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Abstract

Gas-liquid-solid multiphase systems are ubiquitous in engineering applications,
e.g. direct inkjet printing, spray drying and spray coating. Direct inkjet printing
is a promising additive manufacturing technology for fabricating temperature-
sensitive components. However, inkjet-printed structures suffer from the so-
called “coffee-ring effect” or “coffee-stain effect”, which leads to a ring-like
deposition pattern with more material deposited around the edge but much less
material left inside the printed ink-ring. Understanding the physics behind eva-
porating inkjet-printed droplets with many suspended solid particles inside helps
to suppress the coffee-ring effect and to guarantee more uniform material deposi-
tion patterns. Accordingly, developing a numerical framework for modelling the
gas-liquid-solid multiphase system with evaporation is of great significance. In
the present thesis, an improved Computational Fluid Dynamics-Discrete Element
Method (CFD-DEM) coupling framework is proposed and developed to model
the gas-liquid-solid multiphase system with and without evaporation.

For modelling such a surface-tension-dominant multiphase system, some funda-
mental scientific problems must be addressed: particle transport and accumulati-
on, surface tension and free surface capturing, droplet wetting and evaporation,
contact line pinning, particle-fluid interactions, etc. The DEM is adopted to track
the trajectory of solid particles, and CFD is used to model surface tension, evapo-
ration, contact line pinning, etc. Furthermore, coupling CFD to DEM is employed
to calculate the complex particle-liquid interactions.

On the DEM side, the conventional DEM is extended to model micro-sized par-
ticles. The non-contacting surface forces, e.g. Van der Waals, electrostatic and
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Derjaguin-Landau-Verwey-Overbeek (DLVO) forces, and a Brownian-motion-
induced random force model are implemented into the open-source DEM code
LIGGGHTS. Extensive numerical validations prove that these newly implemen-
ted force models can predict either non-contacting or random forces with fairly
good numerical accuracy. On the CFD side, the improved Coupled Level Set and
Volume of Fluid (i-CLSVoF) framework is developed and implemented into the
open-source C++ library OpenFOAM to model surface-tension-dominant flow.
The i-CLSVoF framework can capture sharp free surface with less interface dif-
fusion. The improved surface tension force model implemented in i-CLSVoF can
predict the surface tension force more accurately with promising suppression of
un-physical spurious velocities. Three evaporation models have been implemen-
ted into i-CSLVoF for modelling the evaporation of the liquid phase. Numerical
validations demonstrate that these evaporation models can accurately model the
phase change from liquid to vapour. Furthermore, a contact line pinning model is
incorporated to describe droplet evaporation with a constant contact radius mode.

The resolved CFD-DEM approach represents the interactions between conti-
nuous fluid and discrete solid phases in a locally resolved way. An improved
resolved CFD-DEM model developed in this thesis is capable of modelling the
gas-liquid-solid multiphase free surface flow with and without evaporation of the
liquid phase. The i-CLSVoF framework is adopted to model the surface tension
effect and capture the sharp free surface. An improved capillary force model is
developed to compute the capillary interactions for partially floating solid partic-
les at a free surface. Two well-known benchmark cases, namely drag coefficient
calculation and the single sphere settling are conducted to validate the resolved
CFD-DEM model. It turns out that the resolved CFD-DEM model developed
in this thesis can accurately calculate the fluid-solid interactions and predict the
trajectory of solid particles interacting with the liquid phase. Numerical demons-
trations, e.g. two particles moving along a free surface when the liquid phase
evaporates, and particle transport and accumulations inside an evaporating ses-
sile droplet show the performance of the resolved model in modelling complex
particle-liquid interactions.
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The resolved CFD-DEM approach accurately resolves the flow fields around
solid particles but is computationally expensive. Thus, it is only applicable to
computationally model the multiphase system with a limited number of partic-
les (less than 1000). Accordingly, a so-called un-resolved CFD-DEM model is
further developed in this thesis. In the un-resolved CFD-DEM model, each CFD
cell contains several solid particles and thus can be used to investigate the glo-
bal behaviour of many solid particles (up to 106). A new drag force model with a
corrected drag coefficient, which is in good agreement with extensive experimen-
tal data, has been implemented. This drag force model is applicable over a wide
range of Reynolds number (10−4− 106). Extensive numerical validations have
been conducted to validate the drag force model and the un-resolved CFD-DEM
approach. A 3D dam break benchmark case demonstrates that the un-resolved
CFD-DEM model can realize the four-way coupling between the solid and liquid
phases involving around 4000 solid particles. Comparison between numerical si-
mulations and the corresponding experimental studies proves that the accuracy
of the un-resolved CFD-DEM model is reasonable.
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Kurzfassung

Gas-Flüssig-Fest-Mehrphasensysteme sind in technischen Anwendungen allge-
genwärtig, z. B. beim direkten Tintenstrahldruck, der Sprühtrocknung und der
Sprühbeschichtung. Der direkte Tintenstrahldruck ist eine vielversprechende ad-
ditive Fertigungstechnologie für die Herstellung temperaturempfindlicher Bau-
teile. Allerdings leiden tintenstrahlgedruckte Strukturen unter dem so genannten
„Kaffeering-Effekt“ oder „Kaffeefleck-Effekt“, der zu einem ringförmigen Ab-
scheidungsmuster führt, bei dem mehr Material um den Rand herum abgeschie-
den wird, aber viel weniger Material im Inneren des gedruckten Tintenrings üb-
rig bleibt. Das Verständnis der physikalischen Zusammenhänge beim Verdamp-
fen von mit Tintenstrahldruckern gedruckten Tröpfchen mit vielen suspendier-
ten Feststoffpartikeln im Inneren hilft, den Coffee-Ring-Effekt zu unterdrücken
und gleichmäßigere Materialabscheidungsmuster zu gewährleisten. Dementspre-
chend ist die Entwicklung eines numerischen Rahmens für die Modellierung des
Mehrphasensystems Gas-Flüssigkeit-Feststoff mit Verdampfung von großer Be-
deutung. In der vorliegenden Arbeit wird ein verbessertes CFD-DEM (Computa-
tional Fluid Dynamics-Discrete Element Method)-Kopplungssystem vorgeschla-
gen und entwickelt, um das Mehrphasensystem Gas-Flüssigkeit-Feststoff mit und
ohne Verdampfung zu modellieren.

Für die Modellierung eines solchen Mehrphasensystems, in dem die Oberflä-
chenspannung dominiert, müssen einige grundlegende wissenschaftliche Proble-
me angegangen werden: Partikeltransport und-akkumulation, Oberflächenspan-
nung und Erfassen der freien Oberfläche, Tröpfchenbenetzung und Verdampfung,
Kontaktlinien-Pinning, Partikel-Fluid-Wechse- lwirkungen usw. Die DEM wird
eingesetzt, um die Trajektorie von Feststoffpartikeln zu verfolgen, und CFD wird
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verwendet, um Oberflächenspannung, Verdunstung, Kontaktlinien-Pinning usw.
zu modellieren. Darüber hinaus wird die Kopplung von CFD und DEM einge-
setzt, um die komplexen Partikel-Flüssigkeits-Wechselwirkungen zu berechnen.

Auf der DEM-Seite wird die konventionelle DEM erweitert, um mikroskopisch
kleine Partikel zu modellieren. Die berührungslosen Oberflächenkräfte, z.B. Van-
der-Waals-, elektrostatische und Derjaguin-Landau-Verwey-Overbeek-(DLVO)-
Kräfte, sowie ein durch Brownsche Bewegung induziertes Zufallskraftmodell
werden in den Open-Source DEM-Code LIGGGHTS implementiert. Ausführ-
liche numerische Validierungen zeigen, dass diese neu implementierten Kraft-
modelle sowohl berührungslose als auch zufällige Kräfte mit recht guter nume-
rischer Genauigkeit vorhersagen können. Auf der CFD-Seite wird das verbes-
serte Coupled Level Set and Volume of Fluid (i-CLSVoF)-Framework entwi-
ckelt und in die Open-Source-C++-Bibliothek OpenFOAM implementiert, um
die oberflächenspannungsdominierte Strömung zu modellieren. Das i-CLSVoF-
Framework kann scharfe freie Oberflächen mit wenig Grenzflächendiffusion er-
fassen. Das in i-CLSVoF implementierte verbesserte Modell der Oberflächen-
spannungskraft kann diese genauer vorhersagen und bietet eine Unterdrückung
unphysikalischer Störgeschwindigkeiten. Drei Verdunstungsmodelle wurden in i-
CSLVoF implementiert, um die Verdunstung der flüssigen Phase zu modellieren.
Numerische Validierungen zeigen, dass diese Verdunstungsmodelle den Phasen-
übergang von Flüssigkeit zu Gas genau modellieren können. Darüber hinaus ist
ein Kontaktlinien-Pinning-Modell integriert, um die Tröpfchenverdampfung mit
einem konstanten Kontaktradius zu beschreiben.

Der sogenannte aufgelöste CFD-DEM-Ansatz stellt die Wechselwirkungen zwi-
schen kontinuierlichen flüssigen und diskreten festen Phasen in ortsaufgelöster
Form dar. Ein in dieser Arbeit entwickeltes verbessertes aufgelöstes CFD-DEM-
Modell ist in der Lage, die mehrphasige freie Oberflächenströmung zwischen
Gas, Flüssigkeit und Feststoff mit und ohne Verdampfung der flüssigen Phase
zu modellieren. Der i-CLSVoF-Rahmen wird verwendet, um den Oberflächen-
spannungseffekt zu modellieren und die scharfe freie Oberfläche zu erfassen.
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Ein verbessertes Kapillarkraftmodell wird entwickelt, um die Kapillarinterak-
tionen für teilweise schwimmende Feststoffteilchen an einer freien Oberflä-
che zu berechnen. Zur Validierung des aufgelösten CFD-DEM-Modells wer-
den zwei bekannte Vergleichsfälle durchgeführt, nämlich die Berechnung des
Widerstandsbeiwert und das Absinken einer einzelnen Kugel. Es zeigt sich,
dass das in dieser Arbeit entwickelte aufgelöste CFD-DEM-Modell die Fluid-
Feststoff-Wechselwirkungen genau berechnen und die Trajektorie von Feststoff-
partikeln, die mit der flüssigen Phase wechselwirken, vorhersagen kann. Nume-
rische Demonstrationen, z.B. zwei Partikel, die sich entlang einer freien Ober-
fläche bewegen, wenn die flüssige Phase verdampft, sowie Partikeltransport und
-ansammlungen innerhalb eines verdampfenden Tropfens auf einem Substrat
zeigen die Leistungsfähigkeit des aufgelösten Berechnungswerkzeugs bei der
Modellierung komplexer Partikel-Flüssigkeits-Wechselwirkungen.

Der aufgelöste CFD-DEM-Ansatz löst die Strömungsfelder um Feststoffparti-
kel genau auf, ist aber rechenintensiv. Daher eignet er sich nur für die rech-
nerische Modellierung eines Mehrphasensystems mit einer begrenzten Anzahl
von Partikeln (weniger als 1000). Daher wird in dieser Arbeit ein sogenann-
tes unaufgelöstes CFD-DEM-Modell weiterentwickelt. In dem unaufgelösten
CFD-DEM-Modell enthält jede CFD-Zelle mehrere Feststoffteilchen und kann
somit zur Untersuchung des globalen Verhaltens vieler Feststoffteilchen (bis
zu 106) verwendet werden. Ein neues Widerstandskraftmodell mit einem kor-
rigierten Widerstandsbeiwert, der mit umfangreichen experimentellen Daten gut
übereinstimmt, wurde implementiert. Dieses Widerstandskraftmodell ist über
einen weiten Bereich der Reynoldszahl (10−4−106) anwendbar. Zur Validierung
des Widerstandskraftmodells und des unaufgelösten CFD-DEM-Ansatzes wur-
den umfangreiche numerische Validierungen durchgeführt. Ein 3D-Dammbruch-
Benchmark-Fall zeigt, dass das unaufgelöste CFD-DEM-Modell die Vier-Wege-
Kopplung zwischen der festen und der flüssigen Phase mit etwa 4000 Feststoff-
partikeln realisieren kann. Der Vergleich zwischen numerischen Simulationen
und den entsprechenden experimentellen Studien beweist, die Genauigkeit des
unaufgelösten CFD-DEM-Modells.
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1 Introduction

Three-dimensional (3D) direct inkjet printing is one of the additive manufac-
turing technologies to fabricate 3D components in a contactless way with high
flexibility, low cost and without contact-induced deformation of printed compo-
nents [1, 2]. The most promising aspect of the direct inkjet printing technology is
that the fabrication temperature is not too high compared to the laser beam melt-
ing or sintering and that the direct inkjet printing can even fabricate 3D struc-
tures at room temperature [3–5]. The general process of direct inkjet printing is
shown in Figure 1.1. Micro-sized suspension droplets (1–100 picoliters) are gen-
erated from the nozzle in two different ways (either continuous inkjet or drop-
on-demand) [6]. Sessile droplets sitting on the substrate undergo their drying

Nozzle

Flying 
droplet

Dried 
droplet

Drying
droplet

Sessile
droplet

Substrate

v

Figure 1.1: Schematic diagram of the 3D direct inkjet printing process.

process. The suspended nanoparticles are dragged by the internal capillary flow
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inside evaporating droplets by which the materials deposition patterns are thus
achieved. Moving the substrate with given velocities in vertical and horizontal
directions continuously guarantees the fabrication of 3D structures layer by layer.

However, ring-like deposition patterns are found after drying droplets on sub-
strates, i.e. much more material is deposited around the contact line region and
with relatively less material left inside the droplet (as shown in Figure 1.2). The
uneven material deposition is reported to endanger the surface quality and func-
tionality of the printed structures or devices [4]. The ring-like material deposition
pattern is the well-known coffee-ring effect reported in the literature [7, 8]. The

Figure 1.2: Ring-like material deposition patterns found in the structures fabricated by the direct
inkjet printing [5].

complex physics behind the coffee-ring effect has been investigated during the
past decades [9]. Contact line pinning, larger evaporation mass flux around the
triple contact line region and radial capillary flow from the droplet center to the
edge are regarded as three most essential factors resulting in the ring-like ma-
terial deposition pattern [10, 11]. The competition between droplet evaporation
and particle movement is found to influence the resulting deposition patterns, and
the ring-like deposition may cease if the droplet evaporation is faster than parti-
cle movement [12]. The initial contact angle and volume fraction of particles
are found to influence the deposition patterns as well, such that a lower initial
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contact angle and smaller volume fraction lead to ring-like deposits [13]. The
dimensionless quantity capillary number Ca is used to quantify the dominance
between the viscous drag force and the surface-tension force with Ca being given
by

Ca =
µU
σ

, (1.1)

where µ and U are the dynamic viscosity and characteristic liquid velocity, re-
spectively, and σ the surface-tension coefficient. The capillary number Ca is
reported to influence the internal flow. A large capillary number leads to a
more dominant viscous effect than surface tension, and thus suppresses the ra-
dial movement of particles from droplet center to edge [14]. Increasing liquid
viscosity leads to a large capillary number and makes the viscous force more
dominant since a large viscous force hinders the radial capillary flow and thus
suppresses the coffee-ring effect [5, 15].

Further theoretical, numerical and experimental studies are conducted to sup-
press the coffee-ring effect. Particle shape is found to be important in changing
material deposition patterns as ellipsoidal particles lead to a more uniform ma-
terial deposition compared to ideally spherical particles. Further studies indicate
that even just adding a small fraction of non-spherical particles (ellipsoids) into
the suspension can generate a much more uniform deposition pattern [16, 17].
The underlying reason is that the non-spherical particle shape deforms the liquid
interface and then enhances the inter-particle capillary interactions which are rel-
atively weak for spherical particles. Drying droplets on heated substrates changes
the internal flow fields and accordingly suppresses the non-uniform material de-
position [18]. Manipulating the internal flow inside evaporating droplets with the
help of thermally-driven surface-tension gradient (also known as the Marangoni
effect) has been found to be an effective way to control the deposition patterns.
Namely, the Marangoni effect reverses the radial capillary flow and thus allevi-
ates the ring-like material deposition [19, 20]. Electric fields are used to alter
the internal flow directions and to suppress the coffee-ring effect in a simple way
[21]. A simple yet efficient method to deposit material uniformly is to add some
ethanol into the droplet suspension. Namely, coffee-ring-free devices are found

3
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to have superior performance in capacitance, capability, and contact resistance
compared to the devices suffering from the coffee-ring effect [22]. An inward
particle drift near the triple contact line is obtained by changing the particle di-
ameter in the range between 3 µm and 10 µm, and a related experimental study
provides simple methods to manipulate the particle transport and accumulations
[23]. Droplet shape does matter in forming the material depositions and it is con-
firmed that the contact line curvature influences the development of the coffee
ring (large material deposition in sharp concave region and less in convex region)
[24, 25].

1.1 State of the art

In addition to the coffee-ring effect, some other non-uniform material deposition
patterns have been found in inkjet-printed structures [26]. One goal of direct
inkjet printing is to fabricate components with a smooth surface. Since non-
uniform deposition patterns affect the surface quality of printed structures, it is
worth investigating how to suppress the surface non-uniformity. The evaporation-
induced material deposition patterns have been investigated experimentally, the-
oretically and numerically during the past decades. In this chapter, the literature
review of some existing remarkable methods reported in the literature is classified
into the following sub-sections.

Investigations without particles

A simple and computationally effective method to model the coffee-ring effect
is not to track trajectories of lots of particles inside evaporating droplets but to
model particles as an insolvable solute. Accordingly, the particle transport and
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1.1 State of the art

accumulation can be modelled by updating the solute concentration during the
evaporation process. The solute concentration equation is given by

∂αsρs

∂ t
+∇ · (αsρsU) = ṁls, (1.2)

where αs is the solute volume fraction, ρs the solute density and the source term
ṁls accounts for a gradually increasing solute concentration [27]. Solving the
aforementioned solute concentration equation during the drying process with the
Constant Contact Angle (CCA) evaporation mode was reported in the literature.
There, the ambient temperature is found to influence the deposition patterns sig-
nificantly (higher temperature leads to a hollow pattern but more uniform depo-
sition is achieved with lower temperature) [27]. A multiphase numerical model
has been developed to model the transition between rings and uniform deposits by
updating the local particle concentrations with a coupled inhomogeneous evapo-
ration model by which rings are found when the scaled inverse capillary number
is much large than one [28]. A two-dimensional (2D) model has been developed
to investigate the deposition patterns when drying droplets on an inclined sub-
strate. It turns out that the lower contact line remains pinned during the whole
droplet lifetime while the upper contact line starts to move eventually and ter-
minates the accumulation of solute around the upper contact line region [29].
Particle deposition thickness relates to the evaporation flux around the triple con-
tact line, and a large evaporation flux results in more ring-like material deposition
[7]. Presence of a neighbouring droplet is found to weaken the evaporation flux
at the nearest region of two interacting droplets. This was demonstrated by nu-
merical simulations (as shown in Figure 1.3), and the conclusion was confirmed
further by corresponding experimental studies [30].

A 2D lubrication-theory-based model was developed to model droplet evapo-
ration on inclined heated substrates where a convection-diffusion equation was
solved to track the transport of colloidal particles inside evaporating droplets

5



1 Introduction

Figure 1.3: Evaporation flux around evaporating droplets: (a) single droplet, (b) two interacting
droplets sitting near each other [30].

[31]. In this study, it was found that steeper smooth substrates speed up the
droplet evaporation irrespective of the Bond number given by

Bo =
∆ρgL2

γ
, (1.3)

where ∆ρ , g, L and γ are the density difference of two phases, the gravitational ac-
celeration, the characteristic length and the surface tension, respectively. Droplet
evaporation on rough and inclined substrates was found to have some dependence
on the Bond number Bo.

Investigations with particles

Solution concentration solved from Eqn. 1.2 gives only limited information re-
lated to the material deposition, for instance, particle volume fraction. However,
the particle deposition pattern of a drying suspension droplet is found to have an
interesting transition from regular to irregular packing around the triple contact
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line [32]. For example, consider the resistance of a given body which can be
calculated with Pouillet’s law given by

R =
∫

l

ρ

A
ds, (1.4)

where ρ is the resistivity of the element, A is the local cross section and the line
integral has to be calculated along the length of the body in transport direction.
What can be learned from Eqn. 1.4 is that the ratio between length and local
cross section determines the resistance, and thus the material deposition patterns
are important to understand the relationship between structure and property.

A one-way coupled approach based on Brownian dynamics is proposed to study
transport and accumulation of nanoparticles around the contact line for modelling
the coffee-ring effect with prescribed internal flow fields given by analytical solu-
tions inside an evaporating droplet [33]. However, this simple approach neglects
the influence of the presence of suspended particles on the internal flow fields
inside an evaporating droplet, especially when the particle volume fraction be-
comes large in the final stage of droplet evaporation. Monte Carlo simulations
were conducted to investigate the drying of bi-dispersed colloidal droplets on hy-
drophilic substrates. It was found that smaller particles travel closer to the contact
line than larger particles. Furthermore, none of particles reach the triple contact
line but deposit at a small distance away from the contact line due to the pres-
ence of the surface tension around the contact line [34]. A simple 2D coupled
Lattice Boltzmann Method (LBM) and Discrete Element Method (DEM) model
was developed to model the coffee-ring effect with both contact line pinning and
mixed free and fixed contact line modes [35]. An extensive parameter study on
the effect of particle volume fraction, droplet contact angle and substrate tem-
perature was conducted to understand their influence on the deposition patterns.
One interesting finding of this study is that increasing the substrate temperature
leads to a change from the single ring to the coffee-eye deposition pattern as the
Marangoni convection flow changes the internal flow.
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In addition to the LBM-DEM coupling, the coupling of Computational Fluid Dy-
namics (CFD) with DEM, i.e. CFD-DEM coupling bridges the complicated inter-
action between the continuous fluid phase and the discrete particle phase. CFD-
DEM coupling has potential applications in civil engineering [36], chemical en-
gineering [37] and more [38]. CFD-DEM coupling can be classified into three
different models: the resolved CFD-DEM coupling, the un-resolved CFD-DEM
coupling and the so-called semi-resolved CFD-DEM coupling (a hybrid resolved
and un-resolved approach). The resolved CFD-DEM approach resolves the fluid
flow more accurately as the particle size is larger than the CFD cell1 size but it
is also computationally expensive [39]. In the un-resolved CFD-DEM approach,
the motion of the fluid phase is governed by the volume-averaged Navier–Stokes
equations, while the motion of solid phase is described by solving Newton’s sec-
ond law of motion for each particle, separately. Each CFD cell contains several
particles, and this approach can be used to study the global behaviour of the fluid
and particle system with large number of particles (up to 106) with relative low
computational cost [36, 40]. To find the balance between numerical accuracy in
resolving the fluid flow and computational cost, the semi-resolved CFD-DEM
coupling model has been developed and reported in the literature [41]. It can
also be used to model a granular system with particles of a large size ratio. The
locally averaged un-resolved method is used to resolved the motion of fine par-
ticles while the movements of large particles can be computed with the resolved
method with more accuracy and less computational costs [42]. CFD-DEM cou-
pling approaches for general particle and fluid system are developed to under-
stand complex phenomena in suspension rheology [43], geomechanics [36, 44],
powder-based selective laser melting [45] and blood flow with irregular red blood
cells [46]. However, little literature can be found related to CFD-DEM coupling
with phase change or evaporation, which is crucial for modelling evaporation-
induced particle movement and accumulation.

1 Here, cell refers to a mesh of small volume bounded by arbitrary polygonal faces after discretiz-
ing the computational domain.
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1.1 State of the art

Concerning computational modelling of droplet evaporation with CFD, several
phase-change models have been developed to model the phase change from liq-
uid to vapour. These include the constant mass flux model [47, 48], the thermally
driven model [49–51], and the vapour mass fraction gradient model [48, 52, 53].
The challenging aspect in modelling phase change or evaporation is to address
the velocity jump at the interface, which results in some numerical difficulties.
Kunkelmann developed an approach that removes the source terms at the inter-
face cells and defines positive and negative mass sources in the most adjacent
liquid and gas cells, respectively. This approach was demonstrated to show good
performance in modelling boiling [54]. A similar method was also implemented
into the open-source code Gerris for modelling droplet evaporation subject to a
large mass transfer rate [55]. Both methods are highly dependent on the mesh res-
olution at the interface. Normally, Adaptive Mesh Refinement (AMR) is needed
to cut the interface region into two different regions with negative and positive
mass sources accurately. The contact line is fixed during the most of the evapo-
ration time of droplets due to the surface roughness of the substrate [7] and the
self-pinning of the contact line [56]. Computational modelling of the contact line
pinning with CFD is crucial for studying the coffee-ring effect numerically.

The diameter of particles inside suspension droplets of 3D direct inkjet printing
is in the range of 30 nm < Dp < 130 nm [5]. Larger particle sizes can also be
found in some experimental investigations of the coffee-ring effect [22, 57]. All
these particles are either micro-sized or sub-micro-sized, however, modelling the
mechanical behaviour of micro-scale particles and nanoparticles is beyond the
capability of the conventional soft-sphere-based DEM approach [58]. The reason
lies in some non-contacting surface forces (the Van der Waals and electrostatic
force) becoming crucial. They can not be neglected anymore when the particle
size gets smaller. In contrast, the conventional DEM approach only accounts
for contact forces between two interacting particles when they contact with each
other [59–61].

Some extended contact force models adopted from molecular dynamics have
been incorporated into DEM to extend the contact laws. The agglomerations of
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nanoparticles with a diameter of 20 nm have been numerically studied with the
extended DEM by incorporating the Van der Waals force model [62]. The results
indicate that the local packing structure of nanoparticles is more dense than that
of the micro-sized particles although the overall packing fraction of nanoparti-
cles decreases. Numerical simulations with DEM show that the cohesiveness
of granular materials is controlled not only by the inter-particle cohesion (what
is commonly known to us) but also by the stiffness and inelasticity of particles
[63]. Aggregation in colloidal suspensions was investigated numerically using
a mathematical model based on the Langevin equations, which confirmed that
the hydrodynamic interactions influence the growth of aggregates significantly.
Namely, the growth rate of aggregates is overestimated if the hydrodynamic in-
teractions are neglected [64]. The electrostatic force plays a significant role in
governing the packing of fine particles, since the electrostatic force acts as an re-
pulsive force which relates the packing to some key material parameters. Namely,
the DEM simulations with electrostatic force indicate that a high zeta potential
guarantees a well-stabilized colloidal system while a lower zeta potential leads
to agglomerations of fine particles [65]. The Derjaguin, Landau, Verwey, and
Overbeek (DLVO) theory combines the Van der Waals attractive force and the
electrostatic repulsive force, and thus explains the stability of colloidal systems
[61]. Random motion of nanoparticles in colloidal suspensions is governed by
the Brownian motion. Brownian motion correlates to both the particle and fluid
properties. A Brownian force model with random vector components was devel-
oped to model the random force with randomness in both magnitude and direc-
tion [60, 66].

Different evaporation-induced particle deposition
patterns

The mobility of the contact line is found to significantly result in different parti-
cle deposition patterns, e.g. ring-, flat- and dome-like after drying small droplets
(their radius R < 1 mm) with small contact angles (θ < 45◦) [67]. Furthermore,
a mobile contact line is found to suppress the ring-like deposition patterns. Also,
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1.1 State of the art

Figure 1.4: Different deposition patterns and some crucial governing parameters [67].

the deposition pattern highly depends on the solvent evaporation profile, evo-
lution of the droplet radius relative to its contact angle, and the ratio between
initial and maximum solute concentration. A good combination of these pa-
rameters can be used to manipulate the deposition patterns of drying droplets to
get a uniform and flat deposition morphology (shown in Figure 1.4). A reced-
ing contact line does not lead to a ring-like deposition pattern but was found to
result in a mountain-like deposition pattern after dying a circular droplet with
uniform evaporation rate [68]. The competition between retreating contact line
and solute precipitation leads to different depositions, e.g. concentrated stain,
ring-like stain and also combined structure [69]. Experimental studies indicate
that more particle deposit at the advancing side of an evaporating droplet resting
on an inclined substrate with different inclined angles except for the vertically
oriented case [70, 71]. Furthermore, some other deposition patterns are found
both experimentally and theoretically. The ring-like to mountain-like deposition
pattern transition can be achieved by manipulating the mobility of contact line
and the evaporation rate [72]. Increasing the substrate temperature changes the
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ring-like deposition to eye-like deposition [73]. Detailed experimental investiga-
tions found that particle deposition patterns show a transition from regular par-
ticle packing to irregular packing around the contact line [32]. Various patterns
including ring-like, bump-like, and finger-like are found experimentally and the
interplay between inward Marangoni flow and the coffee-ring-induced outward
flow results in different patterns [74]. Understanding the governing parameters
behind the different deposition patterns helps to manipulate the deposition mor-
phologies in a better way.

Manipulating the deposition patterns

The Relative Humidity (RH) is found to influence the internal capillary flow in-
side drying droplets. Large RH suppresses the capillary flow in both sessile and
pendant droplets, and a transition from ring-like to homogeneous deposition mor-
phology is obtained by increasing RH from 33% to 63% for sessile droplets [75].
Furthermore, disc-like deposition with RH=33% changes to dotted deposition by
increasing RH to 63% for pendant droplets. The RH influences deposit struc-
tures after drying droplets on soft substrates, and a circular spot is found with
high RH value. Additionally, a low RH value tends to result in ring-like depo-
sition patterns [76]. Droplet geometry provides a promising way to tailor the
particle deposition pattern by manipulating the evaporative dynamics of droplets.
A drying droplet in a confined geometry is reported to alter the internal flow to
inward circulation flows inside evaporating droplets and to guarantee a more uni-
form material deposition, such that this method provides a simple way to deposit
materials uniformly [77]. Laser radiation can be used to dynamically control the
internal capillary flow and thus to manipulate the deposition patterns. A related
promising finding is that scanning droplets with a 2.9 µm high-power laser beam
can guarantee arbitrary particle deposition patterns [78]. Furthermore, a highly
uniform material deposition is possible to be obtained by manipulating the diam-
eter and exposure time of the laser beam. The manipulation of particle deposition
patterns can be achieved by adjusting the interaction forces between two parti-
cles or a particle and a wall. The PH value is found to be an crucial parameter
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in governing the DLVO force, where a PH value of 1.4 is found to guarantee an
attractive DLVO force while a value of 11.7 tends to turn the attraction into repul-
sion [79]. Namely, an attractive DLVO force leads to homogeneous deposition
but ring-like patterns are found with repulsive DLVO force.

1.2 Motivation and objectives

Tracking trajectories of particles during the drying process of suspension droplets
is interesting but also challenging. The scientific problems needed to be ad-
dressed involve the droplet evaporation dynamics with contact line pinning, sur-
face tension, particle dynamics, as well as CFD-DEM coupling to account for the
fluid drag force acting on particles (shown in Figure 1.5). The CFD-DEM cou-

Evaporation

Contact line pinning

Surface tension

Particle dynamics

CFD-DEM coupling

Figure 1.5: Key scientific problems behind a drying suspension droplet with insolvable particles.

pling approach is proposed and developed to model the multi-phase flow with
insolvable suspended particles in this thesis. The CFD-DEM coupling model can
be used to investigate evaporation-driven particle transport and accumulation to
understand many different particle deposition patterns. Potential applications of
the numerical tool developed in this thesis involve computational modelling of
spray coating, drying, etc. Furthermore, a variation of the particle deposition
pattern can be achieved by extensive parameter study on key governing param-
eters of both droplets and particles. The correlation between particle deposition
pattern and the resulting mechanical property of printed structures motivates the
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development of a complex coupled numerical simulation tool for surface-tension-
dominant multi-phase (liquid-gas-particle) systems with phase change.

In this thesis, the open source DEM code LIGGGHTS (LAMMPS Improved for
General Granular and Granular Heat Transfer Simulations) [80] and open-source
C++ toolbox OpenFOAM [81] are extended to model the movement of micro-
sized particles, droplet evaporation and evaporation-driven internal drag force
acting on suspended particles. The following research objectives are achieved in
this thesis:

• Extension of the conventional DEM approach to model the mechanical
behaviour of micro-sized particles and nanoparticles.

• Improvement of CFD modelling to capture the free surface sharply and
thereby suppress un-physical spurious velocities with improved surface-
tension force modelling.

• Implementation and validation of three different evaporation models.

• Implementation of the contact line pinning model to fix the contact line
during the droplet drying/evaporation process.

• Development of a simple yet efficient coupling solver to combine CFD
and DEM for modelling the complex interactions between liquid phase
and solid particles.

• Validation of newly implemented drag force models and solvers.

• Numerical demonstrations to demonstrate the performance of the CFD-
DEM method developed in this thesis in modelling complex particle-fluid
interactions with and without evaporation.
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1.3 Outline of the thesis

1.3 Outline of the thesis

The thesis consists of the following chapters and each chapter is outlined by a
general description as follows:

Chapter 2 details the theory of both conventional and extended DEM approaches.
The newly incorporated surface force models, i.e. Van der Waals, electrostatic
and DLVO are discussed and followed by the random force model accounting
for the Brownian-motion-induced random walks of fine particles. Some numer-
ical validations are conducted to validate these surface force and random force
models discussed in this chapter.

