
Dissertationsreihe am Institut für Hydromechanik
Karlsruher Institut für Technologie (KIT)
Heft 2023/2

Turbulent coherent structures,  
Secondary currents and Sediment ridges

Markus Maximilian Scherer





Markus Maximilian Scherer 

Turbulent coherent structures, Secondary currents and Sediment ridges



Dissertationsreihe am Institut für Hydromechanik
Karlsruher Institut für Technologie (KIT)

Heft 2023/2

Eine Übersicht aller bisher in dieser Schriftenreihe erschienenen Bände finden Sie am Ende des Buches.



Turbulent coherent structures,  
Secondary currents and Sediment ridges

by  
Markus Maximilian Scherer



Print on Demand 2023 – Gedruckt auf FSC-zertifiziertem Papier

ISSN  1439-4111
ISBN 978-3-7315-1318-6 
DOI 10.5445/KSP/1000161247

This document – excluding parts marked otherwise, the cover, pictures and graphs –  
is licensed under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)  
KIT Scientific Publishing 
Straße am Forum 2 
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark  
of Karlsruhe Institute of Technology.  
Reprint using the book cover is not allowed. 

www.ksp.kit.edu

Karlsruher Institut für Technologie
Institut für Hydromechanik

Turbulent coherent structures, Secondary currents and Sediment ridges

Zur Erlangung des akademischen Grades eines Doktor-Ingenieurs von der KIT-Fakultät 
für Bauingenieur-, Geo- und Umweltwissenschaften des Karlsruher Instituts für  
Technologie (KIT) genehmigte Dissertation  

von Markus Maximilian Scherer, M.Sc.

Tag der mündlichen Prüfung: 4. Februar 2022
Referent: Prof. Dr. Markus Uhlmann
Korreferent: Prof. Dr. Paolo Blondeaux







To the memory of Günter,
Gertrud and Heinz Scherer

Thank you for everything





Abstract

Sediment bedforms arise in many fluvial ecosystems including rivers, estuaries or the oceans due to
a complex interaction between a turbulent shear flow and the erodible river or seabed. The resulting
sedimentary patterns can take a variety of different shapes and occur at a wide range of scales, from
small sediment ridges over medium sized sand dunes to massive marine sand banks. A fundamental
understanding of the physical mechanisms that underlie this pattern formation processes is crucial for
environmental and hydraulic engineers likewise, as the sedimentary bedforms have the potential to
significantly modify the river’s flow characteristics – possibly with severe consequences for the trans-
port processes in the fluvial system and thus for its ecological status. In the engineering practice, it is
therefore of great importance to have reliable tools to hand that allow accurate predictions of both the
future river bed evolution and its impact on the natural ecosystem. Of special interest are in this regard
the evolution of streamwise-aligned sediment ridges and accompanying large-scale secondary currents
in the turbulent flow, as those latter are well-known to significantly enhance mixing processes of heat
and momentum across the water body. Despite decades of intensive research, the processes which
give rise to these sediment ridges and the related turbulent secondary flow cells are even nowadays
not fully understood and accurate reduced-complexity models are still lacking.

In this thesis, our aim therefore is to contribute to the fundamental understanding of the mechanisms
that lead to the formation of sediment ridges and secondary currents by means of high-fidelity di-
rect numerical simulations of open channel and open duct flows. The performed computations reach
bulk and friction Reynolds numbers of 9500 and 830, respectively, and include up to 1.4 million fully-
resolved mobile particles. In order to resolve all flow scales including those smaller than the particle
size, the applied numerical method incorporates an immersed boundary technique, which is then cou-
pled with a soft-sphere discrete element model suitable to accurately describe the exchange of momen-
tum during particle contacts. The resulting high-fidelity datasets allow a deep insight into the interplay
between turbulent coherent structures and the erodible sediment bed and will hopefully help to im-
prove existing engineering-type models in the long run.

Based on the newly-created database, we discuss the physical processes that trigger the evolution of
sediment ridges on an initially macroscopically flat sediment bed and the corresponding development
of secondary currents in the turbulent flow. In the classical literature, two conceivable formation mech-
anisms have been proposed (Nezu & Nakagawa, IAHR Monograph, 1993), but sound experimental or
numerical evidence for their validity is still lacking to the best of our knowledge. In the first mech-
anism, an initial lateral sediment bed perturbation causes a spanwise disturbance of the bed shear
stress, which, in turn, triggers the development of large-scale secondary currents. The second con-
ceived mechanism is ‘reversed’ compared to the former in that the flow field exhibits a lateral variation
that induces a laterally varying bed shear stress and thus a heterogeneous sediment erosion along the
bed that ultimately leads to the development of local troughs and ridges.

In the current work, we analyse both conceived mechanisms concerning their relevance for the sed-
iment ridge evolution under fully-turbulent conditions. First, we implement and reanalyse Colom-
bini’s theoretical model (J. Fluid Mech., vol. 254, 1993, p. 701-719): In agreement with the first proposed
mechanism, the linearised stationary model can be seen as a ‘perturbation-response’ system in which
the flow is perturbed by a lateral sinusoidal bed variation of infinitesimal amplitude, while the most-
amplified wavelength of this bed perturbation is determined by the strongest response of the linearised
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Navier-Stokes operator in form of a maximised lateral shear stress. In this sense, the sediment bed takes
the role of a stationary external forcing on the linear operator, as is shown by comparison with studies
on the forced Orr-Sommerfeld problem and on transient growth in canonical channel flows.

In contrast to the linearised model system, the newly performed direct numerical simulations reveal
that the impact of small bed perturbations on the turbulent flow is negligible and thus is of minor
importance for the formation of sediment ridges in the fully-turbulent time-dependent case. Instead,
laterally alternating turbulent large-scale velocity streaks that represent a finite-amplitude perturba-
tion of the mean flow profile induce a laterally varying bed shear stress and erosion rate. That is,
sediment ridges evolve in regions of relatively weaker erosion activity below large-scale low-speed
streaks and troughs vice versa below the corresponding high-speed streaks. Such large-scale coherent
velocity structures are a characteristic feature of wall-bounded shear flows over both smooth bottom
walls and mobile sediment beds that typically exhibit a lateral spacing of between one and two mean
fluid heights, explaining the regular spacing of sediment ridges at a comparable lateral wavelength.
The interaction of large-scale velocity streaks with the erodible bed can be described as a ‘top-down
process’, since the lateral organisation of the sediment ridges is observed to adapt to changes in the
arrangement of large-scale flow structures with a time lag of several bulk time units, which is in fairly
good agreement with the conceptual model on causality in canonical flows by Jiménez (J. Fluid Mech.,
vol. 842, 2018, P1, § 5.6). The mean secondary currents, finally, are seen to represent the statistical foot-
print of the well-organised large-scale streaks and their associated Reynolds stress-carrying structures
when averaged in time and the streamwise direction.

Sediment ridges are observed to form due to the outlined mechanism in the absence of nearby lateral
sidewalls in the open channel and the core region of wide open ducts likewise, while a slightly different
formation process takes place in the vicinity of sidewalls, where the sediment ridges interact with a
‘pre-existing’ sidewall-induced mean secondary flow. In this context, a similar ‘top-down mechanism’
is seen to initiate the formation of sediment ridges, but the relevant coherent velocity structures are
located closer to the wall and are of smaller size than the afore described. The mobile sediment bed
conversely alters the sidewall-induced mean secondary flow whose overall intensity increases com-
pared to the smooth-wall case due to a strengthening of the outer secondary currents, while the mean
secondary bottom vortices near the sediment bed-sidewall corners are seen to reduce in strength. The
latter phenomenon is related to a rearrangement of instantaneous quasi-streamwise vortices in the
vicinity of a permeable mobile sediment bed compared to an impermeable bottom wall. Agglomer-
ations of such small vortices in form of larger-scale vortex clusters reveal a preferential organisation
very similar to the mean secondary currents, which could imply that the mean secondary currents are
the statistical footprint of these vortex clusters.

The analysis concludes with an outlook on the final stage of sediment ridge development in both lat-
erally periodic channels and wide open ducts, during which transverse ripple-like patterns evolve and
eventually dominate or entirely replace the faster-developing sediment ridges. The ridge-covered sedi-
ment bed is seen to gradually transform into a ripple-dominated bed by the evolution of small sediment
seeds superimposed on the sediment ridges that propagate downstream while their amplitude is grow-
ing. Having reached a certain amplitude, a trough region develops in the lee side of these initial seeds
that eventually leads to a streamwise disconnection of the former sediment ridges. In a final phase,
the localised seeds synchronise to form higher-amplitude transverse bedforms that span over widths
of up to 16 times the mean fluid height.
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Zusammenfassung

Sedimenttransportkörper (oft auch als Sedimentformationen bezeichnet) entstehen in vielen natürli-
chen Ökosystemen durch die Wechselwirkung einer turbulenten Scherströmung mit einem erodier-
baren Sedimentbett. Die Bandbreite von in der Natur auftretenden Sedimenttransportkörpern reicht
dabei von kleinen Rippeln in schmalen Bachläufen bis zu Sanddünen von mehreren Kilometern Länge.
Sogenannte "sediment ridges" (in deutscher Literatur etwa "Sedimentgrate", "Sedimentrücken") sind
längliche Sedimenttransportkörper, die sich parallel zur Hauptströmungsrichtung ausbilden und eng
mit Sekundärströmungen der zweiten Prandtl’schen Art zusammenhängen. Ein grundlegendes Ver-
ständnis der komplexen Wechselwirkungen zwischen turbulenter Scherströmung und den sich ausbil-
denden "sediment ridges" ist von großer Wichtigkeit sowohl für die Unterhaltung bestehender Was-
serstraßen und hydraulischer Bauwerke als auch für den Schutz bestehender aquatischer Ökosysteme:
Die sich entwickelnden Sedimentstrukturen und die damit einhergehenden Sekundärströmungen ver-
ändern nicht nur das Flussbett und die Ablagerung von Sediment entlang diesem, sondern üben auch
einen starken Einfluss auf zentrale Misch– und Transportvorgänge im Gewässer aus. Dies betrifft zum
einen die Ausbreitung von Wärme und gelösten Gasen wie Sauerstoff im Gewässer, zum anderen kann
aber auch die Verbreitung umweltschädlicher Stoffe erhöht werden.

Ziel der vorliegenden Arbeit ist es, zu einem besseren Verständnis derjenigen Mechanismen beizutra-
gen, die die Entwicklung dieser "sediment ridges" und der mit ihnen einhergehenden Sekundärströ-
mungen beeinflussen. Insbesondere gilt es zu untersuchen,

(i) welche Mechanismen zur Entstehung von "sediment ridges" und Sekundärströmungen führen,

(ii) wie beide in Wechselwirkung mit kohärenten Strukturen in der turbulenten Strömung stehen,

(iii) welchen Einfluss eine durch Seitenwände induzierte Sekundärströmung auf die Entwicklung der
Sedimentstrukturen ausübt und

(iv) wie sich schließlich größere Rippel aus den "sediment ridges" entwickeln.

Zu diesem Zweck werden hochaufgelöste direkte numerische Simulationen (DNS) von offenen Ka-
nalströmungen mit und ohne Seitenwände(n) bis zu einer Reynoldszahl von 9500 (definiert basierend
auf der mittleren Fluidhöhe und der mittleren Strömungsgeschwindigkeit) durchgeführt, was einer
Reibungs-Reynoldszahl von ca. 830 entspricht. Bis zu 1,4 Millionen voll-aufgelöste, frei bewegliche
Partikel bilden dabei das erodierbare Sedimentbett. Um alle relevanten Skalen der turbulenten Strö-
mung inklusive der lokalen Umströmung einzelner Partikel darstellen zu können, wird eine "immer-
sed boundary"–Methode verwendet, die wiederum mit einem "soft-sphere discrete element model"
gekoppelt ist, um den Impulsaustausch beim Kontakt mehrerer Partikel zu bestimmen.

Klassischerweise werden zwei mögliche Mechanismen unterschieden, die zur Entwicklung von "se-
diment ridges" und der entsprechenden Sekundärströmung über einem anfangs flachen Bett führen
können (Nezu & Nakagawa, IAHR Monograph, 1993). Jedoch ist bisher nicht geklärt, welcher der bei-
den tatsächlich für die Entwicklung der "sediment ridges" in einer voll-turbulenten Strömung verant-
worlich ist. Im ersten der beiden Mechanismen regt eine Störung des ansonsten flachen Sedimentbet-
tes in der Querrrichtung eine laterale Variation der Bettschubspannung an, welche dann wiederum
zur Enwicklung einer großskaligen Sekundärströmung führt. Der zweite Mechanismus wirkt quasi
umgekehrt, indem eine anfängliche laterale Variation des Strömungsfeldes eine Oszillation der Bett-
schubspannung quer zur Hauptströmungsrichtung induziert, mit der eine ebenso lateral variierende
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Erosionsrate einhergeht. Die inhomogene Sedimenterosion in der Querrrichtung führt schlußendlich
zur Ausbildung lokaler Senken und Erhebungen auf dem Sedimentbett, wobei letztere die "sediment
ridges" darstellen.

Lineare Instabilität einer turbulenten Strömung über "sediment ridges". In der vorliegenden Ar-
beit werden basierend auf neugewonnenen Datensätzen beide möglichen Mechanismen auf ihre Rele-
vanz für den Sedimenttransport in voll-turbulenten Strömungen untersucht. Zu diesem Zweck wird
zunächst das theoretische Modell von Colombini (J. Fluid Mech., vol. 254, 1993, S. 701-719) zur Ent-
wicklung von "sediment ridges" und großskaligen Sekundärströmungen implementiert und eingehend
analysiert. Letzteres beschreibt, wie eine laterale sinusförmige Variation des Sedimentbettes mit in-
finitesimaler Amplitude in einer ebenen Kanalströmung entsprechend dem ersten Mechanismus die
Entwicklung einer turbulente Sekundärströmung anregen kann. Die mittlere laterale Distanz zwischen
zwei "sediment ridges" entspricht dabei derjenigen Störungswellenlänge, die den linearisierten Navier-
Stokes-Operator zur maximalen lateralen Bettschubspannung anregt. In diesem Sinne übernimmt die
laterale Variation der Sedimentbettoberfläche hier die Rolle eines externen Kraftfeldes, welches auf
den Navier-Stokes-Operator wirkt. Diese Analogie wird durch einen Vergleich mit anderen Studien
herausgearbeitet, die sich mit dem klassischen Orr-Sommerfeld-Problem unter externem Krafteinfluss
sowie dem vorübergehenden Wachstum optimaler Eingangsbedingungen ("transient growth") für den
Navier-Stokes-Operator in kanonischen Kanalströmungen beschäftigen.

Großskalige kohärente Strukturen und ihre Wechselwirkung mit "sediment ridges" in offenen Ka-

nalströmungen ohne Seitenwände. Die im Rahmen der Arbeit durchgeführten direkten numeri-
schen Simulationen zeigen im Gegensatz zu diesem linearen Modell, dass der erste Mechanismus einer
durch das Bett induzierten Sekundärströmung im Falle einer voll-turbulenten, zeitabhängigen Strö-
mung von untergeordneter Bedeutung ist. Stattdessen wird beobachtet, dass die laterale Variation von
Bettschubspannung und Erosionsrate in diesem Fall durch großskalige kohärente Strukturen, soge-
nannte "large-scale velocity streaks" (großräumige zusammenhängende Regionen relativ höherer oder
niedrigerer Geschwindigkeit), induziert wird. Im Gegensatz zum vorher diskutierten linearen Mo-
dell stellen diese Strukturen eine Störung des mittleren Geschwindigkeitsprofils mit finiter Amplitude
dar. Durch die Interaktion der großskaligen "velocity streaks" mit dem Sedimentbett entwickeln sich
Sedimentansammlungen in Form von "sediment ridges" in Regionen geringerer Strömungsgeschwin-
digkeit und somit schwächerer Erosionsaktivität, wohingegen sich lokale Senken dort ausbilden, wo
die Erosionsrate aufgrund höherer Fließgeschwindigkeiten erhöht ist. Großskalige "velocity streaks"
dieser Art sind ein charakteristischer Bestandteil wandnaher Scherströmungen und treten gleicherma-
ßen über einer glatten Wand und über einer erodierbaren beweglichen Flusssohle auf. Typischerweise
weisen diese gut organisierten Strukturen einen mittleren Abstand vom ein– bis zweifachen der mitt-
leren Fluidhöhe in der Richtung quer zur Hauptströmungsrichtung auf, was die gleichmäßige Anord-
nung der "sediment ridges" auf dem Sedimentbett mit vergleichbarem lateralen Abstand erklärt. Der
beschriebene Interaktionsprozess zwischen den großskaligen Geschwindigkeitsstrukturen und dem
erodierbaren Sedimentbett ist in diesem Sinne ein "top-down"–Mechanismus, in Rahmen dessen sich
die laterale Organisation der Sedimenttransportkörper mit einem gewissen Zeitverzug von mehreren
"bulk time units" (Zeiteinheit skaliert mit der mittleren Strömungsgeschwindigkeit und der mittleren
Fluidhöhe) an die Anordnung der großskalige Geschwindigkeitsstrukturen anpasst. Der beobachtete
Mechanismus weist damit eine gute Übereinstimmung mit dem konzeptionellen Modell von Jiménez
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(J. Fluid Mech., vol. 842, 2018, P1, § 5.6) über die Kausalität in kanonischen turbulenten Strömungen
auf. Die mittlere Sekundärströmung stellt schließlich den statistischen Fußabdruck der regelmäßig or-
ganisierten großskaligen Geschwindigkeitsstrukturen und der mit ihnen einhergehenden Strukturen
starker Reynolds-Spannungen dar, wenn diese über die Hauptströmungsrichtung und die Zeit gemit-
telt werden.

Kohärente Strukturen und "sediment ridges" in offenen Kanalströmungen mit Seitenwänden. Der
beschriebene Mechanismus führt zur Entwicklung von "sediment ridges" in ausreichender Entfernung
zu lateralen Berandungen wie den Seitenwänden eines Kanals. In der Nähe solcher Seitenwände be-
steht dagegen eine Wechselwirkung zwischen den Sedimenttransportkörpern und der durch die Sei-
tenwand induzierten Sekundärströmung, weswegen "sediment ridges" in diesen Regionen einen leicht
veränderten Entwicklungsprozess durchlaufen. Zwar ist die Interaktion des Strömungsfeldes mit dem
Sedimentbett auch hier ein "top-down"–Prozess, aber die dabei relevanten Geschwindigkeitsstruktu-
ren befinden sich in kleinerer Entfernung zum Sedimentbett und sind von geringerer Größe. Umge-
kehrt verändert die Anwesenheit einer beweglichen Kanalsohle jedoch auch die durch die Seitenwand
induzierte Sekundärströmung: Während deren mittlere Intensität durch eine Verstärkung der groß-
skaligen äußeren Sekundärwirbel zunimmt, reduziert sich die Stärke und Größe der bodennahen Se-
kundärwirbel in den Ecken zwischen Bett und Seitenwand im Vergleich zum Fall einer einphasigen
Strömung über einer glatten Wand. Letzteres Phänomen kann auf eine Umorganisation kohärenter
Wirbelstrukturen mit Rotationsachse parallel zur Hauptströmungsrichtung zurückgeführt werden,
welche sich über einem beweglichen Sedimentbett anders anordnen als über einer undurchlässigen
glatten Wand. Dabei zeigt sich zudem, dass sich größere Gruppen solcher kleinen Wirbel in größeren
"Wirbel-Clustern" zusammenschließen, deren bevorzugte Anordnung der Struktur der mittleren Se-
kundärströmung sehr ähnlich ist. Diese Beobachtung könnte darauf schließen lassen, dass die mittlere
Sekundärströmung den statistische Fußabdruck dieser instantanen "Wirbel-Cluster" darstellt.

Der Übergang zu einem Rippel-dominierten Sedimentbett. Am Ende der Arbeit wird ein Ausblick
auf die letzte Entwicklungsstufe der "sediment ridges" in breiten Kanalströmungen mit und ohne Sei-
tenwände(n) gegeben. In dieser finalen Phase entwickeln sich auf dem Sedimentbett Rippel–ähnliche
Transportkörper, deren Kamm quer zur Hauptströmungsrichtung verläuft und die mit der Zeit lang-
sam stromabwärts wandern. Nach einer Übergangsphase in der beide Arten von Transportkörpern mit
ähnlichen Abmessungen beobachtet werden können, beginnen die Rippel die Entwicklung des Sedi-
mentbettes zu dominieren, wobei die zunächst beobachteten "sediment ridges" überlagert und zum
Teil gänzlich verdrängt werden. Der Übergang eines von "sediment ridges" dominierten Sediment-
bettes hin zu einer Rippel-dominierte Kanalsohle ist fließend: Zunächst entwickeln sich überlagert mit
den "sediment ridges" kleine lokale Sedimentanhäufungen, welche mit der Zeit anwachsen und gleich-
zeitig stromabwärts wandern. Sobald deren Höhe eine bestimmte Schwelle überschreitet, entwickeln
sich auf den Leeseiten lokale Senken aus, was schließlich zu einer Aufspaltung der früheren "sediment
ridges" in mehrere einzelne Transportkörper führt. In der letzten Phase verbinden sich mehrere dieser
lokalen Transportkörper zu größeren Rippeln, deren Kamm sich über die gesamte Kanalbreite vom
16–fachen der mittleren Fluidhöhe erstreckt.
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τ Reynolds stress tensor

τb instantaneous wall shear stress at a smooth bottom wall

τbed mean bed shear stress in open duct flows (ignoring sidewall-contributions)

τdisp dispersive stress

τη Kolmogorov time scale

τf mean fluid shear stress

xxi



Nomenclature

τL Linear approximation of the Reynolds stress tensor

τNL Non-linear approximation of the Reynolds stress tensor

τpart stress due to particle-fluid interaction

τt lateral bed shear stress component tangential to the bed contour

τtot total shear stress

τturb turbulent shear stress

τvisc viscous shear stress

τw mean wall/bed shear stress

τi
w instantaneous wall/bed shear stress

τw,l local wall/bed shear stress

φ poloidal velocity potential

φαα energy spectra associated with velocity component α ∈ {u, v, w}

ϕ̂ inclination of the streak axis w.r.t. the x-direction

φs global solid volume fraction

φ∗ shape factor in the empirical formula of Jones (1976)

ψ toroidal velocity potential

ψth threshold of the toroidal potential ψ for the extraction of two-dimensional streamwise
rolls in the cross-plane

ψvw cross–plane streamfunction

〈ψ〉xt mean secondary flow streamfunction

ω f vorticity vector

ω
(l)
p Lagrangian angular velocity of the lth particle

ωx,V streamwise vorticity averaged over a vortex cluster’s volume

Roman Symbols

A, B, R linearised stationary Navier-Stokes operator and right hand side vectors of the lin-
earised system in the LSA

Abot, Atop v. Driest damping coefficient at the bottom wall and free surface

xxii



Nomenclature
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Chapter 1

Introduction

1.1 Motivation

Many natural fluvial ecosystems such as rivers or estuaries feature an erodible sediment bed composed
of different cohesive and non-cohesive materials including clay, sand, gravel and possibly larger rocks.
Under suitable conditions, the mutual interaction of individual sediment grains and a turbulent flow
gives rise to a variety of sedimentary patterns or ‘bedforms’, ranging from small sediment ridges to
massive marine sand banks and dunes. The presence of such bedforms in a river have a substantial
impact on its flow behaviour, so that for the engineering practice, reliable tools to predict the sediment
bed dynamics are of immense importance. This is especially true in light of the expected increased fre-
quency of extreme flooding events due to global warming, which make accurate numerical simulations
of both the river dynamics and the riverbed evolution more than ever necessary in order to estimate
the future demands on flood protection and hydraulic infrastructure.

Incorporating the full dynamics of each individual sediment grain in such large-scale hydraulic simula-
tions is however computationally unfeasible, instead significant simplifications in form of engineering-
type models that estimate the sediment transport are typically considered. Further development of
these models requires a deep understanding of the complex sediment-turbulence interactions, which
are, however, even nowadays only partly understood. A central objective of the current thesis therefore
is to provide high-fidelity datasets of sediment pattern evolution under the action of a turbulent shear
flow obtained by fully-resolved direct numerical simulations (DNS) foregoing a priori simplifications
of the two-phase system. Based on the newly generated datasets, we aim to contribute to a better un-
derstanding of the fundamental physical mechanisms that cause sediment patterns to emerge, which
will provide opportunities to assess and improve existing simplified models by identifying the central
processes that must be captured therein (Hsu, 2022).

In this context, we focus specifically on the formation of streamwise-elongated sediment ridges that
appear in a variety of geophysical flows as a result of a complex interaction between the turbulent flow
and a mobile sediment bed (Nezu and Nakagawa, 1993). Two such essentially parallel sediment ridges
are shown in figure 1.1 for one of the open channel flow simulations performed in the course of this
work. From an ecological point of view, these sediment patterns are of particular interest in virtue of
their close relation to large-scale secondary flow cells of Prandtl’s second kind, which – despite their
comparably low amplitude of only a few percent of the mean flow velocity – significantly enhance
the transport of heat and momentum in the water body (Demuren and Rodi, 1984). The secondary
currents associated with the sediment ridges are clearly visible at the downstream end of the periodic
simulation domain in figure 1.1, indicating that fluid is, on average, moved away from the bed over

1



Chapter 1 Introduction

Figure 1.1: Streamwise-elongated sediment ridges in a direct numerical simulation of turbulent open channel flow. Darker
and brighter colours of the sediment bed particles indicate lower and higher regions of the sediment bed, re-
spectively, flow is from left to right. The light blue three-dimensional structure represents an isolated large-scale
low-velocity streak (isocontour of the streamwise velocity fluctuations), while the contours at the downstream
end of the periodic domain indicate the instantaneous filtered and streamwise-averaged secondary flow field
(red: clockwise, blue: anticlockwise rotation; isocontour of the secondary flow streamfunction). Shown are sim-
ulation results for case CM850H3 (Reb = 9500, Reτ = 830, Ga = 57, ρp/ρ f = 2.5, H f /D ≈ 25, cf. section 6.1 for
the definitions and further details).

the crests of the sediment ridges and is brought down to the sediment bed in local trough regions,
indicating an increased mixing activity in these regions.

1.2 State of research

Even though the close relation between sediment ridges and secondary currents of Prandtl’s second
kind was expected already when sediment ridges were first scientifically investigated (Casey, 1935;
Vanoni, 1946), the exact mechanism of how both interact is even nowadays not fully understood. Nezu
and Nakagawa (1993) argue that there are basically two conceivable formation mechanisms owing to
which sediment ridges and mean secondary vortices can arise. The first one is controlled by the bed
in that an initial modulation of the sediment bed topography and/or the bed roughness leads to a
perturbation of the bed shear stress, which in turn triggers the appearance of secondary circulations
in the turbulent flow. The second mechanism works the other way round in that a lateral variation of
the flow field induces a lateral variation of the bed shear stress, which then causes a laterally varying
erosion rate that results in the formation of local troughs and ridges. Important to note is that both
mechanisms are independent of sidewall-induced secondary currents, which had been claimed earlier
to be the main driver of sediment ridge formation (Nezu and Nakagawa, 1984).

Which of the two mechanisms is of relevance in a turbulent flow is not entirely clear. While Colom-
bini (1993) could show theoretically that a lateral variation of a turbulent base flow in form of depth-
spanning secondary currents can in general be triggered by an initial sinusoidal bed perturbation,
considerations based on experimental observations tend to support the second proposed mechanism
(Shvidchenko and Pender, 2001; Nezu, 2005). According to the latter authors, instantaneous large-scale
coherent structures whose size is of the order of the mean fluid height H f might be responsible for the
changing shear stress conditions along the bed that give rise to sediment ridges. As pointed out by
Adrian and Marusic (2012), the large-scale velocity structures reported for hydraulic flows (Tambur-
rino and Gulliver, 1999; Shvidchenko and Pender, 2001; Tamburrino and Gulliver, 2007) bear a strong
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resemblance to similar flow patterns in canonical wall-bounded flows that are typically referred to as
‘large-scale streaks’ or ’large-scale motions’ (LSM) (Smits et al., 2011; Jiménez, 2018). The instantaneous
isolated low-speed streak, extracted from a simulation performed in this thesis and visualised in fig-
ure 1.1, represents one example for such a large-scale turbulent structure. Much is known about the
organisation and dynamics of these flow structures in canonical wall-bounded flows thanks to a vig-
orous research activity predominantly during the past two decades, which was strongly stimulated by
the tremendous increase in computing power and the thereby offered possibilities to perform highly-
resolved direct numerical simulations of turbulent flows even at considerably high Reynolds numbers
(cf. chapter 3 for an extended summary of the most important findings in this field).

In the context of sediment-laden turbulent flows, simulations of a similar degree of detail that resolve
also the flow around the individual particles became feasible only recently. In particular, such simula-
tions have proven capable of providing valuable insights into basic physical interactions between tur-
bulent flow structures and mobile particles (Kidanemariam et al., 2013; Kidanemariam and Uhlmann,
2014a, 2017; Vowinckel et al., 2017a,b). Most importantly, simulations of this kind represent a powerful
alternative to laboratory experiments, in which accurate simultaneous measurements of the secondary
fluid motion and the sediment dynamics remain a challenging task up to the present day (Wang and
Cheng, 2005).

1.3 Research objectives

The purpose of the current thesis is to contribute to a better understanding of the interaction between
instantaneous coherent structures, sediment ridges and mean secondary currents. To this end, we have
performed several series of direct numerical simulations of open channel (laterally periodic domains)
and open duct flows (laterally bounded by sidewalls) over mobile sediment beds on the one hand and
under single-phase smooth-wall conditions on the other hand. The thereby developed high-fidelity
database allows a detailed analysis of the dynamics of both large-scale flow structures and sediment
bedforms and offers the possibility to compare the coherent structures in canonical flows with those
in hydraulic environments. We endeavour to scrutinise which of the above discussed conceivable for-
mation mechanisms for sediment ridges and secondary currents are of relevance in the fully-turbulent
state. To this end, we first revisit the linear model proposed by Colombini (1993), before moving on
to analyse the simulation data and compare the therein observed formation mechanism with the con-
cept of the linearised model. Even though secondary currents induced by lateral sidewalls have been
shown to be no necessary condition for the evolution of sediment ridges, it remains unclear how such
‘pre-existing’ secondary currents affect the bed evolution and, vice versa, how the mean secondary flow
changes in presence of a mobile sediment bed. These questions will be tackled in the remainder of this
work based on the simulation results for open duct flows. In this context, we will specifically investigate
how the presence of a mobile sediment bed affects the organisation of turbulent coherent structures in
the cross-section of narrow open duct flows. In a final outlook, we will discuss the transformation of
the ridge-covered sediment bed into a state dominated by transverse ripple-like patterns.
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1.4 Outline of the thesis

The thesis is organised as follows: In chapter 2, we derive the governing equations for the fluid and the
dispersed phase, which will form the basis for our following investigations. A detailed review of the
state of research concerning both single-phase wall-bounded turbulence and sediment ridge formation
in hydraulic flows is provided in chapter 3. In the subsequent chapter 4, the numerical techniques
used to conduct the single- and multiphase simulations of open channel and duct flow are briefly
presented. Thereafter, the linear model of Colombini (1993) that describes the instability of a turbulent
base flow w.r.t. a bottom undulation is revisited, analysed and modified in chapter 5. Chapter 6 is
devoted to the analysis of sediment ridge formation in doubly-periodic open channel flows and to the
role that large-scale velocity streaks play in this process. A similar analysis is performed for laterally
bounded open duct flows in chapter 7, with a special focus on the impact of sediment ridges on the
already existing sidewall-induced mean secondary motion and the preferential spatial organisation of
the turbulent coherent structures. Finally, a brief outlook on later stages of bedform evolution during
which transverse ripple-like patterns become dominant over the streamwise-aligned sediment ridges is
provided in chapter 8. A possible mechanism in virtue of which individual sediment ridges gradually
transform into transverse bedforms is discussed. We close with a summary of the most important
findings of this work in chapter 9, highlighting potentially interesting points of departure for future
studies.
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Chapter 2

Mathematical framework

“Nonlinearity means that the act of playing the game has a way
of changing the rules. (...) Analyzing the behavior of a nonlinear
equation like the Navier-Stokes equation is like walking through
a maze whose walls rearrange themselves with each step you take.
(...) The world would be a different place – and science would not
need chaos – if only the Navier-Stokes equation did not contain the
demon of nonlinearity.”
— James Gleick in Chaos: Making a new science (1987)

The subsequently presented derivation of the governing equations of the carrying fluid phase partly
follows the lecture notes of Uhlmann (2014) and Dörfler (2019) as well as the classical textbooks by
Landau and Lifshitz (1959), Pope (2000), Chorin and Marsden (2000) and Majda and Bertozzi (2002).
In the second section which focuses on the dynamics of the dispersed particulate phase, the derivation
of the Newton-Euler equations partially follows the textbooks of Clift et al. (1978) and Jackson (2000)
and the notations used in Uhlmann (2005) and Henn (2016), respectively.

2.1 Governing equations of the fluid phase

2.1.1 Conservation of mass and momentum

Consider a domain Ω f ⊂ Rd (d = 2, 3) occupied by a fluid and a time interval I = [0, T] ⊂ R with
T > 0. Let V(t) ⊂ Ω f be an arbitrary sub-volume of the domain at time t ∈ I , then ‘Reynolds’
transport theorem’ for a sufficiently smooth function ϕ(•, t) : Ω f × I → R reads

d

dt

∫

V(t)
ϕ(x, t)dx =

∫

V(t)

{
∂t ϕ(x, t) +∇ ·

(
ϕ(x, t)u f (x, t)

)}
dx ∀ V(t) ⊂ Ω f . (2.1)

Therein, d()/dt = (∂t + u f (x, t) · ∇)() is the total derivative w.r.t. time t and ∂n
i () = ∂n()/∂in is the

nth partial derivative w.r.t. to the ith Cartesian coordinate direction or time. The divergence operator
when applied to an arbitrary vector field a(x, t) reads

∇ · a =
d

∑
j=1

∂jaj = (aj),j.
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In the last definition, we have used the Einstein summation convention that implies summation over
repeatedly appearing indices, the index after the comma indicating derivation w.r.t. j. In this con-
text, the nabla operator is introduced as ∇ = (∂x1

, . . . , ∂xd
)T, where (•)T indicates transposition of

the respective vector or tensor field. Equation (2.1) further includes the fluid velocity field u f (x, t) :

Ω f × I → Rd. An associated pressure and density field are introduced as p f (x, t) : Ω f × I → R and
ρ f (x, t) : Ω f × I → R, respectively. Hereafter, variables that feature a subindex f are related to the
fluid phase, while physical quantities associated with the dispersed particulate phase introduced in
the subsequent section are indicated by a subscript p.

The total fluid mass in an arbitrary volume V(t) can be computed as

MV(t) =
∫

V(t)
ρ f (x, t)dx. (2.2)

Supposing that no mass is generated or lost in the domain, the total mass is conserved for each volume
V(t), that is, dMV(t)/dt = 0. Making use of Reynolds’ transport theorem (2.1) and recalling that
V(t) was chosen to be arbitrary, it can be shown that for sufficiently regular functions u f and p f the
conservation of mass holds also pointwise, viz.

∂tρ f (x, t) +∇ · (ρ f (x, t)u f (x, t)) = 0 ∀x ∈ Ω f (t), t ∈ I . (2.3)

Hereafter, we consider exclusively incompressible fluids in which the density field is constant ρ f (x, t) =

ρ f , in which case equation (2.3) reduces to the continuity equation

∇ · u f (x, t) = 0 = (u f ,i),i, ∀x ∈ Ω f (t), t ∈ I , (2.4)

which represents an extra condition on the flow field to be solenoidal or divergence-free.

In a similar way, considering Newton’s second law, the momentum balance can be formulated in an
integral sense as

d

dt

[∫

V(t)
ρ f u f (x, t)dx

]
=
∫

∂V(t)
b(x, t)dS +

∫

V(t)
f (x, t)dx, (2.5)

where ρ f (x, t)u f (x, t) takes the role of a momentum density. The left hand side (LHS) of equation (2.5)
represents the rate of change of the total momentum, while the right hand sight (RHS) indicates the sum
of all forces acting on the fluid in volume V(t), respectively. This includes both surface forces b(x, t) :

Ω f ×I → Rd acting on the domain boundary ∂V(t) and volume or body forces f (x, t) : Ω f ×I → Rd

acting on the entire volume V(t), respectively. We introduce Cauchy’s stress law, according to which

b(x, t) = T f (x, t)n(x, t), (2.6)

where n(x, t) is an outward pointing normal vector and T f (x, t) : Ω f × I → Rd×d is the second
order Cauchy stress tensor field. Then, making use of the Reynolds transport theorem as well as the
divergence theorem and recalling that V(t) is chosen arbitrarily in equation (2.5), the local conservation
of momentum for sufficiently smooth functions follows

∂t(ρ f u f (x, t)) +∇ · (ρ f u f (x, t)⊗ u f (x, t)) = f (x, t) +∇ · T f (x, t) ∀x ∈ Ω f (t), t ∈ I , (2.7)
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where ⊗ : Rm × Rn → Rm×n, [a ⊗ b]ij = (aibj) ∀a ∈ Rm, b ∈ Rn is the outer product between two
vector fields a and b. The Cauchy stress tensor field T f (x, t), which can be shown to be symmetric
when evaluating the angular momentum balance, is a material-specific quantity and is typically de-
termined by additional constitutive relations. Hereafter, we restrict ourselves to the investigation of
constant-property Newtonian fluids, for which the stress law reads

T f (x, t) =
[
−p f (x, t) + λ f∇ · u f (x, t)

]
Id + 2µ f D(x, t), (2.8)

where λ f is the first Lamé constant, µ f is the dynamic viscosity of the fluid, Id is the identity tensor
and

D(x, t) =
1

2

(
∇u f (x, t) + (∇u f (x, t))T

)
(2.9)

is the rate of strain tensor D(x, t) : Ω f ×I → Rd×d which represents the symmetric part of the velocity
gradient tensor field ∇u f (x, t). Assuming constant material parameters ρ f and µ f , the divergence of
the Cauchy stress tensor field simplifies to

∇ · T f (x, t) = −∇p f (x, t) + µ f ∆u f (x, t) = −∇p f (x, t) + ν f ρ f ∆u f (x, t), (2.10)

where ν f = µ f /ρ f is the kinematic fluid viscosity and the Laplace operator reads

∆() = ∇2() = ∇ · (∇()) =
d

∑
j=1

∂2()

∂x2
j

.

Finally, introducing expression (2.10) into the local momentum balance (2.7) and expanding the di-
vergence of the convective term ρ f u f ⊗ u f subject to the divergence-free constraint, the Navier-Stokes
problem for an incompressible Newtonian fluid follows:

We seek a velocity vector field u f (x, t) : Ω f × I → Rd and an associated scalar pressure field p f (x, t) :

Ω f × I → R with material parameters ρ f , ν f > 0 under the action of a body force field f (x, t) :

Ω f × I → Rd, s.t. for a sufficiently smooth initial condition u f 0
(x) : Ω f → Rd and appropriate

boundary conditions (cf. discussion below)





∂tu f − ν f ∆u f + (u f · ∇)u f +
1

ρ f
∇p f = f in Ω f × (0, T]

∇ · u f = 0 in Ω f × (0, T]

u f = gD on ∂ΩD
f × (0, T]

∂u f

∂n
= gN on ∂ΩN

f × (0, T]

u f (•, 0) = u f 0
in Ω f

. (2.11)

Note that in order to simplify the notation, we have absorbed the fluid density in the force term without
introducing a new sign for the force density. A special type of body force is the gravitational accelera-
tion field g, which can be expressed as the gradient of a gravitational potential (Pope, 2000). This allows
to subsume the gravitational potential and the dynamic fluid pressure into a modified total pressure
field. Since the pressure field p f (x, t) appears in form of a gradient in the Navier-Stokes equations, it
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is determined only up to a constant which can be freely chosen. Typically, the constant is determined
by either setting the pressure at a single point of the domain to zero, or by requesting that the mean
value of p f (x, t) over the entire domain Ω f (t) vanishes identically.

It might be worth mentioning that the role of the pressure field p f (x, t) in an incompressible fluid
is different from that in a compressible material, where p f (x, t) is a thermodynamical quantity that
is related to the local density and temperature by some relation of state. In an isothermal fluid of
constant density, on the other hand, the pressure field is by definition independent of the fluid density
and temperature, but it turns out that it is closely related to the divergence-freedom of the velocity
field u f (x, t). In particular, one can derive the following Poisson equation for the pressure field which
represents a necessary and sufficient condition for the velocity field to be solenoidal:

We seek a velocity vector field u f (x, t) : Ω f × I → Rd and an associated scalar pressure field p f (x, t) :

Ω f × I → R, s.t. 



∆p f = ρ f ∇ · [(u f · ∇)u f ] in Ω f × I
p f = pD on ∂ΩD

f × I
∂p f

∂n
= pN on ∂ΩN

f × I
, (2.12)

where pD(x, t) : ∂ΩD
f × I → R and pN(x, t) : ∂ΩN

f × I → R are appropriate functions that represent
the Dirichlet and Neumann boundary values.

2.1.2 Boundary conditions

Note that in the Navier-Stokes problem (2.11), we have subdivided the boundary of the fluid domain
∂Ω f (t) into two sets ∂ΩD

f and ∂ΩN
f , which denote the parts of the domain boundary at which ho-

mogeneous Dirichlet gD and Neumann boundary conditions gN are applied, respectively, such that
∂Ω f = ∂ΩD

f ∪ ∂ΩN
f . The two sets are disjoint for each individual velocity component such that the

boundary condition is well-posed (i.e. at each position only one condition is imposed), whereas for
the boundary condition of the full vector field in general ∂ΩD

f ∩ ∂ΩN
f 6= ∅. For instance, we will see

below for the free-surface boundary conditions that Dirichlet and Neumann boundary conditions can
be applied to different components of the velocity field at one and the same spatial position.

Dirichlet boundary conditions with gD = 0 will be applied in the remainder of this work to describe
the behaviour of a fluid at a stationary solid impermeable wall Swall ⊂ ∂Ω f . That is, the fluid veloc-
ity tangential to the solid surface vanishes (‘no-slip condition’) and so does the wall-normal velocity
component, the latter ensuring that there is no flux across the impermeable wall (‘impermeability con-
dition’), viz.

(
u f −

(
n · u f

)
n
)
= 0 on Swall × (0, T] (2.13a)

n · u f = 0 on Swall × (0, T], (2.13b)

which directly implies that u f = 0 at the solid wall. At the free surface of open channels and ducts
Ssur f ⊂ ∂Ω f , on the other hand, the no-slip condition is replaced by a ‘free-slip condition’. That is, a
symmetry condition is imposed for the surface-parallel velocity components in form of a homogeneous
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2.2 Governing equations of the dispersed phase

Neumann boundary condition while maintaining the impermeability condition for the surface-normal
component, viz.

∂

∂n

(
u f −

(
n · u f

)
n
)
= 0 on Ssur f × (0, T] (2.14a)

n · u f = 0 on Ssur f × (0, T]. (2.14b)

For the pressure field, typically homogeneous Neumann boundary conditions are imposed along the
free surface.

In both numerical simulations and theoretical considerations, it is moreover common practice to apply
periodic boundary conditions to the Navier-Stokes system. We will follow this approach and impose
periodic boundary conditions in the homogeneous directions of the later considered open channel
and duct flows, that are, the streamwise and spanwise direction in the open channel and the stream-
wise direction in the open duct case. Consider, for instance, a single-phase flow in an infinitely long
rectangular open duct with cross-sectional dimensions Ly and Lz, respectively, such that the entire
domain is R × [0, Ly]× [0, Lz]. Instead of full R, we consider in practice the interval x ∈ [0, Lx) and as-
sume streamwise periodicity with fundamental period Lx, such that u f (x − hL, t) = u f (x, t) ∀ h ∈ Z

and L = (Lx, 0, 0)T. For the open channel case, analogous boundary conditions are applied with
L = (Lx, 0, Lz)T and h ∈ Z3. Consequently, the open duct case can be topologically associated with
the one torus T1 and thus the one sphere S1, while doubly-periodic channels are associated with the
two torus T2 = S1 × S1 (Marqués, 1990; Majda and Bertozzi, 2002).

2.2 Governing equations of the dispersed phase

In the following, we consider the case of a number of Np solid rigid particles that are immersed in the
fluid domain. For this purpose, we consider a domain Ω ⊂ Rd with disjoint subsets Ω f (t), Ωp(t) ⊆ Ω

s.t. Ω f (t) ∪ Ωp(t) = Ω, from which the former denotes the subdomain occupied by the fluid phase at
time t and

Ωp(t) =
⋃̇

1≤j≤Np
Ω

(j)
p (t)

is the particle domain composed of Np pairwise disjoint non-overlapping subdomains Ω
(j)
p (t). The

boundary of the fluid phase ∂Ω f (t) now comprises also the phase boundary between fluid and solid
phase

∂Ωp(t) =
⋃̇

1≤j≤Np
∂Ω

(j)
p (t) ⊂ ∂Ω f (t).

The coupling between fluid and particulate phase along the surface ∂Ω
(j)
p (t) of the jth particle is de-

scribed in form of a similar set of no-slip and impermeability conditions as along a stationary solid
wall (cf. equation 2.13), with the difference that points xp ∈ Ω

(j)
p (t) move at a velocity

u
(j)
p (xp, t) = U

(j)
p (t) + ω

(j)
p (t)×

(
xp − X

(l)
p (t)

)
in Ω

(j)
p (t)× I (2.15)

as a consequence of the rigid-body motion of the particle. Here, u
(j)
p (xp, t) : Ω

(j)
p × I → Rd is the local

particle velocity within a rigid body that originates in a superposition of the translational motion at a
Lagrangian velocity U

(j)
p (t) : I → Rd and the rotational motion with an angular velocity ω

(j)
p (t) : I →

9



Chapter 2 Mathematical framework

Rd, respectively. The current position of the centre of gravity of the jth particle is X
(j)
p (t) : I → Rd. The

no-slip and impermeability boundary conditions are then formulated for all points x = xp ∈ ∂Ω
(j)
p (t)

on the surface of all particles 1 ≤ j ≤ Np as

(
u f − u

(j)
p

)
− n

(j)
p ·

(
u f − u

(j)
p

)
n
(j)
p = 0 on ∂Ω

(j)
p (t)× (0, T] ∀ 1 ≤ j ≤ Np, (2.16a)

n
(j)
p ·

(
u f − u

(j)
p

)
= 0 on ∂Ω

(j)
p (t)× (0, T] ∀ 1 ≤ j ≤ Np. (2.16b)

Here, n
(j)
p is an outward pointing normal vector at the surface of particle j. The resulting condition

is that fluid and particle velocity have to be identical at the surface of each particle, viz. u f (xp, t) =

up(xp, t) on ∂Ω
(j)
p (t)× (0, T].

The dynamics of the individual particles are governed by the Newton-Euler equations, which com-
bine Newton’s equations of linear and angular momentum for a rigid body immersed in a fluid. In the
former case, Newton’s second law implies that the rate of change of the linear momentum of particle j

is balanced by a set of forces acting on the sphere. In the current case, three forces are exerted on the
individual particles, including contributions due to gravity, buoyancy and contacts with nearby parti-
cles or solid walls. Newton’s equations of linear momentum for a spherical rigid body j immersed in
a Newtonian fluid are then formulated as (Jackson, 2000)





ρpVp
(j) dU

(j)
p (t)

dt
=

∮

∂Ω
(j)
p (t)

T f (xp, t) · n
(j)
p dS +

(
ρp − ρ f

)
Vpg + FC(j)

in I

dX
(j)
p (t)

dt
= U

(j)
p (t) in I

, (2.17)

where Vp
(j) is the volume of the jth particle. The third term on the RHS of equation (2.17), FC(j)

(t) :

I → Rd, subsumes all force contributions due to contacts of the jth particle with nearby particles or
solid walls. The first term on the RHS includes the fluid stress tensor and thus represents with the
fluid traction force the coupling between the fluid and the solid phase equations, whereas the second
term on the RHS represents the net force due to gravity and buoyancy.

Similarly, the conservation of angular momentum is formulated as a balance between the rate of change
of angular momentum and torque acting on the jth particle, leading to Newton’s equation of angular
momentum, viz. (Jackson, 2000)





d(J
(j)
p (t)ω

(j)
p (t))

dt
=

∮

∂Ω
(j)
p (t)

r(j) × (T f (xp, t) · n
(j)
p )dS + r(j) × FC(j)

in I

dΘ
(j)
p (t)

dt
= ω

(j)
p (t) in I

, (2.18)

where r(j)(t) = xp − X
(l)
p (t) ∀ xp ∈ ∂Ω

(j)
p (t) is the position vector of all points on the particle surface

w.r.t. the particle’s centre of gravity. Accordingly, |r(j)| = D(j)/2 and D(j) are the particle radius
and diameter in case of a rigid spherical particle, respectively. Furthermore, Θ

(j)
p (t) : I → Rd is the

current angular orientation of the jth particle and J
(j)
p (t) : I → Rd×d is the moment of inertia tensor,

which reduces for the special case of a spherical rigid body to the constant scalar moment of inertia
J (j)

p = 2/5ρpVp
(j)(D(j)/2)2. In analogy to the translational linear momentum in equation (2.17), the
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2.2 Governing equations of the dispersed phase

rate of change of angular momentum is caused by a balance of the hydraulic torque and the torque
induced by contact forces during particle-particle and particle-wall contacts, respectively, which form
the first and second term on the RHS of equation (2.18).

In equation (2.18), the cross-product between two vector fields a(x, t) and b(x, t) is introduced as

a × b = ε ijkeiajbk, (2.19)

where ε ijk is the Levi-Civita symbol and ei is the ith unit normal vector of the Cartesian basis. In
analogy, the curl of a three-dimensional vector field a(x, t) is given by

∇× a = ε ijkei
∂ak

∂xj
. (2.20)

In this context, let us introduce for later use the fluid vorticity ω f (x, t) : Ω f × I → Rd as the curl of
the velocity vector field ω f = ∇× u f , with components ω f = (ω f ,x, ω f ,y, ω f ,z)

T w.r.t. the Cartesian
basis.
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Chapter 3

Literature review

“Where chaos begins, classical science stops.”
— James Gleick in Chaos: Making a new science (1987)

3.1 Historical remarks

Turbulence is one of the most complicated phenomena in classical physics and in contrast to other fields
in this discipline, we are still far from a full theory on how turbulence works nor is there even a unique
definition of what turbulence actually is. Instead, turbulence is typically described phenomenologi-
cally by its fundamental properties, which are immanent to all its forms and thus represent a minimal
consensus of what turbulence is. A rather comprehensive list of properties is given by Tennekes and
Lumley (1972), who describe turbulent flows as a form of irregular, three-dimensional and multi-scale
fluid motion, further characterised by its tendency to vortical motion, its strong ability of mixing and
its typically high momentum and heat transfer intensity. But turbulence is also a dissipative system,
meaning that kinetic energy is at some point dissipated and transferred to heat. We will come back to
this specific point below.

The historical development of classical mechanics and fluid dynamics in particular is well summarised
in the textbook by Dugas (2012), whereas Davidson et al. (2011) illustrate the history of turbulence re-
search from the 1880s to the present day based on the biographies of a number of outstanding re-
searcher personalities, including O. Reynolds, L. Prandtl, G. Bachelor and A. A. Townsend. Even
though turbulence has been probably observed by humans for thousands of years, the fundament
that allowed its scientific investigation was laid not before the 19th century, when Navier and Stokes
provided the theoretical basis through the fundamental laws of fluid dynamics that bear their names
up to the present day. Only a few years after the formulation of the fundamental equations of fluid mo-
tion, Hagen (1854) and Darcy (1857) studied independently from each other the pressure drop along
straight ducts and observed that only part of the observed decay depended on the fluid’s viscosity,
while a second contribution was apparently independent of viscous effects and scaled quadratically
with the fluid velocity. The latter non-linear effect was reported to come along with a ‘disordered mo-
tion’ and it was claimed that the observed increase in drag was due to the necessity of additional energy
for the creation of these complicated eddies (Jiménez, 2004b). These first ideas of two distinct effects
that contribute to the overall drag were further developed in the seminal work of Boussinesq (1877),
in which, for the first time, a clear differentiation in a laminar and a turbulent regime was proposed,
even though still using different terms. Apart from this pioneering classification, the study of Boussi-
nesq contained some fundamental concepts that have influenced and inspired turbulence research up
to the present day. Just to mention one example, Boussinesq developed the eddy viscosity hypothesis,
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in which he described the effect of turbulence on the flow as an increase of the molecular viscosity by
an additional turbulent contribution, exploiting an analogy to the classical relation between stress and
the rate-of-strain for Newtonian fluids.

The perhaps most important achievements for todays turbulence research, however, date back to Os-
borne Reynolds. Based on his experiments on pipe flow instability, Reynolds (1883) presented a crite-
rion for the transition between the regular, ordered ‘laminar’ motion and the chaotic, irregular ‘turbu-
lent’ motion as a critical value for the ratio of inertial to viscous forces, viz.

Re =
UL
ν f

, (3.1)

which has later been termed ‘Reynolds number’ to his honour. Here, we have used the most general
formulation of the Reynolds number, including a characteristic velocityU and length scaleL of the flow
of interest, respectively, which gives us the freedom to define different Reynolds numbers depending
on our needs in the remainder of this work. Considering again Reynolds’ original experiment of the
flow in an elongated pipe, a small perturbation of the flow will be damped and eventually dissipated
into heat due to the viscous effects if the Reynolds number is sufficiently low. Is the Reynolds number
on the other hand sufficiently high, viscous damping is much weaker than the inertial forces and the
perturbation cannot be completely dissipated into heat. The flow therefore compensates the additional
energy input by giving rise to disordered fluid motion that will be further amplified causing a transition
to a fully-turbulent state in which viscous damping is much weaker than the inertial forces.

The second inestimable contribution of Reynolds to turbulence research is the ‘Reynolds averaging
concept’ first published in Reynolds (1894), in which he proposed the fundamental idea to decompose
all physical quantities into an ensemble-averaged mean contribution and a fluctuation around this
mean. Hereafter, the ensemble-averaging operator will be denoted by 〈•〉 and is defined as (Pope,
2000)

〈ϕ〉 =
∫ ∞

−∞
V f (V)dV, (3.2)

where f (V) is the probability density function (p.d.f.) and V is the sample space parameter, represent-
ing the set of all values that ϕ can possibly attain. If not otherwise stated, 〈•〉 refers to averaging over
all statistically homogeneous directions and time. The fluctuation of a field variable ϕ(x, t) w.r.t. its
mean 〈ϕ〉 is typically denoted by a superscripted prime, viz. ϕ′(x, t), such that

ϕ(x, t) = 〈ϕ(x, t)〉+ ϕ′(x, t). (3.3)

For the sake of brevity, we forgo a detailed presentation of the mathematical properties of the Reynolds
averaging-operator and the temporal fluctuation of the signal, but the interested reader is encouraged
to check the detailed explanations on the statistical treatment of random variables in chapters 3 and 4
of Pope (2000).

Upon substituting the decomposition for the velocity and pressure field into the Navier-Stokes and
continuity equations (2.11), Reynolds derived a system of equations for the mean flow field that would
later become the ‘Reynolds-averaged Navier Stokes (RANS) equations’. The RANS equations for an
incompressible, Newtonian fluid with constant viscosity in the absence of external force fields then
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read for the mean velocity field 〈u f 〉(x, t) : Ω f ×I → Rd, the mean pressure field 〈p f 〉(x, t) : Ω f ×I →
R, and a fluctuation velocity field 〈u′

f 〉(x, t) : Ω f × I → Rd

∇ · 〈u f 〉 = 0 (3.4a)

∂t〈u f 〉+
(
〈u f 〉 · ∇

)
〈u f 〉 = − 1

ρ f
∇〈p f 〉+ ν f ∆〈u f 〉 −∇ · 〈u′

f ⊗ u′
f 〉. (3.4b)

Note that in this context, both the mean and the fluctuating velocity field are exactly solenoidal due to
the linearity of the divergence operator. The averaging, however, comes not for free, and the price we
have to pay is a ‘closure problem’, that is, the new system of equations features an unknown symmetric
tensor field 〈u′

f ⊗ u′
f 〉 : Ω f × I → Rd×d that represents velocity fluctuation (co)variances. The fact

that the tensor (multiplied by the fluid density ρ f ) is commonly termed ‘Reynolds stress tensor’ is
motivated by the fact that it appears in the role of a stress term in the above equations. Note that the
appearance of unknown statistical moments is inherent to the application of Reynolds operators and
further averaging of unclosed terms as done to obtain Reynolds-stress transport equations leads to
even higher-order unknown moments (Pope, 2000).

In the first half of the 20th century, the dissipative and multi-scale nature of turbulence came into the
focus of turbulence research, in the context of investigations on the energy transfer in the flow. The con-
cept of an ‘energy cascade’ was first posited by Richardson (1922) and later extended by Kolmogorov
(1941a,b) to a mathematically more rigorous theory. The basic idea therein was that in a fully-developed
turbulent flow at sufficiently high Reynolds number, the overwhelming fraction of the kinetic energy is
injected in a number of large-scale eddies of size comparable to the largest length scales of the system,
while it is dissipated exclusively by the smallest eddies of the system. The intrinsic Reynolds numbers
of these small scales are of order Re = O(1), such that inner-system energy-conservation is broken and
energy is dissipated to heat. Kolmogorov determined the minimal length scale of the flow at which en-
ergy is dissipated based on dimensional considerations to be η f = (ν3

f /ε)1/4, the Kolmogorov length,

wherein ε indicates the dissipation rate. A velocity scale uη = (ν f ε)1/4 and a time scale τη = (ν f /ε)1/2

can be derived accordingly. In between the energy-containing large eddies and the dissipative range of
small-scale eddies, an essentially inviscid cascade of successively decreasing scales is acting to transfer
energy from the largest to the smallest flow scales, with the astonishing consequence that the dissi-
pation in the smallest scales is directly linked to energy production in the large scales to satisfy the
conservation of energy outside the dissipative regime, i.e. along the cascade itself.

Note that even though the general concepts of the energy cascades conceived by Richardson (1922) and
Kolmogorov (1941a,b) resemble each other, strictly speaking, the underlying ideas are not the same.
The Kolmogorov cascade is a pure scale-space concept that does not further specify how exactly the
energy is transferred in physical space. Richardson and after him Obukhov (1941), on the other hand,
imagined a cascade local in physical space, in which large eddies become unstable and break, giving
rise to smaller eddies and so on and so forth down to the smallest eddies of dimensions η f , which
are eventually dissipated into heat. The isotropic theory of Kolmogorov represents a milestone in the
understanding of turbulence, but nevertheless it has its limitations and shortcomings. Ever since its
original formulation, it has been extended and modified (see, for instance, Batchelor and Townsend
(1949), Barenblatt and Chorin (1998) and the review in section 6.7 of Pope (2000)).
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3.2 Wall-bounded turbulence

3.2.1 The classical theory

Turbulent shear flows that are surrounded by solid boundaries form one of the most important sub-
classes of turbulence due to their indisputable importance for our every-day life. Popular examples
include the flows around airfoils, the oil or gas transport through industrial pipelines or the dynamics
of the atmospheric boundary layer, to list only a few. It is therefore less surprising that the investi-
gation of wall-bounded turbulence has attracted immense interest among engineers, physicists and
applied mathematicians for more than a century, beginning with the pioneering discovery of the near-
wall boundary layer by Prandtl (1904). In the following, we will first give a brief overview of what we
will hereafter call the classical or mean flow theory of wall-bounded turbulence, following the clas-
sical textbooks of Hinze (1959), Tennekes and Lumley (1972), Townsend (1976), McComb (1990) and
Pope (2000), while our nowadays view on it is summarised in a number of more recent review arti-
cles in the subsequent section (Jiménez, 2000; Marusic et al., 2010b; Smits et al., 2011; Jiménez, 2013a,
2018). The classical theory bases predominantly on the study of flows in some ‘canonical’ flow sit-
uations which feature comparably simple properties and geometries, making them ideal candidates
for the investigation of fundamental physical processes. The list of canonical flows usually includes
the equilibrium flow between two infinite horizontal smooth plates (henceforth referred to as ‘closed
channel’) or through straight pipes of circular cross-section, both driven by a mild streamwise pres-
sure gradient. These ‘internal’ flows are completed with ‘external’ boundary layers developing over a
flat smooth bottom plate without an top bound. In order to introduce a general notation for all three
configurations, we shall use as a characteristic outer length scale H either the half channel height, the
pipe radius or the boundary layer thickness, respectively. For the following considerations, let us focus
on statistically stationary fully-developed closed channel flows at non-marginal Reynolds numbers be-
tween two horizontal plates, separated by a wall-normal distance 2H and featuring infinite extensions
in the two wall-parallel directions. As a Cartesian basis, we impose a coordinate system with unit vec-
tors parallel to the streamwise x-, wall-normal y- and spanwise z-direction centred at the lower wall
y = 0. It follows that the position and fluid velocity vectors can be expressed w.r.t. the aforementioned
basis as x = (x, y, z)T and u f =

(
u f , v f , w f

)T, respectively. Under the given assumptions, the flow
is statistically stationary and one-dimensional, that is, the statistics of the flow depend solely on the
wall-normal position y. We further choose the bulk velocity

ub =
1

2H

∫ 2H

0
〈u f 〉dy (3.5)

as characteristic velocity scale of the system of interest, based on which a bulk Reynolds number repre-
sentative for the outer bulk flow can be formally defined as Reb = ubH/ν f . Averaging the streamwise
momentum equations for the case of a fully-developed channel flow, it can be easily shown that the
momentum equations reduce to a simple balance between the axial pressure gradient and the resisting
wall-normal gradient of the fluid shear stress, viz.

dτf

dy
=

d〈p f 〉
dx

, (3.6)
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Figure 3.1: Wall-normal profile of the inner-scaled mean velocity in a closed channel at Reτ ≈ 2000 scaled in (a) outer and (b)
inner coordinates. Vertical dashed lines indicate conventional upper limits of the viscous sublayer (y+ = 5), the
buffer layer (y+ = 80) and the log-layer (y/H = 0.2), respectively. Data is from Hoyas and Jiménez (2006).

wherein the total mean shear stress τf (y) comprises a viscous and a turbulent contribution, viz.

τf (y) = ρ f ν f

d〈u f 〉
dy

− ρ f 〈u′
f v′f 〉. (3.7)

It follows directly from equation (3.6) that the wall-normal gradient of τf and the streamwise gradient
of 〈p f 〉 both have to be constant, and hence that the wall-normal profile of τf follows a simple linear
relation

τf = τw

(
1 − y

H

)
, (3.8)

where τw is the shear stress at the solid wall, viz. τw = τf (y)|y=0.

Formally, it is possible to define a second set of velocity and length scales from the wall shear stress τw

that turn out to be representative for the flow structures in proximity to the wall, viz.

uτ =
√

τw/ρ f , (3.9a)

δν = ν f /uτ, (3.9b)

In the remainder, we will refer to quantities normalised with uτ and ν f interchangeably as scaled in
‘inner units’ or ‘wall units’ and mark them by a superscripted plus, viz. •+. In particular, we can define
with this set of characteristic scales the friction Reynolds number

Reτ =
uτ H

ν f
=

H

δν
= H+, (3.10)

which serves as a measure for the scale separation between the outer and inner characteristic length
scale and consequently grows as the Reynolds number increases.

The presence of solid domain boundaries drastically alters the dynamics of and the energy distribution
within the flow compared, for instance, with the situation in homogeneous isotropic turbulence in the
absence of walls. The no-slip and impermeability conditions which manifest the influence of the wall
on the flow enforce a mean shear S = d〈u f 〉/dy whose intensity increases when approaching the
solid wall and which acts as the main source of energy for turbulence. Obviously, the presence of the
wall introduces a strong inhomogeneity and anisotropy of turbulence, and it seems therefore natural
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to study turbulence in dependence of its wall-normal distance. In the classical theory, a classification
into different wall-parallel layers has proved itself, which are visualised in figure 3.1 together with
a characteristic mean velocity profile, exemplary for a turbulent closed channel flow at Reτ ≈ 2003

(Hoyas and Jiménez, 2006).

In the near wall or ‘inner region’, the flow is assumed to be essentially unaffected by the outer scales H

and ub such that the flow dynamics therein should exclusively depend on inner scales. The subregion
closest to the wall in a region y+ ∈ [0, 5] is typically called ‘viscous sublayer’, as the proximity of the wall
sufficiently dampens the local velocity fluctuations such that the Reynolds stresses become negligible
and viscous stresses in fact dominate the fluid shear stress (Pope, 2000). Under the assumption that the
velocity profile in this region depends on y+ only, Prandtl (1925) derived by fundamental dimensional
arguments the ‘law of the wall’ 〈u f 〉 = f (y+). For values of y+ as small as in the viscous sublayer,
truncation of a Taylor series expansion after the linear contribution gives a good approximation for the
velocity profile as

〈u f 〉+ = y+. (3.11)

As can be expected, this argumentation loses its validity if we turn our attention to those regions of
the flow that are still in the inner region, but sufficiently far away from the wall that we cannot expect
viscous effects to play a significant role. As pointed out by Jiménez (2018), there is thus no applicable
characteristic length scale available in this intermediate region and structures therein feature a charac-
teristic aspect ratio rather than a characteristic size. That is, the largest structures grow linearly with
increasing distance to the wall such that the only relevant length scale can be their local distance to the
wall (Townsend, 1976). Note that this ‘logarithmic layer’ (referring to the typical velocity profile in this
range) is in that sense another incarnation of a self-similar cascade as that of Kolmogorov turbulence,
but this time in physical space rather than in scale space (Jiménez, 2013b, and references therein) and
thus more resembles the concepts of Richardson (1922) and Obukhov (1941), respectively. A more de-
tailed discussion on individual flow structures in the logarithmic layer will be given in the subsequent
section of this literature review.

