

Karlsruhe Institute of Technology

Institute of Vehicle System Technology **Division Lightweight Engineering** Digitalisation in Lightweight Design

Pultrusion process simulation – modelling of the injection and impregnation chamber *

Poppe, N.^a | Wilhelm, M.^b | Kärger, L.^a

* For more details, please refer to our ICCM conference paper.

^a Karlsruhe Institute of Technology (KIT), Institute for Vehicle Systems Technology, Rintheimer Querallee 2, Karlsruhe, 76131, Germany ^b Fraunhofer Institute for Chemical Technology ICT, Joseph-von-Fraunhofer-Straße 7, Pfinztal, 76327, Germany

Motivation

- Fast-curing resin systems require closed injection pultrusion and accurate process design
- Simulation-based design of ii-chamber vs. experimental trial-and-error
- Process simulation enables visualisation of phenomena usually hidden inside the box

Method

- CFD simulations with OpenFOAM
- Moving fibres as porous medium
- Transient simulation

Sub-models

Heat conduction Reaction kinetic

Viscosity depending on reaction degree and temperature

Flow pattern

- Collision of opposing currents
 - Drag-induced flow
 - **Pressure-driven backflow**
- Flow recirculation within the pure resin areas
- Dead spots: recirculations constitute closed circuits

Deposit prediction

- Progressing resin reaction at dead spots leads to formation of deposits at the walls
- Deposits grow continuously over time
- An equilibrium is reached when the pure resin areas are filled with deposits
- Qualitative agreement with experimental observations

Conclusion and Outlook

- Flow field and deposit build-up can be predicted
- Experimental characterisation and validation still needed
- Consideration of impregnation can be added
- This will allow to optimise ii-chamber design

Comparison of simulated (left) and experimental (right) deposit thickness for upper and lower half of the ii-chamber. On the left, cells with reaction degree > 60% are captured.

Contact Nik Poppe, M.Ed. nik.poppe@kit.edu www.fast.kit.edu/english/lbt

Acknowledgement

This work was funded by the Ministry of Economic Affairs, Labour and Tourism Baden-Württemberg. Modelling of material behaviour and process boundary conditions was also supported by the DFG.