Chapter 3 gives an overview of free-surface tracking/capturing with both the
newly developed improved Coupled Level Set and Volume of Fluid (i-CLSVoF)
framework and some other existing methods. The un-physical spurious veloc-
ities are then discussed. An improved surface tension force model is proposed
and incorporated into i-CLSVoF and some essential numerical methods are de-
tailed in this chapter. The i-CLSVoF framework developed in this chapter guar-
antees more numerical stability and good sharpness of the interface capturing.
Extensive numerical benchmark cases demonstrate the promising performance
of the improved model in suppressing the un-physical spurious velocities and
also sharp-interface capturing.

Chapter 4 details the theory and numerical methods of models for droplet evap-
oration (phase change from liquid to vapour). Three different evaporation model
(constant mass flux, thermally driven evaporation and evaporation at room tem-
perature) are incorporated into the i-CLSVoF framework. Numerical validations
are conducted for the newly implemented evaporation models. Promising agree-
ment between the numerical solutions and corresponding analytical solutions are
found for our evaporation models. A simple yet efficient contact line pinning
model based on the contact angle hysteresis is developed and implemented to
guarantee droplet evaporation with a constant contact radius.
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Chapter 5 covers the background, theory and numerical issues of the resolved
CFD-DEM approach. Evaporation models are incorporated into the resolved
CFD-DEM model for modelling the phase change of the liquid phase. An im-
proved capillary force model has been developed and implemented to model the
capillary interactions for partially floating solid particles at a free surface. Two
classical benchmark cases are adopted to validate the prediction of the solid-fluid
interactions, and results show that the resolved CFD-DEM can accurately calcu-
late the complex interaction forces between the solid and liquid phases. Some
numerical demonstration cases are presented in this chapter to show the perfor-
mance of the resolved CFD-DEM approach in computationally modelling the
evaporation-induced particle transport and accumulations for the gas-liquid-solid
multiphase system with evaporation.

Chapter 6 presents an extended un-resolved CFD-DEM framework for mod-
elling gas-liquid-solid multiphase free surface flow involving many solid par-
ticles. A corrected formula for the drag coefficient has been implemented in
this chapter for accurately predicting the drag force acting on the solid phase
by the liquid phase. This corrected model applies to a very extensive range of
Reynolds number. Numerical validations and demonstrations demonstrate that
the extended, un-resolved CFD-DEM approach discussed in this chapter accu-
rately predicts the complex particle-fluid interactions.

Chapter 7 summarizes the main contributions in this thesis and also outlooks
some future work and directions.
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2 The extended DEM approach for
fine particles

The DEM resolves the complex mechanical behaviour of granular systems at par-
ticle scale. The computational cost and efficiency are improved with the develop-
ment of the High Performance Computing (HPC) technology. The conventional
DEM can only be used to study the mechanical behaviour of granular media when
they contact with their neighbouring particles with non-zero overlap [58, 82].
However, some additional non-contacting forces also known as surface forces
come into play when the particle size gets smaller [59–61]. Concerning mod-
elling nano-particles suspended inside a micro-sized droplet, the non-contacting
surface forces and Brownian-motion induced random force can not be neglected
any more. In this chapter, related extended contact models and forces are imple-
mented in the open-source DEM code LIGGGHTS. It is noted that LIGGGHTS
is modified from the open-source molecular dynamics code LAMMPS [83].

2.1 The conventional DEM approach

The conventional DEM accounts for non-zero contact forces between two inter-
acting particles only when their overlap is non-zero. A simple diagram of such
contact force F versus the particle overlap h is shown in Figure 2.1. The me-
chanics and physics behind the DEM approach are governed by the Newton’s

1 Part of this chapter with minor changes has been submitted to arXiv as a preprint [177].
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h

F

0

Figure 2.1: The contact force versus particle overlap h of the conventional DEM approach (h = δn
for the conventioanl DEM).

second law of motion. In general, the governing equations for the translational
and rotational motion, respectively are given as

mi
∂ 2xi

∂ t2 =
Np

∑
i=1

Fcon
i j +mig, (2.1)

Ii
∂ 2θi

∂ t2 =
Np

∑
i=1

Mcon
i j . (2.2)

Here, mi is the mass of the single particle i, Np the number of particles interacting
with the particle i, and mig the gravitational force acting on the particle i as one
of the body forces. The conventional contact force Fcon

i j between two interacting
particles consists of both normal and tangential components where Fcon

i j is given
by

Fcon
i j = Fn

i j +Ft
i j. (2.3)

Detailed explanations of parameters and equations related to this contact model
are listed in Table 2.1. For the rotational motion of particle i, the angular dis-
placement θi is solved and updated from Eqn. 2.2. Here, Ii is the moment of
inertia of particle i, and Mcon

i j the moment acting on particle i by its neighbouring
particles.
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Table 2.1: Key parameters and formulas for DEM simulations [84–86]

Parameter [Units] Formula/Symbol

Coefficient of restitution [−] er

Coefficient of friction [−] µc

Poisson’s ratio [−] ν

Normal relative velocity [m/s] ur
n

Tangential relative velocity [m/s] ur
t

Unit normal vector [−] ni j =
xi−x j
|xi−x j |

Normal overlap [m] δn = Ri +R j−|xi−xj|

Tangential overlap [m]
∫ tc

t0 ur
t dt

Equivalent radius [m] R∗i j =
RiR j

Ri+R j

Equivalent mass [kg] m∗i j =
mim j

mi+m j

Equivalent Young’s modulus [kg/(m · s2)] Y ∗i j =
YiY j

(1−υi2)Yi+(1−υ j2)Y j

Equivalent shear modulus [kg/(m · s2)] G∗i j =
YiY j

2(2−υi)(1+υi)Y j+2(2−υ j)(1+υ j)Yi

Normal contact stiffness [kg/s2] kn =
4
3Y ∗i j

√
R∗i jδn

Tangential contact stiffness [kg/s2] kt = 8G∗i j

√
R∗i jδn

Normal damping [kg/s] γn =−2
√

5
6

ln(er)√
ln2(er)+π2

√
2Y ∗i j

√
R∗i jδ

n
i jm
∗
i j

Tangential damping [kg/s] γt =−2
√

5
6

ln(er)√
ln2(er)+π2

√
8G∗i j

√
R∗i jδ

n
i jm
∗
i j

Normal contact force [N] Fn
i j = (knδn− γnur

n)ni j

Tangential contact force [N] Ft
i j = min

{∣∣∣kt
∫ tc

t0 ur
t dt + γtur

t

∣∣∣, µcFn
i j

}
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Particle velocity up can be updated with the two-step Verlet integration scheme
once all the forces acting on single particle i are known [87]. The Verlet integra-
tion starts with an increment of one half of time-step size ∆t and the basic idea is
given by

up(t +∆t/2) = up(t)+∆t/2
∂up(t)

∂ t
. (2.4)

Then, the particle displacement x can be integrated with an increment of one
time-step as

x(t +∆t) = x(t)+∆tup(t +∆t/2). (2.5)

Finally, the particle velocity is integrated with the increment of the rest half time-
step as

up(t +∆t) = up(t +∆t/2)+∆t/2
∂up(t +∆t/2)

∂ t
. (2.6)

The time-step size is crucial for guaranteeing stable DEM simulations, and can
be estimated from the following Rayleigh time-step size

TR =
πR̄
√

2ρ(1+ν)
Y

0.1631ν +0.8766
, (2.7)

where R̄ is the average particle radius, ρ the particle density, Y the Young’s mod-
ulus and ν the Poisson’s ratio [88]. Normally, the critical time-step size is given
by

∆t = fsTR, (2.8)

where fs is a safety factor, and a value ranges from 0.1 to 0.3 is recommended.

2.2 The extended DEM approach

In this section, the extended DEM approach is detailed. As will be detailed below,
some additional force terms are incorporated into the governing equations of the
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classical DEM approach. The extended governing equations for the extended
DEM are given by

mi
∂ 2xi

∂ t2 =
Np

∑
i=1

(Fcon
i j +Fdlvo

i j )+mig+Fbro +Fc
fp, (2.9)

Ii
∂ 2θi

∂ t2 =
Np

∑
i=1

Mcon
i j +Mc

fp. (2.10)

Here, Fdlvo
i j is the newly added DLVO force term, and Fbro the Brownian-motion-

induced random force term. The last term Fc
fp on the right-hand side of Eqn. 2.9

is the fluid-solid interaction force acting from the liquid phase on the solid phase.
These force models are detailed in the coming sections. The last term Mc

fp on
the right-hand side of Eqn. 2.10 denotes the fluid-induced moment acting on the
solid phase, and is explained in the following sections and chapters, as well.

2.2.1 The DLVO force model

The well-known DLVO theory explains the stability (dispersivity or agglomera-
tion) of colloidal systems [64]. For modelling insolvable particles in suspensions,
the DLVO force model based on the DLVO theory becomes crucial for particles
with a diameter less than 100 µm. The DLVO force model consists of two dif-
ferent surface force models, i.e. the Van der Waals force and the electrostatic
force. The DLVO force is active when the separation distance of two interacting
particles is positive (as shown in Figure 2.2), and the sign (attractive or repul-
sive) of the DLVO force also depends on the separation distance h (detailed in
the following sections).

2.2.2 The Van der Waals force

The Van der Waals force serves as an attractive force between two interacting
particles or a particle and a wall. The magnitude of the Van der Waals force
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h

i j

h
i

wall

Figure 2.2: The separation distance h between two interacting elements. The top and bottom images
demonstrate the pairs of particle-particle and particle-wall, respectively.

between two particles is related to their respective radius Ri and R j, separation
distance h and the material property defined by the Hamaker constant Ha [89].
The formula for calculating the Van der Waals force between two particles is
defined by

Fvdw
i j =−Ha

6

64R3
i R3

j(h+Ri +R j)

(h2 +2Rih+2R jh)2(h2 +2Rih+2R jh+4RiR j)2 , (2.11)

where the minus sign means that the force is attractive [59]. Additionally, the
Van der Waals force between a particle and a wall is given by

Fvdw
pw =−HaRi

6h2 , (2.12)

where the magnitude of the force depends on particle radius Ri, the materials
property and the separation distance h between the particle and the wall [90]. The
crucial material property Hamaker constant Ha is related to the surface energy
density γs and the cutoff distance hmin [91]. Accordingly, Ha can be calculated
by

Ha = 24πγsh2
min. (2.13)
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Furthermore, the separation distance h appears in the denominator, for which a
cutoff distance hmin is defined to avoid numerical singularities when h approaches
zero. In this thesis, h = hmin when h is smaller than hmin.

The Van der Waals force model is implemented in LIGGGHTS-PUBLIC [92]
as an extended module (refer to Appendix Code list A.1). The extended ver-
sion of the LIGGGHTS-PUBLIC is called the LIGGGHTS-XIA in this thesis.
Corresponding numerical calculations are conducted to validate the numerical
accuracy in computational modelling of the attractive force due to the presence
of the Van der Waals force, only. The basic numerical set up is a single particle i
approaching another particle j or a fixed wall with an initial separation distance
h0 (h0 > 0) while the Van der Waals forces are recorded for the two cases, respec-
tively. The essential parameters used in the numerical simulations are outlined
in Table 2.2. The Van der Waals forces collected from the numerical simulations

Table 2.2: Key parameters for validations of the Van der Waals force model.

Parameter [Units] Value
Ri [m] 5×10−6

R j [m] 5×10−6

ρ [kg/m3] 2500
hmin [m] 1.0×10−8

γs [J/m2] 0.86×10−3

Y [kg/(m · s2)] 1.0×107

ν [-] 0.29

are compared to the analytical solution given by Eqs. 2.11 and 2.12, respectively.
As shown in Figure 2.3, the purple dots are collected from the numerical simula-
tions with LIGGGHTS-XIA whereas the solid lines represent the corresponding
analytical solutions. It can be seen from the two figures are that the analytical
solution approximates zero when the separation distance becomes larger, and the
force maintains a constant value when the separation distance is smaller than the
cutoff distance hmin. For both Van der Waals interactions between two particles
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2 The extended DEM approach for fine particles

and a particle with a wall, the newly implemented model shows perfect agree-
ment with the results given by the analytical solutions in Eqs. 2.11 and 2.12.

2.2.3 The electrostatic force

The second part of the DLVO force model is the electrostatic force used to model
the repulsion between two interacting particles or a particle-wall pair [61, 93].
The electrostatic force between particle i and j is given by

Felst
i j =

64πε0εrkd

ekdh

(
RgT
zF

)2

tanh
(

zFΨi

4RgT

)
tanh

(
zFΨ j

4RgT

)
R∗i j, (2.14)

while the electrostatic force between a particle and a wall is computed by

Felst
i j =

64πε0εrkd

ekdh

(
RgT
zF

)2

tanh
(

zFΨi

4RgT

)
tanh

(
zFΨ j

4RgT

)
Ri. (2.15)

Here, R∗i j is the equivalent particle radius, and the other essential parameters are
listed in Table 2.3. The validations of the electrostatic force model implemented
in LIGGGHTS-XIA is conducted by comparing the electrostatic force acting on
a particle when it interacts with another particle or wall. The initial numerical
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Figure 2.3: Validations of the Van der Waals force model: (a) particle to particle, (b) particle to wall.
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2.2 The extended DEM approach

Table 2.3: Other parameters of the electrostatic force model.

Symbol [Units] Parameter
ε0 [F/m] Permittivity of vacuum
εr [−] Relative dielectric constant
kd [1/m] Debye-Hüeckel parameter
Rg [kg ·m2/(K ·mol · s2)] Gas constant
T [K] Temperature
z [−] Valency of the electrolyte
F [C/mol] Faraday constant
Ψ [mV] Zeta potential

configuration is that a tiny overlap exists between two interacting particles or a
particle-wall pair. The electrostatic force pushes particles away from each other
until the force is small enough and can be neglected. The parameters used in
the numerical validations are outlined in Table 2.4. In contrast to the Van der
Waals force model, the electrostatic force is repulsive and leads to a positive sur-
face force between two interacting DEM elements. As shown in Figure 2.4, the
agreement between numerical solution and the corresponding analytical solutions
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Figure 2.4: Validations of the electrostatic force model: (a) particle to particle, (b) particle to wall.
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2 The extended DEM approach for fine particles

Table 2.4: Parameters for validations of the electrostatic force model.

Symbol [Units] Value
Ri [m] 5×10−6

R j [m] 5×10−6

ρ [kg/m3] 2500
ε0 [F/m] 8.854187817×10−9

εr [−] 80.1
k [1/m] 32.6
Rg [kg ·m2/(K ·mol · s2)] 8.314462×1015

T [K] 293
z [−] 1
F [C/mol] 9.6485×1016

Ψ [mV] 40×10−6

given by Eqs. 2.14 and 2.15 is perfect, as well. As can be seen, the electrostatic
force gradually reduces to zero when the separation distance becomes large.

2.2.4 Combination of the Van der Waals and
electrostatic forces

The DLVO force consists of the aforementioned two surface force models and is
given by

Fdlvo
i j = Fvdw

i j︸︷︷︸
attractive

+ Felst
i j︸︷︷︸

repulsive

. (2.16)

The magnitude and sign (either positive or negative) of the DLVO force depend
on the separation distance h. As shown in Figure 2.5, the dotted line below the
x axis represents the Van der Waals force and the other dotted line shows the
electrostatic force. The combination of the two force models leads to the DLVO
force represented by the solid curve. The DLVO force is repulsive when the sep-
aration distance is larger than the separation distance threshold ht , meaning that
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h

F

0

Repulsive force

Attractive force

Figure 2.5: Force versus separation distance of the DLVO force model.

the colloidal system is well-dispersed with large separation distances maintained
between two particles as shown in Figure 2.6. When the separation distance h is

Figure 2.6: The transition from repulsive to attractive DLVO force in the colloidal system.

smaller than ht , the DLVO force changes from repulsive to attractive. Particles
start to agglomerate when the attractive force is dominant. Once these particles
are in contact with each other, they do not separate again, unless a third object
hits them with strong enough energy [94]. The further particle sedimentation can
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Figure 2.7: Validations of the DLVO force model: (a) particle to particle, (b) particle to wall.

be seen when agglomeration of particles becomes heavy enough to overcome the
buoyancy force.

Numerical validations of the DLVO force model are conducted to validate the
transition from attraction to repulsion and compared to the analytical solution
given by Eqn. 2.16. The numerical set-up is two particles approaching each other
with an initial separation distance of 0.1 µm and the DLVO force acting on the
tracked particle is recorded. As shown in Figure 2.7, good agreement between
numerical and analytical solutions is obtained. They demonstrate that the DLVO
force model implemented in LIGGGHTS-XIA can capture the complex interac-
tions between micro-sized particles with good numerical accuracy.

2.3 Brownian motion and its computational
modelling

Random motion of fine particles in a colloidal system results from their col-
lisions with fast-moving molecules, and this is the so-called Brownian motion
[95]. Modelling Brownian motion with DEM can be achieved by introducing
random vectors in x, y and z directions to guarantee that both the direction and
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2.3 Brownian motion and its computational modelling

the magnitude of the Brownian force are random. In this thesis, a random vector
Gr = (Gx

r ,G
y
r ,Gz

r) with all three components subject to the Gaussian distribution
is incorporated [60]. This Brownian force model is given by

Fbro = Gr

√
12πRiµ f kbT

∆t
, (2.17)

where µ f is the dynamic viscosity of the base fluid, ρp the particle density and
kb the Boltzmann constant. Furthermore, ∆t is an artificial time-step size which
is constant for a given colloidal system calculated by

∆t =
1

10
2ρpR2

i
9µ f

. (2.18)

After implementing the Brownian force model in LIGGGHTS-XIA, the numer-
ical validation is conducted to understand the accuracy in predicting the random
force acting on single particle i. The numerical set-up is a single particle with
diameter of 0.1 µm moving inside the computational domain under the influence
of the Brownian force (without other body forces). The simulation was run for
50000 steps, and the random force data was saved for every second step. Thus,
it leads to 25000 samples for generating random force distribution, which can be
regarded as large enough. According to the Eqs. 2.17 and 2.18, the term Gr on the
right-hand side of Eqn. 2.17 is constant with the exception of Gr. Accordingly,
the random force collected from the numerical simulations is divided by the term
with constant values such that the resting random components of vector Gr can
be compared to the Gaussian distribution to validate the numerical implementa-
tions. The Gaussian fitting is used to find the mean µ and standard deviation σ of
the samples, and the fitting results are shown in Figure 2.8. The mean, standard
deviation and relative error of the standard deviation are calculated for the three
components, respectively, and these values are listed in Table 2.5. It can be seen
that the mean and the standard deviation of the simulation data approximate the
Gaussian distribution (with mean µ = 0 and standard deviation σ = 1.0). The
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Figure 2.8: Gaussian fitting for random numbers generated in x, y and z components, respectively.

relative errors of the standard deviation in all three directions are smaller than
1%. Overall, the results are best in the x direction and worst in the z direction.

2.4 Summary

In summary, the classical DEM method is extended to model the complex be-
haviour of micro-sized particles and nano-particles with newly implemented
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Table 2.5: The mean, standard deviation and relative error of standard deviation for the random num-
bers generated with the Brownian force model.

Component µ σ δσ

x 0.00192 1.00096 0.096%
y 0.01336 1.00176 0.176%
z 0.01427 1.00209 0.209%

surface-force models and a random body force model. The DLVO model de-
veloped in this thesis extends the conventional contact law between two par-
ticles (or a particle and a wall) with non-zero overlap to positive separation
distance (dashed curve shown in Figure 2.9). A short comparison between

h

F

0

Figure 2.9: The contact model of the extended DEM approach developed in this thesis.

LIGGGHTS public version known as LIGGGHTS-PUBLIC and the extended
version LIGGGHTS-XIA detailed in this thesis and developed by the author of
the thesis is outlined in Table 2.6. The extended DEM developed and validated in
this thesis has potential applications in understanding the physics behind granular
media for a wide range of particle size. One of the crucial processes in selective
laser sintering/melting is to spread lots of fine particles on substrates and then
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2 The extended DEM approach for fine particles

use a high-energy laser beam to melt these particles. The surface forces and

Table 2.6: Comparison between LIGGGHTS-PUBLIC and LIGGGHTS-XIA (✓: available; × : not
available yet; +✓: newly added)

Model/Module LIGGGHTS-PUBLIC LIGGGHTS-XIA
Hertz ✓ ✓

Tangential history ✓ ✓

Van der Waals × +✓
Electrostatic × +✓

DLVO × +✓
Brownian force × +✓

contact forces acting on particles are important for forming a uniform and thin
particle layer which is reported to guarantee a good surface quality after melting.
The extended DEM developed in this thesis is a candidate for computationally
modelling these applications. However, in the first place, the extended DEM is
introduced here to be coupled to the improved CFD model (to be discussed in
Chapter 3 and Chapter 4) to understand complex physics and phenomena when
fine particles start to transport and accumulate inside evaporating droplets.
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3 The i-CLSVoF framework for
surface-tension-dominant flow

The surface tension force plays a significant role in droplet wetting and evapo-
ration [96, 97]. The water droplet on a leaf is a simple case to demonstrate the
role of the surface tension force in forming a given contact angle between the
droplet and the leaf surface. The surface tension force is also crucial to main-
tain the droplet shape under the influence of gravity and other external forces
acting on the droplet [98]. The Continuum Surface-tension Force (CSF) model
was proposed to model the surface tension force as a volumetric body force [99].
However, this conventional surface-tension model suffers from spurious currents
or velocities which appear around the interface. Spurious currents destabilize the
simulations and even influence the internal flow inside the droplets when studying
droplets numerically [100]. Spurious currents partially result from numerical er-
rors when calculating the interface curvature. Some numerical models have been
developed to improve the calculation of the interface curvature and thus suppress
the un-physical velocities. The geometric Volume of Fluid (VoF) method repre-
sents the interface by a reconstructed thin interface inside each of the interface
cells2 explicitly and is reported to have better performance in interface represen-
tations as well as reducing spurious velocities [101]. Some open-source codes
or libraries incorporate the geometric VoF, such as PARIS [102], Basilisk [103] ,
isoAdvector [104], interPlicFoam [105] and VoFLibrary [106].

1 Part of this chapter with minor changes has been submitted to arXiv as a preprint [176].
2 Here, interface cell refers to a small computational cell bounded by arbitrary polygonal faces that

includes a part of the liquid-gas interface after discretizing the computational domain, numeri-
cally.
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3 The i-CLSVoF framework for surface-tension-dominant flow

In contrast to the geometric VoF approach, the algebraic VoF method is relatively
simple and easy to implement as the interface is represented implicitly and with-
out explicit interface reconstruction [107, 108]. The algebraic VoF method is
mass conserving but was reported to suffer from some interface diffusion [109].
Several methods have been proposed to address the interface diffusion problem,
for instance, incorporation of a surface compression term [110], adaptive inter-
face compression [111], and coupling VoF to some other numerical methods,
such as the Level Set (LS) method [112]. Concerning the advantages and short-
comings of both the VoF and LS method, the so-called Coupled Level Set and
Volume of Fluid (CLSVoF) method was proposed to combine sharp interface
representation and mass conservation [113]. The coupled approach improves
the suppression of the spurious currents. However, according to experience, rel-
atively large spurious velocities still exist around the interface, especially for
micro-sized droplets. A short summary of methods used to track or capture the
free surface and their applications are outlined in Table 3.1. This chapter ad-

Table 3.1: Summary of numerical methods to track/capture free surface.

Authors (publication year) Method Code Applications
Brackbill et al. (1992) [99] VoF In-house code Interfacial flows
Sussman et al. (1998) [114] LS In-house code Interfacial flows
Popinet (2009) [115] VoF Basilisk Interfacial flows
Raeini et al. (2012) [116] VoF OpenFOAM Porous media
Albadawi et al. (2013) [112] CLSVoF OpenFOAM Bubble dynamics
Yokoi (2014) [117] CLSVoF In-house code Droplet splashing
Roenby et al. (2016) [104] VoF isoAvector/OpenFOAM Interfacial flows
Irfan et al. (2017) [52] Front tracking In-house code Phase change
Dai et al. (2019) [105] VoF OpenFOAM Multiphase flows
Scheufler et al. (2019) [106] VoF VoFLibrary/OpenFOAM Interfacial flows
Jamshidi et al. (2019) [109] Phase field OpenFOAM Microfluids
Aniszewski et al. (2021) [102] VoF/Front tracking PARIS Multiphase flows
Inguva et al. (2022) [118] Front tracking In-house code Two-phase flow

dresses the issues mentioned above related to suppressing of un-physical spuri-
ous currents and to capturing the sharp interface. It presents a simple yet efficient
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numerical framework to model the dynamics of micro-sized droplets with sharp
interface representation and suppressed spurious velocities.

3.1 Mathematical formulation

This section presents the equations governing the physics behind incompressible
Newtonian flow based on the one-field formulation. The one-field formulation
solves only one set of governing equations for both liquid and gas phases [119].
The indicator function I(x, t)

I(x, t) =

{
1 x in liquid,

0 otherwise,
(3.1)

is used to identify the tracked phase (liquid phase in this thesis) at time t and
position x. The fundamental fluid quantities such as fluid density ρ and dynamic
viscosity µ can be represented in the complete multiphase domain by the indica-
tor function I(x, t) using expressions like

ρ = I(x, t)ρ1 +[1− I(x, t)]ρ2,

µ = I(x, t)µ1 +[1− I(x, t)]µ2.
(3.2)

The physics behind the incompressible Newtonian fluid without phase change is
governed by the following Navier-Stokes equations

∇ ·U = 0, (3.3)

∂ (ρU)

∂ t
+∇ · (ρUU) =−∇p+∇ ·

[
µ
(
∇U+(∇U)T)]+ρg+Fst, (3.4)

where U is the velocity field, and the superscript T indicates the transpose of the
tensor. Its divergence being equal to zero means that the flow is incompressible.
In the momentum equation (Eqn. 3.4), p is the pressure field and ρg the gravi-
tational force term. The surface tension force newly introduced in this thesis is
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3 The i-CLSVoF framework for surface-tension-dominant flow

incorporated into the momentum equation as the last term on the right-hand side.
The VoF transport equation is solved for capturing the free-surface, by which the
volume fraction field can be continuously updated. The material derivative of the
volume fraction field αl defines the VoF transport equation3

Dαl

Dt
=

∂αl

∂ t
+U ·∇αl = 0. (3.5)

In OpenFOAM, the conservative VoF equation

∂αl

∂ t
+∇ · (αlU) = 0, (3.6)

is solved where the divergence-free condition (Eqn. 3.3) must be satisfied si-
multaneously to guarantee the incompressibility. The additional so-called inter-
face compression term ∇ · [αl(1−αl)Ur] with Ur being the artificial compres-
sion velocity is generally incorporated into the left-hand side of the VoF equation
(Eqn. 3.6) to suppress the interface diffusion [120]. As demonstrated in previ-
ous benchmark study and the literature, however, the compression term enhances
spurious currents [121, 122].

3.2 Numerical method

Incompressible flow with free surface involves the crucial aspect of tracking or
capturing the free surface. There are two widely used methods, namely interface
tracking and interface capturing. In the interface tracking approach, the mesh
needs to be updated to track the interface as the flow evolves. On the other hand,
the interface capturing method is formulated over non-moving meshes by solv-
ing an additional advection equation (VoF) or convective Cahn–Hilliard equation
(phase-field) to update the fluid volume fraction (VoF) or the order parameter
(phase-field) [123]. The fluid volume fraction or the order parameter solved from

3 The detailed derivations can be found in the Appendix A.1.
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the additional equation then marks the location of the moving interface. For in-
terface tracking, the front tracking method is widely used; here, the basic idea is
to use so-called marker points to identify the interface’s location [52, 118]. Al-
ternatively, as an interface capturing approach, the phase-field method identifies
the interface through the value of an order parameter solved from the convective
Cahn–Hilliard equation: the order parameter is 1 in the liquid phase, −1 in the
gas phase, with a value in between representing the diffuse interface [109, 124].
The Volume of Fluid (VoF) method is another popular interface capturing ap-
proach in which the volume fraction field is computed and the interface inferred.
The LS method captures the free surface by the signed LS function, with the zero
LS at the interface, positive in the liquid and negative in the gas phase. Further-
more, the LS method can guarantee a very sharp interface without interface dif-
fusion [125]. Before introducing the i-CLSVoF framework, two existing popular
interface capturing approaches (VoF and LS) are introduced for completeness.

3.2.1 The VoF method

In the VoF method, the volume fraction field α is defined as the volume-averaged
volume integral of the phase indicator function I(x, t), denoted as

α =
1
V

∫
V

I(x, t)dV. (3.7)

The basic idea behind the VoF interface capturing approach is to track the evolu-
tion of the volume fraction field for a given phase. Typically, the liquid is selected
as the tracked phase, and accordingly, the liquid volume fraction field αl can be
tracked by solving the VoF transport equation given by Eqn. 3.6.

As shown in Figure 3.1, the computational domain has two sub-domains Ω1 (liq-
uid) and Ω2 (gas) in the whole computational domain. When the liquid cells are
full of liquid, the volume fraction of all liquid cells in Ω1 is 1. Furthermore, the
interface cells are partially filled with the liquid, so that the intermediate values
between 0 and 1 are given there. The VoF method is mass-conserving, but as
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Figure 3.1: (a) the VoF method, (b) the LS method.

mentioned in the literature, the VoF method suffers from some interface diffu-
sion, which can diffuse over several cells around the interface depending on the
mesh resolution [126].

3.2.2 The LS method

The LS method is another interface capturing method, and the quantity used is
the so-called signed LS function ψ(x, t). The interface can be identified as zero
level set, and in the liquid phase (Ω1), it is given positive values of LS function
and negative values hold in the gas phase (Ω2) [125]. The LS function is solved
and updated from the material derivative of ψ given by

∂ψ

∂ t
+U ·∇ψ = 0. (3.8)

A detailed derivation can be found in the Appendix A.1. The signed LS function
is continuous and has a smooth transition from liquid to gas phase. The LS
method can guarantee a more sharp interface compared to the VoF approach, but
the LS method is reported to be not mass-conserving in the literature [127].
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Both the VoF and LS methods suffer from un-physical spurious velocities, which
destabilize the numerical simulations. Spurious velocities occur due to inaccu-
rate interface curvature calculations. One method that attempted to improve the
curvature calculation is to refine the mesh. However, in this thesis, it is found
that a finer mesh could not reduce the un-physical velocity but even enhanced it
(refer to Figure 3.2), and the same conclusion can also be found in the literature
[128].
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Figure 3.2: Spurious currents around the interface (represents with the solid white line) with two
different mesh sizes : (a) coarse mesh (cell number: 40×40), (b) fine mesh (cell number:
80×80).

3.2.3 the i-CLSVoF framework

In this thesis, the advantages of VoF and LS are combined and the so-called Cou-
pled LS and VoF (CLSVoF) approach is extended to capture the free surface. The
CLSVoF approach improves the mass-conserving issues of LS method while also
guaranteeing a sharp interface [113]. However, although it improves the calcula-
tion of the interface curvature [112, 127], the conventional CLSVoF, also known
as the simple CLSVoF (s-CLSVoF) approach, still suffers from un-physical spu-
rious velocities. The filtering surface tension model based on the VoF approach
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is reported to suppress un-physical spurious currents, especially for droplets in-
teracting with substrates [116]. Accordingly, the improved CLSVoF (i-CLSVoF)
method is proposed to suppress the spurious currents further and to improve the
numerical stability by extending the filtering method to filter un-physical spuri-
ous velocities even more. In contrast to the s-CLSVoF method, the i-CLSVoF
framework incorporates an improved surface tension force model to calculate
surface-tension forces more accurately and to filter and reduce spurious veloci-
ties by additional filtering steps, which are discussed in the following part.

The basic idea behind the i-CLSVoF framework is initializing the initial signed
distance function ψ0 from the liquid volume fraction field αl . ψ0 is initialized by
the initialization function

ψ0 = (2αl−1)Γ, (3.9)

with the dimensionless quantity Γ = 0.75∆x, where ∆x is the minimum mesh
size around the interface. It is dimensionless as well (as ∆x is artificially divided
by a dimensioned quantity with a value of 1 and the dimension of meter). Nor-
mally, the LS function gradually loses its property to have a value of zero at the
interface and cannot be sufficiently sharp after moving with the convection ve-
locity. Therefore, a re-initialization step is adopted to recover its sharpness. The
Hamilton–Jacobi equation

∂ψ

∂τ
−S(ψ0)(1−|∇ψ|) = 0, (3.10)

is used to re-initialize the LS function with the initial condition ψ = ψ0 [125].
Here, τ is an artificial time step, and the smoothed out sign function S(ψ0) is
defined as

S(ψ0) =
ψ0√

ψ2
0 +(∆x)2

. (3.11)

A benchmark case study showed that the smoothed out sign function S(ψ0) can
further reduce un-physical velocities and guarantee more numerical stability than
the conventional sign function [114]. The Hamilton–Jacobi equation needs to be
solved by numerical iteration until |∇ψ|= 1, where the number of iterations Niter
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of around 15 can be enough [127]. The re-initialization scheme is outlined in
Figure 3.3.

end
yes

no

initialization iteration for the re-initialization

Figure 3.3: Flowchart for solving the Hamilton–Jacobi equation.