Again, one way to derive a formulation for the mean velocity profile in this regime is by considering
dimensional arguments including the independence of the mean velocity (gradient) of both y+ and
y/H. The resulting approximation is the classical ‘logarithmic’ or ‘log law’

〈u f 〉+ =
1

κ
ln(y+) + Bu. (3.12)

Two separate ways to arrive at the log law can be found in Hinze (1959), which we shall not repeat at
this point for the sake of brevity. For the v. Kármán constant κ and the additive constant Bu, slightly
varying values can be found in the literature, we here exemplarily refer to the values κ = 0.41 and
Bu = 5.2 reported by Pope (2000). Also, there exists no unique definition of where the logarithmic
layer starts and where it ends. Commonly applied values are, for instance, 30δν . y . 0.3H (Pope,
2000) or 80δν . y . 0.2H (Jiménez, 2018). It is directly clear from the proposed limits and our earlier
assumption according to which the log-layer is essentially independent of inner and outer length scales
that a well-developed logarithmic layer requires a certain minimal scale separation, that is, a minimal
friction Reynolds number that is at least of the order of Reτ = O(103).

The above definitions of the viscous sublayer and the logarithmic layer leave some gap in between,
where one would expect both viscous and turbulent effects to be of relevance. Such a transitional
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regime between the viscous and the turbulence-dominated regime can indeed be found in form of the
‘buffer layer’, which we will discuss in detail in the following.

3.2.2 The structural view on wall-bounded turbulence

Looking back, the statistical treatment of turbulence that has its roots in the seminal works of Reynolds
paved the way for our today’s understanding of turbulence and its role in the development of the just
reviewed mean flow theory is beyond doubt. In fact, it appears conclusive that a phenomenon as
irregular and unpredictable as turbulence is treated statistically.

However, chaos and irregularity should not be erroneously equated with ‘randomness’. In the fol-
lowing, we change our perspective and think of turbulence for the moment as a purely mathematical
phenomenon and a necessary consequence of the peculiar non-linear nature of the Navier-Stokes equa-
tions. From this viewpoint, we have to admit that the governing equations are strictly deterministic
rather than incorporating any stochastic contribution. That is, identical initial conditions to the equa-
tions will always lead to the exactly same evolution of the flow and there is thus no way of how turbu-
lence could feature any degree of ‘randomness’. Nonetheless, also deterministic systems can loose their
predictability leading to what is called ‘deterministic chaos’ (Lorenz, 1963). In such chaotic systems,
slight variations of the initial conditions can cause the system to follow a completely different trajectory
in phase space, and that is exactly what the ‘irregular motion’ of turbulence has to be considered as.

Wall-bounded turbulent flows are chaotic dynamical systems, in which the fully-turbulent state rep-
resents a strange attractor in the phase space (Ruelle and Takens, 1971; Lanford, 1982; Holmes et al.,
1996) to which nearby trajectories are ‘drawn’ (cf. Guckenheimer and Holmes, 1983; Brin and Stuck,
2002, for a rigorous definition). Even though typically of high dimension, the turbulent attractor can
be shown to possess a finite number of degrees of freedom which scale with some global Reynolds
number as Re9/4 (Landau and Lifshitz, 1959). The temporal evolution of an appropriate initial state of
the velocity field q0 ∈ Rn in state space can accordingly be expressed by a high- but finite-dimensional
(autonomous) system of ordinary differential equations of the form (Kawahara et al., 2012b)

dq(t)

dt
= f (q(t), p). (3.13)

Here, q(t) : I → Rn (and accordingly q0) are vectors of n unknown independent physical quantities
which can be, for instance, Fourier or Chebyshev coefficients of the flow field expansions that together
represent a full instantaneous state of the flow field (a viewpoint on turbulence that was strongly coined
by Hopf, 1948). The right hand side of equation (3.13) represents a smooth vector field f (q(t), p) :

U × Rm → Rn, where U ⊆ Rn is a subset of the state space and p ∈ Rm is a set of m additional
parameters such as the Reynolds number. The reason for the finite-dimensionality of the turbulent
attractor can be physically interpreted as a consequence of viscosity that smoothes the smaller scales
(Kawahara et al., 2012b, and references therein), such that no scales smaller than the Kolmogorov length
can occur.

Even though the system is inherently chaotic, trajectories can spend a considerable amount of time
in the neighbourhood of low-dimensional manifolds in the turbulent attractor. Such low-dimensional
state-space patterns represent ‘coherent structures’ in the flow (Jiménez, 1987), which are local, recur-
rent and spatiotemporally organised flow patterns typically carrying a relevant portion of energy or
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contribute to the dissipation of the latter. The investigation of turbulence on the basis of its coher-
ent structures is a significantly younger discipline than the statistical approach and, consequently, a
fast changing field. We refer in the following on some recent monographs of the group around Javier
Jiménez in Madrid (Jiménez, 2013a; Jiménez and Kawahara, 2013; Jiménez, 2018) that naturally possess
a strong affinity to results obtained by direct numerical simulations, while very high Reynolds number
results obtained from experiments and measurements are reviewed, for instance, in the recent works of
the group around Ivan Marusic in Melbourne (Marusic et al., 2010b; Smits et al., 2011), which together
give a comprehensive overview of the state of the art at the time this thesis is completed.

Historically, the search for coherent motions in wall-bounded turbulence first focused on the structures
inherent to the buffer layer (Kline et al., 1967; Kim et al., 1971) as summarised in the early review of
Robinson (1991). Thanks to a number of seminal theoretical and numerical studies in the 1990s when
the first direct numerical simulations of turbulent channel flows were performed (Kim et al., 1987;
Jiménez and Moin, 1991; Hamilton et al., 1995), the processes that are dominating this regime are nowa-
days relatively well understood (Jiménez and Kawahara, 2013). The buffer layer accommodates in fact
a few types of coherent structures that are associated with different physical quantities and partly inter-
act with each other. Of largest importance are high- and low-speed streaks of the streamwise velocity
and quasi-streamwise vortices, the latter representing structures of locally intense streamwise vorticity.
Kline et al. (1967) first observed high- and low-speed streaks in their hydrogen bubble visualisations
by detecting streamwise-elongated regions of spanwise alternating positive and negative velocity fluc-
tuations w.r.t. the mean velocity at that height. The characteristic spacing between two streaks of the
same sign is around z+ = 100, whereas their average streamwise length is typically a few hundred
up to one thousand wall units. Quasi-streamwise vortices are shorter than the velocity streaks (Jeong
et al., 1997), such that several quasi-streamwise vortices are associated with a single velocity streak
and flank this latter alternately (in a statistical sense) on both sides with a spacing of roughly x+ ≈ 300

(Jiménez, 2013a). The special arrangement of the quasi-streamwise vortices causes and amplifies sinu-
soidal bending of the streaks that eventually leads to their destruction with simultaneous generation
of vorticity, giving birth to a next generation of quasi-streamwise vortices. These latter lead, in turn,
to the creation of a new set of streamwise streaks by modulation of the local velocity profile. The va-
lidity of this self-sustaining regeneration cycle has been shown in a series of numerical and analytical
studies that were focused on the exact underlying instability process which causes streaks to break up
(Hamilton et al., 1995; Waleffe, 1997; Schoppa and Hussain, 2002; Kawahara et al., 2003).

Jiménez and Pinelli (1999) could moreover show by artificially suppressing all fluctuations above y+ >

60 that the near-wall cycle is indeed ‘autonomous’ in that is survives in the absence of outer influences.
The autonomy of the regeneration cycle is, however, not equivalent to the absence of outer influences in
the near wall region, it only states that these are not a necessary condition for the cycle to be maintained.
In fact, it has been clearly revealed that near-wall buffer layer structures actively interact with larger
structures centring further away from the wall (Toh and Itano, 2005; Marusic et al., 2010a; Jiménez,
2012), even though the exact processes are still only partly understood (Jiménez, 2018).

A substantial fraction of our knowledge about buffer layer dynamics also originates from the insights
gained in simplified systems such as invariant solutions to the Navier-Stokes equations. Such ‘exact
coherent structures’ (Waleffe, 2003) are typically simple solutions of the dynamical system (3.13), in-
cluding travelling waves or simple equilibria for which dq/dt = 0 holds in a suitable inertial frame of
reference. Similarly simple but time-dependent solutions are (relative) periodic orbits, for which the
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trajectory of the solution repeats after a time T as q(t + T, p) = q(t, p) in a (possibly moving) inertial
frame of reference, where the smallest T that fulfils this condition is called the ‘fundamental period’.

The first simple three-dimensional invariant solutions related to turbulence were found around the
same time at which the first DNS studies became feasible by Nagata (1990) in Couette flow, but their
relevance for the understanding of many processes such as the laminar-turbulence transition or the self-
sustained near wall cycle were not directly accepted (see van Veen, 2019, on the historical evolution).
The limitations of the current review do not allow to give this topic the space it would deserve, and the
interested reader is therefore referred to the extensive reviews of Kawahara et al. (2012b) and Graham
and Floryan (2021) concerning solutions relevant to fully-turbulent wall-bounded flows and to those
by Kerswell (2005) and Eckhardt et al. (2008) for their relevance in the transition from the laminar to the
turbulent regime. To list only a few important solutions that strongly resemble the buffer-layer dynam-
ics in different aspects and that impressively well represent the typical low-order turbulence statistics,
we want to draw the readers’ attention to the traveling wave solutions of Nagata (1990), Clever and
Busse (1997) and Waleffe (2001, 2003) as well as the (relative) periodic solutions detected by Kawahara
and Kida (2001) and Viswanath (2007, 2009) in plane Couette, Poiseuille and pipe flow, respectively.
The latter set of (relative) periodic orbits is in this context of particular interest, as their periodic cycle
closely resembles the different phases of the self-sustained regeneration cycle, including the banding
and eventual ‘bursting’ of the streaks.

While individual invariant solutions can thus give some insight into specific turbulent processes, pe-
riodic orbit theory suggests that the statistics of a dynamical system’s evolution can be represented
by an appropriately weighted average over the periodic orbits around which the turbulent trajectory
of the system is circulating (Auerbach et al., 1987; Cvitanović, 2013; Cvitanović et al., 2022), since the
periodic orbits lie dense in the chaotic attractor. An attempt to use this kind of theory in turbulence
has recently been made by Chandler and Kerswell (2013) for two-dimensional doubly-periodic Kol-
mogorov flows, for which the authors found about 50 individual periodic orbits and combined them
in order to comment on the statistics of the entire flow. Note that in order to perform such analysis, an
easy and fast detection of a large number of (relative) periodic orbits is crucial. In practice, typically
time series of flow field realisations are scanned for near-recurrences in state space, which then serve
as initial guesses for a glorified Newton-Raphson search (typically coupled with a Krylov-subspace
method), with the aim to converge the nearly recurrent trajectory to a truly periodic orbit (Viswanath,
2009; Chandler and Kerswell, 2013).

However, finding suitable initial guesses for the Newton search itself is a delicate task, such that, re-
cently, much effort has been put in developing more efficient methods to search for periodic orbits,
including data-driven search methods based on, for instance, Koopman theory and dynamic mode de-
composition (Page and Kerswell, 2018, 2019, 2020) or machine learning techniques (Page et al., 2021).
At higher Reynolds numbers, identifying such near-recurrences generally becomes complicated as the
chaotic turbulent trajectories reside for shorter times nearby a periodic orbit, often shadowing only
part of the full period. Together with the notorious sensitivity of the Newton method’s convergence
on the quality of the initial guesses, this has recently motivated the development of structurally dif-
ferent approaches, including the stabilisation of exact recurrent states by external ‘non-intrusive’ force
fields added to the RHS of the dynamical system (3.13) (Lucas and Yasuda, 2022) or the application of
adjoint-based variational methods (Farano et al., 2019; Azimi et al., 2022; Parker and Schneider, 2022).
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(a) (b)

Figure 3.2: (a) Conceptual sketch of an individual horseshoe-/Λ-vortex as imagined by Theodorsen (1952). (b) Proposed
mechanism of a low-speed region generation due to the collective effect of individual hairpin vortices, grouped
in form of hairpin packets, as proposed by Adrian et al. (2000) and Adrian (2007). The visualisations are from
Adrian (2007) (copyright 2007, reprinted with permission of AIP Publishing).

Direct numerical simulations of turbulence in highly spatially constrained domains, on the other hand,
allow to study fully-chaotic but isolated coherent structures and their dynamics. In the seminal work
of Jiménez and Moin (1991), the simulation domain was just large enough to accommodate a single
streamwise streak flanked by, on average, two staggered counter-rotating quasi-streamwise vortices. A
major achievement of the latter study was to quantify a ‘minimal flow unit’ necessary to sustain the
turbulent regeneration cycle in a sequence of simulations with successively reduced box dimensions. It
was observed that if the box dimensions fall below a streamwise and spanwise period of L+

x ≈ 250-350

and L+
z ≈ 100, respectively, the flow effectively relaminarises. This, in turn, implied that the observed

regeneration cycle is indeed the smallest turbulent process and essential for turbulence to be main-
tained. Even though conclusions for spatially chaotic turbulent flows on the base of strongly reduced
systems such as minimal box simulations and invariant solutions have to be drawn with caution, it
has been shown that the predictions obtained from such simulations agree well with statistics in sub-
domains of large and thus less constrained fully-turbulent simulations (Jiménez et al., 2005).

In contrast to the buffer layer dynamics, the processes that drive the logarithmic layer are less well
understood for several reasons: First, direct numerical simulations with a sufficiently high scale sep-
aration Reτ ≈ 4000-10 000 that allow for a clear log-layer to be detectable have become feasible only
recently (Bernardini et al., 2014; Lozano-Durán and Jiménez, 2014a; Lee and Moser, 2015; Yamamoto
and Tsuji, 2018; Hoyas et al., 2022). Second, structures in the logarithmic layer are neither smooth
nor are they single-scale objects as their counterparts in the buffer layer, but they are themselves non-
smooth multi-scale turbulent objects with a characteristic Reynolds number far from unity (Jiménez,
2013a). Also, the scales of the energy- and enstrophy-carrying structures, that are, velocity streaks and
vortices separate outside the buffer layer: While the organisation of velocity in streaks seems to be a
fundamental and robust concept of shear flows as they are observed at practically all scales from the
near-wall to the outer region (Jiménez, 1998, 2018), vorticity is observed to be much more isotropically
distributed outside the buffer layer and organises in structures of scales that are only slightly larger
than those near the wall (Jiménez, 2013a). Interpreting the dominant wavelengths of the enstrophy
spectrum as the characteristic scale of dissipation, this is in conceptual agreement with Kolmogorov
turbulence applied locally to each wall-normal layer in that with increasing scale of the high-kinetic
energy structures, the distance between the largest and smallest scales (i.e. the inertial range) increases
as a function of the wall-distance.
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Figure 3.3: (a-c) Conditionally-averaged coherent flow structures in the log-layer of a turbulent channel flow at Reτ ≈ 2000
(Hoyas and Jiménez, 2006; Lozano-Durán et al., 2012): (a) P.d.f.s of points belonging to ejection structures (Q2,
green), sweep structures (Q4, blue) and vortex clusters (grey); (b) the same for low- (blue) and high-speed streaks
(red), respectively. The smaller parallelepiped in (b) indicates the bounding box of the objects shown in (a). Length
scales are defined as x̆i = (xi − xc,i)/yc, with xc,i being the ith coordinate of the centre of gravity of the Q2-Q4-pair.
(c) Cross-section of the conditional velocity field at x̆ = 0, corresponding to the objects shown in (b). The arrows
indicate the cross-flow velocity field (v f , w f )

T , while the background colourmap expresses the local amplitude
of the conditional streamwise velocity fluctuations. The white dotted lines indicate the cross-sectional locations
of the Q2 and Q4 objects in (a), while the solid line marks the location of the corresponding vortex cluster. (d)
Exemplary instantaneous state of the flow field from the same dataset, with colour code as in (a). Flow is from
bottom left to top right in all panels. The visualisations in (a,b,d) are from Lozano-Durán (2015) and that in (c)
is from Jiménez (2013a) (copyright 2013, reprinted with permission of AIP Publishing); the notation has been
adapted accordingly.

Today, mainly two different concepts exist that aim to describe the coherent structures present in the
logarithmic layer. The first bases on ‘horseshoe’, ‘hairpin’ or ’Λ-vortices’ first studied by Theodorsen
(1952), that consist (in their simplest configurations) of two essentially horizontal legs and a connecting
arch or head that is inclined w.r.t. the wall at which it is born, as can be seen in the original conceptual
sketch in figure 3.2(a). Ever since, several conceptual models were build on hairpins of different size,
scale and shape as a fundamental building block of turbulence (Perry and Chong, 1982; Robinson,
1991). The most recent attempt are the well-organised ‘hairpin packets’ described by Adrian (2007):
As can be seen in the conceptual sketch in figure 3.2(b), the idea of this theory is that a number of
individual hairpins arranges in a comparably regular pattern in the streamwise direction to create
larger-scale structures, here a large low-speed streak. Hairpin vortex packets can grow in time and
thus, with increasing size, spread over successively larger wall-normal distances (Adrian et al., 2000;
Ganapathisubramani et al., 2003; Adrian, 2007), resulting in a set of self-similar families of hairpins and
vortex packets at different scales spanning over different wall-parallel layers (Kim and Adrian, 1999;
Marusic and Monty, 2019).

A different concept is described by the group of Javier Jiménez in Madrid by investigating the log-layer
in terms of coherent structures related to different physical quantities such as velocity streaks (Sillero,
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2014), Reynolds stress-carrying ‘Q’-objects (Lozano-Durán et al., 2012; Lozano-Durán and Jiménez,
2014b) and vortex clusters (Del Álamo et al., 2006; Jiménez, 2013a). In this regard, vortex clusters can
be understood as clouds of intense vorticity that resides in a large number of aggregated small-scale
vortices which fill the cluster interior without clear spatial structure. The Reynolds stress carrying ob-
jects, on the other hand, are the three-dimensional analogues to the classical quadrant analysis (Wal-
lace et al., 1972) in which velocity covariances |u′

f v′f | are classified depending on the quadrant in which
they are located in the u′

f -v
′
f parameter plane (Lozano-Durán et al., 2012; Lozano-Durán and Jiménez,

2014b). Of particular interest are those contributions that act in favour of the mean Reynolds stress
(u′

f v′f < 0), i.e. ‘ejections’ (Q2-event, transport of low momentum away from the wall) and ‘sweeps’
(Q4-event, transport of high momentum towards the wall). Summarising the individual findings as
in Jiménez (2018), a general structural view of the relation between the individual structures emerges.
Generally, structures can be classified as either attached to or detached from the wall, following the
concept of the attached-eddy hypothesis posited by Townsend (Townsend, 1961, 1976). The basic idea
of this latter theory is that the log-layer of turbulent shear flows can be represented by families of
self-similar superposed eddies of different size. The largest of these structures at a given distance y to
the wall spread until they reach the bottom wall and thus their height is ≈ 2y. Assuming a random
superposition of such eddies, Townsend (1976) showed that such a composition of structures directly
implies the logarithmic shape of the velocity profile in this regime as well as a logarithmic scaling of
some of the velocity fluctuations. Note that the attached-eddy hypothesis is nowadays widely accepted
to hold (Marusic and Monty, 2019), and it is in accordance with both the hairpin-based model and the
structural model presented in this paragraph.

Lozano-Durán et al. (2012) showed that, in an ensemble-averaged sense, an ejection and a sweep struc-
ture appear as pairs. As a consequence of continuity, the are connected by a quasi-streamwise roller,
which is oriented in such a way that it leaves the ejection object at the top and the sweep at the near-wall
side, as can be seen in figure 3.3(a,c). Vortex clusters are, in turn, associated with at least one ejection
object and are typically found in-between the ejection and sweep of such pairs (Del Álamo et al., 2006;
Lozano-Durán and Jiménez, 2014b). The conditional rollers take the place of the quasi-streamwise
vortices in the buffer layer cycle and are probably (at least partly) driven by some local anisotropy of
the small vortices associated to the vortex clusters (Jiménez, 2018). By definition, ejections and sweeps
are located in low- and high-speed streaks, respectively, such that the sweep-ejection pairs are usually
found at the transition between the streaks in figure 3.3(b). Figure 3.3(c) highlights visualises how the
quasi-streamwise conditional rollers consequently transport low momentum fluid away from the wall
in the low-speed streaks and vice versa in the high-speed streaks (cf. figure 3.3(c).

It has been stated earlier that the logarithmic layer itself is a self-similar cascade, and so are the families
of streaks, ejections/sweeps and vortex clusters in that they repeat at varying scales and wall-distances
in a similar way (Hwang and Cossu, 2010a, 2011; Cossu and Hwang, 2017; Jiménez, 2018). While the
smallest structures in this context are those in the buffer layer, the largest streaks or ‘large-scale motions’
(LSM) at the upper end of the log-layer and in the outer layer reach dimensions of O(H), featuring a
characteristic lateral spacing of 1-2H (Smits et al., 2011; Jiménez, 2013a). Important to recall is that
the described mutual organisation of the different structures is valid for the ensemble-average, while
the instantaneous structures are surely less regularly arranged, as becomes clear when comparing the
instantaneous flow field shown in figure 3.3(d) with the conditionally-averaged patterns in figure 3.3(a-
c). Nonetheless, the findings give a conclusive idea of the structures’ interaction in the logarithmic layer
and the ideas have been recently supported by the conceptual model and ensemble-averaged statistics
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of Kevin et al. (2019b) as well as by the analysis of low-pass filtered velocity fields in boundary layer
and canonical channel flows by Motoori and Goto (2019, 2021).

Minimal box simulations have also been performed for the logarithmic layer, with the difference that a
specific box is minimal w.r.t. a specific distance to the wall due the self-similar scaling of the log-layer
structures (Flores and Jiménez, 2010). The minimal flow unit of Jiménez and Moin (1991) thus is the
smallest possible of a cascade of minimal boxes just as the buffer layer is the lower end of the logarithmic
layer cascade. Flores and Jiménez (2010) observed that the interval of wall-normal coordinates for
which a box is minimal collapses with the height at which the spanwise domain period Lz is just wide
enough to accommodate the vertical velocity energy spectra, and boxes are minimal for a wall-normal
coordinate y ≈ Lz/3. They furthermore observed that the isolated streaks surrounded by a single
sweep and ejection intermittently burst quite similar to their counterparts in the buffer layer at time
scales that vary with the local shear or equivalently with the wall-distance.

The two types of structures, i.e. hairpin packets and the structures described by Jiménez (2018) and
his group, might share some similarities such as their support of the attached eddy hypothesis of
Townsend (1961, 1976), but they fundamentally differ in their concept on where coherent structures
are generated and how information and momentum is transferred across the different layers in wall-
bounded turbulence. Hairpin-like structures are born at the wall and undergo a continuous growth,
during which they penetrate layers further away from the wall and thus control the flow from the
near-wall region. The conceptual model of Jiménez and co-workers, on the other hand, includes the
possibility that structures are generated at each height independently as a consequence of the local
shear, while the main role of the solid wall is in this context to provide the necessary shear to feed
the turbulent field with energy (see, for instance, the wake-like process illustrated in Del Álamo et al.,
2006 and the discussion about causality in section 5.6 of Jiménez, 2018). In the latter work, it was also
mentioned that there is some evidence from the results obtained by Flores and Jiménez (2010) and
Lozano-Durán and Jiménez (2014b) that the dominant direction of information propagation might be
from outer regions towards the wall rather than the other way round, and that the characteristic veloc-
ity with which wall-normal momentum transfer occurs is comparable to the friction velocity uτ. Recent
studies provide further support for such an asymmetric interaction between the near-wall region and
the outer flow (Zhou et al., 2022).

3.3 Turbulence in rectangular duct flows

3.3.1 The classical theory

While canonical closed channel flows have been extensively studied during the past decades, less is
known about turbulent ducts which are basically pipe flows with rectangular cross-section. In that
sense, closed channels represent the asymptotic state of a rectangular duct whose aspect ratio AR

tends to infinity. In the remainder, we will refer to the aspect ratio AR of closed rectangular ducts
as the quotient of the duct half-span Lz/2 over its half-height Ly/2, viz. AR = Lz/Ly (Sakai, 2016). In
experiments, it has been shown that substantial aspect ratios of AR & 25 are required to sufficiently re-
duce the influence of the lateral sidewalls such that the core of the duct can be assumed to be essentially
laterally homogeneous (Vinuesa et al., 2014a). If the aspect ratio is close to unity, on the other hand, the
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flow features four boundary layers that interact in the corner regions such that all three mean velocity
components are non-zero, even though their statistics are independent of the streamwise direction.

In this regard, the most striking phenomenon unquestionably is the mean secondary flow pattern that
is induced by the presence of the four solid sidewalls. First quantitative studies on secondary flows in
non-circular pipes date back to Prandtl and Nikuradse (Nikuradse, 1926; Prandtl, 1926) and it was also
Prandtl who coined today’s standard classification of secondary flows into two categories: Secondary
flows of Prandtl’s first kind are due to the skewness of the mean flow axis as in meandering rivers or
curved pipes, while secondary flows of the second kind are a pure turbulent phenomenon and origi-
nate in anisotropy and non-homogeneity of the Reynolds stresses across the flow domain (Bradshaw,
1987). In the remainder of this work, we will exclusively investigate secondary currents of the second
kind and so we will refer to this type when using the term secondary motion hereafter. The relation
of the turbulence-induced secondary motion with the Reynolds stresses is readily shown when con-
sidering the transport equation for the streamwise component of the mean streamwise vorticity field
〈ω f ,x〉xt(y, z) = ∇ × 〈u f 〉xt(y, z) in a straight and fully-developed duct. The transport equation for
〈ω f ,x〉xt can be derived either by applying the curl operator to the RANS equations (3.4), that is, by
cross-differentiation and substraction of these latter (Bradshaw, 1987; Gavrilakis, 1992), leading to

〈v f 〉xt

∂〈ω f ,x〉xt

∂y
+ 〈w f 〉xt

∂〈ω f ,x〉xt

∂z
= ν f ∆〈ω f ,x〉xt

+
∂2

∂y∂z

(
〈v′f v′f 〉xt − 〈w′

f w′
f 〉xt

)

−
(

∂2

∂y2
− ∂2

∂z2

)
〈v′f w′

f 〉xt.

(3.14)

The absence of the streamwise velocity component in equation (3.14) highlights that the system is ef-
fectively decoupled from the streamwise mean velocity field, such that interactions among the differ-
ent velocity components can occur only in an indirect way via the Reynolds stresses. Particularly, the
right hand side of equation (3.14) underlines that except for regions close to the wall where the vis-
cous term is of relevance, secondary flows are driven by a balance between gradients of the normal
Reynolds stress difference 〈v′f v′f 〉xt − 〈w′

f w′
f 〉xt on the one hand and the gradients of the cross-stream

Reynolds shear stress 〈v′f w′
f 〉xt on the other hand. In fact, it can be shown that a sufficient condition

for the occurrence of secondary flows is that the cross-stream normal Reynolds stresses are not equal,
i.e. 〈v′f v′f 〉xt 6= 〈w′

f w′
f 〉xt (Speziale, 1982).

Two major reasons have complicated investigations of turbulent duct flow throughout the time since
Prandtl and are probably responsible for the fact that in spite of its high relevance for many technical
applications, the flow through rectangular ducts at low AR is much less frequently studied than that in
the canonical doubly-periodic channel. First, the secondary flow and the transverse Reynolds stresses
are weak in amplitude, the former usually reported as a few percent of the bulk velocity (Nezu and
Nakagawa, 1993), such that accurate measurements have been and are still hard to perform in labora-
tory experiments (Wang and Cheng, 2005). Some important contributions from experimental studies
are the works by Brundrett and Baines (1964), Gessner (1973) and Melling and Whitelaw (1976). In
these early studies, the characteristic eight-vortex state of the secondary flow field in square ducts
(cf. discussion of figure 3.4(c) below) was investigated in detail and studies of the different Reynolds
stresses were performed. Also, the contributions of the individual terms in the vorticity budget (3.14)
were determined in the experiments. Knight and Patel (1985), in turn, focused on the relation between

26



3.3 Turbulence in rectangular duct flows

secondary motions and the boundary shear stress along the duct perimeter for duct flows with rectan-
gular cross-section.

Numerical simulations, on the other hand, often failed to predict secondary flows since most sim-
ple eddy-viscosity models are incapable of capturing the anisotropy of the normal Reynolds stresses
〈v′f v′f 〉xt 6= 〈w′

f w′
f 〉xt (Speziale, 1982). Consequently, it requires more complex closure techniques for

RANS-type models such as the non-linear eddy-viscosity model of Speziale (1987) or the algebraic
stress models of Naot and Rodi (1982) and Demuren and Rodi (1984) to account for the secondary
currents. Even though these models were able to reproduce a secondary motion in the cross-plane,
the intensity that was obtained with these models clearly underpredicted that measured in experi-
ments. The first accurate quantification of the secondary currents was provided by Gavrilakis (1992)
and Huser and Biringen (1993) based on direct numerical simulations for the flow in a square duct, only
a few years after the pioneering DNS study of Kim et al. (1987) in low Reynolds number channel flow.
Several experimental and numerical studies of the mean secondary flow patterns and the streamwise
vorticity budget in square and rectangular duct flows have been performed ever since (Zhang et al.,
2015; Gavrilakis, 2019). For instance, the group at KTH in Stockholm investigated in a number of ex-
perimental and DNS-based studies the dependence of the secondary flow pattern on the aspect ratio
in a range 1 . AR . 48, the decay of the secondary flow intensity towards the duct centre and the
velocity statistics in the limit AR ≫ 1 for moderate Reynolds numbers (Vinuesa et al., 2014a,b, 2015,
2018). Recently, Pirozzoli et al. (2018) and Modesti et al. (2018) extended the Reynolds number range
of direct numerical simulations of square duct flow to values Reτ ≥ 1000 and studied how the mean
secondary flow and the vorticity organisation change while increasing the Reynolds number. Also,
numerical experiments were performed in which the secondary motion in the cross-section was arti-
ficially suppressed. It was concluded that the role of secondary flows in the duct cross-section is to
serve for an equilibration between corner and bulk regions to compensate for the momentum deficit
in the former region. For the absence of the secondary flow, it was concluded that the standard law of
the wall was less well recovered along the duct walls.

3.3.2 The structural view on duct turbulence

Did earlier studies mainly focus on the relevance of the Reynolds stresses and the turbulent kinetic
energy budget, the development of computing power and experimental techniques in the past decades
also allowed to identify and study the dynamics of individual coherent structures similar to those in
canonical flows.

One of the first works that followed this path was the study of Kawahara and Kamada (2000), in
which the authors studied, based on experimental data, a quasi-streamwise vortex in the corner of
a square duct whose centre was located roughly on the corner bisector, reporting the close similarity
in size and structure to the well-known quasi-streamwise vortices in canonical flows. In the following
years, a group around G. Kawahara, M. Uhlmann and A. Pinelli exploited a variety of different an-
alytical and numerical techniques to study the transition to turbulence and the fully-turbulent state,
mainly focussing on square duct flow. Uhlmann and Nagata (2006) investigated the stability of an in-
ternally heated rectangular duct by means of linear stability analysis, extending the work of Tatsumi
and Yoshimura (1990) and Theofilis et al. (2004) in the isothermal case. While in the isothermal case,
the lateral sidewalls stabilise the flow w.r.t. infinitesimal perturbations for all aspect ratios AR . 3.2,
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the additional thermal effects can under certain conditions destabilise the flow such that it becomes
linearly unstable even for lower aspect ratios.

In analogy to the minimal flow unit of Jiménez and Moin (1991), Uhlmann et al. (2007) determined
the minimal requirements to maintain turbulence in a square duct at a critical Reynolds number of
Reb = 1077 (Reτ = 77) or, equivalently, for a minimum inner-scaled duct span of L+

z = 154. In this
context, the bulk and friction Reynolds numbers are defined based on the duct half height and Reτ is
determined based on the mean wall-shear stress averaged over the entire perimeter of the duct. It was
shown by means of a coherent structure eduction study that the mean streamwise vorticity distribution
as well as the mean secondary flow pattern are directly related to the preferential location of the streaks
and their adjacent quasi-streamwise vortices. Interestingly, the long-time averaged secondary flow
pattern induced at this marginal conditions consists of a fourfold symmetric eight vortex pattern that
is relatively similar to the secondary flow patterns in fully-developed square duct turbulence. Shorter
time averages, however, reveal that due to the marginal Reynolds numbers and thus the marginal
relative wall lengths L+

z = L+
y , not all four walls can accommodate a full turbulent regeneration cycle

simultaneously. The consequence is an intermittent four-vortex behaviour in which always two facing
walls feature a single streak-vortex group each.

To further clarify the origin of the four- and eight-vortex states, Sekimoto (2011) performed simulations
at marginal Reynolds numbers Reb = 1100 (Reτ = 78) in extremely long domains up to Lx = 160πH

(H = Ly/2 = Lz/2 indicating the half height of the square duct), compared to the longest domain in
Uhlmann et al. (2007) that measured Lx = 4πH. Sekimoto (2011) could show that in an essentially
spatially unconstrained domain (regarding the streamwise direction), the flow was not only intermit-
tent in time, but also in space. More specifically, regions of locally enhanced wall shear and dissipation
alternate with more quiescent regions of significantly lower wall shear stress, leading the author to the
conclusion that the flow in a rectangular duct reveals comparable localised turbulent ‘puffs’ as have
been observed in other canonical flows such as pipe flows under marginal conditions (Kerswell, 2005;
Mullin, 2011; Barkley, 2016). Sekimoto (2011) in that sense generalised the conclusions of Uhlmann
et al. (2007) to the spatiotemporal context, as he reported that within the localised turbulent puffs, the
mean flow field exhibits the turbulent eight-vortex secondary flow state, whereas outside (at a locally
smaller Reynolds number) again only one pair of opposite walls can accommodate a streak-vortex fam-
ily and thus the cross-flow is characterised by one or the other four-vortex state. While the geometry of
the square duct poses relatively strong spatial constraints on the localised turbulent puffs, large aspect
ratio do less so: Takeishi et al. (2015) observed that sufficiently high aspect ratios allow the turbulent
patterns to localise not only in the streamwise, but also in the spanwise direction, leading to the ap-
pearance of turbulent ’spots’ analogous to those in doubly-periodic channels (Lemoult et al., 2013).

Pinelli et al. (2010) later extended the database studied by Uhlmann et al. (2007) to the non-marginal
regime up to Reynolds numbers Reb = 3500 (Reτ = 230). In particular, the authors concluded that with
increasing relative length of the sidewalls L+

z , the near-wall regions of the duct are able to accommodate
several streamwise buffer-layer streaks and quasi-streamwise vortices, whose preferential positions can
be inferred from the profile of the mean wall shear stress. The simultaneously increasing scale sepa-
ration between the inner and outer length scale revealed moreover a different scaling behaviour of the
mean streamwise vorticity and the secondary flow streamfunction: The streamwise vorticity that is
associated with the preferential organisation of small-scale quasi-streamwise vortices scales in inner
units, while the secondary flow streamfunction is most likely related to outer-scaling flow structures
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Figure 3.4: (a) Upper-branch travelling-wave solution of turbulent square duct flow found by Uhlmann et al. (2010) at
Reb = ub H/ν f = 1404.1 (H: half duct height). Green: isosurface of the streamwise velocity fluctuation, red/gray:
regions of intense positive/negative vorticity. Flow is from bottom right to top left. (b) Corresponding mean
streamwise (red isolines) and mean secondary flow field (arrows) in the duct cross-plane, computed for the
travelling-wave solution shown in (a). (c) Same quantities as in (b), but for a full DNS of square duct flow from
Pinelli et al. (2010) at quasi identical Reynolds number Reb = 1400. Visualisations are from Uhlmann et al. (2010)
with adapted notation (copyright 2010, reprinted with permission of AIP Publishing).

and is thus less affected by the increasing Reynolds number. Sakai (2016) confirmed these observations
for higher Reynolds numbers up to Reb = 7000 (Reτ = 411), and Zhang et al. (2015) concluded based on
their simulations up to Reτ = 1200 in a however relatively short box with Lx = 2πH that low-Reynolds
number effects remain observable for Reτ . 600. Sekimoto (2011) reached Reynolds numbers up to
Reb = 8300 (Reτ = 480.7) in the same box and determined the mean cross-sectional dimensions of the
large-scale streamwise velocity structures to 1H-1.2H by evaluation of the two-point velocity correla-
tions. Recently, Pirozzoli et al. (2018) commented on the relation between secondary streamfunction
and mean vorticity based on simulations up to Reb = 20 000 (Reτ = 1055), highlighting the strong
resemblance of their high Reynolds number DNS results to analytically obtained eigenfunctions of the
Laplace operator.

The role of coherent structures in the generation of the secondary flow patterns was further underlined
by a family of traveling-wave solutions to the Navier-Stokes equations found by Uhlmann et al. (2010)
using the homotopy method proposed by Waleffe (2003) adapted to the duct configuration. From
the detected traveling waves, in particular the upper branch solution whose individual vortices are
depicted in figure 3.4(a) generates a characteristic eight-vortex secondary flow pattern when averaged
over the streamwise direction, cf. figure 3.4(b). The similarity to the time- and streamwise-averaged
mean field in the fully-turbulent flow shown in figure 3.4(c) based on the DNS data of Pinelli et al. (2010)
is striking, being caused by the similar arrangement of the individual vortices in the invariant solution
and the mean secondary vortices in the secondary flow field (Kawahara et al., 2012b). Other invariant
solutions which share some similarities with the four-vortex state in marginal turbulence described by
Uhlmann et al. (2007) were found by Okino et al. (2010) and Okino and Nagata (2012), using a homotopy
approach based on the instability observed by Uhlmann and Nagata (2006). Sekimoto (2011), on the
other hand, detected an eight-vortex state travelling wave by using the solution found by Uhlmann
et al. (2010) as initial condition for his Newton-Krylov search. Arguably, the exact coherent structure
analysed by Sekimoto (2011) represents an edge state in duct turbulence, that is, a local saddle on the
boundary between the laminar and turbulent basin of attraction that acts as attractor for trajectories
approaching the saddle along the edge manifold (Schneider and Eckhardt, 2006).
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Recently, Atzori et al. (2018, 2021) applied the structural concept of the Q-events and the related per-
colation analysis originally introduced in canonical closed channel flow by Lozano-Durán et al. (2012)
(cf. the discussion in the previous section 3.2) to the coherent structures in turbulent duct flows. It was
concluded that the structures located in the vicinity of the duct corners differ from those in canonical
channel flow concerning their geometry, while those outside the corners feature a relatively similar
shape and aspect ratio.

3.4 Free-surface effects in wall-bounded turbulence

3.4.1 Open channel flows

While closed channel and closed rectangular ducts have important applications in many industrial
processes, open channel and duct flows in which the upper solid wall is replaced by a flat free-slip
plane are common models for hydraulic flows in natural rivers or man-made canals. Note that the
representation of the free surface as a strictly flat free-slip plane is a common simplification in numerical
simulations and excludes the evolution of surface waves. There are other models that are able to capture
such phenomena, but a review of these methods is out of the scope of the current work. In this section,
we will restrict ourselves to the study of single-phase smooth-wall open channel and duct flows, while
we postpone a detailed review of those studies that simultaneously investigate effects of roughness
and sediment transport to section 3.6 below. In the following, we use as characteristic outer scale the
full fluid height H f to allow for a just comparison between open channels or ducts and their closed
counterparts. Also, in case of the open duct, we define the mean wall shear stress as the average of the
wall shear stress along the wetted perimeter, that is, the three solid walls excluding the free surface.

Free surface flows share many similarities with their closed counterparts especially in the near-wall
region and it is usually assumed that regions away from the surface do not feel its presence. In the
vicinity of the free-slip boundary, on the other hand, the organisation of the turbulent flow field signif-
icantly differs from that in closed channels or ducts at the same distance to the bottom wall, where this
height represents the channel/duct centreline. When approaching the free surface, the wall-normal
velocity is successively damped as a consequence of the impermeability boundary condition and en-
ergy is transferred to the two horizontal velocity components as a consequence of continuity (Nezu and
Nakagawa, 1993). The redistribution of kinetic energy has been observed to be in favour of the span-
wise velocity rather than of the streamwise component and the main driving seems to originate in the
pressure-strain term (Handler et al., 1993). The peculiar situation that only one velocity component is
damped while the remaining two are unaffected or even enhanced leads to a highly anisotropic turbu-
lent layer in which, in contrast to the near-wall region, essentially no turbulent kinetic energy is gained
as the mean shear tends to zero at the surface. The dominance of the two horizontal over the wall-
normal velocity components causes special vortex structures to arise, as has been outlined by Nagaosa
(1999). This includes, on the one hand, surface-attached vortices that are connected to the free surface
with their rotation axes roughly perpendicular to the free surface, such that they are characterised by
a locally enhanced level of wall-normal vorticity ω f ,y. On the other hand, elongated quasi-streamwise
vortices form more or less parallel to the free surface, where they are of particular relevance for the
momentum exchange between the free surface and the underlying fluid layers.
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Possible interactions of structures born near the wall that are advected to the free surface were inves-
tigated by Nagaosa and Handler (2003) and their relevance for heat transfer in the vicinity of the free
surface were discussed. More recently, Nagaosa and Handler (2012) and Pinelli et al. (2022) investi-
gated the relevance of these near-surface vortices for the interfacial gas transfer. Bauer et al. (2022), in
turn, showed that the largest scales in free-surface flows equivalent to the ‘very large-scale motions’
(VLSM) or ‘global modes’ in canonical flows (Kim and Adrian, 1999; Del Álamo and Jiménez, 2003;
Hutchins and Marusic, 2007a; Monty et al., 2009) appear at lower Reynolds numbers than in closed
channel flows and are about twice as long and twice as wide as those in the closed channel case. Also,
these structures penetrate deep into the near-wall region, indicating that there might be in fact no re-
gion that is truly unaffected by the presence of the free surface. In general, however, the role of large-
and very large-scale motions in free surface flows and their interaction with mean secondary currents
is not yet fully understood (Adrian and Marusic, 2012), and the topic has only recently attracted some
attention in the community (Cameron et al., 2017; Zhang et al., 2019; Cameron et al., 2020; Duan et al.,
2020; Peruzzi et al., 2020; Camporeale et al., 2021). The similarity between coherent large-scale struc-
tures in canonical and free surface flows will be further discussed in the section on ridges in hydraulic
flows below.

3.4.2 Open duct flows

In open duct flows, the free surface and the lateral sidewalls form a ‘mixed-boundary corner’ with
different boundary conditions on the two adjacent sides of the corner. High-fidelity data from direct
numerical simulations of turbulent open duct flows to compare experiments with is rare, and the study
of Sakai (2016) is to the best of our knowledge the most extensive database of fully-resolved open duct
flow simulations. Only few other fully-resolved numerical simulations of open duct flow such as those
of Joung and Choi (2010) are known, which however feature a relatively short computational box (Lx =

2πH f ) that can hardly be expected to be sufficient to capture all relevant structures and length scales.
Indeed, Sakai (2016) showed the necessity of domain lengths of at least Lx = 8πH f to allow for a
decoupling of the two-point correlations in the streamwise direction, whereas in closed duct flows
domains of streamwise length Lx = 4πH f were shown to be sufficient to do so. The longest coherent
structures in presence of a free surface are thus apparently much longer than those in closed ducts,
which agrees with the respective observations in open and closed channel flows above.

Sakai (2016) further observed that the minimal Reynolds number required to sustain turbulence in an
open duct is somewhat higher than for the closed square duct at matching aspect ratio AR = 1 (using
AR = Lz/(2Ly) in the open duct case), in that a minimal Reynolds number Reb = 1450 (Reτ ≈ 102) is
required to keep the system from relaminarisation. Interestingly, this critical Reynolds number turns
out to be a monotonically decreasing function of the aspect ratio for both open and closed duct flow.

For non-marginal conditions, the open duct flow develops a characteristic secondary flow pattern that
differs from the closed counterpart in several aspects. Figure 3.5 shows such a secondary flow field
together with the mean streamwise velocity exemplary for case DL400H2

smooth (Reb ≈ 7000, Reτ = 416),
which was originally presented by Sakai (2016) and will be later in this work used as reference data for
the multiphase simulations. Three characteristic secondary flow patterns are clearly distinguishable
in figure 3.5: First, we observe the ‘inner secondary vortex’ in the mixed boundary between free sur-
face and sidewalls that has been first studied by Grega et al. (1995),Hsu et al. (2000) and Grega et al.
(2002). This local mean swirling motion features a sense of rotation that is oriented in such a way that
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Figure 3.5: Organisation of the mean streamwise velocity 〈u f 〉xt/ub and secondary motion (〈v f 〉xt/ub, 〈w f 〉xt/ub)
T in open

duct simulations. Grey lines are isocontours of 〈u f 〉xt/ub, shown for values 0.1(0.1)1.3. Intensity and orientation
of the mean cross-stream secondary flow field are indicated as vector plot in the background. The shown data is
from case DL400H2

smooth (cf. section 7.1).

fluid is transported along the free surface towards the wall and downwards along the solid boundary.
According to Sakai (2016), the existence of this inner-scaling mean vortex is closely linked to a prefer-
ential agglomeration of quasi-streamwise surface-parallel vortices with a common sense of rotation in
the mixed corners. Vortices with a reverse sense of rotation move away from the sidewall along the
surface towards the duct bisector. Sakai (2016) illustrates this proposed ‘vortex-sorting mechanism’ by
a simple two-dimensional vortex dipole consisting of the actual vortex and its virtual mirror on the
other side of the free surface which, in this context, acts as a symmetry plane (Orlandi, 1990). Depend-
ing on the orientation of the ‘real’ vortex, the dipole will either induce an advection velocity towards
the corners where the vortices stick and appear in the mean field as inner vortex, or they move out of
the corner towards the duct centre. The fact that the mean inner vortex scales in inner units further
supports this concept. The large mean secondary flow cell which occupies most of the cross-section
in figure 3.5, in turn, is typically termed ‘outer’ or ‘free-surface vortex’. In contrast to the inner vor-
tex, this latter is weakly affected by changes of the Reynolds number as it scales in outer units similar
to the large-scale secondary vortices in the closed square duct. A third, medium-sized mean ‘bottom
vortex’ is finally visible in the lower left and right half of the cross-section shown in figure 3.5, which
is reminiscent of the eight-vortex state in the closed duct counterpart.

Besides the mean secondary flow field, figure 3.5 also shows the characteristic pattern of the mean
streamwise flow field 〈u f 〉xt(y, z). We observe what is typically called the ‘velocity dip phenomenon’
([first observed more than a century ago by Stearns, 1883): Along the duct bisector at z = Lz/2, the
streamwise velocity attains its maximum not at the free surface, but the highest velocity is found some-
what below it. Tominaga et al. (1989) quantified the wall-normal location of the streamwise velocity
peak at an offset of 0.2-0.3H f from the free surface and Nezu and Rodi (1985) reported that the velocity
dip is only visible for ducts with low aspect ratio AR . 2.5. In the classical literature, its appearance
is reported to be a consequence of the concentrated downward motion in between two secondary cur-
rents, where high momentum fluid is brought downwards from the free surface, with the consequence
that the maximum of the streamwise velocity is shifted downwards (Nezu and Nakagawa, 1993). Sakai
(2016) reports a quite similar value of 0.33H f for the offset of the velocity maximum from the free sur-
face in his direct numerical simulations, underlining that the scaling in outer units indicates its close
relation to outer-scaling large-scale flow structures. Also, in order to investigate the origin of the veloc-
ity dip, he determined the preferential location of low-speed streaks in the cross-section and concluded
that the dip phenomenon is related to the transport of low velocity streaks from the sidewalls towards
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the duct centre as a consequence of the mean secondary flow, in accordance with the explanation given
by Nezu and Nakagawa (1993).

With increasing aspect ratio, the influence of the sidewalls on the duct core is seen to considerably re-
duce (Nezu and Rodi, 1985) and for sufficiently large aspect ratios, no mean secondary flow is observed
in the duct core far away from the sidewalls. Tominaga et al. (1989) described that in such situations,
the outer secondary flow cell extends roughly 2H f from the sidewall towards the duct core, while the
bottom vortex is stronger confined to the near-sidewall region with maximum spanwise extensions of
z < H f . These observations were recently confirmed by the DNS results of Sakai (2016) for open duct
flows. For high aspect ratio closed duct flows, similar conclusions seem to hold true as suggested by
the experiments of Nezu and Rodi (1985) and the numerical work of Vinuesa et al. (2015).

While the existence of intense and apparently outer-scaling mean secondary vortices in the near-
sidewall area of wide ducts can be interpreted as the statistical footprint of instantaneous large-scale
structures, the absence of secondary currents in their centre does not allow a direct conclusion on the
instantaneous structures in this area. On the contrary, there is experimental evidence that ‘instanta-
neous secondary motions’ are also present away from the lateral domain boundary (see Tamburrino
and Gulliver, 1999; Nezu, 2005, and references therein). Due to their freedom to laterally meander
and propagate in the absence of lateral confinements, however, their footprints do not appear in the
long-time average. We will discuss this phenomenon in more detail in section 7.2.

Interestingly, a significant bottom roughness seems to influence this effect by reducing the mobility of
instantaneous large-scale velocity structures. Rodríguez and García (2008) report based on measure-
ments in ducts with medium aspect ratios AR = [3.15, 4.25] that the mean secondary flow intensity
does not significantly decay from the sidewall region towards the duct core over a fully-rough bed,
as it is observed in smooth-wall duct flows, for instance, by Nezu and Rodi (1985). In fact, the entire
cross-section is more or less covered with mean secondary flow cells, in agreement with earlier exper-
imental observations (Tominaga et al., 1989). Rodríguez and García (2008) argue that the difference
in roughness between the side- and the bottom-wall are the main cause for the persistent mean flow
patterns, claiming that the instantaneous large-scale structures were less strongly meandering over
a rough bed than over a smooth wall, such that their statistical footprint remains visible even in the
long-time statistics.

3.5 Secondary currents in the absence of sidewalls

While analysing the transport equation of the mean streamwise vorticity (3.14), it was pointed out
that anisotropy and heterogeneity of the Reynolds stress tensor field are necessary conditions for the
evolution of secondary currents. So far, we have focussed on sidewall-induced secondary currents ex-
clusively, but it turns out that a variety of lateral inhomogeneities can cause such an anisotropy of the
Reynolds stress tensor (Anderson et al., 2015). Hinze (1967, 1973) observed that secondary flow cells
evolved over a bottom wall covered with alternating rough and smooth stripes, specifically centred
over the roughness transition. He argued that the secondary momentum transport is closely related to
the local production-dissipation balance in that secondary currents transport weakly turbulent fluid
into the regions of intense turbulence production, while they simultaneously carry fluid with high
turbulent kinetic energy out of this region. In particular during the past two decades, the interest in
secondary motions over such lateral heterogeneities has significantly increased, partly motivated by
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the observation of secondary flows over complex three-dimensional industrial surfaces such as the
replicated surface of a damaged turbine blade that was scrutinised by Mejia-Alvarez and Christensen
(2010) and Barros and Christensen (2014). Interestingly, secondary currents seem to be a ubiquitous
phenomenon arising over a variety of different bottom heterogeneities including, amongst others, the
flow over straight (Goldstein and Tuan, 1998) and converging/diverging riblets (Kevin et al., 2017,
2019a), spanwise alternating roughness stripes (McLelland et al., 1999; Wang and Cheng, 2005; Will-
ingham et al., 2014; Wangsawijaya et al., 2020), transverse alternating non-/hydrophobic roughness ar-
eas (Türk et al., 2014; Stroh et al., 2016), streamwise aligned artificial ridges of different cross-sectional
shape (Wang and Cheng, 2006; Vanderwel and Ganapathisubramani, 2015; Vanderwel et al., 2019; Med-
jnoun et al., 2020; Stroh et al., 2020a; Zampiron et al., 2020a) or combinations of the aforementioned,
as in Stroh et al. (2020b). Most of the listed studies mainly focus on the size, location and intensity of
the mean secondary currents, their sense of rotation (Yang and Anderson, 2018; Anderson, 2019) or
the impact of the lateral spacing s of the inhomogeneities on the secondary flow (Chung et al., 2018;
Wangsawijaya et al., 2020).

The last point is of central importance for engineering-type applications as it allows to control the
appearance, size and strength of the cross-stream circulation. For most applications, three differ-
ent regimes can be distinguished (Vanderwel and Ganapathisubramani, 2015; Vanderwel et al., 2019;
Wangsawijaya et al., 2020; Zampiron et al., 2020b): Is s much larger than the characteristic outer length
scale H, depth-spanning secondary currents are localised and appear solely close to the roughness
transition. Is s on the other hand clearly smaller than H, secondary currents are relatively small and
restricted in the vicinity of the bottom wall, while the outer flow is rather weakly affected by the to-
pography and roughness of the heterogeneous bottom wall. For most cases, an ‘optimal’ spacing that
maximises the intensity of the secondary currents is reached for the typical lateral spacing of the large-
scale velocity structures 1 . s/H . 2 (Jiménez, 2013a, 2018): At these spacings, the secondary currents
become space-filling, which means that the entire cross-section of the domain is occupied by counter-
rotating, depth-spanning secondary currents.

The relation between mean secondary flows and large-scale instantaneous coherent structures over
heterogeneous bottom walls has attracted much less interest. Recently, Kevin et al. (2019b) claimed that
the secondary currents could be the statistical footprint of the conditional quasi-streamwise large-scale
rollers observed in canonical channel flows (Lozano-Durán et al., 2012) that are ‘locked’ in their lateral
position by the bottom heterogeneity. Locking means in this context that the average spanwise position
of the instantaneous large-scale structures changes little in time, while the flow structures still exhibit
a lateral meandering around this relatively persistent mean position (Kevin et al., 2017, 2019a). The
reduced lateral mobility of large-scale structures over heterogeneous bottom walls makes them visible
in the long-time average, while their counterparts over spanwise homogeneous walls do not underly
such constraints and can form at all spanwise positions with the same probability. As a consequence,
contributions of instantaneous rotating motions with opposite sign will cancel out for sufficiently long
averaging time intervals, such that these flows do not reveal a mean secondary motion.

The lateral meandering behaviour that is observed for the flow over both homogeneous and hetero-
geneous bottom walls (Wangsawijaya et al., 2020; Zampiron et al., 2020a) is assumed to be part of a
large-scale self-similar regeneration cycle in analogy to the well-known buffer-layer process (Hamilton
et al., 1995; Jeong et al., 1997; Schoppa and Hussain, 2002), now including however large-scale velocity
streaks and shorter quasi-streamwise large-scale rollers (Kevin et al., 2019b). Note that, in this context,
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large-scale quasi-streamwise rotating motions are typically assumed to be the collective effect of a large
amount of individual globally-organised vortices or vortex clusters, rather than single large-scale vor-
tices that do not exist in such form in a fully-turbulent flow (Del Álamo et al., 2006; Jiménez, 2018). As
in the buffer layer, it is expected that these quasi-streamwise rollers laterally flank a large-scale streak
in a staggered way, such that the streak gets unstable and eventually breaks. Similar mechanisms have
been proposed earlier by Flores and Jiménez (2010) and Hwang and Cossu (2011) for the log-layer re-
gion and by Hwang and Cossu (2010a) for the outer layer large-scale streaks over homogeneous bottom
walls (Cossu and Hwang, 2017).

3.6 Secondary flows and subaqueous sediment ridges

In hydraulic engineering, sediment ridges and secondary currents usually evolve side by side at very
similar lateral wavelengths 1H f -3H f as the ‘optimal’ spacing of the bottom wall heterogeneities dis-
cussed in the previous section, which is in turn comparable to the typical lateral wavelength of the
large-scale streaks in canonical wall-bounded turbulence (Smits et al., 2011).

The existence of secondary currents in hydraulic flows were posited even before the pioneering stud-
ies of Nikuradse and Prandtl on the flow through pipes with non-circular cross-sections, for instance,
by Stearns (1883), Möller (1883) and Gibson (1909). Later, Casey (1935) and Vanoni (1946) observed
straight elongated sediment ridges to evolve on the mobile sediment bed in their experimental flumes
and claimed that these features should be related to secondary currents of Prandtl’s second kind.
Vanoni (1946) argued based on observed lateral oscillations of the sediment concentration in the flume
that the proposed mechanism of interactions between secondary flow cells and the mobile bed could
similarly occur in open ducts with significantly larger aspect ratios than those used in their study, for
instance, in natural rivers. Wolman and Brush (1961) observed ridges to appear unbroken over con-
siderable streamwise distances of O(100H f ) at lateral spacings in a range 1.74-2.36H f and maximum
amplitudes of several diameters D at a relative submergence H f /D ≈ 12-24. On the other hand, much
larger sediment ridges than those in the laboratory flumes were detected in field observations of dried
river beds of wide fluvial channels (Culbertson, 1967; Karcz, 1967), indicating that a similar interaction
of sediment ridges and secondary currents might exist also on a much larger scale. Around the same
time, Kinoshita (1967) took aerial photographies of several Japanese rivers shortly after typhoon events
and visually estimated the size of large-scale secondary currents based on spanwise alternating regions
of strong and weak boiling with a spacing of roughly 2H f on the river surface.

Even though there was a consensus on the mutual interaction of secondary currents and sediment
ridges in these early studies, there was no agreement on the actual origin of the process. Further-
more, it was known from experiments that sediment ridges and their associated secondary flow cells
often covered the entire cross-section of the domain rather than only the region close to lateral domain
boundaries. One attempt to explain the process was that of Nezu and Nakagawa (1984) who imagined
a cascade-like process that has its origin in the secondary flows induced by the sidewalls of their exper-
imental flume: From earlier studies it was known that the bottom wall shear stress in ducts oscillates
laterally with distinct peaks in the near-sidewall region. Nezu and Nakagawa (1984) thus argued that
the near-sidewall peak of the wall-shear stress would give rise to a first ridge-trough pair in the region
closest to the sidewalls due to the locally varying erosion and deposition in consequence of the varying
wall shear stress. As soon as the ridge and trough would have reached a certain height difference, they
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were able to trigger a new secondary current next to them and so on and so furth, so the argument.
In a subsequent study, though, Nezu and Nakagawa (1989) investigated the flow over a mobile sedi-
ment bed in a wide open duct and observed that ridges evolved essentially simultaneously over the
entire span of the duct, which indicated that the formation mechanism could hardly be predominantly
controlled by the lateral sidewalls and their associated secondary currents.

Ikeda (1981) had a different mechanism in mind and conjectured that the appearance of sediment ridges
was an instability problem between an erodible bed and a turbulent shear flow that does not require
the presence of lateral sidewalls. Nezu and Nakagawa (1993) later argued that such an instability could
be due to two conceivable mechanisms: In the first, the instability is initiated by a lateral perturbation
of the bed topography or the bottom roughness, which causes a lateral variation of the bed shear stress
that, in turn, triggers the formation of secondary currents in the turbulent flow. The second conceivable
process acts the other way round in that a spanwise varying flow induces a laterally varying bed shear
stress, which initiates the formation of sediment ridges due to a heterogeneous erosion activity along
the bed.

Colombini (1993) considered the first mechanism and could show based on a linearised model of the
Navier-Stokes equations coupled with the sediment bed continuity equation that a sinusoidal modu-
lation of the sediment bed can indeed trigger a lateral variation of the flow field in form of large-scale
depth-spanning secondary currents. The induced secondary motion, in turn, induces a bed shear stress
that supports a further growth of the bottom perturbation. For the set of investigated parameters, a
most amplified wavelength of λh,z = 1.3H f was obtained, which closely resembles the values in the
previously reported experiments. Here, we forego a deeper discussion of the model details, as those
will be analysed in great detail in chapter 5.

Observations in experiments, on the other hand, suggest that the second formation process initiated by
a lateral variation of the flow in form of large-scale turbulent structures might be more relevant to the
fully-turbulent flow (Onitsuka and Nezu, 2001; Shvidchenko and Pender, 2001; Nezu, 2005; Adrian and
Marusic, 2012), but clear evidence for this claim is still lacking. Historically, the investigation of large-
scale structures with streamwise extensions of O(1H f -10H f ) in hydraulic flows developed parallel to
but more or less independent from the study of coherent structures in the wall-bounded turbulence
community (Adrian and Marusic, 2012). Extensive reviews that discuss such similarities of structures
observed in smooth-wall and hydraulic flows and the possible interactions with sediment can be found
in Adrian and Marusic (2012) or in the more general work of Venditti et al. (2013) on coherence in
geophysical flows, while the review of Nikora and Roy (2012) mainly focusses on their role in the
context of secondary flows in rivers. A special focus on open duct turbulence and the importance of
the observed processes for fluvial systems is given in the classical textbook of Nezu and Nakagawa
(1993) and the more recent review of Nezu (2005).

Coherent large-scale motions that closely resemble those known from smooth-wall turbulence are,
amongst others, the ‘boils of the second kind’ described by Nezu and Nakagawa (1993), the ‘large
longitudinal eddies’ of Imamoto and Ishigaki (1986) or the ‘large vortex structures’ described by Tam-
burrino and Gulliver (1999, 2007), Shvidchenko and Pender (2001) and Rodríguez and García (2008).
All these flow structures reveal very similar properties and appear in form of elongated streaks with a
streamwise extent of several multiples of the mean fluid height H f and a lateral width of about 1-2H f ,
such that, most likely, they describe one and the same phenomenon (Adrian and Marusic, 2012). Also,
immanent to these instantaneous structures seems to be a direct relation to large-scale rotating motions
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Figure 3.6: Conceptual sketch of the interaction between sediment ridges and large-scale turbulent structures in open channel
flows as proposed by Shvidchenko and Pender (2001) (copyright 2001, reprinted with permission of John Wiley
and Sons).

that are regularly described as ‘instantaneous secondary currents’ (Nezu, 2005), in analogy to the mean
secondary currents of Prandtl’s second kind (Nikora and Roy, 2012). Such large-scale instantaneous
rotating motions were reported, for instance, by Nezu and Rodi (1986) and Onitsuka and Nezu (2001) to
occur even in those regions of the flow where no mean secondary flow is visible in the long-time aver-
age (cf. the discussion on large-scale meandering coherent structures in sufficient distance to sidewalls
in the previous sections).

Nezu (2005) claimed a mutual interaction between these instantaneous large-scale flow structures and
evolving sediment ridges, in the context of which the instantaneous large-scale rotations cause a lat-
erally varying erosion of sediment that ultimately leads to the evolution of sediment ridges. Once
developed, these latter are assumed to stabilise the large-scale flow structures by reducing their lateral
mobility and meandering tendency, making them visible also in the long-time average. A more detailed
model was presented by Shvidchenko and Pender (2001), who argued that the large-scale structures
and their associated ejection and sweep events lead to a regular distribution of zones with high and
low particle erosion and transport. The process is illustrated in figure 3.6, where it is seen that erosion
is dominant in regions where ‘macroturbulent structures’ cause laterally varying regions of strong and
weak sediment erosion and sediment transport inside and outside their travelling path, respectively.
Local troughs and ridges form accordingly in the regions of strong and weak erosion, respectively,
while in a streamwise-averaged framework, the laterally organised large-scale structures give rise to a
mean secondary motion in the cross-plane that is visible at the upstream end of the sketched domain
in figure 3.6. The transverse variation of the sediment transport intensity is at least partly related to the
preferential organisation of Reynolds-stress carrying structures, as sediment erosion is predominantly
driven through high-speed sweeps that reach the sediment bed, rather than by the action of ejection
events which could lift particles up in the low-speed regions (Gyr and Schmid, 1997; Cameron et al.,
2020). Bagherimiyab and Lemmin (2018) recently showed that such sweeps, when reaching the sedi-
ment bed in open channel flows, indeed induce a local increase of the bed shear stress that enhances
the local erosion rate.

The global hydraulic and morphologic conditions under which sediment ridges form are not fully clar-
ified, but it is worth to mention that in experimental works, ridges are predominantly observed at low
sediment transport rate (Wolman and Brush, 1961). This generally agrees with the observations of
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Kleinhans et al. (2002), who observed in experiments with moderate to strong sediment-supply limita-
tions that ridges are the dominant - if not the only - developing sediment patterns. Such a situation of
highly constrained sediment availability occurs, for instance, in the case of fine sediment transport over
armoured beds of coarse grains, in which case sediment ridges of the fine material are found to evolve
on top of the non-erodible coarser material (Bertin and Friedrich, 2019; Venditti et al., 2019). Kleinhans
et al. (2002) also postulates that with increasing sediment transport rate, there is a continuous tran-
sition from sediment ridges first to larger three-dimensional sediment patterns such as barchans and
eventually to transverse ripple-like bedforms.

Only recently, DNS studies of sediment transport with fully-resolved particles became feasible that
further strengthen these results. So, Kidanemariam and Uhlmann (2014a, 2017) and Scherer et al.
(2020) studied the evolution of bedforms on an initially flat sediment bed and concluded that ridges
appeared right after the particle release, when only few particles were in motion, while transverse
patterns with a higher amplitude grew at a significantly lower rate until they eventually dominated
the small-amplitude ridges. That already a comparably small amount of mobile sediment grains is
indeed sufficient to interact with a relatively robust secondary flows was already discussed by Vanoni
(1946), and recently Vowinckel et al. (2017b) confirmed this observation. In their DNS-based study of
sediment transport for a relatively low number of fully-resolved particles in motion over a uniformly
roughened bottom wall, secondary flow cells and streamwise aligned ‘chains’ of sediment grains were
clearly detectable.

3.7 Knowledge gaps

In the preceding sections, we have reviewed the relevant literature that contains valuable informa-
tion for our investigations on the interplay between sediment ridges, secondary currents and turbulent
coherent structures. Specific care has been taken to clearly differentiate in each field between the es-
tablished classical view and the current state of the art. It has become evident that coherent structures
play an important role in the energy and momentum transfer of wall-bounded turbulent flows. Most
of today’s knowledge on coherent structures originates from rather simple flow configurations such
as smooth-wall channels for which fully-resolved direct numerical simulations and high-quality mea-
surements are available. Turbulence in many hydraulic flows such as rivers or estuaries is significantly
more complex, for instance, due to the continuous interaction with a mobile sediment bed that gives
rise to different types of sediment bedforms.

