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Abstract. Digital radio detection of cosmic-ray air showers has emerged as an alternative
technique in high-energy astroparticle physics. Estimation of the detection efficiency of
cosmic-ray radio arrays is one of the few remaining challenges regarding this technique. To
address this problem, we developed a new approach to model the efficiency based on the
explicit probabilistic treatment of key elements of the radio technique for air showers: the
footprint of the radio signal on ground, the detection of the signal in an individual antenna,
and the detection criterion on the level of the entire array. The model allows for estimation
of sky regions of full efficiency and can be used to compute the aperture of the array, which
is essential to measure the absolute flux of cosmic rays. We also present a semi-analytical
method that we apply to the generic model, to calculate the efficiency and aperture with
high accuracy and reasonable calculation time. The model in this paper is applied to the
Tunka-Rex array as example instrument and validated against Monte Carlo simulations. The
validation shows that the model performs well, in particular, in the prediction of regions with
full efficiency. It can thus be applied to other antenna arrays to facilitate the measurement of
absolute cosmic-ray fluxes and to minimize a selection bias in cosmic-ray studies.
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1 Introduction

Observations of cosmic rays via the radio emission of air showers they initiate is one of the
promising techniques for the next generation of ultra-high-energy astroparticle detectors. The
technique of digital radio detection has been under intensive development for the last twenty
years and has reached the state where we can reliably detect radio signals from air showers
and reconstruct their parameters [1–3]. One of the major remaining problems for radio arrays
consists in the estimation of their detection efficiency for air showers and the subsequent
calculation of their aperture and exposure for cosmic rays.

The method of Monte Carlo simulations, which is often used for these purposes, is
difficult to apply for radio arrays because of its high computational complexity in case of
the air-shower radio emission. Compared to the approximately axially symmetric lateral
distributions of the air-shower particles or the air-Cherenkov light emitted by air showers, the
radio signal is more complex. Due to the interplay of geomagnetic and charge-excess emission,
the strengths of the radio signal and the two-dimensional shape of the lateral distribution
depend on both, the azimuth and zenith angle. Also, Monte Carlo simulations of the radio
emission of air showers take an order of magnitude more computation time than simulating
the particles alone.

Past approaches have either used a preliminary version of the approach presented
here [4, 5], or estimated the efficiency for each detected event separately by generating
several computationally expensive Monte Carlo simulations per event [6–8]. The preparation

– 1 –



J
C
A
P
0
6
(
2
0
2
3
)
0
1
4

of simulations required for detailed studies of the spatial and angular dependence of the
detection efficiency would demand an extremely large amount of computation time.

To address the problem of detection efficiency of a radio array, we developed a new
approach to model the efficiency following an explicit probabilistic approach. For each step of
the air-shower detection process (prediction of the spatial distribution of the radio signals over
the array, detection of the signals by individual antennas, and the detection of the shower on
the level of the array) we have developed a probabilistic model expressed as a combination of
dedicated terms of a probability density function. The combination of these functions forms
the final efficiency model.

In this work we used the Tunka-Rex digital radio antenna array as an example array
for the model. The focus is to demonstrate that the probabilistic approach is suitable to
model the efficiency, in particular, to determine parameter spaces (in energy, arrival direction,
core location) of full efficiency, which are often needed to select events for bias-free analyses
of cosmic-ray observables. Despite some features of this particular array used here, the
developed approach is generic and, with appropriate modifications of the model components,
can be applied to other cosmic-ray radio arrays. Depending on the specific experiment, some
smaller effects neglected here may be more important, e.g,. variations of the background,
atmospheric or ground conditions, as these may have a larger influence than for Tunka-Rex.
Second order effects neglected here, may also become of higher importance when the goal is
to accurately model the parameter space of partial efficiency instead of selecting parameter
ranges of full efficiency. Here, we have concentrate on the dominant features of the radio
signal and its detection probability, to facilitate the understanding of our new statistical
approach for modelling the efficiency.

The paper is organized as follows: we first describe Tunka-Rex and the details of the
simulation dataset used to build the model presented here; then we describe the efficiency
model and its individual components; finally, we show how the aperture of a radio array can
be computed semi-analytically. In the end of the paper, we show the results of the validation
of the model against Monte Carlo simulations.

2 Tunka-Rex array

The model we present here is built for the Tunka Radio extension (Tunka-Rex) as example
radio array. Tunka-Rex was a digital radio array for cosmic-ray detection in the Tunka
valley in Siberia at the altitude of 675m above sea level (corresponds to 955 g/cm2 vertical
atmospheric depth) [9]. The array was built in three stages and in its final configuration
consisted of 63 antennas of the SALLA type [10] covering approximately 3 km2, with an
inner dense core of almost 1 km2. Upon a trigger from the co-located arrays Tunka-133 and
Tunka-Grande [11], all Tunka-Rex antennas recorded a radio trace in the band of 30–80MHz.
For cosmic rays with energies & 100PeV, depending on the position of the antenna relative
to the shower axis and on the arrival direction, the radio signal of the air showers can be
distinguished from the Galactic noise and other local radio background. Due to the continuous
and omnipresent radio background, and due to the signal strengths of the radio emission
depending on many parameters of the air showers and the relative position of the antennas,
the detection process has a probabilistic nature that is captured by the model presented in
this paper.

The standard Tunka-Rex data analysis is based on the processing of the electric field
vector detected by the antenna. The signal on the antenna level in the standard analysis,
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also used in this work, is the maximum of the Hilbert envelope in the time window where
the signal is expected. In addition to that, the observed signal is dynamically corrected to
the noise level observed in the particular time trace, and several criteria are used to cross
check that the observed signal is an air-shower signal, but not a wide-band noise fluctuation
or radio-frequency interference. Details of the Tunka-Rex instrument, its operation, and the
standard analysis pipeline of radio signals emitted by air showers can be found in refs. [4, 9, 12].

Here, we briefly list features of the Tunka-Rex instrument design relevant for the
developed model presented here. The antennas of the Tunka-Rex instrument are designed
such that their gain is almost independent from ground conditions, and the gain pattern is
smooth in the operating angular range of zenith angles θ . 50◦. Calibration measurements of
the amplitude and phase response of each signal channel have been performed and are used
to correct small differences between individual antennas [9], so we can treat all antennas as
approximately equal. Altitude differences within in the Tunka-Rex array are of a few meters
only and negligible compared to the typical extension of the footprint of the radio signal,
which is why we treat the Tunka-Rex array as a flat surface.

The radio noise used throughout the Tunka-Rex data analysis and for building the model
presented in this paper is from a library of typical on-site radio background measured during
night. Since the Tunka-Rex signal processing pipeline includes dynamic noise correction of the
measured signal [4], the temporal variation of the steady state parameters of the background
do not significantly influence the estimation of the air-shower signal parameters [12]. We also
point out that the atmospheric conditions for all Tunka-Rex data are similar by construction,
since Tunka-Rex was triggered by the Tunka-133 air-Cherenkov detector operating in clear
winter nights in a dry climate. Therefore, when building a model to estimate parameter
regions of full efficiency for Tunka-Rex, we neglect variations of atmospheric and background
conditions, as these have been shown to have only a minor influence on prior Tunka-Rex
results compared to other uncertainties [13].