Before introducing the new surface tension force model implemented in the i-
CLSVoF framework, two widely-used surface tension models are listed below for
completeness. The Continuum Surface-tension Force (CSF) model approximates
the surface tension with the help of the gradient of αl [96, 99]. This surface
tension force model is given by

σK(αl)∇αl , (3.12)

where σ is the surface tension coefficient, and K(αl) the interface mean curvature
defined as

K(αl) =−∇ · ∇αl

|∇αl |+δn
. (3.13)

Here, δn is the stabilization factor to guarantee a non-zero denominator, and δn is
calculated by

δn =
10−8(

N
∑

i=1
Vi/N

) 1
3
, (3.14)

where N is the number of the cells in the computational domain, and Vi is the
volume of each cell.

As the liquid volume fraction field αl is not continuous, the calculation of its
gradient in Eqn. 3.13 can not ensure more numerical accuracy. The LS method
uses the signed LS function ψ to calculate the interface curvature, which is more
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3 The i-CLSVoF framework for surface-tension-dominant flow

accurate as ψ ensures continuity along the interface normal [125]. The interface
curvature with the LS method can then be calculated as

K(ψ) =−∇ · ∇ψ

|∇ψ|+δn
. (3.15)

The improved curvature calculation method is incorporated into the conventional
CLSVoF approach to improve the surface tension calculations [112, 127]. As an
alternative to Eqn. 3.12, the surface tension force is then given as

σK(ψ)δψ ∇ψ, (3.16)

where the delta function δψ is given by

δψ =

{
1

2ε

(
1+ cos(πψ

ε
)
)
|ψ|< ε,

0 otherwise,
(3.17)

with ε as the interface thickness, which usually equals to 1.5∆x [129]. As dis-
cussed in the literature, ε can also range from 1.0∆x to 1.5∆x depending on the
mesh type [130]. The conventional CLSVoF approach is reported to suppress
un-physical spurious currents; however, more can be done to refine the model
and reduce the un-physical velocities (these improvements are detailed below).
Therefore, the non-symmetrical Heaviside function Hψ is incorporated into our
new surface tension force model. The reason is that the non-symmetrical Heavi-
side function is reported to improve the numerical stability compared to the sym-
metrical Heaviside function Hs [117, 127]. The symmetrical Heaviside function

Hs =


0 ψ <−ε,

1
2

[
1+ ψ

ε
+ 1

π
sin(πψ

ε
)
]
|ψ| ≤ ε,

1 ψ > ε,

(3.18)
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3.2 Numerical method

is obtained by smoothing out the Heaviside step function (purple line in Fig-
ure 3.4). The non-symmetrical Heaviside function Hψ (yellow dotted curve in
Figure 3.4) is given by

Hψ =


0 ψ <−ε,

1
2

[
1
2 +

ψ

ε
+ ψ2

2ε2 − 1
4π2

(
cos( 2πψ

ε
)−1

)
+ ε+ψ

επ
sin(πψ

ε
)
]
|ψ| ≤ ε,

1 ψ > ε.

(3.19)
The difference among the three different Heaviside functions is shown in Fig-
ure 3.4, and the horizontal dotted line represents the middle line of the vertical
axis.
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Figure 3.4: Three different Heaviside functions (H: the Heaviside step function, Hs: the symmetrical
Heaviside function, Hψ : the non-symmetrical Heaviside function).

The new and improved surface tension force model is then given accordingly as

Fst = σK(ψ)∇Hψ . (3.20)
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3 The i-CLSVoF framework for surface-tension-dominant flow

As inspired by the VoF-based surface tension model, the surface tension related
pressure term pst is separated from the total pressure to avoid difficulties in the
discretization of the pressure jump [116]. The pressure equation is given by

∇ ·∇pst = ∇ ·Fst, (3.21)

and the pressure equation can be solved with the prescribed boundary condition

∂ pst

∂n
= 0. (3.22)

In order to filter spurious currents, the modified indicator function αpc is intro-
duced for calculating the new Delta function given by Eqn. 3.26, and αpc is de-
fined as

αpc =
1

1−Cpc

[
min

(
max(αl ,

Cpc

2
),1−

Cpc

2

)
−

Cpc

2

]
, (3.23)

where Cpc is the sharpening coefficient. Cpc equal to 0 yields the original indicator
function αl , which is the liquid volume field and defined by Eqn. 3.7. Increasing
Cpc leads to a sharp representation of the interface and can suppress the spurious
velocity but also brings numerical instabilities [116].

Finally, employing pst and αpc, the filtering surface tension force model is in-
troduced to filter un-physical spurious currents parallel to the free surface. It is
defined as

F f
st, f = Fst, f −Ffilt

st, f . (3.24)

Here, Fst, f is the surface tension force calculated at face center by Fst, f = Fstn f

with n f being the normal vector defined at the face center, and Ffilt
st, f is a time-

dependent term also defined at the face center. It is calculated from

Ffilt
st, f =

δst

|δst|+δn

(
R f (Ffilt

st, f )i−1 +Cfc

〈
∇pst− (∇pst ·ns)ns

〉
f
·n f

)
, (3.25)

where R f is a relaxation factor, and (Ffilt
st, f )i−1

the value of Ffilt
st, f in the previous

time step. In addition, ⟨⟩ f denotes the interpolation from the cell center to the
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3.3 Numerical implementations and discretization

cell face in OpenFOAM, Cfc is the coefficient determining how fast the spuri-
ous velocity is filtered, and ns is the normal vector defined at the cell center
(ns = ∇αl/|∇αl |). δst is a newly defined Delta function based on the previously
introduced sharpening indicator function αpc, and its definition is given by

δst = ∇
Γ
f αpc. (3.26)

Here, ∇Γ
f denotes the gradient normal to the interface.

The final step is to define the threshold for filtering the surface-tension flux, also
called the capillary flux defined by φcf = Fst, f |S f | with |S f | being the magnitude
of the face area. The capillary flux is artificially set to zero when the capillary
flux is smaller than the threshold, where the filtering capillary flux is defined as

φ
filt
cf = φcf−min

(
max(φcf,−φ

thre
cf ),φ thre

cf
)
. (3.27)

Here, the φ thre
cf is the threshold value below which the capillary flux is regarded

as zero, and it can be calculated by

φ
thre
cf =Cfilt

¯|Fst, f ||S f |, (3.28)

where Cfilt is the filtering coefficient. It is normally set to 0.01, which means that
the capillary flux can be regarded as zero when its magnitude is less than 1% of
the average capillary flux. Furthermore, ¯|Fst, f | is the magnitude of the average
surface-tension force. The source code for the numerical implementation of the
filtering approach can be found in Appendix Code list A.2.

3.3 Numerical implementations and
discretization

The aforementioned equations are solved using the Finite Volume Method (FVM).
In order to suppress un-physical spurious velocities and to improve numerical
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3 The i-CLSVoF framework for surface-tension-dominant flow

stability, the i-CLSVoF framework is implemented into open-source C++ library
OpenFOAM. The corresponding in-house solvers interDyMFoamX are accord-
ingly developed.

The maximum time step for solving the governing equation and ensuring spu-
rious currents do not increase over time is estimated from two constraints. The
first constraint is

∆tσ <

√
ρavg∆x3

2πσ
, (3.29)

where ρavg is the average density of the phases. It is proposed for the explicit
treatment of the surface tension force term [99]. Another more comprehensive
time step constraint is given by

∆tc <
1
2

(
C2τµ +

√
(C2τµ)2 +4C1τρ

2

)
, (3.30)

which involves the density and the viscosity of the multiphase system. τµ and
τρ are given as µavg∆x/σ and

√
ρavg∆x3/σ , respectively, with µavg being the

average dynamic viscosity between the phases [131]. Accordingly, the maximum
time step size for stable numerical simulations is given as

∆t < min(∆tσ ,∆tc)C∆t (3.31)

with C∆t being the stabilization factor where a range of C∆t between 0.3 and 0.7 is
recommended for more stable constraints, especially for cases with phase change
[48].

3.3.1 Finite volume discretization of the governing
equations

A new pressure field prgh is defined by

prgh = p−ρg ·h, (3.32)
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3.3 Numerical implementations and discretization

where h is the position vector. The gradient of prgh is given by

∇prgh = ∇p−ρg−g ·h∇ρ. (3.33)

Substituting ∇p=∇prgh+ρg+g·h∇ρ and ∇·
[
µ
(
∇U+(∇U)T

)]
=∇·(µ∇U)+

∇U ·∇µ (detailed derivation can be found in [120]) into Eqn. 3.4, it becomes

∂ (ρU)

∂ t
+∇ · (ρUU) =−∇prgh +∇ · (µ∇U)+∇U ·∇µ−g ·h∇ρ +Fst. (3.34)

The volume integral of Eqn. 3.34 is given by∫
Ωi

∂ (ρU)

∂ t
dV +

∫
Ωi

∇ · (ρUU) dV︸ ︷︷ ︸
=
∫

∂Ωi
(ρUU)·n dS

=−
∫

Ωi

∇prgh dV

+
∫

Ωi

∇ · (µ∇U) dV︸ ︷︷ ︸
=
∫

∂Ωi
(µ∇U)·n dS

+
∫

Ωi

∇U ·∇µ dV

−
∫

Ωi

g ·h∇ρ dV +
∫

Ωi

Fst dV,

(3.35)

where the transformation from volume integral to surface integral is done by
using the divergence theorem. Besides, ∂Ωi is a closed surface bounding the
control volume Ωi, and dS represents an infinitesimal surface element with unit
normal n pointing outwards of the surface ∂Ωi (ndS = dS).

In OpenFOAM, all quantities are solved and stored at cell centers. The cell center
is denoted as xP, and the face center is denoted by x f . As shown in Figure 3.5,

47



3 The i-CLSVoF framework for surface-tension-dominant flow

P
N

f
n

d

Figure 3.5: Notations for two cells sharing one face.

the owner cell4 is denoted as P and one of its neighbour cells is denoted as N and
the two cells share one face denoted by f .

The temporal derivative term in Eqn. 3.35 is approximated by

∫
Ωi

∂ (ρU)

∂ t
dV ≈

ρ
n+1
P Un+1

P −ρn
PUn

P
∆t

VP, (3.36)

where the superscript n represents the current time step and the quantities (e.g.
Un

P) in the current time step are known. The superscript n+ 1 denotes the pre-
dicted quantities in the next time step needed to be solved (e.g. Un+1

P ). Further-
more, VP is the volume of the cell.

The convection term in Eqn. 3.35 is approximated by converting the surface in-
tegral to a sum over all the faces, and is given by∫

∂Ωi

(ρUU) ·n dS≈∑(ρnUnUn+1) f ·S f = ∑Fn
f Un+1

f , (3.37)

where Fn
f is the mass flux, which is calculated by

Fn
f = (ρnUn) f ·S f (3.38)

4 In the finite volume method, an owner cell is a three-dimensional region of space that surrounds
a point of interest or a discrete point within a computational cell. The owner cell is used to
represent a small portion of the computational domain, and is typically defined by the grid cells
that surround it.
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3.3 Numerical implementations and discretization

with S f being the face area vector.

The diffusion term is discretized as∫
∂Ωi

(µ∇U) ·n dS≈∑(µ∇Un+1) f ·S f = ∑µ f (∇U)n+1
f ·S f . (3.39)

The pressure gradient term is numerically approximated by∫
Ωi

∇prgh dV =
∫

∂Ωi

prgh dS≈∑ pn
rgh, f S f . (3.40)

The explicit expression for the predicted velocity field Un+1
P is given by

ρ
n+1
P Un+1

P −ρn
PUn

P
∆t

VP +∑Fn
f Un+1

f = ∑µ f (∇U)n+1
f ·S f −∑ pn

rgh, f S f . (3.41)

The other missing terms in Eqn. 3.35, e.g. gravitational force and surface tension
force are incorporated into Eqn. 3.52, as discussed below, which then becomes
the discretized form of Eqn. 3.35 with all these terms included.

The velocity field Un+1
f and pressure field pn+1

rgh, f on faces are calculated by nu-
merical interpolations given by

Un+1
f =

Un+1
P +Un+1

N
2

, (3.42)

and

pn
rgh, f =

pn
rgh,P + pn

rgh,N

2
, (3.43)

respectively.

The first term (∇U)n+1
f ·S f on the right-hand-side of Eqn. 3.41 is calculated by

(∇U)n+1
f ·S f =

(
(∇U)n+1

f ·
S f

|S f |

)
· |S f |, (3.44)
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where (∇U)n+1
f · S f

|S f |
is the face normal gradient. It is approximated by

(∇U)n+1
f ·

S f

|S f |
≈

Un+1
N −Un+1

P
|d|

, (3.45)

where d is the distance vector between the current cell P and the neighbour cell
N (shown in Figure 3.5).

Substituting these approximations (Eqs. 3.42, 3.43, and 3.45) into Eqn. 3.41,
leads to

ρ
n+1
P Un+1

P −ρn
PUn

P
∆t

VP +∑Fn
f

Un+1
P +Un+1

N
2

= ∑µ f
Un+1

N −Un+1
P

|d|
|S f |

−∑
pn

rgh,P + pn
rgh,N

2
S f .

(3.46)

After some manipulations, Eqn. 3.46 yields(
ρ

n+1
P
∆t

+
1

VP
∑

Fn
f

2
+

1
VP

∑
µ f |S f |
|d|

)
Un+1

P =

−∑
1

VP

(Fn
f

2
−

µ f |S f |
|d|

)
Un+1

N

+
ρn

P
∆t

Un
P−

1
VP

∑
pn

rgh,P + pn
rgh,N

2
S f .

(3.47)

Eqn. 3.47 can be abbreviated as

APUn+1
P =−∑ANUn+1

N +Sn
P−

1
VP

∑
pn

rgh,P + pn
rgh,N

2
S f , (3.48)
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where

AP =

(
ρ

n+1
P
∆t

+
1

VP
∑

Fn
f

2
+

1
VP

∑
µ f |S f |
|d|

)
, (3.49)

AN =
1

VP

(Fn
f

2
−

µ f |S f |
|d|

)
, (3.50)

Sn
P =

ρn
P

∆t
Un

P. (3.51)

Eqn. 3.48 can be further changed to

APUn+1
P +∑ANUn+1

N = Sn
P−∇prgh,P−g ·h∇ρP +σk∇αP, (3.52)

if all the other terms in Eqn. 3.34 are incorporated.

Dividing Eqn. 3.52 by AP, leads to

Un+1
P = HbyAn+1

P − 1
AP

(
∇prgh,P +g ·h∇ρP−σk∇αP

)
, (3.53)

where HbyAn+1
P is given by

HbyAn+1
P =

1
AP

(
−∑ANUn+1

N +Sn
P
)
. (3.54)

Substituting Eqn. 3.53 into the continuity equation Eqn. 3.3, the pressure equa-
tion can be derived as

∇ ·
(

1
AP

∇pn+1
rgh

)
= ∇ ·

(
HbyAn+1

P +
1

AP
(σk∇αn+1−g ·h∇ρ

n+1)

)
. (3.55)
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3 The i-CLSVoF framework for surface-tension-dominant flow

The pressure field solved from Eqn. 3.55 is used to correct the velocity field, so
that the velocity field can satisfy the continuity equation (Eqn. 3.3). The corre-
sponding numerical correction is given by

U = HbyAP +
Fst−g ·h∇ρ−∇prgh

AP
. (3.56)

3.3.2 The overall solution procedure

The overall solution procedure is outlined in Figure 3.6. After initializing the
essential fields, e.g. liquid volume fraction, velocity and pressure, the free surface
is advected by solving the VoF equation (Eqn. 3.6) and then the LS field can also
be calculated. Accordingly, the interface curvature and the surface tension can
be updated with the liquid volume fraction solved from the VoF equation. The
velocity and pressure fields are calculated by solving Eqn. 3.53, and the pressure
equation (Eqn. 3.55), respectively. The new pressure field is then used to correct
the velocity field (Eqn. 6.38). The simulation runs into the next cycle until the
pre-defined total simulation time tend is reached.

3.4 Numerical demonstrations

In this section, some numerical benchmark cases adopted from the literature are
reproduced to demonstrate the sharp interface capturing (dam break with obstacle
[132, 133]) and the suppression of un-physical velocities (droplet relaxation case
and sessile droplets with three different contact angles [116, 134–136]) with the
i-CLSVoF framework developed in this thesis.

3.4.1 Dam break with obstacle

The purpose of the current numerical demonstration is to compare the i-CLSVoF
model developed in this work against the conventional VoF model in terms of

52



3.4 Numerical demonstrations

Start simulation (n = 0)

VoF transport

Compute curvature and surface tension

End

Correct velocity field

Solve pressure equation

Initialization

No

Yes (n = n + 1)
t < tend

Figure 3.6: Flowchart of the i-CLSVoF framework for surface-tension-dominant flow.

free-surface capturing. The interDyMFoam solver of OpenFOAM 5.x is adopted
for conducting simulations with the conventional VoF model. In this case, the
surface-tension force is not dominant other than in the droplet cases. The numer-
ical set-up is a water column initialized at the bottom left of the 2D computational
domain of which the top is open while the remaining boundaries are regarded as
walls (as shown in Figure 3.7a). The essential parameters for the simulations are
outlined in Table 3.2. The 2D Adaptive Mesh Refinement (AMR) developed by

Table 3.2: Parameters for 2D dam break simulations

Phase Density [kg/m3] Kinematic viscosity [m2/s] Surface tension [N/m]

Water 1000 1×10−6 0.07
Air 1 1.48×10−5 -

Ajit Kumar [137] is incorporated into the numerical simulations to capture the
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water column 0.584 m

obstacle

atmosphere

wall

wall
0.1459 m

0.024 m

0.048 m wall

(a) (b)

Figure 3.7: (a) Geometry and boundaries of the 2D dam break simulation, (b) Numerical simulations
with 2D AMR (the white curve represents the free-surface).

sharp interface with finer computational mesh around the interface region and
coarser mesh elsewhere to save computational costs (as shown in Figure 3.7b).
The total simulation time is 0.5 s, and it is enough for water to reach both the
bottom obstacle and the right wall. As shown in Figure 3.8a and 3.8c are the
simulation results with the VoF approach, and Figure 3.8b and 3.8d are with the
i-CLSVoF model. When water hit the obstacle and form a wave over the obstacle,
the results with VoF approach turn out some interface diffusion (see Figure 3.8a)
but the i-CLSVoF captures the sharp interface accurately (see Figure 3.8b). As
the simulation progresses, water hits the right wall, and some water is bounced
back to the container. Figure 3.8c shows large interface diffusion like rising gas
around center of the right wall, whereas Figure 3.8d presents an interface is cap-
tured sharply and without interface diffusion.

3.4.2 Droplet relaxation with surface-tension force only

The second case is to demonstrate the suppression of spurious currents by study-
ing the relaxation of a 2D droplet (density: 1000 kg/m3, viscosity: 10−3 Pa · s)
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immersed in a base fluid (density: 1000 kg/m3, viscosity: 10−3 Pa · s) [116].
A constant surface tension coefficient is assumed as 0.7 N/m. The initial con-
figuration is a 2D square droplet (side length: 40 µm) sitting at the center of a
square 2D computational domain (side length: 100 µm). Gravity is absent from
the simulation, and the surface tension force is the only external force acting on
the droplet. Accordingly, the surface tension deforms the droplet from its initial
square shape to its equilibrium shape, i.e. a 2D circle, gradually.
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Figure 3.8: Evolutions of the free-surface in the dam break simulations: (a) with the VoF method (t
= 0.2 s), (b) with the i-CLSVoF method (t = 0.2 s), (c) with the VoF method (t = 0.5 s),
(d) with the i-CLSVoF method (t = 0.5 s).
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The maximum velocity of the system is recorded, and the numerical results of our
i-CLSVoF framework are compared to simulation results with the conventional
VoF and CLSVoF methods. As an alternative to tracking the maximum veloc-
ity |Umax|, the dimensionless capillary number Ca = µ|Umax|

σ
is used to quantify

the evolution of spurious velocities in the literature [134]. The convergence of
the capillary number with our i-CSLVoF framework is also promising as the ra-
tio between liquid dynamic viscosity µ = 10−3 and surface-tension coefficient
σ = 0.07 is much smaller than unity in our benchmark cases. Concerning the
total simulation time for droplet relaxation, 0.001 s is enough to guarantee that
the maximum velocity converges to zero numerically (less than 1.0× 10−8 in
our model). As shown in Figure 3.9, the conventional CLSVoF approach can
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Figure 3.9: Evolution of the un-physical velocities with different surface tension force models.

improve the suppression of un-physical spurious velocity better than the VoF
approach; however, the result is still far away from perfect. The dashed line rep-
resents the convergence of the velocity within one millisecond by the i-CLSVoF
method, and the velocity converges to 10−10 which is small enough to eliminate
the influence of un-physical spurious currents on the numerical stabilities. Over-
all, the i-CLSVoF method can reduce the un-physical velocities by at least seven
orders of magnitudes.
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Figure 3.10: Velocity vector contours at 0.001 s with different surface tension models (white circle
represents the 0.5 iso-surface for αl field): (a) VoF, (b) CLSVoF, (c) i-CLSVoF.

The corresponding velocity vector contours at 0.001 s with three different sur-
face tension models, namely the VoF based surface tension force (Eqn. 3.12), the
CLSVoF based surface tension force (Eqn. 3.16) and the i-CLSVoF based surface
tension force (Eqn. 3.20), are given in Figure 3.10. Here, the white circles repre-
sent the 0.5 iso-surface for the liquid volume fraction field αl . The distributions
of spurious vortices for the three different surface-tension models are different.
For the normal VoF approach, four large spurious vortices appear around the free
surface and point toward four different directions, which leads to the strong spu-
rious velocities that deform the free surface of the droplet and then move the
droplet randomly away from its center. Concerning the spurious vortices of the
CLSVoF approach, four main vortices point inward but the overall distribution
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is symmetrical along the horizontal and vertical directions. For the simulation
with the i-CLSVoF method, the maximum velocity is located inside the droplet,
however, no large spurious vertices are found around the free surface. The veloc-
ity distribution is symmetrical with respect to the diagonal of the computational
domain, and the magnitude of the maximum velocity is tiny enough to avoid any
influence of spurious currents on the numerical stability.

The analytical solution of the capillary pressure jump across droplets is given by
the Young–Laplace equation, where ∆pc =

σ

R = 0.07 N/m
40/
√

π×10−6 m = 3101.8 Pa is the
theoretical solution for 2D droplets with R being the droplet radius [134]. The
relative error for the capillary pressure jump is given by

E(∆pc) =
|pn

c− pa
c |

pa
c

, (3.57)

where pa
c and pn

c are the analytical and numerical capillary pressure, respectively.
The comparison among three different surface-tension force models in predict-
ing the capillary pressure is shown in Figure 3.11a. The i-CLSVoF framework
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Figure 3.11: (a) Capillary pressure fields of droplets with three different surface tension force models
(dotted purple line represents the analytical solution), (b) Relative errors for capillary
pressure jump with different mesh resolutions.
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developed in this work demonstrates the best agreement between numerical pre-
diction and the analytical solution. The quantitative study on the relative error in
predicting the capillary pressure jump with the i-CLSVoF framework is shown in
Figure 3.11b, where the first-order convergence is found with our model.

The sharpening coefficient Cpc is a key parameter governing the suppression of
un-physical spurious currents. An additional parameter study demonstrates the
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Figure 3.12: Effect of the sharpening coefficient Cpc on the suppression of spurious velocity.

effect of the sharpening coefficient on the suppression of the spurious currents.
As shown in Figure 3.12, the suppression of un-physical velocities is improved
with increasing sharpening coefficient Cpc, especially for relatively smaller sharp-
ening coefficient values (0.1 - 0.4). However, for a relatively large sharpening
coefficient (0.5 - 0.95), the corresponding results give no major improvement.
Note that a large sharpening coefficient may lead to numerical instability.

3.4.3 Spurious currents around sessile droplets

Another challenging problem for surface-tension-dominant flow is to suppress
un-physical spurious velocities when a droplet interacts with a substrate with a
given contact angle. In this simulation, gravity is absent such that only the surface
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3 The i-CLSVoF framework for surface-tension-dominant flow

tension force dominants the interface deformation. The initial liquid configura-
tion is not an ideal 2D spherical cap due to the numerical errors in initializing the
liquid fields, and the error is even larger for a coarse mesh. The surface tension
force acting on the droplet deforms the droplet from its initial shape to an ideal
2D spherical cap gradually, and un-physical spurious velocities are in danger to
appear around the droplet. In this section, the issue of un-physical spurious ve-
locities around sessile droplets with three different contact angles (60◦, 90◦ and
120◦) is investigated. The essential parameters of both liquid and gas phases are
listed in Table 3.3. For a relatively small contact angle, i.e. 60◦, the comparison

Table 3.3: Parameters for 2D sessile droplet simulations

Phase Density [kg/m3] Kinematic viscosity [m2/s] Surface tension [N/m]

Liquid 1000 1×10−6 0.07
Gas 1 1×10−5 -

among three simulations with different surface-tension force models are shown
in Figure 3.13. The VoF model shows random un-physical velocities around the
interface (represented by a solid white curve) except for the triple contact line
region. The CLSVoF and the i-CLSVoF models show relatively large spurious
velocities around the triple contact line. Furthermore, the distribution of spu-
rious velocities is axisymmetric along the vertical line in the middle. For the
simulation with the i-CLSVoF framework, the magnitude of the spurious veloc-
ities is the smallest compared to that of the other two models. The evolution
of spurious velocities is shown in Figure 3.14, where the i-CLSVoF framework
shows a convergence to 1×10−5, while the VoF and CLSVoF models fail to reach
convergence of the velocities. Overall, the i-CLSVoF method can reduce the un-
physical velocities around the sessile droplet with a contact angle of θ = 60◦ by
four orders of magnitudes.

For a contact angle of θ = 90◦, all spurious velocities are smaller than those of
θ = 60◦ as shown in Figure 3.15. The conventional VoF and CLSVoF approaches
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3.4 Numerical demonstrations

(a) (b)

(c)

Figure 3.13: Spurious velocities around droplets (θ = 60◦) with three different surface-tension force
models (the white curve represents the interface): (a) with the VoF method, (b) with the
CLSVoF method, (c) with the i-CLSVoF method.

Figure 3.14: Evolution of spurious velocities with different surface-tension models (θ = 60◦).

suffer from large un-physical velocities (around 1×10−2). The i-CLSVoF frame-
work reduces the un-physical velocities to 1× 10−6, although some relatively
large un-physical velocities appear around the peak of the droplet (as shown in
Figure 3.15c). The corresponding evolution of the spurious velocities within
0.001 s is shown in Figure 3.16. Similar to the case with a contact angle of
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3 The i-CLSVoF framework for surface-tension-dominant flow

(a) (b)

(c)

Figure 3.15: Spurious velocities around droplets (θ = 90◦) with three different surface-tension force
models (the white curve represents the interface): (a) with the VoF method, (b) with the
CLSVoF method, (c) with the i-CLSVoF method.

Figure 3.16: Evolution of spurious velocities with different surface-tension models (θ = 90◦).

θ = 60◦, the i-CLSVoF framework shows best performance in reducing the un-
physical velocities much more than the other two methods. Quantitatively, the
un-physical spurious velocities are suppressed by four orders of magnitudes by
the i-CLSVoF model.
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3.4 Numerical demonstrations

For a large contact angle, e.g. droplet wetting on hydrophobic substrates with a
contact angle of θ = 120◦, the un-physical velocities are much more challenging
to suppress even with the i-CLSVoF approach. As shown in Figure 3.17, all

(a) (b)

(c)

Figure 3.17: Spurious velocities around droplets (θ = 120◦) with three different surface-tension force
models (the white curve represents the interface): (a) with the VoF method, (b) with the
CLSVoF method, (c) with the i-CLSVoF method.

three cases suffer from un-physical velocities, while the i-CLSVoF model can
suppress the un-physical velocities to 7.0× 10−4 at least. The largest spurious
velocities occur around the peak of the droplet and also at the triple contact line
regions for the i-CLSVoF model as shown in Figure 3.17c. Clearly, the i-CLSVoF
framework demonstrates the smallest un-physical spurious velocities compared
to the other two methods as can be seen in both Figure 3.17 and Figure 3.18,
respectively. As shown in Figure 3.18, regarding the reduction of the un-physical
spurious velocities, two orders of magnitudes are reached by the i-CLSVoF model
compared against the other two models.
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3 The i-CLSVoF framework for surface-tension-dominant flow

Figure 3.18: Evolution of spurious velocities with different surface-tension models (θ = 120◦).

3.5 Summary

In this chapter, the available widely-used interface-capturing approaches in the
literature are reviewed and the key issues related to interface diffusion and un-
physical spurious velocities when modelling the surface-tension-dominant flow
are discussed.

The governing equations were solved based on the one-field formulation using
the FVM. The sharp LS method is coupled to the VoF approach to suppress the
interface diffusion. Furthermore, the superior performance of the improved in-
terface capturing approach developed in this work is demonstrated by the dam
break benchmark case reproduced with both the i-CLSVoF framework and VoF
model.

The non-symmetrical Heaviside function was incorporated into the improved
surface-tension force model and the filtering approach was further implemented
to filter additional non-physical velocities around the interface. Suppression of
un-physical velocities can improve the numerical stability and guarantee less in-
fluence on the internal flow inside droplets. The droplet relaxation case demon-
strates that the i-CLSVoF framework developed in this chapter suppresses un-
physical spurious velocities with promising performance compared to the other

64



3.5 Summary

two models, namely VoF and CLSVoF. The superiority of the new numerical
framework over the conventional VoF and the CLSVoF approaches was demon-
strated. A promising amount of suppression of un-physical spurious currents by 2
to 8 orders of magnitude was achieved with our improved numerical framework.

Next, the i-CLSVoF framework is extended to model the evaporation of micro-
sized droplets with and without contact line pinning in the following chapter and
some numerical issues are detailed there.
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4 Modelling droplet evaporation
with the i-CLSVoF framework

Modelling droplet evaporation is of great importance for many applications,
such as direct inkjet printing [138], spray coating [139], and combustion of fuel
droplets [140]. The critical issues in the computational modelling of droplet
evaporation are three-fold: free-surface tracking or capturing, accurate calcula-
tions of the surface tension force, and the phase change from liquid to vapour
[141]. Free-surface capturing and an improved surface-tension force model are
discussed in the previous Chapter 3. The current chapter focuses on the compu-
tational modelling of phase change or evaporation. Several phase-change models
have been developed to model the phase change from liquid to vapour. These
include the constant mass flux model [47, 48], the thermally driven model [49–
51], and the vapour mass fraction gradient model [48, 52, 53]. The challenging
part in modelling phase change or evaporation is to address the velocity jump
at the interface, which results in some numerical difficulties. Kunkelmann de-
veloped an approach that removes the source terms at the interface cells and
defines positive and negative mass sources in the most adjacent liquid and gas
cells, respectively [54]. This approach was demonstrated to have good perfor-
mance in modelling boiling [54]. A similar method is also implemented into
the open-source code Gerris for modelling droplet evaporation subject to a large
mass transfer rate [55]. Both methods are highly dependent on the mesh reso-
lution at the interface. Normally, Adaptive Mesh Refinement (AMR) is needed
to accurately cut the interface region into two different regions with negative

1 Part of this chapter with minor changes has been submitted to arXiv as a preprint [176].
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4 Modelling droplet evaporation with the i-CLSVoF framework

and positive mass sources. These numerical models are implemented in either
in-house or commercial codes. Thus, it is proposed to develop a comprehensive
solver in the open-source C++ toolbox OpenFOAM to incorporate simple yet
efficient evaporation models to model the micro-sized sessile droplet evaporation
with negligible influence of un-physical spurious currents.

4.1 Governing equations and numerical
method

The primary governing equations for the incompressible flow without phase
change discussed in Chapter 3 are modified to account for the phase change
from the liquid phase to the vapour phase occurring at the liquid surface. The ve-
locity field for the incompressible flow with phase change is not divergence-free
any more. A volumetric mass source term ṁ (mass change rate per unit volume)
on the right-hand side of the continuity equation is introduced, and the equation
reads

∇ ·U = ṁ(
1
ρg
− 1

ρl
). (4.1)

Here, ṁ means the mass loss of the liquid phase, which reappears at the vapour
phase with the same amount. ṁ is only non-zero around the free surface and is
zero in the region far away from the interface. Correspondingly, ρg and ρl are
the density of the gas and liquid phases, respectively. The momentum equation
is the same as for the incompressible flow without phase change.