It has been highlighted that some conceptual ideas exist of how coherent structures and mean sec-
ondary currents could take part in the formation cycle that leads to the evolution of streamwise-aligned
sediment ridges. But to the best of the author’s knowledge, clear evidence for the outlined mechanisms
is still lacking. In particular, it has been discussed that different contradicting ideas exist on whether
the development of sediment ridges and the associated secondary currents are controlled from the
sediment bed, triggered by an initial perturbation of the latter or whether the sediment bed evolution
is initiated and dominated by the dynamics of the turbulent flow.

Also, a clear understanding of how sediment ridges interact with a ‘pre-existing’ sidewall-induced sec-
ondary flow field as it occurs in rectangular open ducts such as man-made canals or even laboratory
flumes lacks up to the present day. In virtue of the challenging measurements necessary to study both
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secondary motion and sediment transport at the same time, often such investigations have been per-
formed with fixed artificial sediment ridges, which did not allow clear conclusions about the formation
of sediment ridges in the vicinity of such sidewalls (Nezu and Nakagawa, 1984). However, both from a
practical and from a scientific point of view, the impact of sidewalls on the formation of sediment ridges
and the converse influence of a mobile sediment bed on the typical secondary flow patterns in such
open ducts is of significant relevance. In particular, it is crucial to assess to which degree experimen-
tal measurements conducted in narrow to moderately wide ducts are comparable with simulations in
infinitely wide or laterally periodic channels.

In both cases, a profound understanding of the interaction between turbulent coherent structures and
sediment ridges is of fundamental importance. As was stated above, however, rigorous analyses of the
analogy between such structures in canonical wall-bounded flows and their counterparts in hydraulic
free-surface flows over mobile sediment beds have just started (Adrian and Marusic, 2012). One of the
central objectives of this study therefore is to discuss the role and characteristics of turbulent coherent
structures in both situations and to highlight their fundamental similarities. In this context, we will
greatly benefit from our today’s knowledge about the dynamics of coherent structures in the simpler
canonical flows when interpreting the role of such structures in sediment transport.
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Chapter 4

Numerical methodology

4.1 Direct numerical simulations

In the previous chapter, we have established a picture of turbulence as a chaotic, but deterministic
multi-scale dynamical system that is appropriately described by the non-linear Navier-Stokes equa-
tions. The multi-scale character manifests itself in form of a range of flow scales between the largest
flow structures that are limited by the characteristic length scale of the domain and the smallest ones
that are of the order of the Kolmogorov length. As stated earlier, the range of scales naturally increases
with the Reynolds number and the number of degrees of freedom is typically estimated as ∼ Re9/4

(Landau and Lifshitz, 1959).

Needless to say, the direct numerical simulation (DNS) of a turbulent flow at Reynolds numbers of con-
siderable size that resolves all scales from the smallest dissipative to the largest energetic one is there-
fore a costly undertaking from a computational point of view. The pioneers that established the method
in the second half of the past century (Orszag, 1971a; Kim et al., 1987) were accordingly bounded in the
achievable Reynolds numbers by the available computing power at that time. But even today, several
decades and a tremendous growth of computing speed later, accurate fully-resolving direct numeri-
cal simulations of many natural and technical flows are still beyond what is computationally feasible.
Examples for such situations include the simulation of hydraulic flows over entire sections of rivers or
simulations in the atmospheric boundary layer that are performed in the context of weather forecasting
and climate prediction. In both examples, the intrinsic Reynolds number of the flow and the immense
scale of the domain make it even nowadays impossible to resolve all scales at reasonable computational
expenses.

This is where modelling comes into play. In this context, the fundamental difference in terminology
between simulation and modelling should be underlined: Turbulence simulation denotes the accurate
numerical treatment of the Navier-Stokes equations in their original form, where deviations compared
to the continuous analytical form arise solely in form of numerical errors due to the discretisation of
the problem. Modelling turbulence, on the other hand, means to not resolve specific dynamics of tur-
bulence and to account for the ‘ignored’ by empirical relations (Pope, 2000). Classically, simulations
that do not resolve all scales of turbulence are broadly classified into two families, that are, large-eddy
simulations (LES) and Reynolds-averaged Navier-Stokes (RANS) models. As the names suggest, the
former approach resolves, i.e. simulates, all flow scales larger than a given filter width and so describes
the dynamics of a low-pass filtered turbulent field, whereas the dynamics of all scales smaller than this
low-pass filter width are modelled. RANS models follow a different approach: Instead of the actual
Navier-Stokes equations, these kind of models solve the RANS equations (3.4) and thus describe the
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dynamics of the mean velocity and pressure field only. As indicated in the previous chapter, these
equations are not closed in that they contain the unknown Reynolds stress tensor and so every RANS
model has to provide an appropriate modelling approach for this term. A wide range from very sim-
ple to highly complex turbulence closures has been developed during the past decades for different
applications and flow configurations, a detailed overview of which is given in the textbook of Pope
(2000).

In the current work, we are interested in the fundamental physical interactions between individual tur-
bulent coherent structures of different scale and size and sediment particles that eventually lead to the
development of sediment bedforms. We therefore forego any modelling of turbulence and exclusively
analyse data obtained by means of direct numerical simulations in order to study these processes ‘from
first principles’, avoiding any influence of sub-grid models or turbulence closures.

4.2 Multiphase simulations

The interaction of turbulent eddies with a dispersed particulate phase crucially depends, among others,
on the ratio between the characteristic size of the flow structures and that of the particles (Balachandar
and Eaton, 2010). In the context of the previous chapter, it was discussed that the smallest dissipative
length scale in a turbulent flow is of the order of the Kolmogorov length η f , whereby follows that
particles whose characteristic length scale D is much smaller than η f can hardly affect the structure of
turbulence, assuming that the particle Reynolds number based on D and the relative particle velocity is
similarly small. Is the characteristic size of the particles on the other hand comparable to or larger than
η f and the particle Reynolds number of considerable size, the presence of a solid obstacle locally alters
the flow and possibly leads to the evolution of a particle wake (Clift et al., 1978). In wall-bounded
turbulent flows, the characteristic length scale of the near-wall fluid motion is δν = ν f /uτ. In such
flows, the influence of individual particles on the turbulent structures can thus be assumed to be weak
if the particle Reynolds number defined as D+ = D/δν is sufficiently small.

Numerical methods for the simulation of particulate flows can be correspondingly classified into two
families, those which fully resolve the particle geometry and the flow around each individual particle
and those which do not. The first class of schemes is naturally suitable for particles whose size is not
negligible compared to the characteristic flow scales, while the other family which includes Eulerian-
Eulerian and point-particle approaches is typically applied for particles clearly smaller than η f (Bal-
achandar and Eaton, 2010; Maxey, 2017). In the context of direct numerical simulations of the turbulent
carrying phase, Balachandar and Eaton (2010) propose a critical ratio of D/η f ∼ O(0.1) above which
fully-resolved methods are typically chosen. Nonetheless, point-particle approaches in which the indi-
vidual particles are represented as point masses are also popular for the simulation of larger particles
under appropriate extensions of the governing equations (Maxey and Riley, 1983), mainly due to their
simpler implementation and their much lower computational cost compared to fully-resolved meth-
ods.
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While individual particles of considerable size influence the turbulent flow locally by creation of a
particle wake possibly including vortex shedding, the question whether or not the presence of mobile
particles affect the turbulent flow as a whole strongly depends on the the global solid volume fraction

φs =
1

VΩ

Np

∑
i=1

Vp
(i) =

VΩp

VΩ

, (4.1)

whereVΩ is the volume of the domain Ω ⊂ Rd, Np denotes the number of particles contained in the sys-
tem under consideration and Vp

(i) is the volume of the ith particle. At very low values of φs . O(10−6)

(Elghobashi, 1994), few particles are distributed over the domain Ω such that their cumulated volume
VΩp

is small compared to that occupied by the carrying phase VΩ f
. Under such circumstances, the

interaction between particles and the surrounding fluid is often simplified as ‘one-way coupled’, that
is, the fluid influences the dynamics of the individual particles via hydrodynamic forces and torque
that act on the particles’ surfaces, whereas the reversed momentum transfer from particles to the tur-
bulent flow field is neglected. For higher values of the solid volume fraction O(10−6) . φs . O(10−3)

(Elghobashi, 1994), this simplified point of view is no longer justified as the impact of the particulate
phase on the flow cannot be neglected any more. In such situations, the system is considered to be
‘two-way coupled’, i.e. the feedback of the particle motion on the fluid phase has to be taken into ac-
count in numerical simulations. Some authors further classify numerical techniques that deal with
dense particulate systems at even higher solid volume fractions O(10−3) . φs as ‘four-way coupled’ if
they additionally take care of the momentum exchange during particle-particle contacts or collisions
(Crowe et al., 1996).

Bedload-dominated sediment transport in a turbulent carrying fluid that will be considered in the
remainder of this work is in this sense a particularly formidable challenge, as it represents a dense
particulate system with both frequent particle contacts and particle diameters typically larger than
the smallest length scales of the flow. A numerical approach that reduces modelling to an absolute
minimum thus needs to fully resolve the flow around individual particles, while it also has to accurately
describe particle-fluid and particle-particle interactions in a four-way coupled way.

4.2.1 Immersed boundary method

Two main classes of simulation techniques that are capable to resolve the geometry of individual rigid
obstacles and the flow around them have been developed in the past decades. The most accurate, but
also computationally most expensive way to treat such problems is to choose a spatial discretisation
scheme that adapts to the particles’ surface curvatures such as body-fitted meshes in the context of,
for instance, spectral element simulations (Ghidersa and Dušek, 2000; Jenny and Dušek, 2004) or finite
element simulations based on arbitrary Lagrangian Eulerian formulations (cf. Maxey, 2017, and refer-
ences therein). While the former technique is particularly useful for systems with stationary particles,
the latter allows at least simulations including between a few hundred and a few thousand mobile par-
ticles (Maxey, 2017). On the other hand, methods that rely on a body-fitted discretisation scheme are
limited in case of dense particulate systems with a large number of individual mobile particles, since
they require continuous adaptions of the numerical mesh at each time step to take care of the changing
fluid domain Ω f . In the context of sediment transport simulations, this would lead to unacceptably
high simulation times and costs (Wachs, 2019).
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A popular alternative to the accurate representation of the particles’ surfaces by body-fitted meshes are
so-called ‘fictitious domain methods’. In this approach, the Navier-Stokes equations are solved numer-
ically on a regular grid in the entire simulation domain Ω comprising the carrying and the dispersed
phase. Appropriate forcing terms added to the momentum equations ensure that the no-slip condition
at the interface between solid and fluid phase is fulfilled and that the fluid motion inside the particle
domain Ωp is that of a rigid body (Maxey, 2017). A variety of different approaches exist that differ in
the way the force field is formulated, in the spatial locations at which it acts and in the spatial discreti-
sation schemes used to solve the governing equations. In the following we focus predominantly on the
class of ‘direct forcing immersed boundary methods (IBM)’ to which the here adopted numerical tech-
nique belongs. Alternative remarkable concepts include, for instance, the finite-element distributed
Lagrange-multiplier method introduced by Glowinski et al. (1999), wherein the Lagrange-multiplier
in the Lagrangian function of the optimisation problem takes the role of the body force.

The original immersed boundary formulation dates back to the work of Peskin (1972) who conceived
the method to describe haemodynamic flows in the human heart (Peskin, 2002). The basic concept of
the technique is to apply a suitable singular force field at a finite set of N discrete Lagrangian force
points Xm (1 ≤ m ≤ N) along the phase boundary. In the original formulation of Peskin (1972), the
immersed structure is a flexible valve of the heart and so the forcing points advect with the fluid ve-
locity. This leads to internal stresses in the flexible material, which in turn cause a feed-back force on
the surrounding fluid. In theory, the method can be directly extended to rigid bodies by modelling
the specific material properties with a spring-like coupling of nearby forcing points at high stiffness,
which however leads to the introduction of additional model-dependent parameters and other unde-
sirable numerical effects (Uhlmann, 2005). Therefore, a direct forcing approach is nowadays preferred
in which the appropriate forcing required to obtain the desired velocity at the phase boundary is di-
rectly applied at the discrete Lagrangian force points Xm (Mohd-Yusof, 1997; Fadlun et al., 2000), thus
avoiding the feed-back mechanism. Ever since its original formulation, a multitude of different vari-
ants of the IBM have been proposed (cf., for instance, the review by Mittal and Iaccarino, 2005), which
differ, amongst others, in the way the desired force is determined (Wachs, 2019).

The immersed boundary technique used in the present work was proposed by Uhlmann (2005) specif-
ically for the use in direct numerical simulations of systems that accommodate a large number of in-
dividual immersed particles. In the algorithm outlined by Uhlmann (2005), first a preliminary Eu-
lerian velocity field is determined by solving the governing equations without considering the im-
mersed boundary force. The obtained velocity information is subsequently transferred to the discrete
Lagrangian marker points that are equally distributed over the phase boundary, such that their current
positions do, in general, not coincide with those of the Eulerian velocity grid. The desired forcing term
is then determined as the force required to enforce the no-slip condition at each Lagrangian marker
point Xm, that is, the velocities of both phases have to identically match at each of these discrete loca-
tions (cf. equations (2.16) in section 2.2). In a final step, the obtained forces are spread back from the
Lagrangian marker points to the surrounding nodes of the Eulerian fluid grid. In analogy to the origi-
nal method of Peskin (1972), Uhlmann (2005) uses a set of regularised Dirac delta functions as kernels
in the transfer functions that communicate velocity and force information between the Eulerian fluid
grid nodes and the Lagrangian force points Xm. The support of these discretised distributions typi-
cally includes three or four grid nodes of the fluid grid (Peskin, 2002). An important advantage of this
procedure is that the immersed boundary force and torque are enforced exactly at the particle surface,
such that the hydrodynamic force and torque are straightforward obtained from the individual force
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contributions at the Lagrangian marker points (Wachs, 2019), which we will make use of later in this
work.

The immersed boundary formulation is implemented in the context of a standard fractional step
method, in which the Navier-Stokes equations are first solved disregarding the divergence-free con-
straint in form of the continuity equation. In a second step, the preliminary velocity field is subse-
quently projected onto the space of solenoidal velocity fields. The governing equations are evaluated
on a uniformly-spaced staggered finite difference grid with grid width ∆x = ∆y = ∆z using second
order accurate approximations of the spatial derivatives. Time integration is performed in a mixed
explicit-implicit framework that consists of a three-step low-storage Runge-Kutta scheme for the non-
linear convective terms and a Crank-Nicholson scheme for the viscous terms (Verzicco and Orlandi,
1996). A constant discrete time step ∆t is chosen small enough to ensure that the non-dimensional time
step is with (∆t max

x
(u f ))/∆x . 0.6 clearly below the Courant-Friedrichs-Lewy limit (Courant et al.,

1928). In the past, the numerical method has proven its accuracy and versatility in a number of physical
problems for the simulation of single spherical (Uhlmann and Dušek, 2014) and non-spherical particles
(Moriche et al., 2021) as well as for large numbers of particles from the rather dilute (Uhlmann and
Doychev, 2014; Uhlmann and Chouippe, 2017) to the very dense regime (Kidanemariam and Uhlmann,
2017; Scherer et al., 2022), including partly up to O(106) individual particles.

4.2.2 Particle dynamics and contact modelling

The particle dynamics are determined by integration of the discretised Newton-Euler equations (2.17)
and (2.18) forward in time. The hydrodynamic force and torque therein are directly obtained from the
immersed boundary method, while the terms related to contact forces and torque are still unclosed.

In order to quantify the exchange of linear and angular momentum during particle-particle and particle-
wall collisions, the immersed boundary technique is coupled with a discrete or distinct element model
(DEM) first introduced by Cundall and Strack (1979). Models of this kind are typically used to describe
the motion of large numbers of particles as well as their mutual interaction during contact sequences.
How exactly the contact phase is treated numerically depends on the specific model, but all DEMs can
be generally divided into hard- and soft-sphere approaches. Hard-sphere models describe the momen-
tum exchange during binary contact events, where it is assumed that the two particles in contact are
perfectly rigid such that these models do not allow for any deformation of the two contact partners. The
contact phase itself is not resolved in time in hard-sphere models, instead a number of time-integral
impulse-momentum equations are considered. With the help of the coefficient of restitution and the
coefficient of Coulomb friction which can be determined experimentally, the post-collision velocities
and the ‘impulsive force’, i.e. the contact force integrated over the contact phase, can be determined.
A detailed overview of the method can be found in Crowe et al. (1998).

While relatively straightforward to implement and less expensive in terms of computing time, the main
disadvantage of hard-sphere models clearly is that they are, by definition, unable to resolve the exact
particle behaviour during the contact phase in its temporal evolution. Soft-sphere models, on the other
hand, are capable to describe the dynamics of all collision partners during the entire contact phase by
solving the full Newton-Euler equations for each of them. The unknown contact forces are modelled
in analogy to classical mechanical model systems such as springs and dampers. Particles are allowed
to slightly overlap each other (Cundall and Strack, 1979), thereby inducing repulsive forces that are

45



Chapter 4 Numerical methodology

proportional to the overlap length and that eventually lead to the separation of the collision partners.
The strength of the repulsive force and the post-collision velocities are controlled by the parameters
of the analogous mechanical model system (Kidanemariam, 2016), including spring stiffnesses and
damping parameters.

The numerical method used in this work follows the soft-sphere approach applying a model that was
proposed, implemented and validated by Kidanemariam and Uhlmann (2014b) and Kidanemariam
(2016). In the following, we will review the main elements of the model, while the interested reader
is referred to the original works for a more comprehensive overview of the method’s details. In the
current approach, the total collision force acting on the ith particle at time t due to contacts with its
nearby particles

FC(i)
(t) =

Np

∑
j=1
j 6=i

(
Fel(i,j)(t) + Fd(i,j)(t) + Ft(i,j)(t)

)
I
(i,j)
c (t) (4.2)

comprises three different force contributions, including a normal elastic force Fel(i,j), a normal damping

force Fd(i,j) and a tangential force Ft(i,j), respectively. The superscript •(i,j) indicates that the force
emanates from the contact between the ith and jth particle. The information whether two particles i

and j are in contact is contained in the contact identifier function I
(i,j)
c (t), which attains a value of unity

if particles i and j are in contact and zero if not. Two particles are considered as being in contact if the
minimal Euclidean distance between their surfaces ∆S falls below a given force range ∆c. Only then,
particles ‘feel’ the contact with the neighbouring obstacle in form of a non-zero finite collision force

FC(i)
.

For the following definitions, we introduce a unit normal vector e
(i,j)
n (t) that points along the line con-

necting the centre of gravity of the ith particle with that of the jth particle. The relative velocity U
(i,j)
r (t)

between both particles can be thus decomposed into one component along this line and one tangential
to it, viz.

U
(i,j)
r (t) = U

(i,j)
r,n (t) + U

(i,j)
r,t (t), (4.3)

where e
(i,j)
t (t) = U

(i,j)
r,t (t)/|U(i,j)

r,t (t)| uniquely defines an associated tangential normal vector for non-

zero values of U
(i,j)
r,t (t). The individual force components are then modelled in analogy to the classical

mass-spring-damper system as

Fel(i,j)(t) = −knδ
(i,j)
c (t)e

(i,j)
n (t), (4.4a)

Fd(i,j)(t) = −cnU
(i,j)
r,n (t), (4.4b)

Fn(i,j)(t) = Fel(i,j)(t) + Fd(i,j)(t), (4.4c)

Ft(i,j)(t) =




−
[
min

(
µc|Fn(i,j)(t)|, ct|U(i,j)

r,t (t)|
)]

e
(i,j)
t (t) if |U(i,j)

r,t (t)| 6= 0

0 else
(4.4d)

where Fn(i,j)(t) is the total normal contact force and a penetration length has been introduced as

δ
(i,j)
c (t) =

1

2

(
D(i) + D(j)

)
− |X(j)

p (t)− X
(i)
p (t)|+ ∆c. (4.5)
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Therein, X
(i)
p and D(i) are the centre of gravity and diameter of the ith particle, kn is the normal stiffness

coefficient and cn and ct are the normal and tangential friction coefficients, respectively. For the tangen-
tial component, it is seen in equation (4.4) that the force amplitude is limited by the Coulomb traction
limit, with µc being the Coulomb friction coefficient. Since the tangential force acts in an off-centric
way on the particles, it creates an additional torque on the latter as

TC(i)
(t) =

D(i)

2

Np

∑
j=1
j 6=i

e
(i,j)
n (t)× Ft(i,j)(t) I

(i,j)
c (t). (4.6)

The entire model thus features a set of five free parameters (kn, cn, ct, µc, ∆c) that have to be specified.
Following Crowe et al. (1998), a functional relationship between kn and cn can be derived by introduc-
tion of the dry restitution coefficient εd that represents the ratio between the relative normal velocity
Ur,n in the post- and in the pre-collision phase. The dry restitution coefficient εd can thus be used to
eliminate the normal friction coefficient from the set of unknown parameters. Further choosing the
tangential friction coefficient ct to be identical to its normal counterpart cn, the yet to choose model
parameters reduce to (kn, εd, µc, ∆c).

This alternative set of free model parameters is advantageous in that εd and µc are material prop-
erties and can be obtained from accurate experiments. In practice, the Coulomb friction coefficient
was set to a typical range µc = 0.4-0.5, while the normal stiffness coefficient was varied in a range
kn = 17 000-40 000 times the submerged weight of a single particle divided by the particle diameter D.
The latter parameter was adapted in such a way that the particle overlap was limited to a few percent
of the force range ∆c. The dry restitution coefficient was set to εd = 0.3 in most cases, except for the
high Reynolds number open channel cases CS850 and CM850H3 where a higher value of εd = 0.9 was
adopted. The latter value is comparable to that measured for the contact of a glass sphere with a thick
smooth glass wall, εd = 0.97 (Gondret et al., 2002), while the former is somewhat smaller and thus
implies a stronger damping of the velocities during the contact.

Note that a parameter sensitivity study performed in the course of Scherer et al. (2020) underlines
that a variation of εd in this range has a rather negligible effect on the development of the subaqueous
bedforms in the here considered bedload-dominated physical systems. In the latter study, also the sen-
sitivity of the model to some of the remaining parameters such as the force range which is chosen here
equal to the width of the finite difference grid was scrutinised for the case of sediment bedform evolu-
tion, while a detailed validation for the case of a single sphere colliding with a solid wall is provided
in Kidanemariam (2016).

Finally, it might be worth mentioning that the characteristic time scale of the here considered collision
events is typically clearly smaller than the characteristic time scale of the turbulent dynamics, such that
for an accurate temporal resolution of the collision phase the Newton-Euler equations are integrated
in the framework of a sub-stepping algorithm. That is, within each time-step ∆t of the fluid solver, a
number of Nt,sub time integration steps of the Newton-Euler equations are performed while the flow
field is frozen in its latest state. As was approximated by Kidanemariam (2016), the typically chosen
number of Nt,sub = O(100) particle sub-steps is more than enough to capture all relevant phases of the
collision event.
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Chapter 4 Numerical methodology

4.3 Single-phase simulations

Single-phase reference simulations in open channel and duct flows have been performed using two
different high-order pseudo-spectral in-house codes whose main concepts will be briefly presented in
the following.

4.3.1 Open channel flow

The numerical technique applied to perform simulations of single-phase open channel flow follows
the pseudo-spectral method first presented by Kim et al. (1987) for the simulation of turbulent closed
channel flow. Here and in the following section, a Cartesian basis is adopted with unit normal basis
vectors pointing in the streamwise (ex), wall-normal (ey) and spanwise directions (ez), respectively.

The current implementation with appropriate free-slip boundary conditions at the top of the domain
was recently used to investigate turbulent single-phase open channel flows in Bauer (2015) and Bauer
et al. (2022), respectively. Here we briefly present the main concept of the methodology, while the
interested reader is referred to the latter works as well as the original study of Kim et al. (1987) for
the numerical details. The original Navier-Stokes system is transformed into a fourth-order transport
equation for the wall-normal velocity v f and a second-order one for the wall-normal vorticity ω f ,y

alongside the continuity equation, viz.

∂

∂t
∇2v f = hv +

1

Reτ
∇4v f , (4.7a)

∂

∂t
ω f ,y = hω +

1

Reτ
∇2ω f ,y, (4.7b)

0 =

(
∂u f

∂x
+

∂w f

∂z

)
+

∂v f

∂y
. (4.7c)

The transformation into the v f -ω f ,y-system (4.7) leads to an elimination of the pressure term in the
governing equations, whose right hand side now features merely viscous and convective terms, viz.

hv = − ∂

∂y

(
∂H1

∂x
+

∂H3

∂z

)
+

(
∂2

∂x2
+

∂2

∂z2

)
H2, (4.8a)

hω =
∂H1

∂z
− ∂H3

∂x
, (4.8b)

Hi = −uj
∂ui

∂xj
. (4.8c)

All variables are thereafter expanded in terms of truncated Fourier series in the two wall-parallel direc-
tions and Chebyshev polynomials in the wall-normal direction, respectively. In the framework of the
Fourier expansion, Nx and Nz points are equally distributed in the streamwise and spanwise direction,
respectively, whereas in the wall-normal direction the governing equations are enforced in the context
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of a Chebyshev collocation method at a set of non-uniformly spaced Gauss-Lobatto points (cf. sec-
tion 5.2 for the definition). The method is pseudo-spectral in that the non-linear terms are evaluated
in physical space, while the viscous terms are treated numerically in Fourier space. Back and forth
transformation between physical and Fourier space along the two homogeneous wall-parallel direc-
tions can be efficiently performed via fast Fourier transformations, in which it is taken care of aliasing
errors following the 2/3-rule of Orszag (1971b) (cf. also Uhlmann, 2000; Canuto et al., 2006). Time
integration of the governing equations is performed using an implicit Euler scheme for the viscous
terms, while a third order low-storage Runge-Kutta scheme is adopted to treat the advective terms.
As in the finite difference case, the flow is driven by a time-dependent pressure gradient that ensures
a constant mass flow rate throughout the simulation. Free-slip and no-slip boundary conditions are
directly implemented in the discretised system (Chebyshev tau-method), rather than by modification
of the Chebyshev basis functions.

4.3.2 Open duct flow

The numerical technique considered to perform simulations of open duct flow is, in its basic idea, sim-
ilar to that used for open channel flow simulations, but the exact numerical treatment of the governing
equations is fairly different. The implementation presented in the remainder of this section was first
used in Uhlmann et al. (2007) and has been outlined and validated by Pinelli et al. (2010), both for
closed duct flows. Later, the solver was adapted to the time integration of free-surface open duct flows
in the context of Sakai (2016), wherein the numerical details of the method are explained in a much
more comprehensive way than in the current work.

The necessity of a different computational method arises from the non-periodicity of the spanwise di-
rection in the presence of lateral sidewalls which do not admit the application of Fourier methods in
this direction. Instead, the flow is therefore expanded in terms of Chebyshev polynomials in both cross-
stream directions, discretised in form of Gauss-Lobatto points which naturally provide a refinement of
the resulting grid near the domain boundaries. Note that all computations are conducted on the stan-
dard cross-sectional square [−1, 1]× [−1, 1], for which purpose the distributed collocation points are
projected and scaled from their actual positions to this area in case of non-square duct cross-sections.

Time integration is again performed in a semi-implicit way, with a Crank-Nicholson scheme applied
to the linear viscous terms and an explicit three-step low-storage Runge–Kutta method for the non-
linear convective terms. In contrast to the numerical method used for open channel flows, however,
the primitive-variable formulation in form of the Navier-Stokes equations is considered, rather than a
velocity-vorticity formulation. The discretised equations are therefore solved in the framework of an
incremental-pressure projection method which splits the governing equations into two fractional steps,
identical to the fractional step method used in the finite-difference IBM discussed above. The splitting
leads to a Helmholtz equation for the provisional, non-solenoidal velocity field and a Poisson problem
for the pseudo-pressure, both of which are solved for each streamwise wavenumber separately using
a fast-diagonalisation technique (Haldenwang et al., 1984; Sekimoto, 2011). As in the open channel
case, the numerical method follows a pseudo-spectral approach: The fast-diagonalisation procedure
for the Helmholtz and the Poisson equation is executed for each wavenumber separately after having
transformed the governing equations to Fourier space along the x-direction, while the non-linear terms
therein are evaluated in physical space. Again, transformations of the expanded quantities between
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physical and Fourier space are executed by using fast Fourier methods, following the de-aliasing 2/3-
rule in the homogeneous streamwise direction. Finally, also here a constant mass flow rate is ensured
by imposing a time-dependent pressure gradient to the zero streamwise Fourier mode at each time
step (Pinelli et al., 2010; Sakai, 2016).

50



Chapter 5

Linear instability of a turbulent flow
over initial sediment ridges

According to Nezu and Nakagawa (1993), two basic mechanisms of how sediment ridges and sec-
ondary currents can evolve in a natural river are conceivable. In the first, an initial deformation of the
sediment bed generates a laterally varying bed shear stress, which in turn gives rise to the necessary
turbulence anisotropy that results in the development of depth-spanning mean secondary currents.
In the second mechanism, vice versa, intermittent rotating motions are part of the flow field and in-
duce a laterally varying bed shear stress and erosion rate along the bed that ultimately lead to the rise
of sediment ridges. The first mechanism was investigated theoretically by means of a linear stability
analysis in the work of Colombini (1993), wherein it was shown that a turbulent base flow profile can
be lastingly perturbed by a sinusoidal modulation of the lower domain boundary, inducing large-scale
secondary currents if the wavenumber is in the appropriate range.

The goal of the following chapter is to analyse the original model formulation of Colombini (1993),
focussing predominantly on how the most-amplified wavenumber is chosen by the linearised system
and which role the bed deformation plays in this process. We are striving to show that the key contri-
bution comes in this context from the linearised Navier-Stokes operator, while the sediment bed acts
as a stationary outer forcing required to maintain the lateral perturbation of the flow and thus the
secondary flow.

To this end, we will derive the linearised equations following the approach presented in Colombini
(1993) and discuss the different assumptions that are necessary to arrive at the linearised model. Sub-
sequently, we will give a brief overview of the numerical implementation in terms of a Chebyshev
collocation method that is considered to solve the linear algebraic system arising from the discretised
equations. This is followed by a discussion of the model results in the context of recent investigations
on secondary currents induced by laterally inhomogeneous bottom walls. In the final section, the orig-
inal model is modified to describe the flow in a smooth flat open channel at finite Reynolds number, in
which the lateral perturbation is alternatively maintained by an external force field. It will be shown
that essentially the same wavenumber as in the original model is amplified for very different forcing
schemes, underlining that the most unstable wavelength is effectively chosen by the linearised Navier-
Stokes operator rather than by the sediment bed itself. Similarities and differences with recent works
on transient growth and the externally-forced Orr-Sommerfeld problem are eventually discussed.
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Figure 5.1: Sketch of the idealised physical system considered in the linear stability analysis. The contour of the sediment bed
B is shown as orange line, the location of the free surface B+ H is indicated as blue solid line (with H denoting the
local fluid depth) and g refers to the gravitational acceleration. λ and α are the lateral wavelength and wavenumber
of the sinusoidal bed undulation. The sketch is created in analogy to figure 1 in Colombini (1993).

5.1 Mathematical formulation

5.1.1 Governing equations

We consider the flow of an incompressible fluid in a straight and infinitely wide open channel, bounded
on the bottom by a deformable sediment bed and at the top by a deformable free surface. In the remain-
der of this chapter, all quantities are expressed w.r.t. a Cartesian basis, with the associated coordinate
system placed at the bottom of the domain such that the three unit normal vectors ex, ey and ez point
in the streamwise, wall-normal and spanwise directions, respectively. An arbitrary position vector
can then be decomposed as x̄ = (x̄, ȳ, z̄)T. Note that •̄ here denotes dimensional quantities, while
quantities without bars are non-dimensionalised using the characteristic scales that will be outlined
below. The flow is driven by the gravitational field in form of the gravitational acceleration vector ḡ

with g = |ḡ|, since the mean flow direction of the channel ex is tilted at a constant angle γ w.r.t. the
horizontal reference plane. The streamwise slope of the channel, Sb, is assumed to be small in size such
that the approximations sin(γ) ≈ tan(γ) = Sb and cos(γ) ≈ 1 are justified. In the adopted frame of
reference, we denote the location of the lower domain boundary as B(x̄, z̄, t) and the local fluid height
as H(x̄, z̄, t), such that the location of the free surface is B + H. The physical system and the orientation
of the coordinate axes are sketched in figure 5.1.

In the following, the Reynolds-averaged Navier-Stokes equations (3.4) as well as the continuity equa-
tion are considered to describe mass and momentum balances in the system, subject to the additional
assumption that all averaged quantities are effectively independent of the homogeneous streamwise
direction, i.e. ∂(〈 〉)∂x̄ = 0. Further neglecting the effect of the viscous terms in equations (3.4), the
reduced set of equations reads

∂〈ū f 〉
∂t̄

+ 〈v̄ f 〉
∂〈ū f 〉

∂ȳ
+ 〈w̄ f 〉

∂〈ū f 〉
∂z̄

=




ḡSb

−ḡ

0


− 1

ρ̄ f




0

∂ȳ〈 p̄ f 〉
∂z̄〈 p̄ f 〉


+ ∇̄ · τ̄

∂〈v̄ f 〉
∂ȳ

+
∂〈w̄ f 〉

∂z̄
= 0,

(5.1)
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where we have introduced the Reynolds stress tensor τ̄ = 〈ū′
f ⊗ ū′

f 〉 or, in index notation, τ̄ij = 〈ū′
f iū

′
f j〉.

To bring the governing equations (5.1) in a non-dimensional form, we introduce an equivalent set of
quantities normalised by the fluid density ρ̄ f , the bulk velocity Ūb,0 and the mean fluid height H̄0 in
the base flow (cf. equation (5.14) below), viz.

x = (x, y, z)T = x̄/H̄0, t = t̄/(H̄0/Ūb,0),

U = (U, V, W)T = 〈ū f 〉/Ūb,0,

P = p̄ f /(ρ̄ f Ū
2
b,0), τ = τ̄/(ρ̄ f Ū

2
b,0).

B = B̄/H̄0, H = H̄/H̄0.

In order to keep notation short, we have omitted averaging brackets and the subindices relating to
the fluid phase for the non-dimensional quantities and we will continue to do so in the remainder of
this chapter. Substituting the non-dimensional quantities into the RANS-equations (5.1), we obtain the
non-dimensionalised equations as

∂U

∂t
+ V

∂U

∂y
+ W

∂U

∂z
=

Sb

Fr2
+

∂τxy

∂y
+

∂τxz

∂z
(5.2a)

∂V

∂t
+ V

∂V

∂y
+ W

∂V

∂z
= −∂P

∂y
+

∂τyy

∂y
+

∂τyz

∂z
(5.2b)

∂W

∂t
+ V

∂W

∂y
+ W

∂W

∂z
= −∂P

∂z
+

∂τyz

∂y
+

∂τzz

∂z
(5.2c)

∂V

∂y
+

∂W

∂z
= 0. (5.2d)

Note that by neglecting the viscous terms, we implicitly assume that the system is in the limit Re → ∞

such that the non-dimensional system (5.2) features, apart from the amplitude of the streamwise slope
Sb that indicates the strength of the driving force, only a single non-dimensional control parameter in
form of the Froude number Fr = Ūb,0/

√
ḡH̄0.

The governing equations of fluid motion are coupled with the sediment bed continuity equation (Exner,
1925; Seminara, 2010) that captures the time evolution of the sediment bed in dependence of the particle
flow rate. In dimensional form assuming again independence of the streamwise coordinate x̄, the
sediment bed continuity equation reads

∂B̄

∂t̄
= − 1

1 − pbed

∂Q̄

∂z̄
, (5.3)

where pbed and Q̄ denote the porosity of the sediment bed and the sediment flow rate in the spanwise
direction, respectively. With the same reference scales as above, equation (5.3) can be rewritten in
non-dimensional form as

∂B

∂t
= −Qre f

∂Q

∂z
= −

√
(s − 1)ḡD̄D̄

(1 − pbed) H̄0Ūb,0

∂Q

∂z
(5.4)

where D̄ and s = ρ̄p/ρ̄ f are the sediment diameter and the density ratio, respectively. As outlined by
Colombini (1993), the newly introduced non-dimensional variable Qre f basically represents the ratio
between the inertial particle flux scale q̄i = ūgD̄ and the mean fluid mass flow rate q̄ f = H̄0Ūb,0, with
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the gravitational velocity ūg =
√
(s − 1)ḡD̄. In Colombini (1993), Qre f is used to derive a new time scale

for the bed evolution, viz. T = Qre f t. Assuming that Qre f ≪ 1, it follows that the sediment bed evolves
at a much slower time scale than the fluid. In other words, the flow adapts quasi-instantaneously to
a change of the sediment bed and, vice versa, the sediment bed ‘sees’ a quasi-steady flow. Indeed,
for the simulation data we are going to present in the subsequent two chapters, Qre f is typically of
order O(10−3), such that the assumption is also justified for the here investigated parameter points.
As a consequence of the differing time scales, terms including a derivative w.r.t. the sediment bed time
scale within the governing fluid equations can be assumed to be of negligible size such that ∂()/∂T = 0,
which somewhat simplifies the resulting system that to solve will be the task in the following sections.

The sediment bed continuity equation (5.4) in its current form is unclosed, as a functional expression for
the non-dimensional spanwise sediment flux Q is lacking. Colombini (1993) makes use of the following
ansatz, which includes concepts from Ikeda (1982) and Parker (1984):

Q = Φ(θ)

(
τt

τ0
− c

θ1/2

∂B

∂z

)
(5.5a)

Φ(θ) = 8(θ − 0.047)2/3. (5.5b)

Here, c is an empirical parameter, θ = (ūτ,0/ūg)2 is the non-dimensional Shields number, τ0 is the
amplitude of the bottom shear stress in the base flow and τt is the component of the bed shear stress in
the direction tangential to the bed itself and perpendicular to the streamwise direction. The function
Φ(θ) is the original version of the empirical formula of Meyer-Peter and Müller (1948), based on which
the transverse component of the sediment flux vector Q is computed as

Q = sin(δ) Q = sin(δ)Φ(θ). (5.6)

Here, δ denotes the angle at which the orientation of Q deviates from the streamwise direction. The
above formulation is found when approximating sin(δ) under the assumption of a straight channel
and δ being small as (Engelund, 1981; Blondeaux and Seminara, 1985; Colombini et al., 1987)

sin(δ) ≈
(

τt

τ
− c

θ1/2

∂B

∂z

)
. (5.7)

The exact value of c remains a matter of debate: While originally proposed to lie in a range c ≈ 0.5-0.6

(Engelund, 1981), smaller values of c ≈ 0.3 (Olesen, 1983; Blondeaux and Seminara, 1985; Colombini
et al., 1987) or c ≈ 0.1 (Colombini and Stocchino, 2012) were adopted in later studies. A more detailed
discussion of the empirical sediment flux formulae and a comparison with data from our fully-resolved
open channel flow simulations will be provided in section 6.3.2 in the following chapter. Therein, it
will be shown that choosing a value of c ≈ 0.09 leads to the best match between simulation data and
the corresponding empirical relations.

In order to approximate the Reynolds stresses τij in equation (5.2), an adequate turbulence model is
required. Simple linear models based on the Boussinesq hypothesis naturally fail to correctly describe
turbulent secondary motion of Prandtl’s second kind, as they are not able to reproduce the anisotropy
of the normal Reynolds stresses that is a necessary condition for the occurrence of secondary currents
(Speziale, 1982; Demuren and Rodi, 1984), as was discussed in section 3.3. More elaborate turbulence
models are therefore required to capture the mean secondary flow. Possible candidates are, among
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others, non-linear extensions of the Boussinesq approximation (Speziale, 1987; Craft et al., 1996), alge-
braic stress (Naot and Rodi, 1982; Demuren and Rodi, 1984) or full Reynolds-stress models (see Pope,
2000, chapter 11 for a detailed overview of all three approaches). We here follow Colombini (1993) and
choose the first approach in form of the quadratic eddy-viscosity model of Speziale (1987). This model
extends the typical linear ansatz for the turbulent Reynolds stresses of Boussinesq-type models, viz.

τL
ij = −2νtDij +

2

3
kδij, (5.8)

by second order terms which are quadratic in the mean velocity gradients. In the above equation, k

is the turbulent kinetic energy, νt is the turbulent viscosity, Dij = 1/2(∂jUi + ∂iUj) is the mean rate
of strain tensor and δij is the Kronecker-Delta. The formulation of Speziale (1987) obeys some basic
mathematical properties of the Navier-Stokes equations, including general coordinate and dimension
invariance, positiveness of k and material frame-indifference in the limit of 2D pseudo-turbulence.
The next higher order equation for the turbulent Reynolds stresses that fulfils these requirements is
quadratic in ∇U and reads

τL
ij + τNL

ij = τL
ij + CDl2

(
DimDmj −

1

3
DmnDmnδij

)
+ CEl2

(
D̂ij −

1

3
D̂mmδij

)
. (5.9)

As before, the Einstein summation convention over repeated indices holds. In equation (5.9), D̂ij de-
notes the ‘Oldroyd derivative’ (Oldroyd and Wilson, 1950) of the mean rate of strain tensor Dij, viz.

D̂ij =
∂Dij

∂t
+ (U · ∇)Dij −

∂Ui

∂xk
Dkj −

∂Uj

∂xk
Dki, (5.10)

which ensures the frame-indifference of the derivative. For the two model constants CD and CE, values
of CD = CE = 1.68 are proposed in Speziale (1987), but it is stated that this choice bases on a comparison
with only a single experimental data point. In Colombini (1993), on the other hand, higher values for
both parameters are chosen, i.e. CD = CE = 3.4, which were seen to provide the best approximation
to the Reynolds stresses measured by Nezu and Nakagawa (1984) over fixed long ridges of trapezoidal
cross-section. Note that in contrast to the original model of Speziale (1987), the turbulent viscosity νt

and the mixing length l are obtained in Colombini (1993) by simple algebraic expressions instead of
full transport equations, which the author justifies by the “absence of separation phenomena due to
the peculiar structure of sand ridges”.

5.1.2 Ansatz functions

Classical hydrodynamic linear stability theory analyses the influence of an initial perturbation of in-
finitesimal amplitude on the stability of a given base flow (Schmid, 2007). When the base flow is linearly
unstable w.r.t. such perturbations, the initial disturbance will grow exponentially as t → ∞, otherwise
it will decay (be stable) or at least it will not further grow (be neutrally stable). For this purpose, in case
of plane Poiseuille flow conventionally a travelling-wave (or normal-mode) ansatz of the form (Drazin
and Reid, 1981)

U(y) = U0(y) + u1(y) exp[I(αxx + αzz − αxcxt)] (5.11)

is chosen for the velocity perturbations, where I =
√
−1 is the imaginary unit, u1(y) is the wall-normal

profile of the perturbation, αx and αz are the streamwise and spanwise wavenumber and cx = cr + Ici
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is the wave speed in the streamwise direction, with real and imaginary part cr = ℜ{cx} and ci =

ℑ{cx}, respectively. To obtain information on physical quantities, it is understood that the real part
of (5.11) has to be considered. Also note that we have here introduce the convention to denote base
flow quantities in uppercase letters with subindex zero and perturbation profiles in lowercase letters
with subindex one. Inserting the travelling wave ansatz into the linearised equations typically leads to
a (generalised) eigenvalue problem, such that the stability of the base flow can be analysed in terms of
the spectrum of the linear operator (Schmid, 2007).

The situation in the current case differs from this concepts in several aspects: First, the current system
is independent of the streamwise direction, such that all modes can be considered as being of infinite
streamwise wavelength (i.e. αx = 0) and hence no growth or propagation of the wave in the streamwise
direction occurs. Instead, we are interested in spanwise modes that grow in time but do not propa-
gate in space, as the sediment bed perturbations are typically assumed to remain at their initial lateral
positions. Thus, we consider in the following a conceptually similar approach as the travelling wave
ansatz above, but based on the spanwise wavenumber α = αz (with a wavelength λ = 2π/α) and a
purely imaginary spanwise wave speed cz = Ici, viz.

U(y) = U0(y) + u1(y) exp[Iαz + αcit]. (5.12)

Taking the real part of the ansatz (5.12), choosing as characteristic time scale the sediment evolution
time scale T and defining the growth rate as σ = αci, it is readily shown that a perturbation of the base
flow profile U0(y) with infinitesimal amplitude ǫ has the form

U(y) = U0(y) + exp(σT) ǫu1(y) cos(αz). (5.13)

In Colombini (1993), corresponding perturbation ansatz functions are proposed for all quantities of
interest, viz. 




U = U0(y) + exp(σT) ǫu1(y) cos(αz)

V = 0 + exp(σT) ǫv1(y) cos(αz)

W = 0 − exp(σT) ǫαw1(y) sin(αz)

P = P0(y) + exp(σT) ǫp1(y) cos(αz)

B = 0 + exp(σT) ǫ cos(αz)

H = 1 + exp(σT) ǫh1 cos(αz)

Q = 0 − exp(σT) ǫαq1 sin(αz)

νt = νt0(y) + exp(σT) ǫνt1(y) cos(αz)

l = l0(y) + exp(σT) ǫl1(y) cos(αz).

(5.14)

Note that not all perturbation functions in (5.14) follow exactly an ansatz function analogous to equa-
tion (5.13). The reason is that the resulting physical quantities have to fulfil a set of symmetry condi-
tions, and here the perturbation ansatz functions are directly chosen to take care of these conditions. In
particular, all variables except for W and Q are in phase with the sediment bed contour B and, as such,
possess an even symmetry, whereas W and Q feature an odd symmetry w.r.t. to the bedform crest since
they are instead in phase with the first transverse derivative of the bed contour, viz. ∂zB ∼ −α sin(αz).
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5.1.3 Non-orthogonal coordinate transformation

In order to take into account the variability of the flow domain as a consequence of the sediment bed
deformation, the cross-section of the flow is mapped onto a rectangular domain using the following
non-orthogonal coordinate transformation

η =
y − B(z)

H(z)
⇐⇒ y = ηH(z) + B(z)

ζ = z.

(5.15)

The coordinate transformation leads to additional terms in the governing equations. Let ψ be an ar-
bitrary scalar, vector or tensor component w.r.t. the standard Cartesian basis x = yey + zez where we
ignore the streamwise direction that is of no importance here. Alternatively, ψ can be expanded in the
new non-orthogonal basis ξ = ηeη + ζeζ . Application of the chain rule allows to transform associate
derivatives from one coordinate system to the other, viz.

∂ψ

∂xi
=

∂ξ j

∂xi

∂ψ

∂ξ j
or

∂ψ

∂ξi
=

∂xj

∂ξi

∂ψ

∂xj

∇xψ = T−1∇ξψ or ∇ξψ = T∇xψ,

(5.16)

where ∇x and ∇ξ are the nabla operators w.r.t. the Cartesian and the non-orthogonal coordinate basis,
respectively. The transformation matrix and its inverse are denoted by T and T−1, respectively, and are
defined as

T =

[
∂xj

∂ξi

]
=




∂y

∂η

∂z

∂η

∂y

∂ζ

∂z

∂ζ


 =




H(z) 0

η
dH(z)

dz
+

dB(z)

dz
1


 , (5.17a)

T−1 =

[
∂ξ j

∂xi

]
=




∂η

∂y

∂ζ

∂y

∂η

∂z

∂ζ

∂z


 =




1

H(z)
0

− 1

H(z)

[
η

dH(z)

dz
+

dB(z)

dz

]
1




. (5.17b)

Inserting these expressions into equation (5.16), the transformation rules for the partial derivatives of
ψ are obtained as

∂ψ

∂y
=

∂η

∂y

∂ψ

∂η
+

∂ζ

∂y

∂ψ

∂ζ
=

1

H(ζ)

∂ψ

∂η
(5.18a)

∂ψ

∂z
=

∂η

∂z

∂ψ

∂η
+

∂ζ

∂z

∂ψ

∂ζ
= − 1

H(ζ)

[
η

dH(ζ)

dζ
+

dB(ζ)

dζ

]
∂ψ

∂η
+

∂ψ

∂ζ
(5.18b)

Substituting the transformed derivatives into the reduced non-dimensional system (5.2), we obtain the
transformed set of equations (A.1) that is presented in appendix A.1.1 for the sake of clarity.
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Chapter 5 Linear instability of a turbulent flow over initial sediment ridges

5.1.4 Base flow equations

In the following, we first collect terms of order O(ǫ0) that describe the configuration of the base flow.
In Colombini (1993), a strictly logarithmic velocity profile is assumed for the turbulent uni-directional
base flow. To this end, a friction coefficient C0 = (ūτ,0/Ūb,0)

2 = S/Fr2 is introduced that represents the
squared ratio between the friction velocity ūτ,0 and the bulk velocity Ūb,0 in the base flow, respectively.
For the sake of completeness, let us point out that C0 differs by factor two from the skin friction factor
c f found in many textbooks (e.g. Pope, 2000, p. 267) and used later in this work.

In the asymptotic case of a fully-rough lower boundary, the turbulent velocity profile reads (Einstein,
1950; Pope, 2000)

U0(η)

uτ,0
= 8.5 +

1

κ
ln

(
η

ks

)
, (5.19)

where ks is the non-dimensional equivalent sand grain roughness (Jiménez, 2004a) which is usually
approximated as ks ≈ 2.5D (Engelund and Hansen, 1967; Colombini et al., 1987) and a value of κ = 0.4

is chosen for von Kármán’s constant. Integration of the velocity profile (5.19) over the wall-normal
direction η ∈ (0, 1] using l’Hôpital’s rule in the lower limit leads to the following expression for the
friction coefficient C0:

Ub,0

uτ,0
=

1√
C0

= [8.5η + 2.5 (η ln (η)− η)− 2.5 ln (2.5D) η]10

= 8.5 − 2.5 − 2.5 ln (2.5D) + lim
η→0+

(2.5 (η ln (η)− η))

= 6 − 2.5 ln(2.5D).

(5.20)

Equation (5.19) can be alternatively written in a more compact form as

U0(η)

uτ,0
= 2.5 ln

(
η

η0

)
, (5.21)

where η0 is the non-dimensional reference level at which the logarithmic velocity profile reaches zero,
which in turn marks the wall-normal location where the no-slip boundary conditions are imposed.
Comparison of equation (5.21) with equation (5.19) then directly implies that η0 ≈ ks/30 ≈ D/12 in
the fully-rough case. A more general relation between the friction coefficient and the reference level
which is valid for all roughness regimes is then found by integration of equation (5.21) over the channel
height as before (Colombini, 2004):

Ub,0

uτ,0
=

1√
C0

= 2.5 [(η ln (η)− η)]10 − ln (η0)

= 2.5 [−1 − ln (η0))]

⇐⇒ η0 = exp
(
−κ/

√
C0 − 1

)
.

(5.22)

The turbulence parameters, namely the turbulent viscosity νt and the mixing length l, are determined
following a formulation of the mixing length hypothesis that was earlier used by De Vriend (1977).
After linearising the terms, the associated expressions for νt and l in the base flow read

l0 = κη
√

1 − η and νt0 = l2
0 U′

0. (5.23)
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5.1 Mathematical formulation

Note that in order to keep notation short, we will use in the remainder of this work n primes to indicate
the nth derivative w.r.t. the wall-normal direction, dn()/dηn, which should not be confused with its
meaning in the context of fluctuating quantities elsewhere in this work.

In appendix A.1, it is shown in more detail how the system (A.1) is linearised around ǫ = 0 by neglect-
ing all terms that are of order O(ǫ2) or higher. To this end, first the standing wave-like ansatz func-
tions (5.14) are substituted into the governing equations (A.1) in the new coordinate system, in which
the individual Reynolds stresses are approximated by the non-linear expressions for τij = τL

ij + τNL
ij

introduced in equations (5.8) and (5.9). Note that the exponential growth in the ansatz functions (5.14)
was formulated w.r.t. to the much slower time scale T that is associated with the bedform evolution.
When inserted in equations (A.1), the temporal derivatives transform under application of the chain
rule into

∂

∂t
() =

∂T

∂t

∂

∂T
() = Qre f

∂

∂T
().

Recalling that Qre f ≪ 1, all temporal derivatives in equations (A.1) become negligibly small and are
thus not further considered in the following.

In the resulting linearised system, all remaining contributions that are associated with the non-linear
convective terms of equations (A.1) are at least of first order in ǫ and thus do not contribute to the base
flow. While the continuity equation exclusively features terms of O(ǫ1), the momentum equations for
the base flow accordingly reduce to a balance between the turbulent Reynolds stresses and the driving
forcing term Sb/Fr2 on the one hand and the wall-normal pressure gradient on the other hand, viz.

−C0 =ν′t0U′
0 + νt0U′′

0 = − Sb

Fr2
(5.24a)

P′
0 =

(
1

6
CD +

2

3
CE

) (
l0l′0(U

′
0)

2 + l2
0U′

0U′′
0

)
. (5.24b)

Making use of the relation νt0 = l2
0U′

0 (cf. equations (5.23)), the system above can be further simplified
to obtain

−C0 =ν′t0U′
0 + νt0U′′

0 = 2
(
l0l′0(U

′
0)

2 + l2
0U′

0U′′
0

)
= − S

Fr2
(5.25a)

P′
0 =−

(
1

6
CD +

2

3
CE

)
C0

2
. (5.25b)

In fact, the problem has thus been reduced to a single ordinary differential equation for the base flow
U0 = (U0(η), 0, 0)T, while the linear pressure profile P0 over the channel depth is described by an
algebraic expression which is especially independent of the base flow itself. Interestingly, the wall-
normal pressure gradient still depends on a pre-factor which originates in the non-linear turbulent
Reynolds stresses.

The assumption of a quasi-stationary flow reduces the original initial boundary value problem to a pure
boundary value problem, thus it requires only the definition of boundary conditions at the bottom of
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Chapter 5 Linear instability of a turbulent flow over initial sediment ridges

the domain (i.e. at a wall-normal location η0 above the bed) and at the free surface η = 1. For the base
flow, the no-slip condition at the bottom and the stress-free condition at the free surface read

U0(η = η0) = 0 (no-slip),

τxy(η = 1) = νt0U′
0 = (l0U′

0)
2 = 0, P0(η = 1) = 0 (stress-free).

Note that the free-surface condition for the shear stress is here fulfilled by design of the mixing length
approach, as both l0 and νt0 vanish at the free surface. Taking this into account, an analytic solution for
U0 and νt0 can be obtained by first integrating the first equation in (5.25) subject to the upper boundary
condition for the turbulent shear stress:

C0(1 − η) = νt0U′
0

η≥η0
=⇒ νt0 = l2

0 U′
0 = l2

0

C0(1 − η)

νt0

⇐⇒ νt0 = l0
√

C0

√
1 − η

(5.23)
=

√
C0 κ η (1 − η).

(5.26)

As stated in equation (5.21) above, the analytical solution for the vertical base velocity profile is then
strictly logarithmic over the entire channel height, fulfilling the no-slip condition at a wall-normal
distance η0 above the sediment bed:

U0(η) =

√
C0

κ
ln

(
η

η0

)
. (5.27)

5.1.5 Normal-mode analysis

In the framework of a normal-mode analysis, perturbations of different wavenumbers are studied in
the following separately, seeking for those that cause a maximisation of the growth rate σ. In the
classical normal-mode approach, linearisation of the governing equations together with a travelling
wave ansatz of the form that we have introduced above typically results in a (generalised) eigenvalue
problem. In this context, the analysis of the spectrum of the linear operator is indicative of stable and
unstable subspaces of the parameter space. In the current case, on the other hand, collecting all terms
of order O(ǫ1) results in a simple linear system of the form

Aq = h1B + R, (5.28)

in which we assume that we can write the unknown functions in a single vector

q(η) = (u1(η), v1(η), w1(η), p1(η))
T (5.29)

of possibly infinite dimension, e.g. in terms of Fourier or Chebyshev coefficients. The individual en-
tries of the linear operator A and the vectors B and R can be found in equations (A.5) and (A.6) of
appendix A.1, respectively. Also, the exact form of the boundary conditions for the perturbed func-
tions will be discussed therein.
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5.2 Numerical implementation

As a consequence of the neglected time dependence, the linear system (5.28) has become independent
of the growth rate of the sediment bed σ and is instead a function of the wavenumber α and the gov-
erning non-dimensional parameters only. As a consequence, σ can only be determined by solving the
sediment continuity equation (5.4), whose linearised form eventually leads to the following dispersion
relation for the growth rate σ (see appendix A.1 for the detailed derivation)

σ

Φ (θ0) α2
=

[
w′

1

U′
0

]

η0

− c

θ1/2
0

, (5.30)

where a parameter c = 0.3 is chosen as in Colombini (1993). The angular brackets denote that the
respective term is evaluated at the non-dimensional reference level η = η0, and θ0 = Fr2 C0/[(s −
1)D] is the Shields number in the base flow. So, eventually, the problem formulation requires three
non-dimensional (physical) input parameters to be uniquely defined, that are: the relative particle
diameter D = D̄/H̄0 (inverse of the relative submergence), the Froude number Fr and the density
ratio s. The dispersion relation (5.30) can be physically interpreted in that the sediment bed growth
rate σ arises from the balance between the bed-destabilising lateral bed shear stress and a counteracting
and thus stabilising gravitational term that depends only on the constant parameter c and the Shields
number. For a given set of physical non-dimensional parameters, σ is thus a function of the spanwise
wavenumber α only. We will discuss the exact consequences of this dependencies in section 5.4 below.

5.2 Numerical implementation

5.2.1 Chebyshev collocation method

In the following, we choose a standard Chebyshev collocation method to solve the linearised system, in
the context of which the governing equations are enforced at a set of discrete collocation points in phys-
ical space (Boyd, 2001). To this end, all quantities are approximated as truncated series of Chebyshev
polynomials, viz.

φ̂(η) =
Nη

∑
i=0

φ̄iTi(η), (5.31)

where Ti(η) is the ith Chebyshev polynomial of the first kind, φ̄i is the ith coefficient of the series and
Nη is the highest considered polynomial degree. For the collocation points at which the equations of
the linear system will be enforced, we choose a set of Nη + 1 Gauss-Lobatto grid points, defined as the
locations at which the Nηth Chebyshev polynomial of the first kind TNη attains its extrema, viz.

ηk = cos

(
πk

Nη

)
, k = 0, . . . , Nη . (5.32)

We obtain Nη + 1 degrees of freedom for each of the unknown physical variables u1, v1, w1 and p1,
respectively, that can be collected in analogy to q in a single vector qN ∈ R

4(Nη+1)

qN = (uN , vN , wN , pN)
T

=
(

û1(η0), . . . , û1(ηNη ), v̂1(η0), . . . , p̂1(ηNη )
)T

,
(5.33)
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Chapter 5 Linear instability of a turbulent flow over initial sediment ridges

with the discrete Chebyshev coefficient vectors uN , vN , wN , pN ∈ R
(Nη+1). Variables with a superscript

•̂ denote the individual coefficients associated with the respective collocation points. Together with
the discretised matrix AN ∈ R

4(Nη+1)×4(Nη+1) and vectors BN , RN ∈ R
4(Nη+1), we obtain the following

inhomogeneous linear system:
ANqN = BNh1 + RN . (5.34)

The individual entries of AN , BN and RN will be provided in appendix A.2. The appropriate discretised
boundary conditions are directly imposed into the linear system (Chebyshev tau-method) by modifi-
cation of the respective entries in the matrix and the RHS vectors (cf. appendix A.2.1 for a detailed
explanation of how the boundary conditions are applied to the discrete system).

Note that the matrix AN represents a discretised linear differential operator that is build on individual
collocation derivative matrices Dη of the form (cf. Canuto et al. (2006, p.89) or Boyd (2001, p.570))

(
Dη

)
jl
=





c̄j

c̄l

(−1)j+l

ηj − ηl
j 6= l

− ηl

2
(
1 − η2

l

) 1 ≤ j = l ≤ Nη − 1

2N2
η + 1

6
j = l = 0

−
2N2

η + 1

6
j = l = Nη

, (5.35)

where the coefficients c̄j are defined as

c̄j =





2, j = 0, Nη

1, j = 1, . . . , Nη − 1
.

Higher derivatives are readily obtained as repeated matrix products of Dη with itself, i.e. Dηη = Dη Dη

and Dηηη = Dη Dη Dη , respectively.

5.2.2 Validation against the original results

In order to validate the numerical method, we first recompute the results of Colombini (1993) with
the afore outlined Chebyshev collocation method. As can be seen in figure 5.2, both the destabilising
term [w′

1/U′
0]η0

in the dispersion relation (A.13) and the variation of the growth rate σ as a function of
the wavenumber α show a quasi perfect match with the original model implementation of Colombini
(1993). Note that the shown datasets are the only results provided in Colombini (1993) for the problem
of interest, such that a more detailed validation against the original model is not possible, but the very
good match of the destabilising term and the growth rate convincingly shows that the current method is
able to accurately reproduce the results of the reference study. The results shown in figure 5.2 have been
obtained by evaluating the governing equations at 64 Chebyshev-Gauss-Lobatto points distributed
over the channel depth. Reference computations with 128 and 256 Chebyshev-Gauss-Lobatto points
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Figure 5.2: Validation of the current numerical linear stability analysis against the original results in Colombini (1993) in terms
of (a) the destabilising shear stress term

[
w′

1/U′
0

]
η0

and (b) the growth rate σ as a function of the wavenumber
α. In (a), different lines indicate different values of the relative roughness: ( ) D = 0.005; ( ) D = 0.01;
(· · ·) D = 0.05. In (b), lines of different style refer to different Froude numbers for a constant relative roughness
D = 0.01 and density ratio s = 2.65: ( ) Fr = 1; ( Fr = 2); (· · ·) Fr = 3. ( ) Data extracted from figures 9
and 10 in Colombini (1993); ( ) results obtained with the current numerical method.

show no visible differences to the results obtained with 64 collocation points, verifying that the chosen
production grid is sufficiently fine for the current needs.

For the sake of consistency with our direct numerical simulations discussed later in this work, we have
set the value of the fluid depth perturbation to h1 = −1, which is equivalent to enforcing that the
free surface remains flat. In the original study, it is not entirely clear if the free surface was allowed
to deform with h1 being a variable parameter that is determined alongside the solution of the linear
system or whether the top of the domain was also kept flat for the here shown results. The very good
match between the original data and our results seen in figure 5.2 however implies that h1 is in any
case close to −1, that is, the bed undulations have a relatively weak influence on the free surface.

For the stabilising gravitational term, on the other hand, the Froude number is of significant impor-
tance, as it is directly related to the Shields number in the base flow. In Colombini (1993), it is argued
that a parametrisation of the problem in terms of the Shields number rather than the Froude number
would be more suitable. As can be seen in figure 5.2(b), a Froude number of Fr = 1 is under the current
model assumptions not sufficient to allow for any mode to grow in time, but for all wavenumbers the
fluid-driven destabilising term is too weak to overcome the stabilising gravity term. A critical Froude
number can be defined as the lowest value of Fr for which at least a single mode is amplified rather
than damped in time. It turns out that the Shields number associated with this critical Froude num-
ber attains in this case an unrealistically high value of O(1), as pointed out by Colombini (1994). As
mentioned in the latter publication, a possible reason for the overestimation of the critical Shields and
Froude number could be that the adopted turbulence model underpredicts the actual lateral bed shear
stress. Not considered is that, possibly in addition to the former effect, that the gravitational term might
be overpredicted. In fact, we will see in the following chapter (cf. section 6.3.2) that for the simulations
considered therein, a gravitational factor of c ≈ 0.09 leads to a better match between the simulation
results and the theoretical prediction following equation (5.7) than the earlier adopted value of c = 0.3,
which agrees well with the findings of Colombini and Stocchino (2012). Replacing c = 0.3 in the orig-
inal model by c = 0.1 indeed leads to an increase of the growth rate as the gravitational term reduces
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Figure 5.3: (a) Secondary flow kinetic energy Evw(α) as a function of the wavenumber α. The inset shows the same data in
doubly-logarithmic scaling. (b) Wall-normal location ηmax at which the amplitude of the wall-normal perturbation
velocity v1 attains its maximum as a function of the wavenumber α. D = 0.005 ( ); D = 0.01 ( ); D = 0.05
(· · ·). The vertical dashed lines indicate the two wavenumbers α = {1.2548, 4.8}. In (b), ηmax is defined as ηmax =
argmax

η
(|v1(η)|).

(plots omitted), but the critical Shields and Froude number still remain much higher than those ob-
served in experiments and numerical simulations, underlining the need to critically assess the chosen
turbulence closure and its ability to correctly reproduce the strength of the lateral bed shear stress.

5.3 Analysis of the original model

In figure 5.3(a), it is seen that not only the lateral bed shear stress is maximised around a wavenumber
of α = 4.8 (λ = 1.3), but also the secondary flow kinetic energy

Evw(α) =
1

λ

∫ λ

0

∫ 1

0

[
(v1 cos(αζ))2 + (−w1α sin(αζ))2

]
dηdζ (5.36)

attains its maximum peak at this wavenumber, which highlights the fact that the secondary currents
themselves are indeed most amplified for a characteristic bed perturbation wavelength of λ = 1.3. For
both very small and very large wavenumbers, the secondary flow kinetic energy strongly decreases,
but only for α → 0 it tends to negligible values. In the large wavenumber regime, on the other hand,
Evw is seen to settle at a small but finite value that is essentially constant even for much higher values
up to α = 50 (plot not shown). The inset in figure 5.3(a) moreover uncovers an additional, very weak
local minimum at a smaller wavenumber α ≈ 1.2548 that is interestingly not identical to the value
α ≈ 1 at which the sign of the bed shear stress changes in figure 5.2(a). Instead, it is seen in figure 5.3(b)
that at the same wavenumber α ≈ 1.2548, the wall-normal location of the maximum amplitude of
|v1(η)| that represents the position of the secondary currents’ centres changes abruptly from near the
free surface (ηmax & 0.75) to near the curved bottom contour (ηmax . 0.25). At the most amplified
wavenumber, |v1(η)| attains its maximum somewhat below the channel centreline at ηmax ≈ 0.38. As
the wavenumber is further increased, the maximum of |v1(η)| is seen to successively approach the
lower domain boundary.
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Figure 5.4: Secondary flow organisation in terms of the secondary flow streamfunction ψvw for Fr = 2, D = 0.01, s = 2.65
and different wavenumbers: (a) α = 1 (λ = 6.28); (b) α = 1.2548 (λ = 5.01); (c) α = 4.8 (λ = 1.30); (d) α = 10
(λ = 0.63). The bed contours B for the respective wavenumbers are shown below each panel, with green arrows
in the trough regions indicating whether fluid is moving upward or downward in the respective area. Clockwise
(counterclockwise) secondary flow rotation is indicated by red (blue) isolines. The shown contours indicate 20
equally spaced subintervals of the interval [−max

y,z
|ψvw|, max

y,z
|ψvw|].

