.0% (Zhou et al., 2016), 

respectively, from which we infer that these two minerals contributed to the slow-reacting 

Pool B of Mg (Figure C-4). 

 

5.4. Source minerals of K and Na release 

The release of K was one order of magnitude higher than that of Na (Figure C-3), although 

the total concentrations of both elements were similar in the parent material (Table C-1). 

In line with the findings of Basdediós et al. (2022), the size of the Pools A and B of both 

elements did not correlate with increasing site age, although the slow-reacting Pool B of K 

showed a marginally significant (p < 0.1) decreasing trend that may become more 

pronounced in the longer term (e.g., Lichter, 1998).  

The finding that the fast-reacting Pools A of K and Na were consistently larger than 

their respective exchangeable pools (Figure C-5c, d), indicated the presence of reactive K 

and Na pools in the soil that were not salt-extractable. A possible source of this reactive K 

might be the interlayers of clay minerals, which can contain substantial, not salt-extractable 

K concentrations but can be easily weathered (Falk Øgaard and Krogstad, 2005). Extensive 

depletion of interlayer K in clay minerals might also have contributed to the decrease in the 

K release rate constants of the slow-reacting K pool (kb_K) with age (Table C-2), because 

the release of interlayer K usually decreases when the concentration of K in soil solution 

increases (Hinsinger and Jaillard, 1993). The small fast-reacting pool of Na might be related 

to the presence of low concentration of Na carbonates in the glacial debris (Zhou et al., 

2016). 

With increasing site age, the K release from the slow-reacting K pool decreased 

(Table C-2) indicating that less primary K was delivered into the soil solution. We attribute 

the large slow-reacting K pool to the weathering of minerals such as biotite, which also 

released Mg (Figure C-4b, c) and muscovite. The slow-reacting Na pool was also 
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consistently larger than the fast-reacting Na pool and increased marginally significantly 

with increasing Na concentrations in the soil indicating that most of the Na present in the 

study soils was associated with weathering-resistant minerals, such as Na-rich feldspar and 

augite. Interestingly, the significantly largest Pool B of Na at the 57-year site (Figure C-4) 

was consistent with the report of Zhou et al. (2016) that at this site the augite concentration 

in topsoil was with 5.9% the highest along the chronosequence. The other soils only 

contained 2.1-3.1% of augite. This supports our assumption that augite contributed to the 

slow-reacting Pool B of Na. Moreover, in granitic substrates, plagioclases (Ca and Na 

feldspars) are usually faster weathered than K-feldspars (Grant, 1962), while the Ca-rich 

end member of the plagioclases dissolves faster than the Na-rich end-member (Palandri and 

Kharaka, 2004), contributing to the more rapid release of Ca than Na along the 

chronosequence (Figure C-3). The faster release of Ca might also explain why stream 

water samples in the Hailuogou region were dominated by Ca, while Na only accounted for 

a small proportion of the dissolved base cations (Zhou et al., 2016). Therefore, we infer 

that the weathering of Na-containing minerals along the Hailuogou chronosequence 

released much less Na than other base cations (Figure C-3). As a consequence, the Na 

stocks remained almost constant along the chronosequence (Basdediós et al., 2022). 

 

6. Conclusions  

Although the Gongga peak is mainly composed of granite and granitoid rocks, sedimentary 

rocks in the eastern catchment area of the Hailuogou glacier contribute CaCO3 to the 

Hailuogou glacial debris, from which the studied chronosequence developed. Calcite was 

mainly present in the pores of the metasedimentary rocks as interstitial calcite in the silicate 

matrix. We have detected carbonates even in the granitoid rocks, which we attribute to a 

combination of magmatic processes with external inputs during rock formation. 

The fast initial weathering of carbonates determined the rapid initial Ca release. The 

Mg release was, in contrast, closely correlated with Fe and Al release, but not with the 

carbonate concentrations, indicating that most of the released Mg was associated with 

silicate weathering. The sizes of the fast-reacting pools of Ca and Mg mostly matched the 

sizes of their respective exchangeable pools. The slow-reacting pool of Mg was 

considerably larger than the fast-reacting pool of Mg, which indicated that Mg was 

generally stored in more stable minerals than Ca, such as in biotite and hornblende.  
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The main sources of weathered K and Na were silicate minerals. The release of K was 

one order of magnitude higher than that of Na, although the total concentration of both 

elements were similar in the parent material. With increasing site age, the K release from 

the slow-reacting K pool slowed down so that increasingly less primary K was delivered 

into the soil solution. The weathering of Na-containing minerals along the Hailuogou 

chronosequence released little Na so that the Na stocks remained nearly constant during the 

127-yr succession. 

Our results suggest that the fast weathering of carbonates in the otherwise acidic, 

granite-dominated glacial till allowed for a fast initial delivery of Ca, succeeded by an 

increasing weathering of silicates with decreasing pH and a subsequent delivery of other 

nutrients including K and Mg could have facilitated the fast vegetation succession. The 

slower base cation release after the carbonates had been completely leached, fell together 

with a change of the forest composition from deciduous to coniferous with a lower nutrient 

demand. Thus, the vegetation development seemed to be synchronized with the weathering 

regime. 
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1. Abstract 

Magnesium (Mg) stable isotope ratios reflect Mg turnover in ecosystems. At the Hailuogou 

glacial retreat chronosequence in SW China about one third of the initially present Mg was 

lost from the topsoil in 127 yr. We determined bulk soil and exchangeable δ26Mg values at 

six sites exposed by the glacier from 0-127 yr ago. Moreover, we conducted a weathering 

experiment (pHstat) at the youngest (0 years) and the oldest (127 years) sites and measured 

δ26Mg values in differently reactive pools. We found a close correlation between the δ26Mg 

values of the bulk topsoils (0-10 cm) and the Mg depletion rates (r=0.98, p<0.001, n=5). 