However, the velocity field in the VoF transport Eqn. 3.6 is replaced by the new
interface velocity field UΓ as

∂αl

∂ t
+∇ · (αlUΓ) = αl∇ ·UΓ. (4.2)

The reason behind that lies in preliminary numerical simulations, which con-
firmed that using the default one-field velocity U to solve the VoF transport equa-
tion tends to overestimate the evaporation rate, and the same conclusion can be
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4.1 Governing equations and numerical method

found in the literature [47]. The calculations of UΓ can be derived from the inter-
face mass flux balance. The interface mass flux per unit area J [kg/(m2·s)] when
the phase changes is derived from the mass flux balance across the interface,

J = ρl(Ue−UΓ) ·n = ρg(Ug−UΓ) ·n, (4.3)

where n is the interface normal vector, and Ue and Ug are the fluid velocities in
the liquid and gas phase, respectively. The interface velocity UΓ can be accord-
ingly derived as

UΓ = Ue−
J
ρl

n, (4.4)

where the second term J/ρl · n is the interface recession velocity and accounts
for the interface shrinking during the evaporation process. The first term Ue is
known as the extended divergence-free liquid velocity.

A new method is developed in this chapter to reconstruct a new divergence-free
velocity field Ue. The basic idea behind the reconstruction of Ue is to solve the
velocity potential equationaφ +∇2φ = ṁ( 1

ρg
− 1

ρl
),

Us = ∇φ ,
(4.5)

in the whole computational domain with the homogeneous Dirichlet boundary
condition applied on the boundary to guarantee that the velocity potential at the
domain boundary is zero. Here, φ is the velocity potential, and Us denotes the
evaporation-induced Stefan flow velocity (equal to the gradient of the velocity
potential). The critical parameter a is used to divide the whole computation do-
main into two sub-domains (refer to Figure 4.1), where a is zero in the liquid
phase (blue circle) and within the three most adjacent cells around the interface
(cells in pink in the circle with solid line). For the rest of the computational do-
main, a can be any arbitrary non-zero value. The square of the time-step size is
used in the current study. The new method guarantees more numerical stability
than solving Eqn. 4.5 with a equal zero in the whole computational domain as
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4 Modelling droplet evaporation with the i-CLSVoF framework

Figure 4.1: The sub-domains for solving the velocity potential equation.

proposed in [48]. As the right-hand side of the velocity potential Eqn. 4.5 has
the same source term as the one of the continuity Eqn. 4.1 for the incompressible
flow with phase change, the new divergence-free velocity field Ue is defined by
subtracting the evaporation-induced Stefan flow velocity Us from the one-field
velocity field U as

Ue = U−Us. (4.6)

Typically, the divergence of Ue should approximate 10−8 or even smaller values
of 10−10, which can be regarded as zero numerically. As an alternative to solve
and update the liquid volume fraction field αl with the implicit source term as
shown in Eqn. 4.2, the divergence-free velocity field Ue can also be used to advect
the free surface with either an explicit

∂αl

∂ t
+∇ · (αlUe) =−

ṁ
ρl

(4.7)

or an implicit
∂αl

∂ t
+∇ · (αlUe) = αl

−ṁ
(αl +δs)ρl

(4.8)
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source term2 accounting for the mass loss in the liquid phase due to the evapora-
tion where δs in Eqn. 4.8 is a small number to guarantee a non-zero denominator.

4.2 The i-CLSVoF framework with evaporation

The i-CLSVoF framework developed in Chapter 3 suppresses spurious velocities
and guarantees sharp interface capturing. Computational modelling of droplet
evaporation, especially for micro-sized droplets, suffers from un-physical spuri-
ous velocities, and the i-CLSVoF is a promising tool to model micro-sized droplet
evaporation. In this chapter, three different evaporation models are introduced,
implemented and validated. These models share the same governing equations
except for the calculation of the mass source term per unit area J.

4.2.1 The constant mass flux evaporation model

Starting with the most simple evaporation model, the only parameter needing to
be defined is the constant mass flux per unit area J. In contrast to calculating the
mass flux J with complex equations, for instance, by temperature difference, a
given constant, e.g. J = 1.25×10−2 kg/(m2·s) is specified in this chapter. The
constant mass flux evaporation model can be used to validate the implementations
of the governing equations before implementing complex approaches to conduct
calculations of the source terms.

4.2.2 The thermally driven evaporation model

The thermally driven evaporation drives the phase change from liquid to vapour
when the temperature around the liquid interface is higher than its saturation
temperature Tsat, and the mass flux depends on the temperature difference at

2 When solving the VoF equation in OpenFOAM, the implicit source term is recommended.
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4 Modelling droplet evaporation with the i-CLSVoF framework

the interface [49, 142]. Tracking the temperature distribution around an evap-
orating droplet is crucial to model droplet evaporation subjected to the ambient
temperature gradient. Conservation of thermal energy is given by the following
temperature equation

∂ (ρcpT )
∂ t

+∇ ·(ρcpUT ) =∇ ·(k∇T )−ṁhev+

[
∂ (ρcp)

∂ t
+∇ · (ρcpU)

]
T, (4.9)

where T is the temperature field, cp the specific heat capacity, k the thermal
conductivity and hev the enthalpy or latent heat of evaporation. The second term
on the right-hand side of the temperature equation is due to evaporation-induced
cooling, and the last term couples to the mass source term.

The mass flux J of the thermally driven evaporation model is given by

J =
T −Tsat

Rinthev
, (4.10)

where hev is the latent heat of evaporation and Rint the heat resistance of the
liquid-vapour interface. Rint is calculated by

Rint =
2−χe

2χe

√
2πRgas

h2
ev

T 3/2
sat

ρg
, (4.11)

where Rgas is the gas constant and χe the evaporation coefficient which depends
on the density ratio λ = ρl/ρg between liquid and gas phase [143]. The density-
ratio-dependent evaporation coefficient

χe =

{
1−
(

1
λ

) 1
3
}

exp
(
− 1

2λ
1
3 −2

)
, (4.12)

is newly introduced in this chapter instead of determining χe empirically [144].
The evaporation coefficient χe increases gradually with the density ratio λ and
tends to reach a plateau at high-density ratios as shown in Figure 4.2.
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Figure 4.2: The evaporation coefficient χe calculated by Eqn. 4.12 versus the density ratio λ in the
range up to 1000.

4.2.3 The vapour mass fraction gradient evaporation
model

For droplet evaporation at room temperature, the vapour concentration gradient
around the evaporating droplet drives the phase change from liquid to vapour
phase. Accordingly, the vapour concentration is solved directly to model the
phase change from liquid to vapour in the literature [11]. To simplify the char-
acterization of numerical models, in the current work, a dimensionless quan-
tity called the vapour mass fraction field Y is solved for and updated by the
convection-diffusion equation given as

∂Y
∂ t

+∇ · (Y U) = Dv∇
2Y, (4.13)

where Dv is the vapour diffusivity coefficient. The convection-diffusion equation
is solved on the whole computational domain with prescribed so-called internal
boundary conditions. For applying this internal boundary condition, all the liq-
uid cells are assigned the saturation mass fraction which accordingly guarantees
that vapour diffuses only from the liquid surface to the gas domain without un-
physical diffusion going back to the droplet [145].
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4 Modelling droplet evaporation with the i-CLSVoF framework

The mass flux per unit area J can be calculated from mass balance across the
interface with the single-component liquid J(1−Y Γ) = ρgDv∇ΓY nΓ, which leads
to the following formula for the mass flux

J =
ρgDv∇ΓY nΓ

1−Y Γ
, (4.14)

where nΓ is the unit interface normal and ∇Γ denotes the gradient at the interface.
Additionally, Y Γ is the saturation vapour mass fraction, which is given by the
Clausius–Clapeyron relation

Y Γ =
XvMl

(1−Xv)Mg +XvMl
, (4.15)

where Xv is further given by

Xv = exp
[
−hevMl

Rgas
(

1
T
− 1

Tsat
)

]
(4.16)

with Ml and Mg being the molar mass of liquid and gas, respectively, and T the
temperature, Tsat the saturation temperature, hev the latent heat of evaporation and
Rgas the gas constant for the liquid phase [53].

The mass source term per unit volume ṁ can be calculated by

ṁ = J|∇αl | (4.17)

once the mass source term per unit area J is calculated with the three aforemen-
tioned models. Normally, the mass source term ṁ is only non-zero at a thin layer
around the droplet interface (see Figure 4.3a). A preliminary numerical study
showed that it leads to numerical instability, especially for evaporation with large
mass flux.
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Figure 4.3: The mass source distributions for two different cases: (a) without smearing, (b) with
smearing.

The improved solution proposed in this thesis is to extend the distribution of ṁ
to a wide band by smearing ṁ over several adjacent cells near the interface (see
Figure 4.3b). The basic idea is to solve the Helmholtz equation

ṁs = ṁ+(∆xN)2
∆ṁs (4.18)

with the homogeneous Neumann boundary conditions [49]. Here, ṁs is the
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Figure 4.4: Evolution of the numerical residual for two different cases with and without smearing
the mass source term.
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smeared mass source term, ∆x the minimal mesh size, and N is the number of
cells over which the mass source term is smeared along the interface normal.
Employing smearing of the mass source term, the numerical residual for sim-
ple 2D static droplet evaporation cases has been recorded. It turned out that the
smeared approach can guarantee a smaller numerical residual as can be seen in
Figure 4.4.

Start simulation (n = 0)

Source terms calculations

Update interface velocity

VoF transport

Compute curvature and surface tension

End

Solve pressure equation and correct velocity

Initialization

No

Yes (n = n + 1)
t < tend

Figure 4.5: Flowchart of solving governing equations with the i-CLSVoF framework when phase
changes.

The overall solution procedure is outlined in Figure 4.5. In contrast to the
flowchart in Figure 3.6 discussed in Chapter 3, some other additional equations
have to be solved to update some essential quantities. In order to calculate the
mass flux when modelling the droplet evaporation with three different models,
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4.3 Contact angle hysteresis and contact line pinning

the vapour mass fraction or temperature distribution needs to be updated by solv-
ing the corresponding Eqs. 4.13 and 4.9, respectively. A divergence-free velocity
field is reconstructed by solving the velocity potential Eqn. 4.5, and then the inter-
face velocity field can be updated by solving Eqn. 4.4. Either the divergence-free
velocity or the interface velocity field can be used to solve the VoF Eqn. 4.7 or
Eqn. 4.8 to capture the free surface.

4.3 Contact angle hysteresis and contact line
pinning

The relation between the equilibrium contact angle and three different surface
tensions is given by Young’s equation as

cos θe =
σsv−σsl

σlv
, (4.19)

where θe is the equilibrium contact angle, σsv the surface tension between solid
and vapour phase, σsl the surface tension between solid and liquid phase, and σlv

the surface tension between liquid and vapour phase [146]. The equilibrium con-
tact angle is measured between the solid substrate and the gas-liquid interface. It
is used to characterize the wetting behaviour of sessile droplets. For the dynamic
behaviour of droplets, two additional contact angles, namely, advancing contact
angle θa and receding contact angle θr, depending on material parameters of both
the liquid and the solid, are used. The advancing contact angle θa is related to an
increase in the contact area between the droplet and the substrate. In contrast, the
receding contact angle θr belongs to a decreasing contact area as shown in the in-
set of Figure 4.6 [147]. The contact line represents a line or curve at which three
different phases, namely gas, liquid and solid meet. The contact line moves with
a certain velocity when a droplet spreads on a substrate. The relation between
contact line velocity Ucl and contact angle θ is demonstrated in Figure 4.6. The
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Hysteresis

Advancing

Receding

Figure 4.6: Contact line velocity versus contact angle, and the contact angle hysteresis.

contact angle hysteresis is defined by the difference between the advancing and
receding contact angles as

∆θ = θa−θr. (4.20)

The contact angle hysteresis is of great significance in many applications, e.g.
coating, floating and painting, etc. A review of classical and modern methods to
measure the contact angle hysteresis and applications can be found in [148]. The
contact line velocity Ucl is zero within the contact angle hysteresis region, where
thus the contact line is fixed. In contrast, the contact line has a non-zero velocity
outside the contact angle hysteresis region. The contact line moves outwards and
increases its contact angle during the advancing phase, while it moves inwards
and decreases its contact angle during the receding phase.

The initial contact radius of an evaporating droplet stays constant when sitting on
a substrate with rough surface as shown in Figure 4.7a. This is droplet evapora-
tion with so-called contact line pinning [7, 149]. Gradual accumulations of in-
solvable particles around the fixed contact line were also found to induce and en-
hance contact line pinning when drying suspension droplets on substrates. This is
known as self-pinning of the contact line as mentioned in the literature [56, 150]
and shown in Figure 4.7b.
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4.3 Contact angle hysteresis and contact line pinning

(a)

(b)

Figure 4.7: Consequences behind the contact line pinning: (a) surface roughness, (b) particle accu-
mulating around the triple contact line region.

The contact line hysteresis can inspire computational modelling of contact line
pinning within the VoF framework. The basic idea is to maintain the current
contact angle within the hysteresis. Complex wetting of droplets on substrates
subjected to a shear flow was investigated numerically with OpenFOAM by Lin-
der [151, 152]. In Linder’s work, a simple yet efficient numerical framework was
proposed to fix the moving contact line. This numerical framework was further
extended to model the forced wetting of droplets in a shear flow with improved
numerical stability and incorporated the geometric VoF approach by Rettenmaier
[153]. In this thesis, these two models are extended to model contact line pin-
ning in the presence of phase change or evaporation of the liquid phase. The
current contact angle θ0, the advancing contact angle θa, the receding contact an-
gle θr and the contact line velocity Ucl are essential parameters to fix the moving
contact line.

4.3.1 Contact angles and contact line velocity

As shown in Figure 4.8, the current contact angle θ0 between the droplet and the
substrate is calculated by

θ0 = arccos (nw ·ni,w,0). (4.21)
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The interface normal ni,w,0 at the triple contact line point can be calculated by

ni,w,0 = cosθ0nw + sinθ0tw, (4.22)

where θ0 is the current contact angle (see Figure 4.8), and nw and tw are the
unit vectors normal and tangential to the wall, respectively [154]. The interface
normal ni,w after the motion and displacement of the interface is calculated by

ni,w = cosθnw + sinθ tw, (4.23)

where θ is the target contact angle. However, the current contact angle θ0 is not
equal to the target contact angle θ due to the motion and displacement of the
interface. In Eqn. 4.22, the interface normal ni,w,0 and the wall normal nw can be

Figure 4.8: The current contact angle of a droplet resting on a substrate.

calculated with the liquid volume fraction field αl . Thus, Eqn. 4.22 leads to

tw =
1

sinθ0
ni,w,0−

cosθ0

sinθ0
nw. (4.24)
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Substituting Eqn. 4.24 into Eqn. 4.23, leads to

ni,w = cosθnw + sinθ

(
1

sinθ0
ni,w,0−

cosθ0

sinθ0
nw

)
=

sin2
θ0cosθ − sinθ0sinθcosθ0

sin2
θ0

nw +
sinθ0sinθ

sin2
θ0

ni,w,0

=
cosθ − cosθ0 [cosθ0cosθ + sinθ0sinθ ]

sin2
θ0

nw +
cos(θ0−θ)− cosθ0cosθ

sin2
θ0

ni,w,0

=
cosθ − cosθ0cos(θ0−θ)

1− cos2θ0
nw +

cos(θ0−θ)− cosθ0cosθ

1− cos2θ0
ni,w,0.

(4.25)

Eqn. 4.25 can be abbreviated as

ni,w = anw +bni,w,0, (4.26)

where the coefficients a and b are given by

a =
cosθ − cosθ0cos(θ0−θ)

1− cos2θ0
, (4.27)

b =
cos(θ0−θ)− cosθ0cosθ

1− cos2θ0
, (4.28)

respectively.

The contact angle decreases during the droplet drying/evaporation process, and
a relative velocity between the droplet and the substrate is found. This is the
so-called contact line velocity Ucl . The direction of the contact line velocity
indicates an advancing or receding phase. The capillary number Ca = µUcl/σ is
used in this thesis to distinguish the two different phases by

Ca

{
> 0 ⇒ advancing phase,

> 0 ⇒ receding phase.
(4.29)
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The numerical singularity around the triple contact line region brings many nu-
merical challenges, and some approaches have been proposed to approximate the
contact line velocity [155]. In this chapter, a simple model proposed by Linder
and Rettenmaier is adopted to calculate the contact line velocity Ucl [151, 153].
As shown in Figure 4.9, the contact line experiences both translational and rota-
tional motion when the contact line moves. Capital T and R indicate in Figure 4.9

T

R

r

Figure 4.9: Translational and rotational motion of the interface.

the translational and rotational motion, respectively. In this section, one essential
assumption is that the interface near the wall is nearly planar. Un is the velocity
vector normal to the interface, and ∆θ is the angular displacement of the inter-
face. According to the geometrical configuration and detailed derivations in the
literature [156], it leads to

Un = Upnn ≈Ucl sinθ + r
∆θ

∆t
, (4.30)
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where Up and nn are the material point velocity and the unit vector normal to the
interface, respectively. Un is the interface velocity field normal to the interface.
It is noted that r ∆θ

∆t can be negligible as r is very small, and thus leading to

Ucl =
Un

sinθ
. (4.31)

According to the geometric configuration demonstrated in Figure 4.9, it leads to

cosθ = nw ·nn, (4.32)

where nw is a vector normal to the wall. Finally, the contact line velocity can be
approximated by

Ucl ≈
Up ·nn√

1− (nw ·nn)2
, (4.33)

once the material point velocity of the contact line, wall and interface normal
vectors are known. The contact line velocity calculated with the formula as men-
tioned above is crucial in realizing the contact line pinning, and this part is de-
tailed in the next section.

4.3.2 The Robin boundary condition

To realize the contact line pinning within the i-CLSVoF framework developed
in this thesis, a Robin boundary condition developed by Linder [151] is adopted
to prescribe a mixed boundary condition to fix the moving contact line. This
Robin boundary condition is a linear combination of the Neumann and Dirichlet
boundary conditions and given by

αw = f αw +(1− f )(αw +∇αw ·dw) , (4.34)

where αw is the volume fraction field at the wall boundary, and dw distance vector
from the cell midpoint to the face center at the wall boundary. The blending
factor f switches between zero and one. f = 0 leads to the Neumann boundary
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condition, according to which the contact line is free to move, while f = 1 ends
up with the Dirichlet boundary condition guaranteeing a fixed contact line. The
basic algorithm to realize the Robin boundary condition is outlined in Algorithm
1.

Algorithm 1 The algorithm for realizing the Robin boundary condition.

for all boundary cells do
calculate the current contact angle θcur
calculate the capillary number Ca
if (θcur > θA && Ca > 0) ∥ (θcur < θR && Ca < 0) then

Apply the Neumann BC
∇α ← dynamic contact angle model

else
Apply the Dirichlet BC
αw fixed

end if

To determine which boundary condition should be applied, the current contact
angle θcur is updated and compared against the given values of the hysteresis.
Different cases should be taken into account as follows:

• The contact line is forced to move when the current contact angle θcur

exceeds the advancing contact angle θA, and the interface velocity near the
contact line moves towards the gas phase, namely Ca > 0.

• Similarly, the contact line is forced to move when the current contact angle
θcur is smaller than the receding contact angle θR, and the interface velocity
near the contact line moves towards the liquid phase, namely Ca < 0.

• In the third case, the current contact angle is within the contact angle hys-
teresis, and thus the contact line remains pinned.
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4.4 Numerical validation and case study

Several benchmark cases are conducted to validate the i-CLSVoF framework with
evaporation. An axisymmetric model is adopted in the current study to save
computational cost. As shown in Figure 4.10, only a quarter of a 2D droplet with
an initial diameter of 250 µm is simulated, and symmetry boundary conditions
on the left and bottom sides are applied. Outflow boundary conditions, namely
a Dirichlet boundary condition for the pressure field and a Newmann boundary
condition for the velocity field, are applied on the other two sides to let the newly
generated vapour from the liquid surface leave the domain freely.

liquid

gas

0.5 mm

0
.5

 m
m

0.125 mm

symmetric

Figure 4.10: The schematic diagram of the numerical setup for 2D droplet evaporation.

The parameters used in the evaporation cases are listed in Table 4.1. In order to
save the computational cost, the scaled liquid density 10 is used in the current
study. A constant surface-tension coefficient is used here, meaning that the ef-
fect of temperature on the surface-tension coefficient is not considered in these
simulations.
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Table 4.1: Physical properties for liquid and gas phases.

Property Liquid Gas Units
Density ρ 10 1 [kg ·m−3]

Dynamic viscosity µ 1×10−3 1×10−5 [Pa · s]
Thermal conductivity k 0.1 0.01 [W ·m−1·K−1]

Specific heat capacity cp 4181 1900 [J ·kg−1·K−1]

Molar mass M 0.018 0.029 [kg/mol]
Entropy of evaporation hev 1×106 - [J ·kg−1]

Surface-tension coefficient σ 0.072 - [N ·m−1]

Vapour diffusivity Dv - 1×10−5 [m2/s]

4.4.1 Droplet evaporation with the constant mass flux
evaporation model

First, the evaporation of 2D droplets with the pre-defined constant mass flux J
is studied, as this can validate the implementation of the governing equations in
simple manner without taking the calculation of source terms into account. The
analytical solution for 2D droplet evaporation with constant mass flux is derived
in this section. Let R and R0 be the shrinking and the initial droplet radius, re-
spectively. The droplet shrinks when the evaporation moves the interface inwards
with the interface velocity UΓ. For the 2D sessile droplet cases, the interface ve-
locity UΓ equals the interface recession velocity Ure, leading to

R = R0−|UΓ|t = R0−
J
ρl

t. (4.35)

Let D and D0 denote the shrinking and the initial droplet diameter, respectively,
and t∗ the total evaporation time. The dimensionless droplet diameter changes
with the dimensionless time during the evaporation process which is given as

D
D0

= 1− 2J
ρlD0

t = 1− 2Jt∗

ρlD0

t
t∗
. (4.36)
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This formula is the analytical solution for 2D static droplet evaporation subject
to the constant mass flux and is also valid for 3D static evaporation cases.

The crucial aspect of modelling droplet evaporation with the i-CLSVoF frame-
work lies in reconstructing the new divergence-free velocity field Ue. After im-
plementing the velocity-potential approach (refer to Eqn. 4.5) proposed in this
work for the reconstruction of the new velocity field, three different velocity
fields are obtained by the simulations: the one-field velocity U, the evaporation-
induced Stefan flow velocity Us, and the newly reconstructed velocity Ue for a
2D droplet subject to the constant mass flux are shown in Figure 4.11a, 4.11b and
4.11c.
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Figure 4.11: Different velocities fields of an evaporating droplet (white line represents the interface);
(a): the one-field velocity field, (b): the evaporation-induced Stefan flow velocity field,
(c): the divergence-free velocity field, (d): the divergence of Ue.
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The maximum magnitudes of U and Us are the same. It shows the contour of the
divergence of velocity field Ue in Figure 4.11d, demonstrating that its magnitude
is around 10−8 which can be regarded as numerically zero. This means that the
divergence-free velocity field Ue is successfully reconstructed. The divergence-
free velocity field Ue for the sessile droplet evaporation case should be zero, but
some velocity vertices can be seen around the interface in Figure 4.11c. The
reason lies in both evaporation and surface tension deforming the interface dur-
ing the evaporation process, where the interplay between evaporation and sur-
face tension produces additional spurious velocities. These additional spurious
currents are challenging to reduce, especially with the algebraic VoF approach
of OpenFOAM on which the i-CLSVoF framework is based. Furthermore, the
distribution of the spurious velocities is symmetrical along the diagonal of the
computational domain as shown in Figure 4.11c. A symmetrical distribution of
spurious velocities around an evaporating droplet is more stable than the case
with random distribution.

Figure 4.12 presents the velocity contour of the one-filed velocity field U. All

2.1e-08

1.0e-02

0.002

0.004

0.006
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Figure 4.12: Vector contour of the one-field velocity field U (the white solid line represents the in-
terface).

the vectors are perpendicular to the interface (represented by the white solid line)
and point from the liquid phase to the vapour phase. Additionally, a velocity
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4.4 Numerical validation and case study

jump can be also found around the interface. This demonstrates that the influ-
ence of spurious currents on the droplet evaporation is negligible. The further
numerical validations shown in Figure 4.15a also confirm that the symmetrical
spurious velocities never deform the interface in an un-physical way such that
perfect interface shapes are predicted with the i-CLSVoF framework.

Three different mesh sizes are considered to study the effect of mesh resolution
on the numerical results. As shown in Figure 4.13a and 4.13b, the time evolution
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Figure 4.13: The mesh convergence study: (a) the global plot, (b) the local magnified plot.

of dimensionless droplet diameter with the dimensionless time until 80% of the
total evaporation time is presented. As presented in the literature [48, 52], 80%
of the total evaporation time is enough to validate the performance of numeri-
cal models. The mesh resolution for a static mesh is not fine enough to resolve
simulations for the remaining 20% of the total evaporation time. The agreement
between the numerical solution and the corresponding analytical solution is get-
ting better with finer mesh. For the fine mesh, the analytical curve perfectly goes
through all the numerical data points as shown in the locally magnified plot in
Figure 4.13b.

In order to validate the evaporation model quantitatively, the relative error of
the predictions for the shrinking droplet diameter calculated with different mesh
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resolutions are compared in Figure 4.14. The relative error is lower than 1% when
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Figure 4.14: The numerical error for different mesh resolutions.

the number of cells in one direction for 2D cases is larger than 100, and first-
order convergence is obtained with the evaporation model developed in this work.
Additionally, the numerical error for predicting the shrinking droplet diameter is
still acceptable (around 5%) even for a coarse mesh with our improved numerical
model.

Interface capturing is another crucial aspect in modelling droplet evaporation, and
the i-CLSVoF approach developed in this work can capture the free surface in a
sharp manner. The corresponding validation is also conducted. In Figure 4.15a
and 4.15b, the solid yellow curves are the analytical solution at different evap-
oration stages, while the blue dots are the numerical data collected on the 0.5
iso-surface for the eight stages. As shown in Figure 4.15a, the agreement be-
tween the numerical data and the corresponding analytical solution is perfect. It
is also promising to see that the circular droplet shape is maintained, meaning that
the influence of spurious currents on destroying the droplet shape is suppressed
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Figure 4.15: Numerical validations of the interface capturing: (a) the global plot, (b) the mesh con-
vergence study.

throughout the whole evaporation process. For a given stage, the mesh conver-
gence study indicates no major difference when refining the mesh as shown in
Figure 4.15b. The reason is that the numerical data are only collected at the 0.5
iso-surface, which does not depend on mesh resolution.

4.4.2 Droplet evaporation with the thermally driven
evaporation model

After validating the droplet evaporation with constant mass flux, the i-CLSVoF
framework is extended to incorporate evaporation with more complex evapora-
tion mass flux calculations. The mass flux of the thermally driven evaporation
model depends on the interfacial temperature difference, which drives the phase
change from liquid to vapour. The analytical solution for the shrinking droplet
diameter square D2 during the evaporation process was derived with the inter-
face energy balance in the literature [157]. The analytical solution is given as the
ordinary partial differential equation

dD2

dt
=−

8kg

ρlcpg
ln(1+Bq), (4.37)
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where Bq is the Spalding mass transfer number defined by

Bq =
cpg(T

∞−Tsat)

hev
, (4.38)

and T ∞ is the temperature on the boundary. This is known as the D2 law, and
it is derived for the droplet evaporation in an infinite domain. The modified D2

law takes into account the effect of computational domain size on the evolution
of droplet diameter, and this model is more suitable for validating droplet evapo-
ration in a finite computational domain. The modified analytical solution is

dD2

dt
=−

8kg

ρlcpg

ln(1+Bq)

ln(Ds/
√

D2)
, (4.39)

where Ds is the diameter of the inscribed circle for the computational domain
[52]. However, the unknown D2 appears in the denominator due to the correction,
and consequently Eqn. 4.39 can be solved numerically (refer to Appendix Code
list A.3).

The numerical set-up for the 2D simulation of the thermally driven evaporation
model is similar to the set-up as shown in Figure 4.10. The only difference is that
in the initial configuration the temperature for the droplet is equal to its saturation
temperature Tsat while the temperature for the rest of the domain is higher than
the saturation temperature. Additionally, a Dirichlet boundary condition for the
temperature field on the boundaries except the symmetry boundaries must be ap-
plied. The numerical validation in this part starts with the temperature difference
of 50 K, and the corresponding temperature distribution around the evaporating
droplet is shown in Figure 4.16a. The temperature gradient around the droplet
drives the phase change from liquid to vapour, and the temperature inside the
droplet stays constant and equals the saturation temperature. As shown in Fig-
ure 4.16b, the interface velocity UΓ points towards the droplet center, which is
related to the evaporation-induced droplet shrinking. Additionally, the interface
velocity UΓ is dominant only at the droplet interface, which demonstrates that the
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Figure 4.16: (a) The temperature distribution around the droplet, (b) the interface velocity field UΓ.

divergence-free velocity field is successfully reconstructed also for the thermally
driven evaporation model.

The quantitative study of the shrinking droplet diameter is compared against
the corresponding analytical model according to Eqn. 4.39. The dimensionless
droplet diameter and the dimensionless time are adopted. It can be seen from Fig-
ure 4.17a, that an accurate solution is achieved for around 65% of the total evap-
oration time t⋆ with the graded mesh shown in Figure 4.16a. The corresponding
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Figure 4.17: (a) The numerical validation for thermally driven evaporation model, (b) the tempera-
ture evolutions during the evaporation process.
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temperature evolution collected from the bottom-left corner to the bottom-right
corner can be seen in Figure 4.17b. The solid green line represents the initial con-
figuration for the temperature field, where the transition band from the saturation
temperature to the temperature value corresponding to the boundaries in the ini-
tial temperature field is relatively large. Further mesh refinement can shorten this
transition band. The other curves in Figure 4.17b show the evolution of temper-
ature (the purple arrow indicates time going on) during the evaporation process.
The saturation temperature inside the droplet and the temperature at the domain
boundary are strictly maintained constant during the evaporation process.

Additionally, droplet evaporation with different Stefan numbers is further studied
to validate our model extensively. The Stefan number is defined as

St =
cpg∆T

hev
, (4.40)

where ∆T = T∞−Tsat is the temperature difference between the saturation tem-
perature Tsat inside the droplet and the temperature T∞ at the boundaries, and cpg
the specific heat capacity of the gas/vapour phase. As can be seen from Fig-
ure 4.18, four evaporation cases with different Stefan numbers are presented.
Cases with a large Stefan number experience faster evaporation, and a good
agreement between the numerical and the corresponding solution of the analyti-
cal model is observed for all cases.

4.4.3 Droplet evaporation with vapour mass fraction
gradient evaporation model

The numerical set-up for modelling droplet evaporation at room temperature is
the same as for the two aforementioned evaporation models (refer to Figure 4.10).
In addition to prescribing the outflow boundary conditions, a Dirichlet boundary
condition for the vapour mass fraction field is applied on the boundaries except
for the symmetry boundaries.
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Figure 4.18: Validations for four cases with different Stefan number St (solid lines represent the
analytical solutions, and points represent the corresponding numerical data).

Essential parameters used in the simulations are listed in Table 4.1. The one-field
velocity field during the evaporation process is shown in Figure 4.19a where
a velocity jump can be seen around the interface region where the white line
represents the interface. The corresponding vapour mass fraction field is shown
in Figure 4.19b with the vapour mass faction at the top and right boundaries given
as constants prescribed by the Dirichlet boundaries conditions. The vapour mass
fraction gradient at the interface drives the droplet evaporation.

The shrinking droplet diameter D is recorded to quantitatively validate the evap-
oration model by comparing the diameter predicted by the numerical simulations
to the analytical solution given by the so-called D2 law [157]. Again, for the
droplet evaporation in a finite domain, the classical D2 law should be corrected
to take the computational domain size into account, and such a modified analyti-
cal model is adopted in this work [52]. This modified D2 law is given by

dD2

dt
=−

8ρgDv

ρl

ln(1+By)

ln(Ds/
√

D2)
, (4.41)
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where Ds is the diameter of the inscribed circle for the computational domain,
and By the Spalding mass transfer number defined as

By =
Y Γ−Y ∞

1−Y Γ
(4.42)

with Y ∞ being the vapour mass fraction far way from the droplet [157].
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Figure 4.19: (a) The one-field velocity field U of droplet evaporation at room temperature, (b) The
vapour mass fraction field of droplet evaporation at room temperature (white line repre-
sents the interface).

A parameter study on a wide range of evaporation temperatures was conducted
to validate the evaporation model. In Figure 4.20, the solid lines represent cor-
responding analytical solutions given by Eqn. 4.41 while the points represent
numerical solutions predicted by the evaporation model. Good agreement be-
tween numerical and analytical solutions are found for evaporation at relatively
higher temperatures (303.15 K, 313.15 K and 323.15 K). Some minor discrep-
ancy between the numerical and analytical solutions are found, especially for
evaporation at relatively low temperatures (283.15 K and 293.15 K). The under-
lying reason is that evaporation at lower temperatures is more susceptible to the
influence of un-physical spurious velocity.
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Figure 4.20: Validations for five cases with different evaporation temperatures (solid lines represent
the analytical solutions, and points represent the corresponding numerical data).