3 Simulation dataset

The efficiency model in this paper is based on full-fledged, end-to-end Monte Carlo simulations
of the cosmic-ray air-shower radio emission, including the detector response of the Tunka-Rex
instrument. The simulations of air showers were prepared with CORSIKA v7.5600 and
v7.6400 [14] (there is no relevant differences regarding radio signal between these versions)
using the QGSJET-II-04 [15] and FLUKA [16] models for the high- and low-energy hadronic
interactions correspondingly, and with the NKG and EGS4 [14, 17] models for the electromag-
netic interactions. The simulated showers are initiated by protons and iron nuclei as primary
particles. A discrete set of primary energies was chosen to enable sufficient statistics per
energy bin: lg(E/eV) = 17.0, 17.3, 17.5, 17.7, 18.0, 18.3. The simulation library prepared
for this study consisted of approximately 1000 events per each energy bin and per each of the
primary particles with uniform coverage of the incoming directions up to a zenith angle of
50◦ and uniform distribution of the shower cores. The geomagnetic field for the simulations
was set corresponding to the Tunka-Rex location with horizontal and vertical components
of ≈18.88 µT and ≈57.29 µT, respectively, and the angle of declination of −2.76◦ [18]. The
core position was varied randomly over the array with the actual antenna positions. The
radio emission coming from the simulated shower was computed with CoREAS [19]. Finally,
the Offline software [20] was used, first, to apply the detector response of the Tunka-Rex
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instrument and add on-site measured background and, second, to check with the standard
analysis pipeline in which antennas the radio signal would be detected.

4 Efficiency model for a radio array

The efficiency model is based on an explicit probabilistic treatment of the spatial signal
distribution, detection of these signals by individual antennas, and the detection condition on
the level of the entire array (e.g., a certain number of antennas with a minimum signal-to-noise
ratio). By explicit probabilistic treatment we mean that we describe each of these stages of
the detection process by a specific probabilistic model. Their combination forms the efficiency
model for the radio array.

In the following sections we present the individual components of the model and the
ways they interplay with each other.

4.1 Spatial distribution of the air-shower radio signals

In our model, the estimation of the detection efficiency of a radio array begins with the evalu-
ation of the spatial distribution of the signal strength corresponding to a shower with a given
set of macroscopic parameters, i.e., incoming direction, energy of the primary particle, and
depth of the shower maximum (Xmax). This distribution is described by a lateral distribution
function (LDF). Usually, such functions are used to estimate the shower parameters from
the observed signal distribution. We use them in the opposite way: to predict the spatial
distribution of the radio emission by showers with given macro-parameters.

Because of the geomagnetic and charge-excess emission mechanisms both being relevant
for the frequency range from 30 to 80MHz used at Tunka-Rex and other arrays [2, 21–24],
the spatial distribution of the radio emission is axially-asymmetric relative to the shower axis.
The main idea behind the Tunka-Rex analysis, which guided the design of the corresponding
LDF, consists in the compensation of the asymmetry to perform the reconstruction with
a one dimensional symmetrized LDF. Thus, the Tunka-Rex LDF consists of two major
components: the asymmetry-compensation operator and the symmetrized LDF, which we
call LDF hereafter for simplification [25].

The symmetrized LDF, which we use in the reconstruction, is a function of the distance
r to the shower axis and it has a Gaussian form expressed in the following way

Esym(r) ∝ exp
(
a
(
r − r′

)2 + b
(
r − r′

))
. (4.1)

The symbol r′ denotes a reference distance for which the parameters a and b, and the
normalization of that function are defined. The Tunka-Rex reconstruction uses two reference
distances r′, which we denote as r0 and r1 (r0 = 120m and r1 = 180m). The value of
the function at 120m is approximately proportional to the cosmic-ray energy (E). The
slope defined as a logarithmic derivative of the function at 180m is related to the depth of
shower maximum.

We begin the construction of the footprint model with the LDF in the form (4.1) with
the reference distance used for Xmax estimation (r1 = 180m)

Esym(r) ∝ exp
(
a (r − r1)2 + b (r − r1)

)
. (4.2)

– 4 –



J
C
A
P
0
6
(
2
0
2
3
)
0
1
4

For the parameters a and b we use the same equation as used in the reconstruction, but
rearrange them to express the parameters

a = (a0 + a1E) + (a2 + a3E) cos θ, (4.3)

b = b0 − exp
( 1
b1

(
Xdet
cos θ −Xmax − b2

))
. (4.4)

Here, the letters ai and bi denote the parameters obtained from a simulation study. The
vertical atmospheric depth of the radio instrument is denoted as Xdet (955 g/cm2 for the
present model).

The last step in deriving the LDF is to find an appropriate normalization. The value
of the LDF at r0 = 120m is proportional to the energy of the cosmic-ray with a calibration
coefficient Esym(r0) = E/κ. To link this energy calibration at r0 to the LDF defined at the
distance r1, we introduce an additional exponential factor. The final, normalized LDF has
the following form:

Esym(r) = E

κ
exp

(
−a (r0 − r1)2 − b (r0 − r1)

)
exp

(
a (r − r1)2 + b (r − r1)

)
. (4.5)

To restore the original asymmetry of the radio footprint, we act on the symmetrized LDF
shown above with an inverse version of the operator used for the asymmetry compensation in
the reconstruction

K̂−1(αg, φg) =
√
c2

0 + 2c0 cosφg sinαg + sin2 αg. (4.6)

The letters αg and φg denote the geomagnetic angle and the geomagnetic azimuth. The first
one is the angle between the shower axis and the geomagnetic field. The later one is the polar
angle in the shower plane of the geomagnetic coordinate system measured from the V ×B
direction. With this operator acting on the symmetrized LDF (4.5), we obtain the original
asymmetric form of the radio footprint

E (r, αg, φg) = K̂−1(αg, φg)Esym(r). (4.7)

Figure 1 shows a particular example of the distribution obtained with the procedure
described above.

It is important to note that within the developed model the radio signal from a given
shower does not have one specific signal strength at a given position, but instead the strength
is a random variable. The reason for this random behavior is the fact that our description
only includes effects related to the cosmic-ray energy, the depth of shower maximum, and
the arrival direction. However, the signals are also subject to natural shower-to-shower
fluctuations leading to the randomization.