The particularly fast Mg loss in the first 37 yr was attributable to leaching of exchangeable 

Mg and the fast dissolution of chlorite as revealed by the lower δ26Mg values of the fast (-

1.28±0.10‰) than the slow reacting (-0.64±0.11‰) pool at the 0 yr-old site in our pHstat 

experiment. The low δ26Mg values of the fast-reacting pool matched those reported for 

chlorite. Our results demonstrate that the δ26Mg values might be used as proxy of Mg loss 

and to identify the mineral sources of this loss. 
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2. Introduction  

As one of the most abundant elements in the Earth’s continental crust, magnesium (Mg) is 

widely distributed among the lithosphere, hydrosphere, and biosphere (Rudnik and Gao, 

2003; Taylor and McLennan, 1985). Magnesium has a great influence on the global 

atmospheric CO2 concentration through the formation and chemical weathering of 

Mg-bearing minerals (Berner et al., 1983). In nature, Mg isotopes are fractionated through 

diverse processes, such as weathering of the continental crust (Pogge von Strandmann et 

al., 2008; Teng et al., 2010; Tipper et al., 2006), Mg incorporation in secondary Mg-bearing 

minerals (Opfergelt et al., 2012), biomineralization (Chang et al., 2004), magma 

differentiation (Teng et al., 2007; Richter et al., 2008; Ryu et al., 2011), petrogenesis (Wang 

et al., 2015), plant uptake (Black et al., 2008; Bolou-Bi et al., 2010), and chlorophyll 

biosynthesis (Black et al., 2006). The resulting natural variation in Mg isotope ratios of 

different mineral and ecosystem pools may be used to elucidate the origin of Mg pools with 

different isotopic composition and to trace ecosystem processes (Court et al., 2021; Uhlig 

et al. 2017). 

The different dissolution rates of the diverse minerals in the parent material of soils 

have an effect on the fractionation of Mg isotopes in soil through weathering. The more 

rapid dissolution of carbonate than of silicate minerals (Lasaga, 1984) cause rivers draining 

carbonate watersheds to have a Mg isotope composition similar to the carbonate bedrock 

(Galy et al., 2002; Tipper et al., 2008), while Mg in watersheds draining silicate bedrock is 

usually isotopically lighter than the silicate substrate (Brenot et al., 2008, Lee et al., 2014; 

Tipper et al., 2008). Three main findings have been discussed to explain the latter: the 

preferential uptake of the heavy Mg isotopes by the vegetation (Black et al., 2008; Bolou-

Bi et al., 2010, 2012; Mavromatis et al., 2014; Uhlig et al., 2017), the preferential 

incorporation of heavy Mg isotopes in secondary minerals (Opfergelt et al., 2012), and the 

adsorption of heavy Mg onto clays (Huang et al., 2012; Pogge von Strandmann et al., 2012). 

Conversely, some studies reported no isotopic fractionation between runoff and weathered 

educts (Novak et al., 2020) or even that during silicate weathering lighter Mg isotopes are 

preferentially incorporated into secondary phases resulting in higher δ26Mg values in 

solution (Opfergelt et al., 2014; Pogge von Strandmann et al., 2008; Wimpenny et al., 

2010). This suggests that the direction of Mg isotope fractionation during weathering might 

depend on the dissolution and neoformation of specific minerals (Pogge von Strandmann 
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et al., 2008; Hindshaw et al., 2019), likely related to the Mg-O bond lengths of the 

secondary minerals formed (Hindshaw et al., 2020; Li et al., 2014).  

 The literature about a possible fractionation of Mg isotopes associated with cation 

exchange in soil is also not consistent. Some studies suggest that cation exchange enriches 

isotopically light Mg in the exchangeable Mg pool because of the preferential removal of 

heavy Mg isotopes during adsorption-desorption processes (Gao et al., 2018; Huang et al., 

2012; Opfergelt et al., 2014).  However, Wimpenny et al. (2014a) reported a negligible Mg 

isotope fractionation during Mg exchange on clay minerals, which has been corroborated 

by an experiment of Cai et al. (2022). If the latter was true, Mg isotope fractionation in soils 

would be mainly attributable to secondary mineral formation or plant uptake. 

Plant growth experiments in the laboratory showed that Mg in plant roots is 

isotopically heavier than the plant-available Mg pool (Black et al., 2008; Bolou-Bi et al., 

2010; Kimmig et al., 2018). However, Kimmig et al. (2018) showed that maple trees 

growing on natural soils did not fractionate Mg isotopes during plant uptake while the same 

tree species growing in laboratory pot experiments did. This was tentatively attributed to 

the presence of mycorrhizal fungi that colonize plant roots in the field, which were absent 

in the sterile soils used in lab experiments. Further studies showed that the direction of Mg 

isotope fractionation by fungi is species-specific (Fahad et al., 2016; Pokharel et al., 2017). 

Inside the plant, the light isotopes are preferentially incorporated into chlorophyll and thus 

accumulate in leaves and nonwoody shoots (Black et al., 2008; Bolou-Bi et al., 2010, 2012). 

The return of this isotopically light Mg pool via litterfall can influence the Mg isotope 

composition of the topsoils. 

Along the 127 year old Hailuogou glacial retreat chronosequence in Sichuan, 

southwest China, total Mg stocks in the mineral topsoil (0-10 cm) decreased from 4990 ± 

196 g m-2 to 2830 ± 223 g m-2 in only 127 years, while the exchangeable Mg stock 

consistently increased from 0.7 ± 0.0 g m-2 to 2.3 ± 0.5 g m-2 (Basdediós et al., 2022a). To 

explore the reasons for the fast depletion of Mg in only a few decades, Basdediós et al. 

(2022b) conducted a weathering experiment using the resin-based pHstat approach of of 

Kaupenjohann and Wilcke (1995), in which ions are released into solution during H+ 

buffering at constant pH and removed from the system using ion exchange resins. This 

method allowed to distinguish a fast- and a slow-reacting mineral pool and the release rate 

constants associated with each of them. The size of the fast-reacting pool of Mg did not 
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significantly change with site age and was consistently smaller than the slow-reacting pool 

(Basdediós et al., 2022b). The size of the fast-reacting pool mostly matched the size of the 

exchangeable Mg pool except for the young soils (< 37 years old), where the fast-reacting 

pool was larger than the respective exchangeable Mg pool (Basdediós et al., 2022b). 

Basdediós et al. (2022b) suggested that Mg was initially released from chlorite. At the later 

stages of the chronosequence the fast-reacting Mg pool consisted entirely of exchangeable 

Mg, which was fed by the slow weathering of silicate minerals of intermediate stability 

such as hornblende and biotite. The reported substantially lower 26Mg value of chlorite (-

1.82 ± 0.07 ‰) than of hornblende (-0.32 ± 0.09 ‰) and biotite (-0.29 ± 0.08 ‰) in granites 

(Ryu et al., 2011) provides an opportunity to test this hypothesis by measuring the 26Mg 

value of the fast-reacting pool. 

We aimed to reveal if Mg isotope ratios can be used to elucidate the mineral sources 

of Mg release by weathering and as tracer of Mg loss from the soil at a 127-yr old glacial 

retreat chronosequence in China. We hypothesized that (i) the large Mg depletion in the 

mineral topsoil in only 127 years is associated with an increase in the δ26Mg value of bulk 

topsoil as a consequence of the preferred (a) leaching (i.e., vertical transport) of 24Mg 

during silicate weathering and (b) dissolution of  a reactive fraction of Mg-isotopically light 

chlorite in the early phase of soil development along the chronosequence, while (ii) the 

δ26Mg value of the slow-reacting Mg pool increases with increasing soil age because of the 

depletion of the Mg-isotopically heavier biotite and hornblende relative to a little reactive 

fraction of the Mg-isotopically lighter chlorite. 