4.4.4 Droplet evaporation with contact line pinning

A 2D numerical demonstration is presented in this section to demonstrate the
performance of the Robin boundary condition implemented in this thesis to pin
the contact line. A 2D droplet with initial droplet radius of 50 µm resting on
a substrate with a length and a height of the computational domain of 300 µm
and 150 µm, respectively is shown in Figure 4.21. A outflow boundary condition
is applied on the boundaries except for the bottom wall on which the no-slip
boundary condition is applied. Additionally, the Robin boundary condition is
also applied at the bottom wall. The initial contact angle for the 2D droplet is
60◦. Adaptive mesh refinement is applied to refine the mesh around the free
surface to save computational cost as well as to capture free surface accurately
when the droplet height gets thin at the late stage of its evaporation.

The numerical results are shown in Figure 4.21, where the liquid volume fraction
field of four different stages is presented. The phase in red indicates the droplet,
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Figure 4.21: Four different stages of the liquid volume fraction fields during the evaporation process.

while the other phase in blue is the gas phase. Two vertical lines are drawn to
demonstrate the most initial contact points between the droplet and the bottom
wall. As can be seen from the image, the initial contact radius is firmly pinned
during the evaporation process. Furthermore, the spherical cap of the droplet is
maintained during its evaporating process and the free surface is accurately cap-
tured even in the final stage of the evaporation without interface diffusion. It
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proves that the Robin boundary condition incorporated in the i-CLSVoF frame-
work performs good in modelling droplet evaporation with contact line pinning,
and also captures free surface in a sharp way.

Furthermore, the velocity fields for droplet evaporation with contact line pinning
are shown in Figure 4.22. The velocity vector in the gas phase points out of
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Figure 4.22: Velocity fields of droplet evaporation with contact line pinning (white line represents
the interface): (a) velocity in the gas phase, (b) velocity inside the droplet.

the droplet, which indicates the velocity field of the vapour generated from the
droplet surface where the phase change occurs. The magnitude of the velocity
field around the triple contact line region is larger than that of elsewhere. This

99



4 Modelling droplet evaporation with the i-CLSVoF framework

indicates that the evaporation flux is larger around the triple contact line region.
The same conclusion can also be found in the literature for droplet evaporation
with contact line pinning [7, 8]. The internal velocity field inside evaporating
suspension droplet is of great importance in affecting the motion of particles
inside. From the numerical point of view, the velocity field inside the evaporating
droplet is demonstrated in Figure 4.22b. An internal capillary flow from droplet
center to its edge is found. The reason behind the lateral capillary flow is due
to the interplay between faster evaporation around the triple contact line region
and the surface tension. In an evaporating droplet with contact line pinning, the
mass loss around the triple contact line region must be replenished by the lateral
capillary flow induced by the surface tension acting on the droplet to maintain
its shape of a spherical cap during its evaporation process. The velocity fields
inside both liquid and gas phases of the numerical simulations further prove the
correct implementation of the Robin boundary condition to pin the contact line
for evaporating droplets.

4.5 Summary

The i-CLSVoF framework was further extended to model droplet evaporation,
especially for the micro-scale phenomena. A simple approach was proposed
and implemented to reconstruct a divergence-free velocity by removing the
evaporation-induced irrotational velocity from the one-field velocity field to pre-
dict the evaporation rate accurately. The constant mass flux evaporation model
was first incorporated into the i-CLSVoF framework to check the implementa-
tions of the basic equations. The numerical validations proved the successful
construction of the divergence-free velocity field. Besides, the model accurately
predicted the droplet evaporation as shown by comparing the shrinking dimen-
sionless droplet diameter to an analytical solution derived in this work. The in-
terface capturing of the i-CLSVoF was also demonstrated being accurate enough
by comparing the numerically captured free surface to the analytical solution,
where no spurious velocity induced interface deformation was found during the
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evaporation process. The thermally driven evaporation model was implemented
to account for the phase change induced by a temperature gradient. A novel
density-ratio dependent evaporation coefficient was used to calculate the mass
flux at the interface. The modified D2 law was used to validate the numerical
model, and a good agreement between the numerical solution and the analyti-
cal solution was achieved. Additionally, parameter studies were conducted to
demonstrate the accuracy of the thermally driven evaporation model for a wide
range of Stefan numbers. The third evaporation model incorporated in this chap-
ter describes the sessile droplet evaporation at room temperature. This model
can predict the evaporation rate accurately for different evaporation temperatures
while some minor discrepancy between numerical and analytical solutions is
found for relatively small evaporation temperature, which is considered accept-
able.

A Robin boundary condition based on the contact angle hysteresis is imple-
mented in i-CLSVoF framework to pin the mobile contact line when a droplet
evaporates. A 2D droplet evaporation case is presented in this chapter. The
contact line is successfully pinned for an evaporating droplet with initial contact
angle of 60◦. Large evaporation flux around the triple contact line region and
a lateral capillary flow are found with this newly implemented boundary condi-
tion. The numerical model developed in this chapter is applicable for modelling
evaporation not only with but also without contact line pinning.

As the next step, the i-CLSVoF framework is coupled to the DEM approach to
understand transport of particles inside evaporating suspension droplets. This is
detailed in the coming chapters, namely, Chapters 5 and 6.
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5 The improved resolved CFD-DEM
framework for multiphase system
with and without evaporation

Granular materials widely exist in our daily life (e.g. sugar, salt and coffee bins)
and industry (e.g. coal, sand and bearing balls). However, some granular mate-
rials are surrounded by fluids such as gases or liquids (e.g. pneumatic convey-
ing [158], fluidized beds [159], mudflow [160], capillary suspensions [161] and
more [38, 162, 163]). Computational modelling of these kinds of gas-liquid-solid
multiphase systems is of great importance for better understanding the complex
interactions among solid particles and between the solid phase (particles) and the
fluid phase (liquids or gases).

The DEM is capable of modelling the complex mechanical behaviour of solid
particles and the interactions between a particle and a wall. An extended DEM
approach, detailed in Chapter 2, has been developed in this thesis. The motion
of solid particles in different scales, namely macro-, meso- and micro-scale, can
be tracked by solving Newton’s second law of motion. CFD is generally used
to model the motion of fluids by solving the Navier-Stokes equations. The so-
called coupling approach, namely coupling CFD to DEM (CFD-DEM), is widely
used to model the complex interaction between solid and fluid phases, as will be
discussed now.

1 Part of this chapter with minor changes has been submitted to arXiv as a preprint [177].
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In this chapter, the resolved CFD-DEM approach is discussed. In the resolved
CFD-DEM approach, the motions of solid and fluid phases are governed by DEM
and CFD, respectively [46]. Modelling enables us to understand multiphase sys-
tems at different scales, and extensive parameter studies can be conducted to
investigate the influence of operating parameters at a lower cost. During the
past decades, the CFD-DEM approach has been widely used to computation-
ally model either compressible or incompressible particle-laden flow [164–166].
Hager et al. developed a simple method for smooth representation of the void
fraction field for multi-scale resolved CFD-DEM simulations [164, 167]. Pod-
lozhnyuk implemented the superquadric particles into the resolved CFD-DEM
[165]. Davydzenka et al. developed a resolved CFD-DEM model accounting for
the wettability of complex geometry in multiphase flow [168]. Blood flow with
irregular red blood cell particles was investigated within the resolved CFD-DEM
framework by Balachandran et al. [46]. Free surface flow with capillary interac-
tions was studied by Nguyen et al., where a capillary force model was developed
[169]. Flow with irregular particles constructed with multi-sphere clumps in an
incompressible free surface flow was investigated by Shen et al. [170]. Melting
of solid particles for selective laser melting was computationally modelled by an
improved resolved CFD-DEM approach developed by Yu et al. [45]. Schnorr
Filho et al. investigated the hydraulic conveying of solid particles through a nar-
row elbow with a resolved CFD-DEM model [39]. Free surface flow with su-
perquadric particles was investigated by Washino et al., with the capillary force
incorporated into the resolved CFD-DEM model [171].

A summary of numerical simulations and applications of existing resolved CFD-
DEM approaches is listed in Table 5.1. However, what can be seen from the table
is that a limited number of publications can be found related to model solid par-
ticles immersed in an incompressible flow that undergoes phase change or evap-
oration. Direct inkjet printing and spray coating involve complex solid-liquid
interactions, the phase change from liquid to vapour, surface tension and beyond
[26, 173]. Accordingly, developing such a numerical model accounting for addi-
tional phase change and surface tension is of great significance.
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Table 5.1: Summary and comparison among these applications of resolved CFD-DEM formulations.

Authors (publication year) Applications Surface tension Phase change
Hager et al. (2014) [164, 167] Multi-scale modelling No No
Podlozhnyuk et al. (2017) [172] Flow with superquadric particles No No
Davydzenka et al. (2020) [168] Multiphase flow in porous media Yes No
Balachandran Nair et al. (2021) [46] Blood flow in microfluidic devices No No
Nguyen et al. (2021) [169] Flow with capillary interactions Yes No
Shen et al. (2022) [170] Flow with irregular particles Yes No
Yu et al. (2021) [45] Selective laser melting Yes Yes
Schnorr Filho et al. (2022) [39] Hydraulic conveying No No
Washino et al. (2023) [171] Flow with non-spherical particles Yes No

In this chapter, an improved resolved CFD-DEM framework incorporating free
surface capturing, surface tension and phase change is developed by extend-
ing the resolved CFD-DEM model developed by Hager et al. [164, 167]. The
new resolved CFD-DEM framework is implemented in the open-source frame-
work CFDEMcoupling-PUBLIC [174] bridging the open-source DEM code
LIGGGHTS [92] and the open-source Finite Volume Method (FVM) based C++
library OpenFOAM [175]. The large-scale parallel computation and data ex-
change between the two codes are realized using the Message Passing Interface
(MPI) software [178].

5.1 Mathematical formulation

In this section, the theory and mathematical formulation of the resolved CFD-
DEM approach are introduced in detail. For the resolved CFD-DEM approach,
one solid particle usually occupies several CFD cells (see the inset on the top-left
of Figure 5.1). The void fraction field ε f is used to quantify how much volume
is not occupied by a solid particle in each CFD cell, because of which ε f = 0
means that a solid particle fully covers the current CFD cell. The free surface is
captured by the VoF method incorporated in the i-CLSVoF framework [176]. The
Fictitious Domain Method developed by Patankar et al. [179] was extended to
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Surface tension

LiquidGas

Figure 5.1: The schematic diagram of a surface-tension-dominant gas-liquid-solid multiphase system
with free surface.

incorporate the free-surface capturing, surface tension and evaporation for mod-
elling the complex multiphase system as demonstrated by Figure 5.1.

As shown in Figure 5.2, Ω is the whole computational domain, and Ω f and Ωs

are the liquid and solid phases, respectively. Γ and Γs denote the boundaries of
the whole computational domain and the solid particles immersed in the liquid,
respectively. The governing equations for the surface-tension-dominant incom-

Figure 5.2: The schematic diagram of the resolved CFD-DEM method. Arrows represent the vectors
of fluid velocity around particles, and circles in blue represent solid particles.
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pressible Newtonian flow are given by

∇ ·U = ε f ṁ(
1
ρg
− 1

ρl
) in Ω, (5.1)

∂ (ρU)

∂ t
+∇ · (ρUU) =−∇p+∇ ·

[
µ
(
∇U+(∇U)T )]+ρg+Fst in Ω, (5.2)

where ε f is the void fraction field. The incorporation of this term is to guaran-
tee that phase change does not occur inside solid particles. ṁ in the continuity
equation (Eqn. 5.1) is the mass source term per unit volume, where ṁ = 0 holds
for the case without evaporation or phase change only. Furthermore, some other
terms, e.g. pressure gradient ∇p and surface tension force Fst in the momentum
equation (Eqn. 5.2) are detailed in Chapter 3.

The governing equations and numerical method for the computational modelling
of droplet evaporation are detailed in Chapter 4. This section only mentions some
basic equations for modelling evaporation. The vapour mass fraction gradient
model introduced in Sect. 4.2.3 is used in this chapter. The vapour mass fraction
Y is solved from

∂Y
∂ t

+∇ · (Y U) = Dv∇
2Y, (5.3)

where Dv is the vapour diffusion coefficient. The mass source term ṁ in the
continuity equation (Eqn. 5.1) is calculated by

ṁ =
ρgDv∇ΓY nΓ

1−Y Γ
|∇αl |, (5.4)

where αl is the liquid volume fraction field solved from the VoF transport equa-
tion (Eqn. 4.2). Some other quantities (e.g. nΓ and Y Γ) and the numerical method
for the evaporation model are detailed in the previous chapters, e.g. Chapter 3
and Chapter 4.
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In the Fictitious Domain Method, additional boundary and interface conditions
are needed to be applied due to the presence of solid particles in the liquid phase
[180]. These additional conditions are given by

U = UΓ on Γ,

U = Ui on Ωs,

Σ ·n = tΓs on Γs,

U(x, t = 0) = U0(x) in Ω f .

(5.5)

Here, the subscript i indicates the ith particle and Σ is the total stress tensor as
discussed below, and n is the outward normal vector to Γs. tΓs is the traction
vector acting from the liquid phase on the surface of solid particles. The second
and third equations of Eqn. 5.5 are responsible for the coupling between liquid
and solid phases. Additionally, the second equation ensures the transfer of the
particle velocity Ui to the liquid velocity of CFD cells covered by the solid parti-
cle i. The third equation represents the force acting on the boundaries of the solid
phase.

Newton’s second law of motion governs the motion of solid particles. The equa-
tion for the translational motion is given by

mi
∂ 2xi

∂ t2 =
Np

∑
i=1

Fi j +mig+Fc
fp +Fcp, (5.6)

where mi and xi are the mass and position vector of the ith particle, respectively,
Fi j is the contact force between two DEM elements (particle-particle or particle-
wall) and Fc

fp the CFD-DEM coupling force acting on the solid particles by the
liquid phase. The last term on the right-hand side of Eqn. 5.6 is the capillary
force acting on solid particles, which is discussed in the next section in detail.
Besides, the rotational motion of solid particles is governed by

Ii
∂ 2θi

∂ t2 =
Np

∑
i=1

Mi j +Mc
fp +Mcp, (5.7)
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where Ii and θi are the moment of inertia and angular displacement of the particle
i, respectively. Mi j is the torque acting on particle i by some other particles
interacting with it. Mc

fp is the coupling term accounting for the torque acting on
the solid phase by the liquid phase. The last term Mcp on the right-hand side
of Eqn. 5.7 is the torque acting on the particle i due to capillary interactions.
Calculations of these terms are introduced in the forthcoming sections. Some
other contact models of the extended DEM approach are detailed in Chapter 2.

5.2 Numerical method

Calculations of interaction forces acting on the solid phase by the liquid phase
are of great importance for realizing the resolved CFD-DEM.

5.2.1 Calculations of the interaction forces and torque

The force acting on the solid phase by the liquid phase can be calculated by
integrating the third equation of Eqn. 5.5 over the whole solid surface as

Fc
fp =

∫
Γs

tΓs dS. (5.8)

The surface integral can be transformed to a volume integral using the divergence
theorem which leads to∫

Γs

tΓs dS =
∫

Γs

Σ ·n dS =
∫

Ωs

∇ ·ΣdV. (5.9)

The total stress tensor Σ in Eqn. 5.9 consists of two terms given by

Σ=−pI+ τ, (5.10)
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where p is the pressure and I the identity tensor of size 3× 3, while τ is the
viscous stress tensor. For incompressible Newtonian fluids, τ is deviatoric and
given by

τ = µ
(
∇U+(∇U)T) . (5.11)

Substituting Eqs. 5.9, 5.10 and 5.11 into Eqn. 5.8, the interaction force acting on
the solid phase can be calculated by

Fc
fp =

∫
Ωs

∇ ·ΣdV

=
∫

Ωs

∇ ·
[
−pI+µ

(
∇U+(∇U)T)] dV

=
∫

Ωs

∇ · (−pI)︸ ︷︷ ︸
=−∇p

+∇ ·
[
µ
(
∇U+(∇U)T)] dV.

(5.12)

As derived in the literature [120], for incompressible Newtonian fluids, the diver-
gence of the viscous stress tensor is given by

∇ · τ = ∇ ·
[
µ
(
∇U+(∇U)T)]= ∇ · (µ∇U)+∇U ·∇µ. (5.13)

In this chapter, one assumption is that the dynamic viscosity µ given by Eqn. 3.2
is constant, and thus Eqn. 5.13 leads to

∇ · τ = ∇ ·
[
µ
(
∇U+(∇U)T)]= µ∇

2U. (5.14)

Substituting Eqn. 5.14 into Eqn. 5.12, leads to

Fc
fp =

∫
Ωs

∇ ·
[
−pI+µ

(
∇U+(∇U)T)] dV =

∫
Ωs

(
−∇p+µ∇

2U
)

dV. (5.15)
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The volume integral in Eqn. 5.15 can be approximated by summarizing all the
cells either partially or fully covered by a solid particle as

Fc
fp ≈

Nc

∑
i=1

(−∇p+µ∇
2U)Vc, (5.16)

where Nc is the total number of cells, and Vc is the cell volume.

Similarly, the torque Mc
fp acting on particles by the liquid phase can be calculated

by

Mc
fp =

∫
Γs

r× tΓs dS =
∫

Ωs

r× (−∇p+∇ · τ) dV, (5.17)

where r is the position vector. Mc
fp is approximated by summarizing all these

quantities as

Mc
fp ≈

Nc

∑
i=1

r×
(
−∇p+µ∇

2U
)

Vc. (5.18)

The last terms on the right-hand side of Eqs. 5.6 and 5.7 are due to the capillary
interactions among particles protruding from the free surface of liquids. The
capillary force is of great importance for surface-tension-dominant flow because
capillary interactions govern the motions, e.g. leading to self-assembly or self-
organization of particles which appear at a free surface [182]. The capillary force
is a long-range attractive force which is more dominant than other forces, e.g.
inertial force and gravitational force for surface-tension-dominant cases. Thus,
this force is accounted for in this chapter.

As proven by Fujita et al. in the literature [182], the sum of the surface tension
force along the three-phase contact line ∂ s is equal to the sum of the surface
tension force over the virtual free surface fully immersed inside the solid particle
in three dimensions as shown in Figure 5.3.
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Virtual free surface
Free surface

Figure 5.3: The schematic diagram of the capillary force model. The virtual free surface is bounded
by the solid and dashed three-phase contact lines ∂ s.

The Immersed Free Surface model proposed in the literature [169, 171, 183] is
extended to account for the wettability of solid particles at a free surface in this
chapter. The basic idea is to solve the extrapolation equation

∂αl

∂ t
+ te ·∇αl = 0 (5.19)

in the true particle domain, namely, a domain with ε f < 0.5 to extrapolate the
free surface from the liquid phase inside solid particles [169]. In Eqn. 5.19, te is
the tangent vector to the liquid surface pointing towards the particle. It is used to
extend the liquid volume fraction and is defined by

te =
ns− (ne ·ns)ne

|ns− (ne ·ns)ne|
(5.20)

with ne being the normal vector to the liquid pointing inside the liquid, which is
given by

ne = nscosθ + tssinθ . (5.21)
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Here θ is the contact angle between the surface of the solid particle and the free
surface. The normal vector to the particle surface pointing inwards ns and the
unit vector ts perpendicular to ns are defined by

ns =
∇εs

|∇εs|
(5.22)

and

ts =
∇αl− (ns ·∇αl)ns

|∇αl− (ns ·∇αl)ns|
, (5.23)

respectively, where εs is the solid fraction defined by 1.0− ε f .

In addition to the extrapolation equation given by Eqn. 5.19, another model pro-
posed by Fujita et al. [183] is also implemented in this chapter. The first model
given by Eqn. 5.19 is named as Model A and the other model is called Model B.
The extrapolation equation of Model B is given by

∂αl

∂ t
+ εsns ·∇αl = εs|∇αl |cosθ . (5.24)

Solving a diffusion equation and then an anti-diffusion equation to smoothen the
liquid volume fraction field αl and simultaneously suppressing the interface dif-
fusion after solving Eqn. 5.19 or Eqn. 5.24 to guarantee more numerical stability
was proposed by Nguyen et al. [169]. In this chapter, a simple approach without
interface diffusion is applied, namely, the Laplacian filter approach proposed by
Lafaurie et al. [184] is adopted to transform te ·∇αl in Eqn. 5.19 or ns ·∇αl in
Eqn. 5.24 into a smoother function ˜te ·∇αl or ñs ·∇αl . The transformations for
te ·∇αl and ns ·∇αl are given by

˜te ·∇αl =
∑

n
f=1(te ·∇αl) f S f

∑
n
f=1 S f

, (5.25)

ñs ·∇αl =
∑

n
f=1(ns ·∇αl) f S f

∑
n
f=1 S f

, (5.26)
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respectively, where S f is the magnitude of the f th face area of the computational
cell which is bounded by n faces, and f denotes the face index. The value of (te ·
∇αl) f or (ns ·∇αl) f at the face center is calculated using linear interpolation over
the interface region. The smooth function is then used to solve either Eqn. 5.19
or Eqn. 5.24 to construct a smooth virtual free surface. An artificial correction of
the liquid volume fraction field αl given by

αl = max
(
0,min(1,αl)

)
(5.27)

after solving Eqn. 5.19 or Eqn. 5.24 is conducted to guarantee the boundedness
of αl . Artificial boundedness of the liquid volume fraction field inside the solid
phase by Eqn. 5.27 leads to mass conservation issues, namely, the total liquid vol-
ume in the whole computational domain is not conserved. A numerical correc-
tion step is then adopted to correct the liquid volume fraction in the liquid phase.
First, the total liquid volume of the pure liquid phase before solving Eqn. 5.19 or
Eqn. 5.24 denoted as Vbefore is calculated by

Vbefore =
∫

Ω

ε f αl dV. (5.28)

Second, the total liquid volume of the pure liquid phase after solving Eqn. 5.19
or Eqn. 5.24 is denoted Vafter is calculated by

Vafter =
∫

Ω

ε f αl dV. (5.29)

The volume loss of the pure liquid phase due to the evaporation Vevap is calculated
by

Vevap =
∫

Ω

ṁ
ρl

∆t dV, (5.30)

where ∆t is the time step, and ρl is the density of the liquid phase. Accordingly,
the volume change ∆V is computed by

∆V =Vafter−Vbefore−Vevap. (5.31)
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The liquid volume fraction field αl in the liquid phase (ε f > 0.5) can be corrected
by

αl = αl +
ε f ∆V |∇αl |

Ss
. (5.32)

Here, Ss is the total surface area of the pure liquid phase calculated by

Ss =
∫

Ω

ε f |∇αl |dV. (5.33)

The numerical procedure to construct the virtual free surface inside solid particles
using the Immersed Free Surface model is outlined as follows:

• Smoothening either te ·∇αl with Eqn. 5.25 or ns ·∇αl with Eqn. 5.26 before
solving Eqn. 5.19 for Model A and Eqn. 5.24 for Model B, respectively.

• Solving either Eqn. 5.19 or Eqn. 5.24 to construct a virtual free surface
inside solid particles.

• Using Eqn. 5.27 to correct and constrain the liquid volume fraction field
αl , artificially.

• Correcting the liquid volume fraction in the liquid phase with Eqn. 5.32.

Once constructing the virtual free surface inside solid particles as shown in Fig-
ure 5.3, the capillary force can be calculated by

Fcp =
∮

∂ s
σKnds, (5.34)

where ds is the infinitesimal integration area, and σ and K are the surface tension
coefficient and mean interface curvature, respectively. As derived in Appendix B
of [185], the surface integral over the immersed free surface S in Eqn. 5.34 can be
transformed into a volume integral enclosing the immersed free surface S shown
in Figure 5.3 given by

Fcp =
∫

Ωs

σKnδs dV, (5.35)
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where δs is a Dirac function discussed in Chapter 3. The term σKnδs can be
summarized by the surface tension force Fst. As suggested in the literature [169],
the capillary force can then be calculated over the true particle domain, namely
domain with ε f < 0.5 (see Figure 5.4) by

Fcp =
∫

Ωs
ε f <0.5

Fst dV. (5.36)

Similarly, the torque resulting from the capillary force can be calculated by

0.0

1.0

0.2

0.4

0.6

0.8

Figure 5.4: The void fraction field of a solid particle and the solid black curve represents the iso-
surface with ε f = 0.5.

Mcp =
∫

Ωs
ε f <0.5

r×Fst dV, (5.37)

once the surface tension force Fst is known.

However, some preliminary numerical simulations demonstrate that this ap-
proach suffers from un-physical spurious velocities inside solid particles, which
is also discussed in the literature [171]. Therefore, the filtered surface tension
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force model implemented and discussed in Chapter 3 is adopted here to calculate
the capillary force and the torque as

Fcp =
∫

Ωs
ε f <0.5

F f
st, f dV (5.38)

and
Mcp =

∫
Ωs

ε f <0.5
r×F f

st, f dV, (5.39)

respectively, where F f
st, f is the filtered surface tension force. Its numerical details

can be found in Chapter 3.

Alternatively, the term Fst in Eqs. 5.36 and 5.37 can be replaced by Fccf calculated
by the Continuous Capillary Force (CCF) model [186] which is given by

Fccf = σ tc(∇αl · ts)(∇εs ·ns), (5.40)

where tc is given by

tc =−
ns− (nc ·ns)nc

|ns− (nc ·ns)nc|
. (5.41)

In the resolved CFD-DEM approach, one solid particle covers several CFD cells,
and thus the void fraction ε f is of great importance in calculating Fc

fp, Mc
fp and

some other quantities, accurately. The smooth representation algorithm proposed
by Hager [167] is used in this chapter to create a smooth transition of the void
fraction around the particle surface. It is proven that this algorithm is more stable
and guarantees reasonable numerical accuracy.

5.2.2 The numerical procedure

In literature, an additional force term is incorporated to the right-hand side of
the momentum Eqn. 5.2 to account for the interaction force acting on the fluid
phase by the solid phase, which is known as the direct forcing approach [46, 171,
187, 188]. Instead of this, the numerical correction approach proposed in the
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literature as well [164, 165, 167] is used in the current chapter. The numerical
procedure to solve these equations mentioned above within the resolved CFD-
DEM framework and the numerical correction step to guarantee the divergence-
free condition of the velocity field are detailed below:

• First, an intermediate velocity field Û is solved from the Navier-Stokes
equations (Eqs. 5.1 and 5.2) over the whole computational domain. In this
step, the presence of solid particles in the CFD domain is not considered.

• Second, the intermediate velocity field Û in the CFD cells covered by a
solid particle is overwritten by imposing the particle velocity calculated
from the DEM side, explicitly. This leads to a new velocity field Ũ.

• In general, the new velocity field Ũ is not divergence-free. Thus, a numer-
ical correction step is further needed to correct this velocity. A Poisson
equation given by

∇
2
φr = ∇ · Ũ− ε f ṁ(

1
ρg
− 1

ρl
) (5.42)

is solved to update the velocity potential field φr. Another new velocity
after the numerical correction is defined as Ū given by

Ū = Ũ−∇φr. (5.43)

It can be proven that the new velocity field Ū is divergence-free:

∇ · Ū = ∇ ·
(
Ũ−∇φr

)
= ∇ · Ũ−∇ ·∇φr︸ ︷︷ ︸

=∇2φr

= ∇ · Ũ−∇ · Ũ+ ε f ṁ(
1
ρg
− 1

ρl
)

= ε f ṁ(
1
ρg
− 1

ρl
).

(5.44)
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Here the last term ε f ṁ( 1
ρg
− 1

ρl
) in Eqs. 5.42 and 5.44 results from the

phase change of the liquid phase, and this term is equal to zero when there
is no phase change.

• The velocity potential field φr is then used to correct the pressure field by

p = p̂+ρ
φr

∆t
, (5.45)

where p̂ is the pressure field solved from the Navier-Stokes equations
(Eqs. 5.1 and 5.2), ρ is the density field defined by Eqn. 3.2 and ∆t the
time step.

5.2.3 Coupling algorithm

The open-source framework CFDEMcoupling-PUBLIC [174] is extended to
implement the variable-density-based multiphase framework coupling CFD to
DEM. A new coupling solver named cfdemSolverVoFIB is developed in this
thesis. This new solver is capable of realizing the following functionality:

• Get particle data, e.g. particle coordinates, velocity and particle radius
from DEM.

• Identify CFD cells covered by solid particles and calculate the void fraction
ε f of each CFD cell.

• Correct the velocity field when solid particles are present in the liquid
phase.

• Calculate the fluid-solid interaction force, capillary force, etc.

• Give essential data to DEM, e.g. buoyancy, capillary force, fluid-solid
interaction force, etc.

• Repeat these steps mentioned above until the simulation ends.
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A detailed coupling algorithm between DEM and CFD for the resolved CFD-
DEM approach is shown in Figure 5.5. The solver cfdemSolverVoFIB con-
sists of three modules, namely, the CFD module, the DEM module, and the
data exchange and processing module as shown in Figure 5.5. OpenFOAM and

Force data 
from CFD

Particle data 
from DEM

Particle data 
for velocity 
corrections

Start

End

No

Yes

CFD Start

Solve CFD equations

i-CLSVoF module

Correct pressure & velocity

CFD End

Update position & velocity

DEM Start

No

Yes

Solve DEM equations

DEM End

Data exchange & processing

Get DEM data

Identify cell IDs

Set void fraction

Calculate forces

Give DEM data

Figure 5.5: The coupling algorithm for the resolved CFD-DEM approach.

LIGGGHTS are employed to conduct the CFD and DEM simulations, respec-
tively. In the resolved CFD-DEM simulations, DEM and CFD conduct their
simulations, separately, once the CFD-DEM simulation starts. In DEM, the gov-
erning equations (Eqs. 5.6 and 5.7) are solved to update the velocity, position
and other information for solid particles. These information is transferred to the
data exchange and processing module for further calculations as detailed below.
In CFD, the governing equations (Eqs. 5.1 and 5.2) are first solved to update an
intermediate velocity field, ignoring solid particles present in the liquid phase.
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The i-CLSVoF module is used to capture the moving free surface and calculate
the surface tension force.

The data exchange between DEM and CFD is crucial to realize the resolved
CFD-DEM coupling. The essential data, e.g. particle positions and velocities
calculated on the DEM side, are transferred to the data exchange and processing
module. Then, the CFD cells covered by solid particles can be identified, and the
void fraction for these CFD cells can be obtained. Furthermore, the particle-fluid
interaction forces can be calculated in the data processing module and then trans-
ferred to the DEM side to update particle data in the next cycle. Particle velocity
data from DEM is transferred to the CFD side, and the numerical correction step
is then used to correct the velocity field to satisfy the divergence-free condition
as discussed in Section 5.2.2.

The time-step size for stable DEM simulations is given by the Rayleigh time-
step given by Eqn. 2.7 in Chapter 2. The maximum time step for guaranteeing a
stable CFD simulation is given by Eqn. 3.31 in Chapter 3. The minimal coupling
interval for data exchange between DEM and CFD is defined by

ic =
∆tCFD

∆tDEM , (5.46)

which must be an integer. Increasing the coupling interval requires less compu-
tational cost; however, the coupled simulations may then not be accurate enough
as the latest data are not exchanged between DEM and CFD in time. The particle
data from DEM is used to calculate the void fraction, fluid-structure interaction
force, etc. These interaction forces are given back to DEM, and thus the interac-
tion forces acting on the solid phase by the fluid phase can be considered. DEM
and CFD go to the next loop once one data exchange is completed, and the whole
simulation ends until the prescribed total simulation time is reached.

121



5 The improved resolved CFD-DEM framework for multiphase system with and without
evaporation

5.3 Numerical validation

In this section, two benchmark cases are used to validate the resolved CFD-DEM
solver cfdemSolverVoFIB developed in this thesis. The first case compares the
drag coefficient calculated with the resolved CFD-DEM approach against a for-
mula. The other case is to compare the settling velocities and particle position
against the corresponding experimental results when a spherical particle settles
in liquids.

5.3.1 Validation of calculations of the drag coefficient

The schematic diagram for calculating the drag coefficient is shown in Figure 5.6.
A sphere falls down under the influence of gravity. The sphere is fully immersed

x

y

z

g

Figure 5.6: The schematic diagram of the numerical set-up for calculations of the drag coefficient.

in the liquid of a container, and the essential parameters for the numerical simula-
tions are listed in Table 5.2. The dynamic viscosity of the liquid in the container
significantly influences the sphere’s motion, and a wide range of Reynolds num-
bers can be achieved by varying the liquid dynamic viscosity. Seven numerical
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benchmark cases with different dynamic viscosities (refer to Table 5.3) are con-
ducted in this section.