To find parameters of the probability distribution of the signal strength, we compared
the prediction against the CoREAS simulations of individual showers without adding noise.
Since the asymmetry correction makes only a linear transformation of the footprint, we used
the symmetrized footprints for this purpose of determining the effect of the shower-to-shower
fluctuations. A statistical analysis of the differences revealed that the developed footprint
model provides the most probable value (mode) of the distribution and that the width of the
distribution can be characterized with a standard deviation equal to ≈ 14.5 % of the current
mode of the distribution (σ ≈ 0.145E ). This spread originates from the shower-to-shower
fluctuations since we used noiseless signals at this stage. We model this distribution with a
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Figure 1. Spatial distribution of the most probable value (mode) of the electric field at 30 to 80MHz
from an air shower with the following parameters: lg(E/eV) = 17.5, Xmax = 400 g/cm2, θ = 40◦,
αg = 30◦. The shown distribution is the Tunka-Rex asymmetric lateral distribution. The plot shows
the distribution in the geomagnetic coordinate system, which is built from the vectors of the shower
propagation direction V and the local geomagnetic field direction B. To obtain the distribution on
the antenna array, the shown distribution is projected geometrically to the ground plane. A sketch of
the geomagnetic coordinates system often used to describe the radio emission of air showers can be
found, e.g., in ref. [2].

Gaussian function centered at the mode value predicted by the footprint model and with the
standard deviation determined by the statistical analysis mentioned above. The additional
influence of noise to the detection procedure is part of the next stage of modelling the
individual antenna detection probability.

4.2 Signal detection by a single antenna

The main measurement devices of a cosmic-ray radio array are the antennas which detect
electric fields and convert them into currents which, in turn, can be detected by corresponding
electronic devices. In addition to the signals from the air showers, the antennas are always
subject to the continuous, unavoidable presence of background electric fields, or simply noise.
In the band of 30 to 80MHz, this noise originates mainly from the radio sources in our
Galaxy [26] and the surroundings of the antenna. Noise interferes with the signals from
the shower and, due to its stochastic nature, randomly changes the signal characteristics
detected by the antenna. Close to the detection threshold, this effect is the main reason
for the probabilistic behavior of the signal detection. Due to the interference with noise, in
some cases the presence of a signal is not detected by the system, or vice-verse a signal below
threshold may be detectable due to an upward fluctuation. We formulate these effects in
terms of a probability density.

We start constructing the probability density of the signal detection by processing
simulated radio signals multiple times through the Tunka-Rex signal processing pipeline.

– 6 –



J
C
A
P
0
6
(
2
0
2
3
)
0
1
4

Each time a different noise sample is added to the simulation. Noise samples used in this
procedure were recorded by the Tunka-Rex array. For each individual CoREAS simulation,
we obtain the number of times a given signal was detected from the total number of trials
(30 for our study), where for each CoREAS simulations and for each for the trials we use a
different, randomly-chosen, measured noise sample. We estimate the detection probability for
a given signal as the binomial proportion of these two numbers.

As next step, to obtain the continuous values of the detection probability as a function
of the signal strength from the discrete values obtained previously, we fit the logistic function
in the form of the hyperbolic function with an offset E1/2 to the obtained discrete values

p0(E ) = 1
2 + 1

2 tanh
E − E1/2
E ′0 + E ′′0 E

. (4.8)

To provide sufficient degrees of freedom to match the data, we introduced a linear function to
the denominator of the tangent argument.

Now we will treat this detection probability not as a number, but as a random variable.
We model the probability density with the beta distribution in which the quantity p0 found
above (equation (4.8)) describes the mode

P = 1
B(α(p0), β(p0)) p

α(p0)−1(1− p)β(p0)−1. (4.9)

The letter B denotes the beta function. The beta function in this case can be seen as a
continuous analogue of the binomial distribution. The parameters of the distribution are
linked to the mode p0 of the distribution and the total number of trials n

α(E ) = np0(E ) + 1, (4.10)
β(E ) = n− np0(E ) + 1. (4.11)

We obtain the parameters of the probability density (4.8)–(4.11) with a regular opti-
mization procedure based on the logarithmic-likelihood function, which we form from the
beta distribution described above

L =
∑
i

(αi − 1) ln p0(Ei) + (βi − 1) ln(1− p0(Ei))− ln B(αi, βi). (4.12)

The index i refers to a single simulation data point. The symbol Ei denotes the signal strength
of a given data point. The parameters αi and βi corresponding to each of the data points we
determine as

αi = ki + 1, (4.13)
βi = n− ki + 1, (4.14)

where ki denote the number of successful signal detections.
Figure 2 shows the estimated density of the detection probability for a signal with known

strength by an individual antenna.
To use the probability density for the signal detection in an individual antenna together

with the previously described radio LDF model, we perform a convolution of this probability
density for the signal detection with the uncertainty of LDF, which we model with the
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Figure 2. The probability density function (PDF) of the signal detection by an individual antenna
(corresponds to equation (4.9)). The thick line shows the mode value.
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Figure 3. The bivariate spline-interpolation of the convoluted probability density of the signal
detection estimated for a grid of signals ranging from 10 µV/m to 500 µV/m with 10 µV/m steps (this
function corresponds to equation (4.15)). The thick white line shows the mode of the convoluted
probability density. The red line indicates the position of the mode before performing the convolution
(the red line on this plot corresponds to the thick white line in figure 2).

Gaussian function centered at a given signal strength and standard deviation of ≈ 14.5% of
that strength (σ ≈ 0.145E )

P (E ) = P0

∫ ∞
0

1
B(α(E ), β(E )) p

α(E )−1(1− p)β(E )−1 exp
(
−(ξ − E )2

2σ2(E )

)
dξ. (4.15)

The normalization P0 we find numerically. To improve performance in further computations,
we computed the convoluted densities on a grid of sample points ranging from 10 to 500 µV/m
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with 10 µV/m steps and interpolated them with a bicubic spline. Figure 3 shows the resulting
probability density. This probability density reflects the signal detection properties of the
averaged antenna for signals coming from all directions present in the simulations.

It is worthwhile to note that the probability density changes its meaning after this
convolution. Before the convolution, a slice for a given abscissa describes the probability
density to detect a signal with a given strength; after the convolution, the meaning changes to
the probability to detect a signal predicted to be of a given strength by the footprint model,
but the actual signal strength could be anywhere within the uncertainties of the prediction.

4.3 Detection probability for an array of radio antennas
With the models described in the previous sections, we can estimate the detection efficiency
for a single antenna. However, for radio arrays, usually the coincident detection in several
antennas is required, and the number of required antennas may depend on the goal of a specific
analysis, e.g., three antennas will be sufficient for an approximate reconstruction of the arrival
direction, but the reconstruction of Xmax will require more antennas with signal, depending
on the desired reconstruction precision. Therefore, this section describes the final step of the
model: the probability density to observe a shower with the antenna array, requiring the
coincident detection of signals at several antennas. We treat this component of the efficiency
model probabilistically, too, in the same way as the previous components.

We use two different, alternative approaches for this final step of the model, probabilistic
calculations and Monte Carlo simulations, and compare them with each other.