3. Materials and methods  

3.1. Study area 

Located on the eastern slope of the Gongga Mountain, in the transition zone of the Sichuan 

Basin and the Tibetan Plateau (southwest China), the Hailuogou Glacier had markedly 

retreated since the late 19th century (Li et al., 2010b), resulting in the development of an 

approximately 2 km-long, 50–200 m wide soil chronosequence, at an elevation of 

2850-3000 m above sea level (a.s.l.). The short time of pedogenesis (<130 years) resulted 

in the formation of initial soils without B horizon classified from the youngest to the oldest 

soils as Leptic Calcaric to Folic Dystric Regosols according to the World Reference Base 

for Soil Resources (IUSS Working Group WRB, 2022). With increasing time, the soils 
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have developed A and O horizons of increasing thickness. The mean annual temperature 

and precipitation rates are 4.2 °C and 1947 mm, respectively (Zhou et al., 2013). A primary 

vegetation succession has developed along this chronosequence, from pioneer shrubs (i.e. 

Hippophae rhamnoides L.), over half mature broad-leaved tree forests dominated by 

Populus purdomii Rehder, to a full conifer forest dominated by Abies fabri (Mast.) Craib 

and Picea brachytyla (Franch.) E. Pritz. in only 127 years. 

We included six sites with varying ecosystem ages (Figure A-3), deglaciated 

between 0 (Site 1; 2982 m a.s.l.) and 127 years ago (Site 6; 2855 m a.s.l.). The parent 

material of soil formation consists of a mixture of silicates (~90%) with a small contribution 

of carbonates (< 10%) which are lost from the topsoil by weathering and subsequent 

leaching within 47 years (Basdediós et al., 2022a). The mineral composition of the C 

horizons is dominated by quartz, plagioclase, K-feldspar, biotite, and hornblende, with the 

presence of minor minerals such as chlorite and apatite (Zhou et al., 2016). The intense 

carbonate weathering in the early stage of the chronosequence and the rapid establishment 

of the vegetation decreased soil pH from 8.0 to 5.8 in only 47 years (Table D-1), promoting 

a more intense biogeochemical weathering in the later stage of the chronosequence (Zhou 

et al., 2016).  

 

3.2. Field sampling 

Soil samples were collected in August 2017. Each of the six included ecosystem succession 

stages was sampled in triplicate. To guarantee spatial statistical independence, the distance 

between the sampled soil profiles was at least 20 m, except at Site 1, where the distance 

was reduced to 10 m because the studied area is narrower in the proximity of the glacier. 

Soil profiles were hand-dug and two soil horizons sampled: A (surface mineral soil with 

humus enrichment), and C (weathered soil parent material). Soil samples were air-dried to 

constant weight and sieved to <2 mm to collect the fine earth. Aliquots of all samples were 

ground using a ball mill equipped with a zirconium oxide jar (PM 200, Retsch, Haan, 

Germany).    
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3.3. Chemical analyses 

3.3.1. Sample preparation 

Exchangeable cations in the A horizons were extracted with 1 M NH4NO3 at a 1:25 soil to 

solution ratio following the method described by Zeien and Brümmer (1989) and measured 

by atomic absorption spectroscopy (AAS). Five of these extracts were chosen for Mg 

isotope analysis corresponding to one of the three replicate soil samples collected at each 

ecosystem succession stage, from 37 to 127 years. Aliquots of the exchangeable cation 

extracts containing ~10 µg of Mg were dried down and treated with HCl-HNO3 (3:1, v:v) 

at 120°C for 24 h in order to digest the high salt content of the matrix (1 M NH4NO3), 

before redissolution in 10 M HCl. Soil samples (70-100 mg) were digested with 

concentrated HF-HNO3 (3:1) in Teflon Savillex screw-top beakers on a hot plate at 120°C 

for 72 h and dried down. The remaining residues were treated with concentrated HCl-HNO3 

(3:1) at 120°C for 24 h, evaporated to dryness, and redissolved in 1 M HNO3.  

To determine the Mg release kinetics, we conducted a weathering experiment using 

the resin-based pHstat approach of Schwarz et al. (1999) including modifications of Alt et 

al. (2013), as described in Basdediós et al (2022b). Mg2+ was released from the fine earth 

into solution during H+ buffering at constant pH and removed from the system using ion-

exchange resins. The pHstat extracts after 30 min, 48 h, and 168 h experimental duration of 

the three replicate soil samples collected at the 0 year and 127 year old sites were selected 

for Mg isotope analysis. Magnesium concentrations were determined by inductively 

coupled plasma atomic emission spectroscopy (ICP-OES, 5100 VDV, Agilent, Waldbronn, 

Germany). Mg recovery from the pHstat-resin with standard solutions was 99 ± 1% (n = 3). 

Sample preparation, purification and Mg isotope ratio analyses were performed in a 

clean-air laboratory to avoid sample contamination. We used distilled acids (DST-1000 

Savillex ®) to remove any impurities. All labware used during sample treatment was 

previously acid-cleaned and rinsed with ultrapure water (>18.2 MΩ cm-1). 

 



 
 

 

 

Table D-1. Mean chemical and physical soil properties of the fine earth (< 2mm) along the Hailuogou chronosequence with standard error (SE) in 

parentheses if available (n=3)a. 

Site 

age 

(yr) 

Elevation 

(m a.s.l.) 

Soil 

horizon  

Thickness 

(cm) 

pH (H2O) CO3
2- 

(mg g-1) 

Bulk density 

(g cm-3)c 

Organic C 

(g kg-1) 

Total N 

(g kg-1) 

Particle-size distribution (%) Mg stock 

(g m-2)  

δ26Mg (‰) 

 

  Clay 

(<2µm) 

Silt 

(2-63µm) 

Sand 

(63-2000 µm) 

 

0 2982 C1 

C2 

0-10 cm 

0.5 (0.0) 

9.5 (0.0) b 

 

8.0 (0.0) 

8.3 (0.0) 

19 ± 1 

25 ± 1 

1.80 

1.80 

6.5 (1.2) 

3.9 (0.1) 

0.3 (0.1) 

0.1 (0.0) 

3.0 

3.2 

22.8 

21.6 

74.2 

75.2 

245 (7) 

4750 (113) 

4990 (196) 

-0.34 (0.01) 

-0.35 (0.08) 

-0.35 (0.08) 

37 2942 A 

C 

0-10 cm 

1 (0.0) 

9.3 (0.0) b 

6.1 (0.1) 

6.9 (0.1) 

2 ± 1 

7 ± 3 

0.96 

1.37 

16.9 (2.7) 

7.8 (1.7) 

1 (0.1) 

0.5 (0.2) 

2.1 

1.6 

18.9 

12.8 

79.1 

85.5 

301 (13) 

3420 (68) 

3720 (119) 

-0.29 (0.06) 

-0.33 (0.02) 

-0.32 (0.02) 

47 2922 A 

C 

0-10 cm 

3.0 (0.6) 

9.3 (0.1) b 

5.8 (0.2) 

6.0 (0.1) 

n.d. 