The motion of a single sphere inside the container is governed by Newton’s sec-
ond law of motion given by

m
dU
dt

= Fg−Fb−Fd , (5.47)

where Fg, Fb and Fd are the gravitational force, buoyancy and drag force acting
on the sphere, respectively [86]. Substituting expressions of these force terms
into Eqn. 5.47, leads to

πρpD3
p

6
dU
dt

=
π(ρp−ρ f )D3

pg
6

− 1
8

CdπD2
pρ f U2, (5.48)

where Dp is the particle diameter, and ρp and ρ f are the density for the solid and
liquid phases, respectively.

Thus, the rate of change of particle velocity U with respect to time is given by

dU
dt

=−
3ρ fCd

4ρpDp
U2 +

ρp−ρ f

ρp
g. (5.49)

Table 5.2: Parameters for numerical simulations used to validate calculations of the drag coefficient.

Parameter Value [units]
Domain size (length, width, height) (20,20,60) [mm]

Particle diameter 2 [mm]

Particle density 3000 [kg/m3]

Liquid density 1000 [kg/m3]

Initial particle position (x,y,z) (10,10,50.5) [mm]
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Table 5.3: Dynamic viscosities for these seven different cases.

No. 1 2 3 4 5 6 7
µ [kg ·m−1 · s−1] 2.5 5×10−1 1×10−1 5×10−2 1×10−2 5×10−3 3×10−3

Typically, the particle velocity increases gradually and reaches a steady velocity,
known as the terminal velocity, when a particle settles in a fluid. Thus, the drag
coefficient Cd in Eqn. 5.49 can be calculated by

Cd =
4
3

ρp−ρ f

ρ f

|g|Dp

|Ut |2
, (5.50)

where |Ut | is the magnitude of the terminal velocity. Additionally, the particle
Reynolds number is given by

Re =
|Ut |Dp

ν
, (5.51)

where ν is the kinematic viscosity of the liquid.

Brown et al. corrected the drag coefficient by comparing the corrected formula

Cd =
24
Re

(1.0+0.15Re0.681)+
0.407

1+ 8710
Re

(5.52)

against extensive experimental data [189]. This corrected drag coefficient (de-
noted as Cd−Exp) is used to validate the drag coefficient calculations in this sec-
tion, while the drag coefficient calculated from the numerical simulations (with
Eqn. 5.50) is denoted as Cd−Num.

The comparison between the numerical drag coefficient and the corrected drag
coefficient given by the formula Eqn. 5.52 is shown in Figure 5.7. Good agree-
ment is obtained for a wide range of Reynolds numbers ranging from 10−3 to
103. The relative errors of calculating the drag coefficient are listed in Table 5.4
for the quantitative comparison. Calculations of the drag coefficient are more
accurate for the Reynolds number between 0.1 and 100. However, the accuracy
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Figure 5.7: Validations for calculations of the drag coefficient Cd .

Table 5.4: Terminal velocity and relative error for these seven validation cases.

Re [-] Terminal velocity [m/s] Cd −Num [-] Cd −Exp [-] Relative error [-]
0.0014 0.0017 18103.8062 17172.1450 0.0543
0.0304 0.0076 905.8172 800.4452 0.1316
0.7120 0.0356 41.2827 37.7199 0.0945
2.6400 0.0660 12.0110 11.7323 0.0238
32.3600 0.1618 1.9985 1.9306 0.0352
81.2000 0.2030 1.2696 1.1848 0.0716

154.4667 0.2317 0.9746 0.8837 0.1029

of the model needed to be improved for high Reynolds numbers, namely when
Re is larger than 100. This relatively large discrepancy for simulations with high
Reynolds numbers was reported in the literature as well [39, 170].

5.3.2 Single particle settling

The experimental study and corresponding numerical simulations of single par-
ticle settling in viscous liquids were conducted by Ten Cate et al. [190]. The
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experimental set-up for the single particle settling is a spherical bearing ball with
a diameter of 15 mm, and a density of 1120 kg/m3 which settles in a container
(length × width × height= 100×100×160 mm) under the influence of gravity
(g = 9.81 m/s2 in the vertical direction). The sphere is fully immersed in the liq-
uid before it starts to fall, and the initial separation distance between the sphere
center and the bottom wall of the container is 120 mm. The sphere experiences
acceleration at the beginning and then decelerates when it approaches the bottom
wall. This scenario is suitable for validating the numerical implementations for
computing the fluid-solid interaction forces and the trajectory of the spherical
particle.

In this section, four cases with different liquid densities and dynamic viscosities
are considered to validate the numerical model developed in this chapter. These
essential parameters are detailed in Table 5.5. The number of cells of the base

Table 5.5: Parameters for the single particle settling simulations (data adopted from [190]).

Case No. Re [-] Liquid density [kg/m3] Dynamic viscosity [kg ·m−1·s−1]
1 1.5 970 0.373
2 4.1 965 0.212
3 11.6 962 0.113
4 31.9 960 0.058

mesh resolution is 40× 40× 64. Adaptive mesh refinement is used to guaran-
tee fine mesh resolution around the sphere and to allow a relatively coarse mesh
elsewhere to reduce computational cost while guaranteeing reasonable numerical
accuracy. The no-slip boundary condition is applied to the boundary of the con-
tainer. The time-step size for both DEM and CFD is 1.0 ×10−5, and a coupling
interval of one is used to exchange data between DEM and CFD.

The liquid velocity field for Re= 11.6 is shown in Figure 5.8. An elongated wake
can be seen from the simulation. The dimensionless gap height H/Dp between
the sphere and the bottom wall and the magnitude of the particle settling velocity
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in the vertical direction are recorded and compared against the corresponding ex-
perimental results. This comparison is shown in Figure 5.9. Figure 5.9a and Fig-
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Figure 5.8: The liquid velocity field of single particle settling simulation (Re = 11.6).
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Figure 5.9: Validations of the single sphere settling in liquids: (a) dimensionless sphere height, (b)
sphere settling velocity.

ure 5.9b are the dimensionless gap height and particle settling velocity, respec-
tively. The solid curves represent numerical results, while the points represent
experimental results adopted from the literature [190]. As shown in Figure 5.9b,
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the spherical particle first undergoes an acceleration phase and then decelerates
due to squeezing liquid between the sphere and the bottom wall when the particle
approaches the bottom wall. A good agreement can be found for these four dif-
ferent cases. Some minor discrepancies can be seen from Figure 5.9a, especially
when Re = 1.5. The reason is that the lubrication force is not negligible when
the gap between the particle and the bottom wall is small. Incorporating the lu-
brication force can be subject to future work which is not included in the current
chapter. Overall, these simulations demonstrate that the numerical implementa-
tion for the resolved CFD-DEM method is correct, and that the model is accurate
enough to capture the complex fluid-solid interaction and to predict the trajectory
of solid particles.

5.4 Application

The improved resolved CFD-DEM method developed in this chapter can be used
to model capillary-force-induced or evaporation-induced transport and agglomer-
ation of particles. In this section, some numerical benchmark cases are presented
to demonstrate the performance of the resolved CFD-DEM method with the cap-
illary interactions developed in this chapter.

5.4.1 Two particles moving along a free surface with
evaporation

The first simulation is to model the evaporation-induced deformation of the
meniscus between two spherical particles sitting on a substrate. The numeri-
cal set-up for the 3D simulation is shown in Figure 5.10, namely, two spherical
particles resting on a wettable substrate. The initial distance between centers of
the two particle is 1.3Dp (particle diameter). Periodic boundary conditions are
applied in x and y directions. The initial liquid height is higher than the particle
diameter. The outflow boundary condition is applied at the top to let vapour leave
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Figure 5.10: 2D schematic diagram of the numerical set-up for two particles moving along a free
surface with evaporation.

the domain freely. The constant contact angle and slip boundary conditions are
applied on the bottom wall. The specified contact angle between the spherical
particle and the liquid surface is 30◦, and a constant contact angle specified at the
bottom wall is 0◦. The constant mass flux evaporation model discussed in Chap-
ter 4 is adopted to model the evaporation of the liquid phase into the gas phase
with a constant evaporation rate in this section. To demonstrate the performance
of the capillary force model extended in this chapter, only the gravitational force,
buoyancy and capillary force are effective, while the particle-liquid interaction
force given by Eqn. 5.15 is not considered in the numerical simulation. The
essential parameters for this simulation are listed in Table 5.6.

Two particles gradually protrude from the liquid surface after evaporating some
liquid from the liquid surface, as shown in Figure 5.11. The vectors of the

(a) (b) (c)

Figure 5.11: Vectors of the particle velocity are represented by the yellow arrows during the evapora-
tion process: (a) pointing upwards, (b) pointing downwards, (c) pointing towards each
other.
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Table 5.6: Parameters for two particles moving along a free surface with evaporation.

Parameter [Units] Value
Liquid density [kg/m3] 10
Gas density [kg/m3] 1
Particle density [kg/m3] 25
Particle diameter [m] 1.0×10−6

Liquid viscosity [Pa · s] 1.0×10−3

Gas viscosity [Pa · s] 1.0×10−5

Surface tension [N/m] 0.072
CFD time step [s] 1.0×10−9

DEM time step [s] 1.0×10−9

Coupling interval [−] 1
Restitution coefficient [−] 0.5
Friction coefficient [−] 0.3
Contact angle (particle-interface) [−] 30◦, 45◦, 60◦

Contact angle (particle-wall) [−] 0◦

particle velocity point upwards during the early stage of evaporation (see Fig-
ure 5.11a). This is due to the upward capillary force acting on the two particles.
Then, the vectors of the particle velocity point downwards (see Figure 5.11b)
after evaporating more liquids. A concave meniscus between the two particles
gradually forms, which leads to attractive interactions between them, as shown
in Figure 5.11c. This attractive capillary force acting on the two particles makes
moving toward each other.

Three simulations with different contact angles, namely, 30◦, 45◦ and 60◦ are
presented in Figure 5.12. The key parameters for the solid and liquid phases can
be found in Table 5.6. For the very early stage of evaporation, the free surface
gradually decreases due to the mass loss and then contacts with the top of the
spheres. The virtual free surface inside the solid particles is concave upward,
as shown in the top row of Figure 5.12. More mass loss can be found around
the two particles when the contact angle increases from 30◦ to 60◦, as shown in
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Figure 5.12: Numerical simulations of two particles moving along the free surface for three different
specified contact angles.

the second row of Figure 5.12. Concave meniscus and a liquid bridge gradually
form around every two particles for the cases with contact angle θ = 30◦ and
θ = 45◦, while a flat meniscus is found for the case with a contact angle of 60◦,
as shown in the third row of Figure 5.12. These concave meniscuses lead to
attractive capillary forces and force each pair of particles to come closer to each
other. As the simulation continues, more liquid evaporates around two sides of
the computational domain, and the shape of the meniscus changes from concave
to convex, as demonstrated by the fourth and fifth rows of Figure 5.12. In all
three cases, particles gradually move towards each other during the evaporation
process. The liquid phase evaporates faster when the contact angle increases
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from 30◦ to 60◦. The same conclusion is also shown in Fig. 4 presented in the
literature [191].

5.4.2 Particle transport and accumulation in an
evaporating droplet with contact line pinning

In contrast to the aforementioned numerical simulations, the current numerical
benchmark case involves many particles inside an evaporating droplet with con-
tact line pinning. In principle, droplet evaporation with contact line pinning re-
sults in an internal capillary flow from the droplet center to the edge, as discussed
in Section 4.4.4. The radial capillary flow carries some suspended particles from
the droplet center to its edge and finally leads to some different particle deposition
patterns. Accordingly, the internal flow field is of great significance in affecting
particle transport and accumulation during the evaporation process, while in the
first numerical demonstration case as discussed in Section 5.4.1, the capillary
force is more dominant, and the internal velocity field does not play a significant
role.

In order to save computational cost and visualize the evaporation-induced particle
transport during the evaporation process, A 2D numerical simulation is adopted
in this section, namely, all the particles inside the evaporating droplet can only
move along the x and y directions. The numerical set-up is shown in Figure 5.13.
300 micro-sized spherical particles with a diameter of 1 µm are generated ran-

g

x
y

Figure 5.13: The schematic diagram of the numerical setup for 2D droplet evaporation with sus-
pended particles.
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domly inside a spherical cap with an initial contact angle of 45◦ and a radius
of 50 µm. The length and height of the computational domain are 300 µm and
150 µm, respectively. As the particle size is small, the Van der Waals force model
discussed in Section 2.2.2 is incorporated in this section to account for the non-
contacting attractive force acting on the solid particles during the evaporation
process. The parameters used in the simulation are listed in Table 5.7.

Table 5.7: Essential parameters for modelling particle transport inside an evaporating droplet.

Parameter [Units] Value
Liquid density [kg/m3] 10
Gas density [kg/m3] 1
Particle density [kg/m3] 250
Particle diameter [m] 1.0×10−6

Liquid viscosity [Pa · s] 1.0×10−3

Gas viscosity [Pa · s] 1.0×10−5

Surface tension [N/m] 0.072
Surface energy density [J/m2] 0.86×10−3

CFD time step [s] 1.0×10−12

DEM time step [s] 1.0×10−12

Coupling interval [−] 1
Restitution coefficient [−] 0.5
Friction coefficient [−] 0.3
Contact angle (particle-interface) [−] 30◦

Contact angle (particle-wall) [−] 0◦

The no-slip boundary condition is applied at the bottom wall to fix the contact
line during the evaporation process, and the outflow boundary condition is ap-
plied at the top to let vapour leave the domain freely. In order to speed up the
numerical simulations and mitigate the influence of un-physical spurious veloc-
ity on the internal flow field inside the evaporating droplet, the density of the
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liquid phase is scaled by 0.01. As mentioned in Chapter 4, the density-scaled
approach is also adopted in the literature [35]. A 2D axisymmetrical model was
used in the literature [35]; however, the non-symmetrical numerical configura-
tion, as shown in Figure 5.13, is used in this section. The reason is that the initial
particle packing for the DEM simulations is not axisymmetric.

Figure 5.14 shows snapshots of the numerical simulations. The surface in green
represents the free surface of the evaporating droplet. As the evaporation pro-

(a)

(b)

(c)

(d)

Figure 5.14: Snapshots of the numerical simulations of the four stages of particle deposition patterns
inside an evaporating droplet.
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ceeds, the initial contact radius between the sessile droplet and the substrate is
constant, and the droplet height decreases gradually. The red arrows indicate
the velocity vectors of particles. In the initial stage of the evaporation as shown
in Figure 5.14a, particles in the middle of the droplet tend to move downwards,
while particles around the two corners tend to move towards the triple contact line
region due to the radial capillary flow. As shown in Figure 5.14b, some particles
tend to agglomerate with their neighbouring particles around the free surface.
More and more particles are dragged towards the two corners of the evaporat-
ing sessile droplet as the evaporation proceeds, as shown in Figure 5.14c. Fig-
ure 5.14d shows agglomerations of particles around the triple contact line region,
while fewer particles are deposited in the middle of the droplet.

In this thesis, a simple yet helpful approach has been developed to calculate the
local packing fraction with the open-source Voronoi tessellation code Voro++
(refer to Appendix A.3). This approach is adopted to calculate the local pack-
ing structure and packing fraction for the particle assembly in this section. Fig-
ure 5.15 shows the local packing fraction for the particle deposition pattern shown
in Figure 5.14d. It demonstrates that a higher packing fraction can be found

0
0.1
0.2
0.3
0.4
0.5

Figure 5.15: The local packing fraction for the particle deposition pattern shown in Figure 5.14d.

around the two corners where much more particles are agglomerated.

This numerical benchmark case demonstrates that the resolved CFD-DEM model
can capture the complex particle-fluid, particle-particle and particle-wall inter-
actions when the liquid phase undergoes phase change from liquid to vapour.
Changing liquid parameters, e.g. the liquid viscosity, was found to alter particle
deposition patterns as discussed in the experimental work [5]. Thus, extensive
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numerical simulations with this resolved CFD-DEM model can be conducted to
understand the effect of some parameters on the resulting particle deposition pat-
terns.

5.5 Summary

In this chapter, the theory and numerical issues of the improved resolved CFD-
DEM approach are discussed. A variable-density resolved model is developed,
implemented and validated. An improved capillary force model has been imple-
mented into the open-source CFDEMcoupling-PUBLIC library. A correspond-
ing improved resolved CFD-DEM solver cfdemSolverVoFIB has been thus de-
veloped. The main contribution and improvements in this chapter are as follows:

• A variable-density resolved CFD-DEM model with free-surface capturing
has been developed.

• The evaporation models discussed in Chapter 4 have been incorporated
into the cfdemSolverVoFIB solver to model the gas-liquid-solid multiphase
system with evaporation of the liquid phase.

• An improved capillary force model with numerical smoothing has been im-
plemented to improve numerical stability issues when modelling capillary
interactions for solid particles moving at a free surface.

A brief comparison between the standard resolved CFD-DEM solver cfdem-
SolverIB implemented in the CFDEMcoupling-PUBLIC library and the cfdem-
SolverVoFIB developed in this chapter is outlined in Table 5.8. It turns out that
the new solver cfdemSolverVoFIB developed in this chapter extends the applica-
tions of the standard resolved CFD-DEM solver cfdemSolverIB.

Two numerical validation cases have been conducted to validate the resolved
CFD-DEM solver developed in this chapter. It is proven that the resolved CFD-
DEM solver predicts complex particle-fluid interactions with reasonable numer-
ical accuracy. Two numerical benchmark cases, e.g. two particles moving along

136



5.5 Summary

Table 5.8: Comparison between the standard cfdemSolverIB solver and the improved solver cfdem-
SolverVoFIB.

Model/Module cfdemSolverIB cfdemSolverVoFIB
Incompressible flow solver Yes Yes
Variable density No Yes
Free surface capturing No Yes
Surface tension No Yes
Capillary force No Yes
Evaporation of the liquid phase No Yes

a free surface with evaporation and evaporation-induced agglomerations of many
particles inside an evaporating droplet, have been presented in this chapter. It
demonstrates that the performance of the improved resolved CFD-DEM solver is
reasonably good in modelling gas-liquid-solid multiphase systems.
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The resolved CFD-DEM approach detailed in Chapter 5 can resolve the fluid-
solid interactions much more accurately. However, this approach is computation-
ally expensive and thus it is incapable of dealing with a large number of particles.
In engineering applications, e.g. civil engineering [160], pharmaceutical industry
[38], chemical engineering [43, 132] and so on, a large number of solid particles
are processed. Understanding the flow and complex interactions between the
solid and fluid phases is of great importance to further the development and con-
trol of these applications in industry, as well. In contrast to experimental studies,
computational modelling of these solid-fluid systems is capable of capturing and
visualizing detailed interactions between solid and fluid phases at lower expense,
which would be beyond the capability of experimental devices. The un-resolved
CFD-DEM approach was developed to understand the global behaviour of solid-
fluid systems with many particles [40]. This approach is not computationally as
costly as compared to the resolved model. Similar to the resolved CFD-DEM
method, the motion of the solid phase is calculated by the DEM, while locally
averaged Navier-Stokes equations govern the flow of the liquid phase. As shown
in Figure 6.1, the main feature is that a CFD cell contains several solid parti-
cles for the un-resolved CFD-DEM approach. In contrast, a solid particle covers
several CFD cells for the re-solved CFD-DEM method, as shown in Figure 5.2.
Thus, different numerical methods are needed to calculate solid-fluid interaction
forces for the un-resolved CFD-DEM approach.
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Figure 6.1: The schematic diagram of the un-resolved CFD-DEM approach. Arrows represent the
vectors of the local fluid velocity, and blue circles represent solid particles.

During the past few years, the coupled CFD-DEM approach was employed to
model some classical geotechnical problems, e.g. one-dimensional consolidation
and single particle settling in liquids [44]. Jing et al. developed a VoF-DEM
model for modelling free surface flow involving many particles with a large size
ratio of CFD cell size to particle size [36]. The effect of rolling friction on a
single spout fluidized bed was investigated using a CFD-DEM model by Goniva
et al. [84]. The flood fill method was proposed by Lu et al. to model bubble
dynamics in a fluidized bed, and various properties of bubbles can be obtained
with this novel method, simultaneously [192]. The un-resoled CFD-DEM was
adopted to study the flow behaviour of particulate suspensions. DLVO theory
was incorporated into an un-resolved CFD-DEM to understand the influence of
particle parameters on the property of suspension rheology [43]. An extended
CFD-DEM framework with a sub-grid viscosity model was developed by Blais
et al. to model the viscous solid-liquid mixing [85]. The adhesion of solid par-
ticles on the surface of microchannels was modelled with a CFD-DEM model,
which was extended to model in this way the fouling process [193]. The effect
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of wettability on the deformation of porous media was investigated using a CFD-
DEM model with free surface flow [194]. An improved interface smoothness
was developed to model gas-liquid-solid three-phase systems with free surface
capturing [195]. A new implicit algorithm was developed for improving stability
issues when calculating drag forces acting on solid particles, and the capability
of this new algorithm was proven by some numerical simulations related to flu-
idized beds [196]. A unified finite element CFD-DEM solver was developed,
proving that the new solver is faster and cheaper and can mitigate limitations of
conventional CFD-DEM models [197]. A summary of these un-resolved CFD-
DEM formulations and their applications are listed in Table 6.1. Little literature

Table 6.1: Summary and comparison among these applications of un-resolved CFD-DEM models.

Authors (publication year) Applications Surface tension
Goniva et al. (2012) [84] Fluidized bed No
Zhao et al. (2013) [44] Geotechnical problems No
Lu et al. (2015) [192] Bubble dynamics No
Smuts (2015) [43] Suspension rheology No
Jing et al. (2016) [36] Free surface flow with particles Yes
Blais et al. (2016) [85] Solid-fluid mixing No
Trofa et al. (2019) [193] Fouling in microchannels No
Davydzenka et al. (2020) [194] Multiphase flow in porous media Yes
Washino et al. (2021) [195] Three-phase flow Yes
Mori et al. (2021) [196] New algorithm for stable simulations Yes
El Geitani et al. (2023) [197] High-order CFD-DEM solver No

is found to be related to un-resolved CFD-DEM simulations with the incorpora-
tion of an efficient and accurate surface tension force model. However, modelling
gas-liquid-solid multiphase systems with surface tension is of great significance
to engineering applications, such as direct inkjet printing and spray coating.

In this chapter, the un-resolved CFD-DEM approach is extended for modelling a
surface-tension-dominant multiphase system with a large number of particles. In
such a gas-solid-liquid system, it involves the following complex interactions:

• Fluid-fluid interactions
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The interaction between two immiscible fluids is known as the two-phase
flow, and a moving interface separates the two fluids, typically known as
the gas and liquid phases. Some numerical methods, e.g. LS, VoF, and
phase field method, are proposed to capture the evolution and movement of
the free surface in the literature as discussed in Chapter 3. In this chapter,
the i-CLSVoF framework detailed in in Chapter 3 is adopted to capture the
free surface and compute the surface tension. The motion of fluid phases
is updated by solving the Navier-Stokes equations.

• Solid-solid interactions

The solid particles interact with their neighbouring particles when the solid
phase moves inside the liquid phase. The extended DEM approach detailed
in Chapter 2 is adopted in this chapter to model both contact and non-
contacting interaction forces between two interacting solid particles or one
particle interacting with a wall.

• Fluid-solid interactions

The movement of solid particles immersed in the fluid phase is driven by
the complex interplay among fluid drag force, pressure gradient force, vis-
cous force, capillary force, etc. Calculations of these fluid-solid interaction
forces are realized by coupling DEM to CFD. The algorithm of coupling
DEM to CFD, data exchange and numerical details are detailed in the com-
ing sections.

6.1 Mathematical formulation

In this section, some essential equations for realizing the un-resolved CFD-DEM
approach are discussed. The fluid phase is considered as a continuum phase
that is governed by the locally averaged Navier–Stokes equations, while the solid
phase is modelled as a discrete phase, which is governed by Newton’s second law

142



6.1 Mathematical formulation

of motion [86]. Accordingly, in DEM and CFD, two different sets of equations
are solved.

6.1.1 Governing equations of the fluid phase

In contrast to the governing equations of the immiscible two-phase flow discussed
in Chapter 3, for the un-resolved CFD-DEM approach, the governing equations
for the fluid phase are given by

∂ (ε f ρ f )

∂ t
+∇ · (ε f ρ f U) = ṁ, (6.1)

∂ (ε f ρ f U)

∂ t
+∇ · (ε f ρ f UU) = ε f ∇p+ ε f ∇ · τ + ε f ρ f g+ ε f Fst +Fc

pf. (6.2)

Here, ρ f is the one-field fluid density. ṁ on the right-hand side of Eqn. 6.1 is only
non-zero for the system with phase change. Additionally, ε f is the local fluid
volume fraction, and its calculation is detailed in the next section. p is the pres-
sure, τ the viscous stress tensor, Fst the surface tension, and Fc

pf the fluid-solid
momentum exchange term. The detailed expressions and formulations of these
aforementioned force models are discussed in the following sections. Derivation
of Eqs. 6.1 and 6.2 is detailed in the Appendix A.2.

For free surface capturing in the un-resolved CFD-DEM, the i-CLSVoF frame-
work detailed in Chapter 3 is extended to capture the sharp free surface. The
solid particle phase is present in the liquid phase, and thus the fluid void fraction
ε f is incorporated to account for the motion of the pure liquid phase by exclud-
ing the solid phase. As modification of Eqn. 3.6, the transport equation for the
un-resolved CFD-DEM model is given by

∂ε f α f

∂ t
+∇ · (ε f α f U) = 0, (6.3)

where α f is the liquid volume fraction field.
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6.1.2 Governing equations of the solid phase

The translational and rotational motions of solid particles are updated by solving
the equations

mi
∂ 2xi

∂ t2 =
Np

∑
i=1

(Fcon
i j +Fdlvo

i j )+mig+Fbro +Fcap +Fc
fp, (6.4)

Ii
∂ 2θi

∂ t2 =
Np

∑
i=1

Mcon
i j +Mcap +Mc

fp, (6.5)

respectively. Here, Fcap and Mcap are force and torque resulting from the capil-
lary force, respectively. Besides, Fc

fp is the fluid-particle interaction force acting
on solid particles by the fluid phase. Detailed discussion related to Fc

fp is pre-
sented in the next section. Formulas and details of some other force terms in
Eqs. 6.4 and 6.5 have been discussed in Chapters 2 (Section 2.2) and Chapter 5
(Section 5.2.1).

6.2 Numerical method

The numerical implementations for the improved un-resolved CFD-DEM model
are based on the CFDEMcoupling-PUBLIC library [92]. In addition, a new un-
resolved CFD-DEM solver, i.e. cfdemSolverVoFX is developed in this chapter.
The numerical method and algorithm to calculate fluid-particle interaction forces
and data exchange between DEM and CFD are detailed in this section.

6.2.1 Calculation of the interaction forces

In contrast to numerical calculations of fluid-particle interaction forces for the
resolved CFD-DEM model, the fluid cell is larger than the particle size for the
un-resolved CFD-DEM approach. Thus, numerical integration over the surface

144



6.2 Numerical method

of a solid particle used by the resolved CFD-DEM approach to calculate these
fluid-particle interaction forces is no longer possible. In the un-resolved CFD-
DEM approach, the fluid-particle interaction force, the volume fraction of the
solid phase, and the void fraction of the fluid phase are calculated by the so-
called volume-averaged method. Two sets of formulations, known as model A
and model B are widely used to describe the motion of the fluid phase. If the
pressure is shared between the solid and fluid phases, it is referred to be model
A. Otherwise, it is model B [40].

The fluid-particle interaction force Fc
fp in Eqn. 6.4 consists of the following force

terms given by
Fc

fp = Fdrag +FgradP +FviscF +Fcap, (6.6)

where Fdrag, FgradP, FviscF, Fcap are the drag force, pressure gradient force, vis-
cous force, capillary force term, respectively. Further force term, such as the
Basset force, the added mass force, and the lift force which can also be found in
the literature [86] are not considered here as they are considered negligible for
the numerical simulations presented in this chapter.

The pressure gradient force is calculated by

FgradP =−Vi∇p, (6.7)

where Vi is the volume of particle i, and p the fluid pressure. Similarly, the fluid
viscous force FviscF resulting from the fluid shear stress is calculated by

FviscF =−Vi∇ · τ, (6.8)

where τ is the viscous stress tensor. The capillary force acting on solid particles
is active when solid particles are immersed in interface cells. It is calculated by

Fcap = FstVi, (6.9)
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where Fst is the surface tension force discussed in Chapter 3 (Section 3.2.3). The
fluid drag force Fdrag is crucial in realizing the un-resolved CFD-DEM coupling.
The formula of drag force Fdrag is given by

Fdrag =
1
8

Cdπd2
ρ f |U f −Up|(U f −Up), (6.10)

where U f and Up are the fluid and particle velocity, respectively and d and ρ f

are the particle diameter and fluid density, respectively. Besides, Cd is the drag
coefficient for which several different corrections have been proposed in the lit-
erature [189, 198–201] as listed in Table 6.2. The drag coefficient is related to
the particle Reynolds number Re.

Table 6.2: Difference formulas for the corrections of the drag coefficient Cd

Model Formula (Cd =)

Stokes [198] 24
Re

Dallavalle [199]
[
0.63+ 4.8√

Re

]2

Wen and Yu [200]

{
24
Re (1.0+0.15Re0.687) Re≤ 1000
0.44 Re > 1000

Brown and Lawler [189] 24
Re (1.0+0.15Re0.681)+ 0.407

1+ 8710
Re

Haider and Levenspiel [201] 24
Re (1.0+0.1806Re0.6459)+ 0.4251

1+ 6880.95
Re

Extensive experimental data was collected by Brown et al., to compare it against
the five different corrections of the drag coefficient [189]. As shown in Fig-
ure 6.2, the Stokes drag correction only works well in the lower Reynolds number
range as shown in Figure 6.2b, while underestimating the drag coefficient when
the Reynolds number is larger than 1. Accordingly, Stokes’ correction is only
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Figure 6.2: Comparison between corrections of drag coefficient against the experimental data: (a)
global plot , (b) local plot.

applicable to very small Reynolds numbers. The correction of the drag coeffi-
cient proposed by Haider and Levenspiel is in best agreement with the extensive
experimental data adopted from the literature [189] for the whole range of the
Reynolds number (10−4−106). Thus, the drag coefficient corrected by Haider et
al. is adopted in this chapter to calculate the fluid drag force Fdrag.
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According to Newton’s third law of motion, the momentum exchange term Fc
pf

in Eqn. 6.2 can be calculated by summarizing the reaction forces acting on all
particles by the fluid phase inside one CFD cell:

Fc
pf =−

∑
Np
i Fc,i

fp

Vcell
. (6.11)

Here Np is the number of particles inside the CFD cell and Vcell is the volume of
the CFD cell.

6.2.2 Calculation of the local fluid volume fraction

An accurate estimation of the fluid volume fraction is of great significance in
obtaining accurate results of the un-resolved CFD-DEM simulations, because
the fluid volume fraction appears in several equations, e.g. Eqn. 6.1, Eqn. 6.2
and Eqn. 6.3 of the un-resolved CFD-DEM approach. The local fluid volume
fraction ε f is defined as the volume of pure fluids divided by the volume of the
fluid cell and is given by

ε f =
Vcell−Vp

Vcell
, (6.12)

where Vp is the total volume for all the particles inside a fluid cell as shown in Fig-
ure 6.3. Two methods have been implemented in the CFDEMcoupling-PUBLIC
library, namely center and divided volume fraction models to calculate the local
fluid volume fractions [165]. In the center volume fraction model, only those
particles are accounted for in calculating the liquid volume fraction the centers
Xp,i of which are located in the fluid cell j. The local fluid volume fraction is
then calculated by

ε f = 1− ∑
Np
i=1 Vp,i

Vcell, j
. (6.13)

Here, Np is the number of particles either fully or partially located inside a fluid
cell. This method is easy to understand and implement but is not accurate enough.
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Figure 6.3: The schematic diagram of some solid particles immersed in an internal fluid cell.

As shown in Figure 6.4, four particles partially cover other fluid cells. The parti-
cle P1 is fully immersed in fluid cell C1, and the fluid volume fraction of cell C1
is correctly calculated. However, in fluid cells, C2 and C3, only some partition of
particles are detected. The partition in yellow is out of fluid cells where the center
of these particles locate. Thus, the center volume fraction model overestimates
the volume fractions in both cells C2 and C3. Two partitions of particle P3 and

C1

P1
P2

C2

C3 C4

P3

P4

Figure 6.4: The schematic diagram of the center volume fraction model.
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P4 locate in cell C4; however, the volume fraction of cell C4 is underestimated
as zero by the center volume fraction model.

The divided fluid volume fraction model is more accurate as an additional pa-
rameter known as the particle volume fraction αp,i ∈ [0,1] is used to calculate the
volume of particles located at boundaries of fluid cells as shown in Figure 6.4.
The liquid volume fraction calculated by the divided model is given by

ε f = 1− ∑
Np
i=1(αp,iVp,i)

Vcell
, (6.14)

where αp,i is one when the particle i is fully immersed in a fluid cell, e.g. particle
P1 as shown in Figure 6.4, and lower than one when particles are immersed in a
fluid cell, partially.