Approach with probabilistic calculations. The basis of the probabilistic calculations
for estimation of the detection efficiency is the probabilistic understanding of the air-shower
detection process by an array of antennas. Appearance or not appearance of a signal at a
given antenna is treated as an independent event (“event” in a probabilistic sense, not as
synonym for an observed air-shower). The computation of the detection efficiency is based
on the calculation of the probabilities of all situations that lead to the detection of the air
shower, i.e., those situations with at least the pre-required number of antennas with signal.

Due to the fact that any antenna can either detect or not detect signal with a certain
probability, we consider the probability to observe a given number n of signals from a shower
as sum of probabilities to observe all combinations of antennas leading to the observation of
n signals in total. The joint probability of the situation that the first n antennas out of N
detect a signal has the following form

p(n) = p1 p2 p3 . . . pn−1 pn p̄n+1 p̄N−2 p̄N−1 p̄N . (4.16)

The symbols pm denote the probability densities to detect a signal by m-th antenna (this
quantity corresponds to the probability density expressed by equation (4.15) taken at a
given signal strength), and p̄ denote the probabilities of the non-detection obtained by the
complement rule: p̄ = 1− p. The total probability to observe n signals over the entire array
is the joint probability of all independent events

p(n) = p1 p2 p3 . . . pn−1 pn p̄n+1 . . . p̄N−n p̄N−n+1 p̄N−n+2 . . . p̄n−2 p̄N−1 p̄N+
p1 p2 p3 . . . pn−1 p̄n pn+1 . . . p̄N−n p̄N−n+1 p̄N−n+2 . . . p̄n−2 p̄N−1 p̄N+

. . .

p̄1 p̄2 p̄3 . . . p̄n−1 p̄n p̄n+1 . . . pN−n p̄N−n+1 pN−n+2 . . . pn−2 pN−1 pN+
p̄1 p̄2 p̄3 . . . p̄n−1 p̄n p̄n+1 . . . p̄N−n pN−n+1 pN−n+2 . . . pn−2 pN−1 pN ,

(4.17)
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or shortly

p(n) =
(N

n)∑
i=1

p
(n)
i , (4.18)

where p(n)
i denotes a joint probability as in (4.16), but for a particular spatial configuration

of signals distributed over the antennas. It is easy to formally write the probability of the
detection condition with the introduced notation. If we assume that such a detection condition
consists in the requirement of at least m antennas with signals, the detection probability is
defined by the following equation

P =
(N

m)∑
i=1

p
(m)
i +

( N
m+1)∑
i=1

p
(m+1)
i + · · ·+

( N
N−1)∑
i=1

p
(N1)
i +

(N
N)∑
i=1

p
(N)
i . (4.19)

This equation is correct, however, it is not feasible to use it for practical computation due to
the large number of required operations. Since usually the number of the required signals in
the detection condition is much smaller than total number of antennas of the array, it is more
feasible to compute the detection probability via the complement of all situations which do
not lead to a detection

P = 1−

(N
0 )∑
i=1

p
(0)
i +

(N
1 )∑
i=1

p
(1)
i + · · ·+

( N
m−1)∑
i=1

p
(m−1)
i

 . (4.20)

It is important to recall at this point that each of the pi factors in the equations above
is a probability density function, not a simple number, thus, the algebraic operations need to
be performed correspondingly [27].

To practically perform the computations with the probability densities, we use the
method of sampling the distributions. The idea of the method is as follows. We draw a
sample from each of the initial distributions for the individual antennas. Then, we treat the
samples as a certain realization of the probabilities to observe a signal with the antennas. A
certain realization means that these probabilities become numbers at this point. To obtain
the detection probability for the array we use the same formulas as shown above, but with
the drawn realization of pi instead. By repeating the drawing of samples and conducting the
computations with individual realizations, we obtain a sample of the required probability
density to detect a shower. Then, we use a kernel density estimation with a Gaussian kernel to
restore the density itself. Figure 4 (left) shows an example of such a distribution. The resulting
probability density provides not only the mode of the detection probability, its distribution
also provides an estimation of the uncertainty for this mode value. Usage of the kernel density
estimation for reconstruction of the shape of the probability density function mitigates the
influence of the number of the samples from which we perform the reconstruction. For the
present version of the model we drew 1000 samples which seems sufficient from the visual
investigation of the resulting estimations obtained with both the kernel density estimation
and the histogram with the binning obtained with the Freedman-Diaconis rule.

Approach with Monte-Carlo experiments. In some circumstances, such as a relatively
large number of antennas required in the detection condition, the calculation method described
above performs too slowly. To address this problem, we developed an alternative method of
Monte Carlo experiments. It consists of drawing one sample from each of the probability
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Figure 4. Estimation of the probability density function (PDF) for a particular shower taken as
example. The data are presented in two forms: histogram and kernel density estimator. The histogram
is normalized to the total number of entries; its binning is obtained with the Freedman Diaconis
Estimator. The red curve represents the results of the Gaussian kernel density estimation with
a bandwidth of 1.06 σ̂ n1/5, where σ̂ is the sample standard deviation. The shower core is in the
origin of the coordinates, the other shower parameters are θ = 30◦, φ = 270◦, lg(E/eV) = 17.3,
Xmax = 658 g/cm2. The vertical dashed black line shows the detection probability, which is the mode
of the probability density estimated with the Gaussian kernel; the gray band shows the uncertainty of
detection probability and encloses 0.68 of the total region under the probability density. The detection
condition used for this case is at least three antennas with signals among the 63 Tunka-Rex antennas.
Left: estimation obtained with the probabilistic calculations, 0.466+0.174

−0.162; the lavender color marks the
physical region of the function domain. The negative values present in the plot are unphysical and
emerge from a given implementation of the sampling of the initial PDFs. Right: estimation obtained
with the approach of the Monte-Carlo experiments, 0.416+0.121

−0.122. A comparison of the two computation
methods for low, intermediate, and high efficiency regions can be found in appendix B in ref. [28].

densities to detect a signal in an individual antenna and then run multiple Bernoulli trials with
this set of samples. The fraction of times when the detection condition is fulfilled provides
an estimation of the air-shower detection probability for the particular set of samples. By
drawing more samples and repeating the procedure we get more estimations of the detection
probabilities, and can construct the probability density function for the detection of a given
shower. The final estimation of the density of the detection probability we obtain again
with the kernel density estimation using a Gaussian kernel. Again, usage of the kernel
density estimation mitigates dependence on the sample size. For the present model we used
1000 samples. Figure 4 (right) shows the resulting probability density. One can see that both
methods provide very close results and could be used interchangeably.

Since the main motivation for the development of the second method was the large
computational complexity of the first one for a large number of antennas in the detection
condition, we compared the computing time for both of the methods. As a test case we used
the computation of the averaged detection efficiency over the fiducial area of the Tunka-Rex
antenna array (defined as a circle with a radius of 450m around the center of the array) with
multiple showers coming from the same direction and with shower cores distributed on a
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Figure 5. Comparison of the computation time2 for the different number of antennas in the detection
condition: I — method of probabilistic calculations, II — method of Monte-Carlo experiments. The
test case is computing the averaged efficiency over the Tunka-Rex fiducial area for an event with the
following parameters: θ = 35◦, φ = 270◦, E = 1017.3 eV, Xmax = 658 g/cm2; grid step size of 50m.

rectangular grid over the fiducial area of the array. Figure 5 shows the resulting computation
time for this particular test case for both approaches. The benefit of the method of Monte
Carlo experiments is clearly the almost constant computation time independent of the number
of signals required for the detection condition.