Figure 5.4 shows the perturbed secondary flow field for selected wavenumbers α ∈ {1, 1.2548, 4.8, 10}
or, equivalently, for wavelengths λ ∈ {6.28, 5.01, 1.30, 0.63}. The secondary fluid motion is therein
indicated by isocontours of the cross-plane streamfunction

∇⊥ψvw(η, ζ) = (∂ηψvw, ∂ζψvw)
T = (− (−w1α sin(αζ)) , (v1 cos(αζ)))T , (5.37)

that is obtained by integration of the velocity perturbations.

In agreement with the observation that the lateral bed shear stress changes its sign around a wavenum-
ber of α ≈ 1 in figure 5.2(a), the large secondary vortex with a wavelength λ = 2π ≈ 6.28 shown in
figure 5.4(a) induces a ‘damping’ motion near the bed. That is, fluid is moving towards the free surface
over the initial trough and vice versa over the initial crest of the bed profile such that the fluid motion
counteracts a further growth of the bed perturbation. The opposite is true for the flows with perturba-
tion wavenumbers α & 1 shown in figures 5.4(b-d), for which the secondary currents induce a lateral
bed shear stress that is able to enhance sediment transport from the troughs towards the crests and
thus to support the growth of the bed undulations. In this context, figure 5.4(b) is of particular interest
as it provides the secondary flow patterns for the wavenumber α = 1.2548 at which the secondary flow
kinetic energy is minimal. At this specific wavelength, the system is seen to be in a transient phase be-
tween two states in which the channel depth accommodates pairs of stacked localised counter-rotating
secondary vortices that are of identical size and amplitude and their centres feature essentially the
same distance to the closest domain boundary. The abrupt change of ηmax at this wavenumber that
was detected in figure 5.3(b) marks the transition from the dominance of the upper ‘damping’ vortex
to the dominance of the lower vortex that supports the growth of the sediment bed perturbation. Note
that this specific secondary flow organisation at α = 1.2548 is of no particular relevance for the actual
bed formation as the amplitudes of both the secondary flow kinetic energy and the lateral bed shear
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Figure 5.5: Wall-normal perturbation profiles of (a) the streamwise velocity, u1(η), and (b) the wall-normal velocity, v1(η),
for Fr = 2, D = 0.01 and s = 2.65. Different lines indicate different wavenumbers: α = 1 (λ = 6.28) ( ), α = 4.8
(λ = 1.30) ( ) and α = 10 (λ = 0.63) (· · ·).

stress are of negligible size at this wavenumber. But the shown data reveals that the system does not
suddenly change its structure. Rather, the system is seen to gradually transform from a bed stabilising
to a bed destabilising state.

With further growing wavenumber, the system reaches in figure 5.4(c) with a wavenumber of α = 4.8

its most amplified state. The secondary currents become ‘space-filling’, that is, the secondary flow
kinetic energy is of non-negligible size everywhere in the channel cross-section. In agreement with
figure 5.3(b), the regions of intense secondary motion become more and more confined to the near bed
region in the large-wavenumber regime α → ∞, while the secondary flow intensity in the outer flow
decreases successively (cf. figure 5.4(d)).

The corresponding individual wall-normal profiles of the streamwise and wall-normal velocity pertur-
bations are shown in figure 5.5. As expected, figure 5.5(a) shows that the total streamwise velocity U

is generally reduced over the bedform crests compared to the laterally flat channel if depth-spanning
secondary rollers such as those for α = 4.8 lead to a mean upward motion of low-momentum fluid
over the crest regions (cf. figure 5.5(b)). For the higher wavenumber α = 10, on the other hand, the
mean upflow over the bedform crests is markedly weaker and more confined to the near-bed region as
was observed above. The streamwise velocity U, in turn, is reduced only in the vicinity of the bedform
crest, but increases over the rest of the channel depth compared to the base flow velocity profile U0.
In contrast to the high wavenumber regime, the effect of bed undulations on the base flow at lower
wavenumber α = 1 and thus larger wavelength λ = 2π is negligible compared to the remaining two
cases, where the perturbation amplitudes are at least one order of magnitude higher.

These model predictions agree quite well with a series of recent experimental and numerical studies on
the structure of secondary currents over non-homogeneous bottom surfaces (cf. section 3.5 for a more
comprehensive overview of the current state of the art). A main outcome of these studies is that sec-
ondary currents over different types of bottom-wall inhomogeneities are most intense and fill the entire
flow cross-section if the mean lateral spacing of these inhomogeneities is in a range of approximately
(1-1.5) times the outer fluid length scale (Chung et al., 2018; Wangsawijaya et al., 2020; Zampiron et al.,
2020a) – a range that is strikingly similar to the most amplified wavelength λ = 1.3 determined in the
current analysis based on the model of Colombini (1993). In the same studies, it is moreover reported
that while reducing the transverse spacing of the inhomogeneities, the secondary currents reduce in
size and become more and more confined to the vicinity of the bottom wall. The outer flow, on the
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other hand, becomes less affected by the bottom wall heterogeneities as the wavenumber tends to in-
finity, which is not unexpected as for sufficiently small wavelengths (compared to the mean size of the
large-scale turbulent structures) the flow ‘sees’ the bottom perturbations only as a laterally homoge-
neous bottom roughness. Both observations are in accordance with the results obtained above with
the here considered linear model.

In a recent study, Zampino et al. (2022) investigated the steady flow in a closed channel at finite
Reynolds numbers over individual sinusoidal and rectangular roughness elements with variable spac-
ing by means of a linearised model that is structurally quite similar to the one discussed in this work.
The authors adopt therein a more recent non-linear eddy-viscosity turbulence closure proposed by
Spalart (2000) and include a separate transport equation for the eddy-viscosity which is coupled to
the convective terms of the RANS equations. In complete agreement with the results obtained by the
model of Colombini (1993), the linear modelling approach of Zampino et al. (2022) predicts most am-
plified secondary currents as a response to a sinusoidal bottom perturbation at wavelengths of λ ≈ 1.5,
whereas a reversal of the secondary currents’ sense of rotation was found to occur at λ ≈ 6 (compared
to λ ≈ 6.28 = 2π in the current case).

5.4 Modified model for stationary viscous open channel flow

In the following, we are going to analyse the linearised system that has to be solved in the model of
Colombini (1993) in more detail. The linear system in equation (5.28) that is in the following repeated
for convenience, viz.

Aq = h1B + R,

basically represents a linear operator A acting on a velocity and pressure field expressed by q to map
it onto a given right hand side. To be more precise, A is the linearised Navier-Stokes operator re-
duced according to the above listed assumptions including stationarity, streamwise independence of
all quantities as well as an infinitely large Reynolds number that allows us to neglect viscous effects.
The linearised Navier-Stokes operator is as such independent of the bed perturbations, whereas the
right hand side h1B + R comprises merely source terms that originate in the lateral sinusoidal bottom
undulations. In that sense, the sinusoidal perturbation of the bottom wall can be interpreted as an exte-
rior stationary forcing that is exerted on the flow system under consideration (Zampino et al., 2022). If
the bottom domain boundary remains flat, the external forcing disappears and the RHS of the system
vanishes such that the ‘trivial solution’ of an unperturbed velocity and pressure field fulfils the above
equation.

The following discussion of the linearised system and the modifications we apply to it requires some
knowledge of the development in the field of hydrodynamic stability in the past decades. In the subse-
quent short excursus, we make the reader familiar with some of the main findings in this field, which is
surely far from being complete. For a much more detailed overview of the topic, the interested reader
is referred to the textbooks of Drazin and Reid (1981) and Schmid and Henningson (2001) and the more
recent review articles of Schmid (2007), McKeon (2017) and Jiménez (2018), as well as that of Kerswell
(2018) who discusses stability in a broader sense towards a fully non-linear dynamical systems descrip-
tion of the problem. As our main interest concerns the flow in an open channel, we restrict ourselves in
the following to the discussion of the stability of plane Poiseuille flows, for which it was first assumed
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Chapter 5 Linear instability of a turbulent flow over initial sediment ridges

that the turbulent mean velocity profile could be marginally stable w.r.t. to a linear instability mecha-
nism (Malkus, 1956). A decade later, however, it was shown by Reynolds and Tiederman (1967) that this
is in fact not the case, but that the turbulent mean velocity profile is stable w.r.t. to infinitesimal pertur-
bations in that all such perturbations eventually decay as t → ∞, rather than following an exponential
growth. It then took another two decades until the instability of Poiseuille flows received again more
attention as in the course of a number of studies the non-normality of the linearised Navier-Stokes/the
Orr-Sommerfeld operator was taken into account (Butler and Farrell, 1992, 1993). Non-normality in
this context refers to the fact that not all eigenfunctions of the linear Orr-Sommerfeld operator are or-
thogonal to each other (Reddy et al., 1993), and so a normal-mode analysis that investigates solely the
spectrum of the linear operator ignores the possibility of an interaction of individual modes in finite
time intervals (Schmid, 2007). Indeed, it could be shown that for ‘optimal’ initial conditions of the
flow field significant energy amplifications can be achieved over a finite time horizon in a process that
is typically termed ‘transient growth’ (Jiménez, 2018). Butler and Farrell (1993) considered the classi-
cal Orr-Sommerfeld problem (Drazin and Reid, 1981) and concluded that such an optimal initial state
consists of a set of infinitely long streamwise rolls that trigger the formation of streamwise-elongated
streamwise velocity streaks. While an outer-scaling peak at a lateral wavelength λz ≈ 3 related to
large-scale velocity streaks was detected irrespective of the investigated time window, an optimal state
that led to the evolution of inner-scaling buffer layer streaks with λ+

z ≈ 100 was clearly seen only if
the time window under consideration was restricted to times of the order of the buffer layer streaks’
lifetime. Del Álamo and Jiménez (2006) and Pujals et al. (2009) later considered the same problem,
but instead of restricting the time period during which the system is allowed to transiently grow, these
authors supplemented the molecular fluid viscosity ν by a height-dependent turbulent viscosity νt as
in classical linear eddy-viscosity models. In agreement with the results of Butler and Farrell (1993),
they observed two peaks in the energy amplification, one local maximum at λ+

z ≈ 100 that is indica-
tive of the buffer-layer vortices and streaks and a second, global one at about λ+

z ≈ 3 that refers to the
large-scale streaks.

So far, we have implicitly assumed that the linearised Navier-Stokes system is free of external forces.
If this is not the case and the governing equations are subject to a possibly time-dependent external
force field, then both the initial condition and the specific force field affect the solution at a given time
t (Schmid, 2007). In this vein, Hwang and Cossu (2010b) scrutinised how the non-normal linearised
Orr-Sommerfeld operator reacts to external harmonic (deterministic) and stochastic forcing of small
amplitude and sought for the optimal external forcing to achieve a maximum growth of energy in the
perturbed system, rather than an optimal initial condition. The resulting forcing profiles possess a strik-
ing similarity with the optimal initial conditions detected by Del Álamo and Jiménez (2006) and Pujals
et al. (2009). In particular, for both inner- and outer-scaling streamwise streaks the optimal ‘source’
forcing again takes the form of counterrotating streamwise rolls of appropriate size. As in the previ-
ous works on transient growth of ‘optimal’ initial conditions, the strongest energy amplification was
observed for infinitely long modes with streamwise wavenumber αx = 0, while the optimal temporal
forcing frequency was found to be zero, that is, the most ‘critical’ forcing is a permanent one.

In the following, we will discuss the properties of the here considered model of Colombini (1993) in
comparison with the afore-mentioned time-dependent models. By assumption, all considered modes
in the model of Colombini (1993) are of infinite streamwise wavelength (αx = 0), which agrees with the
above discussed ‘criticality’ of these modes. In contrast to the above studies in which the temporal evo-
lution of the flow field subject to either a particular initial state or an external forcing was investigated,
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the linear operator considered in the current model is stationary, that is, the flow reacts immediately
to a change of the forcing. In order to highlight the similarities of the model of Colombini (1993) with
those typically adopted in the stability analysis of plane channel flows, we adapt the original problem
formulation in several aspects: Instead of a system that is perturbed by a laterally varying bottom wall,
we consider in the following a plane open channel flow that is forced by a laterally varying external
force field, in analogy to Hwang and Cossu (2010b). On the one hand, this will allow us to show in
the remainder of this section that the choice of the most amplified wavelength in the original model is
indeed exclusively determined by the fluid equations, rather than by the coupling with the bed. On
the other hand, it greatly simplifies the computations as we can remain in the standard orthogonal
Cartesian coordinate system with basis (ey, ez), avoiding the non-orthogonal transformation to the co-
ordinate system spanned by eη and eζ . This is particularly attractive as we relax in the following the
original assumption of an infinitely large Reynolds number by reintroducing the viscous terms in the
governing equations and we can thus avoid to transform the Laplace operator to the non-orthogonal
coordinate system. Note that it is absolutely possible to add viscous effects also to the original model,
but it would require a significantly larger amount of algebra without providing any further insights.

For the new forced viscous channel flow, the set of non-dimensional governing equations then reads

V
∂U

∂y
+ W

∂U

∂z
=
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Fr2
+

∂τxy
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+
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+

1
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(
∂2U

∂y2
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∂2U
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)
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∂V

∂y
+

∂W

∂z
= 0. (5.38d)

where Reb = Ūb,0H̄0/ν̄ and Reτ = Reb

√
C0 = ūτ,0H̄0/ν̄ are the bulk and friction Reynolds numbers

in the base flow and F = (Fx, Fy, Fz)T is an arbitrary external force field. To allow for a comparison
with the remaining models, we consider in the following the flow in a smooth open channel, for which
(Pope, 2000)

Reτ ≈ 0.166Re0.88
b . (5.39)

Thus, choosing a fixed value for either of the two Reynolds numbers Reτ or Reb uniquely determines
the values of both the remaining Reynolds number as well as the friction coefficient C0.

Removing the bottom curvature results in B = 0 and H = H0 = 1, respectively. The coordinate
transformation consequently reduces to the identity transformation, such that no additional terms arise
from this side. As the coupling with the sediment bed continuity equation is for now not of main
interest and the equations do not contain any dependence on the time scale T, we can simplify our
ansatz functions by setting σ = 0 and thus exp(σT) = 1. The ansatz function for the streamwise
velocity then reads

U(y) = U0(y) + ǫ u1(y) cos(αζ). (5.40)
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In analogy, appropriate ansatz functions of the laterally oscillating external force field F = (Fx, Fy, Fz)T

with wall-normal perturbation profiles fxi ,1(y) are introduced as





Fx(y) = 0 + ǫ fx,1(y) cos(αζ)

Fy(y) = 0 + ǫ fy,1(y) cos(αζ)

Fz(y) = 0 − ǫ α fz,1(y) sin(αζ)

. (5.41)

Inserting the modified ansatz functions into the governing equations, the newly appearing linear dif-
fusive terms contribute the following terms

1
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1
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]

. (5.42)

Only in the streamwise momentum equation, viscous stresses appear in the base flow equations, such
that relation (5.24a) extends to

− Sb
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(
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1
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)
U′

0

]′
. (5.43)

While in equation (5.24) the driving force term Sb/Fr2 was balanced by turbulent stresses only, the total
shear stress on the RHS of equation (5.43) now comprises viscous and turbulent contributions. The
turbulent viscosity νt0(y) in the streamwise momentum balance is accordingly replaced by the non-
dimensional effective viscosity νe f f = (νt0(y) + 1/Reb) comprising both the constant molecular and
the height-dependent turbulent viscosity. From now on, •+ denotes normalisation in inner units using
ν̄ = ν̄ f and ūτ,0 as characteristic scales. External forcing terms as well as the remaining contributions
of the viscous terms are of order O(ǫ1) and thus appear solely in the perturbed system. The viscous
terms contribute to the ‘main diagonal’ of the operator A, that are, the terms a11, a22 and a33 in (A.5),
respectively. At last, the boundary conditions at the free surface are adapted to the changed conditions
(cf. appendix A.3).

In regard of the modification of the flow configuration to a smooth open channel flow at finite Reynolds
number, we replace the fully-logarithmic base velocity profile and the associated profiles of the turbu-
lent viscosity νt0 and mixing length l0 by an analytic expression that takes into account the variation of
the Reynolds number. A popular choice is the analytic expression for the turbulent viscosity in closed
channels originally proposed by Cess (1958) and later adopted by Reynolds and Tiederman (1967),
which reads

ν+t0(y) =
1

2

{
1 +
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κ2Re2

τ
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(
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s

)2 (
1 + 2y2

s

)2
(
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(
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Reτ

Abot

))2
]}1/2

− 1

2
, (5.44)

where a shifted wall-normal coordinate ys = y − 1 is used such that ys ∈ [−1, 0]. The van Driest
damping coefficient and the von Kármán constant are chosen as Abot = 25.4 and κ = 0.426, respectively,
as proposed by Del Álamo and Jiménez (2006). For open channel flow, however, expression (5.44) is
not suitable in its original form as νt0 attains finite values at ys = 0 (which represents the centreline
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Figure 5.6: Wall-normal profiles of the mean velocity, mixing length and effective viscosity from smooth-wall open channel
flow simulations as reference data for the linear stability analysis. (a,b) Mean velocity profile (a) in outer scaling,
〈u f 〉xzt/ub, and (b) in inner scaling, 〈u f 〉+xzt. (c) Mixing length normalised with the mean fluid height, l0/H0. The
black line indicates the relation l0 = κy

√
1 − y used in De Vriend (1977). (d) Effective viscosity normalised with

the molecular viscosity ν+e f f = (ν + νt0)/ν. Solid lines mark data from cases CL250H16
smooth ( , Reτ = 210) and

CM650H3
smooth ( , Reτ = 649) that will be analysed in detail in the subsequent chapter 6. The respective physical

and numerical parameters can be found in tables 6.1 and 6.2, respectively. Dashed lines indicate the corresponding
profiles obtained by the modified analytic expressions of Cess (1958) and Reynolds and Tiederman (1967) for the
turbulent viscosity following expression (5.46).

in a corresponding closed channel flow), while in open channels νt0 should tend to zero at the free
surface (Nezu and Rodi, 1986), as can be also seen in figure 5.6. Therein, the plane-averaged wall-
normal profiles of the mean velocity 〈u f 〉xzt, the turbulent viscosity νt0 and the mixing length l0 are
presented for two direct numerical simulations of smooth wall open channel flow at Reynolds numbers
Reτ ∈ {210, 650}, which will be investigated in detail in the subsequent chapter 6. The turbulence
parameters νt0 and l0 have been recomputed from the simulation statistics as (Pope, 2000; Pirozzoli,
2014)

νt0 =
−〈u′

f v′f 〉xzt

d〈u f 〉xzt/dy
, l0 =

(
−〈u′

f v′f 〉xzt

)1/2

|d〈u f 〉xzt/dy| . (5.45)

Note that these definitions hold everywhere but at the free surface itself, where |d〈u f 〉xzt/dy| vanishes
due to the applied free-slip boundary condition in the simulations. Whilst νt0 tends indeed to zero
when approaching the free surface, l0 is seen to increase strongly in the direct vicinity of the free surface.
This, in turn, suggests that the mean shear d〈u f 〉xzt/dy decreases to zero at a slower rate than the
turbulent stresses −〈u′

f v′f 〉xzt, but at a faster rate than their square root. Note that from a physical
point of view, l0 should nevertheless tend to zero when approaching the free surface, as the turbulent
structures themselves are restricted in their size in the vicinity of the upper domain boundary such that
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Figure 5.7: Wall-normal profiles of the external stationary forcing schemes in the modified linearised model of plane smooth
open channel flow. (a) Near-optimal cross-sectional forcing for buffer layer streaks F = (0, Fy, Fz)T . Shown is
the profile of the wall-normal forcing component, fy,1(y), which attains its peak value at approximately y+ = 15

(dashed line). (b) Cross-sectional forcing in the outer layer F = (0, Fy, Fz)T , shown is the profile of the wall-normal
force component with fy,1 = sin(πy). (c) Streamwise constant forcing F = (Fx, 0, 0)T , for which fx,1(y) = −1 is
presented.

a reasonable characteristic length scale should not grow without bounds in this region. We therefore
underline that the definition (5.45) for l0, even though mathematically defined everywhere but at the
singularity y = 1, is appropriate only in some distance to the free surface.

For the sake of comparison, figure 5.6 provides the same quantities computed based on a slightly mod-
ified version of the Cess-Reynolds-Tiederman formula (5.44), viz.
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Comparing relations (5.44) and (5.46) with each other, it is seen that we have added an additional van
Driest damping function that ensures that νt0 tends to zero at the free surface. For this purpose, a
second damping coefficient Atop = 40 is chosen that is seen to reasonably well describe the decay of
νt0 when approaching the free surface, at least for the higher Reynolds number simulation. As we
are interested in higher Reynolds numbers in the remainder of this study, a fitting of the parameter
Atop to the simulation at higher Reynolds number appears reasonable. For the sake of completeness,
we have performed the subsequent analysis also with the DNS data as base flow profiles, which lead
to qualitatively similar results as those obtained with the analytic expression in (5.46). Surely, more
elaborate analytic expressions than relation (5.46) are conceivable for νt0 that will match the simulation
data even better, but for a sound investigation similar to the study of Pirozzoli (2014) in closed channel
flows, our current database would have to be extended to cover a wider range of Reynolds numbers.
In the context of hydraulic turbulence models, however, such a study could be indeed of high interest
and could be performed in a future project.

In the remainder of this section, we analyse how the large-scale secondary flow cells and their intensity
depends on the forcing. To this end, three different force fields F = (Fx, Fy, Fz)T are tested on their
impact on the flow organisation. The first two force fields are of the form F = (0, Fy, Fz)T and represent

72



5.4 Modified model for stationary viscous open channel flow

infinitely long streamwise vortex rolls of different size that enforce accordingly-arranged high- and
low-speed streaks. Figure 5.7(a) shows a wall-normal forcing profile fy,1 that has been constructed
to approximate the optimal forcing for the buffer layer streaks found by Hwang and Cossu (2010b).
The peak forcing is attained roughly 15 wall units above the bottom wall, while it rapidly tends to
zero outside the buffer layer. Figure 5.7(b), on the other hand, represents a large-scale forcing of the
form fy,1 = sin(πy) that is of finite size over the entire channel depth and peaks in the channel half
height. In both cases, we are interested in solenoidal force fields, such that fz,1 can be recomputed
from the respective force profile of the wall-normal component as f ′y,1(y) = α2 fz,1(y), in analogy to
the continuity equation for the streamwise independent solenoidal velocity field. In contrast to these
vortex-like forcing approaches, the last considered force field F = (Fx, 0, 0)T is unidirectional in the
streamwise direction and its profile is constant over the entire channel depth with amplitude fx,1 = −1

(cf. figure 5.7(c)). That is, a global low-speed region is forced at position z = 0.

Note that comparable forcing schemes in form of infinitely long streamwise rolls are frequently used
when seeking for invariant solutions of the full non-linear Navier-Stokes operator. Waleffe (2003) pro-
posed a homotopy method in analogy to the buffer-layer self-sustaining process (Hamilton et al., 1995),
in which infinitely long streamwise rolls are added to a base flow under the action of a continuous
forcing that prevents them from decaying due to viscosity. The forced rolls trigger the formation of a
streamwise velocity streak, that eventually becomes unstable and feeds back into the vortex rolls. In
the actual homotopy step, the external forcing is then successively reduced until the original unforced
system is recovered. While originally used by Waleffe (2003) in plane Couette and Poiseuille flow, it
was later successfully applied also in other flow configurations, including pipe (Kerswell, 2005) and
square duct flows (Uhlmann et al., 2010).

Figure 5.8 shows the maximum amplitude of the wall-normal velocity v1(y) in inner and outer scaling
as a function of the lateral wavelength λ for all three forcing types, evaluated for Reynolds numbers
Reτ = {500, 1000, 2000}. Notably, the maximum wall-normal velocity amplitude attains for all three
forcing schemes a global peak at essentially the same wavelength λ = 1.3 (α = 4.8) as in the original
model of Colombini (1993), irrespective of the fact that we use here entirely different forcing schemes
compared to that induced by the sinusoidal bed deformation. It is moreover astonishing that the peak
persists even if the forcing is entirely restricted to the buffer layer (cf. figure 5.8(b)) and a relevant
forcing amplitude is only attained in the lowest 100 wall units. In the highest Reynolds number case
Reτ = 2000, for instance, the forcing peak is attained at a wall-normal position y = 0.008, but the
forcing still suffices to trigger the formation of depth-spanning large-scale secondary currents when
applied at a wavelength λ = 1.3. The peak value itself is seen to be essentially independent of the
Reynolds number for each individual forcing when scaled in terms of the bulk velocity, whereas the
amplitude varies between the different forcing schemes. This is not unexpected since, even though
the maximum values of all three forcing profiles are of same size, the total force acting on the domain
that is obtained by integration of the force density F over the cross-plane markedly varies. Note that
the maximum velocity amplitude is partly two orders of magnitude larger than that of the associated
forcing, which agrees with a comment of Hwang and Cossu (2010b) that the ratio between energy
output and input in such forced systems is typically quite high.

A clear inner-scaling peak of the maximum wall-normal velocity amplitude is seen only for the quasi-
optimal buffer layer forcing at a lateral wavelength λ+ = 81 in figure 5.8(a), although also in the re-
maining cases there is partly a change of slope visible around this wavelength. In contrast to the global
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Figure 5.8: Maximum of the wall-normal velocity amplitude |v1(y)| as a function of the wavelength for different external
stationary forcing schemes and Reynolds numbers in the modified linearised model of plane smooth open channel
flow: (a,b) Near-optimal cross-sectional forcing for buffer layer streaks; (c,d) cross-sectional forcing in the outer
layer; (e,f ) streamwise constant forcing. Data is shown in (a,c,e) inner and (b,d,f ) outer scaling with vertical dashed
lines indicating λ+ = 81 (α+ = αν/uτ = 0.078) and λ = 1.3 (α = 4.8), respectively. Reτ = 500 ( ), Reτ = 1000
( ) and Reτ = 2000 (· · ·).

outer peak, the inner-scaling peak is seen to reduce in amplitude with increasing Reynolds number,
irrespective of whether it is scaled with the outer or inner velocity scales Ūb,0 or ūτ,0, respectively. Note
that at first glance, the appearance of an inner-scaling peak at λ+ = 81 seems less surprising as Hwang
and Cossu (2010b) extracted the optimal homogeneous force profile on which our buffer-layer forc-
ing is based for essentially this wavelength. However, it should be underlined that it was not a priori
clear that the current stationary linearised operator reacts in the same way as the full time-dependent
Orr-Sommerfeld operator of Hwang and Cossu (2010b) to an outer forcing and whether the former
would be able to enforce the characteristic streaky streamwise velocity structures for the appropriate
wavelength.

Figure 5.9 shows the perturbed streamwise velocity field together with the perturbed cross-flow (V, W)T

and the cross-flow components of the force field (Fy, Fz)T at the inner and outer peak wavelengths
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Figure 5.9: Cross-section of the perturbed velocity field driven by different external stationary forcing schemes in the modi-
fied linearised model of plane smooth open channel flow at Reτ = 2000. The vector field visualisations in (a,c,e,f )
show intensity and direction of the cross-stream flow field (V, W)T , whereas those in (b,d) represent the sta-
tionary cross-stream body force field (Fy, Fz)T . (a,b) Near-optimal cross-sectional forcing for buffer layer streaks
(λ+ ≈ 81); (c,d) cross-sectional forcing in the outer layer (λ = 1.3); (e) Streamwise constant forcing (λ = 1.3);
(f ) Same buffer-layer forcing as in (a,b), but this time for a given outer wavelength λ = 1.3. Red solid and blue
dashed isocontours represent positive and negative values of the streamwise velocity perturbation u1(y) cos(αζ),
respectively, in a range [−max

y,z
|u1(y) cos(αζ)|, max

y,z
|u1(y) cos(αζ)|] with an increment of 1/20 of the interval.
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Chapter 5 Linear instability of a turbulent flow over initial sediment ridges

λ+ = 81 and λ = 1.3, respectively. In figures 5.9(a,b), the buffer-layer forcing as well as the result-
ing flow field are presented for a given wavelength λ+ = 81. Indeed, the roll-like forcing induces
streamwise-elongated vortex rolls that, in turn, enforce the streamwise velocity field to organise in
laterally alternating high- and low-speed streaks.

The flow patterns match those obtained by Hwang and Cossu (2010b) for a similar forcing and those
formed by transient growth from an ‘optimal’ initial condition (Del Álamo and Jiménez, 2006) quite
well, further supporting our earlier observation that the linearised operator in the current stationary
and streamwise-independent model captures nonetheless the basic linear physical processes of vortex-
streak interactions (Hamilton et al., 1995; Waleffe, 1997; Schoppa and Hussain, 2002; Kawahara et al.,
2003; Jiménez, 2018).

In a conceptually similar way, we observe for a given wavelength λ = 1.3 the formation of large-scale
infinitely long vortex rolls which are equivalent to the large-sale secondary currents in the original
model of Colombini (1993). Interestingly, there is essentially no visible difference between the flow
organisation in the case where the forcing takes the form of two large-scale rollers F = (0, Fy, Fz)T (cf.
figure 5.9(c,d)) and that where we apply a constant streamwise forcing F = (Fx, 0, 0)T (cf. figure 5.9(e)).
In other words, in the first case forced rollers induce a streamwise velocity streak while in the second
case, an externally forced low-speed streak causes large-scale secondary rolls to emerge.

Notably, essentially the same patterns of primary and secondary motions are obtained for a given
wavelength λ = 1.3 even in the case of an exclusive buffer-layer forcing, as is seen in figure 5.9(f ),
even though the signs of the rolls and streaks are reversed. The latter effect is a consequence of the
special shape of the forced buffer layer rolls: While the height of the forcing rolls is less than 100 wall
units, pre-defined by the shape of the wall-normal forcing profile, their spanwise extent is given by
half the forcing wavelength λ/2 = 0.65. As a consequence, the near-wall region features groups of
counterrotating streamwise vortices which are thin but very wide. The outer flow ‘sees’ only the upper
part of these thin rolls in which the fluid moves in the opposite direction as directly above the wall,
such that the large-scale rolls are forced to counterrotate their thin near-wall counterparts.

The very similar shape of the large-scale secondary currents under different forcing schemes implies
that the large-scale flow organisation in the here tested model is not very sensitive to the exact type and
shape of the external force field. Even a forcing only in the direct vicinity of the bottom wall triggers
the formation of large-scale secondary vortices. Remarkably, in agreement with the findings of Hwang
and Cossu (2010b), it is seen that the maximum streamwise velocity perturbation occurs, even for the
large-scale streaky structures, in the vicinity of the wall, irrespective of where the forcing profile attains
its maximum.

In contrast to the near-wall region, the flow organisation at the outer-scaling peak in the current open
channel flow differs in several aspects from that found by previous authors in the context of closed
channel flows, focussing either on the transient growth of optimal initial conditions or on external
deterministic and statistical forcing of the governing linearised equations (Butler and Farrell, 1993;
Del Álamo and Jiménez, 2006; Pujals et al., 2009; Hwang and Cossu, 2010b). In both open and closed
channel, the secondary flow in the cross-plane manifests itself in form of large-scale quasi-streamwise
vortices that are of comparable aspect ratio H/(λ/2), where H is the full channel height, i.e. H = H0

in the open channel case and twice the half channel height in the closed channel. The streamwise
velocity streaks, on the other hand, have different aspect ratios that differ by roughly factor two: In the
open channel case, single streaks of either sign can spread over the entire channel depth, while their
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counterparts in the closed channel span only to the channel centreline and a ‘mirror streak’ of opposite
sign forms in the other half of the channel (cf., for instance, fig. 3 in Hwang and Cossu (2010b)). This is
in line with the orientation of the large-scale secondary rolls: The same large-scale circulation creates
an upflow associated with a low-speed streak on one wall while it induces a downflow with associated
high-speed region at the other wall, at the same lateral position. In the open channel, on the other
hand, the free-slip/shear-free boundary condition at the free surface admits also solutions that are not
symmetric w.r.t. the half height of the open channel H0/2, but they enforce the wall-normal velocity
v to vanish at the top of the domain. When scaled in terms of the typically adopted length scales, i.e.
the full channel height in the open channel and the half channel height in the closed counterpart, the
‘peak wavelengths’ in the original and the modified open channel model are with λ = 1.3 smaller by
a factor of roughly two compared to the values λ ≈ 3-4 detected by the above listed authors for closed
channels. This difference has been recently discussed by Camporeale et al. (2021).

5.5 Discussion, summary and conclusion

In this chapter, we have analysed the linear response of a one-dimensional turbulent base flow in an
infinitely wide open channel w.r.t. to a sinusoidal perturbation of the bottom wall with infinitesimal
amplitude. In this context, we have revisited and modified the classical linear model of Colombini
(1993) to better understand the functioning of the therein considered linear system and the physical
processes it corresponds to. Subsequently, the results of both the original and the modified model
were discussed in the context of recent studies on flow over laterally heterogeneous bottom walls on
the one hand and compared with works on linear processes in turbulent channel flows on the other
hand, including the investigation of externally forced dynamics and transient growth processes.

The original model formulation of Colombini (1993) is derived from the Reynolds-averaged Navier-
Stokes equations, linearised around a fully-logarithmic turbulent open channel flow profile. The
governing equations are simplified by neglecting viscous effects as well as by focussing on a two-
dimensional problem in the cross-plane of the channel, assuming independence of the streamwise
direction for all variables of interest. In order to take care of the deformation of the fluid domain in
consequence of the bottom wall modulation, the governing equations are mapped onto an appropriate
non-orthogonal coordinate system.

The governing equations of the fluid motion are coupled with the sediment bed evolution via the lat-
eral particle flux in the sediment bed continuity equation, which in turn is formulated as a function
of the lateral bed shear stress. Under the assumption that the characteristic time scale of the turbulent
dynamics is much shorter than that of the comparably slow bedform evolution, it is in the following
assumed that the flow field adapts quasi-immediately to a variation of the bottom wall curvature. As a
consequence, the linearised system is one-way coupled in that first the governing, effectively stationary
fluid equations are solved for all wavenumbers separately. The growth rate of the bedform amplitude is
thereafter determined using a dispersion relation that represents the linearised sediment bed continu-
ity equation. This latter equation is in fact a simple balance between the typically destabilising lateral
bed shear stress and a counteracting stabilising gravitational term, from which the latter depends solely
on a constant gravitational parameter and the Shields number in the base flow, i.e. ∼ θ−1/2

0 . In order to
capture the secondary flow that arises as a consequence of the bottom wall-induced perturbations, the
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Chapter 5 Linear instability of a turbulent flow over initial sediment ridges

Reynolds stress tensor is modelled using the non-linear eddy-viscosity model of Speziale (1987) which
allows for the necessary anisotropy of the turbulent Reynolds stresses.

In the current work, the model equations were numerically solved in the framework of a standard
Chebyshev tau-collocation method, in the context of which the governing equations are enforced at a
set of Gauss-Lobatto points that are unevenly spaced over the wall-normal direction of the channel.
A validation of the obtained results showed a quasi perfect agreement with the data in the original
publication of Colombini (1993).

The data obtained with the original model formulation was in the following investigated in more de-
tail than it was possible in the original study, in particular in the context of recent experimental and
numerical studies on secondary flow over inhomogeneous bottom walls (Chung et al., 2018; Wang-
sawijaya et al., 2020; Zampiron et al., 2020a). It turned out that the linear model predicts the transverse
wavelength λ = 1.3 at which the secondary flow kinetic energy is maximised and the secondary cur-
rents are ‘space-filling’ reasonably well. Also, it captures the trend of secondary currents being more
restricted to the direct vicinity of the bottom wall as the lateral wavenumber α tends to infinity. In
addition, the model of Colombini (1993) was compared to a recently published theoretical study of
Zampino et al. (2022), which is based on similar model assumptions but uses a different turbulence
model. The qualitatively very good agreement of the results in both models underlines that results
discussed up to this point are no effect of the specific chosen turbulence closure, but that the observed
phenomena are indeed of physical nature.

In the remainder of the chapter, we focused in our analysis on the linearised system to which the
governing equations of fluid motion reduce under the given assumptions and the linearisation. The
linearised Navier-Stokes operator therein is effectively independent of the sediment bed modulation,
which takes the role of a stationary external forcing to the linear system. In this regard, comparable
large-scale secondary currents could likewise originate from a laterally varying body force, for instance,
a laterally varying driving pressure gradient or regions of blowing and suction. To underline the phe-
nomenological similarity between the role of the sediment bed and a stationary forcing on the flow,
we replaced the curved lower boundary by a flat smooth bottom wall, while the flow instability was
instead driven by an external sinusoidal body force field. Also, diffusive terms were reintroduced into
the governing equations to study flow organisation at finite Reynolds numbers both in the near-wall
and outer-layer region. In this context, alternative analytical expressions for the base flow, the turbulent
viscosity and the mixing length were introduced in order to take care of variable Reynolds numbers.
These expressions were shown to reasonably well describe wall-normal reference profiles of the same
quantities in direct numerical simulations of open channel flows.

It was then tested how the flow field organises under the influence of different external forcing schemes.
First, an external forcing in form of infinitely long streamwise vortices in the buffer layer was applied,
similar to the optimal forcing profile found by Hwang and Cossu (2010b) at λ+ = 81. Despite the
streamwise independence and the stationarity of the current model, the characteristic shape of the
streaks that evolve due to the external forcing are astonishingly similar to those observed by Hwang and
Cossu (2010b), including the wavelength at which they appear. In addition to the former forcing that
was concentrated to the buffer layer, we furthermore investigated a similar roll-like forcing but for the
outer layer that spanned over the entire channel height as well as a constant unidirectional streamwise
force field. Interestingly, for all three forcing schemes the maximum secondary flow kinetic energy and

78



5.5 Discussion, summary and conclusion

thus the most intense secondary motion was found at essentially the same wavelength λ = 1.3 as in
the original model, where the instability was triggered by the curved bottom wall.

That way, these investigations show that the most amplified wavelength in the model of Colombini
(1993) which should represent the characteristic lateral spacing of initial sediment ridges is in fact en-
tirely controlled by the linearised Navier-Stokes operator. The initial perturbation of the sediment bed
is required to provide and maintain a stationary forcing that acts on the system, as the turbulent base
flow is otherwise linearly stable (Reynolds and Tiederman, 1967). The ‘most critical’ bed perturbation
wavelength that leads to the strongest response of the flow in form of space-filling large-scale secondary
currents is, however, entirely determined by the governing fluid equations. The analogy of the modi-
fied model to the forced equations of Hwang and Cossu (2010b) and the transient growth analysis in
closed channels (Butler and Farrell, 1993; Del Álamo and Jiménez, 2006; Pujals et al., 2009), on the other
hand, underlines that the origin of the large-scale flow structures that arise in the model of Colombini
(1993) is closely related to the linear processes that are assumed to play a major role in the forma-
tion and interaction processes of large-scale streamwise velocity streaks and quasi-streamwise rotating
motions in canonical wall-bounded shear flows (Hwang and Cossu, 2011; Jiménez, 2018); rather than
being a specific feature of the flow over deformable bottom walls. Conversely, based on the here dis-
cussed results, it is expected that a detailed transient growth analysis in open channel flows based on
the full three-dimensional time-dependent Orr-Sommerfeld problem will lead to a maximum energy
growth at a similar wavelength λ ≈ 1.3. To the best of the author’s knowledge, such analysis has not
yet been performed, and the only work that goes into a similar direction is a recent study by Campo-
reale et al. (2021) on the linear (secondary) instability of the mean secondary flow in open channels
with deformable free surface that could give rise to large-scale flow structures. While their problem
is formulated considering the depth-averaged RANS equations with some extra terms, a full transient
growth analysis would be of high interest to investigate how the free-slip boundary condition affects
the transient growth of suitable initial conditions and whether or not the predictions obtained with the
here discussed simplified two-dimensional and stationary model can be reproduced.
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Chapter 6

Turbulent large-scale streaks and
sediment ridges in open channel flow ∗

The theoretical investigations in the previous chapter have shown that a lateral undulation of the lower
domain boundary is indeed capable of inducing large-scale secondary currents in an initially one-
dimensional turbulent channel base flow. Clearly, an instantaneous fully-turbulent channel flow field
is far from being one-dimensional and laterally alternating large-scale high- and low-speed streaks are
well known to modulate the mean profile in wall-bounded shear flows (Marusic et al., 2010b; Smits
et al., 2011; Jiménez, 2018).

The following chapter is dedicated to the analysis of such large-scale streaks over mobile sediment beds
and of their relevance for the formation of sediment ridges. To this end, a series of direct numerical
simulations of doubly-periodic turbulent open channel flow over a mobile sediment bed composed of
fully-resolved spherical particles at various Reynolds numbers and in domains of different sizes has
been performed. The dataset is supplemented by reference simulations in single-phase smooth-wall
open channel flows. The analysis we are going to present provides evidence that in fully-turbulent
flows, the organisation of the flow in form of large-scale high- and low-speed streaks is the main driver
of sediment ridge formation by inducing a laterally varying bed shear stress and erosion rate along
the sediment bed. The mechanism is thus similar to the second formation process conceived by Nezu
and Nakagawa (1993), that is, a lateral variation of the flow field induces a lateral variation of the bed
surface. Indeed, we will show that the large-scale structures located in the bulk of the channel interact
in a kind of ‘top-down mechanism’ with the sediment bed, in accordance with the conceptual model of
Jiménez (2018, § 5.6 and references therein) on the generation and organisation of coherent structures
in canonical wall-bounded flows.

In the next section, we will first introduce the physical system under consideration, define the relevant
physical parameters required to describe the system and elaborate how the initial states for the simu-
lations are prepared. In a second section, we will outline a procedure used to detect the instantaneous
interface between the sediment bed and the fluid-dominated region of the domain and define appro-
priate measures to quantify its temporal evolution. These definitions form the basis for the analysis
of the simulations in the remainder of this chapter, which is structured as follows: First, the temporal
evolution of the sediment bed from an initially macroscopically flat state to a ridge-covered bed will be
investigated and a number of mean particle and flow field statistics will be discussed. In what follows,

∗ Part of the contents of this chapter have been published in J. Fluid Mech., volume 930, pages A11, under the title On the role
of turbulent large-scale streaks in generating sediment ridges, with M. Uhlmann, A. G. Kidanemariam and M. Krayer as coau-
thors. The publication was selected for a detailed discussion in the ‘Focus on Fluids’ article by Hsu (2022), underlining
the novelty of our work and its relevance in particular for reduced-order modelling.
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Figure 6.1: Sketch of the physical system analysed in the multiphase open channel simulations. Mean flow and gravity are
pointing in positive x- and negative y-direction, respectively. The mean flow profile 〈u f 〉xzt = (〈u f 〉xzt(y), 0, 0)T

is shown in blue, while the green curve represents the wall-normal variation of the mean fluid shear stress τf (y)
and h f and hb denote the local instantaneous fluid and bed height, respectively. Particles are coloured depending
on their location: Bed particles are coloured in black, interface particles in orange to yellow with increasing wall
distance and transported particles are indicated by white colour (cf. section 6.2.1).

we will discuss the striking similarity between large-scale streaks in single- and multiphase simulations
concerning both their lateral organisation and their dynamics. Correlations between the dynamics of
these flow structures and the temporal evolution of the sediment ridges are then computed which
reveal the causal connection between both structures. Finally, the loop back to the mean secondary
flow is closed by showing that the depth-spanning secondary currents are basically the statistical foot-
print of the spatially well-organised large-sale streaks and their associated Reynolds stress-carrying
structures. The analysis closes with a scrutinisation of the sediment ridges in later stages of the sedi-
ment bed evolution in additionally performed simulations featuring strongly constrained streamwise
domain extensions to hinder the rise of transverse sediment bedforms. The observed ‘top-down mech-
anism’ and the dynamics of the large-scale structures over mobile sediment beds are finally discussed
in comparison with the conceptual model of Jiménez (2018) for canonical smooth-wall flows on the one
hand and the linear model proposed by Colombini (1993) on the other hand, which was the matter of
the previous chapter.

6.1 Flow configuration and computational setup

6.1.1 Flow configuration

In the course of this study, we have performed a total number of 16 simulations of turbulent open chan-
nel flow over a mobile sediment bed. The database is supplemented with two reference simulations of
single-phase smooth-wall open channel flow kindly provided by Prof. M. Uhlmann, which have been
performed using the high-order pseudo-spectral method summarised in section 4.3.1 based on Fourier
and Chebyshev expansions in the periodic and wall-normal directions, respectively (Kim et al., 1987).

The physical system under consideration is sketched in figure 6.1. In the remainder of this chapter,
we will refer to a Cartesian coordinate system whose origin is positioned on the bottom wall of the
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channel, such that the coordinates of an arbitrary spatial position x = (x, y, z)T are measured along
the streamwise x-, wall-normal y- and spanwise z-direction, respectively. The components of the fluid
velocity vector field at a spatial position x w.r.t. the Cartesian basis thus read u f (x, t) = (u f , v f , w f )

T.
The fluctuating velocity field u′

f is defined w.r.t. the average in the two statistically homogeneous spatial
directions and time, viz.

u′
f (x, t) = u f (x, t)− 〈u f 〉xzt(y), (6.1)

where angular brackets 〈•〉i represent the averaging operator in the homogeneous directions and/or
time indicated by the respective indices i ∈ {x, y, z, t}. A rigorous definition of the averaging operator
in the current multiphase system is provided in appendix B. Note that the here introduced averag-
ing scheme is shown in an exemplary manner for the three-dimensional velocity field, but is analo-
gously applicable to lower-dimensional fields such as the two-dimensional fluid-bed interface which
will be defined below. In addition to u′

f , let us furthermore introduce the fluctuation of the streamwise-
averaged field w.r.t. the instantaneous plane average, u′′

f , as

u′′
f (y, z, t) = 〈u f 〉x(y, z, t)− 〈u f 〉xz(y, t). (6.2)

In both single- and multiphase simulations, the flow is driven by a time-dependent pressure gradi-
ent Π(t) that ensures a constant fluid mass flow rate per unit width, q f , in the streamwise direction.
The gravitational acceleration vector g is pointing in the negative y-direction, with amplitude g = |g|.
The simulation domain is periodically repeated in the wall-parallel x- and z-directions with funda-
mental periods Lx and Lz, respectively, whereas in the wall-normal direction, it is bounded by a solid
wall at the bottom (no-slip boundary condition) and a flat impermeable and shear-free boundary at
the top that mimics the free surface of the open channel. The wall-normal extent of the simulation
domain is denoted by Ly. In the single-phase simulations, Ly is identical to the mean fluid height
H f , whereas in the sediment-laden flows, the domain consists of two distinct regions, that are, the
particle-dominated subdomain of mean height Hb, henceforth denoted as ‘the sediment bed’, and the
upper fluid-dominated region of mean height H f = Ly − Hb. A rigorous definition of the two distinct
sub-domains and their mean heights will be given in the next section 6.2. In the sediment-laden sim-
ulations, the interface separating the sediment bed and the fluid dominated region takes the role of
a virtual wall (Kidanemariam and Uhlmann, 2014a). For the sake of comparability with the smooth-
wall single-flow cases, we will frequently refer to a shifted wall-normal coordinate ỹ = y − Hb that
reduces to ỹ = y in the single-flow case, where the virtual wall collapses with the physical one. The
wall-normal location of the virtual wall ỹ = 0 is chosen as the position at which the mean wall shear
stress is evaluated. We follow Chan-Braun et al. (2011) and determine the mean wall shear stress τw by
extrapolating the pure-fluid stress

τf (ỹ) = ρ f ν f

d〈u f 〉xzt

dỹ
− ρ f 〈u′

f v′f 〉xzt (6.3)

from the region in the channel bulk where it varies linearly down to the location of the virtual wall
ỹ = 0. The last term on the RHS of equation (6.3) represents the contribution of the Reynolds stresses
to τf and can be further decomposed into a turbulent and a dispersive contribution (Nikora et al.,
2007). The origin of these two contributions in the current simulations will be analysed in section 6.3.9.
Let us remark that for the smooth-wall case in which no bed exists, the Reynolds stresses identically
vanish at the bottom wall and the standard definition of the wall-shear stress τw = τf (ỹ = 0) =

ρ f ν f d〈u f 〉xzt/dỹ|ỹ=0 is recovered.
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The physical system under consideration can be classified by three characteristic length scales in the
featureless case, that are, the outer length scale H f , the particle diameter D and the viscous length δν =

ν f /uτ, where uτ =
√

τw/ρ f is the friction velocity. Following the general conventions, a superscript •+
shall indicate non-dimensionalisation in terms of uτ and/or ν f in the remainder of this work and we
refer to quantities that way normalised as scaled in inner or wall units. Based on the three characteristic
length scales H f , D and δν, we define the friction Reynolds number Reτ = H f /δν = H+

f , the particle
Reynolds number D+ = D/δν and the relative submergence H f /D, respectively. In addition, we
introduce the bulk Reynolds number as

Reb =
q f

ν f
=

ubH f

ν f
, (6.4)

where ub = q f /H f is the bulk velocity. Note that in virtue of the increased parameter space that comes
with the additional degrees of freedom of the mobile particles, dimensional considerations follow-
ing the methodology of Buckingham (1914) imply that two additional non-dimensional numbers are
necessary to describe all relevant parameters of the multiphase system. Here, we choose the Galileo
number Ga = ugD/ν f and the density ratio between the particle and fluid phase, ρp/ρ f = 2.5, where
a value of 2.5 is adopted which is close to the density ratio of glass beads or sand grains in water.
The Galileo number Ga is a specific particle-related Reynolds number in which the gravitational ve-

locity ug =
√
(ρp/ρ f − 1)|g|D and the particle diameter D are chosen as characteristic velocity and

length scales, respectively. The squared ratio of the particle Reynolds number and the Galileo number
is known as Shields number

θ =

(
D+

Ga

)2

=

(
uτ

ug

)2

, (6.5)

which represents the ratio between the bottom shear stress and the apparent weight of a single particle
and, as such, is a measure for the ability of the flow to erode sediment grains of a certain size (Shields,
1936). Alternatively, one might interpret the Shields number as a relative turbulence intensity. A critical
Shields number θc that marks the onset of sediment erosion in a turbulent flow is typically estimated as
θc = 0.03-0.05, with a slight dependence on the Galileo number (Soulsby et al., 1997; Wong and Parker,
2006; Franklin and Charru, 2011). In the current simulations, the Galileo number is chosen for each
simulation individually such that for the expected particle Reynolds number D+, the Shields number
θ is sufficiently larger than θc such that particle motion is guaranteed.

6.1.2 Preparation of the simulations

The initial state of each simulation is prepared following the procedure described by Kidanemariam
and Uhlmann (2014a,b): We first create a macroscopically flat pseudo-randomly arranged sediment
bed by letting settle a certain amount of particles under the action of gravity in a dry-granular simula-
tion – ignoring for the moment hydrodynamic effects – until a quasi-stationary bed at the bottom of the
domain is established. As a controlling parameter, we monitor the particle velocity over the settling
time interval, classifying a bed as being in a quasi-stationary state if the magnitude of all velocity com-
ponents attains negligible values of |Ui,p/ub| ≤ O(10−3) ∀ i = 1, 2, 3. The number of particles included
per simulation is adjusted to obtain the desired value of the relative submergence H f /D, which varies
in the current cases between H f /D ≈ 26 and H f /D ≈ 52. In a next step, the quasi-stationary sediment
bed is exposed to a quiescent fluid to allow for possible relaxation effects under the influence of the

84



6.1 Flow configuration and computational setup

Case Reb Reτ ρp/ρ f Ga D+ H f /D Hb/D H f /Hb θ

CS250H3 3011 259.43 2.5 28.37 9.81 26.43 11.97 2.21 0.12
CM250H3 3011 247.86 2.5 28.37 9.30 26.66 11.74 2.27 0.11
CM650H3

smooth 12100 648.69 - - - - - - -
CM850H3 9483 827.81 2.5 56.68 29.12 28.43 7.13 3.99 0.26
CL250H16

smooth 3350 209.83 - - - - - - -
CL250H16 3012 249.31 2.5 28.37 9.42 26.46 11.94 2.22 0.11

Table 6.1: Physical parameters of the short-time open channel flow simulations. Reb, Reτ and D+ are the bulk, friction and
particle Reynolds numbers, respectively. The density ratio ρp/ρ f and the Galileo number Ga are imposed in each
simulation, whereas the relative submergence H f /D, the relative sediment bed height Hb/D, the fluid to bed
height ratio H f /Hb and the Shields number θ are computed a posteriori (cf. table 6.2).

Case [Lx × Lz]/H f [Lx × Lz]/D D/∆x min(∆y+) Np Tobs/Tb

CS250H3 1.94 × 2.91 51.2 × 76.8 10 0.98 43 730 678
CM250H3 5.76 × 2.88 153.6 × 76.8 10 0.93 127 070 94
CM650H3

smooth 5.33 × 2.67 - - 0.05 0 397
CM850H3 5.00 × 2.50 142.2 × 71.1 36 0.81 92 292 59
CL250H16

smooth 12.00 × 16.00 - - 0.06 0 431
CL250H16 11.61 × 15.48 307.2 × 409.6 10 0.94 1 406 983 84

Table 6.2: Numerical parameters of the short-time open channel flow simulations. The computational domain has dimen-
sions Li in the ith spatial direction and is discretised using a uniform finite difference grid with mesh width
∆x = ∆y = ∆z for the multiphase simulations, while the smooth-wall single-phase simulations were performed
using a spectral method with Fourier and Chebyshev expansions in the periodic and non-periodic directions, re-
spectively, featuring a non-uniform distribution of the grid/collocation points in the three spatial directions. Np is
the total number of particles in the respective case and Tobs is the total observation time of each simulation, starting
from the release of the mobile particles at t = 0. Time dependent physical and numerical parameters in tables 6.1
and 6.2 (Reτ , D+, H f , Hb, θ, ∆y+) are computed as an average over the entire simulation period.

hydrodynamic forces and torque. After the completion of the bed preparation, all particles are fixed
in their position and a fully-turbulent open channel flow at the desired Reynolds number is developed
over the stationary sediment bed until it reaches a statistically stationary state. Note that in order to
limit the computational effort in this preparation phase, the process of developing a statistically sta-
tionary flow has been partly performed on a coarser mesh. Once the desired state was reached in those
cases, the obtained flow field was linearly interpolated to the fine ‘production’ grid for which ∆y+ < 1

and was further integrated in time for a time period O(10Tb) such that the smallest flow scales can
evolve. Here, Tb = H f /ub denote outer-scaled bulk time units. Eventually, the particles are released
again starting from a time which we arbitrarily define as t = 0. Note that this does not include a small
fraction of sediment grains close to the bottom wall that is kept fixed even after t = 0 in order to ensure
a minimal amount of bottom roughness.

6.1.3 Simulation parameter values

A collection of the most relevant physical parameters in the current simulations can be found in ta-
ble 6.1, while additional numerical information is provided in table 6.2. Note that these two tables
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Chapter 6 Turbulent large-scale streaks and sediment ridges in open channel flow

include only those simulations which we will consider for our investigation of the initial ridge evo-
lution. Additional simulations in shorter domains which we have performed in order to analyse the
long-time development of sediment ridges belong to a similar parameter point as case CS250H3 and
their physical and numerical parameters will be provided in a later section 6.3.10 (cf. also the discussion
on the domain length on sediment pattern development below). In the remainder of this thesis, each
simulation is indicated by a unique name that comprises information about the flow configuration (C:
open channel, D: open duct), the size of the computational domain (S: small, M: medium, L: large) and
the friction Reynolds number. For smooth-wall single-phase cases, the name is extended by a respec-
tive subscript. The streamwise and lateral domain sizes have been varied in the range Lx/H f ∈ [2, 12]

and Lz/H f ∈ [2.5, 16], respectively, reaching friction Reynolds numbers Reτ between 210 and 830. The
particle Reynolds number attains values up to D+ ≈ 29, leading (together with the accordingly cho-
sen Galileo number Ga) to Shields numbers θ > 0.11. For the smooth-wall reference simulations, the
friction Reynolds numbers Reτ = 210 and Reτ = 650 were chosen to match those in the multiphase
simulations CL250H16 and CM850H3 in the time period during which particles are still in rest and the
bed is macroscopically flat. Note that the Reynolds number in the particle-laden cases later increase
for both cases to Reτ = 250 and Reτ = 830 in the phase after the particle release (cf. table 6.1) as a
consequence of the increased friction caused by the transport of mobile sediment, the development
of sediment bedforms and the decrease of the bed height (cf. the discussion about figure 6.11 in the
following section). Let us furthermore remark that case CM250H3 is found at the same parameter point
as case H6 of Kidanemariam and Uhlmann (2017), but the currently investigated data represents a new
independent simulation conducted in the context of this study. Due to technical reasons, data in the
first roughly 5Tb of the simulation are not available for the study which, however, does not affect the
validity of the obtained results in later stages of the simulation.

For the here considered range of Shields numbers, initial sediment ridges are seen to rapidly evolve
from the initially flat sediment bed within the first few bulk time units. Simultaneously, also trans-
verse sediment patterns start to arise even though at a markedly slower rate. Nevertheless, these latter
become the dominant sediment bedforms after between 100 and 200 bulk time units, in the sense that
their amplitude is at least twice as large as those of the sediment ridges (Kidanemariam and Uhlmann,
2017). For the investigation of the initial formation of sediment ridges and its connection to large-scale
streaks, the evolution of transverse bedforms does not pose any restrictions as our study focuses merely
on the initial simulation time interval of t/Tb < 100, during which transverse bedforms are still small
enough to be of minor importance. The total observation time intervals Tobs that quantify the time pe-
riod from the onset of particle motion until the end of the simulation are accordingly comparably short.
For the purpose of investigating also the flow over developed sediment ridges and longer time intervals
of O(100Tb), on the other hand, we have performed a second simulation series in which we intention-
ally suppress the evolution of transverse bedforms by choosing strongly restricted streamwise domain
sizes Lx/D < 70. These short domains are not able to accommodate the shortest unstable wavelength
that leads to the formation of initial ripple-like patterns, whose length was recently found to be larger
than 80D at the here considered parameter point (Scherer et al., 2020). As we shall see, indeed none
of the cases in this second series of simulations allows for the growth of transverse bedforms even for
time intervals of about Tobs ≈ 1000Tb. In the first part of our analysis focussing on the initial evolu-
tion of sediment ridges, we include only a single case from this second simulation campaign, namely
case CS250H3, while the remaining cases together with their physical and numerical parameter will be
presented in more detail in section 6.3.10.
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6.1 Flow configuration and computational setup

The idea to study turbulent flows in strongly constrained domains in order to isolate individual fea-
tures of the velocity field is quite common in the turbulence community. The most prominent example
is surely the minimal flow unit in the pioneering work of Jiménez and Moin (1991) which represents
the smallest possible domain that can still accommodate all elements of the self-sustained regener-
ation buffer layer cycle (Hamilton et al., 1995), in their case a single velocity streak flanked by two
quasi-streamwise vortices (cf. the more detailed discussion in section 3.2). The here considered cases
feature, on accord of their varying box dimensions and Reynolds numbers, a wide range of inner-scaled
horizontal box dimensions L+

x and L+
z from small domain simulations whose extensions are of the or-

der of the Jiménez and Moin (1991) minimal flow unit (L+
x ≈ 250-350, L+

z ≈ 100) to the medium and
large domain simulations, in which the boxes have streamwise and spanwise periods of O(1000δν) (cf.
cases CM850H3 and CL250H16). Note that due to the multi-scale nature of the logarithmic layer, min-
imal domains of different size can be found for structures at each distance to the bottom wall, as was
shown by Flores and Jiménez (2010) for closed channels. The result is a self-similar cascade of minimal
boxes, from which the smallest one is the minimal flow unit of Jiménez and Moin (1991) and a further
reduction in size directly leads to the relaminarisation of the flow. The largest minimal domain, on
the other hand, is that related to the largest flow structures at the centreline of the channel, for which
Flores and Jiménez (2010) estimated a minimal box width of Lz/H f ≈ 3. A comparison of the outer-
scaled box width Lz/H f in our simulation shows that all simulations in table 6.1 are approximately
wide enough to host at least a single full regeneration cycle of the largest log-layer streaks. Surely, the
comparison to our open channel is limited in the vicinity of the free surface, but it should give a good
estimate for the rest of the domain (Bauer et al., 2022). The here discussed small domain simulations,
in turn, resemble the ‘streamwise-minimal’ channel simulations of Toh and Itano (2005) and Abe et al.
(2018), whose intention was to study the interaction of small- and large-scale structures. To this end,
they limited only the streamwise domain length to a value for which L+

x is just long enough to maintain
the buffer layer process while L+

z was clearly larger than the minimal value of about 100 wall units. For
the considered Reynolds numbers, Lx/H f was at the same time much shorter than the typical length
of the large-scale structures, such that these features can be considered as infinitely long due to the
missing spatial de-correlation.

To the best of the author’s knowledge, the current database includes with simulation CM850H3 (Reτ ≈
828) the highest ever obtained Reynolds number in a simulation laden with a large amount of fully-
resolved particles, and with case CL250H16 the largest number of fully-resolved particles simulated
so far in a DNS-based study of sediment transport. The former simulation CM850H3 was performed
in close cooperation with M. Krayer, who organised the execution of the simulations on the super-
computers Hazel Hen and Hawk at the supercomputer centre HLRS in Stuttgart. Needless to say, the
computational demands of such particle-laden simulations in large domains and/or at considerable
Reynolds numbers are immense: The investigated simulation interval of around 60 bulk time units in
case CM850H3 alone consumed a total amount of approximately nine million CPU hours, including a
number of around 16.8 billion grid nodes.
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6.2 Fluid-bed interface and bedform dimensions

6.2.1 Extraction of the fluid-bed interface

In the following, we shall define a continuous two-dimensional fluid-bed interface that separates the
sediment bed from the fluid-dominated region above it. Different concepts have been developed in
the past to approximate the surface of the discretely-spaced particle set forming the sediment bed in a
smooth and continuous way, for instance, by identifying the interface with the wall-normal location at
which a threshold for the solid volume fraction is attained (Kidanemariam and Uhlmann, 2014a, 2017).
The attractiveness of the latter approach lies in the fact that it does not require knowledge of individual
particle positions which are often impossible to record in experiments, whereas instantaneous visual-
isations of the solid volume fraction can be obtained, for instance, by illuminating the measurement
section with a laser sheet while simultaneously filling the domain with dye, such that a binary image
of particle and fluid regions can be taken (Lobkovsky et al., 2008; Kidanemariam, 2016). This works
quite well if the goal is, as in Kidanemariam and Uhlmann (2014a), to extract the spanwise-averaged
fluid-bed interface, but has limitations if we are instead interested in the full two-dimensional surface.
The problematic point is that the continuous solid volume fraction field is by definition an average over
a given set of particles in a well-defined spatial subdomain. In the context of the spanwise-averaged
field, the discrete particle positions can be averaged over bins of width Lz such that a continuous solid
volume fraction is directly obtained. For the extraction of the full two-dimensional surface, on the other
hand, it would be necessary to subdivide the whole domain into small cubic bins with dimensions suf-
ficiently larger than D, such that each bin contains a sufficient number of samples to guarantee a more
or less smooth variation of the solid volume fraction. This might not pose any restriction in systems
where D ≪ H f , whilst in the current simulations where the domain extensions are Li/D = O(10-100)

(i = x, y, z), it would not allow to resolve the local shape of the fluid-bed interface in a smooth way.
Here, we therefore use a different technique to extract the two-dimensional surface from instantaneous
particle datasets which has been developed in collaboration with M. Krayer and was first published in
Scherer et al. (2020), with M. Uhlmann and A. G. Kidanemariam as coauthors.

To this end, we first decompose the wall-normal extent of the domain Ly for each point of the xz-plane
in two contributions

Ly = hb(x, z, t) + h f (x, z, t), (6.6)

where hb and h f are the local bed height and thickness of the fluid-dominated region, respectively. In
the adopted Cartesian coordinate system, the local wall-normal position of the fluid-bed interface then
collapses with hb(x, z, t). To obtain a continuous representation of the sediment bed surface from a
set of discrete particle positions, we first detect a set of ‘interface particles’ which form the uppermost
layer of the sediment bed by an algorithm that will be outlined below. From these interface particles,
a continuous two-dimensional manifold is then reconstructed by means of a triangulation between
the interface particles’ centres followed by an interpolation to a regular uniform grid. The sorting-
algorithm applied in the first step is based on the standard morphological classification in bed particles
and mobile particles, from which the latter may be transported in the bedload or suspended load layer
(Bagnold, 1956; van Rijn, 1984). Potential candidates for ‘bed particles’ should feature both a negligible
kinetic energy (|U p|/ug)2 and a non-vanishing wall-normal contact force FC

y /FW , as all particles inside
the densely-packed bed are necessarily in contact with at least one neighbouring particle and thus feel
a non-trivial contact force. Here, FW = (ρp − ρ f )|g|πD3/6 denotes the submerged weight of a single
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6.2 Fluid-bed interface and bedform dimensions

(a)

(b) (c)

Figure 6.2: Conceptual sketch of the fluid-bed interface extraction. (a) Three-dimensional visualisation of the sediment par-
ticles classified into bed particles (black), interface particles (orange to yellow with increasing wall distance) and
transported particles (white). At the downstream end of the domain, the sediment bed is overlain by the two-
dimensional surface that represents the fluid-bed interface, the colour ranging from dark to bright blue with
increasing height. (b) View on the sediment bed from the top of the channel. (c) Same view on the extracted mean
fluid-bed interface.

spherical particle. Note that the normalised particle kinetic energy can be alternatively interpreted as
a particle-related Shields number, therefore it is natural to choose as a threshold for (|U p|/ug)2 a value
similar to θc. In practice, a velocity threshold of (|U p|/ug)2 = 0.05 and a force threshold FC

y /FW = 10−5

are used, but the procedure has been shown to be not strongly sensitive to the choice of these two
parameters.