In order to calculate the particle volume fraction αp,i for particle i, the volume
of particle i is divided into Nsd = 29 non-overlapping sub-domains with the same
volume [165]. The center of each sub-domains is checked if it is inside the fluid
cell j, and then the particle volume fraction can be computed by

αp,i =
Nsum

Nsd
, (6.15)

where Nsum is the total number of sub-domain whose centers are inside the fluid
cell j. Thus, the divided volume fraction model predicts the liquid volume frac-
tion more accurately than the center model.
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6.2.3 Finite volume discretization of the governing
equations

Substituting ∇p=∇prgh+ρg+g·h∇ρ and ∇ ·
[
µ
(
∇U+(∇U)T

)]
=∇·(µ∇U)+

∇U ·∇µ (detailed derivation can be found in [120]) into Eqn. 6.2, leads to

∂ (ε f ρU)

∂ t
+∇ · (ε f ρUU) =

− ε f (∇prgh +g ·h∇ρ)

+ ε f ∇ · (µ∇U)+ ε f ∇U ·∇µ

+ ε f Fst +Fc
pf.

(6.16)

The volume integral of Eqn. 6.16 is given by∫
Ωi

∂ (ε f ρU)

∂ t
dV +

∫
Ωi

∇ · (ε f ρUU) dV︸ ︷︷ ︸
=
∫

∂Ωi
(ε f ρUU)·n dS

=−
∫

Ωi

ε f ∇prgh dV −
∫

Ωi

ε f g ·h∇ρ dV

+
∫

Ωi

ε f ∇ · (µ∇U) dV︸ ︷︷ ︸
=
∫

∂Ωi
(ε f µ∇U)·n dS

+
∫

Ωi

ε f ∇U ·∇µ dV

+
∫

Ωi

ε f Fst dV +
∫

Ωi

Fc
pf dV,

(6.17)

where the transformation from volume integral to surface integral is done by
using the divergence theorem.

As mentioned in Chapter 3, ∂Ωi is a closed surface bounding the control vol-
ume Ωi, and dS represents an infinitesimal surface element with unit normal n
pointing outwards of the surface ∂Ωi (ndS = dS).
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The temporal derivative term in Eqn. 6.17 is approximated by

∫
Ωi

∂ (ε f ρU)

∂ t
dV ≈

ε
n+1
f ,P ρ

n+1
P Un+1

P − εn
f ,Pρn

PUn
P

∆t
VP, (6.18)

where the superscript n represents the current time step at which the quantities
(e.g. Un

P) are known. The superscript n+1 denotes the quantities in the next time
step needed to be solved (e.g. Un+1

P ). Furthermore, VP is the volume of the cell.

The convection term in Eqn. 6.17 is approximated by converting the surface in-
tegral to a sum over all the faces given by∫

∂Ωi

(ε f ρUU) ·n dS≈∑(εn
f ρ

nUnUn+1) f ·S f = ∑ε
n
f Fn

f Un+1
f , (6.19)

where Fn
f is the mass flux calculated by

Fn
f = (ρnUn) f ·S f (6.20)

with S f being the face area vector.

The diffusion term is discretized as∫
∂Ωi

(ε f µ∇U) ·n dS≈∑(ε f µ∇Un+1) f ·S f = ∑ε f µ f (∇U)n+1
f ·S f . (6.21)

The pressure gradient term is numerically approximated by∫
Ωi

ε f ∇prgh dV =
∫

∂Ωi

ε f prgh dS≈∑ε
n
f , f pn

rgh, f S f . (6.22)
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The explicit expression for the predicted velocity field Un+1
P is given by

ε
n+1
f ,P ρ

n+1
P Un+1

P − εn
f ,Pρn

PUn
P

∆t
VP

+∑ε
n
f Fn

f Un+1
f =

∑ε
n
f µ f (∇U)n+1

f ·S f −∑ε
n
f pn

rgh, f S f .

(6.23)

The other missing terms in Eqn. 6.17, e.g. surface tension, gravitational force
and particle-fluid interaction force are incorporated into Eqn. 6.34, as discussed
below, which then becomes the discretized form of Eqn. 6.17 with all these terms
included.

The velocity field Un+1
f and pressure field pn+1

rgh, f on faces are calculated by the
numerical interpolations

Un+1
f =

Un+1
P +Un+1

N
2

, (6.24)

and

pn
rgh, f =

pn
rgh,P + pn

rgh,N

2
, (6.25)

respectively.

The first term εn
f µ f (∇U)n+1

f ·S f on the right-hand side of Eqn. 6.23 is calculated
by

ε
n
f µ f (∇U)n+1

f ·S f = ε
n
f µ f

(
(∇U)n+1

f ·
S f

|S f |

)
· |S f |, (6.26)

where (∇U)n+1
f · S f

|S f |
is the face normal gradient, and is approximated by

(∇U)n+1
f ·

S f

|S f |
≈

Un+1
N −Un+1

P
|d|

, (6.27)

where d is the distance vector between the current cell P and the neighbour cell
N.
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Substituting these approximations (Eqs. 6.24, 6.25, and 6.27) into Eqn. 6.23,
leads to

ε
n+1
f ,P ρ

n+1
P Un+1

P − εn
f ,Pρn

PUn
P

∆t
VP

+∑ε
n
f Fn

f
Un+1

P +Un+1
N

2

= ∑ε
n
f µ f

Un+1
N −Un+1

P
|d|

|S f |

−∑ε
n
f

pn
rgh,P + pn

rgh,N

2
S f .

(6.28)

After some manipulations, Eqn. 6.28 leads to(
ε

n+1
f ,P ρ

n+1
P

∆t
+

1
VP

∑
εn

f Fn
f

2
+

1
VP

∑ε
n
f

µ f |S f |
|d|

)
Un+1

P =

−∑
1

VP

(
ε

n
f

Fn
f

2
− ε

n
f

µ f |S f |
|d|

)
Un+1

N

+ ε
n
f ,P

ρn
P

∆t
Un

P−
1

VP
∑ε

n
f

pn
rgh,P + pn

rgh,N

2
S f .

(6.29)

Eqn. 6.29 can be abbreviated as

APUn+1
P =−∑ANUn+1

N +Sn
P−

1
VP

∑ε
n
f

pn
rgh,P + pn

rgh,N

2
S f , (6.30)

where

AP =

(
ε

n+1
f ,P ρ

n+1
P

∆t
+

1
VP

∑
εn

f Fn
f

2
+

1
VP

∑ε
n
f

µ f |S f |
|d|

)
, (6.31)

AN =
1

VP

(
ε

n
f

Fn
f

2
− ε

n
f

µ f |S f |
|d|

)
, (6.32)

Sn
P = ε

n
f ,P

ρn
P

∆t
Un

P. (6.33)
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Eqn. 6.30 can be further changed to

APUn+1
P +∑ANUn+1

N = Sn
P− ε f ∇prgh,P− ε f g ·h∇ρP + ε f σk∇αP +Fc

pf, (6.34)

if all the other terms in Eqn. 6.16 are incorporated.

Dividing Eqn. 6.34 by AP, leads to

Un+1
P = HbyAn+1

P − 1
AP

(
ε f ∇prgh,P + ε f g ·h∇ρP− ε f σk∇αP +Fc

pf

)
, (6.35)

where HbyAn+1
P is given by

HbyAn+1
P =

1
AP

(
−∑ANUn+1

N +Sn
P
)
. (6.36)

Substituting Eqn. 6.35 to the continuity equation (Eqn. 6.1), the pressure equation
can be thus derived as

∇ ·
(

ε f

AP
∇pn+1

rgh

)
= ∇ ·

(
HbyAn+1

P +
1

AP
(ε f σk∇αn+1− ε f g ·h∇ρ

n+1 +Fc
pf)

)
.

(6.37)

The pressure field solved from the Eqn. 6.37 is used to correct the velocity field,
so that the velocity field can satisfy the continuity equation (Eqn. 6.1). The cor-
responding numerical correction is given by

U = HbyAP +
ε f
(
Fst−g ·h∇ρ−∇prgh

)
+Fpf

AP
. (6.38)

6.2.4 Coupling algorithm

Similar to the resolved CFD-DEM method, the basic idea behind the un-resolved
CFD-DEM coupling is also to run DEM and CFD simulations in parallel and ex-
change essential data between CFD and DEM for every coupling interval. How-
ever, numerical methods used to calculate the particle-fluid interaction forces for
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the un-resolved CFD-DEM method are different from that of the resolved CFD-
DEM method. The essential numerical steps for realizing the un-resolved CFD-
DEM coupling are outlined in Figure 6.5. Once the un-resolved simulation starts,

Get 
DEM data 

Data exchange 
& calculations

Identification of 
particles 

in fluid cells

Calculations of
void fraction, 

interaction forces, etc.

Give 
DEM data 

Give 
reaction forces 

Start

CFD End

CFD Start

i-CLSVoF module

Get reaction forces applied by particles

Correct pressure & velocity

Yes

No

End

DEM Start

DEM End

Contact detection

Update velocity & position 

Get particle-fluid interaction forces

Yes

No

Figure 6.5: The coupling algorithm of the un-resolved CFD-DEM model.

the DEM and CFD simulations are conducted by LIGGGHTS and OpenFOAM,
respectively. Some detailed numerical steps are listed below:

• First, calculate essential particle data, e.g. particle coordinates, particle
velocity and particle radius in DEM and then transfer these data to the data
exchange and calculations module, as demonstrated by the arrow with text
"Get DEM data" shown in Figure 6.5.

• Second, identify particles in each CFD cell and then calculate the void
fraction for each CFD cell, once receiving these essential data from DEM.
This is conducted by the data exchange and calculations module.
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• Third, calculate the fluid-particle interaction forces, e.g. drag force, pres-
sure gradient force, viscous force and capillary force also in the data ex-
change and calculations module.

• Fourth, receive these fluid-particle interaction forces for DEM and then
solve the governing equations of DEM to update particle data for the next
computational loop. This is known as "give DEM data" as shown by the
arrow with text "Give DEM data".

• Fifth, calculate the reaction forces acting on the fluid phase by particles
according to Eqn. 6.11. Incorporation of the reaction forces into the gov-
erning equations of CFD is realized by the "Give reaction forces" module
as shown in Figure 6.5 and then solve these equations to update the motion
of the fluid phase.

• Finally, repeat these steps mentioned above until the un-resolved CFD-
DEM simulation ends.

6.3 Numerical validation and application

Three classical benchmark cases, e.g. single particle settling in viscous liquids
[36, 44], one sphere settling from the air phase to the liquid phase [36, 44, 132]
and dam break with particles [36, 132] widely used in the literature are adopted to
validate the extended un-resolved CFD-DEM method developed in this chapter.

6.3.1 Single particle settling in viscous liquids

A spherical solid particle moving downwards in a viscous liquid under the influ-
ence of gravity is widely adopted to validate the implementation for calculating
the fluid-solid interaction force in the literature [36, 132, 202]. According to the

157



6 The improved un-resolved CFD-DEM framework for gas-liquid-solid multiphase flow

derivation in Chapter 5, Eqn. 5.49, the rate of change of particle velocity versus
time is given by

dU
dt

=−
3ρ fCd

4ρpDp
U2 +

ρp−ρ f

ρp
g. (6.39)

Here, Cd is the drag coefficient, and the corrected formula by Haider et al. [201]
is used in this section. Thus, Eqn. 6.39 can only be solved numerically to update
the particle velocity and position. A python script attached in the Appendix Code
list A.5 is used to solve this ordinary differential equation numerically.

Six different numerical simulations were conducted to validate the capability of
the un-resolved CFD-DEM model for a wide range of Reynolds numbers. The
varying quantity for the six different cases is the fluid dynamic viscosity µ f which
leads to different terminal velocities |Ut |. Fluid dynamic viscosities, terminal
velocities and Reynolds numbers are listed in Table 6.3. The comparison be-

Table 6.3: Parameters for these six different cases.

Case No. 1 2 3 4 5 6
µ f [Pa · s] 1×10−2 5×10−3 2.5×10−3 1×10−3 5×10−4 1×10−4

|Ut | [m/s] 0.0673 0.0977 0.1308 0.1764 0.2102 0.2577
Re [−] 6.73 19.54 52.32 176.40 420.40 2577.00

tween numerical results and the corresponding analytical solutions are shown in
Figure 6.6. The predicted particle velocities are in good agreement with their
corresponding analytical results from Eqn. 6.39 as shown in Figure 6.6a. The
minor discrepancy for the smallest Reynolds number is found before reaching
the plateau. The discrepancy is due to an assumption underlying the analytical
result given by Eqn. 6.39, namely, that the fluid velocity U is zero during the
whole process. However, the four-way coupling, namely, accounting for inter-
actions between particle-particle, particle-wall, particle-fluid and fluid-particle is
adopted in the un-resolved CFD-DEM model implemented in this chapter. Thus
the movement of the sphere in the liquid phase leads to non-zero velocity fields U
for the liquid phase in these numerical simulations. On the other hand, the influ-
ence of particle movement on the liquid velocity can be negligible for simulations
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Figure 6.6: Validations of the single sphere settling in viscous liquids: (a) particle velocity, (b) parti-
cle position (solid curves: solution from Eqn. 6.39, dots: numerical solution from simu-
lations).

with larger Reynolds number, as can be seen from the very good match between
the analytical result from Eqn. 6.39 and the CFD-DEM solution in Figure 6.6a.
The particle positions are in perfect agreement with the numerical solution of
Eqn. 6.39 for all six cases, as demonstrated in Figure 6.6b.

6.3.2 Single particle settling from air to liquid

In the second benchmark case, a spherical sphere with its diameter of 1 mm and a
density of 2500 kg/m3 starts to fall down from a height of 0.02 m over the liquid
surface as shown in Figure 6.7. This is a classical benchmark case widely used in
the literature [36, 44, 202]. The sphere experiences free falling, then goes through
the liquid surface, and finally hits the bottom of the container. The evolution of
the particle velocity when it moves downwards in both gas and liquid phases can
be updated by solving Eqn. 6.39. In the first stage, i.e. the particle falls down
in the gas phase, the gas density and viscosity are used to solve Eqn. 6.39, while
the liquid density and viscosity are used when the particle moves in the liquid
phase for the second stage. As shown in Figure 6.8, the particle accelerates in the
gas phase, and then its velocity decreases gradually until it reaches its terminal
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Figure 6.7: The schematic diagram of a single particle settling from air to liquid.
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Figure 6.8: Validations of the single sphere settling from the gas phase to the liquid phase: (a) particle
velocity, (b) particle position (solid curves: analytical solution, dots: numerical solution).

velocity when it moves downwards in the liquid phase. Both particle settling
velocity as shown in Figure 6.8a and position as shown in Figure 6.8b are in
perfect agreement with the corresponding solution of Eqn. 6.39 for both the first
and second stages. It proves that the un-resolved CFD-DEM method presented in
this chapter can predict complex solid-particle interactions accurately when the
solid particle moves from one phase to the other.
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6.3.3 3D dam break simulations with particles

The third benchmark case involves 3883 spherical particles with the mean diam-
eter of 2.7 mm. The numerical set-up of the 3D dam break simulation is shown
in Figure 6.9, and the size of the computational domain is 0.1 m×0.2 m×0.3 m

x

z

front position

remaining
height

Figure 6.9: The schematic diagram of the 3D dam break simulation with particles and the 3D surface
in red indicates the initial free surface of the water column. The inset demonstrates a 2D
sketch of the evolution of the free surface.

(width × length × height). No-slip boundary conditions are applied at the walls.
A water tank with a width of a = 0.05 m and a height of 0.1 m is located at the
bottom-right corner of the computational domain. The particles are generated
randomly at the bottom-right corner of the computational domain as well. The
water column collapses when releasing the water tank, and the remaining height
(shown in the inset of Figure 6.9) of the water column in the z direction and the
front position in the x direction are recorded to compare against the experimental
results reported in the literature [132].

These essential parameters used in the 3D un-resolved CFD-DEM simulation
are listed in Table 6.4. Additionally, three dimensionless quantities are defined in

this section, namely, the dimensionless time t∗= t
√

2g
a , dimensionless remaining
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Table 6.4: Parameters for 3D dam break simulations.

Parameter [Units] Value
Liquid density [kg/m3] 1000
Gas density [kg/m3] 1
Liquid viscosity [Pa · s] 1.0×10−3

Gas viscosity [Pa · s] 1.0×10−5

Surface tension [N/m] 0.07
Size of fluid cell [m] 0.005
CFD time step [s] 5.0×10−5

DEM time step [s] 1.0×10−5

Restitution coefficient [-] 0.9
Friction coefficient [-] 0.3
Coupling interval [-] 5

height Z∗= Z
a and dimensionless front position X∗= X

a to compare the numerical
results against the corresponding experimental measurements [132].

The evolution of the liquid column and movement of solid particles for four dif-
ferent stages are shown in Figure 6.10. The left column of Figure 6.10 demon-
strates the experimental results at t = 0.1 s,0.2 s,0.3 s,and 0.4 s, respectively.
The right column shows the corresponding numerical results. The color bar
shows the particle velocity, and the surface in red indicates the iso-surface of the
liquid volume fraction field αl . For these four stages, numerical simulations are
in good agreement with experimental validations. The solid phase moves slower
than the front wave of the liquid phase during the early stage of the simulation,
namely, t < 0.2 s. Then, the front wave of the liquid phase hits the left wall in
the second stage of the simulation. The solid particles spread over the bottom
wall under the influence of liquid-driven forces. In the third stage, the front wave
of the liquid phase at the left wall increases gradually, and some solid particles
are lifted over the bottom wall. Finally, the front wave of the liquid phase starts
to decrease when it reaches the highest position at the left wall, as shown in the
fourth stage of the simulation.
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Figure 6.10: Comparison between experimental (left column) and numerical (right column) results
at t = 0.1 s,0.2 s,0.3 s and 0.4 s, respectively. The color of the particles indicates the
magnitude of particle velocity, and red indicates high velocity, while blue indicates low
velocity. The 3D surface in red indicates the free surface of the liquid phase.

For the quantitative comparison, the normalized positions of the front wave in
X (at the bottom wall) and Z (at the right wall) directions as shown in the inset
of Figure 6.9 are recorded. The position of the front liquid wave is in good
agreement with the experimental results reported in the literature [132] as shown
in Figure 6.11a. A minor discrepancy is found in the Z direction and at a late stage
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in the X direction, namely, the numerical model overestimates the movement of
the front wave. The reason is that a gate in the experimental study to release the

0

1

2

3

4

5

0 1 2 3 4

N
or

m
al

iz
ed

 p
os

it
io

n

Dimensionless time

Numerical-X*
Numerical-Z*

Experimental-X*
Experimental-Z*

(a)

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

N
or

m
al

iz
ed

 p
os

it
io

n

Dimensionless time

Numerical-X* (three phase)
Numerical-Z* (three phase)

Sun-X* (two phase)
Sun-Z* (two phase)

(b)

Figure 6.11: Validation of the un-resolved CFD-DEM model: (a) comparison between numerical
and experimental data, (b) comparison between three-phase (gas-solid-liquid) and two-
phase (gas-liquid) simulations (data of two-phase simulations are adopted from [132]).

water tank before starting the experiment is missing in the numerical simulation.
Instead of such a gate, sudden release is assumed in the numerical simulation
for simplicity, lead to a faster decrease at the right wall (Z direction) and faster
movement at the bottom wall (X direction) of the liquid wave.

Furthermore, two-phase simulations of a 3D dam break simulation without par-
ticles are adopted from the literature [132] for comparison to the three phase
simulations calculated here. This comparison is to understand the influence of
the solid phase on the motion of the liquid phase. A good agreement is found in
the Z direction, however, an discrepancy is found in the X direction, as shown in
Figure 6.11b. The reason behind the discrepancy is that the movement of solid
particles on the bottom wall in the multiphase system hinders the movement of
the front wave compared to the two-phase system without solid particles.
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6.4 Summary

In this chapter, an improved, un-resolved CFD-DEM solver cfdemSolverVoFX
has been developed and implemented in the open-source code CFDEMcoupling-
PUBLIC. The theory, equations, and numerical method for the un-resolved CFD-
DEM approach are detailed in this chapter. The main contribution of this chapter
to improve the un-resolved CFD-DEM model is as follows: The improved sur-
face tension force model and the sharp free surface capturing approach developed
in Chapter 3 have been incorporated into this un-resolved CFD-DEM model. An
improved drag force model has been implemented to calculate the drag force for
a very wide range of Reynolds numbers, accurately.

Numerical validations have been conducted to validate the un-resolved CFD-
DEM model, e.g. single particle settling in viscous liquids and one particle set-
tling from the gas to the liquid phase. Good agreement can be found in these
numerical validations, demonstrating that the un-resolved CFD-DEM model ex-
tended in this chapter can accurately calculate solid-particle interaction forces. A
numerical demonstration presented in this chapter is modelling a classical 3D
dam break simulation widely adopted in the literature. Comparison between
numerical and experimental results proves that the un-resolved CFD-DEM ap-
proach can predict the solid-particle interactions for a multiphase free surface
flow with around 4000 solid particles well.

Incorporating the evaporation models for the liquid phase discussed in Chapter 4
into the un-resolved CFD-DEM model is one of the future topics. Computational
modelling of multiphase gas-liquid-solid systems with the evaporation of the liq-
uid phase and also involving many micro-sized particles is fairly challenging.
However, developing such a numerical model is of great significance in many en-
gineering applications. Potential applications of such an un-resolved CFD-DEM
method with evaporation are, e.g. direct inkjet printing, thin film evaporation of
suspensions and spray coating.
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The main goal of the present thesis is to develop an efficient CFD-DEM frame-
work to computationally model the surface-tension-dominant gas-liquid-solid
multiphase free surface flow with and without evaporation of the liquid phase. In
the present thesis, two improved CFD-DEM coupling methods, namely, resolved
and un-resolved CFD-DEM methods, have been developed and validated. The
theory, numerical method and numerical issues and details have been discussed
in this thesis. Some numerical benchmark cases are conducted to demonstrate
the applications of CFD-DEM methods. The main contributions of this thesis are
listed below:

• The extended DEM

Non-contacting surface forces, e.g. Van der Waals, electrostatic and DLVO
forces, and one random force called Brownian force, have been detailed in
the second chapter of this thesis. These force models have been imple-
mented into the open-source DEM code LIGGGHTS-PUBLIC. Thus, an
in-house extended DEM library named LIGGGHTS-XIA has been devel-
oped for modelling granular materials in micro-scale or nano-scale. Some
essential numerical validations have been conducted. It proves that the ex-
tended DEM can accurately predict these non-contacting forces (Van der
Waals, electrostatic and DLVO forces) and the random force.

• The i-CLSVoF framework with and without evaporation

The i-CLSVoF framework has been developed in this thesis to model the
surface-tension-dominant flow with and without evaporation. In this i-
CLSVoF framework, the VoF approach is coupled to the LS method for
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capturing the sharp interface and improving calculations of the interface
curvature. Additional numerical filtering steps have been incorporated to
suppress un-physical velocities, which are challenging to reduce, espe-
cially, in micro-scale. The i-CLSVoF framework is implemented into the
open-source C++ library OpenFOAM. Numerical demonstrations, e.g. un-
physical velocities around spherical droplets and sessile droplets sitting on
a substrate with prescribed contact angles, demonstrate that the i-CLSVoF
framework has good performance in capturing a sharp free surface and
in suppressing un-physical velocities for a large density ratio, i.e. around
1000 between the liquid and gas phases.

Three different evaporation models have been implemented into the i-
CLSVoF framework for modelling phase change of the liquid phase. A
velocity-potential-based approach has been implemented to reconstruct a
divergence-free velocity field for advecting the free surface when there is
a phase change. Extensive numerical validations prove that these evapora-
tion models can predict the evaporation rate accurately. A Robin bound-
ary condition has been incorporated to model the evaporation of sessile
droplets with contact line pinning. The numerical benchmark case shows
that an internal capillary flow from the droplet centre to its edge can be
seen when fixing the contact line during the evaporation process of a ses-
sile droplet.

• The resolved CFD-DEM method

An extended resolved CFD-DEM method has been developed to resolve
flow fields around solid particles accurately. One contribution to the re-
solved CFD-DEM method is incorporating the aforementioned evaporation
models into the resolved CFD-DEM method. The other one is modelling
the capillary interactions for particles floating around the free surface with
a newly extended capillary force model. Numerical validations have been
conducted to validate the resolved CFD-DEM method. The results prove
that the resolved CFD-DEM method developed in this thesis can predict
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particle-fluid interactions accurately. Some additional numerical demon-
strations have been investigated to show the performance of the resolved
CFD-DEM method in modelling the evaporation-induced particle transport
and accumulations of solid particles.

• The un-resolved CFD-DEM method

For modelling large-scale numerical simulations with many particles, the
un-resolved CFD-DEM method has been extended in this thesis. The i-
CSLVoF framework has been adopted in this part to capture the free sur-
face and to calculate the surface tension force. An improved drag force
model, which is applicable to a very wide range of Reynolds numbers, has
been implemented. The single particle settling benchmark case has been
adopted to validate this newly incorporated drag force model. It proves
that the new drag force model accurately predicts the particle-fluid inter-
action force. An additional 3D dam break benchmark case shows the per-
formance of the un-resolved CFD-DEM method developed in this thesis
in realizing the so-called four-way coupling between the solid and liquid
phases. The 3D dam break simulation shows good agreement with the cor-
responding experimental studies. It proves that the un-resolved CFD-DEM
method extended in this thesis has good performance in capturing complex
particle-fluid interactions with reasonable numerical accuracy and lower
computational cost.

Although the numerical models and framework developed in the present thesis
demonstrate good performance, there are some numerical limitations which can
be fixed in future work. Accordingly, some future work and directions are ad-
dressed below:

• The geometric VoF for the free surface capturing

The algebraic VoF approach is adopted in this thesis. As an alternative, a
relatively new interface capturing method, i.e. the geometric VoF method,
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is suggested for capturing the free surface with explicit interface recon-
struction and without interface diffusion. Some promising results pro-
duced with the geometric VoF approach can be found in the literature
[106, 203, 204]. Consequently, incorporation of the geometric VoF into the
i-CLSVoF framework can be further work. Un-physical spurious velocities
become large when using adaptive mesh refinement with the i-CLSVoF
framework, especially when the contact angle of a droplet is larger than
90◦. Further numerical developments and implementations of improved
numerical methods could be conducted to fix the numerical issues of this
part.

• CFD-DEM simulations with superquadric particles

In this thesis, ideally spherical particles are used for the CFD-DEM sim-
ulations; however, the majority of particles are non-spherical in the real
world. The superquadric particles were implemented in LIGGGHTS by
Podlozhnyuk et al. [172]. Accordingly, developing a CFD-DEM frame-
work accounting for superquadric particles and incorporating free-surface
flow, surface tension, and phase change is significant for understanding
many other engineering applications.

• The un-resolved CFD-DEM method with evaporation

The un-resolved CFD-DEM framework discussed in Chapter 6 only ac-
counts for particle-fluid interactions without the evaporation or phase
change of the liquid phase. Further numerical implementations can be con-
ducted to incorporate the evaporation models detailed in Chapter 4 into the
un-resolved CFD-DEM framework. Direct inkjet printing is one promising
additive manufacturing technique, where many micro-sized solid particles
are involved in this application. The evaporation of suspension droplets
with and without contact line pinning leads to different particle deposition
patterns. Developing such an un-resolved CFD-DEM framework with ef-
ficient evaporation models helps further developments of the direct inkjet
printing technology.
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• The hybrid resolved and un-resolved CFD-DEM method

Combining resolved and un-resolved CFD-DEM methods has potential ap-
plications in modelling granular systems with large size ratios. The basic
idea is to calculate the flow around larger particles with the resolved CFD-
DEM method while to simulate the flow around smaller particles with
the un-resolved CFD-DEM method to save computational cost. Adaptive
mesh refinement is needed to refine the mesh around the big particles. De-
veloping such a hybrid numerical model is challenging but of great impor-
tance to computationally model some engineering applications with lower
computational cost and better numerical accuracy.
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A Appendix

A.1 Derivation of the VoF/LS equation

Derivation of the VoF/LS transport equation is detailed below. Here, the volume
fraction field α is taken as the tracked field. At time t1 and t2, the Eulerian de-
scriptions of α are denoted as α1(x1,y1,z1, t1) and α2(x2,y2,z2, t2), respectively.
The Taylor’s series of α2 is given by

α2 = α1 +
∂α

∂x
(x2− x1)+

∂α

∂y
(y2− y1)+

∂α

∂ z
(z2− z1)+

∂α

∂ t
(t2− t1), (A.1)

Eqn. A.1 is now divided by t2− t1, and then becomes

α2−α1

t2− t1
=

∂α

∂x
x2− x1

t2− t1
+

∂α

∂y
y2− y1

t2− t1
+

∂α

∂ z
z2− z1

t2− t1
+

∂α

∂ t
t2− t1
t2− t1

. (A.2)

Let u, v and w replace the following limits

u = lim
t2→t1

x2− x1

t2− t1
,v = lim

t2→t1

y2− y1

t2− t1
,w = lim

t2→t1

z2− z1

t2− t1
, (A.3)

respectively, when t2 approximates t1. Eqn. A.2 then becomes

dα

dt
= lim

t2→t1

α2−α1

t2− t1
= u

∂α

∂x
+ v

∂α

∂y
+w

∂α

∂ z
+

∂α

∂ t
=

∂α

∂ t
+U ·∇α, (A.4)

Eqn. A.4 is also the definition of the material derivative of α .
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The liquid volume fraction α f can be thus solved from the equation

∂α f

∂ t
+U ·∇α f = 0. (A.5)

Normally, the conservative form of Eqn. A.5 is widely used in the literature. It is
derived by adding α f ∇ ·U to both sides of Eqn. A.5, then leading to

∂α f

∂ t
+U ·∇α f +α f ∇ ·U︸ ︷︷ ︸

=∇·(α f U)

= α f ∇ ·U. (A.6)

The term on the right-hand side of Eqn. A.6 becomes zero only for incompress-
ible flow without phase change.

A.2 Derivation of equations for the
un-resolved CFD-DEM

A.2.1 Derivation of the continuity equation

In principle, the conservation of mass indicates that a region conserves its mass
locally in the absence of mass sources or sinks. The rate of mass change rate ṁ
is given by

ṁ =
1
V

d
dt

∫
V
(ε f ρ)dV, (A.7)

where ε f is the fluid void fraction field and ρ is the liquid density.

According to the Reynolds transport theorem, d
dt
∫

V (ε f ρ)dV can be given as a
sum of two integrals as

d
dt

∫
V
(ε f ρ)dV =

∫
V

∂ (ε f ρ)

∂ t
dV +

∫
S
(ε f ρU ·n)dS. (A.8)
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The surface integral in Eqn. A.8 can be transformed into a volume integral as∫
S
(ε f ρU ·n)dS =

∫
V

∇ · (ε f ρU)dV (A.9)

by applying the divergence theorem.

Substituting the volume integral of Eqn. A.9 into Eqn. A.8 leads to∫
V

∂ (ε f ρ)

∂ t
dV +

∫
V

∇ ·(ε f ρU)dV =
∫

V
[
∂ (ε f ρ)

∂ t
+∇ ·(ε f ρU)]dV = ṁV. (A.10)

Assuming validity of Eqn. A.10 for arbitrary volumes V , the continuity equation
for the un-resolved CFD-DEM is given by

∂ (ε f ρ)

∂ t
+∇ · (ε f ρU) = ṁ, (A.11)

where ṁ is only zero for the system without phase change.

A.2.2 Derivation of the momentum equation

The physics behind the momentum equation is governed by Newton’s second law
of motion given by

F =
d(mU)

dt
. (A.12)

Multiplying the terms on both sides of Eqn. A.12 by the void fraction ε f , Eqn.
A.12 then becomes

ε f F =
d(ε f mU)

dt
=

d
dt

∫
V
(ε f ρU)dV. (A.13)
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According to the Reynolds transport theorem, d
dt
∫

V (ε f ρU)dV can be given as a
sum of two integrals as

d
dt

∫
V
(ε f ρU)dV =

∫
V

∂ (ε f ρU)

∂ t
dV +

∫
S
(ε f ρUU ·n)dS. (A.14)

The surface integral in Eqn. A.14 can be transformed into a volume integral as∫
S
(ε f ρUU ·n)dS =

∫
V

∇ · (ε f ρUU)dV. (A.15)

Substituting the volume integral in Eqn. A.15 into Eqn. A.14 leads to∫
V

[
∂ (ε f ρU)

∂ t
+∇ · (ε f ρUU)

]
dV = ε f F =

∫
V

(
ε f

F
V

)
dV =

∫
V
(ε f f)dV,

(A.16)
where f is the volumetric body force term.

Assuming validity for arbitrary volumes V , Eqn. A.16 becomes

∂ (ε f ρU)

∂ t
+∇ · (ε f ρUU) = ε f f. (A.17)

In principle, for the un-resolved CFD-DEM approach, the volumetric body force
term consists of several force terms such as pressure gradient force, gravity, etc.
Here, f is given by

f =−∇p+∇ · τ−ρg+Fst, (A.18)

where Fst is the surface-tension force.