< 0.2 

0.35 

1.44 

14.1 (1.2) 

8.3 (0.7) 

1.2 (0.3) 

0.0 (0.0) 

3.6 

4.9 

18.5 

26.3 

77.9 

68.8 

326 (66) 

2930 (103) 

3260 (212) 

-0.31 (0.04) 

-0.31 (0.05) 

-0.30 (0.05) 

59 2912 A 

C 

0-10 cm 

3.7 (0.3) 

8.7 (0.1) b 

5.9 (0.1) 

6.3 (0.1) 

n.d. 

< 0.2 

0.49 

1.43 

10.8 (2.8) 

3.8 (0.7) 

0.8 (0.2) 

0.0 (0.0) 

1.0 

3.4 

13.8 

29.6 

85.2 

67.1 

468 (37) 

2680 (151) 

3140 (268) 

-0.31 (0.02) 

-0.35 (0.02) 

-0.35 (0.02) 

87 2883 A 

C 

0-10 cm 

4.5 (0.8) 

7.4 (0.4) b 

4.9 (0.1) 

5.6 (0.1) 

< 0.5 

0.6 (0.4) 

0.72 

1.27 

28.9 (10.4) 

16.2 (4.6) 

1.9 (0.7) 

0.7 (0.1) 

3.5 

2.5 

14.1 

13.0 

82.4 

84.5 

650 (87) 

1940 (63) 

2590 (186) 

-0.28 (0.03) 

-0.34 (0.05) 

-0.33 (0.04) 

127 2855 A 

C 

0-10 cm 

6.0 (0.0) 

7.2 (0.0) b 

5.2 ± 0.2 

5.5 (0.1) 

0.2 (0.1) 

0.2 (0.1) 

0.61 

1.33 

47.7 (20.5) 

10.9 (1.3) 

3.4 (1.5) 

0.7 (0.1) 

4.3 

1.5 

18.6 

6.2 

77.1 

92.3 

778 (55) 

2050 (116) 

2830 (223) 

-0.32 (0.01) 

-0.38 (0.03) 

-0.36 (0.03) 
aThe δ26Mg values of the upper 10 cm have been calculated per soil profile using Eq. D-5 and averaged per site age (n = 3). Calculated values are shown in 

italics. n.d = not detected. bThickness of the C horizon used in this study. cData from Zhou et al. (2016) and Wang et al. (2020). 
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3.3.2. Sample purification to remove potential interferences in the Mg isotope analysis 

A fraction of each sample containing 10-15 µg of Mg was evaporated and redissolved in 

the acid needed for purification (i.e., 2 mL 1 M HNO3 or 0.25 mL 10 M HCl). Separation 

of Mg from matrix elements was achieved by cation-exchange chromatography, using 

Bio-Rad AG50W-X8 resin, previously cleaned with 1 M HCl, 4 M HCl, 1 M HNO3, and 

deionized water >18.2 MΩ cm-1 before filled into columns (10 mL Bio-Rad® 

polypropylene columns). The resins were not reused for different samples. We followed 

two different methods to purify the Mg fraction of the samples, depending on the sample 

matrix.  

Resin extracts derived from the pHstat experiment were purified according to the 

procedure described by Teng et al. (2007) in which we used slightly longer columns (filled 

with 1.2 mL of resin instead of 1 mL). The resin was further cleaned in the columns with 

20 mL of 4 M HCl and 10 mL of deionized water before it was conditioned with 1 M HNO3 

prior to loading the sample. The Mg fraction and the potential interferences (e.g., Na, Ca 

or Ti), were eluted from the column with 1 M HNO3. Sodium was eluted with the first 10 

mL after loading the sample, Mg was collected in the next 16 mL, and Ca was last eluted 

(Figure A-5). The procedure was repeated 2-3 times for each sample to obtain a pure Mg 

solution (i.e., showing a ratio of the concentration of the interferences to that of Mg <0.05). 

We tested the purification method of Teng et al. (2007) for our soil samples but found 

that part of the Ti was always eluted at the same time as Mg, which potentially creates an 

interference on the stable isotope ratio of Mg because the double charged ions of Ti (48Ti2+, 

50Ti2+) have the same mass/charge ratio as Mg isotopes. Therefore, soil samples and soil 

exchangeable fractions were purified following the two-step method described by 

Opfergelt et al. (2012), in which the first step removes most of the Fe and Ca using 10 M 

HCl as eluent and the second step separates Mg from the rest of the matrix with successively 

0.4 M HCl, 0.15 M HF, 95% acetone/0.5 M HCl and 1 M HCl as eluents (Figure A-6). 

Mg isotopes can be fractionated during ion-exchange reactions with heavy Mg 

isotopes eluted first from the column (Teng et al., 2007); therefore, it is essential to obtain 

a Mg yield of ~ 100%. Purified samples were only accepted if the Mg recovery was >95%. 

Elution pattern and Mg yields were determined by inductively coupled plasma mass 

spectrometry (ICP-MS, 7900 Agilent, Waldbronn, Germany). The 24Mg signal of the 



 

D. Magnesium isotope ratios                                                                                                                           

136 
 

procedural blanks was < 0.5% of the total 24Mg signal and was therefore considered 

negligible.   

3.3.3. Isotope ratio analysis 

Mg isotope signals (24Mg, 25Mg and 26Mg) were measured simultaneously with a Thermo 

Scientific Neptune plus multicollector ICP-MS (MC-ICP-MS) on Faraday detectors using 

a 1011 Ohm Faraday cup current amplifier in five blocks of 30 cycles per block, with an 

integration time of 4 s per cycle. Since differences in the Mg concentrations between 

samples and standards can affect instrumental mass bias (Teng and Yang, 2014), all 

samples and standards were introduced into the plasma dissolved in 0.37 M HNO3 at Mg 

concentrations of 500 ppb using the standard-sample bracketing technique. Magnesium 

isotope data are reported relative to DSM-3 (Galy et al., 2003, Eq. D-1): 

δ x Mg = {[xMg/24Mg)sample / (
xMg/24Mg)DSM3] -1} x 103                                      (D-1) 

where x is either mass 26 or 25. 