For all results presented further in this work we use the first method of probabilistic
calculations applied to a detection condition requiring at least three antennas with signal.
However, for some efficiency estimations in real case scenarios, the method of Monte Carlo
experiments will be highly beneficial, e.g., a high quality Xmax measurement requiring a larger
number of antennas.

We can use the methods described above for computation of the detection efficiency
for showers initiated by cosmic rays of a certain energy and with a certain depth of shower
maximum. Figure 6 (left) shows an example calculation for the dependence of the detection
efficiency on the core position for a given arrival direction, and figure 6 (right) shows a sky
map of the efficiency for all arrival directions when averaging over a set of core positions
distributed in a square-grid layout over the fiducial area of Tunka-Rex with a step size of
50m.3 One can see that the model provides a unique possibility to estimate both the spatial
and angular detection efficiencies for a given air shower. This allows us to select regions of
full efficiency for further bias-free analyses of the air-shower measurements.

5 Aperture of a radio array

The aperture of a cosmic-ray instrument is one of the main characteristics required for the
reconstruction of the cosmic-ray energy spectrum and mass composition from air-shower

2CPU: Intel Core i7-4790 @ 3.60 GHz, memory: 15.6 GB.
3For analysis of stability of the results for a range of grid steps see ref. [28].
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Figure 6. The efficiency of Tunka-Rex according to the model developed in this work. Left: the
detection efficiency as function of the core position in the ground coordinates. The shower has a given
energy, Xmax, and incoming direction (1017.3 eV, 650 g/cm2, θ = 35◦, φ = 270◦). The azimuth is
counted from the direction to the geographic west. The arrow in the upper right corner points towards
the geographic north. The circular area is the fiducial area of the Tunka-Rex instrument centered at
the first antenna position with a fixed radius of 450m; crosses indicate antenna positions. The plot is
done for a set of shower core positions arranged in a square-grid pattern with step size of 10m (no
smoothing applied). Right: the detection efficiency averaged over the fiducial area as a function of
the incoming direction for E = 1017.3 eV and Xmax = 650 g/cm2. The black-and-white circle shows
the position of the local geomagnetic field. The red cross marks the arrival direction of the left plot
(θ = 35◦, φ = 270◦).

measurements. In contrast to many types of cosmic-ray instruments, radio arrays have a sky
region of suppressed efficiency around the direction of the geomagnetic field due to the physics
of the emission mechanisms. This region can be clearly seen in figure 6 (right). To avoid
biases due to the use of partially efficient sky regions, showers with corresponding arrival
directions need to be cut from analyses.

In this section we describe a method to estimate the aperture for the full-efficiency sky
region of a radio array. To estimate the location of the limited efficiency regions we use the
model presented before.

We begin with the formal definition of the aperture and its connection to the detection
efficiency and the cosmic-ray flux. The number of events N in an infinitesimal energy bin
ranging from E to E+dE observed by a flat cosmic-ray instrument is equal to the cosmic-ray
flux J(E) at this energy multiplied by the instrument exposure ε. The latter is an integral of
the instrument efficiency ξ integrated over the fiducial area of the instrument Sf , the angular
sky region selected, Ωf , and in addition integrated over the operation time T

dN(E)
dE = εJ(E) = J(E)

∫
T

∫
Ωf

∫
Sf
ξ cos θ dS dΩdt. (5.1)

– 13 –



J
C
A
P
0
6
(
2
0
2
3
)
0
1
4

The cos θ factor here reflects the fact that the considered instrument is flat and horizontal,
which is a good approximation for Tunka-Rex and many other air-shower arrays of similar
size. The efficiency is a function of the cosmic-ray energy E, Xmax, incoming directions (θ, φ),
and the core position (x0, y0): ξ = ξ(E,Xmax, θ, φ, x0, y0). For simplification of the formulas,
we do not list these arguments hereafter.

Under the assumptions that the efficiency of the instrument does not depend on time, at
least for selected periods, the integration over time becomes simply a multiplication over the
operation time. The remaining integral holds the name aperture A.

ε =
∫
T

∫
Ωf

∫
Sf
ξ cos θ dS dΩdt = T

∫
Ωf

∫
Sf
ξ cos θ dS dΩ = TA. (5.2)

As we can easily estimate the average efficiency over the fiducial area with our model, we
transform the aperture integral in the following way to factor out the instrument fiducial area

A =
∫

Ωf

∫
Sf
ξ cos θ dS dΩ = Sf

∫
Ωf

(∫
Sf

ξ

Sf
dS
)

cos θ dΩ = Sf

∫
Ωf
〈ξ〉s cos θ dΩ. (5.3)

With this transformation we reduced the initial four-dimensional integral to an integral of
only two dimensions of the averaged efficiency over the instrument fiducial area.

The next step is to determine the regions of full efficiency and use them for the integration.

5.1 Selection of the full-efficiency region

The efficiency model presented in the previous sections is used to determine the location and
size of sky regions with limited efficiency, which are visible in figure 6 (right). The threshold
of “full” efficiency can be defined arbitrarily, but should avoid a significant systematic
uncertainty on whatever is the result of a specific analysis (later we will use 98% as example).
The remaining part of the sky with efficiencies above that threshold is the region of the
full efficiency.

As the region with limited efficiency has a close to circular shape, we use a circle with
appropriate size and position in the sky to approximate this region in further computations.
We use the following parametric form of the boarder of this circle

cos ρ = cos θ cos θ0 + sin θ sin θ0 cosφ, (5.4)

where ρ is the angular radius of the circle and θ0 is the zenith position of the center of the
circle. To find these two parameters for air showers with the same properties (i.e., air showers
with a given energy, and Xmax), we compute the efficiency with the model for a pre-defined
Gaussian grid on the sphere (3◦ step both in zenith and azimuth) and then interpolate it
with linear splines. Then we use the obtained linear spline function in a nested minimization
procedure to obtain the two parameters of the circle.

We organized the minimization procedure in the following way. The external minimization
runs over the zenith location of the circle. The internal minimization looks for the minimal
radius of a circle for a given zenith location under the condition that the minimal value of the
interpolated efficiency must not be smaller than 98% on the boarder of the circle. Figure 7
(left) shows the result of the minimization for a particular shower.