All particles that match the formulated requirements are classified as being part of the sediment bed.
From this set of bed particles, we choose in the second step only those that are part of the uppermost
sediment layer, the interface particles. This is done geometrically, using the α-shape algorithm of Edels-
brunner and Mücke (1994), which is conceptually similar to a conventional convex hull around a set
of points, but offers more flexibility than the classical method concerning the convexity requirements
of the enclosing hyper-surface: The α-shape allows non-convexity for length scales larger than some
threshold radius αs (here taken as 1.1 times the particle diameter), while it is strictly convex for length
scales smaller than this threshold. Applying the α-shape algorithm to the set of bed particles, an enclos-
ing surface can be generated by means of triangulation. Nodes of the triangulation that represent the
centres of interface particles are those which bound triangulation cells that feature an outward point-
ing normal with a positive y-component. In a final step, the information about the local wall-normal
position of the interface is transferred to a regular equidistant Eulerian grid in the xz-plane with sam-
pling width of 1D by means of linear interpolation. An exemplary visualisation of the bed, interface
and mobile particles together with the generated fluid-bed interface is provided for a randomly chosen
instantaneous field in figure 6.2.
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Chapter 6 Turbulent large-scale streaks and sediment ridges in open channel flow

6.2.2 Quantification of the bedform dimensions

In an abstract sense, we can interpret the development of sediment bedforms as growth of wave-like
deformations of the just defined two-dimensional surface that represents the fluid-bed interface. In
this context, we will thus quantify the wall-parallel and wall-normal bedform dimensions as wave am-
plitude and wavelengths, respectively. To quantify the size and evolution of streamwise and spanwise
bedforms separately, we will study the amplitude and wavelength of the streamwise- and spanwise-
averaged interfaces 〈hb〉x(z, t) and 〈hb〉z(x, t) in the following individually.

In this context, the ridge height is determined following a statistical approach based on the root
mean square of the sediment bed height fluctuations (Langlois and Valance, 2007; Kidanemariam and
Uhlmann, 2017), viz.

σh,z(t) =
[
〈h′′b (z, t) h′′b (z, t)〉z

]1/2
. (6.7)

A measure for the height of transverse bedforms is analogously defined as σh,x, based on the fluctua-
tions of the spanwise-averaged interface. Note that the statistical ansatz chosen in the current work is
only one possible way to define a characteristic height of sediment bedforms, and a number of alterna-
tive approaches is summarised in Coleman and Nikora (2011).

The lateral spacing of the sediment ridges is quantified in terms of the mean spanwise wavelength of
the sediment bed, λh,z. It is defined based on the instantaneous two-point correlation coefficient

ρhh(δz, t) = 〈h′′b (z, t) h′′b (z + δz, t)〉z/σ2
h,z(t), (6.8)

where δz denotes the spanwise separation between two positions. For a given time t, we identify the
mean wavelength as twice the separation length for which ρhh attains its first and global minimum,

ρhh(δzmin, t) ≤ ρhh(δz, t) ∀ δz ∈ [0, Lz/2]

λh,z(t) = 2δzmin

}
. (6.9)

6.2.3 Quantification of the particle transport

In contrast to the fluid phase, physical information of Lagrangian properties in the dispersed phase
exist only at discrete locations in space. To obtain particle statistics in the current Eulerian observation
framework, we apply a binning technique similar to that of Kidanemariam (2016), but generalised
to the two-dimensional case. The wall-parallel periodic directions are discretised in bins of width
∆xbin = ∆zbin ≈ 1.5D spanning over the entire wall-normal box length Ly, resulting in a number of
Nx,bin and Nz,bin bins in the streamwise and spanwise direction, respectively. Then, the local particle
flux in the (i, k)th bin (1 ≤ i ≤ Nx,bin, 1 ≤ k ≤ Nz,bin) is defined as the volumetric particle flow rate
averaged over that bin, i.e. the sum of the particle velocity of all particles centred in the bin at time t

times the particle volume divided by the bin base area ∆xbin∆zbin, viz.

qp(xi, zk, t) =
Vp

∆xbin∆zbin

Np

∑
l=1

U
(l)
p (t) I

(l)
(i,k)

(t). (6.10)
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Here, qp = (qp,x, qp,y, qp,z)T is the particle flux vector and U
(l)
p is the Lagrangian velocity vector associ-

ated with particle l, respectively. The streamwise and spanwise coordinates of the (i, k)th bin centre are
xi = ((i − 1) + i)∆xbin/2 and zk = ((k − 1) + k)∆zbin/2, respectively. I

(l)
(i,k)

(t) is an indicator function
that is unity if the lth particle is centred in the (i, k)th bin, i.e.

I
(l)
(i,k)

(t) =





1 if (i − 1)∆xbin < X
(l)
p (t) ≤ i∆xbin

∧ (k − 1)∆zbin < Z
(l)
p (t) ≤ k∆zbin

0 else

. (6.11)

It should be recalled that the particle flux as an integral measure does not reflect the variation of the
particle transport intensity over the channel height. For this purpose, we additionally define the cor-
responding streamwise particle flux density as

〈φup〉xz(yj, t) =
Vp

LxLz∆ybin

Np

∑
l=1

U
(l)
p (t) I

(l)
(j)
(t), (6.12)

where yj = ((j − 1) + j)∆ybin/2 for all 1 ≤ j ≤ Ny,bin represents the wall-normal location of the jth bin

centre and the corresponding indicator function I
(l)
(j)
(t) is defined in analogy to I

(l)
(i,k)

(t) as

I
(l)
(j)
(t) =





1 if (j − 1)∆ybin < Y
(l)
p (t) ≤ j∆ybin

0 else
. (6.13)

Similar to the previous definitions, we have subdivided the wall-normal box length Ly into Ny,bin bins
with however smaller bin height ∆ybin ≈ 0.5D, spanning over the entire box length and width Lx and
Lz, respectively. By definition, the following relation holds (Lobkovsky et al., 2008; Chiodi et al., 2014):

〈qp,x〉xzt =
∫ Ly

y=0
〈φup〉xztdy. (6.14)

6.3 Interaction of turbulent large-scale streaks and sediment
ridges

In the classical literature on morphodynamics, sediment ridges are usually described as “parallel to
each other, of little relief, and of a uniform transverse spacing” (Allen, 1968). The sediment ridges in
the current simulations share all these features. As can be seen from the instantaneous sediment bed
snapshots in figure 6.3, the sediment bed surface is covered by laterally alternating ridges and troughs
with bedform heights between one and two particle diameters, thereby confirming for the first time
numerically earlier theoretical predictions that a sidewall-induced mean secondary flow is not neces-
sary for the evolution of sediment ridges (Ikeda, 1981). The observed bedforms are essentially parallel
to the streamwise direction and span over the entire streamwise domain length Lx, which is in good
agreement with experimental observations according to which sediment ridges can reach streamwise
extensions of up to O(10H f − 100H f ) (Wolman and Brush, 1961). The number of sediment ridges that
form per simulation naturally depends on the size of the computational domain. The narrow computa-
tional boxes with a lateral domain period Lz/H f ≈ 3 are capable of accommodating between one and
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(a) (b)

(c) (d)

(e) (f )

Figure 6.3: Instantaneous visualisation of (a,c,e) the evolved sediment ridges compared with (b,d,f ) the instantaneous distri-
bution of three-dimensional Reynolds stress-carrying Q− structures. The latter are characterised as connected
regions fulfilling | − u′

f (x, t)v′f (x, t)| > H u f ,rms(y)v f ,rms(y) with H = 1.75 (Lozano-Durán et al., 2012). Ejection
structures are indicated by reddish colours, while sweeps are coloured in blue, with brighter colours indicating
a larger distance to the bottom wall. Particles are coloured depending on their wall-normal location, ranging
form dark to light brown with increasing coordinate y. For the sake of clarity, only bed and interface particles are
shown, following the classification established in section 6.2.1. In each panel, flow is from bottom left to top right.
(a,b) CM250H3 (t/Tb = 40), (c,d) CM850H3 (t/Tb = 59), (e,f ) CL250H16 (t/Tb = 85).

two ridges, whereas the large domain of CL250H16 exhibits between nine and ten individual bedforms.
We can therefore consider the small to medium domains as close to minimal in the context of the num-
ber of available ridges, which shall be favourable for the subsequent analysis in that individual ridges
and their relation to turbulent coherent structures can be investigated individually, without possible
merging or splitting effects between individual bedforms. The large domain simulation CL250H16, on
the other hand, contains a sufficient number of individual ridges to allow statements on the collective
behaviour of the bedforms.

In order to give a first qualitative impression on how large-scale turbulent structures are organised in
comparison to the spanwise locations of the bedforms, we have supplemented to figure 6.3 instanta-
neous visualisations of the Reynolds stress-carrying ejection (u′

f < 0, v′f > 0) and sweep structures
(u′

f > 0, v′f < 0) (collectively termed as Q−’s) introduced by Lozano-Durán et al. (2012) as a generalisa-
tion of the classical quadrant analysis (Wallace et al., 1972) to three dimensional objects. We follow the
former study and define coherent ejection and sweep structures as connected subdomains for which
| − u′

f (x, t)v′f (x, t)| > H u f ,rms(y)v f ,rms(y) holds with H = 1.75 and u f i,rms =
√
〈u′

f iu
′
f i〉xzt. The lateral

organisation of the large-scale ejection and sweep structures correlates remarkably well with that of
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Figure 6.4: Space-time plot of the streamwise-averaged sediment bed height fluctuations h′′b (z, t)/D. Blue and red regions re-
fer to troughs and crests of the streamwise-averaged fluid-bed interface profiles, respectively. Cases: (a) CS250H3,
(b) CM250H3, (c) CM850H3, (d) CL250H16.

the underlying sediment ridges and troughs, with ejections predominantly located above regions of
weaker erosion, i.e. ridges, and sweep structures mainly found over troughs where erosion is more
intense. This is in accordance with the findings of Gyr and Schmid (1997) who concluded that parti-
cle erosion is mainly due to instantaneous sweep events that are directed towards the wall (Jiménez,
2018). Recalling that ejections and sweeps live in the longer large-scale streaks of low- and high-speed
streamwise velocity, respectively, we conclude that the preferential lateral position of sediment ridges
is below the large-scale high-speed streaks and vice versa for the troughs. Similar visualisations of these
large-scale streaks that are omitted here show that this is indeed the case.

6.3.1 Sediment ridge evolution

In all simulations, the sediment ridges are seen to evolve from the initially flat sediment bed within
the first few bulk time units after the onset of particle motion, solely under the action of the turbulent
structures. Figure 6.4 illustrates this initial pattern growth by providing the space-time evolution of
the fluctuations of the streamwise-averaged sediment bed height fluctuation, h′′b (z, t). Interestingly, the
initial sediment patterns evolve at different spanwise locations more or less simultaneously and thus
independently from each other. During the initial phase of the first about 20 bulk time units, their
mean lateral spacing is somewhat smaller than the range of values 1H f -2H f reported in the literature
(Wolman and Brush, 1961; McLelland et al., 1999). Advancing in time, however, individual ridges are
seen to merge in a kind of bedform coalescence, leading to a net reduction of the total number of bed-
forms and an increasing spanwise spacing which agrees now reasonably well with the experimentally
determined values. Note that an exact match of the lateral separation is not necessarily expected as
the ridges studied in most experiments represent quasi-asymptotic states of the sediment bed. These
latter are reached after evolution phases whose length differs by several orders of magnitude from the
current observation time interval, in which the initial sediment ridges are still in a transient state. Also,
most experimental studies have been conducted in laboratory flumes with narrow to intermediate as-
pect ratio, such that the sediment ridges are additionally exposed to the influence of a sidewall-induced
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Figure 6.5: Time evolution of fluid-bed interface dynamics. (a) Root mean square of the fluctuation of the streamwise-
averaged (σh,z/D, ) and spanwise-averaged fluid-bed interface (σh,x/D, ). (b) Mean sediment ridge wave-
length λh,z/H f . Horizontal dashed lines of matching colour mark the lateral domain size Lz/H f , while the black
solid line refers to the most-amplified wavelength determined in the linear stability analysis of Colombini (1993, cf.
chapter 5). (c) Decrease of the mean sediment bed height w.r.t. the initial bed height, ∆H = 〈hb〉xz(0)− 〈hb〉xz(t),
as a function of time. Cases: CS250H3 ( ), CM250H3 ( ), CM850H3 ( ), CL250H16 ( ).

secondary flow. The impact of lateral domain boundaries and the related secondary currents on the
evolution of sediment ridges will be the main topic of the following chapter 7.

After approximately 40 bulk time units, the number of splitting and merging events visible in figure 6.4
clearly reduces. The remaining developed ridges feature a higher amplitude and a relatively stable
mean spanwise position not only in the narrow domains, but also in the wide domain of case CL250H16.
This, in turn, highlights that the regular stable arrangement of quasi-parallel sediment ridges is a fun-
damental property of this class of bedforms rather than an artefact due to the limited domain size in
the narrow cases.

Figure 6.5(a,b) shows the time evolution of the root mean square of the sediment bed height fluctua-
tion σh,z(t) and of the mean spanwise wavelength λh,z(t), respectively, which are measures of the mean
ridge height and of their lateral mean spacing (cf. the definitions in section 6.2.2). In agreement with
the space-time plots in figure 6.4, it is observed that σh,z increases with time during the first approxi-
mately 40 bulk time units. While in the first about 10 bulk time units, this growth is predominantly due
to the rise of individual low-amplitude ridges, the further increase in the subsequent phase is assumed
to be a consequence of pattern merging events that have been observed in the space-time visualisa-
tions. Here, the initial growth rate differs markedly between the low Reynolds number cases CS250H3,
CM250H3 and CL250H16 on the one hand and the high Reynolds number case CM850H3 on the other
hand. This difference most likely originates in the higher Shields number in case CM850H3 that causes
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a higher erosion rate and hence a faster initial growth of the first-appearing ridges. For the sake of
comparison, panel 6.5(a) provides also the time evolution of σh,x that represents the mean amplitude
of bed perturbations related to transverse ripple-like bedforms. In accordance with our earlier obser-
vations in figure 6.3, the modes related to transverse bedforms maintain a sufficiently small amplitude
to have no significant influence on the discussed statistics throughout the considered time intervals.

The varying number of individual ridges in the beginning of the observation interval manifests itself
in form of oscillations of the mean spanwise wavelength λh,z for times t/Tb < 40 in panel 6.5(b). For
t/Tb > 40, on the other hand, the mean wavelength settles in all four cases to a finite value without
further strong oscillations, attaining final values of 1.47H f (CS250H3), 1.14H f (CM850H3) and 1.44H f

(CL250H16). These values are comparable to the most amplified wavelength λh,z = 1.3H f determined in
the ‘linear response analysis’ of Colombini (1993) discussed in chapter 5. Only case CM250H3 attains a
somewhat lower final value of 0.76H f as it features three individual sediment ridges in the final phase
of the simulation, as was already identified in the corresponding space-time plot in figure 6.4. The
continuous erosion of sediment grains along the sediment bed leads to a successive reduction of the
sediment bed height, as can be seen in panel 6.5(c). As expected, the higher Shields number and the
consequently enhanced erosion rate in CM850H3 leads to a stronger reduction of the sediment bed
height of approximately one particle diameter within the first ten bulk time units of the simulation.
In other words, the uppermost particle layer of the sediment bed is more or less entirely set in motion
during this initial phase. This is contrasted by the moderate reduction of the mean sediment bed height
of less than 0.25D observed in the remaining cases that feature a lower Shields number. After the initial
phase of particle mobilisation, the sediment height settles at least temporarily to a more or less constant
value, indicating a quasi-stationary state of the system in this phase.

6.3.2 Sediment transport

Simple considerations concerning the mass conservation of the dispersed phase imply that the ini-
tial reduction of the sediment bed height is necessarily correlated with an increase of the streamwise
particle flux 〈qp,x〉xz(t) that can be seen in figure 6.6 (for the definition of qp see equation (6.10)).
In panel 6.6(a), the particle flux is scaled in terms of the inertial scale ug D as it is common prac-
tice in the classical morphodynamic literature; the resulting non-dimensional volumetric particle flux
〈qp,x〉xz/(ug D) is also known as the Einstein number (Wong and Parker, 2006). Similar to the mean
sediment bed height, the particle flux increases rapidly after the particle release before it settles at a
quasi-stationary state, which is in case CM850H3 however accompanied by marked oscillations. For
simulation time intervals longer than those considered here, the particle flux will continue growing
as the bottom friction further increases due to the rising transverse bedforms (Kidanemariam, 2016;
Kidanemariam et al., 2022). Note that the normalisation of the particle flux with the inertial scale does
not take into account the variation of the Shields number between the cases and over time, such that
case CM850H3 features a roughly ten times higher Einstein number than the lower Reynolds number
cases.

In panel 6.6(b), the particle flux is therefore instead normalised by a reference flux that has been esti-
mated by the empirical formula of Meyer-Peter and Müller (1948) in the modified form of Wong and
Parker (2006), viz.

qre f /(ug D) = 4.93(θ(t)− θc)
1.6, (6.15)
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Figure 6.6: Mean streamwise particle flux 〈qp,x〉xz as a function of time normalised by (a) the inertial scale ugD and (b) the
reference particle flux qre f computed based on the Wong and Parker (2006) version of the classical formula of
Meyer-Peter and Müller (1948). That is, qre f /(ug D) = 4.93(θ(t)− θc)1.6, with the critical Shields number θc =
0.034 (Soulsby et al., 1997). (c) Streamwise particle flux 〈qp,x〉xz/(ugD) as a function of the excess Shields number
θ(t)− θc. Each data point represents the short-time average over subintervals of 5Tb, with time increasing along
each line from left to right as indicated by the arrows. The dashed diagonal line represents the Wong and Parker
(2006) reference flux qre f /(ug D). (d) Mean particle flux density 〈φup〉xzt/(qre f /D) as a function of the wall-
normal distance to the mean fluid-bed interface. The inset shows the same quantity in the near-bed region, with
the wall-distance scaled in terms of the particle diameter D. Cases: CS250H3 ( ), CM250H3 ( ), CM850H3 ( ),
CL250H16 ( ).

where we have chosen a critical Shields number of θc = 0.034 (Soulsby et al., 1997). While in the initial
transient, the empirical relation fails to correctly predict the particle flux in the simulations by a factor
up to three for case CM850H3, it reasonably well approximates the mean particle flux in the later phase
t > 40Tb. Kidanemariam and Uhlmann (2017) found a similarly good agreement between the particle
flux estimated with relation (6.15) and their data of the mean particle flux over developed transverse
patterns, even though the relation was originally developed for particle transport over macroscopically
flat sediment beds.

The reason for the underestimation of the particle flux in the initial transient phase using empirical
formula of Wong and Parker (2006) is seen in panel 6.6(c), where the particle flux 〈qp,x〉xz/(ug D) is
presented as a function of the time-dependent excess Shields number θ(t)− θc. For the sake of clarity,
particle flux and Shields number have been averaged over short time intervals of 5Tb length, such
that each symbol represents the mean value over such a short time window. It becomes evident that
the particle flux increases faster than the non-dimensional shear stress in form of the Shields number
during the initial transient, with the consequence that the empirical flux that is indicated by the dashed
diagonal line underpredicts the actual particle flux. Advancing in time, however, the particle flux
reveals no further strong increase whereas the Shields number continues growing, such that the values
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Figure 6.7: Spanwise variation of the ensemble-averaged mean streamwise and lateral particle flux, exemplary for
case CL250H16. (a) Streamwise particle flux 〈qp,x〉xt,ens/(ug D) ( • ). (b) Ratio between the particle flux
component tangential to the ensemble-averaged mean fluid-bed interface and the streamwise component,
〈qp,lat〉xt,ens/〈qp,x〉xt,ens ( • ), and ratio between the tangential and the streamwise ensemble-averaged fluid ve-

locity component 〈wlat
f 〉xt,ens/〈u f 〉xt,ens in the near bed region ( • ), extracted at a wall-normal distance of 1D

to the ensemble-averaged mean fluid-bed interface. The data is approximated by the empirical relation (6.17)
choosing a parameter c = 0.09 ( ) which has been found to best approximate the simulation data. The presented
simulation data represents the ensemble average over nine individual ridges and the time interval t/Tb ∈ [20, 85].
The corresponding mean fluid-bed interface is shown in the bottom panels. Note that for the sake of visualisation,
the wall-normal extension of the ridge is therein exaggerated and thus the axes are not to scale.

observed in the simulations approach the empirically estimated ones. The fact that the Wong and
Parker (2006) formula is well suited when the particle flux is in a quasi-stationary phase while it fails
in highly transient situations has been recently reported by Mazzuoli et al. (2019) for oscillatory flows.
In such situations, the permanently changing flow conditions lead to significant errors of the empirical
relation compared to the instantaneous particle flux in the simulation.

Panel 6.6(d) shows the wall-normal profile of the mean particle flux density 〈φup〉xzt(y) (cf. equa-
tion (6.12)). Since the parameter points of the investigated simulations are all found in the bedload-
dominated regime, sediment is predominantly transported within a layer of thickness O(D) above
the bed in form of rolling, sliding or jumping (saltating) motion, losing the contact to the bed only
for short times (van Rijn, 1984). Defining the height of the bedload layer as the global maximum of
〈φup〉xzt(y) (Chiodi et al., 2014), it is seen that the thickness of the bedload layer increases with the
Shields number θ, such that in case CM850H3 a layer of approximately 0.25H f thickness above the bed
reveals a non-negligible particle flux density; this is approximately 1D more than the value observed
in the remaining lower Reynolds number cases.

The spanwise variation of the mean particle flux along the topography of the sediment bed is shown in
figure 6.7. In order to increase the amount of samples for the statistical analysis, data has been addition-
ally ensemble-averaged over nine individual ridges of case CL250H16. Quantities that are averaged in
this way are in the following indicated as 〈•〉·,ens. A new coordinate z̃ is accordingly introduced, which
represents the relative lateral distance to the crest (global maximum) of the ensemble-averaged mean
fluid-bed interface. In that framework, we determine the contribution of the cross-stream particle flux
tangential to the mean fluid-bed interface as

〈qp,lat〉xt,ens(z̃) = sin(αb)〈qp,y〉xt,ens + cos(αb) 〈qp,z〉xt,ens. (6.16)
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Let j(z̃) and k(z̃) be unit vectors normal and tangential to the ensemble-averaged mean fluid-bed in-
terface in the cross-plane at a given spanwise location z̃, respectively. Then, αb(z̃) denotes the local
inclination of the ensemble-averaged sediment bed contour at this position, that is, the angle between
k(z̃) and the spanwise direction. The currently observed sediment ridges reveal a mild slope with
typically small angles |αb| = O(1°) such that the deviation between 〈qp,lat〉xt,ens and 〈qp,z〉xt,ens is com-
parably small.

The lateral variation of the ensemble-averaged streamwise particle flux 〈qp,x〉xt,ens is presented in
panel 6.7(a), where it is seen that the streamwise particle transport attains its maximum over the
troughs of the sediment bed profile, while it is weakest over the crest of the sediment ridge. The
lateral particle flux 〈qp,lat〉xt,ens shown in panel 6.7(b) is on average two orders of magnitude smaller
than the corresponding streamwise particle flux 〈qp,x〉xt,ens in all simulations. It is directed from the
troughs towards the crests in consequence of the weak but finite transverse fluid motion associated
with the mean secondary flow, thereby supporting the growth of local ridges and the deepening of
the corresponding troughs. In theoretical studies, the spanwise particle transport is commonly deter-
mined as a fraction of the streamwise sediment flux (Blondeaux and Seminara, 1985; Colombini and
Stocchino, 2012), which, in turn, is obtained using empirical relations such as the afore-discussed for-
mulae of Meyer-Peter and Müller (1948) and Wong and Parker (2006). A popular empirical relation
that estimates the ratio between spanwise and streamwise particle fluxes is, for instance, the following
formula originally presented by Ikeda (1982) and further developed by Parker (1984):

〈qp,lat〉xt(z̃)

〈qp,x〉xt(z̃)
=

〈wlat
f 〉xt(z̃)

〈u f 〉xt(z̃)
− c√

〈θl〉xt(z̃)
tan(αb(z̃)). (6.17)

In the previous chapter 5, the same model approach was already used in the context of the linear sta-
bility analysis of Colombini (1993). Note that several other relations of comparable form as equation
(6.17) but with varying exponents and pre-factors have been proposed in the past decades, from which
a few are summarised in Sekine and Parker (1992). In equation (6.17), the first term on the RHS de-
scribes the angle of the near-bed velocity w.r.t. the streamwise direction, extracted in the direct vicinity
of the sediment bed. Recalling that the fluid-bed interface is determined based on the centre of gravity
of the individual interface particles, the minimal distance between the fluid-bed interface and mobile
particles is roughly 1D. The near-bed velocity components are therefore extracted at a wall-normal dis-
tance of 1D above the ensemble-averaged mean fluid-bed interface 〈hb〉xt,ens(z̃). A local Shields number
θl(x, z, t) is further introduced based on the total shear stress τtot(x, t) extracted along the fluid-bed in-
terface. A rigorous definition of the total shear stress will be given in equation (6.39) in section 6.3.9
below. Relation (6.17) indicates that along a laterally sloping bed, the orientation of the mean parti-
cle flux deviates from the direction of the near-bed shear stress (represented by the first term on the
RHS) as a consequence of gravitational effects which counteract the uphill particle motion driven by
the secondary flow (Parker, 1984; Seminara, 2010). The amplitude of the counteracting gravity term
is therein controlled by an empirical coefficient c, whose exact value remains a matter of discussion
in the respective literature: While originally estimated in a range c = 0.5-0.6 (Engelund, 1981), most
studies on linear bedform stability adopt a somewhat lower value of c = 0.3 (Colombini et al., 1987;
Colombini, 1993), as proposed by Olesen (1983). More recently, Colombini and Stocchino (2012) used
a value of c = 0.1 in the framework of a linear stability analysis of three-dimensional bedforms due
do a better match with experimental data. As stressed by the latter authors, the exact value of c might
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additionally depend on the wall-normal distance to the mean fluid-bed interface at which the shear
stress is extracted.

In this context, it should be noted that models of the form of relation (6.17) were also derived from
theoretical considerations, evaluating the balance of all forces that act on a single spherical particle on
a sloping ground, comprising contributions from drag, lift, gravitational and bottom resistive forces.
For small lateral inclination angles as in the current case, linearised formulations assuming sin(αb) ≈
tan(αb) have been derived for instance by Kikkawa et al. (1976), whose model was later generalised by
Parker and Andrews (1985) to obtain

〈qp,lat〉xt

〈qp,x〉xt
=

〈wlat
f 〉xt

〈u f 〉xt
− 1 + rbµb

µb

( 〈u f 〉xt − 〈up〉xt

〈u f 〉xt

)
tan(αb) (6.18a)

≈
〈wlat

f 〉xt

〈u f 〉xt
− 1 + rbµb

µb

(
θc

〈θl〉xt

)1/2

tan(αb), (6.18b)

with a coefficient rb that describes the ratio between particle lift and drag force and a dynamic Coulomb
friction coefficient µb associated with the motion of a spherical particle on the rough bed. For the case
of arbitrarily sloping beds with non-negligible inclination angles, a more elaborate model has been
derived by Parker et al. (2003) that reduces to relations (6.18a) and (6.18b) for streamwise horizontal
beds with small transverse slope. Comparing equations (6.17), (6.18a) and (6.18b), we obtain a relation
connecting the three parameters c, rb and µb as

c =
√
〈θl〉xt

1 + rbµb

µb

〈u f 〉xt − 〈up〉xt

〈u f 〉xt
≈ 1 + rbµb

µb

√
θc. (6.19)

The deviation angle between the particle flux and the near-bed velocity is also observed for the ensemble-
averaged simulation results in panel 6.7(b): The normalised transverse variation of the lateral near-bed
fluid velocity 〈wlat

f 〉xt,ens/〈u f 〉xt,ens is in phase with that of the corresponding particle flux, but it at-
tains somewhat larger amplitude values than the ratio between the particle flux components. Here,
〈wlat

f 〉xt,ens is the lateral fluid velocity component, defined in analogy to equation (6.16). The devia-
tion between both ratios is seen to be strongest roughly half-way between trough and crest where the
transverse slope tan(αb) is highest and, thus, the downward directed force component due to gravity
attains the largest values.

In order to compare the simulation results with these empirical models, we consider equations (6.17)
to (6.19) and set θc = 0.034. Choosing the lift to drag force ratio as rb = 0.2 based on the results of
Chan-Braun et al. (2011) for fixed, regularly arranged particles at a comparable parameter point as in
the current simulations, a parameter value c = 0.09 very similar to the one adopted by Colombini and
Stocchino (2012) is found to best fit the simulation data (cf. figure 6.7(b)). Recomputing the correspond-
ing friction coefficient using equation (6.19), however, leads to a much larger value µb ≈ 3.2 than the
commonly applied values µb ≈ 0.7 (Parker, 1984). Choosing a value of µb = 0.7 in equation (6.18a),
on the other hand, clearly overpredicts the amplitude of the counteracting gravitational term in the
simulations.

In order to clarify the reasons for the deviation between the current simulation results and the model
of Parker and Andrews (1985), further simulations and a detailed investigation of the force compo-
nents acting on individual mobile particles on sloping beds would be required. In particular, it would
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be necessary to perform a careful sensitivity analysis that ascertains the influence of the individual
parameters on the predicted results; this includes in particular the chosen values of µb and θc as well
as the distance to the mean fluid-bed interface at which the relevant quantities are extracted. While
unfortunately out of the scope of the current work, such a detailed analysis of lateral particle transport
represents an interesting question for a future study. Also, note that – strictly speaking – the above dis-
cussed models are derived for particles that are in permanent contact with the bed in form of rolling
or sliding motion, while they do not capture sediment saltation. Some attempts have been made to
develop empirical relations based on particle saltation models (Sekine and Kikkawa, 1992; Sekine and
Parker, 1992; Niño and García, 1994; Niño et al., 1994), but the validity of some of the underlying as-
sumptions, namely the so-called ‘Bagnold hypothesis’, is questionable (Seminara et al., 2002).

6.3.3 Eulerian particle force fields

In order to erode sediment from the surface of the bed, a sufficient net force or torque has to act on
the individual particles. The total force exerted on a single particle comprises, aside from buoyancy
effects, a hydrodynamic as well as a contact force component, reflecting the two main mechanisms
that are causing mobilisation of sediment grains: hydrodynamic drag and lift forces induced by the
turbulent flow (Chan-Braun et al., 2011; Cameron et al., 2020) as well as collisions with moving neigh-

bouring particles. In the current computational approach, the collision force FC(l)
(t) exerted on parti-

cle l originates from the applied soft-sphere collision model outlined in chapter 4. The hydrodynamic

Lagrangian force FH(l)
(t) acting on particle l, on the other hand, is determined by integration of the

Eulerian force density field f (x, t) that emerges in the context of the immersed boundary formulation
over the particle’s surface S (l)

p (Uhlmann, 2008), viz.

FH(l)
(t) =

∫

x∈S (l)
p

f (x, t)dx. (6.20)

In this context, we associate FH(l)
with the particle’s centre of gravity X

(l)
p . Note that, in the discrete

setting of the currently used immersed boundary formulation, the integral in relation (6.20) transforms
into a sum over the local force contributions at the discrete locations of the finite set of Lagrangian
force points. Eventually, the buoyancy effect is represented by the submerged particle weight FW =

(0,−FW , 0)T.

In the following, we map the discrete Lagrangian particle force information Ftot(l)(t) = FH(l)
(t) +

FC(l)
(t) of all particles 1 ≤ l ≤ Np onto a single surrogate discontinuous Eulerian field f tot(x, t) similar

to the procedure described in Kidanemariam et al. (2022), viz.

f H(x, t) + f C(x, t) = f tot(x, t) =
Np

∑
l=1

Ftot(l)(t)I
(l)
p (x, t). (6.21)

Here, I
(l)
p (x, t) is a particle indicator function that is equal to unity if the Eulerian field location x at time t

lies within the volume of particle l and zero otherwise. Further, f H and f C are the hydraulic and contact
force components of f tot, respectively. Note that the two Eulerian fields f and f H describe, despite their
similar notation, two completely different quantities: The former represents a smooth force density
field that contributes to the global momentum balance, whereas the latter is a surrogate discontinuous
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Figure 6.8: Ensemble-averaged hydrodynamic and collision forces along the fluid-bed interface over evolving ridges in
case CL250H16. (a,b) Streamwise force balance comprising hydrodynamic force f H

x ( ), collision force f C
x ( )

and total force f tot
x = f H

x + f C
x ( ) components, respectively. (c,d) Lateral bed-parallel force balance comprising

hydrodynamic force f H
lat ( ), collision force f C

lat ( ), and total force f tot
lat ( ) components as well as the bed-

parallel contribution of the relative buoyancy force −FW ( ), respectively. The force balance has been evaluated
at a wall-normal offset of (a,c) 1D and (b,d) 3D from the ensemble-averaged mean fluid-bed interface 〈hb〉xt,ens(z̃),
respectively.

Eulerian force field, computed exclusively for post-processing purposes. Whilst introduced here for the
particle forces, the mapping (6.21) can be generalised to arbitrary Lagrangian particle-related quantities
and the corresponding Eulerian fields. For instance, the mean solid volume fraction can be obtained
as

〈φs〉x(y, z, t) = 〈
Np

∑
l=1

I
(l)
p (x, t)〉x. (6.22)

Note that without applying streamwise averaging, the above field would be a binary field attaining
zero for x ∈ Ω f (t) and unity if x ∈ Ωp(t).

As all here considered parameter points lie in the bedload-dominated regime, the particle transport is
concentrated in a layer of several particle diameters thickness above the sediment bed. Consequently,
non-trivial values of the Eulerian particle force field f tot predominantly occur in this region of intense
particle transport, as we shall see in the following. In figure 6.8, we show for case CL250H16 the lateral
variation of the ensemble-averaged Eulerian force field 〈 f tot〉xt,ens and its individual components at
wall-normal distances of 1D and 3D to the ensemble-averaged mean fluid-bed interface 〈hb〉xt,ens(z̃).
Comparing these locations with the wall-normal profile of 〈φup〉xzt in figure 6.6(d), we observe that
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the distance ỹ = 1D lies in the region of highest sediment transport intensity close to the maximum
of 〈φup〉xzt. The distance ỹ = 3D, on the other hand, is found at the upper end of the particle trans-
port layer where significantly lower values of 〈φup〉xzt are attained. Accordingly, the streamwise force
balance qualitatively differs between both wall-normal locations, as can be seen by comparing fig-
ures 6.8(a) and 6.8(b). At a distance of 1D from the sediment bed, hydrodynamic and contact forces
essentially balance each other, both attaining values around FW/2 but with opposite signs. Both contri-
butions reveal a slight variation along the bed contour, with slightly lower and higher amplitudes over
the crest and troughs of the ensemble-averaged bed profile, respectively. Further away from the bed
(at ỹ = 3D) where particle collisions are much less frequent, on the other hand, the amplitude of both
hydrodynamic and collision forces is reduced compared to the values in the direct vicinity of the bed,
and they are no longer in equilibrium. Instead, on average, a positive net streamwise force acts on the
particles in this distance to the wall, implying that particles are predominantly accelerated in the mean
flow direction in this layer. The spanwise profiles of the lateral forces, on the other hand, appear to be
quite similar at both distances from the sediment bed concerning both amplitude and general shape
(cf. figures 6.8(c,d)). In the centre and at the top of the particle transport layer, the hydrodynamic force
reveals a sinusoidal variation along the sediment bed profile, oriented in such sense that particles are
accelerated towards the ridge crest. It thus acts against gravity, which causes a downward force of
comparable amplitude. In both cases, therefore, hydrodynamic and gravitational contributions essen-
tially balance each other, while lateral contact forces are apparently of lower relevance for the total force
balance.

The reason for the qualitative difference in the streamwise force balance at the two different heights
is not yet fully clarified, but it is suspected that it originates in the different transport mechanisms
inside and outside the bedload layer. In other words, particles located inside the bedload layer feel, on
average, a positive hydrodynamic force exerted on them by the turbulent flow that aims to accelerate
the individual particles in the streamwise direction. On the other hand, the solid volume fraction
within the bedload layer is quite high such that particles once in motion collide with other particles in
all probability, whereby their momentum is significantly reduced. The collision force therefore leads,
on average, to a deceleration of the particles such that the forces acting on the dispersed phase are
more or less in equilibrium within the bedload layer. Whilst the majority of the particles remain in
the bedload layer throughout the entire simulation time, there is a small fraction of sediment grains
which are transported away from the bed due to, for instance, strong intermittently-occurring turbulent
events. Those that reach regions outside the bedload layer initially possess a velocity deficit compared
to the surrounding mean flow velocity that is compensated with time as the particles are accelerated
due to the action of positive streamwise hydrodynamic forces (Kiger and Pan, 2002). Note that the here
considered heavy particles seldom remain in these regions for longer time intervals, but they soon fall
back down to the sediment bed under the action of the gravitational field as soon as the turbulent
fluctuations cannot hold them in layers away from the wall anymore. The important difference to the
upward motion is that particles are in this phase not slowly decelerated but their streamwise velocity
reduces abruptly as they fall down to the bed.

Figure 6.9(c) shows a typical sample trajectory of such a particle in one of the later discussed long-time
evolution cases CS250H6 that is first eroded and subsequently moved out of the bedload layer into
a local high-speed zone in between two low-speed regions, as shown in the instantaneous flow field
cross-section in figure 6.9(a). Figure 6.9(b) shows a close-up of the particle whose trajectory is shown
in figure 6.9(c) and the surrounding flow field for the same instant. We clearly see that the streamwise
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Figure 6.9: Sample particle trajectory, together with an instantaneous snapshot of the streamwise fluid and particle velocity
in the cross-plane of case CS250H6. (a) Instantaneous snapshot of the streamwise fluid u+

f and particle velocity

U+
p in the cross-plane at a fixed streamwise position x/H f = 1.45 of case CS250H6. The fluid velocity is presented

as colour plot, while the cross-stream flow field (v+f , w+
f )

T is represented in form of a vector plot. The particle
velocity is indicated by the sphere’s colour, i.e. the surface has been coloured depending on the streamwise particle
velocity U+

p following the same colour scheme as for the fluid. Note that only those particles are shown whose
volumes intersect the chosen (y, z)-plane. (b) Close-up of the data shown in (a) in the region marked by the white
rectangle. (c) Temporal evolution of the wall-normal location (yp(t)− Hb)/D ( ) and streamwise velocity U+

p (t)
( ) for the uppermost particle in (b). The vertical grey line indicates the instant at which the instantaneous flow
field in (a,b) has been extracted.

particle velocity is roughly the same as that of the fluid in its direct vicinity due to the no-slip boundary
condition at the particle surface, but it is clearly lower than the streamwise fluid velocity further away
from its centre, indicating an instantaneous velocity deficit between the particle and the fluid phase.

In figure 6.9(c), it is seen that the investigated particle is initially more or less in rest except for two short
phases during which it is slightly lifted up, indicating that the net force acting on the particle was to
weak or its duration too short to effectively mobilise the particle (Chan-Braun, 2012). Then, about ten
time bulk time units before the shown snapshot of the flow field, the sediment grain is mobilised and
starting from t ≈ 218Tb, the particle is seen to be completely eroded from the sediment bed. During the
following approximately ten bulk time units, it successively gains in height and its streamwise velocity
Up(t) increases at an almost identical rate, even though partly at a small time delay, which agrees fairly
well with the above conceived mechanism. The particle reaches its maximum streamwise velocity at
the same time as its trajectory is at the maximum distance to the bed. However, the flow cannot hold
the heavy particle aloft for a longer time interval, and so the particle falls back down to the sediment
bed in a time clearly shorter than the one it took to transport it to that height. Simultaneously, the
particle velocity Up(t) decreases rapidly to zero as the particle reaches the sediment bed again.

103



Chapter 6 Turbulent large-scale streaks and sediment ridges in open channel flow

0 0.5 1
0

0.5

1
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ỹ
+

(a) (b)

(c) (d)

Figure 6.10: Wall-normal profiles of the double-averaged mean velocity (a) 〈u f 〉xzt/ub as a function of ỹ/H f (linear scaling)
and (b) 〈u f 〉+xzt as a function of ỹ+ (semi-logarithmic scaling). The dashed-dotted line shows the theoretically
predicted profiles for the buffer and log-layer as 〈u f 〉+xzt = ỹ+ and 〈u f 〉+xzt = 1/κ ln(ỹ+)+ Bu (κ = 0.41, Bu = 5.2),
respectively. (c) Same as (b), but with the wall-distance scaled in terms of the hydraulic roughness k0. The dashed
line indicates the relation 〈u f 〉+xzt = 1/κ ln(ỹ/k0). The single-phase cases are accordingly not included. (d) Log-
layer indicator function ỹ+d〈u f 〉+xzt/dỹ+. The horizontal dashed line marks the inverse of the usually considered
value of v. Kármán’s constant, 1/κ = 1/0.41. CM250H3 ( ), CM850H3 ( ), CL250H16 ( ), CM650H3

smooth ( ),
CL250H16

smooth ( ).

6.3.4 Turbulent mean flow

The presence of a rough lower domain boundary together with the mobile sediment severely modify
the mean flow profile 〈u f 〉xzt(y), as can be seen in figure 6.10(a,b) where we compare the mean velocity
profile for smooth-wall and sediment-laden simulations in double-linear outer and semi-logarithmic
inner scaling, respectively. Especially the region close to the virtual wall is markedly altered compared
to the single-phase flows: In the particle-laden cases, the mean shear S = d〈u f 〉xzt/dy is of negligible
amplitude near the bed whereas it attains its maximum directly at the smooth wall in single-phase
simulations. Consequently, it is responsible for the entire wall shear stress in the single-phase config-
urations, while in the multiphase cases, the bottom shear stress along the fluid-bed interface is clearly
dominated by the stress resulting from particle-fluid interactions (Kidanemariam and Uhlmann, 2017).
Note that the mean velocity profile in the sediment-laden simulations additionally reveals an inflection
point in the vicinity of the bed due to the porosity of the underlying sediment bed, which is susceptible
to a Kelvin-Helmholtz instability (Jiménez et al., 2001) and which is naturally absent in the single-phase
cases. Also, the increase of 〈u f 〉xzt with increasing distance to the bottom wall is significantly slower in
the particle-laden simulations, causing a velocity deficit between single- and multiphase simulations
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6.3 Interaction of turbulent large-scale streaks and sediment ridges

that is a common feature of turbulent flows over rough boundaries as a consequence of an enhanced
friction along the wall (Flores and Jiménez, 2006; Chan-Braun et al., 2011). To maintain the constant
bulk flow rate q f , the locally reduced flow rate along the bed is compensated by an increased flow rate
in the upper half of the clear-fluid region, with the consequence that the mean velocity is higher in
the particle-laden simulations in this region. The redistribution of the mean flow velocity results in a
different slope of the mean velocity profile across the logarithmic and outer layer in the sediment-laden
cases. In the low Reynolds number cases, this deviation is still comparably weak allowing to compen-
sate most of it by the conventional shift of the log-layer velocity profile by an offset ∆U+ defined in
rough wall turbulence as (Jiménez, 2004a)

〈u f 〉+xzt =
1

κ
ln(ỹ+) + Bu − ∆U+. (6.23)

Using a standard choice of von Kármán’s constant κ = 0.41 and of the coefficient Bu = 5.2 (Pope, 2000,
p.274), we determine the values of the roughness function as ∆U+ = 3.59 (CM250H3) and ∆U+ = 3.73

(CL250H16), respectively. These values are larger than the value ∆U+ = 1.03 determined by Chan-
Braun et al. (2011) for open channel flow over a layer of fixed spheres in square arrangement at com-
parable values of Reb = 2900 and D+ = 10, while they are closer to the value ∆U+ = 4.85 found
for Reb = 2900 and D+ = 50 in the same study. Relation (6.23) can be reworked into the following
expression for the velocity profile over rough walls

〈u f 〉+xzt =
1

κ
ln(ỹ/k0). (6.24)

Therein, k0 is the hydrodynamic roughness length that is often used interchangeably with ∆U+ to
quantify the modulation of the mean flow profile due to wall roughness (Raupach et al., 1991). In fig-
ure 6.10(c), the inner-scaled velocity profiles of the particle-laden cases are repeated, with the distance
to the mean fluid-bed interface now scaled in terms of the hydrodynamic roughness length k0 that
was determined as k0/D = 0.07 (CM250H3), k0/D = 0.10 (CM850H3) and k0/D = 0.07 (CL250H16),
respectively. Whilst the low Reynolds number cases reasonably well collapse with the idealised rela-
tion (6.24), the slope of the mean velocity profile in the high Reynolds number case CM850H3 is seen
to deviate clearly from the theoretically predicted line.

This is further highlighted by the log-layer indicator function ỹ+d〈u f 〉+xzt/dỹ+ shown in figure 6.10(d),
which indicates the wall-normal range in which the logarithmic velocity profile in equation (6.23) is
applicable. It is clearly discernible that all cases reveal, within the bounds of the relatively low Reynolds
numbers, a more or less developed logarithmic layer. Compared to the smooth-wall cases, however,
the region in which the velocity profile in the particle-laden simulations can be considered to vary
logarithmically is further away from the virtual wall, especially in case CM850H3 where the mentioned
region is reached at 200 wall units distance to the mean sediment bed height. In agreement with the
previous observation that the slope of the velocity profile varies between smooth-wall and particle-
laden simulations, the classical von Kármán’s constant κ = 0.41 is seen to correctly describe the profile
outside the buffer layer only in the smooth-wall cases. While for the low Reynolds number cases, κ

is only slightly lower than in the smooth-wall cases, a value of κ ≈ 0.25 has to be chosen to correctly
match the profile of case CM850H3. As outlined above, the reason for this discrepancy is that the high
particle concentration within the bedload layer clearly dampens the fluid flow rate near the bed, which
is compensated by an accordingly higher shear in the outer flow.
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Figure 6.11: (a) Variation of the mean friction Reynolds number Reτ as a function of the bulk Reynolds number Reb. The black
dashed-dotted line refers to the relation Reτ = 0.166Re0.88

b obtained for smooth-wall channels (Pope, 2000). The
red and blue dashed-dotted curves represent the relation between Reb and Reτ under fully-rough conditions for
H f /D = 27.5 ( · ) and H f /D = 5.0 ( · ), respectively, based on the following relation for the friction coefficient
c f = 2u2

τ/u2
b ≈ 2(ln(H f /D)/κ + 8.5 − 3/(2κ))−2, with κ = 0.41 (Pope, 2000). Additional data points are from

the following studies on open channel flow over a layer of fixed spheres (H f /D = 2.5-18.3): DNS studies of
Chan-Braun et al. (2011) (�: D+ = 10, H f /D = 18.3; �: D+ = 50, H f /D = 5.6) and Mazzuoli and Uhlmann
(2017) (N: D+ = 120, H f /D = 5.4), both in square arrangement; experimental study of Amir et al. (2014) (•:
D+ = 170-538, H f /D = 2.5), hexagonal arrangement. (b) Time evolution of the instantaneous friction Reynolds

number Rei
τ . CM250H3 ( ), CM850H3 ( ), CL250H16 ( ), CM650H3

smooth ( ), CL250H16
smooth ( ).

The intense particle transport in the vicinity of the sediment bed causes an increase of the mean friction
Reynolds number Reτ which is shown in figure 6.11(a) as a function of the bulk Reynolds number Reb.
While for the single-phase cases, the relation between the bulk and friction Reynolds numbers is well
described by the analytically obtained function Reτ = 0.166Re0.88

b (Pope, 2000), the particle-laden cases
attain clearly higher values of Reτ for comparable values of Reb. In particular, a comparison with the
red dashed-dotted line reveals that the here-considered transitionally-rough mobile bed cases attain
friction Reynolds numbers roughly equivalent to those expected on a fixed but fully-rough sediment
bed. The overview is supplemented with datasets from experiments (Amir et al., 2014) and DNS-
based studies (Chan-Braun et al., 2011; Mazzuoli and Uhlmann, 2017) of open channel flow at low
to medium relative submergence (H f /D = 2.5-18.3) over a wall-mounted layer of regularly arranged
spherical particles (hexagonal and square arrangements) in the transitionally and fully-rough regime.
For the sake of completeness, it should be stressed that the exact location of the virtual wall in these
references slightly differs from ours, which is however not expected to have a relevant influence on the
observations: While our fluid-bed interface is reconstructed from the spheres’ centre locations, Chan-
Braun et al. (2011) and Mazzuoli and Uhlmann (2017) locate the virtual wall roughly 0.15D-0.2D below
the particles’ highest points. Amir et al. (2014), in turn, place it at the particles’ tops.

A comparison of the current simulation results with these reference datasets underlines that the mobil-
ity of the sediment bed has a similar effect on the friction Reynolds number as larger relative roughness
heights D+ and D/H f for the same bulk Reynolds number. As pointed out by Kidanemariam et al.
(2022), the here observed increase in friction over a mobile sediment bed is of relevance, for instance,
in the context of theoretical stability analysis (Colombini, 1993, 2004; Fourriere et al., 2010), in which
the influence of roughness on the flow is often estimated by empirical formulae for flow over fixed
roughness even in studies on sediment bedform evolution.
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Figure 6.12: Wall-normal profiles of the mean Reynolds stresses in cases (a) CM250H3 ( ), (b) CM850H3 ( ) and (c) CL250H16

( ). The small insets show close-ups of the same data close to the (virtual) origin as a function of the wall-normal
distance ỹ+ in double-logarithmic scaling. Solid grey lines therein indicate decay rates as ∼ ỹ, ∼ ỹ2 and ∼ ỹ4,
respectively. u f ,rms ( ), v f ,rms ( ), w f ,rms (· · ·), where u+

f i,rms = (〈u′
f iu

′
f i〉xzt)

1/2/uτ (i = x, y, z). (d) Wall-

normal profiles of the Reynolds shear stresses 〈u′
f v′f 〉xzt/u2

τ . Reference data from companion single-phase flow

simulations are (a,c) CL250H16
smooth ( ) and (b) CM650H3

smooth ( ), respectively.

Figure 6.11(b) illustrates the temporal evolution of an equivalent instantaneous friction Reynolds num-

ber Rei
τ(t) =

√
(τi

w(t)/ρ f )〈h f 〉xz(t)/ν f , revealing that the bottom friction is continuously growing as

the particle transport is increasing. In case of the single-phase simulations, on the other hand, Rei
τ(t)

is essentially constant throughout the entire observation interval, revealing only low-amplitude oscil-
lations around the mean Reynolds number Reτ. Note that the instantaneous wall shear stress τi

w(t)

in above definition has been determined by evaluating equation (6.3) for the instantaneous plane-
averaged fluid velocity and velocity fluctuation covariances of each instantaneous flow field separately.

The modified distribution of the mean shear directly influences the intensity and distribution of the
Reynolds stresses, as can be seen in figure 6.12. Note that the statistics in the particle-laden cases are
not assumed to be fully converged, since they are gathered over a relatively short time interval during
which the system is still in a transient state (cf. table 6.2). While it is assumed that the dynamics of the
short-living small-scale structures are well captured, the observed differences between the single- and
multiphase simulations in the vicinity of the free surface are claimed to be the result of the relatively
short observation time interval Tobs, compared to the mean lifetime of the large-scale structures. In all
particle-laden simulations visualised in figure 6.12, the peak of the streamwise normal stress 〈u′

f u′
f 〉xzt

representative of the buffer layer is markedly reduced compared to the corresponding single-phase
smooth-wall cases due to the lower mean shear (Chan-Braun et al., 2011), which represents the main
source of energy for the fluctuating field. In the low Reynolds number cases CM250H3 and CL250H16,

107



Chapter 6 Turbulent large-scale streaks and sediment ridges in open channel flow

the peak in 〈u′
f u′

f 〉xzt is still detectable at roughly the same wall distance as in the smooth-wall cases,
even though it is less pronounced. In the high Reynolds number case CM850H3, on the other hand, the
roughness of the sediment bed and the intense bedload transport are responsible for the complete dis-
appearance of the typical buffer-layer peak of 〈u′

f u′
f 〉xzt. The same phenomenon is commonly reported

for flows over fully-rough walls where the mean height of the roughness elements is much larger than
the viscous length scale such that the self-sustained near-wall cycle is destroyed (Jiménez, 2004a; Flo-
res and Jiménez, 2006; Mazzuoli and Uhlmann, 2017). In the studied low Reynolds number cases, on
the other hand, the particles are sufficiently small compared to the viscous length scale (D ≈ 10δν)
to be transported by the buffer-layer structures (Kidanemariam et al., 2013) rather then to destroy the
near-wall cycle, explaining the persistence of the near-wall peak in 〈u′

f u′
f 〉xzt.

The remaining normal stresses 〈v′f v′f 〉xzt and 〈w′
f w′

f 〉xzt show weaker deviations between particle-laden
and smooth-wall statistics, which predominantly appear in a layer of thickness ỹ ≈ 0.11H f (ỹ ≈ 3D)
above the virtual wall for the low Reynolds number cases and ỹ ≈ 0.17H f (ỹ ≈ 4.5D) in the high
Reynolds number case, respectively. The decaying behaviour of the Reynolds stresses in the vicinity of
the (virtual) wall is shown in the insets of figures 6.12(a-c). The absence of the no-slip boundary con-
dition at the mean fluid-bed interface allows the Reynolds stresses in the particle-laden cases to settle
at small but finite levels when entering the bed, whereas the stresses in the smooth-wall simulations
are seen to decay at the theoretically predicted decay rates when approaching the physical wall (cf.
Pope, 2000, p.284). The velocity covariances 〈u′

f v′f 〉xzt shown in figure 6.12(d) reveal in all cases the ex-
pected linear profile away from the wall and for the low Reynolds number simulations, the curves for
single- and multiphase simulations essentially collapse. For the higher Reynolds number case, though,
the profile reaches its peak and the subsequent decay further away from the virtual wall than in the
corresponding smooth-wall case. This further strengthens the earlier observation that the buffer layer
effectively disappears in this case and inside the bedload layer, the pressure gradient is predominantly
balanced by the fluid-particle interaction term, while viscous and turbulent stresses are of secondary
importance for the total shear stress budget (cf. the detailed discussion on the shear stress balance in
section 6.3.9).

The absence of the buffer-layer regeneration cycle in case CM850H3 and in natural flows over fully-
rough beds indicates that a general mechanism of sediment ridge formation cannot be due to the action
of the small-scale buffer layer structures. We therefore concentrate in the following on the dynamics
of the large-scale flow structures as main origin for the onset of sediment ridge formation. To this end,
we first study how the distribution of the kinetic energy among the scales in the outer flow is affected
by the presence of the mobile sediment and of sediment ridges in particular. Figure 6.13 shows the
premultiplied streamwise energy spectra for smooth-wall and particle-laden simulations in the centre
of the clear-fluid region (ỹ/H f = 0.5, left column) as well as at the free surface (ỹ/H f = 1.0, right
column). Here, we have defined the instantaneous streamwise energy spectra at a given wall-normal
location y as

φuu(kx, y, kz, t) = û f û∗
f , (6.25)

where û f (kx, y, kz, t) = F (u f − 〈u f 〉xz) is the Fourier transform of the instantaneous fluctuating field
in the two periodic directions. While the asterisk indicates complex conjugation, kx = 2π/λx and kz =

2π/λz are the streamwise and spanwise wavenumber-wavelength pairs, respectively. Velocity spectra
for the remaining velocity components are defined accordingly. In figure 6.13, it is seen that the spectral
patterns in the multiphase simulations agree well with those in the single-phase cases, apart from some
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Figure 6.13: Time-averaged premultiplied streamwise energy spectra kxkz〈φuu〉t(λx, y, λz) H2
f /u2

τ at the wall-normal refer-

ence locations (a,c,e) ỹ/H f = 0.5 and (b,d,f ) ỹ/H f = 1. (a,b) CM250H3, (c,d) CM850H3, (e,f ) CL250H16. Coloured
isolines are 0.2(0.2)0.6 times the maximum value of the respective energy spectra. Grey-shaded areas rep-
resent the same quantity evaluated for the smooth-wall reference simulations (a,b,e,f ) CL250H16

smooth and (c,d)
CM650H3

smooth, respectively. The relative streamwise and spanwise domain periods of the particle-laden simu-
lations Lx/H f and Lz/H f are highlighted by dashed lines in the respective colours.

expected fluctuations due to the limited time period during which statistics have been gathered. The
limited domain size in the medium boxes allows to accommodate only part of the full spectra, but this
part reveals a fairly good agreement with the smooth-wall reference simulations. We conclude that
the presence of a mobile sediment bed does not significantly modify the spectral energy distribution in
the channel core and that, consequently, there is no fundamental difference between large-scale streaks
over developed ridges and those over smooth walls. For flows over fixed roughness elements, there
is a general consensus that the influence of the roughness is limited to a layer of several multiples of
their height above the bottom wall and that, thus, the organisation of the large-scale structures is more
or less unaffected from the exact roughness configuration (Townsend, 1976; Jiménez, 2004a; Mazzuoli
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and Uhlmann, 2017). Here, we observe that the same conclusion holds also in the case of a mobile
sediment bed.

Also, in both smooth-wall and particle-laden cases, a significant increase in the intensity of the largest
scales is noticed between the channel centre and the free surface. This becomes evident when compar-
ing the two spectra for case CL250H16: While at ỹ/H f = 0.5, the width of the domain Lz/H f is more
than sufficient to capture the essential part of the kinetic energy, this is not the case at the free surface,
where the spanwise scales are roughly twice as wide as those in the channel centre at ỹ/H f = 0.5 and
even the large box slightly cuts the spectra. That kinetic energy resides in significantly wider scales
near the free surface than it is the case in the channel centre is nowadays well-known for single-phase
flows (Handler et al., 1993). More recently, however, Bauer et al. (2022) also showed in a comparison
with spectra of closed smooth-wall channel flow simulations from Del Álamo and Jiménez (2003) that
such an increase in spanwise scale does not occur for closed channel flows and that the effect is thus
exclusive to free-surface flows. In the hydraulic context, these observations might be of relevance since
earlier studies have tried to reconstruct the lateral spacing of subaqueous sediment ridges and sec-
ondary flow cells based on the width of free-surface structures (Kinoshita, 1967; Nezu and Nakagawa,
1993).

Figures 6.14 and 6.15 provide the premultiplied streamwise-integrated energy spectra associated with
the streamwise (left column) and wall-normal velocity component (right column) as functions of the
lateral wavelength λz and the wall-normal distance ỹ in inner and outer scales, respectively. Each
spectrum is normalised by its maximum over the entire fluid height rather than by the local mean at
the given wall distance to show how the energy is distributed across the different wall-parallel layers
in single- and multiphase simulations, respectively. First, let us point out that the lateral width of the
medium domains has been chosen sufficiently wide to capture the main part of the wall-normal energy
spectra and are as such at the limit of being minimal in the vicinity of the free surface (Jiménez, 2013b),
supporting our expectations from section 6.1. In agreement with our previous considerations, it is
seen that the spectrum of the high Reynolds number case CM850H3 lacks the conventional spectral
peak at λ+

z ≈ 100 associated with the buffer-layer structures, whereas for the low Reynolds number
particle-laden cases the near-wall peak is maintained. In case CM850H3, kinetic energy focuses instead
further away from the wall somewhat above the bedload layer, where particle transport is significantly
less intense. Comparing the spectra of CM850H3 with those of the smooth-wall reference simulation,
it turns out that the outer high-energetic spectral pattern is connected to the outer energy peak that is
also visible in the smooth-wall simulation at λz/H f ≈ 1-1.5 (λ+

z ≈ 1000) and which reflects the fraction
of kinetic energy that resides in the large-scale structures.

As expected, the kinetic energy associated with the wall-normal velocity concentrates in the bulk of
the flow away from both the lower wall and the free surface, where the applied boundary conditions
force the wall-normal velocity to vanish. As for the streamwise energy spectra, the wall-normal spectra
of the low Reynolds sediment-laden cases almost match those of the corresponding smooth-wall case
apart from slight variations as a consequence of the somewhat higher value of Reτ, suggesting that the
distribution of the wall-normal kinetic energy is not significantly altered by the presence of a mobile
sediment bed. In the high Reynolds number case CM850H3, there is a significant decrease of the wall-
normal kinetic energy within the bedload layer compared to the single-phase simulations, while the
most energetic scales are exclusively found above it. The general ellipsoidal shape and the inclination of
the spectral patterns, however, are similar to those in the smooth-wall and low Reynolds number cases.
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Figure 6.14: Time-averaged streamwise-integrated premultiplied energy spectra as a function of the inner-scaled spanwise
wavelength λ+

z and wall distance ỹ+: kz
∫
〈φαα〉t(λx, y, λz)dkx H2

f /u2
τ . (a,c,e) Streamwise 〈φuu〉t and (b,d,f ) wall-

normal 〈φvv〉t energy spectra for cases (a,b) CM250H3, (c,d) CM850H3 and (e,f ) CL250H16. Coloured isolines are
0.2(0.2)0.6 times the maximum value of the respective energy spectra, while grey-shaded areas indicate the same
quantities determined for the smooth-wall reference simulations (a,b,e,f ) CL250H16

smooth and (c,d) CM650H3
smooth, re-

spectively. The mean fluid height H+
f = Reτ and the spanwise domain period L+

z of the particle simulations are
marked by coloured dashed lines. The dashed black line refers to the wall-normal distance at which the mean
particle flux density 〈φup〉xzt attains its maximum (cf. figure 6.6(d)).

Considering the same spectra in terms of the outer-scaled length scales as presented in figure 6.15(b),
the spectrum is seen to almost collapse with that of the smooth-wall case in the largest scales in the
channel bulk, providing further evidence that the structures of this size are essentially unaffected by the
sediment activity in the bedload layer. Similar conclusions can be made for the outer-scaled streamwise
energy spectra in figure 6.15(a).
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Figure 6.15: Time-averaged and streamwise-integrated premultiplied energy spectra for cases CM850H3 and CM650H3
smooth.

Data is identical to that in figure 6.14(c,d), but the lateral wavelength λz and the wall-normal distance ỹ are scaled
in outer units. As an additional reference height, the crest height of the mean fluid-bed interface averaged over
t/Tb ∈ [40, 85] is shown as black solid line. (a) streamwise spectra 〈φuu〉t, (b) wall-normal spectra 〈φvv〉t.

6.3.5 Large-scale flow organisation

The investigation of the energy spectra has revealed that there is little difference between the energy
distribution among the scales in single- and multiphase cases. In the following, we will analyse the
individual large-scale velocity streaks and their dynamics in physical space. In figure 6.16, the space-
time evolution of the streamwise-averaged streamwise velocity fluctuations u′′

f (z, t) is shown for the
channel centres, ỹ/H f = 0.5. Note that in this context, streamwise averaging serves as an indirect
filter for laterally meandering structures, while it retains the signature of large streamwise-elongated
structures.

For the here considered cases, the streamwise-averaged low- and high-speed regions evolve compara-
bly straight in the space-time plane, which means that these zones exhibit only weak lateral propaga-
tion in the investigated time-interval. In this regard, no qualitative difference is noted between single-
and multiphase cases. This indicates that even laterally homogeneous canonical flows feature a sub-
stantial spanwise modulation of the mean flow at least over intermediate time scales due to the long
lifetime of the large-scale streaks (Jiménez, 2013b), while statistical homogeneity is obtained if the flow
field is averaged over sufficiently long time intervals. A comparison between the simulations in the
medium boxes with that in the wide domain of case CL250H16 shown in figure 6.16(d) underlines that
the weak lateral meandering and the regular lateral organisation of the streaks are not due to the nar-
row box width Lz/H f ≈ 3 in the medium domains, but that the flow in the wide domain Lz/H f ≈ 16

shows essentially the same large-scale dynamics. The pronounced signatures of low- and high-speed
zones are furthermore indicative of large-scale streaks that are of significant length compared to the
streamwise domain length Lx/H f ≈ 12, otherwise they would not appear in the streamwise average.
Even though the lateral position of the high- and low-speed regions is relatively time-persistent, their
amplitude is seen to intermittently reduce and the clear signature is lost, for instance at approximately
t = 40Tb in case CM650H3

smooth or in a period 10 . t/Tb . 20 in case CM850H3 (cf. figure 6.16(b,c)). It is
expected that at least some of these ‘events’ reflect intermittently occurring bursting events similar to
those in the buffer layer during which the large streaks bend and eventually break – a mechanism that
has been observed for log-layer streaks likewise (Flores and Jiménez, 2010). After such ‘events’, the lat-
erally organised high- and low-speed zones are seen to recover, but only in some situations the streaks
form at essentially the same lateral positions as before. In others, the flow reorganises and partly even
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Figure 6.16: Space-time plot of the streamwise-averaged fluctuations of the streamwise velocity component u′′
f /uτ extracted

at ỹ/H f = 0.5. Blue and red regions refer to streamwise-averaged low- and high-speed regions, respectively.
Cases: (a) CM250H3, (b) CM650H3

smooth, (c) CM850H3, (d) CL250H16.

the number of streaks changes as in case CM250H3 after t = 45Tb (cf. figure 6.16(a)). The influence of
these phases of flow reorganisation on the dynamics of the sediment ridges shall be scrutinised in the
discussion of figure 6.21 below.