We used an in-house Mg(NO3)2 standard for our bracketing. The composition of the 

in-house Mg(NO3)2 standard was determined relative to ERM-AE143 (Galy et al., 2003; 

Vogl et al., 2016) and normalized to the international DSM-3 Mg standard scale according 

to González de Vega et al. (2020). The long-term reproducibility of our Mg isotope ratio 

measurements was checked by performing repeated measurements of the in-house 

Mg(NO3)2 standard of the Observatoire Midi-Pyrenées/Laboratoire Geosciences 

Environnement Toulouse (GET), France. Our values of δ26Mg = 0.28±0.13‰ and δ25Mg = 

0.18±0.09‰ matched those reported by Stamm et al. (2022) well (δ26Mg = 0.32±0.14‰ 

and δ25Mg = 0.16±0.08‰). Accuracy and precision of the whole procedure was assessed 

by digestion and purification of the certified reference material BCR-2 (Basalt Columbia 

River). The results obtained with our method were δ26Mg = -0.25±0.12‰ and 

δ25Mg = -0.10±0.04‰ (2SD, n=13), in close agreement with corresponding measurements 

reported by previous studies (δ26Mg = -0.16‰ to -0.36‰ and δ25Mg = -0.18‰ to -0.08‰; 

An et al., 2014, Teng et al., 2007). 
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3.4. Calculations and statistical analyses 

A linear regression of the δ26Mg on the δ25Mg values resulted in a slope of 0.521 ± 0.016 

(2SD, Figure A-8), in line with the theoretical kinetic slope of 0.511 and the theoretical 

equilibrium slope of 0.521 (Young and Galy, 2004) and similar to the slopes reported in 

previous studies on terrestrial samples (e.g., 0.509 ± 0.023, Brenot et al., 2008; 0.518 ± 

0.038, Galy et al., 2001; 0.516 ± 0.006, Kimmig et al., 2018). Therefore, only the δ26Mg 

value will be used further. 

The release kinetics of Mg in soils was described as a two-step first-order reaction by 

Süsser (1987) and reported by Basdediós et al. (2021b) for the same samples as used here 

after applying Eq. D-2 

Y(t) = Pool A (1-e-kat) + Pool B (1-e-kbt)                                                    (D-2) 

where Y(t) represents the Mg release from soil (mg kg-1) at time t, Pool A and Pool B are 

the estimates of the two differently reactive pools (slow/fast; mg kg-1) and ka and kb are the 

corresponding rate constants (h-1) of each pool, estimated by a nonlinear regression model 

using sequential quadratic optimization.  

Since the slow-reacting Mg pool (Pool B) only started to release Mg after 4-12 h 

(Basdediós et al., 2022b), the δ26Mg value of the fast-reacting Mg pool (Pool A) has been 

acquired from the pHstat experiment by direct measurement of the resin extract after shaking 

for 30 min (n=3). The slow reacting Mg pool was calculated by applying a two-pool mixing 

model (Eq. D-3), after shaking for 48 h and 168 h (n=3), respectively. There were no 

significant differences between the two values for 48 and 168 h according to a t test for 

independent samples, so we only present the results of 168 h. 

δ26MgPool_B = (δ26MgTotal  – (δ26MgPool A *
  fPool_A )) / fPool_B                                 (D-3) 

where f represents the fractions (calculated in mg g-1) of the involved pools A and B (f Pool_A 

+ fPool_B = 1). The use of δ26Mg values in our mixing model instead of the 26Mg/24Mg isotope 

ratios seemed to be justified given the small variation of the Mg isotope ratios in our study. 

Because we were unable to directly measure the δ26Mg value of chlorite in our study 

soils, we estimated this value by assuming that the δ26Mg values of our study soils are 

determined by the mixture of the only three Mg-bearing minerals that were detected by 

Zhou et al. (2016) in the parent material, i.e., biotite, hornblende, and chlorite (Eq. D-4). 
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The δ26Mg value of chlorite has been estimated using Eq. D-4, where χ represents the 

contribution of the mineral i, i.e. biotite (Bio), hornblende (Hbl) or chlorite (Chl), to the 

total Mg-containing minerals concentration (Bio+Hbl+Chl). We used the maximum and 

minimum δ26Mg values for coexisting biotite and hornblende in granitoids in the 

continental crust of central China published by Liu et al. (2010) as end-members of the 

mixing model. 

δ26MgChl = (δ
26MgBulk soil * χBio+Hbl+Chl - δ

26MgBio * χBio - δ
26MgHbl * χHbl) / χChl     (D-4) 

A mixing model was applied to calculate the δ26Mg of the upper 10 cm of the mineral 

soil (δ26Mg10-cm), including the A and part of the C horizon (the A horizon was ≤ 6 cm thick 

along the chronosequence; Table D-1) at each site along the chronosequence (Eq. D-5): 

δ26Mg10-cm = ((δ26MgA *
  χA) + (δ26MgC *

  χC )) / χ10-cm                                                            (D-5) 

where δ26MgA  and δ26MgC represent the Mg isotope compositions of the mineral A and C 

horizons, respectively, and χA and χC represent the contribution of each horizon to the total 

stock, in g m-2 (χ10-cm).  

The annual Mg depletion rate (g m−2 yr−1) was calculated as the difference in the total 

Mg stock (0−10 cm, g m−2, Table D-1) between two consecutive sites, divided by the site 

age difference (yr). 

The δ26Mg values of the mineral A and C horizons at each study site were tested for 

significant differences using a paired sample t test. Independent pools (e.g., δ26Mg of the 

mineral soil vs δ26Mg of the exchangeable Mg fraction or pHstat extracts) were tested for 

significant differences using a paired t test assuming equal variances. Statistical analyses 

were conducted with the statistical software R (R Core Team, 2019). Significance was set 

at p < 0.05. 

 

4. Results  

The δ26Mg values of the bulk soils along the chronosequence varied from -0.34 

to -0.28‰, and from -0.38 to -0.31‰ for the A and C horizons, respectively (Figure D-1). 

The C horizon was consistently enriched in the light Mg isotopes compared to the 

respective A horizon (p < 0.05) and the δ26Mg values of the C horizons tended to decrease 

with site age (r = 0.85, p = 0.07; Figure D-1), while the δ26Mg value of the A horizons 
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were not correlated with site age. The δ26Mg values of the topsoil (0-10 cm) were 

significantly negatively correlated with the annual Mg depletion rates (r = 0.98, p < 0.001; 

Figure D-2).  