The model presented in the previous section enables us to study both, the spatial and
angular dependence, of the detection efficiency as a function of the energy and Xmax. The
Xmax range of interest implicitly contains the information on the mass composition of the
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Figure 7. Angular behavior of the averaged efficiency for air showers with a depth of maximum of
650 g/cm2 and produced by 1017.3 eV cosmic rays. Left: distribution of the averaged efficiency over the
sky. The red, green, and gray circles correspond to the 0.98, 0.5, and 0.1 maximal efficiency regions.
Right: the evolution of the radii and center positions of the circles corresponding to the 0.98, 0.50, and
0.1 maximal efficiency regions. The size of the 0.98 efficiency circle is almost independent of Xmax.

cosmic rays, since the model of the radio footprint does not explicitly dependent on the
mass of the primary particle. For purposes of the aperture estimation presented here, we
studied how the region of limited efficiency evolves with changing Xmax at a constant energy.
Figure 7 (right) briefly summarizes this study. We found that the size and location of this
region changes only marginally over a wide range of Xmax. Thus, we conclude that for
practical applications a single reference value of Xmax can be used to estimate the region of
full efficiency, which means that for each energy of interest one sky map is sufficient.

5.2 Evaluation of the aperture integral

To evaluate the aperture integral, we developed a semi-analytical method. The main achieve-
ment of the method consists in the conversion of the initial two dimensional aperture integral
into a one dimensional one that can be solved numerically with high precision. On first
view, the problem of the aperture calculation from a known full efficiency region might seem
simple. However, for radio arrays, which have a region of the suppressed efficiency in the
sky, this computation requires a two-dimensional numerical integration on a sphere. This
is a complex problem with not many approaches available to date because the numerical
integration over a sphere is related to the currently unsolved mathematical problems of a
homogeneous distribution of points over a sphere [29]. In this regard, the present method of
reducing the two-dimensional problem of the aperture calculation into a one-dimensional one
is an important step forward.
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We begin with the remaining aperture integral without the fiducial area factor

AΩ =
∫

Ωf
〈ξ〉s cos θ dΩ =

∫ 2π

0

∫ θmax

0
〈ξ〉s cos θ sin θ dθ dφ. (5.5)

This integration should be performed only over the sky region of full efficiency, which is the
entire sky without the approximately circular region of suppressed efficiency. By definition,
the averaged efficiency in the full efficiency region is one, 〈ξ〉s = 1, or marginally smaller
since it is common to accept efficiency values slightly below one in practical applications.
For computation of the integral, we split it into two parts. From the integral over the full
observed sky we subtract the region of suppressed efficiency

AΩ =
∫ 2π

0

∫ θmax

0
cos θ sin θ dθ dφ−

∫ θmax

0

∫ φ2(θ)

φ1(θ)
cos θ sin θ dθ dφ. (5.6)

The solution for the first integral is known and equals π
(
1− cos2 θmax

)
.

To solve the second integral we express the azimuth angle from the equation of the
boarder of the circle (5.4)

φ = ± arccos cos ρ− cos θ cos θ0
sin θ sin θ0

(5.7)

and place it in the limits of the integral. We obtain the following limits

φ1(θ) = 0,

φ2(θ) = arccos cos ρ− cos θ cos θ0
sin θ sin θ0

.
(5.8)

The plus-minus sign leads to a factor of two in front of the integral due to the symmetry of
the efficiency suppressed region. By applying all these transformations, we reduce the two
dimensional integral into a one dimensional integral∫ θmax

0

∫ φ2(θ)

φ1(θ)
cos θ sin θ dθ dφ = 2

∫ θmax

0
arccos cos ρ− cos θ cos θ0

sin θ sin θ0
cos θ sin θ dθ. (5.9)

The combination of this result with the known solution for the integral over the entire
sky gives the final result for the aperture integral

AΩ = π(1− cos θmax)− 2
∫ θmax

0
arccos cos ρ− cos θ cos θ0

sin θ sin θ0
cos θ sin θ dθ. (5.10)

The remaining one dimensional integral can be evaluated numerically.

6 Validation of the model

To check the performance of the efficiency model we validate it against the efficiency estimated
from multiple processing of the CoREAS simulations.4

The idea behind the estimation of the shower detection efficiency with simulations
consists in analyzing the same events multiple times with different measured noise samples
added to the radio pulses simulated by CoREAS. Then, the fraction of times an event passes

4For a validation against measured data see Reference [28].
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Figure 8. Comparison of the detection probability estimated with the model against the detection
probability determined through multiple processing of CoREAS Monte-Carlo simulations with different
noise samples.

the detection condition gives an estimation of the detection efficiency for this event. For this
work we processed each of the events in the simulation set 30 times which is sufficient for
obtaining accurate results. From the many simulated CoREAS events, we formed groups of
events with the same CoREAS Monte Carlo efficiency, and estimated the efficiency with the
model for comparison (figure 8). The points show the mean values of the model-predicted
efficiency for the groups of events with a given CoREAS Monte Carlo efficiency. The error
bars indicate the uncertainties of the underlying distributions and represent the range between
the 16% and 84% percentiles. The detection condition used for this comparison is at least
three antennas with signals.

The comparison shows a very good agreement in the region of high efficiencies which is
fully sufficient for reliable detection of the sky regions of full efficiency. The model may be
modified in the future for better performance in the region of intermediate efficiencies.

7 Conclusion

We have presented a new approach to build a model for the estimation of the detection
efficiency of a radio array for cosmic-ray air showers and a method how this model can be
used for estimation of the aperture. The model is built following an explicit probabilistic
approach in which we treat each stage of the detection process separately by a corresponding
probability density function. The final efficiency model is a combination of these probability
density functions.

The model addresses challenges arising when estimating the detection efficiency of a radio
array with the conventional approach of simulating the array operation by processing many
Monte Carlo simulations and applying the detector response. One of the main challenges in
this approach is the need to generate a sufficient number of air-shower simulations which is
difficult in case of radio arrays because of the large computational complexity of the simulation
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of the radio emission of air showers. A simulation-driven estimation of the efficiency as, e.g.,
done by LOFAR [6–8], requires the generation of tens of simulated showers for each measured
shower. Although for building the model presented in this work some air-shower simulations
were required, too, their number is limited. Once the model is set, we can study any core
positions, incoming directions, energies, and depths of shower maximum without limitations
and with very little additional computing time.

The description of the spatial distribution of the air-shower radio emission in the model
comes from the LDF used in the reconstruction procedure of the instrument, Tunka-Rex,
in our case. While the model presented here was developed for Tunka-Rex, it has a generic
nature and can be applied to any other radio array detecting air showers. For doing so, some
components of the model should be appropriately modified, namely, the description of the
radio footprint and the detection efficiency of the individual antenna. Also, in case of using
different detection conditions, e.g., topological constraints of the radio footprint in addition
to a minimum number of antennas with signal, these need to be incorporated in the model.