The striking similarity between the organisation of the outer flow in single- and multiphase flows sup-
ports our earlier conjecture that the large-scale streaks over sediment ridges are effectively the same
structures as those in smooth-wall channels. Flores et al. (2007) similarly concluded for flow over lat-
erally homogeneous roughness that the self-similar vortex clusters and the associated velocity streaks
show no major differences to their counterparts over smooth walls outside the roughness layer. What
remains to be discussed is the question of causality: Considering the results that have been presented
up to this point, it is tempting to assume that the regular spanwise organisation of low- and high-speed
regions causes a laterally varying erosion of the sediment bed once particles are released and, that way,
triggers the rise of the initial ridges and not vice versa. Of course, this does not rule out that in later
stages of their lifetime, developed sediment ridges might also affect the dynamics and meandering
tendency of large-scale streaks. In the following, we will verify this assumption by investigating the
interaction of large-scale streaks and the wall shear stress that is directly linked to the sediment erosion
rate.

The large-scale structures in the logarithmic and outer layer are – in contrast to the smooth buffer
layer streaks – fully-turbulent objects (Jiménez, 2013b), and the associated large-scale instantaneous
quasi-streamwise rollers are, in general, almost impossible to detect by the classical vortex detection
techniques such as the λ2-criterion of Jeong and Hussain (1995), since the velocity gradients are much
weaker then those of the near-wall quasi-streamwise vortices. In the following, we will therefore use
a filtering technique to detect large-scale coherent structures in varying distances to the wall. Filtering
can be done either indirectly as in the context of conditional averaging (see, for instance, Del Álamo
et al., 2006; Lozano-Durán et al., 2012) and in some sense in our own streamwise-averaging process,
or in a direct way by applying, for instance, a Gaussian filter to the instantaneous flow field as done
in Motoori and Goto (2019, 2021). The use of a direct filtering approach has the obvious asset that
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(a) (b)

Figure 6.17: Instantaneous visualisation of large-scale streamwise velocity streaks before and after applying a Gaussian filter
with filter widths [∆x, ∆y, ∆z]/H f = [0.6, 0.2, 0.3] exemplary for case CM850H3. The shown instant is the same as
that presented in figure 6.3(d). High- and low-speed streaks are coloured in red/yellow and blue, respectively,
characterised by connected regions fulfilling |u′

f
+(x, t)| > H with (a) H = 1.5 and (b) H = 0.75.

information loss is avoided for all scales larger than the chosen filter widths. In the following, we
study the low-pass filtered field related to the ith velocity component, ũ f ,i(x, t), that is obtained by the
following convolution of the field with an anisotropic Gaussian kernel (Lozano-Durán et al., 2016):

ũ f ,i(x, t) =
∫∫∫

V
G · u f ,i(x − x′, t) exp

(
−
(

πx′

∆x

)2

−
(

πy′

∆y

)2

−
(

πz′

∆z

)2
)

dx′dy′dz′. (6.26)

Therein, ∆i (i = x, y, z) is the filter cut-off width in the three Cartesian directions and x′ is the inner-
convolutional coordinate. The volume over which the field is filtered is denoted by V, and G is a
constant coefficient normalised such that the integral of the kernel over V is unity. We treat the bound-
ary conditions as proposed in Lozano-Durán et al. (2016), that is, the flow field is periodically ex-
tended in the two wall-parallel directions and mirrored vertically at the bottom wall, while the sign of
the wall-normal velocity component is reversed to ensure the incompressibility of the resulting field.
The free surface is treated analogously to fulfil the free-slip and impermeability boundary conditions
along the plane. By applying the filtering technique to the multiphase simulations, a layer of thickness
∆y/H f of the filtered flow field above the bed will be affected by the velocity field inside the latter.
In the subsequent investigations, we therefore focus either on filtering results that are obtained in re-
gions at a sufficient distance to the sediment bed, or use the technique in the context of smooth-wall
simulations where there is no such effect. We conventionally choose, if not otherwise declared, filter
widths [∆x, ∆y, ∆z]/H f = [0.6, 0.2, 0.3] that obey the typical aspect ratio of the vortex clusters found
by Del Álamo et al. (2006). Two-dimensional filtering in analogy to equation (6.26) in wall-parallel
xz-planes is frequently used whenever the focus is on the structure’s wall-parallel extensions. In these
cases, filter widths [∆x, ∆z]/H f = [0.6, 0.3] will be conventionally used. The effect of the Gaussian fil-
ter on a turbulent velocity field is visualised in figure 6.17, where the large-scale streamwise velocity
streaks in an instantaneous field of case CM850H3 are compared for the filtered and unfiltered state.
While the essential macroscopic features of the large-scale structures including their shape, size and
orientation remain essentially unchanged, the filtered streaks are much smoother as the small-scale
variations have been removed by the filtering.

In the following, we make use of the introduced filtering technique to study the relation between large-
scale coherent structures and the bottom-wall shear stress. As recently discussed by Bagherimiyab and
Lemmin (2018), ejections and sweeps cause a local reduction or increase of the wall shear stress along
the sediment bed, respectively, indicating that the regular organisation of both large-scale streaks and
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Figure 6.18: (a,b) Instantaneous wall shear stress fluctuations τ′
b(x, z, t)/(ρ f u2

τ) for the smooth-wall simulation CM650H3
smooth

(a) without applied filtering and (b) after a 2D Gaussian cut-off filter has been applied in the two homogeneous
directions with filter widths ∆x = 3yre f and ∆z = 1.5yre f , respectively. The reference value has been set to the
height yre f = 0.3H f . (c,d) Corresponding streamwise velocity fluctuation field (u′

f )
+ extracted at ỹ/H f = 0.3 (c)

unfiltered and (d) filtered with the same filter size as in (b). The time at which all snapshots have been extracted
corresponds to the second marker point in figure 6.23(b), t/Tb = 83.

Reynolds stress-carrying structures might clearly affect the organisation of the wall shear stress and,
that way, the erosion of sediment. These considerations are in accordance with today’s understanding
that the buffer layer contains, apart from the typical small-scale structures of size O(100δν), also large-
scale patterns of dimensions O(H f ) that are correlated to the structures in the logarithmic and outer
layer (Del Álamo and Jiménez, 2003; Hutchins and Marusic, 2007b). Although it is well known that
the self-sustaining regeneration cycle in the buffer layer itself is capable of functioning autonomously
(Jiménez and Pinelli, 1999), it has nonetheless been observed that large-scale effects also alter the flow
organisation in the near-wall region (Jiménez et al., 2004). A continuous mutual interaction of small
near-wall structures and large outer-scaled structures was proposed by Toh and Itano (2005), where
continuity requires that the small-scale structures agglomerate below the large-scale ejections (Jiménez,
2018). Zhou et al. (2022), in turn, found only evidence for an outer-layer (top-down) influence on the
near-wall pattern, but not for the bottom-up effect of the small-scale structures on the large scales.

The organisation of the inner-scaled structures of the buffer layer with dimensions O(100δν) into larger
streaks of scale O(H f ) is clearly discernible in figure 6.18. Here, an instantaneous snapshot of the wall
shear stress along the smooth bottom wall of case CM650H3

smooth is shown before and after applying
the Gaussian filter, supplemented with the unfiltered and corresponding spatially-filtered streamwise
velocity field at a reference height ỹ/H f = 0.3. For the sake of clarity, we have introduced the instan-
taneous bottom shear stress

τb(x, z, t) = ρ f ν f

du f

dy

∣∣∣∣
y=0

(6.27)

to avoid confusion with the mean wall shear stress τw. In figure 6.18, the high-speed buffer-layer
streaks, whose position can be inferred by their induced zones of locally increased shear, are seen to
cluster in two streamwise-elongated streak-like structures: One of those structures spans the entire box
length in a slightly meandering way, while the other one is roughly half as long and laterally shifted
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Figure 6.19: Two-point correlation coefficient ρ2D
uτ (y, t) of the wall-shear stress τ′

b and the streamwise velocity fluctuations
u′

f at different distances to the bottom wall in the smooth-wall reference case CM650H3
smooth: (a) Without applied

filtering and (b) after a 2D Gaussian cut-off filter has been applied in the two homogeneous directions with filter
widths ∆x = 3yre f and ∆z = 1.5yre f , respectively. Here, the reference height yre f is set equal to the respective
wall distance: y+ = 10 ( ), y+ = 30 ( ), y/H f = 0.1 ( ), y/H f = 0.3 ( ) and y/H f = 0.5 ( ).

by an offset somewhat larger than H f . A comparison with the large-scale velocity structures reveals
that these two regions are located below the large-scale high-speed streaks at ỹ/H f = 0.3 and feature
a comparable lateral extent, while the streamwise length is seen to deviate in particular for the patchy
structure whose centre is found at approximately z/H f = 0.5. A qualitatively similar correlation be-
tween large-scale flow structures and the shear stress in the vicinity of the sediment bed is also found
for the sediment-laden simulations in the period just before particles are released.

In order to further quantify the mutual correlation of the wall shear stress and the velocity structures,
the temporal evolution of the instantaneous two-point correlation coefficient

ρ2D
uτ (y, t) = max

δx∈[−Lx/2,Lx/2)

〈τ′
b(x, z, t) u′

f (x + δ, t)〉xz

[
〈(τ′

b(x, z, t))2〉xz 〈(u′
f (x + δ, t))2〉xz

]1/2
(6.28)

is shown in figure 6.19(a) for selected wall-normal distances y, where δ = (δx, 0, 0)T is the spatial
separation vector with the streamwise component δx. In definition (6.28), we determine the correlation
coefficient as the maximum over all δx ∈ [−Lx/2, Lx/2) to take care of a possible phase shift between
the wall shear stress structures and the large-scale streaks arising from the different propagation speeds
of structures at different distances to the wall (Del Álamo and Jiménez, 2009).

The results presented in figure 6.19(a) underline the high correlation between the wall shear stress and
the buffer layer structures, while the correlation decreases with increasing distance to the wall due
to the growing scale difference between the wall shear stress structures and the streamwise velocity
streaks, the latter scaling self-similarly with y (Townsend, 1976; Sillero, 2014). In order to study in the
following only the correlation between the large-scale structures of both fields, ρ2D

uτ (y, t) is recomputed
replacing τ′

b and u′
f in equation (6.28) by their spatially-filtered analogues τ̃′

b and ũ′
f , respectively. Hav-

ing removed the small scales at each height, a constantly high mean correlation of 〈ρ2D
uτ 〉t ≈ 0.5 is ob-

served in figure 6.19(b) for all wall-distances 30δν . ỹ . 0.5H f , highlighting the significant dependency
between the large-scale organisation of the wall shear stress and the large-scale velocity structures in
the channel bulk.
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6.3.6 Streak-ridge interaction

In the context of sediment ridge formation, the observed correlation between the large-scale flow or-
ganisation and that of the wall shear stress provides a causal connection between the local erosion rate
at the fluid-bed interface and the large-scale velocity structures. While it appears inevitable that parti-
cle motion in case CM850H3 is connected to the large-scale structures due to the lack of the buffer-layer
cycle, particles in low Reynolds number cases are known to be transported also by the buffer-layer
streaks and vortices (Kidanemariam et al., 2013). The observed link between the large-scale streaks
and the local wall shear stress might thus explain why the same ridge spacing is observed for both
cases.

In the following, let us first discuss in more detail the relation between the flow organisation in large-
scale streaks and the local erosion rate along the sediment bed. To this end, we define the sets of all
particles that are eroded or deposited between two instants tm = m∆t and tm+1 = (m + 1)∆t as

Perod(tm+1/2) = {p | p ∈ Pb(tm) ∧ p ∈ Pm(tm+1)} (6.29a)

Pdepos(tm+1/2) = {p | p ∈ Pm(tm) ∧ p ∈ Pb(tm+1)} , (6.29b)

respectively, where tm+1/2 = (tm + tm+1)/2 and m ∈ [1, Nt − 1] with Nt being the number of simulated
time steps. Here, Pb(tm) and Pm(tm) are the sets of bed and mobile particles at time tm, respectively. To
locate regions of strong erosion or deposition, we discretise the wall-parallel directions making use of
the same binning technique as in the context of the particle flux (cf. section 6.2.3), choosing bin widths
∆xbin = ∆zbin = 1.5D. The number of eroded and deposited particles in the (i, k)th bin at a given
intermediate time tm+1/2 ∀ m ∈ [1, Nt − 1] is then determined as

Nerod
p (xi, zk, tm+1/2) =

Np

∑
l=1

I
(l)
(i,k)

(tm) I
(l)
erod(tm+1/2) (6.30a)

N
depos
p (xi, zk, tm+1/2) =

Np

∑
l=1

I
(l)
(i,k)

(tm+1) I
(l)
depos(tm+1/2). (6.30b)

As the eroded and deposited sediment grains in general do not reside in the same bin at times tm

and tm+1, it was decided in the above definition to associate eroded sediment grains with the bin they
are eroded from and deposited particles with the one they are deposited in. As a consequence, the
indicator functions on the RHS of equations (6.30a) and (6.30b) that will be defined in the following
are evaluated at two different time steps. For the lth particle p(l), these latter are defined as

I
(l)
erod(t) =





1 if p(l) ∈ Perod(t)

0 else
, I

(l)
depos(t) =





1 if p(l) ∈ Pdepos(t)

0 else
. (6.31)

The streamwise-averaged erosion-deposition balance or equivalently the particle loss of the sediment
bed per unit length and time in the kth bins over the period t ∈ [ta, tb] (1 ≤ a < b ≤ Nt) is then defined
as

Φ(zk, ta, tb) =
1

Lx(tb − ta)

b−1

∑
m=a

Nx,bin

∑
i=1

[
Nerod

p (xi, zk, tm+1/2)− N
depos
p (xi, zk, tm+1/2)

]
. (6.32)

In figure 6.20, relation (6.32) has been evaluated for the initial time interval [0Tb, 5Tb] starting with
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Figure 6.20: Erosion-deposition balance during the initial and final phase of bed evolution in comparison with the velocity
field, exemplary for case CM850H3. (a,b) Streamwise-averaged velocity fluctuations u′′

f at ỹ/H f = 0.3 (solid) and

ỹ/H f = 0.5 (dashed), averaged over the time interval [ta, tb]. (c,d) Fluctuation of the balance between eroded
and deposited particles per unit length and time during the interval [ta, tb], (Φ − 〈Φ〉z), normalised by the cor-
responding r.m.s. value Φrms = [〈(Φ − 〈Φ〉z)2〉z]1/2. (a,c) Initial time interval [ta, tb] = [0Tb, 5Tb], (b,d) final time
interval [ta, tb] = [55Tb, 60Tb].

the particle release as well as for the final time interval [55Tb, 60Tb] of simulation CM850H3. The data
is compared with the lateral profiles of the streamwise velocity fluctuation field at ỹ/H f = 0.3 and
ỹ/H f = 0.5, respectively. In order to highlight the correlation between velocity and erosion activity,
we show in figure 6.20 the lateral fluctuation of the erosion-deposition balance Φ − 〈Φ〉z, rather than
the absolute values. The absolute values are quite different between the initial phase [0Tb, 5Tb] and
the final phase of bedform evolution [55Tb, 60Tb]: In the former, a marked erosion excess is seen over
the entire width of the channel, indicating that the sediment bed height clearly decreases at all span-
wise locations. This is in agreement with our observations in figure 6.5(c) that the mean bed height
reduces by approximately one particle diameter in this phase. Even though erosion dominates depo-
sition at all spanwise locations, there is a significant variation of the erosion excess over the span of the
channel such that the decrease of the sediment bed height is strongly heterogeneous, as can be seen in
figure 6.20(c). Consequently, initial troughs form in regions of stronger erosion by a ‘carving’ process,
while initial sediment ridges represent regions of weaker erosion activity. The regions of stronger and
weaker erosion excess match reasonably well the regions of higher and lower streamwise velocity in
the bulk of the channel (cf. figure 6.20(a)), indicating that the local erosion rate is indeed directly cor-
related with the large-scale flow structures. A similarly good correlation between the erosion activity
and regions of high and low streamwise velocity is also observed during the final time interval shown
in figure 6.20(b,d). In contrast to the initial phase, however, erosion and deposition are globally almost
in equilibrium and alternating zones dominated either by erosion or deposition are observed. Compar-
ing these regions with the bed contour at the same time, it turns out that regions of dominant erosion
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Figure 6.21: Space-time evolution of (a) the sediment-bed height fluctuation of the streamwise-averaged bed for case
CM850H3 (identical to figure 6.4(c)). (b) Same for the streamwise-averaged streamwise velocity fluctuation u′′

f /uτ

at ỹ/H f = 0.5 (identical to figure 6.16(c)) and (c) for the streamwise-averaged particle flux fluctuation q′′p,x/q′′x,rms,

with q′′x,rms(t) = (〈q′′p,xq′′p,x〉z)1/2. (d) Same data as in (c) is shown in the background as grey map, supplemented
with red (blue) dots marking regions of lateral bed growth (decrease), that are, regions with vanishing lateral
particle flux (i.e. q′′p,z = 0) and negative (positive) lateral gradient ∂zq′′p,z(z, t).

are those over a developed trough while deposition dominates near sediment ridges, supporting our
earlier statements.

These observations provide further evidence that particle erosion and hence bed topography are in-
deed linked with the large-scale structures via their near-bed effects and the local bed shear stress.
In figure 6.21, the close correlation between high- and low speed regions on the one hand and the
organisation of the sediment ridges and of the mean particle flux on the other hand is clearly iden-
tifiable. Therein, we compare the space-time evolution of the sediment bed fluctuation h′′b (z, t) and
the respective fluctuation of the streamwise velocity component at ỹ/H f = 0.5 (which are repeated
here for convenience) with that of the streamwise and spanwise particle flux components q′′p,x and q′′p,z,
respectively. The relations between the different quantities can be summarised as follows: Regions
of enhanced streamwise momentum cause a locally increased erosion activity that leads to a stronger
decrease of the sediment bed in these regions due to turbulent sweep events that are located in the
high-speed streaks. The enhanced erosion results in a positive streamwise particle flux fluctuation q′′p,x

in these regions. The lateral particle flux q′′p,z is seen to predominantly transport sediment from regions
of high streamwise particle flow rate (q′′p,x > 0) to those with lower streamwise particle flux (q′′p,x < 0),
as is indicated by the red and blue lines in figure 6.21(d). In other words, sediment is on average
transported from the troughs to the sediment ridge crests. Analogous relations hold for the oppo-
site case of low-speed regions, local sediment ridges and regions of low streamwise particle transport
(q′′p,x < 0). Recalling that the spanwise particle flux is two orders of magnitude smaller than its stream-
wise counterpart, however, it appears likely that the initial formation of sediment ridges and troughs
is predominantly driven by a laterally varying sediment erosion in the streamwise direction, related to
the presence of elongated streamwise high- and low-speed streaks. The lateral particle transport is, in
turn, assumed to be of less importance in this initial phase, while it might play a more important role
in the further growth of the initial sediment ridges in the phase when erosion and deposition are more
or less in equilibrium (cf. Figures 6.5(c) and 6.20(d)).
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Figure 6.22: (a,b) Two-point cross-correlations and cross-time correlations between the streamwise-averaged flow field and
the sediment bed contour in case CM850H3. Time-averaged two-point cross-correlation between u′′

f (y, z, t)

and: (a) the sediment bed height fluctuations, −ρuhb
(y, t); (b) the velocity fluctuations at the reference height

u′′
f (ỹ/H f = 0.5, z, t), ρuu(y, t). (c,d) Two-point cross-time correlations between u′′

f (y, z, t + δt) and: (c) the sed-

iment bed height fluctuations, −ρt
uhb

(y, δt); (d) the velocity fluctuations at the reference height u′′
f (ỹ/H f =

0.5, z, t), ρt
uu(y, δt). In (c,d), the reference time and reference wall-normal position are indicated by a white cross.

Red (blue) regions represent a strong (weak) correlation of the compared quantities. Black dashed lines connect
the maximum correlation values at each wall-normal distance ỹ/H f . Contours separating the coloured areas are
0(0.1)1 in all panels.

The visually identified correlation between large-scale velocity structures and the bed contour in the
multiphase simulations is in the following quantified based on two-point cross-correlations of the
streamwise-averaged fields

ρuhb
(y, t) = 〈h′′b (z, t) u′′

f (y, z, t)〉z/
[
〈(h′′b (z, t))2〉z 〈(u′′

f (y, z, t))2〉z

]1/2
(6.33a)

ρuu(y, t) = 〈u′′
f (H f /2, z, t) u′′

f (y, z, t)〉z/
[
〈(u′′

f (H f /2, z, t))2〉z 〈(u′′
f (y, z, t))2〉z

]1/2
, (6.33b)

where ρuhb
is the correlation between the bed contour and the flow field and ρuu quantifies the correla-

tion between the flow organisation at a reference height ỹ/H f = 0.5 and that at other distances to the
wall.

The time evolution of both quantities is shown in figures 6.22(a,b), the correlation between bed and
flow field being presented premultiplied with a global factor −1 to take into account that a locally
higher velocity is related to a local decrease of the sediment bed height and vice versa. In accordance
with the previous findings, it is seen in figure 6.22(a) that the bed contour is highly correlated with the
flow field over most of the simulation time, at least up to the bulk flow centreline ỹ/H f = 0.5 reaching
values of more than ρuhb

≈ 0.6. This is, however, not the case in the time interval t ∈ [10Tb, 30Tb],
during which the sediment bed contour and the organisation of the flow in sufficient distance to the
bed are essentially uncorrelated. Similarly, we conclude based on the results provided in figure 6.22(b)
that the flow in the channel bulk centreline at ỹ/H f = 0.5 is most of the time clearly correlated with
the structure of the flow field both near the bed and close to the free surface. Interestingly, the high
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6.3 Interaction of turbulent large-scale streaks and sediment ridges

correlation of the flow organisation at ỹ/H f = 0.5 with that in the rest of the channel is lost in the same
period t ∈ [10Tb, 30Tb], during which only a thin layer in the core of the clear-fluid region is still highly
correlated with the flow at the centreline.

The weak correlation between the large-scale streaks and the location of sediment ridges in this inter-
mediate time interval is also discernible in figures 6.21(a,b). Therein, it is seen that between t = 10Tb

and t = 20Tb, the amplitude of the streamwise-averaged velocity fluctuations decreases and the before
clearly separated high- and low-speed regions become blurred. It has been proposed earlier in this
study that such an ‘event’ might be related to a break up of the velocity streaks similar to the burst-
ing of streaks in the logarithmic layer observed by Flores and Jiménez (2010). Two large-scale streaks
redevelop shortly afterwards between t = 20Tb and t = 25Tb at slightly different transverse positions.
During the reorganisation of the large-scale streaks in this time period, the lateral positions of ridges
and troughs first remain essentially unchanged, but once the high- and low-speed regions have recov-
ered, the bedforms are seen to adapt to the altered organisation of the flow field with a noticeable time
lag, laterally ‘propagating’ towards the regions below the low-speed zones.

The revealed time delay between large-scale streak organisation and bed evolution is an important
indication of how physical information propagates across the channel. In the following, we aim to
quantify the observed time delay by means of a two-time cross-correlation function

ρt
ua(y, δt) = 〈u′′

f (y, z, t + δt) a′′(z, t)〉zt/
[
〈(u′′

f (y, z, t + δt))2〉zt 〈(a′′(z, t))2〉zt

]1/2
, (6.34)

which is a measure for the correlation of an arbitrary physical quantity a to the organisation of the
streamwise-averaged flow field at an earlier or later time. In figure 6.22(c), the cross-time correlation
between the sediment bed contour and the flow field is presented (a′′ = h′′b (z, t)), while in figure 6.22(d),
the cross-time correlation between the flow field at varying wall distances and that at a reference height
ỹ/H f = 0.5 is shown (a′′ = u′′

f (ỹ/H f = 0.5, z, t)). The correlation presented in figure 6.22(c) corrobo-
rates the observation that sediment ridges do not instantaneously adapt to a change in the arrangement
of the large-scale structures in the channel bulk, but they do so with a time lag of around 10Tb (equiv-
alent to approximately 0.9H f /uτ eddy turnover times). Similarly, it is seen in figure 6.22(d) that a time
lag of comparable size exists between the flow dynamics in the bulk and those in the vicinity of the
sediment bed. The identified time delay signifies that the evolution of the initial sediment ridges and
troughs is indeed controlled by the dynamics of the large-scale streaks in the core of the clear-fluid
region, which interact in a ‘top-down mechanism’ with the fluid layers closer to the bed.

Of special interest are therefore the previously discussed intermittently occurring situations during
which the clear signatures of high- and low-speed regions in the channel bulk disappear and thus the
‘information input’ from the channel bulk to the near-bed region is lost. In the discussion of figure 6.16,
we have conjectured that the large-scale streaks may break up in these phases, such that their statistical
footprints in the streamwise average are not visible anymore. In the following, we try to clarify how
the structural organisation of the flow changes during these ‘events’, foregoing streamwise averaging
in order to highlight that the modulation of u′′

f in these situations is indeed related to a break-up of the
large-scale streaks.

To this end, the most-energetic Fourier modes of the streamwise energy spectra φuu(kx, y, kz, t) and their
time evolution are studied individually in figure 6.23, exemplary for wall-parallel planes at a distance
ỹ/H f = 0.5 to the sediment bed. Modes with wavelength pairs λx = Lx/i and λz = Lz/k (i, k ∈ N0)
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Figure 6.23: Time evolution of the energy distribution between individual modes of the streamwise velocity spectrum
φuu(kx, ỹ, kz, t), evaluated at a wall-normal position ỹ/H f ≈ 0.5. The spectrum at each time has been normalised
such that the contributions of all individual modes sum up to unity. Note that the most dominant modes (those
modes that carry more than 20% of the total energy at least once during the observation time) are highlighted
using the following colour scheme: (0, 1)-mode ( ), (0, 2)-mode ( ) and (1, 2)-mode ( ). The smaller insets
show the time evolution of the total streamwise and wall-normal fluctuation energy at the same wall-normal po-
sition 〈(u f − 〈u f 〉xz)2〉xz ( ) and 〈(v f − 〈v f 〉xz)2〉xz ( ), respectively, normalised by their time-averaged mean.
(a) CM250H3, (b) CM650H3

smooth, (c) CM850H3, (d) CL250H16.
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Figure 6.24: Instantaneous visualisations of the wall-parallel planes of the streamwise velocity fluctuation u′
f
+, extracted at

ỹ/H f ≈ 0.5 for cases (a,b) CM650H3
smooth and (c,d) CM850H3 at two different times. The flow fields refer to the

instances marked by filled circles in figure 6.23(b) and (c), respectively.
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6.3 Interaction of turbulent large-scale streaks and sediment ridges

will be denoted as (i, k)-mode in the remainder to keep notation short. The curves presented in fig-
ure 6.23 are normalised by the total streamwise kinetic energy contained in the fluctuating field at the
given time and wall-parallel plane, respectively, such that the sum of all contributions is unity. Such
normalisation appears suitable recalling the transient nature of the flow under consideration. As a
consequence of the increasing friction along the sediment bed, the absolute values of the streamwise
〈(u f − 〈u f 〉xz)2〉xz (black) and wall-normal kinetic energy 〈(v f − 〈v f 〉xz)2〉xz (red) contained in the spe-
cific wall-parallel plane initially increase in all particle-laden cases. The limited box size in the medium
domains allows to accommodate only a few large-scale modes, such that a large portion of the total ki-
netic energy resides in a few dominant modes which are indicated by different colours in figure 6.23.
Note that we have classified modes as dominant if they are seen to carry more than 20% of the total
perturbation energy at least once during the simulation. In the medium domains, we find three dif-
ferent highly energetic dominant modes, from which two feature the streamwise zero mode. These
modes are of infinite streamwise extent and thus do not appear in the premultiplied energy spectra.
In physical space, on the other hand, these modes refer to the large alternating high- and low-speed
streaks that span over the entire streamwise domain and consequently appear as high- and low-speed
regions in the streamwise average. As opposed to the medium box simulations, the large domain of
CL250H16 accommodates a much wider range of harmonic wavelengths both in the streamwise and
spanwise direction. The kinetic energy is consequently more or less evenly distributed among the
different wavelengths, without individual modes dominating the spectra.

A comparison of the evolution of individual modes in the medium domain simulations with the cor-
responding space-time visualisations in figure 6.16 discloses that the intermittent disappearances of
the streamwise-averaged high- and low-speed regions correspond to times during which the spectra
exhibits no clearly dominant mode. In particular, the energy contained in the infinitely long modes
is significantly reduced during these phases, attaining values that are comparable to those in the re-
maining non-dominant modes. In case CM250H3, for instance, figure 6.23(a) shows that starting from
approximately t = 50Tb, the number of large-scale streak pairs reduces from two to one as has been
also observed in figure 6.16(a). In this phase, not only the fraction of energy contained in the (0, 2)-
mode decreases but also the total streamwise and wall-normal fluctuating kinetic energy decay as seen
in the inset to figure 6.23(a), implying that the two streak pairs break up at this time. In a similar way,
the dominant (0, 2)-mode in the smooth-wall case CM650H3

smooth shows a sudden decrease at approxi-
mately t = 40Tb, but in contrast to case CM250H3, the same mode recovers maintaining the two streak
pairs rather than to change to a one-pair state. Corresponding flow fields in figure 6.24(a,b) extracted
at the times indicated by the two symbols in figure 6.23(b) highlight the different organisation of the
flow in physical space in phases that do and do not feature a clear dominant energetic mode: If pro-
nounced large-scale streaks exist, they reveal no relevant lateral meandering but are roughly aligned
with the streamwise direction and thus correspond to the streamwise zero mode. In the corresponding
sediment-laden case CM850H3 for which the time evolution of the individual modes is shown in fig-
ure 6.23(c), the streamwise zero mode contains only a slightly larger fraction of the total kinetic energy
than the remaining modes at t = 0Tb. Readily after the onset of sediment erosion, the energy further
reduces until there is no visually detectable difference in the energy carried by the individual modes,
agreeing with the space-time plots in figure 6.16 and the corresponding flow field visualisation in fig-
ure 6.24(c) that highlights the absence of dominant large-scale streaks in this phase. After the break-up
of the ‘old’ streaks, two new streak pairs are seen to develop both in physical space (cf. figure 6.16(c))
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Figure 6.25: Detection of large-scale low-speed streaks (cf. Schoppa and Hussain, 2002; Kevin et al., 2019b). (a) Instanta-
neous wall-parallel plane at ỹ/H f ≈ 0.5 of a randomly-chosen streamwise velocity fluctuation field u′

f
+ in

case CM650H3
smooth. (b) Same data, after applying a 2D Gaussian cut-off filter with filter widths ∆x = 3yre f and

∆z = 1.5yre f , yre f = 0.5H f . Regions shaded in dark grey indicate filtered low-speed streaks, bright grey areas
refer to the corresponding high-speed streaks. White solid lines represent the detected centrelines of the low-
speed streaks, connecting the local minima of the streamwise velocity fluctuations w.r.t. the spanwise direction.
Linear fits to the individual centrelines are shown as red dashed lines. The inclination ϕ̂ is the angle between
the linear fit and the streamwise direction.

and in the spectra in form of the (0, 2)-mode that gains in energy first moderately, later more strongly
until it becomes the dominant mode for t & 40Tb (cf. also figure 6.24(d)).

6.3.7 Lateral streak meandering

At first glance, the large-scale streaks in figure 6.24(b,d) exhibit a rather weak lateral meandering over
smooth bottom wall and developed ridges likewise. In the following, we will scrutinise the meandering
tendency of velocity streaks of varying size and its dependency on the domain size and the presence
or absence of sediment ridges. A suitable methodology for such an investigation has been developed
by Schoppa and Hussain (2002) to study the dynamics of individual buffer-layer streaks. Later, Kevin
et al. (2019b) used a variant thereof to study the meandering behaviour of coherent structures in the
log-layer of canonical boundary layers at different distances from the wall and recently, Bae and Lee
(2021) adopted a similar strategy to investigate the dynamics and shape of three-dimensional streak
structures. A sketch of the basic concept of this methodology is provided in figure 6.25: For a given
wall-parallel slice of the flow field, the local minima zmin of the spanwise velocity profile u′

f (x, z, t)|x,t f ix.

are determined for each position x. A set of such points that is connected (in the streamwise direc-
tion) then represents the centreline of a single streak. The smoothness of the low-speed streaks in the
buffer layer on which the original methodology of Schoppa and Hussain (2002) was focused allows to
forego a smoothing or filtering, while the rough appearance of log-layer streaks does not. Kevin et al.
(2019b) used a standard Gaussian filter, while we make once more use of the two-dimensional version
of the anisotropic Gaussian cut-off filter as defined in equation (6.26). In the following, we measure
the streamwise length of a streak x̂ as the extent of the projection of the linear fit upon the streamwise
x-axis. In this context, let us stress that streaks can overlap the domain boundaries due to the peri-
odic boundary conditions and thus might reach lengths longer than the streamwise domain size Lx.
In order to quantify the meandering amplitude and the current orientation of a streak, we fit a straight
line to each streak centreline based on a least-square fitting and measure the streak inclination w.r.t.
the x-direction as the angle ϕ̂ between the linear fit and the streamwise axis. The local meandering
amplitude Âs(x, t) of a given streak is introduced as the local distance between the streak centreline
and the linear fit in the z-direction at each position x. The root mean square over Âs at all streamwise
positions x of a single streak is in the following denoted as σ̂s.
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Figure 6.26: Joint p.d.f. of the projected streamwise streak length x̂/H f with (a) the root mean square of the spatial mean-
dering amplitude σ̂s/H f and (b) the orientation angle ϕ̂ of the linear fit w.r.t. the x-direction (in degree). In (a),
the blue dashed line refers to the linear relation σ̂s/H f = 0.02x̂/H f , while the horizontal dashed lines in (b)
denote angles of ±5°. Contours include 95% of the total mass of the joint p.d.f.s. Note that due to the hetero-
geneous distribution of the underlying dataset, the cells for the computation of the joint p.d.f. are accordingly
non-homogeneously distributed. Cases: CM250H3 ( ), CM650H3

smooth ( ), CM850H3 ( ), CL250H16
smooth ( ),

CL250H16 ( ).

In figure 6.26(a), the joint probability density function (joint p.d.f.) of the root mean square of the streak
meandering amplitude σ̂s and the streak length x̂/H f is shown, whereas figure 6.26(b) provides the
joint p.d.f. of the inclination angle ϕ̂ and x̂/H f . Note that due to the short observation time interval
combined with moderate domain sizes, only a comparably small number of individual streaks was
available as samples for the construction of the joint p.d.f.s such that they still reveal some scatter.
Nonetheless, the presented data clearly shows that the orientation and meandering tendency of the
low-speed streaks are functions of their size: Longer structures show – in a statical sense – stronger
lateral oscillations, but their mean axes are quasi-parallel to the mean flow direction. Smaller structures
are, as expected, more isotropically arranged as indicated by the wide range of inclination angles ϕ̂

that are attained by structures of short streamwise lengths. For all structures shorter than x̂/H f .

6, the meandering amplitude seems to decrease linearly with their streamwise extension, while for
longer structures, the increase of the mean amplitude with x̂ reduces noticeably. This is in line with the
findings of Kevin et al. (2019b) who observed that the mean streak meandering amplitude for a given
wall-parallel plane increased when they excluded small-scale streaks from the analysis. On the other
hand, the authors reported that the meandering of individual structures depended on their distance
to the bottom wall, with stronger lateral motion for the larger streaks further away from the wall and
reduced spanwise oscillations for the smaller ones closer to the wall.

The results shown in figure 6.26 highlight that the amplitude of the lateral meandering is essentially the
same for streaks of the same size in all simulations irrespective of domain size and flow configuration,
leading to the conclusion that at least at the considered parameter point, the observed spatial mean-
dering is a robust feature of turbulent streaks and is neither significantly amplified nor damped by the
presence of sediment ridges. Also, it underlines that lateral meandering is not artificially suppressed
when studied in the relatively narrow domains of cases CM250H3, CM650H3

smooth and CM850H3.
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6.3.8 Large-scale streaks and mean secondary flow

As reviewed in section 3.6, sediment ridges are often suspected to ‘lock’ the spanwise location of large-
scale coherent structures such as the velocity streaks, such that the latter leave their footprint in the
streamwise and time-averaged fields in form of up- and downwelling of the mean velocity profile,
accompanied by depth-spanning mean secondary currents (Nezu, 2005). The results presented in the
previous section, on the other hand, have underlined that within the here considered intermediate time
intervalsO(10Tb), large-scale streaks are even in the single-phase smooth-wall simulations more or less
well aligned in the streamwise direction without marked lateral meandering. A substantial fraction of
the turbulent kinetic energy was moreover seen to reside in some distinct streamwise-elongated modes.
Let us recall at this point that the organisation of the large-scale streamwise velocity streaks is closely
coupled with that of other coherent structures in the flow, such as Reynolds stress-carrying ejection
and sweep structures as well as individual vortex clusters, as was documented by Del Álamo et al.
(2006) and Lozano-Durán et al. (2012). By conditionally averaging individual structures at all scales
of the logarithmic layer, these authors were able to determine the preferential mutual organisation of
these different types of coherent structures. The resulting idealised self-similar configuration consists
of a pair of elongated high- and low-speed streaks, with a shorter ejection inducing an upflow inside
the low-speed streak and a shorter sweep that marks a downflow inside the high-speed streak (cf. also
figure 3.3). The ejection object is additionally associated with a vortex cluster (Del Álamo et al., 2006;
Jiménez, 2018), with the upflow occurring in the centre of the cluster. That way organised, the up- and
downward fluid motion inside the two streaks cause a conditional quasi-streamwise secondary roller
to emerge in between the two structures.

Even though the described mutual organisation of the individual structures is an idealised configura-
tion which is as such unlikely to appear in exactly this way in instantaneous flow fields, the here studied
instantaneous structures share an astonishing similarity with this idealised configuration. Figure 6.27
shows instantaneous snapshots of the three-dimensional organisation of the flow field in case CM850H3

and the therein embedded large-scale velocity streaks (cf. figure 6.27(a)), ejection and sweep structures
(cf. figure 6.27(b)) and vortex clusters (cf. figure 6.27(c)). Following Del Álamo et al. (2006), instanta-
neous vortex clusters are therein defined as connected subdomains for which the root mean square of
the discriminant of the velocity gradient tensor, D, exceeds a given threshold of 0.02. Strictly speaking,
D is not the discriminant of the tensor field ∇u f , but of the characteristic polynomial used to deter-
mine the eigenvalues of the former. Subject to the incompressibility constraint, this latter reduces to a
depressed cubic polynomial such that the discriminant is obtained as (Chong et al., 1990, 1998)

D(x, t) =
27

4
Q2 +R3, (6.35)

where Q and R are the second and third invariant of ∇u f . Depending on the sign of D, ∇u f possesses
either three real or one real and two complex conjugated eigenvalues. In the latter case which corre-
sponds to the condition D > 0, the rotational part of ∇u f is dominant and the respective location is
classified as lying inside a vortex (Blackburn et al., 1996).

In figure 6.27, we observe that ejection and sweep structures are organised in the same streamwise-
elongated way as the longer large-scale velocity structures, with ejections being stringed together in-
side the low-speeds streaks and vice versa for the sweeps. In complete agreement with the results of
Del Álamo et al. (2006) and the visualisations of instantaneous closed channel flow simulations by
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(a) (b)

(c)

Figure 6.27: Instantaneous visualisation of the large-scale organisation of (a) streamwise velocity streaks, (b) Reynolds stress-
carrying structures and (c) vortex clusters. Panel (a) and (b) are identical to figures 6.17(a) and 6.3(d), respectively,
and are repeated here for convenience. (a) High-speed streaks: red, low-speed streaks: blue; (b) ejections: red,
sweeps: blue. Vortex clusters shown in panel (c) are detected as connected regions for which the root mean
square of the discriminant of the velocity gradient tensor D (Chong et al., 1998) exceeds a value of 0.02Drms(y)
(Del Álamo et al., 2006). In all panels, bright colours indicate a larger distance to the bottom wall than dark-
coloured regions of the structures.

Jiménez (2013a), larger vortex clusters away from the bed are seen to concentrate almost exclusively
in the same regions as the large-scale ejections, reaching therein up to the free surface of the channel.
This is inasmuch remarkable as individual vortices are usually much smaller and locally more or less
isotropically distributed, whereas the vortex clusters reveal a clearly anisotropic organisation. Jiménez
(2018) argued that the “residual anisotropy of the vorticity organisation in the presence of the shear
of the mean velocity profile” eventually leads to the formation of the conditional quasi-streamwise
secondary rollers that connect the conditioned velocity streaks in the cross-plane and are thus closely
related to the here observed secondary currents, as we shall see below.

Owing to their relatively regular streamwise and spanwise organisation, the statistical footprint of
the large-scale coherent structures is clearly identifiable in the streamwise and time-averaged fields.
Figure 6.28 shows the p.d.f. of the occurrence of different quadrant events (Wallace et al., 1972) in the
cross-section of case CM850H3, which represents a measure for the preferential location of the Reynolds
stress-carrying structures in the cross-section. In agreement with our earlier observations, ejections
dominate in the regions above sediment ridges (figure 6.28(b)), whereas the domain above the troughs
is predominantly populated by sweep structures (figure 6.28(d)). Inward and outward directed con-
tributions that counteract the mean Reynolds stress occur, as expected, with less probability (Jiménez,
2018) and are of secondary importance in most regions of the cross-section, the only exception being
the flow in the direct vicinity of the trough, where locally outward events dominate the p.d.f.. In this
context, it should be cautioned that due to the curved fluid-bed interface, wall-plane averaging ‘cuts’
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Figure 6.28: Streamwise-averaged p.d.f. of the occurrence of quadrant events in the cross-plane of the open channel flow
case CM850H3 in the time interval t/Tb ∈ [40, 60]. (a) Q1-events (outward: u′

f > 0, v′f > 0), (b) Q2-events

(ejection: u′
f < 0, v′f > 0), (c) Q3-events (inward: u′

f < 0, v′f < 0), (d) Q4-events (sweep: u′
f > 0, v′f < 0). The

individual p.d.f.’s are normalised such that all four contributions sum up to unity pointwise. The time-averaged
fluid-bed interface profile is indicated by the white solid curve.

through the ridges where both velocity components are trivially close to zero while they attain non-
zero values over the troughs at the same height. Nonetheless, the observations imply that below the
large sweep-dominated region, there is a thin layer in which outward motions directed away from the
bed are of relevance and might be able to transport particles away from the latter.

The clear dominance of sweeps and ejections over troughs and ridges, respectively, is closely linked
to the appearance of mean secondary currents of Prandtl’s second kind, as these structures induce at
their preferential lateral positions a mean upflow in the low-speed regions over the sediment ridges and
accordingly a mean downflow over the troughs. The resulting mean secondary flow fields computed
over short time intervals (between 20 and 80 bulk time units) are provided in figure 6.29. The secondary
mean flow is indicated in terms of the mean secondary flow streamfunction 〈ψ〉xt(y, z) that can be
determined by integration of one of the two cross-stream velocity components, since

∇⊥〈ψ〉xt(y, z) = (∂y〈ψ〉xt, ∂z〈ψ〉xt)
T = (−〈w f 〉xt, 〈v f 〉xt)

T, (6.36)

where ∇⊥ = (∂y, ∂z)T is the two-dimensional nabla operator that acts only in the two cross-stream di-
rections. In all cases, the cross-plane is filled with pairs of depth-spanning counter-rotating secondary
mean flow vortices. In the ridge-featuring simulations (cf. figure 6.29(a,c,d)), the streamwise mean
flow exhibits an alternating up- and downwelling over ridge crests and troughs, respectively, with
accordingly oriented secondary currents transporting high-momentum fluid towards the free surface
over the crests and vice versa over troughs (Nezu and Nakagawa, 1993). Remarkably, also the statisti-
cally spanwise homogeneous smooth-wall simulation CM650H3

smooth in figure 6.29(b) features over the
here considered averaging time interval mean secondary currents that are of striking similarity to their
counterparts over developed sediment ridges. In particular, all simulations show roughly the same lat-
eral spacing of the secondary currents, which is equivalent to the preferential spanwise wavelength of
the instantaneous large-scale streaks, i.e. λz/H f ≈ 1-1.5. Case CM250H3 represents in this context
an exception since in the period over which the statistics for figure 6.29 have been gathered, this latter
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Figure 6.29: Mean primary 〈u f 〉xt/ub and secondary flow field (〈v f 〉xt, 〈w f 〉xt)
T/ub for cases (a) CM250H3, (b) CM650H3

smooth,
(c) CM850H3 and (d) CL250H16. Note that for the sake of comparison, in panel (d) we have arbitrarily chosen
a subdomain of the entire cross-section of case CL250H16 with a lateral width similar to Lz/H f in the medium
domain cases. The time-averaged fluid-bed interface profile is indicated by a red curve. The time window over
which data has been accumulated can be seen in figure 6.30. Isolines of the primary flow 〈u f 〉xt/ub are shown
in intervals 0.1(0.1)1.2, while the secondary flow pattern (〈v f 〉xt, 〈w f 〉xt)

T is shown in terms of the secondary
mean flow streamfunction 〈ψ〉xt. Clockwise (counterclockwise) secondary flow rotation is indicated by red (blue)
contours. The shown contours represent 20 equally spaced subintervals of the range [min

y,z
〈ψ〉xt, max

y,z
〈ψ〉xt].

intermittently features only a single pair of low- and high-speed streaks, as has been already discussed
in the context of figure 6.16(a).

In addition to the size and shape of the secondary currents, also the secondary flow amplitude turns
out to be of comparable size for all simulations: Figure 6.30 shows the time-dependent secondary
flow intensity u⊥(t) defined from the cross-plane averaged kinetic energy contained in the streamwise-
averaged cross-flow field (〈v f 〉x, 〈w f 〉x)T, viz.

u⊥(t) =
[

1

Lz 〈h f 〉xz(t)

∫ Lz

0

∫ Ly

〈hb〉xz(t)

(
〈v f 〉2

x + 〈w f 〉2
x

)
dydz

]1/2

. (6.37)

Relation (6.37) is a variation of a formulation for the secondary flow intensity proposed by Sakai (2016)
in the context of sidewall-induced mean secondary flow in open and closed ducts, adapted to the
current flow configuration. The intensity of the mean secondary flow u⊥(t) is observed to oscillate
between 1.5% and 2.5% of the bulk velocity in figure 6.30 for all cases. The lowest value is attained
in case CL250H16, which features a larger averaging ensemble in that a larger number of ridges and
associated secondary flow cells is accommodated in the wide domain (by a factor of three to four). As
expected, the intensity of the time-averaged cross-flow (〈v f 〉xt, 〈w f 〉xt)T

U⊥ =

[
1

Lz H f

∫ Lz

0

∫ Ly

Hb

(
〈v f 〉2

xt + 〈w f 〉2
xt

)
dydz

]1/2

, (6.38)

indicated by horizontal dashed lines in figure 6.30, is systematically weaker than the instantaneous
value u⊥(t), but turns out to be comparable to the amplitude of sidewall-induced mean secondary
flows usually reported for turbulent open duct flows. Sakai (2016), for instance, determined the inten-
sity of the secondary flow within a distance z = 1H f from the sidewalls of a smooth-wall open duct
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Figure 6.30: Instantaneous secondary flow intensity u⊥/ub as a function of time (solid lines) and the corresponding value
determined for the time-averaged fields in figure 6.29 (dashed lines) following the definition in equation (6.37).
The length of the dashed lines indicates the time window over which the fields shown in the respective panels
of figure 6.29 have been averaged: CM250H3 ( ), CM650H3

smooth ( ), CM850H3 ( ), CL250H16 ( ).

in a range between 1.1% and 1.3% of the bulk velocity. In the following chapter, we will further inves-
tigate the impact of developed ridges on the sidewall-induced secondary flow pattern and the mutual
relation between the mean secondary flow streamfunction 〈ψ〉xt and the mean streamwise vorticity
〈ω f ,x〉xt (cf. section 7.2.4), which are directly related by a Poisson equation (Pinelli et al., 2010).

In figure 6.31, structures that carry a significant portion of streamwise vorticity are seen to preferen-
tially cluster inside the mean secondary currents of similar sense of rotation for both the flow over the
smooth wall and that over developed sediment ridges. In other words, these structures are predomi-
nantly located at the border between low- and high-speed streaks or, equivalently, ejection and sweep
structures. Along the bottom wall of case CM650H3

smooth, mean mirror vortex cells similar to those in the
open duct case (cf. section 7.2.4) appear as a consequence of the no-slip boundary condition at the wall.
Whilst similar mean vortex patterns are also seen along the mean fluid-bed interface of case CM850H3,
vorticity tends to zero when approaching the bed as a consequence of the small velocity gradients in
direct vicinity of the sediment bed. The mean distribution of the streamwise vorticity generally resem-
bles that observed in the conditionally-averaged datasets of Lozano-Durán et al. (2012), for which ω f ,x

was investigated by Jiménez (2013a). The main conditional roller observed in the latter work was sim-
ilarly sitting between the conditional ejection and sweep object, and its intensity was with O(uτ/ycg)

of the same order as the mean shear S at its centre of gravity ycg, which is S ≈ uτ/κycg inside the
logarithmic layer. For the here considered outer mean vorticity cells, the mean shear at their centre of
gravity is approximately uτ/(0.5H f κ) ≈ 5uτ/H f assuming the logarithmic velocity profile extends up
to this height, which is indeed comparable to the maximum values of |〈ω f ,x〉xt|H f /uτ ≈ 3-5 that are
observed in the centre of the secondary flow cells in figure 6.31.

6.3.9 Total shear stress

The appearance of a mean secondary motion in the cross-plane of the channel goes hand in hand with a
modulation of the mean total shear stress 〈τtot〉xt, which is determined by integration of the streamwise
momentum balance over the streamwise direction and time, viz. (Nikora et al., 2007)

〈τtot〉xt(y, z) = ρ f ν f

∂〈u f 〉xt

∂y︸ ︷︷ ︸
〈τvisc〉xt

− ρ f 〈u′′′
f v′′′f 〉xt︸ ︷︷ ︸

〈τturb〉xt

− ρ f 〈u′′′′
f v′′′′f 〉xt︸ ︷︷ ︸

〈τdisp〉xt

+
∫ Ly

y
〈 fx〉xt(s, z)ds

︸ ︷︷ ︸
〈τpart〉xt

, (6.39)
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Figure 6.31: Short-time averaged mean streamwise vorticity distribution 〈ω f ,x〉xt H f /uτ for cases (a) CM650H3
smooth and

(b) CM850H3. For the sake of comparison, the intensity and orientation of the mean secondary flow field
(〈v f 〉xt, 〈w f 〉xt)

T/ub is shown as vector plot. The coloured areas refer to values of 〈ω f ,x〉xt H f /uτ in the in-
terval [−5.4, 5.4] with an increment of 1.2. The time-averaged fluid-bed interface profile is indicated by the black
solid curve. The time window over which data has been accumulated is of length O(10Tb) and can be seen in
figure 6.30.

where fx is the streamwise component of the Eulerian force field f arising in the framework of the
immersed boundary formulation due to fluid-particle interactions. Unfortunately, 〈 fx〉xt is not directly
accessible in the here considered statistics as it is not stored alongside the simulation run. In practice,
the integrand of 〈τpart〉xt is therefore approximated as

〈 fx〉xt ≈ −〈 f H
x 〉xt〈φs〉xt/Vp. (6.40)

As was shown by Uhlmann (2008), relation (6.40) approximates the fluid-particle force term reasonably
well in absence of strong gradients of the solid volume fraction 〈φs〉xt, which occur in the current sys-
tem solely in the direct vicinity of the mean fluid-bed interface. It might be further noted that, strictly
speaking, the integration of the streamwise momentum balance that leads to equation (6.39) should
be performed comprising both fluid and particle phase and thus contain the composite velocity rather
than the fluid-phase velocity (Uhlmann, 2008; Kidanemariam, 2016). However, Kidanemariam et al.
(2022) recently showed that the difference between both formulations is negligible due to the small dif-
ference between fluid and composite velocities, such that we stick with relation (6.39) in the remainder
of this work.

The total mean shear stress τtot defined therein comprises four different contributions, that are, the
viscous (τvisc), turbulent (τturb) and dispersive stresses (τdisp) as well as the shear stress resulting from
particle-fluid interactions (τpart). Note that τturb and τdisp are off-diagonal entries of the two velocity
fluctuation covariance tensors 〈u′′′

f ⊗ u′′′
f 〉xt and 〈u′′′′

f ⊗ u′′′′
f 〉xt, which base upon the following flow field

decompositions

u′′′
f (x, t) = u f (x, t)− 〈u f 〉t(x) (6.41a)

u′′′′
f (x) = 〈u f 〉t(x)− 〈u f 〉xzt(y) = 〈u′

f 〉t(x). (6.41b)

In equation (6.41a), u′′′
f (x, t) represents the fluctuation of the velocity w.r.t. its local time-averaged value

〈u f 〉t(x) at a point x and u′′′′
f (x) in equation (6.41b) is the fluctuation of the time-averaged velocity field

w.r.t. its plane-average.

Thus, the turbulent stresses refer to standard Reynolds-averaging and originate from pure temporal
fluctuations at a given spatial position, whereas dispersive stresses emanate from spanwise variations
in the time-averaged flow field (Nikora et al., 2001). In this regard, dispersive stresses are related to a
deflection of the streamlines from the mean flow direction in the time-averaged flow field. A possible
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Figure 6.32: Cross-plane distribution of the different contributions to the mean total shear stress 〈τtot〉xt: (a) Viscous stresses
〈τvisc〉+xt = (ν f ρ f ∂〈u f 〉xt/∂y)+, (b) turbulent stresses −〈τturb〉+xt = −(ρ f 〈u′′′

f v′′′f 〉xt)
+, (c) dispersive stresses

−〈τdisp〉+xt = −(ρ f 〈u′′′′
f v′′′′f 〉xt)

+ and (d) approximation of the stresses due to fluid-particle interaction 〈τpart〉+xt

using relation (6.40). The time-averaged fluid-bed interface profile is indicated by the black solid curve. For
the sake of comparison, (c) contains in addition isocontours of the mean secondary flow streamfunction 〈ψ〉xt

analogous to figure 6.29(c); clockwise (counterclockwise) rotating secondary currents are indicated by dotted
(dashed) lines.

reason for such a deviation of the streamlines’ orientation from the x-direction are deformed domain
boundaries, as in flows over developed transverse bedforms (Kidanemariam et al., 2022) or over irreg-
ularly arranged bottom topographies (Jelly and Busse, 2018; Busse and Jelly, 2020), in which context
dispersive stresses are sometimes termed ‘form-induced stresses’. In the current situation, however,
dispersive stresses arise due to the spanwise heterogeneity of the mean turbulent flow field and the
secondary currents which, in turn, are the consequence of the afore-discussed regular organisation
of the large-scale coherent structures. In other words, dispersive stresses quantify in the present con-
text the contribution of well-organised large-scale coherent structures to the mean shear stress budget,
whereas the contributions of smaller-scale short-living or disordered structures are collected in the tur-
bulent stresses. It is worth noting that this implies dispersive stresses to attain non-trivial values even
in the absence of mobile sediment or a curved lower domain boundary. Indeed, we will see below that
τdisp significantly contributes to the total shear stress budget in the smooth-wall case CM850H3 as well
during the here considered intermediate time intervals of O(10Tb).

In figure 6.32, we show exemplary for case CM850H3 how the four different contributions to 〈τtot〉xt are
distributed over the channel cross-section. As expected, the contribution of the viscous stresses 〈τvisc〉xt

to the total shear stress budget (cf. figure 6.32(a)) is of relevance only in a thin layer slightly above the
sediment bed. In contrast to a solid impermeable wall at which the wall shear stress is purely viscous,
the viscous stresses in the direct vicinity of the mobile permeable sediment bed do not contribute more
than around 10% to the total mean shear stress at the given parameter point. The turbulent stresses
〈τturb〉xt (cf. figure 6.32(b)), on the other hand, represent the dominant contribution in the clear-fluid
region. Interestingly, 〈τturb〉xt reveals a clear spanwise variation that is in phase with the mean up-
and downflow associated with the secondary currents: Above the sediment ridges where the mean
secondary flow is directed from the bed towards the free surface, regions of high turbulent stress extend
further into the outer flow than over the troughs, where such regions appear to be more restricted to
the near-bed region. Recalling that 〈τturb〉xt represents the contribution to the total shear stress from
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all Reynolds stress-carrying structures but the largest which leave their footprint predominantly in the
dispersive stresses, this suggests that smaller-scale structures inside the large-scale low-speed streaks
can reach closer to the free surface than their counterparts in the corresponding high-speed streaks due
to the preferential downward motion (Motoori and Goto, 2021). The dispersive stresses 〈τdisp〉xt shown
in figure 6.32(c), by contrast, contribute to the total stress merely in the up- and downflow regions of
the mean secondary flow. As such, they represent the statistical footprint of the there predominantly
residing large-scale ejection and sweep structures, respectively. While of negligible size both near the
sediment bed and the free surface, the dispersive stresses are of relevant size roughly at the height at
which the centre of gravity of the secondary currents is located. As expected, the total mean shear stress
is thus dominated by pure fluid stresses above the bedload layer, whereas inside the region of intense
particle transport, the mean shear and the velocity fluctuations decrease markedly. The decay of the
pure fluid stresses is compensated by the increasing amplitude of the stresses due to fluid-sediment
interactions, 〈τpart〉xt, which eventually become the only non-trivial component inside the sediment
bed (cf. figure 6.32(d)).

The spatial variability of the turbulent and dispersive stresses agrees well with the measurements of
Zampiron et al. (2020a) for the flow over artificial triangular ridges with a similar lateral spacing as the
here considered self-formed sediment ridges. Also, a similar organisation of the dispersive stresses
in regions of mean up- and downward motion has been reported by Vowinckel et al. (2017b) who
observed secondary currents to arise in their numerical simulations after particles have agglomerated
into streamwise-aligned sediment clusters. Recently, Zampiron et al. (2021) reanalysed the data of
Zampiron et al. (2020a), evaluating the individual terms of the mean kinetic energy budget as well as of
the transport equations related to the double-averaged, turbulent and dispersive stresses, respectively.
The authors concluded that the dispersive kinetic energy contained in the secondary mean flow is fed
from the cross-stream components of the purely turbulent field, rather than directly from the double-
averaged mean flow, and that the energy supply resides predominantly in structures near the lower
domain boundary. This observation is inasmuch conclusive as the fixed artificial ridges were used in
the aforementioned study to generate secondary currents and in their absence no such mean secondary
flow was observed, such that there has to be a causal connection between the contour of the lower
domain boundary and the secondary mean flow. In the current case, on the other hand, sediment
ridges have been seen to follow the dynamics of the large-scale flow features rather than the other way
round, such that the kinetic energy transport between the different fields might be markedly different.
In particular, the earlier in this chapter observed ‘top-down mechanism’ in which large-scale streaks
and sediment ridges interact and the observation of secondary currents in the smooth-wall simulations
clearly contradict a control of the secondary currents from the sediment bed.

In order to recover the standard linear variation of the plane- and time-averaged mean shear stress
profile 〈τtot〉xzt(y), we average equation (6.39) over the spanwise direction and obtain

〈τtot〉xzt(y) = 〈τvisc〉xzt − 〈τturb〉xzt − 〈τdisp〉xzt +
∫ Ly

y
〈 fx〉xzt(s)ds

︸ ︷︷ ︸
〈τpart〉xzt

. (6.42)

In case of a fully-developed statistically stationary flow, the force exerted on the two-phase system by
the mean driving pressure gradient 〈Π〉t is entirely balanced by the counteracting total shear stress,
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Figure 6.33: Wall-normal profiles of the time- and plane-averaged mean total shear stress 〈τtot〉xzt and its individual contri-
butions. (a,c,e) Time- and plane-averaged total shear stress 〈τtot〉xzt determined based on the pure fluid velocity
obtained from individual flow fields, evaluating equation (6.42). (b,d,f ) Same as in (a,c,e), but with 〈τtot〉xzt

determined based on the composite velocities collected as runtime statistics, evaluating equation (6.44). The in-
dividual stress contributions are 〈τvisc〉+xzt ( ), −〈τturb〉+xzt ( ), −〈τdisp〉+xzt ( ), −〈u′

f v′f 〉+xzt ( ), 〈τpart〉+xzt ( ),

〈τtot〉+xzt ( ). Cases: (a,b) CM250H3, averaging interval t/Tb ∈ [20, Tobs]; (c,d) CM650H3
smooth, t/Tb ∈ [0, Tobs];

(e,f ) CM850H3, t/Tb ∈ [20, Tobs]. For cases CM250H3 and CM850H3, the grey-shaded area indicates the in-
terval between the minimum and maximum of the streamwise- and time-averaged fluid-bed interface, viz.
[min

z
(〈hb〉xt), max

z
(〈hb〉xt)].
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i.e. −〈Π〉t(Ly − y) = 〈τtot〉xzt(y). The number of terms on the RHS of equation (6.42) can be further
reduced taking into account that (Raupach and Shaw, 1982)

〈u′
f v′f 〉xzt = 〈u′′′

f v′′′f 〉xzt + 〈u′′′′
f v′′′′f 〉xzt = 1/ρ f 〈τturb〉xzt + 1/ρ f 〈τdisp〉xzt. (6.43)

Making use of equation (6.43), relation (6.42) can be rewritten as

〈τtot〉xzt(y) = 〈τvisc〉xzt − ρ〈u′
f v′f 〉xzt − 〈τpart〉xzt. (6.44)

While in the continuous case mathematically equivalent, the two formulations are slightly differently
evaluated in the following, as a consequence of the way statistics are accumulated in the context of
the numerical code we are using. When evaluating relation (6.42), the individual terms are computed
based on individual snapshots of the flow field which were stored in intervals of 1-3Tb length, as the
dispersive and turbulent stresses are not stored in form of runtime statistics alongside the simulation.
The double-averaged Reynolds stresses 〈u′

f v′f 〉xzt which represent the sum of the former two contribu-
tions, on the other hand, are available as runtime statistics meaning that the data is accumulated over
the entire simulation period with much shorter intermediate time intervals. Also, 〈 fx〉xzt is directly ac-
cessible in the runtime statistics such that in the following, we can forego using approximation (6.40).

The results obtained when evaluating both relations are visualised in figure 6.33, exemplary for cases
CM250H3, CM650H3

smooth and CM850H3. Taking into account the relatively short averaging intervals con-
sidered here together with the fact that some of the particle-laden cases are still in a transient phase, the
variation of the total shear stress 〈τtot〉xzt shown in figure 6.33 reasonably well recovers the expected
linear variation across the channel height, which can be seen as a measure for the state of statistical
convergence in the respective case. While the deviation due to not fully-converged statistics is seen all
over the channel height, we also observe a rather localised deviation from the linear profile in the vicin-
ity of the mean fluid-bed interface, especially for case CM250H3 (cf. figure 6.33(a,b)). We expect this
deviation to be the consequence of the fact that in the context of the current finite difference immersed
boundary method, the analytically derived momentum equation is fulfilled only up to a truncation
error. The latter is assumed to be of negligible size in the absence of particles as in the channel bulk as
well as in regions where the velocity of both phases is vanishingly small as inside the sediment bed.
Similarly, the error is assumed to be negligible in case of dilute particle suspensions in which particles
travel at a similar velocity as the surrounding fluid phase (Uhlmann, 2008; Kidanemariam et al., 2013).
On the other hand, the deviation will be more pronounced in regions of stronger differences between
particle and fluid velocity as it is the case along the fluid-bed interface, where the fluid mobilises parti-
cles that are essentially in rest. With increasing height of the studied bedforms, the observed deviation
is smeared over a larger wall-normal interval and is thus almost not to detect in case of the higher-
amplitude transverse bedforms studied, for instance, in Kidanemariam and Uhlmann (2017). For the
here considered low-amplitude sediment ridges, by contrast, the interval between the minimum and
maximum of the bed profile is relatively narrow, such that the deviations concentrate in the vicinity of
the mean fluid-bed interface.

In agreement with our earlier observations, the viscous stresses 〈τvisc〉xzt in figure 6.33 are of signifi-
cance mainly in the region close to the bed, whereas most of the clear-fluid region is dominated by the
turbulent stresses 〈τturb〉xzt. In this context, let us point out that the contribution of the viscous stresses
to the total shear stress 〈τtot〉xzt is fairly different for the three shown cases: While in the smooth-wall
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case CM650H3
smooth, the viscous shear stress naturally is the only contribution directly a the solid imper-

meable bottom wall due to the there applied boundary conditions, its contribution to the total mean
shear stress is drastically reduced in the particle-laden cases (attaining only up to 40% of 〈τtot〉xzt in
case CM250H3 and less than 10% in case CM850H3). In both cases, instead, the stresses due to fluid-
particle interactions clearly dominate the mean shear stress in the near-bed region, where the particle
transport is most intense. In all three cases, dispersive stresses are seen to markedly contribute to the
total shear stress budget in the bulk of the channel, attaining values between 15% and 25% of 〈τtot〉xzt.
Remarkably, it is the smooth-wall case CM650H3

smooth that reveals the highest contribution of dispersive
stresses of all three cases, underlining that the dispersive stresses are indeed a consequence of the mean
secondary flow, rather than being caused by the sinusoidal deformation of the sediment bed. In the
context of developed ripple-like bedforms where 〈τdisp〉xzt is indeed a form-induced stress, on the other
hand, its contribution is of relevance only in the vicinity of the sediment bed and of negligible size in
the outer flow (Kidanemariam et al., 2022).

The earlier discussed experimental measurements of flow over fixed artificial ridges at a lateral spacing
of λh,z/H f ≈ 1.6 performed by Zampiron et al. (2020a), in turn, reveal similar wall-normal profiles of
the individual shear stress components as in the here considered simulations. The contribution of
the dispersive stresses 〈τdisp〉xzt to the total stress is, however, somewhat stronger in their case, partly
attaining values of comparable size as the turbulent stresses 〈τturb〉xzt. The reason for the stronger
contribution of form-induced stresses to the total shear stress budget in these experiments is believed
to be twofold: On the one hand, the relative height of their artificial ridges is more than twice the
amplitude of the sediment ridges in the current study. On the other hand, their artificial ridges are
spatially fixed, as opposed to the self-formed mobile ridges considered in the current study. Both
effects are assumed to cause an enhance of the secondary flow intensity and could thus lead to the
stronger contribution of 〈τdisp〉xzt to the total shear stress.