The fast-reacting Mg pool at Site 1 (0 yr) as derived from our pHstat experiment 

(δ26Mg=-1.28±0.10 ‰, Table D-2) was significantly depleted in the heavy Mg isotopes 

compared to that at the 127 year-old site (-0.74±0.13 ‰, n=3, p<0.05). However, this was 

not the case for the slow-reacting Mg pool, which showed similar δ26Mg values with on 

average -0.54±0.25 ‰ at both sites (Figure D-3). The fast-reacting Mg pool at Site 1 was 

significantly depleted in 26Mg compared to the slow-reacting Mg pool (δ26Mg=-0.64±0.11 

‰, Table D-2). There were no significant differences in the δ26Mg values between the fast- 

and slow-reacting Mg pools at the 127 year site (Figure D-3). The size of the slow-reacting 

Mg pool was positively correlated with the biotite + hornblende to chlorite ratios (r=0.82, 

p<0.05), and the δ26Mg values of the topsoil (0 - 10 cm) tended to decrease with decreasing 

size of the slow-reacting pool (Figure D-4). 

The exchangeable Mg fraction showed δ26Mg values of -0.86 ± 0.13 ‰ (n=5) and 

was considerably depleted in 26Mg compared to the bulk soils (Figure D-3). The δ26Mg 

values of the exchangeable Mg fraction correlated with the release rate constant of the slow-

reacting pool, kb (r=0.99, p<0.01; Figure D-5). 

 

Table D-2. Size of the fast-reacting and exchangeable Mg pools, stock of the exchangeable 

Mg and respective δ26Mg along the Hailuogou chronosequence. Data are shown as mean 

with standard error (SE) in parenthesis (n=3). δ26Mg values of the exchangeable Mg are 

shown as mean with 2SE in parenthesis of measurements performed within the same 

analytical session.  

n.a. = not available 

Site age Fast-reacting 

Mg pool  

(g kg-1) 

 

Exchangeable 

Mg pool 

(g kg-1) 

 Stock 

exch. Mg, 

0-10 cm 

(g m-2) 

δ26Mg 

exchangeable 

Mg (‰) 

 

δ26Mg fast 

reacting Mg 

pool (‰) 

δ26Mg slow 

reacting pool 

(‰) 

0 0.09 (0.02) 0.04 (0.0) 0.7 (0.2) n.a. -1.28 (0.10) -0.64 (0.11) 

37 0.07 (0.01) 0.06 (0.02) 0.8 (0.2) -0.87 (0.05) n.a. n.a. 

47 0.09 (0.01) 0.09 (0.03) 0.7 (0.5) -0.80 (0.05) n.a. n.a. 

59 0.07 (0.01) 0.04 (0.01) 0.8 (0.2) -0.88 (0.05) n.a. n.a. 

87 0.09 (0.03) 0.12 (0.02) 1.6 (0.5) -0.76 (0.07) n.a. n.a. 

127 0.10 (0.03) 0.13 (0.02) 2.3 (0.5) -1.00 (0.05) -0.74 (0.13) -0.44 (0.17) 
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Figure D-1. Magnesium isotope compositions (δ26Mg values) of bulk soils (<2 mm) of the 

mineral A (squares) and C (circles) horizons or C1 (square) and C2 (circle) horizons at Site 

1 (0 yr) where no A horizon had developed along the Hailuogou retreat chronosequence. 

The dotted regression line represents a marginally significant correlation between the 

δ26Mg values of the mineral C horizon with increasing site age, excluding Site 1. Error 

bars represent standard errors (SE) of three replicate soil samples considered spatially 

independent. 
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Figure D-2. Relationship between the Mg isotope composition (δ26Mg values) of the upper 

10 cm of the mineral soil and the Mg depletion rates of the entire ecosystem (to a soil depth 

of 10 cm) along the Hailuogou Chronosequence taken from Basdediós et al.2022a. Error 

bars represent standard errors (SE) of three spatial replicates and thus the spatial 

heterogeneity of the study soils. 

 

 

Figure D-3. Magnesium isotope compositions (δ26Mg values) of bulk soils (<2 mm) and 

the exchangeable Mg fraction along the Hailuogou glacier retreat chronosequence, together 

with those of the fast- and slow-reacting Mg pools at the youngest (0 years, dark boxes) 

and oldest sites (127 years, light boxes). The boxes and whiskers show the medians, the 

25th and 75th percentiles, and minima and maxima. 
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Figure D-4. Relationship between the size of the slow-reacting Mg pool along the 

Hailuogou chronosequence and the biotite (bio) + hornblende (hbl) to chlorite (chl) 

concentration ratios. Labels represent δ26Mg values of the upper 10 cm of the mineral soil 

at each ecosystem site age calculated with Eq. D-5. Error bars represent standard errors 

(SE) of three spatial replicates and thus spatial heterogeneity. 

 

Figure D-5.  Relationship 

between the Mg isotope 

compositions (δ26Mg 

values) of the exchangeable 

Mg along the Hailuogou 

chronosequence and the 

release rate constants 

associated with the slow-

reacting Mg pool, kb. Error 

bars represent two standard 

errors (2SE) of the same 

sample analyzed within the 

same analytical session as 

measure of the analytical 

precision. 
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5. Discussion 

The δ26Mg values of the fine earth (<2mm) in the mineral topsoils (0-10 cm) along the 

chronosequence averaged -0.34±0.02 ‰ (SE, n=6), which is Mg-isotopically lighter than 

the average value of the upper continental crust (-0.22‰, Li et al., 2010a), but similar to 

reported δ26Mg values of biotite (-0.29±0.08 ‰) and hornblende (-0.32±0.09 ‰; Ryu et 

al., 2011), which are the main Mg-containing minerals in the topsoils of the Hailuogou 

glacial retreat area (13±2 % and 12±2 % of the total mineral composition, respectively) 

together with chlorite (3±1%; Zhou et al., 2016). Newly formed soils originating from 

granitic rocks have usually a similar isotopic composition as the parent material from which 

they evolve (Ryu et al., 2021). The parent rocks along the Hailuogou chronosequence 

originate from the eastern slope of the Gongga Mountain, a granitoid massif intruded into 

Triassic and Paleozoic metasedimentary and metavolcanic rocks (Searle et al., 2016). The 

Mg isotopic composition of granitic substrates located in the upper continental crust differ 

widely (i.e., from -0.40 to 0.44 ‰; Shen et al., 2009), with an average value of -0.21±0.07 

‰ in central China (Liu et al., 2010), and a range of -0.35 to -0.16 ‰ in eastern China 

(Li et al., 2010a). Thus, the δ26Mg value of our study soils is close to the lower end of the 

reported range for China. 