To check the model, we validated it against CoREAS Monte Carlo simulations which
provide the most reliable estimation of the detection efficiency for air showers with given
macroparameters. The comparison revealed that the developed model is in good agreement
with the simulations especially for high values of the detection efficiency. Some discrepancies
can be seen for intermediate efficiency values, which may be due to the simplifications implied
in the model, e.g., the radio footprint on ground is only approximated by the LDF used,
and even for showers of same Xmax the average radio amplitude differs by a few percent
depending on the mass of the primary particle [30]. Also, various other small effects such
as variations of the noise level or of the atmospheric conditions have been neglected. They
may be important to describe the region of partial efficiency more accurately, and they may
also be more important for other experiments situated under different conditions. As the
model is made from three main components (a description of the radio footprint, the detection
probability at the antenna level, and the probability to meet the detection condition of the
array) it is conceptually easy to account for those effects at the appropriate step when a
higher accuracy is needed: as examples, atmospheric effects on the radio signal would be
considered in the footprint description and variations of the noise level would be considered
in the detection probability. Nonetheless, for Tunka-Rex these simplifications do not hamper
the application of the model to determine regions of full efficiency in the sky, which are a
necessary input for many bias-free analyses in cosmic-ray physics.

A Parameters of the radio footprint model

The numerical values of the parameters of the model of the radio footprint described in
section 4.1 are obtained with the standard least-square procedure and are as follows

κ = 705.372± 0.710, a0 = 22.049±3.582,
b0 × 105 = 387.052± 67.823, a1 = 4.811±4.454,

b1 = −572.768± 34.815, a2 =−2.006±4.472,
b2 =−1994.797±120.770, a3 =−5.366±5.587.

The value of the constant c0 in the asymmetry operator (4.6) was found in previous studies
and is assumed to be a fixed value of 0.085 [25].
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Figure 9. Unnormalized histogrammed residuals between the symmetrized lateral distribution function
and the symmetrized Monte-Carlo radio signals divided by the model value. The vertical black dashed
line indicates the location of the mean value of -0.0023(3). The gray area indicates the width of two
standard deviations. The obtained value of the standard deviation is 0.1447. The higher moments of
the distribution were ignored in the model presented in this work.

To check the accuracy of the model of the radio footprint against the footprint observed in
the CoREAS Monte Carlo simulations, we compared them against each other after eliminating
the asymmetry of the footprints. Namely, we applied the asymmetry correction operator to
the CoREAS footprints and used the symmetrical part of the radio footprint model. Figure 9
shows the results of this comparison. From the obtained distribution, we determined the
uncertainty of the model as the standard deviation of the distribution that we used throughout
the modeling process.

We want to point out that the Tunka-Rex LDF model is built as an averaged model
of the radio footprint of the signals observed from the proton- and iron-induced showers.
This averaging marginalizes the model over the primary particle type that eliminates this
parameter from the model, i.e., we assume that showers of the same energy, arrival direction,
and Xmax feature the same radio signal regardless of the mass of the primary particle. This
is a justified approximation because the average lateral distribution and absolute amplitude
of proton- and iron-induced showers differs by about ±5 % only from the generic model of the
radio footprint used here [25].

B Parameters of the antenna efficiency model

The numerical values of the parameters of the model of the antenna efficiency described in
section 4.2 were obtained with the standard least-square procedure from the probabilities to
detect individual signals obtained by their multiple processing with randomly picked on-site
measured noise samples. The values of the parameters are as follows (the numerical values
are rounded here for presentation purposes to the third mantissa digit):

s0 = 118.778± 0.132, s1 = 26.451± 0.203, s2 = 0.221± 0.001.

– 19 –



J
C
A
P
0
6
(
2
0
2
3
)
0
1
4

Acknowledgments

This work has been supported by the German Academic Exchange Service (DAAD, personal
grant No. 91657437). In preparation of this work we used calculations performed on the
ForHLR-II cluster. We thank Dmitriy Kostunin, Andreas Haungs, Tim Huege, and Hans
Dembinski for useful discussions, and Agnieszka Leszczyńska for reading the final manuscript
and providing useful comments. Finally, we thank the reviewer for constructive feedback.

References

[1] T. Huege, Radio detection of cosmic ray air showers in the digital era, Phys. Rept. 620 (2016) 1
[arXiv:1601.07426] [INSPIRE].

[2] F.G. Schröder, Radio detection of Cosmic-Ray Air Showers and High-Energy Neutrinos, Prog.
Part. Nucl. Phys. 93 (2017) 1 [arXiv:1607.08781] [INSPIRE].

[3] A. Coleman et al., Ultra high energy cosmic rays The intersection of the Cosmic and Energy
Frontiers, Astropart. Phys. 149 (2023) 102819 [arXiv:2205.05845] [INSPIRE].

[4] Tunka-Rex collaboration, Reconstruction of cosmic ray air showers with Tunka-Rex data using
template fitting of radio pulses, Phys. Rev. D 97 (2018) 122004 [arXiv:1803.06862] [INSPIRE].

[5] Tunka-Rex collaboration, Seven years of Tunka-Rex operation, PoS ICRC2019 (2020) 319
[arXiv:1908.10305] [INSPIRE].

[6] LOFAR collaboration, Measuring the cosmic ray mass composition with LOFAR, in the
proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The
Netherlands, 30 July – 6 August 2015, p. 368 [DOI:10.22323/1.236.0368].

[7] LOFAR collaboration, Cosmic ray mass composition with LOFAR, in the proceedings of the
35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea, 10–20 July 2017,
p. 499 [DOI:10.22323/1.301.0499].

[8] LOFAR collaboration, Depth of shower maximum and mass composition of cosmic rays from
50PeV to 2EeV measured with the LOFAR radio telescope, Phys. Rev. D 103 (2021) 102006
[arXiv:2103.12549] [INSPIRE].

[9] Tunka-Rex collaboration, Measurement of cosmic-ray air showers with the Tunka Radio
Extension (Tunka-Rex), Nucl. Instrum. Meth. A 802 (2015) 89 [arXiv:1509.08624] [INSPIRE].

[10] Pierre Auger collaboration, Antennas for the Detection of Radio Emission Pulses from
Cosmic-Ray, 2012 JINST 7 P10011 [arXiv:1209.3840] [INSPIRE].

[11] TAIGA collaboration, Tunka Advanced Instrument for cosmic rays and Gamma Astronomy, J.
Phys. Conf. Ser. 1263 (2019) 012006 [arXiv:1903.07460] [INSPIRE].

[12] Tunka-Rex collaboration, Radio measurements of the energy and the depth of the shower
maximum of cosmic-ray air showers by Tunka-Rex, JCAP 01 (2016) 052 [arXiv:1509.05652]
[INSPIRE].

[13] D. Kostunin et al., Present status and prospects of the Tunka Radio Extension, EPJ Web Conf.
216 (2019) 01005 [arXiv:1812.03070] [INSPIRE].

[14] D. Heck et al., CORSIKA: A Monte Carlo code to simulate extensive air showers, FZKA-6019
(1998) [INSPIRE].

[15] S. Ostapchenko, Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme:
I. QGSJET-II model, Phys. Rev. D 83 (2011) 014018 [arXiv:1010.1869] [INSPIRE].