6.3.10 Longtime-evolution of sediment ridges

6.3.10.1 Streamwise-minimal simulations

In the previous sections, we have discussed the role of large-scale streaks in generating initial sediment
ridges on a macroscopically flat sediment bed, and we have pointed that the secondary flow cells of
Prandtl’s second kind are the statistical footprints of the large-scale coherent structures. In the follow-
ing section, we are interested in the long-time evolution of sediment ridges in the phase subsequent
to the initial formation interval. It shall be shown that the mean height of the ridges does not further
grow in this phase, but ridges nevertheless undergo regular transformations as well as merging and
splitting events.

As has been set out in section 6.1, long-time observations of ridges free from the influence of trans-
verse bedforms are (at the current parameter points) only possible in streamwise-minimal boxes such
as that of CS250H3, in which the limited streamwise box length Lx/D = 51.2 effectively hinders the
growth of transverse patterns (Scherer et al., 2020). In the context of the current study, we have carried
out further streamwise-minimal simulations with varying lateral extent to allow for the evolution of
different numbers of ridges. For the sake of clarity, the supplementary simulations are classified in
three groups depending on their respective characteristic parameters (cf. tables 6.3 and 6.4): Cases
that belong to the first group ( ) have been carried out at the same parameter point as case CS250H3
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Case Reb Reτ ρp/ρ f Ga D+ H f /D Hb/D H f /Hb θ

CS250H1 3011 256.13 2.5 28.37 9.69 26.44 11.96 2.21 0.12
CS250H1.5 3011 262.14 2.5 28.37 9.91 26.46 11.94 2.22 0.12
CS250H2 3011 261.37 2.5 28.37 9.88 26.46 11.94 2.22 0.12
CS250H3 3011 259.43 2.5 28.37 9.81 26.43 11.97 2.21 0.12
CS250H4 3011 260.69 2.5 28.37 9.85 26.46 11.94 2.22 0.12
CS250H6 3011 260.78 2.5 28.37 9.86 26.46 11.94 2.22 0.12
CS250H8 3011 262.16 2.5 28.37 9.90 26.49 11.91 2.22 0.12
CS850 9483 836.35 2.5 56.68 29.24 28.60 6.96 4.11 0.27
CS200H1.5 3008 207.29 2.5 11.54 4.00 51.87 12.13 4.28 0.12
CS200H2 3008 202.53 2.5 11.54 3.90 51.89 12.11 4.28 0.11
CS200H4 3008 201.78 2.5 11.54 3.89 51.92 12.08 4.30 0.11

Table 6.3: Physical parameters of long-time streamwise-minimal open channel flow simulations. The parameters are defined
in accordance with those in table 6.1.

Case [Lx × Lz]/H f [Lx × Lz]/D D/∆x min(∆y+) Np Tobs/Tb

CS250H1 1.94 × 0.97 51.2 × 25.6 10 0.97 14 673 677
CS250H1.5 1.94 × 1.45 51.2 × 38.4 10 0.99 22 020 1014
CS250H2 1.93 × 1.93 51.2 × 51.2 10 0.99 29 359 1014
CS250H3 1.94 × 2.91 51.2 × 76.8 10 0.98 43 730 678
CS250H4 1.94 × 3.87 51.2 × 102.4 10 0.99 58 742 676
CS250H6 1.94 × 5.81 51.2 × 153.6 10 0.99 88 096 676
CS250H8 1.93 × 7.73 51.2 × 204.8 10 0.99 117 368 675
CS850 2.49 × 2.49 71.1 × 71.1 36 0.81 45 612 48
CS200H1.5 0.99 × 1.48 51.2 × 76.8 10 0.40 43 730 586
CS200H2 0.99 × 1.97 51.2 × 102.4 10 0.39 58 742 586
CS200H4 0.99 × 3.94 51.2 × 204.8 10 0.39 117 368 585

Table 6.4: Numerical parameters of long-time streamwise-minimal open channel flow simulations. The parameters are de-
fined in accordance with those in table 6.2.

(Reτ ≈ 260, H f /D ≈ 26, D+ ≈ 10) while varying the spanwise dimension of the computational do-
main in a range Lz/H f ∈ [1, 8]. To differentiate between the individual cases of the simulation series,
the value of Lz/H f is added as a superscript to the simulation name. The single simulation CS850

( ) reveals essentially the same parameter set as the high-Reynolds number case CM850H3 that has
been investigated in the previous section (Reτ ≈ 836, H f /D ≈ 28, D+ ≈ 29), but it features a shorter
streamwise box length Lx/D = 71.1 in order to exclude transverse pattern evolution. In contrast to the
remaining simulations in this section, it was not possible to maintain case CS850 for a comparably long
observation time interval of several hundred bulk time units due to the enormous computational costs
of this simulation. Eventually, a third set of simulations ( ) has been performed in which the mean
fluid height has been doubled compared to the first series while maintaining the bulk Reynolds num-
ber and the particle size. Consequently, the relative submergence has increased to H f /D ≈ 52, while
the particle Reynolds number is reduced to D+ ≈ 4. The Galileo number of the individual simulations
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Figure 6.34: Space-time plot of the streamwise-averaged (a-e) sediment bed height fluctuations h′′b (z, t)/D and (f-j) fluc-
tuations of the streamwise velocity component u′′

f (y, z, t)/uτ at ỹ/H f = 0.5 in streamwise-minimal simula-

tions. (a,f ) CS250H1.5, (b,g) CS250H3, (c,h) CS250H6, (d,i) CS250H8 (all H f /D ≈ 26, D+ ≈ 10); (e,j) CS200H4

(H f /D ≈ 52, D+ ≈ 4).

has been adapted accordingly to ensure a Shields number that is sufficiently larger than the critical
shear stress required for sediment erosion. Note that all simulations except for case CM850H3 feature
a streamwise box length that is just long enough to maintain turbulence in the channel (Jiménez and
Moin, 1991), which has been additionally verified by continuously monitoring the turbulent kinetic
energy during the simulation run.

6.3.10.2 Evolution of developed sediment ridges

For some selected cases, the long-time evolution of the sediment ridges is presented in figure 6.34 to-
gether with the streamwise-averaged position of large-scale high- and low-speed regions in form of
space-time visualisations. It is seen that the domain of case CS250H1.5 shown in figure 6.34(a) is just
wide enough to accommodate a single sediment ridge and a single associated large-scale high- and
low-speed streak pair, whereas the channel width in cases CS250H3, CS250H6 and CS250H8 shown in
figures 6.34(b-d) allows to host a group of several individual ridges simultaneously. For none of the
four cases, the ridge-covered sediment bed reaches a quasi-stationary state: Instead, their time evolu-
tion is rather characterised by different phases of lateral propagation, merging and splitting, alternating
with time intervals during which the lateral positions of the developed sediment ridges do not signif-
icantly vary. In case CS250H1.5, for instance, a single isolated ridge is seen to reside at essentially the
same lateral position during the interval 150 . t/Tb . 600, followed by a phase of roughly 200 bulk

138



6.3 Interaction of turbulent large-scale streaks and sediment ridges

time units length during which the ridge migrates in positive spanwise direction until it settles again
at a new preferential position. Lateral propagation of ridges is also visible in some of the remaining
simulations such as case CS250H8 (cf. panel 6.34(d)), where a family of ridges simultaneously prop-
agates in negative spanwise direction at a however smaller and roughly constant propagation speed.
The more pronounced lateral propagation of the bedform in case CS250H1.5 is attributed to the fact
that the isolated ridge has more freedom to laterally meander than sediment ridges do when they are
laterally bounded by other neighbouring bedforms. Comparing the evolution of the sediment ridges
with the dynamics of the large-scale low- and high-speed regions, it is recognised that both are closely
correlated implying that even after the initial phase of pattern evolution, the spanwise arrangement of
sediment ridges and troughs strongly depends on the organisation of the large-scale streaks. Also, it is
found in agreement with the observations of the previous sections that sediment ridges intermittently
disappear or reorganise in situations in which the arrangement of the large-scale low- and high-speed
regions changes.

A qualitatively different evolution of the sediment bed is seen for the cases with higher relative sub-
mergence and lower particle Reynolds number, from which case CS200H4 is exemplary shown in fig-
ure 6.34(e). The therein observed bedforms are of lower amplitude and their lateral spacing is clearly
smaller than those of the sediment ridges in the remaining simulations. In contrast to all previously
investigated cases, the space-time evolution of the sediment bed strikingly differs from that of the
streamwise-averaged flow field (cf. figure 6.34(j)), which shows a qualitatively similar development as
in the remaining cases. The only difference here is that the lateral positions of high- and low-speed re-
gions seem to vary more strongly with time, which is assumed to be a consequence of the more severe
limitations of the streamwise box length in case CS200H4, for which Lx/H f ≈ 1. The differing lateral
spacing of sediment ridges and large-scale velocity streaks in case CS200H4 implies that the bedform
evolution is in this case decoupled from the large-scale flow organisation in the bulk region. As a con-
sequence, the mechanism that leads to the evolution of these sediment patterns is assumed to clearly
differ from the above discussed ‘top-down mechanism’. A key difference between case CS200H4 and
the remaining simulations is the quite small particle Reynolds number, that is with D+ ≈ 4 smaller
than the thickness of the viscous sublayer. Gyr (1998) observed for fine sediment at such low particle
Reynolds numbers (D+ . 5) that sediment grains agglomerate in form of streamwise-aligned ‘sedi-
ment riblets’, with a characteristic spacing comparable to the characteristic wavelength of the buffer-
layer structures λ+

h,z ≈ 100. When discussing the impact of these ‘sediment riblets’ on the flow field,
Gyr (1998) suspected that the latter might possess a similar drag-reducing effect as artificial riblets
(Goldstein and Tuan, 1998; Jiménez, 2004a). According to the conceptual mechanism claimed by Gyr
(1998), sufficiently small sediment grains are eroded from the bed by the action of intense near-wall
sweep events, while the deposition is controlled by the quasi-streamwise vortices of the buffer layer,
explaining the similar lateral spacing of riblets and buffer-layer structures. In this context, it might be
worth noting that, in contrast to the larger fully-developed sediment ridges observed in the remaining
cases, the patterns visible in case CS200H4 reveal a shorter lifetime, which could be another indication
that they are formed by near-bed structures whose characteristic time scale is shorter than those of the
large-scale velocity streaks.

Analogously to figure 6.5, figure 6.35 provides the long-time evolution of the mean amplitude and
wavelength of sediment ridges in the streamwise-minimal simulations. The time evolution of σh,z/D

presented in figure 6.35(a) shows that the sediment ridges in the simulation series with higher rela-
tive submergence and lower particle Reynolds number indeed reach amplitudes that are, on average,
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Figure 6.35: Time evolution of fluid-bed interface dynamics in streamwise-minimal simulations. (a) Root mean square of
the fluctuation of the streamwise-averaged (σh,z/D, ) and spanwise-averaged fluid-bed interface (σh,x/D, ).
(b) Mean wavelength of the fluctuation of the streamwise-averaged fluid-bed interface λh,z/H f . Cases: ( )
H f /D ≈ 26, D+ ≈ 10; ( ) H f /D ≈ 28, D+ ≈ 29; ( ) H f /D ≈ 52, D+ ≈ 4 .

smaller by a factor of two compared to those of developed ridges in the remaining simulations. As
has been discussed in the context of figure 6.5 before, the initial growth rate of σh,z depends on the
value of the Shields number, being strongest in the high-Reynolds number simulation CS850. In the
phase subsequent to the initial growth period that starts approximately 150Tb after the onset of parti-
cle motion, the mean ridge amplitude settles in all cases without exhibiting a further global increase,
featuring however pronounced oscillations around this level. The rather strong fluctuations are as-
sumed to be a consequence of the continuous transformations, splitting and merging events that the
sediment ridges undergo throughout the simulations, while the rather stable long-time mean value
implies that these processes do not significantly affect the mean height of the patterns. The time evo-
lution of σh,x/D that is also visualised in figure 6.35(a) additionally verifies that the reduction of the
streamwise domain length Lx/D successfully suppresses the growth of perturbations associated with
transverse bedforms such that the sediment bed contour can be considered as statistically stationary
in the streamwise direction.

The mean lateral spacing of the sediment ridges λh,z presented in figure 6.35(b) is markedly reduced
in the simulations with higher relative submergence and lower particle Reynolds number when scaled
in terms of the mean fluid height H f , in accordance with the corresponding space-time evolution plots
in figure 6.34. Similar to the mean pattern height, the mean pattern spacing is subject to permanent
oscillations related to the continuous changes of the mean fluid-bed interface during the simulation. In
particular in simulations featuring a small domain width Lz/H f , the pattern wavelength is restricted
by the domain size and the system can choose only between a narrow range of discrete harmonics of
the domain width, explaining the partly strong jumps between several harmonics occurring predomi-
nantly in these cases. In the wide domains, on the other hand, the range of available harmonics is large
enough that the system is less restricted in the choice of the pattern wavelength.

To assess the scaling properties of the sediment ridges as well as the influence of the box size on their
mean pattern wavelength, the mean pattern spacing 〈λh,z〉t is shown in figure 6.36 as a function of
the lateral box length Lz scaled in terms of the outer, inner and characteristic particle length scale,
respectively. For the sake of comparison, data points from experiments of Wolman and Brush (1961),
Hirano and Ohmoto (1988) and Nezu et al. (1988) have been added to the parameter plane, from which
the latter two are provided in table 1 of McLelland et al. (1999). Let us first focus on the variation
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Figure 6.36: Time-averaged mean lateral ridge wavelength λh,z as a function of the spanwise box extent Lz scaled with (a) the
mean fluid height H f , (b) the viscous length scale δν and (c) the particle diameter D, respectively. The averaging
interval comprises the entire simulation period excluding the initial phase of approximately 25 bulk time units.
Horizontal grey lines represent ridge wavelengths measured in the experiments of Wolman and Brush (1961),
Hirano and Ohmoto (1988) and Nezu et al. (1988), respectively. The values observed in the latter two studies are
summarised in table 1 of McLelland et al. (1999). The black solid line in (a) marks the most-amplified wavelength
determined in the linear stability analysis of Colombini (1993), while in (b) it indicates the characteristic spanwise
wavelength of the buffer-layer coherent structures of λ+

z = 100. In each panel, a black dashed line marks the
relation λh,z = Lz. The individual symbols indicate the simulations (series): H f /D ≈ 26, D+ ≈ 10 (�); H f /D ≈
28, D+ ≈ 29 (�); H f /D ≈ 52, D+ ≈ 4 (�); CM250H3 (�); CM850H3 (�); CL250H16 (�). An additional data point
represents case CH2D1022 from Scherer et al. (2020), for which Reτ ≈ 375, H f /D ≈ 52 and D+ ≈ 7.2 (◦).

of the mean pattern wavelength in the first simulation series at lower relative submergence H f /D ≈
26 (blue squares in figure 6.36): When scaled in terms of the mean fluid height, cases with a small
lateral box length Lz < 2H f can accommodate only a single sediment ridge, thereby attaining the
maximum possible wavelength λh,z ≈ Lz. The related large-scale velocity structures are subject to the
same restrictions (cf. figure 6.34(f )), such that these systems accordingly feature only a single pair of
large-scale high and low-speed zones at a however smaller lateral wavelength as those in sufficiently
large domains. These domains are thus minimal boxes in the sense of Flores and Jiménez (2010). Cases
featuring a domain width Lz > 2H f , on the other hand, feature at least two individual ridges and pairs
of high- and low-speed regions, respectively. The pattern wavelengths for these domains attain values
comparable to the most-amplified wavelength λh,z/H f ≈ 1.3 determined in the linear stability analysis
of Colombini (1993) (cf. chapter 5). They also show a good agreement with the experimental datasets,
even though the exact values in most simulations are slightly lower than in the experiments. As has
been pointed out earlier, such slight deviations between simulation and experiment are in this context
not unexpected, since even for the current long-time observations, the simulation time is still much
shorter than the observation time in the experiment. Apart from that, the presented datasets have
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been investigated in laboratory flumes with a medium but finite aspect ratio, such that an influence of
the lateral sidewalls may additionally influence the measured wavelengths.

Turning our attention to the second series of simulation with the higher relative submergence H f /D ≈
52 (red squares in figure 6.36), it is seen that the attained values of the mean pattern wavelength are
clearly smaller than the theoretically predicted wavelength of λh,z/H f ≈ 1.3 and the experimentally
determined values, differing by a factor two to the former and a factor three to four to the latter, respec-
tively. If the wavelength is alternatively scaled in inner units (cf. figure 6.36(b)), on the other hand, the
simulations of the latter series reach values that are with λ+

h,z ≈ 150 very close to the conventional spac-
ing of the buffer-layer quasi-streamwise vortices, as postulated for sedimentary riblets by Gyr (1998).
These cases thus qualitatively differ from the remaining simulations which feature wavelengths of at
least several hundred wall units, ranging up to those in the high Reynolds number cases which attain
values that are one order of magnitude larger than the buffer-layer streak spacing. This, once more,
highlights that the fully-developed sediment ridges studied in the previous sections scale in outer units.

When scaling the mean wavelength in terms of the particle diameter D (cf. figure 6.36(c)), eventually,
all currently observed cases are found to develop a mean wavelength in the range λh,z/D ∈ [25, 50]

comparable to the values measured in the experimental studies. For the sake of comparison, we have
added an additional parameter point to figure 6.36 that represents case CH2D1022 from Scherer et al.
(2020). This simulation features the same relative submergence H f /D ≈ 52 as the runs in the second
series, but at a higher bulk (Reb = 5013), friction (Reτ = 375) and particle Reynolds number (D+ ≈ 7.2).
For additional information on this simulation, the reader is referred to the original work. Note that the
here presented parameter set associated with case CH2D1022 differs slightly from the one originally
reported in Scherer et al. (2020), because we have, for the sake of consistency with the remaining sim-
ulations, recomputed most of them according to the here adopted definition of the mean fluid-bed
interface. The evolution of ripple-like features was in this case not suppressed, as the streamwise do-
main length attains supercritical values Lx/D ≈ 102 > 76.8. Therefore, in contrast to the simulations
with H f /D ≈ 52 carried out in the current work, case CH2D1022 has been observed to feature a clearly
developed ridge with a wavelength comparable to Lz that is mutually interacting or concurring with
transverse bedforms (cf. figure 7 in Scherer et al. (2020)). Ignoring for the moment the intermittently oc-
curring transverse patterns, it turns out that the lateral spacing in case CH2D1022 is with λh,z/D ≈ 68

clearly larger than in the remaining simulations. When scaled in outer units (cf. figure 6.36(a)), on
the other hand, it attains a value of λh,z/H f ≈ 1.3 that almost perfectly collapses with the wavelength
predicted by means of linear stability analysis, highlighting that the mean pattern wavelength does not
scale with the particle diameter.

The discussed different scaling properties give a first hint that streamwise-elongated bedforms may
be developing due to the action of coherent structures of different scale, possibly depending on the
relative size of the sediment with respect to the characteristic fluid length scales, i.e. D+ and D/H f .
For a verification of this hypothesis, however, it requires further efforts to explore the parameter space
in form of simulations with sediment grains at sufficiently small particle Reynolds number D+ . 5 and
simultaneously high friction Reynolds numbers such that a proper scale separation is given, which is
unfortunately not the case in the here investigated simulations. Apart form that, it would be similarly
interesting to perform a series of numerical experiments in the spirit of Jiménez and Pinelli (1999),
artificially damping all turbulent fluctuations outside the buffer layer such that the influence of the
remaining near-wall structures on the sediment bed evolution can be assessed. If the above hypothesis
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holds, it should be possible to observe patterns with wavelengths λ+
h,z ≈ 100 for fine sediment with

small particles Reynolds numbers D+ . 5, whereas the bed should remain macroscopically flat for
particles much larger than the viscous sublayer thickness, D+ ≫ 5, due to the absence of large-scale
structures in the outer flow.

6.4 Discussion of the observed formation mechanism

In the previous sections, it has been shown that the organisation of the turbulent flow field in large-scale
streamwise velocity streaks is the main cause for the emergence of the characteristic regular pattern
of streamwise-aligned quasi-parallel sediment ridges on an initially flat sediment bed. These large-
scale coherent flow structures correspond to the large-scale streaks or large-scale motions well known
from canonical channel and boundary layer flows and with dimensions O(H f ), they are the largest
members of a family of self-similar streaks that populate the logarithmic layer. Along the sediment
bed, the large-scale streaks induce a laterally varying shear stress distribution, which, in turn, leads to
non-homogeneous sediment erosion across the channel width from the moment on when particles are
released. Below large-scale high-speed streaks, troughs form rapidly after the onset of particle motion
by virtue of the locally higher bottom shear stress and sediment erosion rate, whereas sediment ridges
evolve in regions of weaker erosion below the corresponding low-speed streaks. The spanwise varying
erosion rate naturally results in a sinusoidal oscillation of the particle transport that is accordingly
higher in troughs and lower above the crest of the sediment ridges. Our observations reveal that the
initial formation of sediment ridges and troughs on the sediment bed is controlled by the dynamics of
the large-scale velocity streaks in the bulk of the channel which do interact in a ‘top-down mechanism’
with the sediment patterns. This causal connection could be verified in figure 6.22 by evaluation of
the two-time two-point cross-correlations between the organisation of large-scale high- and low-speed
regions in the channel centre and that of the sediment ridges and troughs on the sediment bed. For the
therein investigated case CM850H3, a time lag between the evolution of the flow structures and that
of the sediment bed could be estimated as approximately 10Tb, or 0.9H f /uτ in multiples of the eddy
turnover time.

6.4.1 Comparison with the linear instability process

The outlined ‘top-down mechanism’ between instantaneous large-scale streaks and sediment ridges
fundamentally differs from the linear instability process proposed by Colombini (1993) that has been
revisited in the previous chapter 5. Effectively, the roles of cause and effect in the model of Colombini
(1993) are reversed compared to the formation process observed in our simulations: In the linearised
model, a strictly one-dimensional turbulent velocity base profile is perturbed with a sinusoidal modu-
lation of infinitesimal amplitude due to an infinitesimal lateral variation of the otherwise flat sediment
bed. The lateral oscillations of the wall-normal and spanwise velocity components then directly re-
sult in secondary flow cells, whose amplitude is thus of the same order as the perturbation of the
velocity field. Let us recall that the linearised equations of fluid motion in the linear model are quasi-
stationary and decoupled from the sediment bed continuity equation due to the assumption that the
flow adapts quasi-instantaneously to changes of the lower domain boundary. In chapter 5, it was ac-
cordingly shown that the most-amplified wavelength in the system is determined by the linearised
Navier-Stokes operator, subject to the steady forcing in form of the bottom wall undulation. In other
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words, sediment bed undulations can appear at a variety of different wavelengths, but the flow field’s
response in form of depth-spanning secondary currents is ‘optimal’ (meaning a maximisation of the
secondary flow intensity) for a wavelength around λh,z ≈ 1.3H f . In contrast to the ‘top-down process’
observed in our simulations, this linear mechanism can thus be interpreted as a ‘bottom-up process’ in
which the development of the secondary currents is triggered by the topography of the lower domain
boundary (Nezu and Nakagawa, 1993).

As we have discussed in section 5.4, the perturbation of the sediment bed contour is existential for the
functioning of the linearised model which depends on some kind of external forcing in order to estab-
lish the persisting secondary currents, as the turbulent base profile itself is linearly stable (Reynolds
and Tiederman, 1967) and the missing time-dependence of the governing equations hinders a transient
growth of individual modes. In the context of the full time-dependent Navier-Stokes system consid-
ered in our simulations, on the other hand, finite amplitude variations of the turbulent velocity field
are naturally present in form of large-scale streamwise velocity streaks and Reynolds stress-carrying
structures, respectively. The secondary currents are in this context the statistical footprint of the lat-
ter structures. Most importantly, the dynamics of these features are more or less independent of the
sediment bed development as they appear in flows over smooth walls, macroscopically flat sediment
beds and developing ridges in essentially the same way. Let us emphasise that our findings concern-
ing the ‘top-down interaction’ do not contradict the existence of the instability mechanism discussed
by Colombini (1993), but they nevertheless underline that a linear instability starting from an initially
infinitesimal amplitude is less likely to be of relevance in a fully-turbulent flow, in which intense inter-
mittently occurring large-scale velocity streaks can cause sediment ridge formation too.

In spite of the fact that causality is reversed in the linearised model compared to the ‘top-down process’
observed in the current chapter, the resulting secondary currents share several fundamental similar-
ities. As we have discussed earlier in this chapter, the mean lateral spacing of the sediment ridges in
the linear model and in the multiphase simulations are in a very similar range λh,z/H f ≈ 1-1.5, that
is moreover comparable to values λh,z/H f ≈ 1-3 measured in experiments (Wolman and Brush, 1961;
Ikeda, 1981; McLelland et al., 1999). The secondary currents in both situations reveal a qualitatively
similar structure concerning both the location of their centre of rotation and their shape, as can be
seen when comparing figures 5.4 and 6.29, respectively. This is in the end not unexpected, as it has
been stated earlier that in both situations the dominant lateral wavelength of the secondary currents
and of the sediment ridges is chosen solely by the Navier-Stokes operator: in the theoretical model in
a linearised streamwise-independent and stationary form and in the DNS in its full non-linear time-
dependent form. Recalling the analogy of the linear model with those in transient growth analysis
(Del Álamo and Jiménez, 2006; Pujals et al., 2009) that was highlighted in chapter 5, the match of the
wavelength in the model of Colombini (1993) with the current DNS data is as good as the match be-
tween the strongest lateral wavelengths observed in transient growth analysis and that in canonical
closed channel flows (Jiménez, 2018). This eventually explains the good match of the predicted wave-
length with the DNS data.

6.4.2 Comparison with conceptual models in canonical turbulent flows

In section 6.3.8, it was observed that the large-scale velocity streaks and Reynolds stress-carrying struc-
tures in the considered open channel flow simulations share many similarities with the conditionally-
averaged coherent structures in the logarithmic layer of canonical closed channel flows, studied by
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Del Álamo et al. (2006) and Lozano-Durán et al. (2012) and further analysed in Jiménez (2013a). Based
on the therein presented results, Jiménez (2018, § 5.6 and references therein) proposed a conceptual
model of causality in canonical wall-bounded flows, according to which the main purpose of the solid
wall is to provide the mean shear from which turbulence is fed with the necessary kinetic energy. In
contrast to models whose basic element are individual hairpin vortices that are born near the wall and
advected outwards where they can cluster in larger groups to form large-scale structures (Adrian et al.,
2000; Adrian, 2007), the model of Jiménez bases on the concept that coherent structures can form at all
distances from the wall independently. So, while the former class of models naturally features a pre-
ferred ‘direction of causality’ given in form of the motion of hairpin vortices from the wall towards the
bulk of the domain, the freedom of structures to develop at arbitrary wall distance in Jiménez’ model
reposes the question of cause and effect and whether structures of different scales interact with each
other in a preferential direction. Revisiting data from the minimal log-layer simulations of Flores and
Jiménez (2010), Jiménez (2018) indeed found such a preferential direction of information propagation
across the logarithmic layer that is directed from the bulk of the domain towards the wall; indicating a
preferred ‘top-down interaction’ of outer large-scale structures with those near the wall also in canon-
ical flows. Recently, Zhou et al. (2022) have shown by means of DNS in minimal and larger domains
that, indeed, ‘top-down interactions’ are the dominant processes in canonical channel flows, whereas
no evidence for the existence of counter-oriented ‘bottom-up interactions’ was found.

In addition to these findings, important arguments contradicting the control of large-scale structures
from the vicinity of the wall come, amongst others, from numerical experiments in which the self-
sustained process in the buffer layer is effectively destroyed, for instance, by replacing the smooth
channel walls by a fully-rough boundary (Flores et al., 2007), by artificially suppressing the entire
buffer layer (Mizuno and Jiménez, 2013; Kwon and Jiménez, 2021) or by alternatively considering over-
damped large eddy simulations in which the smallest scales of turbulence are filtered out (Hwang and
Cossu, 2010a, 2011). In none of these cases, the logarithmic and large-scale outer layer structures were
significantly affected by the severely perturbed flow in the near-wall region, which further implies that
these structures are indeed independent of the buffer-layer processes. The essential independence of
structures of different scales and wall-distances from each other that represents an integral element of
Jiménez’ model is further supported by a number of studies that agree in the claim that a self-sustaining
process similar to that observed in the buffer layer (Jiménez and Moin, 1991; Hamilton et al., 1995;
Schoppa and Hussain, 2002) between streaks and some kind of quasi-streamwise rollers might exist
for streaks of all scales likewise, from the buffer to the logarithmic and outer layer (Flores and Jiménez,
2010; Cossu and Hwang, 2017; Kevin et al., 2019b; Lozano-Durán et al., 2020; Motoori and Goto, 2021).

The results of our particle-laden simulations are in line with these findings, showing that even the
intense particle motion in the bedload layer and the related destruction of the buffer layer structures
in the vicinity of the sediment bed seem to have only a minor influence on the dynamics of the large-
scale velocity streaks. The discussed ‘top-down interaction’ between these large-scale structures and
the organisation of the sediment patterns supports the observations of a preferential direction of infor-
mation propagation towards the bottom wall by Jiménez (2018) and Zhou et al. (2022). Also, the large-
scale structures over both smooth walls and mobile sediment beds undergo phases of reorganisation
during which they are seen to break up intermittently (see, for instance, the interval t/Tb ∈ [10, 20]

in case CM850H3), resembling the log-layer streaks in the minimal domain simulations of Flores and
Jiménez (2010) that disappear during regularly occurring bursting phases. In complete agreement with
the idea that coherent structures can form at arbitrary wall-normal positions autonomously due to the
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local shear only, large-scale streaks have been observed to first develop in the channel centre after such
break-up events, essentially uncorrelated with the flow organisation in the near-bed/near-wall region.
Only after the discussed time lag (cf. figure 6.22), the flow in the vicinity of the sediment bed adapts
to the new organisation of the large-scale streaks owing to the ‘top-down process’.

6.5 Summary and conclusion

The main purpose of the current chapter was to clarify the role of turbulent large-scale velocity streaks
in the formation process of subaqueous sediment ridges and to elucidate how these coherent flow
structures correlate with the appearance of mean secondary currents of Prandtl’s second kind. To
this end, a series of direct numerical simulations of turbulent open channel flow over a thick bed of
fully-resolved mobile sediment particles has been performed, supplemented with two reference sim-
ulations in smooth-wall single-phase open channel flow at comparable parameter values. In this con-
text, the friction Reynolds number was varied in a range 200 . Reτ . 830 to scrutinise the impact
of the Reynolds number and the scaling properties of the sediment patterns in domains of different
size: While narrow domains with lateral periods Lz/H f ≈ 2-3 allowed to study the evolution and
mutual interaction of one or two isolated sediment ridges and large-scale structures, computational
boxes with spanwise dimensions up to Lz/H f ≈ 16 provided the possibility to investigate collective
effects between up to ten individual sediment ridges as well as the dynamics of large-scale streaks in
an essentially laterally unconstrained environment.

Based on the so created database, it was possible to verify theoretical predictions according to which
sediment ridges can evolve in the complete absence of lateral sidewalls solely due to an interaction of
the mobile sediment bed with turbulent structures (Ikeda, 1981). The observed sediment ridges feature
with λh,z/H f ≈ 1-1.5 a mean lateral spacing that is comparable to corresponding values λh,z/H f ≈ 1-3
that were determined by measurements in laboratory flumes (Wolman and Brush, 1961; McLelland
et al., 1999). A similarly good match was observed with the most unstable wavelength 1.3H f of the
linear stability analysis of Colombini (1993) which was revisited in the previous chapter, even though
the physical mechanism that underlies the latter model was shown to conceptually differ from the
‘top-down formation process’ observed in the current simulations.

The characteristic regular lateral spacing of the sediment ridges turns out to be the footprint of the
turbulence organisation in the bulk of the channel: As in canonical wall-bounded flows, large-scale
high- and low-speed streaks at lateral wavelengths comparable to those of the bedforms populate the
centre of the channel. A comparison of the premultiplied energy spectra for single-phase smooth-wall
and particle-laden flows reveals that the general properties of these large-scale streaks are essentially
unaffected by the mobile particles, that are almost exclusively transported in the bedload layer in the
vicinity of the sediment bed. In this regard, the results are in accordance with similar observations in
flows over fully-rough walls, for which the statistics of the coherent structures in sufficient distance to
the roughness layer were found to be essentially the same as over smooth walls (Flores and Jiménez,
2006; Flores et al., 2007).

Even though none of the here considered sediment beds themselves would be classified as fully-rough
due to the relatively low particle Reynolds numbers 10 . D+ . 30 and bedform amplitudes, the
mobility of the particles inside the bedload layer leads to a significant increase in bottom friction, com-
parable to that observed in single-phase flows over fully-rough bottom walls. For particle grains whose
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relative diameter is with D+ ≈ 30 (case CM850H3) not significantly smaller than the mean size of the
buffer-layer structures, we observe the complete destruction of the self-sustained process near the bot-
tom: The buffer layer cannot be maintained in the presence of an intense bedload transport layer with
particles of these dimensions, quite similar to the case of a fully-rough wall (Jiménez, 2004a; Cameron
et al., 2008).

Where sediment grains are predominantly eroded depends merely on the distribution of the bottom
shear stress along the sediment bed. From canonical wall-bounded flows, it is well known that large-
scale coherent structures penetrate deep into the near-wall region, where their footprint can be seen in
form of outer-scaling patches of locally enhanced or reduced wall shear stress. These latter are corre-
lated with the large-scale streaks in the outer layers (Del Álamo and Jiménez, 2003; Jiménez et al., 2004).
In the current system, the consequence of this process is a laterally varying erosion of sediment grains
from the initially macroscopically flat sediment bed, with troughs developing in regions of stronger
erosion below large-scale high-speed streaks and sediment ridges evolving below the corresponding
low-speed streaks. Intense instantaneous sweep events that are naturally associated with streaks of
relatively higher velocity contribute to the locally enhanced particle erosion (Gyr and Schmid, 1997).
The laterally alternating erosion rate goes hand in hand with a spanwise oscillating particle flux that
is accordingly higher in the trough region and reduced in the low-speed regions over the sediment
ridge crests. In this context, different in the hydraulic community established empirical relations were
tested for their ability to correctly predict the streamwise and lateral sediment transport based on the
local bed shear stress. While the model of Wong and Parker (2006) for the streamwise and that of Ikeda
(1982) and Parker (1984) for the lateral particle transport performed relatively well outside the initial
transient, the model of Parker and Andrews (1985) required the choice of unrealistically high values of
the Coulomb friction in order to match our simulation data.

It was thereafter shown that, as strongly suggested by the previous observations, the formation and
spanwise organisation of sediment ridges is indeed controlled from the outer layer trough the action of
the large-scale streaks and Reynolds stress-carrying structures. Based on two-time cross-correlations,
it could be verified that the evolution of the sediment bed indeed lags behind that of the large-scale
structures in the channel bulk by about 10 bulk time units in case CM850H3, indicating that the inter-
action of these large-scale structures with the sediment bedforms is a kind of ‘top-down process’. A
similar preferred direction of information propagation from the channel centre towards the wall was
recently proposed in the conceptual model of Jiménez (2018, § 5.6 and references therein), who ob-
served that the Reynolds stress in the vicinity of the wall was correlated to that further away from the
wall at earlier times in the minimal log-layer simulations of Flores and Jiménez (2010). Recently, the
dominant ‘top-down mechanism’ in canonical channel flows was further supported by the findings
of Zhou et al. (2022). The here observed dynamics of the large-scale coherent structures agree fairly
well with the observations in Jiménez (2018) and the model described therein. In particular, the con-
cept of the aforementioned model that coherent structures can form at arbitrary wall-normal layers
autonomously only due to the local shear is supported by our results: The large-scale streaks in the
current open channel flows break up intermittently, consistent with the bursting of log-layer streaks
reported by Flores and Jiménez (2010), whereupon new structures first evolve in the channel bulk, later
expanding down to the sediment bed.

147



Chapter 6 Turbulent large-scale streaks and sediment ridges in open channel flow

In a last step, we closed the loop to the mean secondary currents by analysing the flow field when av-
eraged over the streamwise direction and intermediate time-intervals of O(10Tb) length. The here dis-
cussed large-scale flow structures are well aligned in the streamwise direction and reveal only a weak
tendency of lateral meandering over both smooth walls and mobile particle beds, such that they leave
a clear statistical footprint in the streamwise and time-averaged fields: While regions of up- and down-
welling of the mean streamwise velocity refer to the preferential locations of the large-scale streamwise
streaks, the mean up- and downflow regions of the cellular mean secondary flow cells represents the
collective effect of large-scale ejections and sweeps, respectively. The idea that secondary currents arise
due to the regular organisation of the large-scale coherent structures is further strengthened by the ob-
servation of very similar secondary flow patterns with comparable shape, size and intensity in the
smooth-wall cases when averaged in the same way. In both flow configurations, instantaneous coher-
ent structures and averaged flow fields were found to share many similarities with the conditionally-
averaged coherent structures scrutinised by Del Álamo et al. (2006) and Lozano-Durán et al. (2012). In
this context, the mean secondary flow cells in the current open channel flow simulations represent the
analogue to their conditional rollers which, in turn, are assumed to take the place of the buffer layer
quasi-streamwise vortices in the regeneration process of larger velocity streaks in the logarithmic and
outer layer (Jiménez, 2018; Kevin et al., 2019b).

Outstanding remains the question of the long-time behaviour of ridges and secondary flow cells for
observation times much longer than considered here, as they are typical for laboratory experiments. In
smooth-wall single-phase flows, a mean secondary flow pattern can be maintained for such long time
intervals only if the system features a marked spanwise inhomogeneity as in the case of a square duct
(Pinelli et al., 2010) or for the flow over spanwise varying roughness stripes at the bottom wall. While
in the former case, lateral sidewalls hinder the mobility of large-scale structures as will be shown in the
following chapter, the heterogeneous bottom roughness pattern in the latter case is usually assumed to
‘lock’ the spanwise position of instantaneous large-scale structures such that their statistical footprint
is visible in form of secondary currents even in the long-time average (Kevin et al., 2019a). For self-
forming sediment ridges, the situation is more complex as the bedforms themselves are mobile: In the
initial formation period, the bedforms are seen to follow the organisation of the outer flow most of
the time. In most of the domains considered to investigate the initial formation of sediment ridges,
the evolution of dominant transverse ripple-like bedforms hinder us in studying the development of
sediment ridges for time intervals much longer than 100 bulk time units. To this end, a second series of
streamwise-minimal simulations was performed which are known to artificially suppress the growth of
transverse bedforms (Kidanemariam and Uhlmann, 2017; Scherer et al., 2020), such that the evolution
of sediment ridges could be integrated over time intervals of up to 1000 bulk time units. Based on these
simulations, it was possible to shed some light on a later stage of sediment ridge development, in which
the bedforms do, on average, not further grow but still undergo regular phases of reorganisation. As
in the initial phase, sediment ridges are controlled from the large-scale flow structures in the channel
bulk and generally follow the organisation of the flow field in this layer.

An exception from this general behaviour was found for simulations, in which the relative size of the
particles was reduced to D+ ≈ 4 or equivalently D/H f ≈ 0.02. In these cases, the evolving sedi-
ment bedforms organised themselves in a way that is markedly different from the arrangement of the
large-scale streaks in the outer flow, attaining a smaller size than the sediment ridges in the remaining
simulations concerning both amplitude and wavelength. The latter was with λ+

h,z ≈ 150 only slightly
larger than the typical wavelength of the buffer-layer coherent structures, but clearly smaller than that
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of the large-scale outer-scaling streaks. The results however agree with the findings of Gyr (1998), ac-
cording to which particles with diameter smaller than the height of the viscous sublayer, i.e. D+ . 5,
agglomerate in ‘sediment riblets’ of roughly the same spacing as the buffer layer streaks since they are
eroded, transported and deposited by these structures.

Whether or not the smaller bedforms in the latter case scale indeed in inner units and develop due to
the formation process proposed by Gyr (1998) could not be finally clarified, as the Reynolds number
considered in this simulation series was not large enough to allow for a clear scale separation. There-
fore, it would be of interest to extend the current database in the future to higher flow and particle
Reynolds numbers to study whether different types of bedforms do emerge, depending on the size of
individual sediment grains and that of the turbulent structures they should be transported by. In the
context of the outer-scaling sediment ridges, a first step towards higher Reynolds numbers was gone
by carrying out two simulations at friction Reynolds numbers up to Reτ ≈ 830 which allowed valuable
insights into the dynamics of structures of different scale. Due to the enormous costs of these simu-
lations and the massive amount of data generated therein, it is today not yet realisable to perform a
full parameter study for these higher Reynolds numbers, but with increasing computing power such
campaigns should become feasible in the next decade. Once this is the case, it would be desirable to
detect, possibly in comparison with accompanying experiments at comparable Reynolds numbers, pa-
rameter points similar to classical experiments such as those of Wolman and Brush (1961), at which the
sediment bed can maintain sediment ridges over very long time intervals without being disturbed by
the development of larger transverse ripple-like bedforms. To achieve this, however, a larger number
of individual simulations will have to be carried out at different parameter points and over quite long
physical time intervals, both of which made such an undertaking impossible to conduct in the current
work.

On the other hand, numerical simulations at moderate Reynolds numbers Reb = O(103) have become
affordable even in the context of multiphase simulations. This offers the possibility to now conduct
numerical experiments comparable to those successfully used in canonical flows in order to get a better
understanding of the interaction between individual turbulent structures and sediment beds. A good
example for such an experiment is the simulation campaign of Kidanemariam and Uhlmann (2017),
in which the authors sought the minimal domain size necessary to accommodate transverse bedforms
in a similar way as the minimal flow unit of Jiménez and Moin (1991). In a similar vein, in order to
investigate the impact of coherent structures of different scales on the sediment transport, simulations
with appropriate filtering techniques could be performed to artificially suppress different parts and
structures of the flow in analogy to, for instance, the studies by Jiménez and Pinelli (1999) and Kwon
and Jiménez (2021).
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Chapter 7

Coherent structures and sediment
ridges in open duct flow

The previous chapters have proven from a theoretical and a numerical point of view that formation
mechanisms exist, in virtue of which sediment ridges and secondary currents can evolve in the absence
of lateral sidewalls. It is thus clear that a sidewall-induced mean secondary flow is not a necessary
condition for the evolution of sediment ridges, but the question remains how the presence of lateral
sidewalls and the associated mean secondary flow interact with a mobile sediment bed.

In this chapter, we endeavour to clarify how the presence of sidewall-induced secondary currents in-
fluences the formation of sediment ridges in narrow and wide open duct flows and, vice versa, which
impact the mobile sediment has on the organisation of the mean secondary flow as well as on in-
stantaneous small- and large-scale coherent structures. For this purpose, a number of fully-resolved
open duct simulations over both smooth bottom walls and mobile sediment beds composed of fully-
resolved particles at different aspect ratios and Reynolds numbers have been performed in the course
of this chapter. Based on the data obtained in these simulations, it will be shown that sediment ridges
in the core of wide open duct flows in sufficient distance to the sidewalls do form owing to the essen-
tially same ‘top-down mechanism’ as their counterparts in laterally periodic open channel flows. In
these regions, large-scale turbulent streaks can freely develop without being constrained by the lat-
eral sidewalls and thus induce, as in the open channel case, a laterally varying bed shear stress and
erosion rate, respectively. We will present evidence that the situation in narrow domains, where the
sidewalls strongly affect all regions of the cross-section, differs markedly from the afore described pat-
tern evolution in sufficient distance to sidewalls. In the former case, only a single high-speed region
can be accommodated by the narrow cross-section and it will turn out that smaller but outer-scaling
flow structures closer to the bottom wall control the initiation of sediment bed structures in a generally
comparable ‘top-down interaction’. The mean flow field as well as instantaneous coherent structures
over such mobile sediment beds will be shown to be qualitatively similar to those in smooth open ducts,
even though predominantly near the bed the organisation of the mean secondary flow and mean vor-
ticity patterns will be seen to deviate. The latter effect can be attributed to the different organisation
of instantaneous quasi-streamwise vortices along the sediment bed compared to that over a smooth
impermeable bottom wall. Finally, a possible connection between the preferential organisation of in-
stantaneous vortex clusters (Del Álamo et al., 2006) and the mean secondary flow field is discussed in
comparison with the results of Kawahara et al. (2012a) for instantaneous streamwise rolls.

The chapter is organised in analogy to the previous one and starts with a presentation of the physical
multiphase system that will be analysed in the following. The relevant physical measures required
for the subsequent investigation of the sediment bed and the flow field will be defined. The section
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is followed by the analysis of the simulation data, which again first focuses on the temporal evolution
of the sediment ridges and the associated development of the sediment transport. The mean primary
and secondary flow field will be scrutinised in the following and the impact of the mobile sediment
bed on the secondary flow intensity is discussed in detail. After having established the causal con-
nection between the above mentioned smaller flow structures and the sediment bedforms in narrow
domains which is indicative of the ‘top-down interaction’, we will turn our attention to the investi-
gation of two-point correlation functions and statistics of the preferential organisation of individual
coherent structures. Specifically, we are going to analyse the geometry and preferential organisation
of streamwise velocity streaks, quasi-streamwise vortices and small- and large-scale vortex clusters.
Where possible, statistics of both sediment-laden and single-phase cases are compared to highlight the
influence of the mobile sediment bed on the organisation of these structures.

7.1 Flow configuration and computational setup

7.1.1 Flow configuration

The database analysed in this chapter comprises 14 individual simulations, 13 of which are simulations
of turbulent open duct flow, supplemented with a single open channel reference case CL250H3 in a
computational domain of similar size. The latter open channel simulation shares the parameter point
of case H121 presented in Kidanemariam and Uhlmann (2017), but is a new simulation conducted
in the course of this study from a comparable initial condition. The open duct simulations include
three different flow and bedform configurations: Seven cases feature a mobile sediment bed on which
sediment ridges readily evolve after the onset of sediment motion, two simulations were performed
over a stationary sediment bed and the remaining four simulations cover three different data points of
single-phase open duct flow enclosed by smooth walls. The particle-laden simulations were performed
with the finite-difference immersed boundary code presented in section 4.2. The single-phase smooth-
wall simulations, on the other hand, were discretised and integrated in time using the pseudo-spectral
method, developed and validated in Uhlmann et al. (2007) and Pinelli et al. (2010) for closed duct
flow and in Sakai (2016) for open duct flow (cf. section 4.3.2). A validation of the finite-difference
method against the pseudo-spectral solver in single-phase smooth-wall open duct flow is provided in
appendix C.

In the pseudo-spectral framework, flow variables are expanded as truncated Fourier series on a set
of uniformly distributed grid points in the homogeneous streamwise direction, whereas a Chebyshev
polynomial expansion on a set of Gauss-Lobatto points is employed in the wall-normal and lateral
directions. Note that the long-time statistics in these simulations were provided by Y. Sakai (cf. Sakai
(2016) for a complete overview of the database), to whom we are very grateful for sharing his data with
us. For the purpose of the following analysis, we have furthermore conducted two new simulations
in this setting by ourselves, starting from two initial conditions included in the dataset of Sakai (2016)
using the same numerical method.

A sketch of the physical system under consideration in the multiphase simulations can be seen in fig-
ure 7.1. As in the corresponding open channel simulations, physical fields are expressed in components
with respect to a Cartesian basis, with the origin of the corresponding coordinate system x = (x, y, z)T

being placed in the lower left corner of the duct cross-section, such that the unit vectors are pointing
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Figure 7.1: Sketch of the physical system analysed in the multiphase open duct simulations. Mean flow and gravity are
pointing in positive x- and negative y-direction, respectively. A vertical and horizontal cut of the two-dimensional
streamwise mean flow field 〈u f 〉xt(y, z) are shown in blue at the upstream boundary of the domain. Bed, interface
and transported sediment particles are coloured in black, orange and white, respectively, following the definitions
in section 6.2.1. At the downstream end of the domain, the mean fluid bed interface is indicated as blueish surface.
Note that for the sake of visualisation, the sidewall in the foreground has been partially removed.

in the streamwise (x), bottom wall-normal (y) and lateral (z) directions, respectively. The fluid velocity
field is accordingly described by the three components of u f = (u f , v f , w f )

T. When switching to index
notation, the equivalent expressions xi and u f ,i will be used, where i = 1, 2, 3 refers to the x-, y- and
z-component of the respective vector fields, respectively.

While the boundary conditions in the streamwise and wall-normal directions are identical to those in
the doubly-periodic open channel, the statistical spanwise homogeneity is broken in open duct tur-
bulence due to the presence of solid sidewalls at z = 0 and z = Lz, respectively. The standard de-
composition of flow variables in a mean and fluctuating field is therefore understood w.r.t. the single
homogeneous x-direction and time, such that the fluctuation of the streamwise velocity is defined as

u′
f (x, t) = u f (x, t)− 〈u f 〉xt(y, z). (7.1)

Note that there is some degree of arbitrariness in choosing a sophisticated decomposition of the flow
field, but the above averaging scheme is the natural choice in that it ensures that both the mean and the
fluctuating field fulfil the physical boundary conditions individually and it is conventionally applied
to turbulent wall-bounded flows (Pope, 2000). Occasionally, we will consider in addition to defini-
tion (7.1) a decomposition of the instantaneous streamwise-averaged flow field into its lateral mean
and the fluctuation w.r.t. the former, consistent with equations (6.2) in the open channel context, viz.

u′′
f (y, z, t) = 〈u f 〉x(y, z, t)− 〈u f 〉xz(y, t). (7.2)

In a similar way as for the corresponding open channel simulations, single- and multiphase open duct
simulations alike are driven by a time-dependent streamwise pressure gradient Π(t) that is adjusted
at each time step, ensuring a constant mass flow rate q f throughout the simulation interval. It might
be noted that q f is in the current cases of unit volume per time or velocity times area, whereas in the
channel flow q f has been defined as the mass flow per unit length in the spanwise direction, and is
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thus of unit velocity times length. Bulk velocity and bulk Reynolds number are consequently defined
as

ub =
q f

H f Lz
(7.3a)

Reb =
q f

ν f Lz
=

ubH f

ν f
, (7.3b)

respectively. The organisation of the mean streamwise and secondary flow is in general a function
of the aspect ratio of the duct cross-section (Nezu and Rodi, 1985; Vinuesa et al., 2014a), which we
introduce here for consistency with the notation adopted in Sakai (2016) as AR = Lz/(2H f ). The latter
definition slightly differs from the definition Lz/H f conventionally used in most hydraulic studies, as
it is chosen in such a way that the hydraulic diameter

Dhy = 4
H f AR

1 + AR
= 4

H f Lz

2H f + Lz
(7.4)

is identical for open and closed ducts with the same aspect ratio (in the latter case AR = Lz/Ly). In
this context, a corresponding open channel flow might be interpreted as the asymptotic case in which
AR → ∞.

Note that the hydraulic diameter as introduced above represents the ratio between the cross-sectional
area and the wetted perimeter in the cross-section and therefore, strictly speaking, the hydraulic ra-
dius would depend on the curvature of the evolving sediment bed in the particle-laden cases. The
difference between Lz and the curve length of the fluid-bed interface is, however, of negligible size as
a consequence of the small amplitude of the developed ridges, such that replacing the curve length of
the fluid-bed interface by Lz appears justified.

In an open channel flow, the force exerted by the driving pressure gradient on the system is balanced by
the friction force along the bottom wall as well as by the net streamwise force on the particles. Shortly
after the onset of sediment erosion during which a considerable amount of energy is spent to mobilise
particles, the system reaches an equilibrium state in which the driving force is almost entirely balanced
by the resistive force of the few stationary particles closest to the bottom wall, which are included in
the simulations to ensure a minimum of bottom roughness (Kidanemariam et al., 2022). Considering
the flow in an open duct, on the other hand, additional force contributions appear in the considered
balance in form of frictional resistive forces along the two lateral sidewalls. The instantaneous balance
between the driving pressure gradient Π and the counteracting resistive force contributions then reads

Π(t) = − 1

LxLyLz

Np

∑
l=1

(
FH

x
(l)
(t) + FC

x
(l)
(t)
)

− 1

Lz

(
1

Ly

∫ Ly

0
ρ f ν f

[
∂〈u f 〉x

∂z

]

z=0

dy +
1

Ly

∫ Ly

0
ρ f ν f

[
∂〈u f 〉x

∂z

]

z=Lz

dy

)

− 1

Ly

(
1

Lz

∫ Lz

0
ρ f ν f

[
∂〈u f 〉x

∂y

]

y=0

dz

)
,

(7.5)

where FH
x

(l)
+ FC

x
(l)

is the total force acting on the lth particle comprising contributions from hydro-
dynamic and collision forces. The mean driving pressure gradient 〈Π〉t is obtained as an average of
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Π(t) over most of the simulation time interval excluding merely the first few bulk time units of each
run during which there are still strong changes of the pressure gradient due to the onset of sediment
motion.

Taking into account that the wall-normal velocity gradients ∂〈u f 〉x/∂n (where n denotes the inward
pointing normal vector at the respective wall) are of negligible amplitude in the domain below the
mean sediment bed height Hb, equation (7.5) can be approximated by considering only the velocity
gradients along the two sidewalls above the sediment bed, viz.

Π(t) ≈ − 1

LxLyLz

Np

∑
l=1

(
FH

x
(l)
(t) + FC

x
(l)
(t)
)

− 1

Lz

(
ρ f ν f

H f

∫ Ly

Hb

[
∂〈u f 〉x

∂z

]

z=0

dy +
ρ f ν f

H f

∫ Ly

Hb

[
∂〈u f 〉x

∂z

]

z=Lz

dy

)
.

(7.6)

Note that the relative deviation of expression (7.6) compared to the full equation (7.5) has been ver-
ified to be of negligible size (O(10−3) for case DS250H2 exemplary), such that in the following, the
mean pressure gradient shall be approximated by the latter formulation. Assuming that the flow is
fully-developed, the mean wall shear stress τw can be obtained by evaluation of the global momentum
balance over the domain as

τw = ρ f u2
τ ≈ −〈Π〉t

H f Lz

2H f + Lz
= −〈Π〉t

Dhy

4
. (7.7)

That way defined, τw and accordingly uτ represent averages over the shear stress contributions along
the sediment bed and the smooth sidewalls and are thus used to define the friction Reynolds number
Reτ = uτ H f /ν f . However, the actual mean shear stress that is exerted on the mobile sediment bed
by the turbulent flow is naturally higher than τw due to the relatively lower friction along the smooth
sidewalls compared to the mobile sediment bed. For the use of the mean shear stress in the context
of particle transport models, we therefore additionally introduce a mean bed shear stress τbed that is
defined in a similar way as τw, but without considering the frictional force contributions that arise
along the lateral sidewalls:

τbed =
H f

LxLyLz

Np

∑
l=1

〈
(

FH
x

(l)
(t) + FC

x
(l)
(t)
)
〉t. (7.8)

Note that due to the absence of sidewall related contributions in equation (7.8), this latter expression
is identical to the corresponding formulation in open channel flows (Kidanemariam et al., 2022).

The definition of the mean fluid height H f and the mean sediment bed height Hb are identical to those
in section 6.1, and the detection procedure following Scherer et al. (2020) that has been outlined in
section 6.2.1 is applied in a comparable way here. The only exception is that the interface is not peri-
odically repeated across the lateral domain boundaries during the interpolation and smoothing phase,
but mirrored at the solid sidewalls such that ∂hb(x, z, t)/∂z = 0 holds at z ∈ {0, Lz}. As in the previous
chapter, we shall regularly refer to the shifted wall-normal coordinate ỹ = y − Hb that measures the
wall-normal distance from the mean location of the fluid-bed interface.

155



Chapter 7 Coherent structures and sediment ridges in open duct flow

Case Reb Reτ ρp/ρ f Ga D+ H f /D H f /Hb θbed AR

DS250H1 2999 272.11 2.5 28.37 10.11 26.93 2.35 0.20 0.48
DS250H2 3000 261.95 2.5 28.37 9.80 26.73 2.29 0.16 0.96
DS250H4 2999 253.69 2.5 28.37 9.53 26.61 2.26 0.14 1.92

DL240H2 2992 243.74 2.5 40.12 8.90 27.39 2.49 0.06 0.93
DL220H2

f ix 2992 225.76 2.5 40.12 8.29 27.23 2.44 0.05 0.94
DL250H2 2992 259.26 2.5 28.37 9.38 27.65 2.57 0.15 0.93
DL500H2 5986 514.69 2.5 47.49 18.39 27.99 2.69 0.22 0.91
DL250H16 2998 249.56 2.5 28.37 9.42 26.50 2.23 0.12 7.73
DL210H16

f ix 2999 207.41 2.5 28.37 7.87 26.34 2.18 0.08 7.77

DL200H2
smooth 2969 197.46 - - - - - - 1.00

DL400H2
smooth 6964 415.77 - - - - - - 1.00

DL150H16
smooth 2188 143.59 - - - - - - 8.00

CL250H3 3011 252.26 2.5 28.37 9.58 26.32 2.18 0.11 -

Table 7.1: Physical parameters of open duct flow simulations, where Reb, Reτ , D+, Ga and ρp/ρ f are the bulk, friction
and particle Reynolds numbers as well as the Galileo number and the density ratio, respectively. Further non-
dimensional numbers include the relative submergence H f /D, the relative sediment bed height Hb/D, the fluid
to bed height ratio H f /Hb, the Shields number θbed as well as the duct aspect ratio AR = Lz/(2H f ). Note that
only Reb, Ga and ρp/ρ f are imposed a priori, whereas the remaining quantities are determined a posteriori (cf.
table 7.2).

7.1.2 Preparation of the simulations

The initial states of the sediment bed for the current multiphase simulations were generated from
macroscopically flat sediment beds in open channel flow cases, which, in turn, have undergone the
preparation process described in section 6.1.2. In order to adapt these particle fields to the current con-
figuration with a non-periodic lateral direction, particles overlapping the lateral target domain bound-
aries were removed and the resulting reduced particle set was kept settling under the action of gravity
until a new quasi-stationary state had developed. In cases in which this caused a drop of the sediment
bed height in the direct vicinity of the sidewalls, the resulting gap was filled by letting settle a small
amount of particles in these regions. Despite the careful preparation, there remained in some cases
a slight but unavoidable drop of the mean fluid-bed interface of less than one diameter depth in the
direct vicinity of the sidewalls. This gap is readily filled up in simulations with intense particle trans-
port, while it remains detectable for longer time intervals in simulations that are either characterised
by a weak particle transport or feature a stationary sediment bed. The initial state of the flow field was
then established by disturbing a laminar flow pattern over a short time interval of O(1Tb-10Tb) with
a finite amplitude perturbation to trigger the transition towards a fully-developed turbulent flow state
(Kawahara et al., 2012b). It was then waited until the flow had reached the desired fully-developed
state, in the meanwhile holding the sediment particles fixed in their current spatial positions. Once
this flow state was reached, particles were released and the onset of sediment mobility was, as before,
defined as t = 0.
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Case [Lx × Lz]/H f [Lx × Lz]/D D/∆x min(∆x+i ) Np Tobs/Tb

DS250H1 1.90 × 0.95 51.2 × 25.6 10 1.01 13 988 976
DS250H2 1.92 × 1.92 51.2 × 51.2 10 0.98 28 670 990
DS250H4 1.92 × 3.85 51.2 × 102.4 10 0.95 58 057 999

DL240H2 11.22 × 1.87 307.2 × 51.2 10 0.89 164 540 159
DL220H2

f ix 11.28 × 1.88 307.2 × 51.2 10 0.83 164 540 237
DL250H2 11.11 × 1.85 307.2 × 51.2 10 0.94 157 955 72
DL500H2 10.98 × 1.83 307.2 × 51.2 20 0.92 158 124 49
DL250H16 11.59 × 15.45 307.2 × 409.6 10 0.94 1 402 849 75
DL210H16

f ix 11.66 × 15.55 307.2 × 409.6 10 0.79 1 402 849 102

DL200H2
smooth 8π × 2.00 - - 0.03 0 9082

4π × 2.00 - - 0.03 0 90821

DL400H2
smooth 8π × 2.00 - - 0.01 0 47652

DL150H16
smooth 8π × 16.00 - - 0.04 0 8140

CL250H3 11.67 × 2.92 307.2 × 76.8 10 0.96 263 412 73

Table 7.2: Numerical parameters of open duct flow simulations. The streamwise and spanwise extents of the computational
domain Lx × Lz are presented in terms of the mean fluid height and the particle diameter, respectively. While
the domain in the particle-laden simulations is discretised using a uniform finite difference grid with mesh width
∆x, the pseudo-spectral Fourier-Chebyshev-Chebyshev method used to simulate the smooth-wall configurations
features a non-uniform distribution of the grid/collocation points in the wall-normal and transverse directions.
Np is the total number of particles per simulation and Tobs is the total observation time of each simulation, starting
from the release of the mobile particles at t = 0. Time dependent physical and numerical parameters in tables 7.1
and 7.2 are computed as an average over the entire simulation period. 1,2 Statistics for the reference smooth-
wall simulations in case DL400H2

smooth and case DL200H2
smooth are from Sakai (2016). Investigations on instantaneous

flow fields, on the other hand, are performed based on new simulations performed in the course of this study
at identical parameter points. In case DL400H2

smooth, the current simulation features a however shorter domain
compared to the original case. The newly simulated time intervals comprise 286Tb for case DL400H2

smooth and 272Tb

for case DL200H2
smooth.

7.1.3 Simulation parameter values

The simulations performed in the course of this study cover a range of different parameter points con-
cerning domain length Lx/H f , aspect ratio AR, Reynolds number Reτ and Shields number θbed. An
overview of all performed simulations and their relevant physical and numerical parameters is pro-
vided in tables 7.1 and 7.2, respectively. Note that, referring to the discussion above, we define the
Shields number in the current study based on the sediment bed-related shear stress rather than τw,
such that θbed = (τbed/ρ f u2

g).

Based on the experience gained in previous studies on transverse pattern evolution (Kidanemariam
and Uhlmann, 2017; Scherer et al., 2020), we have performed three short domain simulations (S) with
a streamwise domain size Lx/D = 51.2 (Lx/H f ≈ 2) and aspect ratios AR ≈ {0.5, 1, 2} which are too
short to accommodate any unstable mode that would give rise to transverse ripple-like patterns. These
simulations thus allow us to study the evolution of sediment ridges exclusively over time intervals of
lengths O(103Tb). In all three simulations, the inner-scaled streamwise and spanwise domain lengths
are with L+

x ≈ 500 and L+
z ≈ {250, 500, 1000} sufficiently larger than the minimal streamwise and span-

wise extent required to accommodate a single buffer-layer streak with its associated quasi-streamwise
vortices (Jiménez and Moin, 1991; Pinelli et al., 2010; Sakai, 2016).
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Chapter 7 Coherent structures and sediment ridges in open duct flow

The remaining simulations (L) feature a clearly longer streamwise extent of Lx/H f ≈ 11-12 in the
particle-laden cases and Lx/H f = 8π in the smooth-wall cases in order to capture also structures of
larger streamwise dimension. For the sake of completeness, it should be mentioned that the streamwise
domain sizes in the particle-laden simulations are not large enough to allow for a complete decorre-
lation of the velocity statistics in the streamwise direction, and thus Sakai (2016) considered domains
that are roughly twice as long. Taking into account the significantly higher computational costs for
the simulation of one physical time unit with the IBM-finite difference solver compared to the pseudo-
spectral code, we decided to perform the multiphase simulations in a somewhat shorter domain as
a compromise between computational expenses and the goal to reduce the effect of a finite domain
size as much as possible. In order to scrutinise the influence of the domain length on the statistics
of interest, we have conducted an additional smooth-wall simulation at the same parameter point as
case DL200H2

smooth of Sakai (2016), featuring a reduced length of Lx/H f = 4π.

As discussed earlier, enlarging the streamwise domain size comes at a price: After an initial phase
during which ridges are essentially the only developed sediment patterns and thus can be studied
exclusively, ripple-like features arise and eventually dominate the surface of the sediment bed. The
growth rate and thus the exact length of the period required by transverse patterns to grow to a relevant
amplitude might depend on different factors, from which the value of the Shields number is one. In
order to stall the evolution of transverse bedforms and thus to increase the time window of exclusive
ridge formation, we have assessed the effect of a decrease of the Shields number by roughly factor two
between cases DL250H2 and DL240H2. It turns out that the amplitude of the observed ridges is, as
expected, smaller in the case with lower Shields number, while at the same time the period of ridges
being the dominant bedforms was more than twice as long as in the case with higher Shields number.

The parameter range of the performed simulations was chosen in such a way that the simulations cover
both the narrow and the wide duct regime. Open ducts are conventionally defined as ‘narrow’ if they
feature an aspect ratio of AR . 2.5 (Nezu and Rodi, 1985; Nezu and Nakagawa, 1993), such that the
presence of the lateral sidewalls can be assumed to influence the full domain of the flow. On the other
hand, open ducts are typically considered as ‘wide’ if AR & 5 (Rodríguez and García, 2008), for which
the influence of the sidewall boundary layers on the flow in the duct centre is assumed to be weak.
The here conducted simulations lie with aspect ratios of AR ≈ 0.5-2 and AR ≈ 8 well below and well
above these limits, respectively. Eventually, smooth-wall and particle-laden simulations were analysed
for different Reynolds numbers in a range 140 . Reτ . 515, from which the highest Reynolds number
flow thus features a scale separation of roughly 1.5H f /(100δν) ≈ 7.5 between the characteristic size of
large-scale outer-scaling structures and that of the small-scale buffer layer structures.