 

5.1. Relationship of the δ26Mg values in bulk soils with soil age and Mg 

depletion 

In spite of the increasing Mg depletion from the topsoil (0-10 cm) with soil age, the δ26Mg 

values of the topsoils (Table D-1) were not related with site age. Thus, our first hypothesis 

could be falsified. Studies on basaltic soils along a Hawaiian chronosequence reported that 

the δ26Mg values of the soils did not significantly differ from those of the parent material 

during the first 300 yr (Ryu et al., 2021), in line with our findings. However, older soils (≥ 

20.000 yr) showed higher δ26Mg values than the parent materials, which the authors 

attributed to secondary mineral formation favoring heavy isotopes. Comparable temporal 

trends have been reported for other metal isotope ratios in the same Hawaiian 

chronosequence: the δ7Li and δ30Si values of 300 year old soils were the same as in the 

fresh basalt, respectively, despite a Li loss of ~30% by weathering and subsequent leaching 

(Ryu et al., 2014; Ziegler et al., 2005). In soils of the ~150 year old Damma glacial retreat 
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area in Switzerland with granitic parent materials, the δ44/42Ca and δ56Fe values were 

similarly unrelated with ecosystem age (Hindshaw et al., 2011; Kiczka et al., 2011). 

However, we found a close and significant correlation between the Mg depletion rate 

quantified by Basdedios et al. (2022a) and the δ26Mg values of the topsoils (0-10 cm, 

Figure D-2). The lack of a relationship between the δ26Mg values of the soils and the soil 

age is probably explained by heterogeneities in the mineral composition of the parent 

substrate, which are better reflected by the Mg depletion rates than by soil age. The 37 and 

47 year old sites had higher hornblende and slightly lower chlorite concentrations in the 

topsoils (0-10 cm; >15.6 and 2-3%, respectively) than the other sites (<12 and 3-4%; Zhou 

et al., 2016). Similar results were reported by Ryu et al. (2011), who simulated granite 

weathering in a laboratory experiment and concluded that the mineral-specific surface area 

and mineral concentration caused elemental release rates to vary, and that the different 

δ26Mg values reflect a conservative mixing of Mg released from the different minerals. Our 

results suggest that the δ26Mg value of bulk soils may serve as a proxy for natural ecosystem 

budgets of young ecosystems and thus may allow to determine change rates of element 

concentrations. However, our findings are based on a limited number of sites along a 

comparatively homogeneous chronosequence of young ecosystems. Therefore, future 

research should address the question whether these findings can be extrapolated to more 

diverse soils and longer time scales. 

5.1.1. Role of Mg leaching 

The finding that the C horizons had significantly lower δ26Mg values than the 

corresponding A horizons according to the t test for paired samples could be explained by 

the increasing preferred transfer of 24Mg from the A horizon to the upper C horizon by 

leaching (i.e., vertical transport), which supports our hypothesis. This is further 

corroborated by our finding that the δ26Mg values of the fast-reacting pool, which can be 

assumed to primarily feed the leaching from the A to the C horizon, were considerably 

lower than those of the slow-reacting pool and the bulk soil, particularly at the youngest 

study site (Figures D-1 and D-3) in line with previous findings that weathering promotes 

the release of light Mg isotopes, leaving an isotopically heavy residue (e.g., Bolou-Bi et al., 

2012; Schmitt et al., 2012; Tipper et al., 2006, 2012; Wimpenny et al., 2010, 2011).  
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The marginally significant decrease of the δ26Mg values of the C horizons with 

increasing site age (Figure D-1) is surprising, since the opposite trend has usually been 

observed (Schmitt et al., 2012; Tipper et al., 2006, 2012; Wimpenny et al. 2010, 2011). 

However, our results are consistent with the finding of Ma et al. (2015), who reported an 

accumulation of light Mg isotopes during silicate dissolution (particulary of illite and 

chlorite) and reprecipitation as Mg-isotopically light vermiculite.The increasing 

accumulation of the light Mg isotopes in the C horizon with increasing site age might also 

be attributed to the preferential loss of isotopically heavy Mg in particles as suspended 

sediments during subsurface erosion, as occurred in the Shale Hills catchment in 

Pennsylvania (Ma et al., 2015). The gradual increase in the exchangeable Mg stocks 

(Basdediós et al., 2022a) might also contribute to decrease the δ26Mg values of the C 

horizons as a consequence of the preferential retention of light Mg isotopes on the cation 

exchange sites (Opfergelt et al., 2012, 2014). However, the stock of exchangeable Mg 

(< 2.3 ± 0.5 g Mg m-2, Basdediós et al., 2022a) was small relative to the total Mg stock in 

the mineral topsoil (0-10 cm; > 2830 ± 223 g Mg m-2, Table D-1). The formation of 

pedogenic carbonates can also potentially decrease δ26Mg values in bulk soils (Galy et al., 

2002; Immenhauser et al., 2010; Wimpenny et al., 2014b) but this is probably not the case 

in our study area because of the low CO3
2− concentrations in the >47 year-old soils (Table 

D-1). 

Similarly, a substantial influence of preferential plant uptake of the heavy Mg 

isotopes (Black et al., 2008; Bolou-Bi et al., 2010, 2012) seems unlikely, because of the 

scarcity of roots in the C horizon. Moreover, Basdediós et al. (2022a) reported that the 

annual plant uptake of Mg was with <4.8 ± 1.5 g m−2 yr−1 one order of magnitude lower 

than the Mg released by weathering in the mineral topsoil (0−10 cm; ∼ 21 g m−2 yr−1; 

Basdediós et al., 2022b), resulting in only a small effect of plant uptake on the δ26Mg values 

in the topsoils (0−10 cm) and likely an even smaller one in the C horizons. 

5.1.2. Role of chlorite dissolution 

The different δ26Mg values of the fast-reacting Mg pool in the youngest and the oldest soil 

(Figure D-3) indicated that the mineral sources of this pool changed with time along the 

chronosequence. Basdediós et al. (2022b) reported that the size of the fast-reacting Mg pool 

matched the size of the exchangeable Mg pool along the chronosequence, except in the 
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<37 year old soils, where the fast-reacting was larger than the exchangeable Mg pool. The 

much lower δ26Mg value of the fast-reacting Mg pool at the youngest site (0 yr) than the 

mean δ26Mg value of the exchangeable Mg pool along the chronosequence (∆26Mg PoolA-

ExchMg = 0.42; Figure D-3) suggested that the fast-reacting Mg pool was fed by a mineral 

with a particularly light Mg isotope composition. The fact that several authors reported low 

δ26Mg values for chlorite in granitic environments (e.g., −0.78‰, Kimmig et al., 2018; and 

−1.82‰, Ryu et al., 2011) suggested that chlorite, that is present in the parent material of 

our study soils and the concentration of which decreased from 4% to 2% in less than 50 

years (Zhou et al., 2016), could be this mineral. We assume that the high δ26Mg value of 