Finally, the complete form of the momentum equation for the un-resolved CFD-
DEM model is given by

∂ (ε f ρU)

∂ t
+∇ · (ε f ρUU) =−ε f ∇p+ ε f ∇ · τ− ε f ρg+ ε f Fst. (A.19)
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A.2.3 Derivation of the VoF equation

In order to derive the VoF equation for the un-resolved CFD-DEM model, it starts
with the material derivative of α f given by

Dα f

Dt
= 0. (A.20)

Replacing α f in Eqn. A.20 with ε f α f , leads to

Dε f α f

Dt
=

∂ε f α f

∂ t
+U ·∇ε f α f = 0. (A.21)

The conservative form of Eqn. A.21 is given by

∂ε f α f

∂ t
+∇ · (ε f α f U) = ε f α f ∇ ·U, (A.22)

where the term on the right-hand side of Eqn. A.22 becomes zero only for in-
compressible flow without phase change.

A.3 Voronoi tessellation for granular media:
calculations of the local packing fraction
with Voro++

Voronoi tessellation is used to calculate the local packing properties, e.g. the
local packing fraction and packing structures of either mono-disperse or poly-
disperse granular systems in this thesis. The local packing fraction φ f is defined
by

φ f =
Vs

Vc
, (A.23)
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Figure A.1: Schematic diagram of a sphere enclosed by its voronoi cell.

where Vs and Vc are the volume of the sphere and its voronoi cell, namely the
tetrahedron as shown in Figure A.1, respectively. The open-source Voronoi tes-
sellation code Voro++ is used to generate voronoi cells and calculate the volume
of each voronoi cell.

Two different cases are presented to demonstrate the performance of the Voro++
code in calculating the local packing fractions for the Simple Cubic Packing
(SCP) and Hexagonal Close Packing (HCP). The single layer of the SCP is shown
in Figure A.2, and the analytical solution of the packing fraction is given by

φ f
SCP =

Vp

Vc
=

4πR3

3
(2R)3 =

π

6
= 0.5236. (A.24)

The image on the right-hand side of Figure A.2 is the color map of the local
packing fraction of the SCP. It proves that the local packing fraction calculated
with Voro++ agrees well with the corresponding analytical solution.

Similarly, single layer of the HCP is shown in Figure A.3, and the periodic bound-
ary condition is applied along the horizontal direction. The analytical solution
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Figure A.2: (a) voronoi cells of the SCP, (b) local packing fraction of SCP.

for the single layer HCP except for the local packing fraction on the boundary is
given by

φ f
HCP =

Vp

Vc
=

4πR3

3
3
√

3( 2R√
3
)22R

2

=
π

3
√

3
= 0.6046. (A.25)

The local packing fraction calculated by Voro++ is shown in the right-hand side
of Figure A.3, and a good agreement is found between the local packing fraction
calculated by Voro++ and the analytical solution.

A.4 Code list

1 /* ------------------------------------------

2 Coding by

3 Huihuang Xia , PhD student working at

4 Karlsruhe Institute of Technology (KIT)

5 E-mail: huihuang.xia@kit.edu

6 --------------------------------------------*/

7

8 #ifdef COHESION_MODEL
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Figure A.3: (a) voronoi cells of the HCP, (b) local packing fraction of HCP.

9 COHESION_MODEL(COHESION_VDW , vdw , 3) // the id of vdw in

cohesion model

10 #else

11

12 #ifndef COHESION_MODEL_VDW_H_

13 #define COHESION_MODEL_VDW_H_

14

15 #include <cmath >

16 #include <cstring >

17 #include <algorithm >

18 #include "pointers.h"

19 #include "neighbor.h"

20 #include "contact_models.h"

21 #include "global_properties.h"

22 #include "cohesion_model_base.h"

23

24 #define CST 10.6666666666667 // 64/6.0 or 32/3.0

25

26 namespace LIGGGHTS {

27 namespace ContactModels {

28 using namespace std;

29 using namespace LAMMPS_NS;

30
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31 template <>

32 class CohesionModel <COHESION_VDW > : public

CohesionModelBase {

33 public:

34 CohesionModel(LAMMPS * lmp , IContactHistorySetup * hsetup ,

class ContactModelBase * c) :

35 CohesionModelBase(lmp , hsetup , c),

36 surfaceEnergyDens(NULL), // key parameters in Van Der Waals

model

37 minSeparaDistRat (0.0) , // minSeparaDistRat (0.0) ==

minSeparaDistRat = 0.0

38 maxSeparaDistRat (0.0) ,

39 history_offset (0)

40 //

41 {

42 history_offset = hsetup ->add_history_value("contflag","

0");

43 }

44

45 void registerSettings(Settings& settings)

46 {

47 settings.registerOnOff("tangential_reduce",

tangentialReduce_ ,false);

48 }

49

50 inline void postSettings(IContactHistorySetup * hsetup ,

ContactModelBase *cmb) {}

51

52 void connectToProperties(PropertyRegistry & registry) //

defining new parameters

53 {

54 registry.registerProperty("surfaceEnergyDens", &

MODEL_PARAMS :: createSurfaceEnergyDensity);

55 registry.registerProperty("minSeparaDistRat", &

MODEL_PARAMS :: createMinSeparationDistanceRatio);

56 registry.registerProperty("maxSeparaDistRat", &

MODEL_PARAMS :: createMaxSeparationDistanceRatio);

57

58 registry.connect("surfaceEnergyDens", surfaceEnergyDens

,"cohesion_model vdw");
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59 registry.connect("minSeparaDistRat", minSeparaDistRat ,"

cohesion_model vdw");

60 registry.connect("maxSeparaDistRat", maxSeparaDistRat ,"

cohesion_model vdw");

61

62 // error checks on coarsegraining

63 if(force ->cg_active ())

64 error ->cg(FLERR ,"cohesion model vdw");

65

66 neighbor ->register_contact_dist_factor(maxSeparaDistRat

*1.1); // defining neighboring list

67

68 if (maxSeparaDistRat < 1.0)

69 error ->one(FLERR ,"\n\ncohesion model vdw requires

the maxSeparaDistRat >= 1.0");

70 if (minSeparaDistRat >= 1.0)

71 error ->one(FLERR ,"\n\ncohesion model vdw requires

the minSeparaDistRat < 1.0");

72 }

73

74 inline void endSurfacesIntersect(SurfacesIntersectData &

sidata , ForceData&, ForceData &) {}

75 void beginPass(SurfacesIntersectData&, ForceData&,

ForceData &){}

76 void endPass(SurfacesIntersectData&, ForceData&,

ForceData &){}

77

78 // when separation distance h is not positive , we need

define the calculation within the "surfacesIntersect"

function

79 void surfacesIntersect(SurfacesIntersectData & sidata ,

ForceData & i_forces , ForceData & j_forces)

80 {

81 //r is the distance between the sphere 's centers

82 const double r = sidata.r;

83 const double ri = sidata.radi; // radius of particle i

84 const double rj = (sidata.is_wall) ? ri : sidata.radj;

// radius of particle j

85 const double rMax = (ri >= rj) ? ri : rj; // maximum

radius between two particles
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86 double hMin = rMax*minSeparaDistRat; // hMin = the

minimum separation distance between two particles

87 double Ha = 24.0* M_PI*surfaceEnergyDens[sidata.itype][

sidata.jtype]*hMin*hMin; // Ha = the Hamaker constant

88 double h = (sidata.is_wall) ? r-ri : r-(ri+rj); // h =

the separation distance between two particles or particle

- wall

89 double Acont , Acont_num , Acont_den; //Acont = other

expressions in the equation excepting the Ha

90

91 if(sidata.contact_flags) *sidata.contact_flags |=

CONTACT_COHESION_MODEL;

92 double * const contflag = &sidata.contact_history[

history_offset ];

93 // for negitavie separation distance

94 contflag [0] = 1.0;

95

96 // interaction between sphere and wall

97 // equations adopted from "Abbasfard , H., et al. (2016).

Powder Technology 299: 9 -18."

98 if (sidata.is_wall)

99 {

100 if (h <= 0)

101 {

102 Acont = ri /(6.0* hMin*hMin);

103 }

104 else return;

105 }

106 // interaction between sphere and particle

107 // equations adopted from "Yang , R., et al. (2000).

Physical review E 62(3): 3900"

108 else

109 {

110 if (h <= 0)

111 {

112 Acont_num = ri*ri*ri*rj*rj*rj*(hMin+ri+rj);

113 Acont_den = (hMin*hMin +2.0*ri*hMin +2.0* rj*hMin)*(

hMin*hMin +2.0*ri*hMin +2.0* rj*hMin)*(hMin*hMin +2.0*ri*hMin

+2.0*rj*hMin +4.0*ri*rj)*(hMin*hMin +2.0* ri*hMin +2.0* rj*

hMin +4.0* ri*rj);
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114 Acont = CST * Acont_num/Acont_den; //if

separation distance h is quite small , h should be hMin

115 }

116 else return;

117 }

118 // Van Der Waals force is an attractive force; - means

it is one of the attractive forces

119 const double Fn_vdw = - Ha*Acont;

120 // Fn_vdw = Van Der Waals force component

121 if(tangentialReduce_) sidata.Fn += Fn_vdw;

122

123 // apply normal force

124 if(sidata.is_wall)

125 {

126 const double Fn_ = Fn_vdw * sidata.area_ratio;

127 i_forces.delta_F [0] += Fn_ * sidata.en[0];

128 i_forces.delta_F [1] += Fn_ * sidata.en[1];

129 i_forces.delta_F [2] += Fn_ * sidata.en[2];

130 }

131 else

132 {

133 const double fx = Fn_vdw * sidata.en[0];

134 const double fy = Fn_vdw * sidata.en[1];

135 const double fz = Fn_vdw * sidata.en[2];

136

137 i_forces.delta_F [0] += fx;

138 i_forces.delta_F [1] += fy;

139 i_forces.delta_F [2] += fz;

140

141 j_forces.delta_F [0] -= fx;

142 j_forces.delta_F [1] -= fy;

143 j_forces.delta_F [2] -= fz;

144 }

145 }

146

147 // when separation distance h is positive , we need define

the calculation within the "surfacesClose" function

148 void surfacesClose(SurfacesCloseData& scdata , ForceData &

i_forces , ForceData & j_forces)

149 {
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150 if(scdata.contact_flags) *scdata.contact_flags |=

CONTACT_COHESION_MODEL;

151 double * const contflag = &scdata.contact_history[

history_offset ];

152 contflag [0] = 1.0;

153

154 //r is the distance between the sphere 's centers

155 const double r = sqrt(scdata.rsq);

156 const double ri = scdata.radi; // radius of particle i

157 const double rj = (scdata.is_wall) ? ri : scdata.radj;

// radius of particle j

158 const double rMax = (ri >= rj) ? ri : rj; // maximum

radius between two particles

159 double hMin = rMax*minSeparaDistRat; // hMin = the

minimum separation distance between two particles

160 double Ha = 24.0* M_PI*surfaceEnergyDens[scdata.itype][

scdata.jtype]*hMin*hMin; // Ha = the Hamaker constant

161 double h = (scdata.is_wall) ? r-ri : r-(ri+rj); // h =

the separation distance between two particles or particle

- wall

162 double Acont , Acont_num , Acont_den; //Acont = other

expressions in the equation excepting the Ha

163 // interaction between sphere and wall

164 // equations adopted from "Abbasfard , H., et al. (2016).

Powder Technology 299: 9 -18."

165 if (scdata.is_wall)

166 {

167 if (h > hMin)

168 {

169 Acont = ri /(6.0*h*h);

170 }

171 else if ((h > 0) && (h <= hMin))

172 {

173 Acont = ri /(6.0* hMin*hMin);

174 }

175 else return;

176 }

177 // interaction between sphere and particle

178 // equations adopted from "Yang , R., et al. (2000).

Physical review E 62(3): 3900"

179 else
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180 {

181 if (h > hMin)

182 {

183 Acont_num = ri*ri*ri*rj*rj*rj*(h+ri+rj);

184 Acont_den = (h*h+2.0*ri*h+2.0*rj*h)*(h*h+2.0*ri*h

+2.0*rj*h)*(h*h+2.0*ri*h+2.0* rj*h+4.0*ri*rj)*(h*h+2.0*ri*

h+2.0*rj*h+4.0*ri*rj);

185 Acont = CST * Acont_num/Acont_den; //if

separation distance h is quite small , h should be hMin

186 }

187 else if ((h > 0) && (h <= hMin))

188 {

189 Acont_num = ri*ri*ri*rj*rj*rj*(hMin+ri+rj);

190 Acont_den = (hMin*hMin +2.0* ri*hMin +2.0* rj*hMin)*(

hMin*hMin +2.0*ri*hMin +2.0* rj*hMin)*(hMin*hMin +2.0*ri*hMin

+2.0*rj*hMin +4.0*ri*rj)*(hMin*hMin +2.0*ri*hMin +2.0* rj*

hMin +4.0*ri*rj);

191 Acont = CST * Acont_num/Acont_den; //if

separation distance h is quite small , h should be hMin

192 }

193 else return;

194 }

195 // Van Der Waals force is an attractive force; -

means it is one of the attractive forces

196 const double Fn_vdw = - Ha*Acont;

197 // Fn_vdw = Van Der Waals force component

198

199 const double rinv = 1.0 / r;

200 const double dx = scdata.delta [0];

201 const double dy = scdata.delta [1];

202 const double dz = scdata.delta [2];

203 const double enx = dx * rinv; // vector in x

204 const double eny = dy * rinv; // vector in y

205 const double enz = dz * rinv; // vector in z

206

207 // apply normal and tangential force

208 const double fx = Fn_vdw * enx; // component of Fn_vdw

in x

209 const double fy = Fn_vdw * eny; // component of Fn_vdw

in y
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210 const double fz = Fn_vdw * enz; // component of Fn_vdw

in z

211

212 scdata.has_force_update = true;

213

214 // apply normal force

215 if(scdata.is_wall)

216 {

217 const double area_ratio = scdata.area_ratio;

218 i_forces.delta_F [0] += fx * area_ratio;

219 i_forces.delta_F [1] += fy * area_ratio;

220 i_forces.delta_F [2] += fz * area_ratio;

221 }

222 else

223 {

224 i_forces.delta_F [0] += fx;

225 i_forces.delta_F [1] += fy;

226 i_forces.delta_F [2] += fz;

227

228 j_forces.delta_F [0] -= fx;

229 j_forces.delta_F [1] -= fy;

230 j_forces.delta_F [2] -= fz;

231 }

232 }

233

234 private:

235 double ** surfaceEnergyDens; // surface energy density

236 double minSeparaDistRat; // minimal separation distance

ratio

237 double maxSeparaDistRat; // maximum separation distance

ratio

238 bool tangentialReduce_;

239 int history_offset;

240 };

241 }

242 }

243

244 #endif // COHESION_MODEL_VDW_H_

245 #endif

Code list A.1: Source code for the implementation of the Van der Waals force model.
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1 // Huihuang Xia; the additional coding to further reduce the

spurious

2 // currents/velocities with optional filtering methods to

filter the spurious

3 // currents/velocities

4 /* ####################

5 References:

6 [1]. Raeini , A. Q., et al. (2012). J Comput Phys 231(17):

5653 -5668.

7 ##################### */

8

9 // the Sharp Surface -tension Force (SSF) model without

filtering (Ref .01)

10 if (filteringSC == false)

11 {

12

13 // to access the surface -tension force

14 surfaceScalarField Fst = interfaceNew.surfaceTensionForce ()

;

15

16 phiFst = Fst*mesh.magSf();

17

18 // compute the surface -tension pressure here

19 while (pimple.correctNonOrthogonal ())

20 {

21 fvScalarMatrix pcEqn

22 (

23 fvm:: laplacian(dimensionedScalar("1", dimless , 1), pc

) == fvc::div(phiFst)

24 );

25

26 pcEqn.setReference(pcRefCell , pcRefValue);

27 pcEqn.solve();

28

29 if (pimple.finalNonOrthogonalIter ())

30 {

31 phiFst -= pcEqn.flux();

32 }

33

34 pc.correctBoundaryConditions ();

35 }
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36 }

37

38 // the Filtering Surface -tension Force (FSF) model

39 // to filter the SC parallel to the interface further (Ref

.01)

40 else

41 {

42 // Cpc: the sharping coefficient

43 scalar Cpc =

44 readScalar(alpha1.mesh().solutionDict ().subDict("

PIMPLE").lookup("Cpc"));

45

46 // Cfc: the coefficient for how fast the SC is filtered

47 scalar Cfc =

48 readScalar(alpha1.mesh().solutionDict ().subDict("

PIMPLE").lookup("Cfc"));

49

50 // RelaxF: the relaxation factor

51 scalar RelaxF =

52 readScalar(alpha1.mesh().solutionDict ().subDict("

PIMPLE").lookup("RelaxF"));

53

54 // thresholdF: the threshold for Fst

55 scalar thresholdF =

56 readScalar(alpha1.mesh().solutionDict ().subDict("PIMPLE")

.lookup("thresholdF"));

57

58 // the delta function for filtering SC (Ref .01)

59 volScalarField alphaPc = (1.0/(1.0 - Cpc))*(min(max(alpha1 ,

Cpc /2.0) ,

60 (1.0 - Cpc /2.0)) - Cpc /2.0);

61

62 surfaceScalarField deltaF = fvc:: snGrad(alphaPc);

63

64 surfaceScalarField deltaFNor = mag(deltaF)/(mag(deltaF) +

1.0E-4* mixture.deltaN ());

65

66 // to access the surface -tension force

67 surfaceScalarField Fst = interfaceNew.surfaceTensionForce ()

;

68
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69 phiFst = Fst*mesh.magSf();

70

71 surfaceScalarField phiCaFilter1st

72 (

73 IOobject

74 (

75 "phiCaFilter1st",

76 runTime.timeName (),

77 mesh ,

78 IOobject ::NO_READ ,

79 IOobject :: NO_WRITE

80 ),

81 mesh ,

82 dimensionedScalar("phiCaFilter1st", dimPressure/

dimLength*dimArea , 0.0)

83 );

84

85 // the filtering surface tension force flux

86 phiFst -= phiCaFilter1st;

87

88 // compute the surface -tension pressure here

89 while (pimple.correctNonOrthogonal ())

90 {

91 fvScalarMatrix pcEqn

92 (

93 fvm:: laplacian(dimensionedScalar("1", dimless , 1), pc

) == fvc::div(phiFst)

94 );

95

96 pcEqn.setReference(pcRefCell , pcRefValue);

97 pcEqn.solve();

98

99 if (pimple.finalNonOrthogonalIter ())

100 {

101 phiFst -= pcEqn.flux();

102 }

103

104 pc.correctBoundaryConditions ();

105 }

106

107 // reconstruct the surface -tension field
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108 volVectorField gPc = fvc:: reconstruct(phiFst);

109 gPc.correctBoundaryConditions ();

110

111 // nHat: the unit surface normal defined at cell centre

112 volVectorField ns = interfaceNew.nHat();

113

114 volVectorField vgPcllInterface = (gPc) - ((gPc) & (ns))*(ns

);

115

116 surfaceVectorField gPcllInterface = fvc:: interpolate(

vgPcllInterface);

117

118 phiCaFilter1st = deltaFNor *( RelaxF*phiCaFilter1st.oldTime ()

119 + Cfc*( gPcllInterface & mesh.Sf()));

120

121 phiCaFilter1st.storeOldTime (); // save the data of the

previous time step

122

123 // to make sure |phiCaFilter| < |phiFst|

124 forAll(phiCaFilter1st , i)

125 {

126 phiCaFilter1st[i] -= (phiFst[i]* phiCaFilter1st[i] < 0) ?

127 (max(min(phiCaFilter1st[i], mag(phiFst[i])), -mag(

phiFst[i]))) : 0.0;

128 }

129

130 const fvBoundaryMesh& boundary = mesh.boundary ();

131

132 forAll(boundary , pI)

133 {

134 scalarField phiCaFilter1stBf = phiCaFilter1st.

boundaryField ()[pI];

135 scalarField phiFstBf = phiFst.boundaryField ()[pI];

136

137 forAll(phiCaFilter1stBf , i)

138 {

139 phiCaFilter1stBf[i] -=

140 (phiFstBf[i]* phiCaFilter1stBf[i] < 0.0) ?

141 max(min(phiCaFilter1stBf[i], mag(phiFstBf[i])), -mag(

phiFstBf[i])) : 0.0;

142 }
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143 }

144

145 dimensionedScalar FstAvg = dimensionedScalar("FstAvg",

dimPressure/dimLength , 0.0);

146 FstAvg = average(mag(Fst)*deltaFNor)/average(deltaFNor +

1.0E-9);

147

148 surfaceScalarField phiCaThreshold = thresholdF*FstAvg*mesh.

magSf();

149

150 // the 2nd filtering

151 surfaceScalarField phiCaFilter2nd = (min(max(phiFst , -

phiCaThreshold), phiCaThreshold));

152 phiFst -= phiCaFilter2nd;

153

154 // reconstruct the capillary field

155 gPc = fvc:: reconstruct(phiFst);

156 gPc.correctBoundaryConditions ();

157 }

Code list A.2: Source code for the numerical implementation to filter the spurious currents.

1 % Huihuang Xia; solve ODE with ODE45 solver

2 % deltaT = 100 K (t_total = 0.15 s)

3 % solve the ODE only within 0~0.1 s

4 format long;

5 kg = 0.01;

6 cpg = 1900;

7 Tinf = 473.15;

8 Tsat = 373.15;

9 hev = 1.0e6;

10 B = cpg*(Tinf - Tsat)/hev;

11 D0 = 2.5E-04;

12 DIns = 4.0*D0;

13 rho1 = 10;

14 k = 8.0*kg*log (1.0+B)/(rho1*cpg);

15

16 % dt = 0.001; t_total = 0.15

17 tspan = 0:0.001:0.15;

18 y0 = D0^2;

19 [t,y] = ode45(@(t,y) -k/log(DIns/sqrt(abs(y))), tspan , y0);

20 plot(t,y,'-o');
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21 savefig('ode45.fig');

22 f=open('ode45.fig');

23 D=get(gca ,'Children ');

24 XData=get(D,'XData ');

25 YData=get(D,'YData ');

26 Data=[XData ' YData ']

Code list A.3: Matlab code for solving the ordinary differential equation.

1 /*

2 ###################################################

3 New feature I: coupling to open -source DEM code - LIGGGHTS

with the resolved

4 CFD -DEM approach

5

6 New feature II: un-physical spurious currents/velocities are

suppressed

7

8 New feature III: 2D & 3D Adaptive Mesh Refinement (AMR)

9 #####################################################

10

11 Developer

12 Huihuang Xia , PhD student working at

13 the Institute of Applied Materials (IAM),

14 Karlsruhe Institute of Technology (KIT), Germany

15 E-mail: huihuang.xia@kit.edu

16 \*----------------------------------------------------*/

17

18 #include "fvCFD.H"

19 #include "CMULES.H"

20 #include "EulerDdtScheme.H"

21 #include "localEulerDdtScheme.H"

22 #include "CrankNicolsonDdtScheme.H"

23 #include "subCycle.H"

24 #include "immiscibleIncompressibleTwoPhaseMixture.H"

25 #include "turbulentTransportModel.H"

26 #include "pimpleControl.H"

27 #include "fvOptions.H"

28 #include "CorrectPhi.H"

29 #include "fvcSmooth.H"

30 #include "interface.H" // Huihuang Xia; new interface

properties
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31

32 // Huihuang Xia - comments begin

33 // DEM related stuff for the resolved CFD -DEM

34 #include "cfdemCloudIBVoF.H" // new class for VoF -based

coupling

35 #include "implicitCouple.H"

36 #include "averagingModel.H"

37 #include "voidFractionModel.H"

38 #include "dynamicFvMesh.H"

39 #include "cellSet.H"

40 // Huihuang Xia - comments end

41

42 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * //

43

44 int main(int argc , char *argv [])

45 {

46 #include "postProcess.H"

47

48 #include "setRootCase.H"

49 #include "createTime.H"

50 // #include "createMesh.H" // Huihuang Xia

51 #include "createDynamicFvMesh.H" // Huihuang Xia

52 #include "createControl.H"

53 #include "createTimeControls.H"

54 #include "initContinuityErrs.H"

55 #include "createFields.H"

56 #include "createAlphaFluxes.H"

57 #include "createFvOptions.H"

58 #include "correctPhi.H"

59 #include "createSolverSettings.H" // Huihuang Xia

60

61 turbulence ->validate ();

62

63 // Huihuang Xia - comments begin

64 #include "readTimeControls.H"

65 #include "CourantNo.H"

66 #include "setInitialDeltaT.H"

67

68 // create cfdemCloud

69 cfdemCloudIBVoF particleCloud(mesh);
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70 // Huihuang Xia - comments end

71

72 // * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * //

73

74 Info << "\nStarting time loop\n" << endl;

75

76 while (runTime.loop()) // Huihuang Xia; run() -> loop()

77 {

78

79 // Huihuang Xia - comments begin

80 Info << "Time = " << runTime.timeName () << nl << endl;

81

82 // DyM

83 interFace = mag(mesh.lookupObject <volScalarField >("

voidfractionNext"));

84 particleCloud.setMeshHasUpdatedFlag(mesh.update ());

85 // Huihuang Xia - comments end

86

87 #include "readTimeControls.H"

88

89 #include "CourantNo.H"

90 #include "alphaCourantNo.H"

91 #include "setDeltaT.H"

92

93 // Huihuang Xia - comments begin

94 // runTime ++;

95 //

96 // Info << "Time = " << runTime.timeName () << nl <<

endl;

97

98 // DEM related stuff

99 Info << "- evolve ()" << endl;

100 particleCloud.evolve(voidfraction , interFace);

101 // Huihuang Xia - comments end

102

103 // Huihuang Xia - comments begin

104 if (particleCloud.solveFlow ())

105 {

106 // --- Pressure -velocity PIMPLE corrector loop

107 while (pimple.loop())
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108 {

109 #include "alphaControls.H"

110 #include "alphaEqnSubCycle.H"

111

112 mixture.correct ();

113

114 #include "filteringSC.H" // Huihuang Xia

115

116 #include "UEqn.H"

117

118 // --- Pressure corrector loop

119 while (pimple.correct ())

120 {

121 #include "pEqn.H"

122 }

123

124 if (pimple.turbCorr ())

125 {

126 turbulence ->correct ();

127 }

128 }

129 } // Huihuang Xia - comments end

130

131 // Huihuang Xia - comments begin

132 Info << "particleCloud.calcVelocityCorrection () " <<

endl;

133 volScalarField voidfractionNext

134 = mesh.lookupObject <volScalarField >("

voidfractionNext");

135

136 particleCloud.calcVelocityCorrection(p, U, phiIB ,

voidfractionNext , rho);

137 // Huihuang Xia - comments end

138

139 runTime.write();

140

141 Info << "ExecutionTime = " << runTime.elapsedCpuTime ()

<< " s"

142 << " ClockTime = " << runTime.elapsedClockTime ()

<< " s"

143 << nl << endl;
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144 }

145

146 Info << "End\n" << endl;

147

148 return 0;

149 }

150

151

152 //

*************************************************************************

//

Code list A.4: Source code for the resolved CFD-DEM approach.

1 # Coding by Huihuang Xia

2 # simple python script to solve the ODE and save as *xlsx

3 import xlsxwriter

4 import numpy as np

5 from scipy.integrate import odeint

6 import matplotlib.pyplot as plt

7

8 # define the ODE

9 def model(U,t):

10 # some key parameters

11 rhoF = 1000

12 rhoP = 2000

13 g = 9.81

14 D = 0.001

15 muF = 1.0e-3

16 Re = rhoF*D*U/muF

17 Cd = 24.0/Re*(1.0 + 0.15* pow(Re , 0.681)) + 0.407/(1.0 +

8710.0/ Re)

18 dUdt = (1.0 - rhoF/rhoP)*g - 3.0* rhoF /(4.0* rhoP*D)*Cd*pow

(U, 2)

19 return dUdt

20

21 # initial condition

22 U0 = 1.0e-12 # U0 should be 0.0 but it leads to Re = 0.0 (

Re is in the denominator)

23

24 # time step

25 t = np.linspace (0 ,0.3 ,1000) # 1000 points
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26

27 # solve the ODE

28 U = odeint(model , U0, t)

29

30 # plot results

31 plt.plot(t, U)

32 plt.xlabel('t')

33 plt.ylabel('U')

34 plt.grid()

35 plt.show()

36 #plt.savefig ("plot.png")

37 #plt.savefig ("plot.pdf")

38

39 # save numerical data into *xlsx

40 workbook = xlsxwriter.Workbook("numerical.xlsx")

41 worksheet = workbook.add_worksheet ()

42 format = workbook.add_format ()

43 format.set_align("center")

44 worksheet.set_column("A:B", 20)

45 heading = ("t", "U")

46 worksheet.write_row("A1", heading , format)

47 worksheet.write_column("A2", t, format)

48 worksheet.write_column("B2", U, format)

49 workbook.close()

Code list A.5: Python code for solving the ordinary differential equation.

A.5 Quantities in different unit systems

In this thesis, some numerical simulations are conducted with "cgs" or "micro"
unit system. These derived and basic quantities are listed in Tables A.1 and A.2,
respectively.
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Table A.1: Derived quantities used in the CFD-DEM simulations with OpenFOAM & LIGGGHTS

Quantity SI SI→ CGS SI→MICRO

Velocity [m
s ] [ cm

s ]×102 [ µm
µs ]×1

Young’s modulus [ kg
m s2 ] [ g

cm s2 ]×10 [ pg
µm µs2 ]×10−3

Pressure [ kg
m s2 ] [ g

cm s2 ]×10 [ pg
µm µs2 ]×10−3

Temperature [K] [K]×1 [K]×1

Mass flux per unit area [ kg
m2 s ] [ g

cm2 s ]×10−1 [ pg
µm2 µs ]×10−3

Mass flux per unit volume [ kg
m3 s ] [ g

cm3 s ]×10−3 [ pg
µm3 µs ]×10−9

Kinematic viscosity [m2

s ] [ cm2

s ]×104 [ µm2

µs ]×106

Dynamic viscosity [ kg
m s ] [ g

cm s ]×10 [ pg
µm µs ]×103

Density [ kg
m3 ] [ g

cm3 ]×10−3 [ pg
µm3 ]×10−3

Thermal conductivity [ kg m
s3 K ] [ g cm

s3 K ]×105 [ pg µm
µs3 K ]×103

Specific heat capacity [ m2

s2 K ] [ cm2

s2 K ]×104 [ µm2

µs2 K ]×1

Velocity potential [m2

s ] [ cm2

s ]×104 [ µm2

µs ]×106

Surface tension coefficient [ kg
s2 ] [ g

s2 ]×103 [ pg
µs2 ]×103

Gravitational constant [ m
s2 ] [ cm

s2 ]×102 [ µm
µs2 ]×10−6

Enthalpy of evaporation [m2

s2 ] [ cm2

s2 ]×104 [ µm2

µs2 ]×1

Diffusion coefficient [m2

s ] [ cm2

s ]×104 [ µm2

µs ]×106

Gas constant [ kg m2

K mol s2 ] [ g cm2

K mol s2 ]×107 [ pg µm2

K mol µs2 ]×1015

Molar mass [ kg
mol ] [ g

mol ]×103 [ pg
mol ]×1015

Surface energy density [ kg
s2 ] [ g

s2 ]×103 [ pg
µs2 ]×103
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Table A.2: Basic quantities used in OpenFOAM for different unit systems

Quantity SI CGS MICRO

Speed of light in vacuum 2.99792×108 [m
s ] 2.99792×1010 [ cm

s ] 2.99792×108 [ µm
µs ]

Gravitational constant 6.67429×10−11 [ m3

kg s2 ] 6.67429×10−8 [ cm3

g s2 ] 6.67429×10−20 [ µm3

pg µs2 ]

Planck’s constant 6.62607×10−34 [ kg m2

s ] 6.62607×10−27 [ g cm2

s ] 6.62607×10−13 [ pg µm2

µs ]

Elementary charge 1.60218×10−19 [C] 4.803204×10−10 [statC] 1.60218×10−7 [pC]

Electron mass 9.10938×10−31 [kg] 9.10938×10−28 [g] 9.10938×10−16 [pg]

Proton mass 1.67262×10−27 [kg] 1.67262×10−24 [g] 1.67262×10−12 [pg]

Atomic mass 1.66054×10−27 [kg] 1.66054×10−24 [g] 1.66054×10−12 [pg]

Boltzmann constant 1.38065×10−23 [ kg m2

K s2 ] 1.38065×10−16 [ g cm2

K s2 ] 1.38065×10−8 [ pg µm2

K µs2 ]

Standard pressure 1.0×105 [ kg
m s2 ] 1.0×106 [ g

cm s2 ] 1.0×102 [ pg
µm µs2 ]

Standard temperature 298.15 [K] 298.15 [K] 298.15 [K]
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