[16] A. Ferrari, P.R. Sala, A. Fassò and J. Ranft, FLUKA: A multi-particle transport code (Program
version 2005), CERN-2005-010, INFN TC_05/11, SLAC-R-773 (2005) [DOI:10.2172/877507]
[INSPIRE].

– 20 –

https://doi.org/10.1016/j.physrep.2016.02.001
https://arxiv.org/abs/1601.07426
https://inspirehep.net/literature/1417073
https://doi.org/10.1016/j.ppnp.2016.12.002
https://doi.org/10.1016/j.ppnp.2016.12.002
https://arxiv.org/abs/1607.08781
https://inspirehep.net/literature/1478572
https://doi.org/10.1016/j.astropartphys.2023.102819
https://arxiv.org/abs/2205.05845
https://inspirehep.net/literature/2080572
https://doi.org/10.1103/PhysRevD.97.122004
https://arxiv.org/abs/1803.06862
https://inspirehep.net/literature/1663371
https://doi.org/10.22323/1.358.0319
https://arxiv.org/abs/1908.10305
https://inspirehep.net/literature/1751362
https://doi.org/10.22323/1.236.0368
https://doi.org/10.22323/1.301.0499
https://doi.org/10.1103/PhysRevD.103.102006
https://arxiv.org/abs/2103.12549
https://inspirehep.net/literature/1853008
https://doi.org/10.1016/j.nima.2015.08.061
https://arxiv.org/abs/1509.08624
https://inspirehep.net/literature/1394995
https://doi.org/10.1088/1748-0221/7/10/P10011
https://arxiv.org/abs/1209.3840
https://inspirehep.net/literature/1186337
https://doi.org/10.1088/1742-6596/1263/1/012006
https://doi.org/10.1088/1742-6596/1263/1/012006
https://arxiv.org/abs/1903.07460
https://inspirehep.net/literature/1725615
https://doi.org/10.1088/1475-7516/2016/01/052
https://arxiv.org/abs/1509.05652
https://inspirehep.net/literature/1393972
https://doi.org/10.1051/epjconf/201921601005
https://doi.org/10.1051/epjconf/201921601005
https://arxiv.org/abs/1812.03070
https://inspirehep.net/literature/1707665
https://inspirehep.net/literature/469835
https://doi.org/10.1103/PhysRevD.83.014018
https://arxiv.org/abs/1010.1869
https://inspirehep.net/literature/872658
https://doi.org/10.2172/877507
https://inspirehep.net/literature/701721


J
C
A
P
0
6
(
2
0
2
3
)
0
1
4

[17] W.R. Nelson, H. Hirayama and D.W.O. Rogers, EGS4 code system, Tech. Rep. SLAC-265 (1985).
[18] A. Chulliat et al., The US/UK World Magnetic Model for 2015-2020: Technical Report, National

Geophysical Data Center, NOAA (2015) [DOI:10.7289/V5TB14V7].
[19] T. Huege, M. Ludwig and C.W. James, Simulating radio emission from air showers with

CoREAS, AIP Conf. Proc. 1535 (2013) 128 [arXiv:1301.2132] [INSPIRE].
[20] S. Argirò et al., The Offline Software Framework of the Pierre Auger Observatory, Nucl. Instrum.

Meth. A 580 (2007) 1485 [arXiv:0707.1652] [INSPIRE].
[21] J.R. Prescott, J.H. Hough and J.K. Pidcock, Mechanism of Radio Emission from Extensive Air

Showers, Nature Phys. Sci. 233 (1971) 109.
[22] LOFAR collaboration, Polarized radio emission from extensive air showers measured with

LOFAR, JCAP 10 (2014) 014 [arXiv:1406.1355] [INSPIRE].
[23] Pierre Auger collaboration, Probing the radio emission from air showers with polarization

measurements, Phys. Rev. D 89 (2014) 052002 [arXiv:1402.3677] [INSPIRE].
[24] LOFAR collaboration, Measurement of the circular polarization in radio emission from extensive

air showers confirms emission mechanisms, Phys. Rev. D 94 (2016) 103010 [arXiv:1611.00758]
[INSPIRE].

[25] D. Kostunin et al., Reconstruction of air-shower parameters for large-scale radio detectors using
the lateral distribution, Astropart. Phys. 74 (2016) 79 [arXiv:1504.05083] [INSPIRE].

[26] Radio noise. Recommendation P.372-14, ITU, Geneva, Switzerland (2019).
[27] M.D. Springer, The algebra of random variables, John Wiley & Sons (1979).
[28] V. Lenok, Measurement of the Cosmic-Ray Energy Spectrum Using a Novel Approach to Model

the Aperture of Radio Arrays, Ph.D. thesis, Karlsruher Institut für Technologie (KIT), Germany
(2022).

[29] C.H.L. Beentjes, Quadrature on a spherical surface,
https://cbeentjes.github.io/files/Ramblings/QuadratureSphere.pdf (2016).

[30] Tunka-Rex and LOPES collaborations, A comparison of the cosmic-ray energy scales of
Tunka-133 and KASCADE-Grande via their radio extensions Tunka-Rex and LOPES, Phys. Lett.
B 763 (2016) 179 [arXiv:1610.08343] [INSPIRE].

– 21 –

https://doi.org/10.7289/V5TB14V7
https://doi.org/10.1063/1.4807534
https://arxiv.org/abs/1301.2132
https://inspirehep.net/literature/1210003
https://doi.org/10.1016/j.nima.2007.07.010
https://doi.org/10.1016/j.nima.2007.07.010
https://arxiv.org/abs/0707.1652
https://inspirehep.net/literature/755550
https://doi.org/10.1038/physci233109a0
https://doi.org/10.1088/1475-7516/2014/10/014
https://arxiv.org/abs/1406.1355
https://inspirehep.net/literature/1299286
https://doi.org/10.1103/PhysRevD.89.052002
https://arxiv.org/abs/1402.3677
https://inspirehep.net/literature/1281492
https://doi.org/10.1103/PhysRevD.94.103010
https://arxiv.org/abs/1611.00758
https://inspirehep.net/literature/1496173
https://doi.org/10.1016/j.astropartphys.2015.10.004
https://arxiv.org/abs/1504.05083
https://inspirehep.net/literature/1362159
https://cbeentjes.github.io/files/Ramblings/QuadratureSphere.pdf
https://doi.org/10.1016/j.physletb.2016.10.031
https://doi.org/10.1016/j.physletb.2016.10.031
https://arxiv.org/abs/1610.08343
https://inspirehep.net/literature/1495175

	Introduction
	Tunka-Rex array
	Simulation dataset
	Efficiency model for a radio array
	Spatial distribution of the air-shower radio signals
	Signal detection by a single antenna
	Detection probability for an array of radio antennas

	Aperture of a radio array
	Selection of the full-efficiency region
	Evaluation of the aperture integral

	Validation of the model
	Conclusion
	Parameters of the radio footprint model
	Parameters of the antenna efficiency model