0.40 ‰ ± 0.22 in a highly weathered andesitic catchment in Puerto Rico reported by 

Chapela Lara et al. (2017) is specific for the volcanic setting of their study. Hornblende and 

biotite have a similar Mg isotope composition, although recent studies suggest that 

hornblendes might be slightly lighter than coexisting biotites in granitoid rocks (∆26MgHbl-

Bt = -0.06 ‰ ± 0.08, 2SD, Liu et al., 2010). For our mixing model, we used the maximum 

and minimum δ26Mg values for coexisting biotite and hornblende in granitoids in the 

continental crust of central China published by Liu et al (2010) and solved Eq. D-4 for the 

δ26Mg value of chlorite in all soils along the Hailuogou chronosequence. This yielded a 

potential range of δ26Mg values of -0.89 ‰ to -1.82 ‰ for chlorite at our study sites. Thus, 

the weathering of a reactive fraction of chlorite could indeed explain, why the size of the 

fast-reacting Mg pool in the young soils was larger than that of the exchangeable Mg 

supporting our hypothesis that chlorite was an important source of plant-available Mg 

released in the young soils of the studied glacial retreat chronosequence. A faster 

weathering rate of chlorite than of hornblende and biotite is in line with the literature 

(Malmström et al., 1996; Swoboda-Colberg & Drever 1993). 

 

5.2. Relationship of the δ26Mg values of the slow-reacting Mg pool with 

mineralogical composition and soil age 

 The δ26Mg values of the slow-reacting Mg pool at the 0 and 127 year old sites did not 

significantly differ (Figure D-3), although there was a noticeable tendency towards higher 

δ26Mg values that might become more pronounced in a longer term (i.e., > 127 years). The 

δ26Mg values of the slow-reacting Mg pool were similar to those of the bulk soils 
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(Figure D-3), which further supports the finding of Basdediós et al. (2022b) that the slow-

reacting Mg pool dominates the total Mg pool in the study soils.  

The size of the slow-reacting Mg pool correlated significantly with the contribution 

of biotite+hornblende to chlorite concentration ratios (Figure D-4). This result further 

emphasizes that the mineral composition of soils is an important driver of their Mg isotope 

composition and of the Mg isotope fractionation during weathering. The finding that the 

δ26Mg values of the exchangeable Mg pool correlated significantly with the release rate 

constant of the slow-reacting pool in the five oldest soils illustrated that the exchangeable 

Mg pool was mostly fed by the weathering of biotite+hornblende, once the reactive fraction 

of the chlorite had been dissolved. However, in our study soils the contribution of chlorite 

seems to be too low to significantly influence the δ26Mg values of the slow-reacting pool 

so that our hypothesis ii is not fully supported. Despite this, the use of Mg isotope ratios 

helped us in constraining the roles of different Mg-bearing soil minerals in providing plant-

available Mg during the early phase of soil development, which would not have been 

possible with elemental budgets alone. 
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E. Appendix 
 

The appendix is attached on an USB stick containing the following files: 

 

01_ICP_Biomass.xlsx: Element concentrations (Ca, Mg, K, Na; in g kg-1) of plant 

biomass, i.e., leaf, needle (1 and 3 years old), bark, branch, trunk and root, of the dominant 

tree species along the Hailuogou chronosequence, determined by ICP-OES after total 

digestion with concentrated HNO3 and H2O2 in a microwave oven (Section B).   

 

02_ICP_Soil.xlsx: Element concentrations (Ca, Mg, K, Na; in g kg-1) of the five 

soil horizons sampled along the Hailuogou chronosequence: Oi (fresh litter), Oe (shredded 

litter), Oa (dark layer of decomposed humus), A (surface mineral soil with humus 

enrichment), and C (weathered soil parent material). Fine earth (<2 mm) and stones (soil > 

2 mm) of the mineral horizons were analyzed separately. Concentrations were determined 

by ICP-OES after total digestion with concentrated HNO3/HF/H2O2 in a microwave oven 

(Section B).   

 

03_pHstat.xlsx: Ca, Mg, K and Na release over time during a pHstat experiment at 

pH 3 in topsoils (0-10cm) from Site 1 (0 yr) to Site 7 (127 yr) of the Hailuogou 

chronosequence, expressed in mmol kg-1 (Section C).   

 

04_pHstat_Ca.xlsx: Modelled sizes of the fast-reacting Ca pool (Pool A) and the 

slow-reacting Ca pool (Pool B) in mg kg-1 and release rate constant associated to each pool, 

(ka and kb, respectively: h-1) in topsoils (0-10 cm) at each study site along the Hailuogou 

chronosequence. The coefficient of determination (R2) describes the goodness of the fit 

between my data and the modelled function (Section C).   

 

05_ pHstat_Mg.xlsx: Modelled sizes of the fast-reacting Mg pool (Pool A) and the 

slow-reacting Mg pool (Pool B) in mg kg-1 and release rate constants associated to each 

pool, (ka and kb, respectively: h-1) in topsoils (0-10 cm) at each study site along the 

Hailuogou chronosequence. The coefficient of determination (R2) describes the goodness 

of the fit between my data and the modelled function (Section C).   
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06_ pHstat_K.xlsx: Modelled sizes of the fast-reacting K pool (Pool A) and the 

slow-reacting K pool (Pool B) in mg kg-1 and release rate constants associated to each pool, 

(ka and kb, respectively: h-1) in topsoils (0-10 cm) at each study site along the Hailuogou 

chronosequence. The coefficient of determination (R2) describes the goodness of the fit 

between my data and the modelled function (Section C).   

 

07_pHstat_Na.xlsx: Modelled sizes of the fast-reacting Na pool (Pool A) and the 

slow-reacting Na pool (Pool B) in mg kg-1 and release rate constant associated to each pool, 

(ka and kb, respectively: h-1) in topsoils (0-10 cm) at each study site along the Hailuogou 

chronosequence. The coefficient of determination (R2) describes the goodness of the fit 

between my data and the modelled function (Section C).   

 

08_InHouseMgSTD.xlsx: Values of repeated measurements (n=45) of our 

bracketing in-house Mg(NO3)2 standard relative to ERM-AE143 over the course of this 

study (Section D).   

 

09_Mg_Iso.xlsx: Measured Mg isotope ratios of mineral soil samples, 

exchangeable Mg fraction, extracts derived from the pHstat experiment and standards 

(Section D).   

 

10_Mg_Iso_org.xlsx: Measured Mg isotope ratios in biomass, i.e., leaf, needle (1 

and 3 years old) and root, and organic horizons along the Hailuogou chronosequence, and 

standards (Section D).   

 