7.2 Sediment ridge formation in the presence of lateral
sidewalls

The evolution of streamwise-elongated sediment ridges has been observed in many laboratory flume
experiments since the seminal studies of Casey (1935) and Vanoni (1946), including, amongst others,
the works of Wolman and Brush (1961), Nezu and Nakagawa (1989) and McLelland et al. (1999). In all
these studies, groups of streamwise-elongated sediment ridges were observed to cover the entire cross-
section of the flumes from the near-sidewall region to the duct core. The here investigated simulations
show a qualitatively similar behaviour in that they all allow for the evolution of at least two parallel
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(a)

(b)
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(f )

Figure 7.2: Instantaneous visualisation of evolved sediment ridges as seen from the free surface looking downward. Colour-
ing of the particles indicates their wall-normal location, ranging form dark to light brown with increasing coor-
dinate y. For the sake of clarity, only bed and interface particles are shown while mobile bedload is not. Flow is
from left to right in each panel. (a) DS250H2 (t/Tb = 66), (b) DL240H2 (t/Tb = 74), (c) DL250H2 (t/Tb = 39), (d)
DL500H2 (t/Tb = 23), (d) CL250H3 (t/Tb = 73) and (f ) DL250H16 (t/Tb = 75).

streamwise-aligned ridges. However, the shapes and amplitudes of these bedforms differ considerably
between the different cases, as the instantaneous snapshots of the evolving sediment beds in figure 7.2
indicate. The three simulations at higher Shields number θbed and low aspect ratio AR ≈ 1 (DS250H2,
DL250H2 and DL500H2) shown in figures 7.2(a,c,d) develop a qualitatively similar pattern that consists
of a global trough, preferentially located in the duct centre, and two evolved ridges flanking the for-
mer on either side. In the streamwise-minimal simulation DS250H2, the two sediment ridges and the
trough in between are well separated and perfectly aligned with the mean flow direction. In addition,
they feature the largest amplitude among the three cases, which is assumed to be a consequence of
the severe spatial constraints: The limited domain extension together with the laterally bounding side-
walls entirely suppress the lateral mobility of the flow and a few quasi-infinitely long flow structures
dominate the flow, such that the region of stronger erosion in the duct centre is relatively persistent in
space. In the simulations with a longer domain Lx/H f ≈ 11 (DL250H2, DL500H2), the two sediment
ridges show a weak but visible lateral meandering tendency across the domain, but they still span the
entire box length. This supports our findings in the previous chapters and observations in experimen-
tal studies, according to which sediment ridges can easily reach streamwise extents of O(10H f -100H f )

(Vanoni, 1946; Wolman and Brush, 1961). Interestingly, the arrangement of the sediment patterns does
not significantly differ between the case with lower (DL250H2) and the one with higher Reynolds num-
ber (DL500H2), indicating that again outer-scaling flow structures are responsible for the generation of
the sediment ridges.

In hydraulic experiments, sediment ridges are merely observed when the sediment transport rate is too
low for the formation of developed transverse bedforms such as ripples or dunes (Wolman and Brush,
1961). Indeed, Kleinhans et al. (2002) concluded based on flume experiments and field measurements
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that sediment ridges can form even under strong limitations of the sediment supply, as it is the case
over armoured gravel beds (Venditti et al., 2019) or in flume experiments at low sediment transport rate.
As soon as a sufficient amount of mobile sediment is available in the flow, however, they are assumed
to transform into larger bedforms such as barchans, ripples or dunes (Kleinhans et al., 2002). In order
to study the impact of the sediment transport intensity on the formation of sediment bedforms, the
Shields number in case DL240H2 was significantly decreased to a value that is much closer to the critical
value for the onset of sediment motion than in the remaining cases. As can be seen in figure 7.2(b),
the cross-section accommodates in this case three individual sediment ridges, which are of however
lower amplitude than those in the remaining simulations as a consequence of the limited availability
of mobile sediment. In some regions such as close to the upstream periodic domain boundary, these
bed features are only hardly distinguishable from the remaining bed. Nevertheless, all three sediment
ridges span over the entire length of the domain, just as their counterparts at higher Shields numbers.

The width of the sediment ridges found in narrow ducts is comparable to those which form in the
region close to the sidewalls of the high-aspect ratio case DL250H16 in figure 7.2(f ): The box accommo-
dates between nine and eleven more or less regularly spaced individual sediment ridges. In addition
to these features, the sediment bed reveals here already first ‘nuclei’ for the development of larger
transverse bedforms at different locations of the domain. The further evolution of these localised dis-
turbances and their transition into larger transverse ripple-like bedforms will be the main topic of the
subsequent chapter 8. The sediment ridges that evolve in the centre of the duct in relatively large
distance to the sidewalls reveal a somewhat larger spanwise width than their counterparts near the
sidewalls, more resembling the ridges in the doubly-periodic open channel observed in figure 7.2(e).
The latter case shows a very similar sediment bed organisation as in the open channel simulations dis-
cussed in figure 6.3 of the previous chapter: In particular, it features two individual sediment ridges
with streamwise dimensions identical to the domain length Lx and a mean lateral wavelength that is
comparable to the values H f -2H f which have been observed for the remaining channel simulations in
this work.

7.2.1 Sediment ridge evolution

The discussed properties of the instantaneous sediment ridges give a first hint that the formation mech-
anism of sediment ridges in the core of a high aspect ratio duct could be very similar to the one dis-
cussed in chapter 6 for infinitely wide open channels. The evolution of sediment ridges in the direct
vicinity of a lateral sidewall, on the other hand, is subject to the particular flow organisation in this
region and, thus, their development might be controlled by different flow structures. Indeed, it turns
out that many of the characteristics observed in the instantaneous sediment bed visualisations in fig-
ure 7.2 are relatively robust and can be detected in a similar way in the space-time evolution of the
streamwise-averaged sediment bed profiles visualised in figure 7.3 as well. The narrow duct cases
with higher Shields number (DS250H2, DL250H2, DL500H2) whose bed evolution is depicted in fig-
ures 7.3(a,c,d) accommodate two individual ridges whose crests are located roughly half-way between
the duct bisector and the respective sidewall, separated by a pronounced trough in their middle. A very
similar mean arrangement of two sediment ridges with a comparable amplitude of approximately 1D

enclosing a single trough has been observed by McLelland et al. (1999) in an open flume experiment at
only slightly larger aspect ratio of AR = 1.5, using a weakly bimodal sediment mixture. Remarkably, it
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Figure 7.3: Space-time plot of the streamwise-averaged sediment bed height fluctuations h′′b (z, t)/D in open duct simula-
tions. Blue and red regions refer to troughs and crests of the streamwise-averaged fluid-bed interface profiles,
respectively. Cases: (a) DS250H2, (b) DL240H2, (c) DL250H2, (d) DL500H2, (e) CL250H3, (f ) DL250H16.

turns out that the instantaneous sediment ridges seen in our numerical experiments are not necessar-
ily symmetrically arranged: The most probable configuration rather seems to consist of two sediment
ridges from which one is dominant in that it features a higher amplitude than its weaker neighbour. In
case DL250H2, it is furthermore seen that the two sediment ridges change their roles intermittently, i.e.
their amplitudes increase and decrease in time such that either the left or the right one is dominant in
the above sense. In all three cases, the sediment ridges and the enclosed trough also exhibit a certain
degree of lateral meandering in time with a maximum amplitude O(0.1H f ). A possible explanation
for both effects is that the turbulent velocity structures above the sediment bed undergo a similar in-
termittently changing flow organisation, such that zones of stronger and weaker erosion along the bed
alternate accordingly. This hypothesis shall be further scrutinised in figure 7.25 below.

The sediment ridges that form at lower Shields number θbed = 0.06 in case DL240H2 (cf. figure 7.3(b))
reveal a markedly different evolution compared with those in the previously discussed simulations,
characterised by the formation of three essentially parallel low-amplitude sediment ridges, more or
less equally spaced across the duct span. The three sediment ridges in case DL240H2 exhibit essentially
no lateral propagation throughout the entire simulation interval. This reduced bedform mobility is
assumed to be a consequence of the reduced ability of the flow to mobilise sediment grains, leading to
a stabilisation of the sediment patterns: Once formed, the bedforms are less affected by the intermittent
dynamics of the turbulent flow. On the other hand, the reduced availability of mobile sediment retards
the evolution not only of transverse patterns, but also the growth rate of the here considered sediment
ridges is reduced compared to the remaining simulations. It is thus likely that the variation of the
Shields number generally affects the time scale of the sediment bed evolution. The reason for the
evolution of an additional sediment ridge in the duct centre from approximately t/Tb = 20 on cannot
be fully clarified based on the sediment bed data alone, such that we will postpone the discussion of
and possible explanations for this phenomenon to section 7.2.5 below.

If the aspect ratio of the open duct is sufficiently large as in case DL250H16 (cf. figure 7.3(f )), a large num-
ber of initial sediment ridges forms quasi-simultaneously throughout the entire cross-section shortly
after the onset of particle erosion. The formation process and the resulting ridge pattern is qualita-
tively similar to those observed for the corresponding open channel flow configuration CL250H16 in
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section 6.3.1. In a similar way as in the latter case, the sediment patterns undergo a phase of coa-
lescence during which individual bedforms merge, eventually leading to an arrangement of between
eight and twelve evolved ridges whose mean amplitude and lateral width are larger than that of the
early-stage initial ridges. Note that a comparably fast evolution of sediment ridges at different loca-
tions of the cross-section has been also observed in the experiments of Nezu and Nakagawa (1989),
even though the comment of the authors that the first ridges next to the sidewalls evolved slightly
earlier than their counterparts in the duct centre cannot be confirmed for the current cases, where all
features appear quasi-simultaneously. As has been already seen in the instantaneous sediment bed
visualisation in figure 7.2(f ), the lateral width of the sediment ridges seems to vary with their distance
to the lateral sidewalls. Sediment bedforms located in the duct centre such as the sediment ridges in
the region z/H f ∈ [6, 8] are wider and typically feature a higher amplitude than their counterparts in
the vicinity of the sidewalls, whose development is more constrained by the lateral domain boundary.
In fact, the higher and wider sediment ridges in the duct centre resemble in their shape those in the
reference channel simulation CL250H3 provided in panel 7.3(e). In good agreement with the cases in-
vestigated in section 6.3.1 of the previous chapter, the two sediment ridges that can be accommodated
by the doubly-periodic domain are seen to develop without strong lateral meandering at a transverse
spacing of approximately λh,z ≈ 1.5H f .

Eventually, let us remark that the initially slightly lower sediment bed height in the closest proximity
of the sidewalls that was unavoidable in the bed preparation process evolves quite differently in time
for the different cases: In the low aspect ratio cases with higher Shields number (DS250H2, DL250H2,
DL500H2), there is a sufficient lateral sediment input into the sidewall regions such that the initially ex-
isting gap readily fills up. For case DL240H2, on the other hand, the lateral particle flux can be assumed
to be too weak to do so, with the consequence that the signature of the initially slightly lower sediment
bed remains visible. Interestingly, also in the high aspect ratio case DL250H16 the lateral particle trans-
port into the bed-sidewall corners is apparently not strong strong enough to fill the initial gap in the
here considered time interval. As we shall see in the following chapter 8 in which we investigate the
subsequent ripple-dominated bed evolution phase, however, the near-sidewall region will eventually
fill up with sediment grains.

It should be kept in mind that the initial offset of the bed height in these regions is with O(0.1D) rela-
tively small, but due to the also small amplitude of the sediment ridges especially in the narrow ducts,
the effect is visible in the statistics of the bed evolution. For the mean pattern amplitude evolution
shown in figure 7.4(a) in terms of the r.m.s. of the streamwise-averaged sediment bed height fluctu-
ations, its influence appears in form of a finite initial value σh,z(t = 0) in the duct cases, whereas the
respective value in the channel case is initially of negligible size. In order to assess the contribution of
the initial bed variation near the wall on the statistics, we have evaluated σh,z again, excluding however
the region close the sidewalls (a lateral distance of 2D from either sidewall). It is seen that in all cases
except for DL240H2 which features the significantly lower Shields number, the influence of the initial
bed variation is relevant only in the beginning of the simulations, while the evolution of σh,z is in later
stages indeed predominantly related to the evolving sediment ridges.

After the release of the particles, the strongest increase and largest pattern amplitude is seen to occur
for the streamwise-minimal simulation DS250H2, which is again assumed to be caused by the strong
spatial constraints due to the small domain size: As explained above, the short and narrow domain
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Figure 7.4: Time evolution of fluid-bed interface dynamics. Root mean square of the fluctuation of the (a) streamwise-
averaged (σh,z/D) and (b) spanwise-averaged fluid-bed interface (σh,x/D). In (a), the solid lines show σh,z/D
evaluated for the entire spanwise width of the duct z ∈ [0, Lz], while the dashed lines represent the same quantity
determined excluding the closest vicinity of the sidewalls, i.e. over the range z ∈ [2D, Lz − 2D]. In (b), the inset
shows the same data as in the main plot but for a longer time interval. (c) Mean spanwise pattern spacing λh,z.
The black solid and the long coloured horizontal dashed lines mark the most-amplified wavelength in the linear
stability analysis of Colombini (1993) and the relative lateral domain sizes Lz/H f , respectively. Short horizontal
dashed lines represent fractions of the entire domain width Lz in the respective case: ( ) Lz/3; ( ) Lz/2. (d)
Minimum spanwise distance between a sidewall and the closest sediment ridge crest, sh,z = min

k
(|zk − zwall |),

where zk is the lateral position of the kth of nridges local maxima of h′′b (z, t). (�): left sidewall at zwall = 0; (�): right
sidewall at zwall = Lz. Each data point represents an average over a time interval of approximately 5Tb. Cases:
DS250H2 ( ), DL240H2 ( ), DL250H2 ( ), DL500H2 ( ), DL250H16 ( ), CL250H3 ( ).

leads to the formation of a single quasi-infinitely long high-speed region in the centre of the duct as-
sociated with a strong erosion, which results in the formation of almost perfectly streamwise-aligned
trough and crest regions, whose signature in the streamwise average is consequently quite pronounced.
In the long domains at the same low aspect ratio (DL250H2 and DL500H2), the initial growth rate and
the eventually attained amplitude are smaller than in case DS250H2. This is most likely due to a larger
freedom to meander in the lateral direction of both sediment ridges and flow structures in these cases,
leading to a reduced pattern amplitude in the streamwise average. Interestingly, the increase of σh,z

in these cases is not monotonous, but it exhibits a low amplitude oscillation whose local extrema are
directly correlated to the different phases of bedform evolution seen in the space-time evolution plots
in figure 7.3. Considering, for instance, case DL250H2, it is observed that local maxima of σh,z at ap-
proximately t/Tb ∈ {20, 40, 60} correspond to situations in which the ‘dominant’ of the two sediment
ridges reaches its maximum amplitude, while local minima at approximately t/Tb ∈ {30, 50} are char-
acterised by the ‘transition’ state in which both ridges are of comparable amplitude. In case DL240H2,
which features as opposed to the remaining cases a relatively low Shields number, we also observe a

163



Chapter 7 Coherent structures and sediment ridges in open duct flow

general increase of the sediment ridge amplitude at a however clearly reduced growth rate as a conse-
quence of the weak particle transport intensity. Also, as discussed above, there is no sufficient sediment
supply to the corner regions to fill up the initial gap which therefore clearly contributes to σh,z during
the entire simulation interval. The high aspect ratio duct case DL250H16 and the laterally periodic
channel flow CL250H3, eventually, reveal a qualitatively and quantitatively very similar evolution of
the sediment ridge height, featuring an almost monotonic growth of σh,z during the considered time
window. The very similar evolution in these two cases further strengthens our previous claim that the
majority of the sediment ridges in the wide duct form in a similar process as that observed in open
channel flows.

For the sake of comparison, figure 7.4(b) provides the time evolution of the corresponding spanwise-
averaged sediment bed amplitude, σh,x, which is a measure for the mean height of transverse ripple-like
patterns (Coleman and Nikora, 2009; Kidanemariam and Uhlmann, 2017). It confirms that in the con-
sidered time intervals, the mean sediment ridge amplitude is always higher than that of the ripple-like
patterns, indicating that sediment ridges are in all situations the dominant bedform type. In agreement
with the open channel simulations of Kidanemariam and Uhlmann (2017) and Scherer et al. (2020), the
streamwise-minimal domain of case DS250H2 effectively suppresses the growth of the modes related
to transverse bedforms also in the presence of lateral sidewalls, whereas all remaining cases eventually
develop ripple-like bedforms, even though at clearly different growth rates. While the low growth rate
of the ‘ripple-mode’ in case DL240H2 is again a consequence of the low Shields number, this explana-
tion does not apply to the situation in case DL250H16 that features a comparable non-dimensional shear
stress as the remaining cases. Indeed, time-resolved visualisations of the bed evolution in this latter
case verify that the spanwise-averaged framework fails short to resolve spatially-localised initial trans-
verse disturbances in this very large domain (cf. figure 7.2(f )) that represent the onset of ripple-like
bedform evolution. These initial transverse bed undulations occur at quasi-random positions across
the domain and are thus partly hidden in the spanwise-average over long time intervals, until they
merge with other localised sediment patches to form larger, essentially two-dimensional transverse
patterns. A more detailed investigation of this phase of the sediment bed evolution is presented in the
following chapter 8. In contrast to this more complex formation process, initial disturbances in narrow
open channel and duct flows are artificially constrained to remain essentially two-dimensional without
a clear dependence on the transverse direction due to the limited lateral extension of the domain. In
such cases, spanwise averaging can capture all essential features of the emerging transverse bedforms
from the very beginning.

The development of the mean lateral width of the sediment ridges is presented in figure 7.4(c). Note
that the general definition of λh,z in equation (6.9) can still be applied in the case of a non-periodic lat-
eral direction, but in contrast to the open channel case it has to be determined in physical rather than
in Fourier space. Accordingly, the previously used term of a lateral wavelength is here rather mislead-
ing, in particular for narrow duct cases which accommodate not more than two sediment ridges. For
this reason, we will henceforth refer to λh,z as the averaged lateral distance or spacing between two
neighbouring sediment ridges. After an initial transient of approximately 20 bulk time units during
which the value of λh,z partly oscillates strongly, most cases choose a preferred lateral ridge spacing,
which they maintain until the end of the simulation intervals. The difference between the evolution of
λh,z in the initial 20 bulk time units and that in the subsequent phase is most pronounced in the wide
domain of DL250H16, where a strong increase of λh,z is detected within a relatively short time-interval
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between 20 and 25 bulk time units after the particle release. This abrupt change of the preferred lat-
eral spacing is related to the merging or dying of the initial smaller sediment ridges in this phase that
has been observed in the previous figure 7.3(f ). Note that the corresponding wide open channel flow
in case CL250H16 showed a similar increase of the mean ridge spacing during a comparable bedform
merging phase, but in this latter case the increase of λh,z appeared more gradually than the sudden
jump seen in case DL250H16.

Except for that in case DL240H2, all finally attained ridge spacings λh,z are in the range of values typ-
ically reported in flume experiments (e.g. McLelland et al., 1999). The eventually attained values of
λh,z in the low aspect duct cases differ somewhat between the different simulations, but they are sys-
tematically smaller than those in cases CL250H3 and DL250H16. We have seen earlier that the sediment
ridges can spread over a wider lateral distance if they are in sufficient distance to a lateral sidewall,
which is in agreement with the generally higher values of λh,z in the latter two cases. Case DL240H2

accommodates three individual low-amplitude ridges and accordingly reveals a mean lateral spacing
of roughly Lz/3, whereas cases DS250H2 and DL500H2 show larger values of comparable size as the
lateral wavelength 1.3H f that has been theoretically predicted in the limit of an infinitely wide open
channel (Colombini, 1993). For case DL250H2, in turn, the mean spacing is found to attain a value of
λh,z ≈ Lz/2 that is somewhat lower than those found in cases DS250H2 and DL500H2, implying that
the lateral distance sh,z between the two sidewalls and their neighbouring ridges is higher in this case.
The time evolution of sh,z is provided in figure 7.4(d): As already observed in the space-time plots in
figure 7.3, the sediment ridges in the narrow duct simulations are seen to slightly meander in time,
but their distance to the respective neighbouring sidewall always remains in a range (0.25-0.55)H f .
Interestingly, even in the high aspect ratio case DL250H16, the first and last ridges typically do not de-
part from the sidewall region, but reside at an only slightly larger distance 0.5 < sh,z/H f < 0.8 to the
domain boundaries.

7.2.2 Sediment transport

In the previous section, we have seen how the reduced Shields number in case DL240H2 has caused
a reduction of the growth rate of the sediment ridge amplitude under, apart from θbed, comparable
conditions as in case DL250H2. The link between the non-dimensional shear stress and the bedform
evolution is the particle flux which is, amongst others, a function of the Shields number. Aim of a
number of engineering-type models is to provide an empirical estimate of this functional relationship
between the particle transport rate and the Shields number, from which the most popular one is surely
the relation of Meyer-Peter and Müller (1948). As in section 6.3.2, the latter is in the following discussed
in the revised version of Wong and Parker (2006).

Figures 7.5(a,b) show the temporal development of the streamwise particle flux 〈qp,x〉xz(t) in the current
open duct simulations, scaled in inertial scales (using ug and D as reference scale) and in terms of a
reference flux qre f . The latter is the particle flux computed based on the empirical relation of Wong
and Parker (2006) in the same way as in section 6.3.2, except for the fact that we restrict ourselves here
to the investigation of the particle flux in the core region of the duct, that is, z ∈ [0.5H f , Lz − 0.5H f ].
The concentration on regions away from the sidewalls is justified by the fact that both the original
and the modified version of the Meyer-Peter and Müller (1948) formula were not conceived for the
near-wall region. In fact, applying these models over the entire duct width including the near-sidewall
regions leads to a poorer prediction of the particle flux observed in our simulations (plots omitted).

165



Chapter 7 Coherent structures and sediment ridges in open duct flow

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

t/Tb

〈q
p
,x
〉 x

z
/(
u
g
D
)

0 20 40 60 80
0

1

2

3

t/Tb

〈q
p
,x
〉 x

z
/
q r

e
f

0.01 0.04 0.1 0.4
0.01

0.04

0.1

0.4

1

θbed(t)− θc

〈q
p
,x
〉 x

z
/(
u
g
D
)

0 0.25 0.5
0

0.2

0.4

0.6
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Figure 7.5: Mean streamwise particle flux 〈qp,x〉xz as a function of time normalised by (a) the inertial scale ugD and (b) the ref-
erence particle flux qre f computed based on the Wong and Parker (2006) version of the empirical Meyer-Peter and
Müller (1948) formula: qre f /(ug D) = 4.93(θbed(t)− θc)1.6, with the critical Shields number θc = 0.034 (Soulsby
et al., 1997) and θbed being computed based on the shear stress contribution due to the sediment bed only. (c)
Streamwise particle flux 〈qp,x〉xz/(ugD) as a function of the excess Shields number θbed(t)− θc. Each data point
represents the short-time average over subintervals of 5Tb length, with time increasing along each line from left
to right, as indicated by the arrows. The dashed diagonal line represents the Wong and Parker (2006) reference
flux qre f /(ug D). Note that in (a-c), 〈qp,x〉xz is averaged over the central part of the duct only, that is, the spanwise
averaging is performed ∀z ∈ [0.5H f , Lz − 0.5H f ]. (d) Mean particle flux density 〈φup〉xzt/(qre f /D) as a function
of the wall-normal distance to the mean fluid-bed interface. The inset shows the same quantity in the near-bed
region, with the wall-distance scaled in terms of the particle diameter D. Cases: DL240H2 ( ), DL250H2 ( ),
DL500H2 ( ), DL250H16 ( ).

Additional empirical sidewall correction steps as they are often included in experiments (cf. Wong and
Parker, 2006, and references therein) were also considered, without succeeding in a significantly better
prediction of the particle flux. Excluding, however, a region of width 0.5H f next to both sidewalls in
the analysis results in a good approximation of the particle flux after an initial transient of roughly 10

bulk time units. A slight but systematic under-prediction is seen only for case DL500H2.

The good match of the predicted and the observed particle flux in narrow and wide duct configurations
likewise is also seen in figure 7.5(c), where 〈qp,x〉xz(t) is shown as a function of the current excess
Shields number, averaged over short time intervals of 5 bulk time units lengths. For all cases, the
Shields number and the particle flux increase simultaneously due to the increasing bed friction after
the release of the sediment particles at t = 0, soon reaching a mutual ratio that agrees well with the
Wong and Parker (2006) relation.

As for the open channel simulations, higher Shields numbers cause an increase of the bedload layer
thickness, as can be seen from the wall-normal profiles of the particle flux density 〈φup〉xzt shown in
figure 7.5(d): In case DL240H2, sediment transport occurs almost exclusively in a relatively thin layer
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Figure 7.6: Space-time plot of the streamwise-averaged streamwise particle flux 〈qp,x〉x(z, t)/qx,rms in open duct simulations,
with qx,rms(t) = (〈〈qp,x〉2

x〉z)1/2. Red and blue regions refer to zones of strong and weak streamwise particle
transport, respectively. Cases: (a) DS250H2, (b) DL240H2, (c) DL250H2, (d) DL500H2, (e) CL250H3, (f ) DL250H16.

of approximately 2D thickness above the sediment bed. For case DL500H2 that features the highest
studied Shields number, on the other hand, a non-negligible fraction of the transported sediment mass
reaches distances of up to 4D above the mean sediment. The thickening of the bedload transport layer
with increasing Shields number is a direct consequence of the fact that the sediment saltation height
increases with the Shields number, such that individual particles can reach into layers further away
from the sediment bed (Niño et al., 1994).

From the very beginning of all simulations, the streamwise particle flux 〈qp,x〉x is seen to vary con-
siderably in the spanwise direction of the duct on account of the heterogeneous distribution of the
streamwise velocity, which shall be examined in the following in more detail. For the three narrow
duct simulations at lower Reynolds number, the time evolution of the streamwise-averaged lateral
particle flux profile shown in figure 7.6(a-c) indicates that the vast majority of the sediment grains
is transported in a comparably narrow region in the centre of the domain. On the other hand, 〈qp,x〉x

decreases strongly when approaching the sidewall region, leading to an almost negligible particle load
in the flow near the sidewalls. Interestingly, the narrow region of most intense particle transport is seen
to laterally meander during the simulations, approximately in phase with the lateral oscillations of the
sediment ridges and troughs in the corresponding panels in figure 7.3(a-c). It can be suspected that this
intermittent meandering tendency of the sediment ridges and troughs on the one hand and the regions
of intense particle transport on the other hand originates in similar lateral oscillations of the turbulent
flow field, as proposed earlier. The validity of this assumption will be investigated in the context of
figure 7.25 below. In case DL240H2 (cf. figure 7.6(b)), the lateral profile of 〈qp,x〉x partly features two
distinct local maxima for times t/Tb > 30, which could explain why in this case three ridges and two
troughs form after the initial phase, instead of the ridge-trough-ridge arrangement that is observed in
the remaining simulations with AR ≈ 1.

The lateral distribution of the streamwise particle transport in the higher Reynolds number case DL500H2

(cf. panel 7.6(d)) qualitatively differs from the previously discussed cases in that 〈qp,x〉x is more ho-
mogeneously distributed across the duct span, attaining non-negligible values even close to both side-
walls. Nonetheless, the maximum particle transport still occurs in the duct core around the bisector,
revealing a comparable lateral meandering in time as in the remaining cases. In the channel reference
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case CL250H3 (cf. panel 7.6(e)), initially two regions of intense and two of weak particle transport form
after the release of the particles, correlating with the rise of two initial small-amplitude ridges and
troughs at corresponding positions in figure 7.3(e). In close correlation with the fluid-bed interface
evolution depicted therein, the initial regions of strong and weak particle transport disappear after
a while. They are displaced by a new, more pronounced region of intense particle flux evolving at
z ≈ 2H f , which is accompanied by the formation of a deeper trough at essentially the same lateral
position in figure 7.3(e), surrounded by two pronounced ridges. In contrast to the situation in the lat-
erally constrained narrow ducts, 〈qp,x〉x organises in sufficiently wide ducts such as case DL250H16 in
large-scale laterally varying regions of relatively stronger and weaker particle transport with a mean
width of (1-2)H f , again quite similar to the corresponding channel case CL250H16. In this context, the
distance to the sidewalls at which the first local maxima of 〈qp,x〉x arise correspond to the first troughs
next to the sidewalls. In regions less than H f away from the lateral domain boundaries, however,
the particle transport significantly reduces due to the lower streamwise velocity in these regions (cf.
figure 7.23 below).

The different organisation of the particle transport in the cross-section of the low aspect ratio duct
cases depending on the Shields and Reynolds number is clearly visible in figure 7.7. Therein, the lat-
eral variation of the mean streamwise and transverse particle flux is shown together with the mean
sediment bed profile for cases DL240H2, DL250H2 and DL500H2, respectively. In agreement with the
time-resolved visualisations in figure 7.6, it is seen that the profile of 〈qp,x〉xt in case DL500H2 (cf. fig-
ure 7.7(e)) is wider than in the remaining cases and even in the bins next to the sidewalls, it still attains
values of approximately 30% of the overall mean flux 〈qp,x〉xzt. In cases DL240H2 and DL250H2 (cf.
figure 7.7(a,c)), on the other hand, the near-sidewall regions are characterised by an almost vanishing
streamwise particle transport. The mean transverse particle flux shown in figures 7.7(b,d,f ) is in all
cases oriented in such a way that sediment is, on average, transported from the duct centre towards the
sidewalls, that way supporting the growth of the two ridges that form in all cases between sidewalls
and duct bisector. In case DL240H2, 〈qp,x〉xzt attains a local minimum in the duct centre and 〈qp,z〉xzt

is almost zero at the same location (cf. figures 7.7(a,b)), which indicates that less sediment is eroded
in this region combined with a vanishing lateral transport that could move eroded particles out of the
duct centre. The consequence is the evolution of the earlier discussed ‘extra ridge’ in the centre of this
case.

Close to the sidewalls, all cases reveal a net lateral particle flux of a few percent of the mean streamwise
particle transport, directed from the near-wall side of the respective ridge towards the bed-sidewall cor-
ner. For cases with a relatively high Shields number and thus a pronounced streamwise particle trans-
port, this sediment input into the corners suffices to readily fill the small initial gap between the bed and
the sidewalls, while it does not for the relatively weak streamwise sediment transport in case DL240H2.
As stated earlier, this observed net particle transport into the near-wall region eventually causes, for
sufficiently long time intervals, larger particle agglomerations in these regions, as those seen in the
long-time experiments of McLelland et al. (1999).

In accordance with the observation of a mean sediment flux from the duct centre towards the left
and right half of the domain, figure 7.8(a,c,e) shows in terms of the time-averaged erosion-deposition
balance that the adjacent sediment troughs and ridges indeed correspond to regions of preferential
particle erosion and deposition, respectively. Note that we restrict the analysis here on the time interval
t ∈ [5Tb, Tobs] as in the initial phase of each simulation, erosion naturally is the dominant process
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Figure 7.7: Spanwise variation of the mean streamwise and lateral particle flux. (a,c,e) Streamwise particle flux
〈qp,x〉xt/〈qp,x〉xzt, (b,d,f ) lateral particle flux tangential to the mean fluid-bed interface, normalised by the stream-
wise component 〈qp,lat〉xt/〈qp,x〉xzt. Positive (negative) values of 〈qp,lat〉xt indicate particle transport in positive
(negative) z-direction. Note the two different ordinate scales for the streamwise and spanwise particle flux. The
mean fluid-bed interface is visualised below each panel, the wall-normal extension of the ridge being exaggerated
for the sake of visualisation. (a,b) DL240H2, (c,d) DL250H2, (e,f ) DL500H2.

everywhere in the cross-section, even though its amplitude strongly varies along the lateral direction.
Apart from the regions where sediment ridges evolve, zones of preferential sediment deposition are
also found in the regions near both sidewalls for cases DL250H2 and DL500H2, in agreement with the
net lateral particle flux into the corner region that has been discussed above. For case DL240H2, on
the other hand, erosion and deposition are in the corner regions essentially in equilibrium, explaining
why the initial gap between sediment bed and sidewall is not filled up in the course of this simulation.
Also, the presented dataset underlines that case DL240H2 features an additional zone of preferential
deposition in the duct centre that causes the evolution of the ‘additional ridge’.

The causal connection between the here discussed regions of preferential sediment erosion and de-
position and the turbulent flow field will be the subject of the following sections. In order to give
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Figure 7.8: Mean erosion-deposition balance in comparison with the velocity field in narrow open duct simulations, averaged
over the time interval [ta, tb] = [5Tb, Tobs] of cases (a,b) DL240H2, (c,d) DL250H2 and (e,f ) DL500H2. (a,c,e) Balance
between eroded and deposited particles per unit length and time, Φ, as defined in section 6.3.6, normalised by
the corresponding r.m.s. value Φrms = [〈(Φ − 〈Φ〉z)2〉z]1/2. (b,d,f ) Streamwise-averaged velocity fluctuations u′′

f

at ỹ/H f = 0.2 (solid) and ỹ/H f = 0.5 (dashed), averaged over the same time interval [ta, tb].

the reader already here a first impression on the mutual organisation of the mean streamwise veloc-
ity and the sediment ridges, figures 7.8(b,d,f ) show profiles of the streamwise-averaged mean flow at
wall-normal distances ỹ/H f = 0.2 and ỹ/H f = 0.5 above the fluid-bed interface. The spanwise veloc-
ity profile extracted at ỹ/H f = 0.5 increases for all cases monotonically towards its global maximum
which is attained at approximately z ≈ Lz/2. In contrast to that, the profile at ỹ/H f = 0.2 reveals a
more complex shape, featuring local minima and maxima at different spanwise locations which ap-
pear to correlate quite well with regions of stronger deposition and erosion, respectively. This close
correlation suggests that the flow organisation in the latter region might be of higher relevance for the
formation of sediment ridges in these narrow duct cases.
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Figure 7.9: Mean streamwise velocity 〈u f 〉xt/ub in open duct simulations with aspect ratio AR ≈ 1. Intensity and orienta-
tion of the mean cross-stream secondary flow field (〈v f 〉xt, 〈w f 〉xt)

T/ub are indicated as vector plots in the back-
ground. Isocontours of 〈u f 〉xt/ub are shown for values 0.1(0.1)1.3 as coloured lines, whereas the time-averaged
fluid-bed interface profile is indicated by a black solid curve. Cases: (a) DL200H2

smooth, (b) DL220H2
f ix, (c) DS250H2,

(d) DL250H2, (e) DL400H2
smooth, (f ) DL500H2.

7.2.3 Turbulent mean flow

Before discussing in more detail the correlation of the flow field organisation and the evolution of
sediment ridges, we first turn our attention to the cross-sectional variation of the primary mean flow
〈u f 〉xt(y, z) in the smooth-wall and multiphase duct cases, respectively, which is shown for selected
cases in figure 7.9. Keeping in mind that the time interval over which statistics could be gathered dif-
fers by two orders of magnitude between single-phase and multiphase cases, the mean flow fields over
smooth walls (figures 7.9(a,e)), stationary (figure 7.9(b)) and mobile sediment beds featuring developed
sediment ridges (figures 7.9(c,d,f )) are very similar in amplitude and structure. This is in particular
remarkable for the streamwise-minimal simulation DS250H2 as it indicates that, provided the aver-
aging time interval is sufficiently long, the characteristic mean streamwise and secondary flow field
is recovered – even if the flow field accommodates only modes of either short (λx ≤ 2H f ) or infinite
streamwise wavelength. We observe that the characteristic features of the mean flow are fairly well
developed for both single-phase and particle-laden cases, including the inner vortex in the mixed cor-
ner between sidewalls and free surface (Grega et al., 2002) and the velocity dip phenomenon (Stearns,
1883; Nezu and Nakagawa, 1993), which will be discussed in the context of figure 7.11 below. The
local maxima of the mean fluid-bed interface that represent the preferential location of the sediment

171



Chapter 7 Coherent structures and sediment ridges in open duct flow

ridges in cases DS250H2, DL250H2 and DL500H2 (cf. figures 7.9(c,d,f )) more or less collapse with the
local low-speed region of the mean flow field, induced by the mean bottom vortex that transports
low momentum fluid away from the wall. The bottom vortex and the associated modulation of the
mean streamwise velocity field 〈u f 〉xt are a characteristic feature of the near-wall region in open duct
flows (Tominaga et al., 1989) and can be detected in the corresponding single-phase duct flows as well
(cf. figures 7.9(a,e)), albeit its intensity and size depend on the Reynolds number as well as the bed
configuration. The peculiar structure of the mean secondary flow of Prandtl’s second kind as well as
the influence of a mobile sediment bed on the former deserves a more detailed investigation, which
will be provided in the following section 7.2.4. Lastly, let us mention that in order to obtain fully-
converged statistics that also fulfil the expected statistical mirror symmetry w.r.t. the duct bisector,
significantly longer simulation time intervals with a length of at least O(103Tb) would be necessary in
the particle-laden simulations, which clearly exceeds the time window during which sediment ridges
can be studied exclusively in the current simulations.

The lateral inhomogeneity of the mean flow field in open and closed ducts manifests itself also in a
variation of the mean wall shear stress (cf. Pinelli et al., 2010; Sakai, 2016, and the discussion of fig-
ure 7.14 below). Part of this lateral inhomogeneity can be compensated using local inner units for the
scaling of the wall-normal velocity profile in order to recover the law of the wall also locally (Gavri-
lakis, 1992; Pirozzoli et al., 2018). Here, we consequently normalise the velocity profile with the local

friction velocity obtained as
√
〈τtot〉xt(〈hb〉xt(z), z)/ρ f , where the mean total shear stress 〈τtot〉xt(y, z)

is evaluated along the sediment bed y = 〈hb〉xt(z). Note that 〈τtot〉xt will be properly defined in equa-
tion (7.11) below, where we will also discuss its lateral variation in the context of figure 7.14. Quantities
normalised in local inner units will be henceforth marked as (•)+l , representing the local equivalent
to inner scaling in global inner units by uτ and ν f .

Figure 7.10 shows wall-normal profiles of the mean streamwise velocity, scaled in local inner units
at various spanwise positions throughout the duct cross-section up the corner bisectors ỹ = z and
ỹ = Lz − z, respectively. This means in particular that only part of the domain is considered for which
the bottom wall represents the closest of the three solid sidewalls. For the smooth wall cases, the
presented profiles collapse throughout the buffer layer and only small deviations are observed in the
outer layer when normalised in terms of local inner units. Along the duct bisector, a quasi perfect
match with the theoretically predicted velocity profile is obtained, deviating from the idealised profile
only in the vicinity of the free surface in the context of the velocity dip phenomenon.

Possibly due to the relatively small averaging ensemble in the particle-laden cases, normalisation in
local inner coordinates does not yield to a complete collapse of the profiles in these cases. However,
the general shape and slope of the individual curves are again comparable. As for the open chan-
nel simulations in figure 6.10, the velocity profiles over the evolving sediment bed deviate from those
in the smooth-wall simulations. In case DL240H2, the deviation is weakest as a consequence of the
relatively low particle transport intensity, which in turn leads only to a mild increase in bed friction.
Case DL500H2, on the other hand, features a clearly higher Shields number and thus a markedly higher
bedload transport intensity as well as a larger particle Reynolds number of D+ ≈ 18. As a consequence,
the near-bed flow is strongly disturbed by the particles moving inside the dense bedload layer which
causes a significant enhancement of the bed friction, resulting in a much stronger deviation between
the velocity profiles in case DL500H2 and those in the smooth-wall simulations. In agreement with
the situation in the open channel flow simulations, a simple wall-normal shift of the velocity profiles’
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Figure 7.10: Wall-normal profiles of the mean streamwise velocity 〈u f 〉+l
xt (y, z) at different lateral positions scaled in local

inner units as a function of the local wall/bed distance (y−〈hb〉xt(z))
+l , based on the local mean wall shear stress

at each lateral position. Grey lines represent individual wall-normal profiles at various spanwise positions z/H f ,
while only the profile along the duct bisector at z = Lz/2 is highlighted by a coloured line. The dashed-dotted
line shows the classically predicted velocity profiles for the buffer and log-layer, respectively, as 〈u f 〉+l

xzt = ỹ+

and 〈u f 〉+l
xzt = 1/κ ln(ỹ+) + Bu (κ = 0.41, Bu = 5.2). Profiles are shown only below the corner bisectors ỹ = z

and ỹ = Lz − z, respectively. Cases: (a) DL240H2 ( ), (b) DL250H2 ( ), (c) DL500H2 ( ), (d) DL250H16 ( ).
Each panel additionally features the same quantity in the respective smooth-wall reference case DL200H2

smooth

( ), DL400H2
smooth ( ) or DL150H16

smooth ( ), respectively.

origins (Jiménez, 2004a) does not lead to a satisfactory collapse of the velocity profiles over mobile sed-
iment beds and smooth bottom walls, since the slopes of the profiles outside the buffer layer generally
differ between the two configurations. As in the open channel case, it is argued that the larger slope of
the local velocity profile in the outer flow of particle-laden simulations is a necessary consequence of
the reduced fluid mass flow rate in the near-bed region, which the flow compensates by an increased
mean shear in the outer layer. Eventually, a pronounced velocity dip at the duct bisector is observed for
all duct cases at low aspect ratio AR ≈ 1, whereas the profiles in the wide duct cases DL150H16

smooth and
DL250H16 lack such a feature, which is in agreement with earlier studies on this topic (Nezu and Rodi,
1985; Sakai, 2016). However, considering also the profiles away from the duct bisector, it is seen that
there are indeed other spanwise locations at which the maximum of the local velocity profile is attained
below the free surface in both cases, indicating the existence of a set of ‘local’, ‘off-centre’ velocity dips
at varying spanwise locations.

For the low aspect ratio cases, figure 7.11 shows the velocity dip d in outer and inner units as a function
of the bulk and friction Reynolds number, respectively. Here, d represents the distance between the
free-slip plane and the wall-normal location at which 〈u f 〉xt attains its maximum along the bisector, viz.
d = Ly − argmax

y
(〈u f 〉xt(y, Lz/2)). For both outer and inner scaling, the evolution of the velocity dip
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Figure 7.11: Velocity dip −d of the mean streamwise velocity component of open duct cases with AR ≈ 1 scaled in (a)
outer units as a function of Reb and (b) inner units as a function of Reτ . Symbols represent data from current
open duct simulations over fixed (◦) and mobile sediment beds (�) as well as smooth wall reference data from
Sakai (2016) (◮). The velocity dip d is determined as the wall-normal distance between the location at which
the mean streamwise velocity attains its maximum along the duct bisector z = Lz/2 and the free surface, i.e.
d = Ly − argmax

y
(〈u f 〉xt(y, Lz/2)).

as a function of the bulk and friction Reynolds number follows the general trend revealed by the series
of smooth-wall duct simulations investigated by Sakai (2016), exhibiting only small deviations from
the values found therein: For non-marginal Reynolds numbers Reb > 3000, the velocity dip essentially
scales in outer units, attaining a more or less constant value of d/H f ≈ 0.3. When scaled in inner
units, on the other hand, d+ seems to increase almost linearly with Reτ. The slight deviations between
d in the particle-laden cases and that in the corresponding smooth-wall simulations are small enough
to represent the statistical error that arises as a consequence of the limited averaging time interval in
the sediment bed cases. The results therefore generally imply that the mobile sediment bed and the
evolving sediment ridges have no particular influence on the size of the velocity dip phenomenon.

The increase in bottom friction caused by the presence of the mobile sediment bed manifests itself in
a higher friction Reynolds number in the particle-laden cases. For the case of a smooth-wall closed
duct, Jones (1976) proposed an empirical relation to determine the friction coefficient c f = 2u2

τ/u2
b,

which has been proven to reasonably well predict the effectively attained values in direct numerical
simulations of marginal to moderate Reynolds number closed and open duct flows (Uhlmann et al.,
2007; Sekimoto, 2011; Sakai, 2016). In Sakai (2016), the original equation presented in Jones (1976) was
generalised to the rectangular open duct case, viz.

1√
4c f

= 2 log10

(
φ∗ 4AR

(1 + AR)
Reb

√
4c f

)
− 0.8, (7.9)

where a shape factor φ∗(AR) is to be determined, for which Jones (1976) proposed the approximation

φ∗ ≈ 2

3
+

11

24

H f

Lz

(
2 − H f

Lz

)
=

2

3
+

11

24

1

2AR

(
2 − 1

2AR

)
. (7.10)

As can be seen in figure 7.12(a), the relation between the friction Reynolds number Reτ and the bulk
Reynolds number Reb in the single-phase smooth-wall simulations is fairly well captured by rela-
tion (7.9) for narrow and wide duct simulations alike, as has been concluded earlier by Sakai (2016).
In the presence of a stationary sediment bed in case DL220H2

f ix and DL210H16
f ix , Reτ attains only slightly
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Figure 7.12: (a) Variation of the mean friction Reynolds number Reτ as a function of the bulk Reynolds number Reb. The
dashed-dotted lines refer to the empirical relation (7.9) (Jones, 1976; Sakai, 2016), evaluated for aspect ratios
AR = 1 ( · ) and AR = 16 ( · ), respectively. (b) Time evolution of the instantaneous friction Reynolds number
Rei

τ(t). Cases: DL240H2 ( ,�), DL250H2 ( ,�), DL220H2
f ix ( ,◦), DL500H2 ( ,�), DL250H16 ( ,�), DL210H16

f ix

( ,◦), DL200H2
smooth (◮), DL400H2

smooth ( ,◮) and DL150H16
smooth (◮).

higher values due to the relatively small roughness height in both inner (D+ < 8) and outer scaling
(D/H f < 0.04).

For the cases featuring a mobile sediment bed, on the other hand, we observe a more pronounced
increase in bed friction compared to the single-phase smooth-wall cases, whose size depends on the
respective Shields number θbed and the relative size of the particles D+: At the lowest Shields num-
ber in case DL240H2, the weak particle transport causes the friction Reynolds number to increase
mildly to a value of Reτ ≈ 240, which is somewhat smaller than the values Reτ ≈ 250 attained in
cases DL250H2 and DL250H16 under otherwise similar conditions (i.e. values of D+ and D/H f , re-
spectively). Case DL500H2, in turn, features with θbed = 0.22 and D+ ≈ 18 the highest Shields and
particle Reynolds number of all considered simulations, respectively. The consequence is that Reτ and
c f increase by roughly 35% and about 80%, respectively, compared to both the values predicted by
the relation of Jones (1976) and the corresponding smooth-wall reference DNS at essentially matching
value of Reb of Sakai (2016).

The impact of sediment mobility on the overall friction coefficient becomes clear in the time evolution
of the instantaneous friction Reynolds number Rei

τ(t) provided in figure 7.12(b), which is recomputed
from the instantaneous driving pressure gradient Π(t). In both single-phase and stationary sediment
bed simulations, Rei

τ is essentially stationary exhibiting merely small-amplitude oscillations around a
long-time mean. In the mobile sediment bed cases, on the other hand, Rei

τ increases starting from the
release of the particles at t = 0 at more or less the same rate as the particle flux discussed in figure 7.5.
In the low Reynolds number mobile sediment cases, the growth of Rei

τ is rather gradually. On the
contrary, in the higher Reynolds number case DL500H2 its value rapidly increases within a few bulk
time units to a quasi-stationary plateau of Rei

τ ≈ 510, in line with the strong initial increase of the
particle flux 〈qp,x〉xz in the same time interval. The fact that Rei

τ increases predominantly in the first
five to ten bulk time units of simulation DL500H2 underlines that the increase in bed friction is mainly
due to the mobilised sediment grains, since the evolving sediment ridges are not yet developed in this
phase and can be thus considered to have little effect on the bed friction.
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Figure 7.13: Wall-normal profiles of the mean normal Reynolds stresses u f i,rms
+l = (〈u′

f iu
′
f i〉

1/2
xt )+l (i = 1, 2, 3) at different

lateral positions, scaled in local inner units: u f ,rms ( ), v f ,rms ( ) and w f ,rms (· · ·). The coloured profile is that
extracted along the duct bisector z = Lz/2, while the wall-normal profiles at the remaining spanwise positions
are shown as light grey lines in behind. For the sake of clarity, profiles are shown in spanwise intervals of 0.05H f

(0.15H f for DL250H16, DL150H16
smooth) for each component only below the corner bisectors ỹ = z and ỹ = Lz − z,

respectively. In those panels that contain data from particle-laden simulations, the turbulence intensities of the
corresponding smooth-wall reference simulation are repeated for the sake of comparison (solid/dashed/dotted
black lines). Cases: (a) DL200H2

smooth, (b) DL400H2
smooth, (c) DL240H2, (d) DL250H2, (e) DL500H2 and (f ) DL250H16.

In panels (b,e), the vertical blue dashed lines additionally indicate the wall-normal position of the velocity dip
normalised in local inner units, (Ly − d)+l .
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7.2 Sediment ridge formation in the presence of lateral sidewalls

In a similar way as the mean flow field, the Reynolds stress fields reveal a clear variation along the
lateral direction. Wall-normal profiles of the streamwise, wall-normal and spanwise turbulence inten-
sities are provided in figure 7.13, scaled in local inner units. The local inner scaling cannot compensate
for the whole lateral heterogeneity of the turbulence intensities, but it still leads to a better match than
a normalisation in global inner units (figures omitted). The presented profiles reveal a qualitatively
similar shape as their counterparts in canonical open channel flows: In both narrow smooth-wall open
duct cases (cf. figures 7.13(a,b)), u+l

f ,rms exhibits the characteristic energetic peak at around ỹ+l = 15 that
is related to the intense buffer layer streaks (Smits et al., 2011; Lee and Moser, 2015) and then decays to-
wards the free surface. Of interest is the development of a local minimum of u+l

f ,rms near the free surface
that turns out to occur roughly at the same position as the maximum velocity along the duct bisector,
i.e. it essentially collapses with the velocity dip (Nezu and Nakagawa, 1993). From the three compo-
nents, the individual profiles of w+l

f ,rms appear, as one might expect, to vary most strongly along the
lateral direction. From those profiles that more or less collapse with the profile along the duct bisector,
most reveal a maximum at approximately ỹ+l ∈ [30, 50], again comparable to the values observed for
a large range of Reynolds numbers in canonical wall-bounded flows (Lee and Moser, 2015). For v+l

f ,rms,
eventually, the profiles reveal a relatively weak variation between the different spanwise locations. In
contrast to the remaining components, the wall-normal location at which the profiles of v+l

f ,rms attain
their maxima seems to move outwards when the Reynolds number is increased, also this having been
observed for canonical wall-bounded flows in a similar way (Lee and Moser, 2015).

In the particle-laden cases (cf. figures 7.13(c-f )), the general shape of the intensity profiles discussed in
the smooth-wall reference cases is maintained, even though with some remarkable differences: Sim-
ilar to the open channel cases, it is seen that with increasing intensity of the sediment transport, the
peak of the streamwise component u+l

f ,rms is more and more damped, while its position is shifted to
regions further away from the bed. Nonetheless, the peak is even in the highest Reynolds number
case DL500H2 clearly detectable, indicating that the self-sustaining buffer layer regeneration cycle is
not completely destroyed, as it was the case in the open channel simulation CM850H3. Case DL240H2,
on the other hand, shows the weakest deviation from the smooth-wall reference case concerning both
the general shape of the profile and the amplitude of the near-bed peak. This indicates that also the
fluctuating velocity field is rather weakly affected by the relatively low sediment transport rate. For the
wall-normal and transverse fluctuations v+l

f ,rms and w+l

f ,rms, respectively, the profiles in the particle-laden
cases similarly attain peak values at larger distances to the (virtual) wall compared to the smooth-wall
reference data. There is, however, no clear trend concerning the amplitude of these maxima: While the
peak values of v+l

f ,rms and w+l

f ,rms are in case DL500H2 comparable to those in the corresponding smooth-
wall case, the maxima in the low Reynolds number simulations DL240H2 and DL250H2 are somewhat
higher than in the corresponding smooth-wall case DL200H2

smooth. Finally, figure 7.13(f ) shows the tur-
bulence intensity profiles in the high aspect ratio cases DL250H16 and DL150H16

smooth, respectively, which
feature essentially the same general characteristics as their low aspect ratio counterparts. In sufficient
distance to the sidewalls, however, the statistics are expected to closely resemble those in an open chan-
nel, which is confirmed by the presented data.

In contrast to the spanwise statistically homogeneous open channel, the bottom wall shear stress in
open duct flows varies considerably along the duct span. Figure 7.14 provides the lateral wall shear
stress distribution along the bottom wall and the sediment bed, respectively, for low and high aspect
ratio cases separately. While the total wall shear stress along the bottom wall of the smooth-wall duct
cases is given by the viscous stress component 〈τtot〉xt(y = 0, z) = ρ f ν f ∂〈u f 〉xt/∂y alone, the mean
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Figure 7.14: Lateral variation of the bottom wall/bed shear stress distribution 〈τtot〉xt(〈hb〉xt(z), z)/〈τtot〉xzt as a function of
the lateral distance to the duct bisector (z − Lz/2) scaled in (a,c) outer and (b,d) inner length scales. (a,b) Low
aspect ratio cases AR ≈ 1: DS250H2 ( ), DL240H2 ( ), DL250H2 ( ), DL500H2 ( ), DL200H2

smooth ( ) and
DL400H2

smooth ( ). (c,d) High aspect ratio cases AR ≈ 8: DL250H16 ( ), DL150H16
smooth ( ). All particle-laden

datasets have been smoothed with a moving average filter using a filter width of 1.5D.

shear stress along the sediment bed in the particle-laden cases comprises in general three contributions:
viscous and turbulent terms as well as stresses arising from particle-fluid interaction. The general
definition of the total shear stress then reads

〈τtot〉xt(y, z) = ρ f ν f

∂〈u f 〉xt

∂y
− ρ f 〈u′

f v′f 〉xt +
∫ Ly

y
〈 fx〉xt(s, z)ds. (7.11)

Equation (7.11) represents the equivalent of relation (6.39) in the open channel configuration. The main
difference between both formulations is that in the open duct case, the second term on the RHS of equa-
tion (7.11) comprises all turbulence-related contributions, while in the open channel case two different
terms (turbulent and dispersive stresses) appear in this context due to the different decomposition of
the velocity field into mean and fluctuating parts in the latter case.

The smooth-wall low aspect ratio cases provided in figure 7.14(a,b) show a nearly symmetric wall shear
stress profile, featuring a distinct local maximum and a neighbouring local minimum near both side-
walls, which are indicative of the preferential positions of the first high- and low-speed buffer layer
streaks near the two sidewalls, respectively (Pinelli et al., 2010). The buffer layer streaks are more or
less locked in a distance of roughly 50δν (high-speed streaks) and 100δν-125δν (low-speed streaks) from
the sidewalls due to the geometrical constraints in the solid-solid corner (Sakai, 2016). With increasing
Reynolds number and thus increasing relative width L+

z of the duct, the duct can accommodate a larger
number of individual buffer layer streaks in the cross-section and those in the centre are not subject
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7.2 Sediment ridge formation in the presence of lateral sidewalls

to the geometrical restrictions felt by their counterparts near the sidewalls. The consequence is that
in the duct centre, high- and low-speed streaks can appear at any position with the same probability
and contributions of both types effectively cancel in the long-time average, such that the profile clearly
flattens for increasing Reynolds numbers in regions away from the sidewalls (Pinelli et al., 2010; Sakai,
2016).

This peculiar structure of the mean wall shear stress is only partly visible in the particle-laden cases,
even though the general profile shape and the maximum amplitude compared to the transverse mean
are quite comparable. In case DS250H2, for instance, the wall shear stress does not attain any local
extrema near the sidewalls but shows an essentially monotonic increase from the sidewalls towards
the duct centre, whereas case DL500H2 develops at least in the vicinity of the sidewall at z = Lz a local
maximum and minimum. However, these local extrema are located at a distance of approximately 80δν

(0.16H f ) and 145δν (0.30H f ) to the sidewall, respectively, and are thus somewhat further away from
the sidewalls than what is seen and expected in the smooth-wall situation. In this regard, it appears
noteworthy that the local minimum 145δν (0.30H f ) away from the sidewall essentially collapses with
the location of the highest sediment ridge in that case, explaining the low erosion activity in this region
that favours the formation of a sediment ridge. The remaining cases DL240H2 and DL250H2 possess
no pronounced local extrema near the sidewalls either, but in both cases a narrow plateau-like region
can be identified close to the sidewall at z = 0.

One way to interpret the absence of clearly developed shear stress peaks close to the sidewalls of the
particle-laden cases is that the regular organisation of the buffer layer streaks and vortices in these
regions is somewhat disturbed by the active sediment transport into the corner regions, such that their
signature in the mean shear stress profile is weakened or even lost. In section 7.3.3, it will indeed be
shown that the individual quasi-streamwise vortices arrange differently in the vicinity of the mobile
sediment beds in the corner regions compared to the smooth-wall case.

The corresponding large aspect ratio simulations are shown in figure 7.14(c,d). In this context, let us
highlight that in terms of the buffer layer structures, an increase of the duct width Lz/H f has a similar
effect as an increase of the Reynolds number Reτ, as both lead to a rise of L+

z . Consequently, on average,
a larger number of individual buffer layer streaks fits into the cross-section of the duct, from which
those near the sidewalls are again more constrained in their lateral mobility than those in the duct
core and thus leave a visible footprint in the wall shear stress profile (Sakai, 2016). The shear stress
profile of case DL150H16

smooth hence shows distinct local maxima and minima only near both sidewalls,
as opposed to the central part of the duct which reveals a rather homogeneous distribution of the wall
shear stress. By contrast, case DL250H16 is characterised by a sinusoidal variation of the wall shear
stress throughout the entire cross-section, anti-correlated with the mean fluid-bed interface: regions of
higher (lower) shear stress match regions of sediment troughs (ridges). While a comparably alternating
shear stress is not observed in the long-time statistics of case DL150H16

smooth, though, the instantaneous
shear stress indeed exhibits similar lateral undulations (plots not shown). It is widely accepted that this
lateral variation of the instantaneous (or short-time averaged) bed shear stress is the main reason for the
evolution of sediment ridges and troughs in high aspect ratio ducts (Nezu, 2005), and the explanations
in the previous chapter 6 have underlined that such a lateral variation of the bed shear stress caused
by the presence of large-scale velocity streaks indeed leads to the formation of sediment ridges in the
open channel cases.
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Figure 7.15: (a,b) Lateral profile of the mean bed/bottom shear stress 〈τtot〉xt(〈hb〉xt(z), z)/〈τtot〉xzt as a function of (a) the
outer- and (b) inner-scaled lateral distance to the duct bisector (z− Lz/2) over the stationary flat sediment bed of
case DL220H2

f ix ( ) and the smooth wall of case DL200H2
smooth ( ). (c,d) Lateral profiles of the mean hydrodynamic

force components acting at the top of the sediment bed: (c) streamwise force component f H
x / fre f and (d) wall-

normal force component f H
y / fre f , with fre f = ρ f u2

τπ(D/2)2. The forces have been extracted at a wall-normal
offset of 0.5D above the mean fluid-bed interface Hb roughly at the top of the uppermost particle layer, while
〈τtot〉xt was evaluated at the mean interface positions 〈hb〉xt(z). All datasets have been smoothed with a moving
average filter using a filter width of 1.5D.

The role of the bed shear stress for the local erosion rate is best illustrated when comparing the lateral
variation of the former with that of the hydrodynamic forces acting on the surface particle layer of a
stationary sediment bed, shown in figure 7.15 exemplary for case DL220H2

f ix. Note that in contrast to
the mobile sediment case, the submerged particle weight FW is of no physical relevance in the case of
a stationary sediment bed. In the remainder, we therefore consider as a reference scale a pseudo-force
computed based on the mean wall shear stress and the projected particle area, i.e. fre f = ρ f u2

τπ(D/2)2,
that is effectively independent of the gravitational acceleration and the sediment density. Interestingly,
the distribution of the bed shear stress over the stationary sediment bed of case DL220H2

f ix collapses
quite well with the curve of the smooth wall duct case DL200H2

smooth at matching Reynolds number.
This indicates that the absence of the local extrema near the sidewalls in the mobile sediment cases
are indeed of physical nature, rather than being a statistical effect related to the rather short averaging
time window. The alternating zones of relatively higher and lower shear stress that mark the preferred
positions of high- and low-speed streaks over the sediment bed induce a similarly alternating pattern
of stronger and weaker hydrodynamic forces 〈 f H〉xt exerted on the stationary sediment bed, as seen in
figure 7.15(c,d) (cf. equation (6.21) for the definition of the Eulerian force field). Both hydrodynamic
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Figure 7.16: Mean secondary flow pattern (〈v f 〉xt, 〈w f 〉xt)
T/ub in open duct simulations with aspect ratio AR ≈ 1 shown

as vector plot together with isocontours of the secondary mean flow streamfunction 〈ψ〉xt/(ub H f ) for cases (a)
DL200H2

smooth, (b) DL220H2
f ix, (c) DS250H2, (d) DL250H2, (e) DL400H2

smooth and (f ) DL500H2. Clockwise (counter-
clockwise) secondary flow rotation is indicated by solid red (dashed blue) contours. Isocontours refer to values
of 〈ψ〉xt/(ub H f ) in the interval [−0.006, 0.006] with an increment of 0.006/10. The time-averaged fluid-bed in-
terface profile is indicated by the black solid curve.

drag and lift force components are, on average, acting in a destabilising way, that is, they aim at induc-
ing a combined downstream and upward motion of the particles. Assuming supercritical conditions
θbed > θc, it can be easily imagined that the lateral force undulations will lead to a laterally varying ero-
sion rate in the moment when particles are released, causing the evolution of initial ridges and troughs
in the regions of lowest and highest mean hydrodynamic forces, respectively.

7.2.4 Turbulent mean secondary flow and vorticity distribution

7.2.4.1 Low aspect ratio cases

In figure 7.9 which opened the previous section, we have seen that the general mean streamwise and
secondary flow pattern in the low aspect ratio duct cases is very similar over smooth walls, stationary
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Chapter 7 Coherent structures and sediment ridges in open duct flow

and mobile sediment beds. Despite this qualitative similarity, though, the mean flow of the particle-
laden cases quantitatively differs in several aspects from its counterpart in the smooth-wall reference
simulations, as we shall see in the following.

In figure 7.16, we compare the mean cross-flow field (〈v f 〉xt, 〈w f 〉xt)T whose intensity and orientation
are identifiable from a vector plot combined with a set of isocontours of the mean cross-flow stream-
function 〈ψ〉xt. All cases exhibit the three characteristic features of the secondary mean flow pattern,
that are, two inner vortices enclosed in the mixed corner between the free surface and the sidewalls
(Grega et al., 1995), two outer-scaling bottom vortices that span from the wall-wall/wall-bed corner
along the bottom wall/bed towards the duct mid-span and two large-scale mean outer vortices that
occupy the remaining area of the cross-section (Nezu and Nakagawa, 1993; Sakai, 2016).

As expected, the inner vortex in the mixed corner appears to be unaffected by the presence of a mobile
sediment bed and its diameter is seen to reduce with increasing Reynolds number in smooth-wall
and particle-laden duct simulations. Sakai (2016) explained this inner-scaling behaviour of the inner
vortices as the result of a vortex sorting process along the free surface based on the investigations of
Orlandi (1990) concerning the dynamics of two-dimensional vortices in the vicinity of no-slip and free-
slip boundaries. The proposed sorting mechanism basically states that instantaneous quasi-streamwise
vortices are generated at the sidewalls and, depending on their sense of rotation, either move towards
the duct centre forming a vortex dipole with their imaginary twin on the other side of the free surface
or remain in the mixed corner. Vortices of the latter kind for which the vortex dipole would induce
a motion towards the sidewall are stuck in the mixed corner and, thus, their preferential locations
become visible in the mean flow pattern.

In contrast to the inner vortices, the mean bottom vortices are of somewhat different shape for the
different flow configurations: In the stationary sediment bed case DL220H2

f ix, their size is only slightly
smaller than in the smooth-bottom wall case DL200H2

smooth at essentially unchanged intensity, which is
less surprising as the sediment beds considered here feature a relatively small D+ and are hence hy-
draulically smooth. The bottom vortices past mobile sediment beds are, on the other hand, of markedly
smaller transverse extent and are more confined to the respective wall-bed corners. As a consequence,
the distance between their centre of rotation and the closest sidewall is only (0.1-0.2)H f , whereas for
smooth-wall open duct cases values in a range of (0.3-0.4)H f are observed (Sakai, 2016). Interest-
ingly, the upflow region of the narrower mean bottom vortices, in which low-momentum fluid is trans-
ported away from the bed, collapses with the crests of the mean fluid-bed interface, suggesting that
particles are preferentially deposited in these regions of relatively lower streamwise velocity. In most
mobile sediment cases, the reduction of the bottom vortex size goes hand in hand with an expan-
sion of the outer vortex cell towards the bed in the duct centre. Moreover, it can be seen from the
spacing of the isocontours of 〈ψ〉xt that the gradient of the streamfunction is for the mobile sediment
cases in some regions substantially higher than in the smooth-wall reference simulations. Recalling
that (∂y〈ψ〉xt, ∂z〈ψ〉xt)T = (−〈w f 〉xt, 〈v f 〉xt)T, this indicates in turn that the cross-plane velocity com-
ponents in such regions are accordingly higher: 〈v f 〉xt/ub in the mean up- and downflow regions of
the outer vortex along the sidewalls and the duct-bisector, respectively, and 〈w f 〉xt/ub mainly along
the free surface.
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7.2 Sediment ridge formation in the presence of lateral sidewalls

The mean cross-flow streamfunction 〈ψ〉xt is directly related to the mean streamwise vorticity field
〈ω f ,x〉xt via the following Poisson equation subject to homogeneous Dirichlet boundary conditions,
viz. (Pinelli et al., 2010; Sakai, 2016)

{
∆⊥〈ψ〉xt = −〈ω f ,x〉xt in Ω⊥

〈ψ〉xt = 0 on ∂Ω⊥
, (7.12)

where Ω⊥ = [0, Ly]× [0, Lz] is the cross-sectional domain, ∂Ω⊥ is the boundary enclosing the domain
Ω⊥ and ∆⊥ = (∂2

y + ∂2
z) is the two-dimensional Laplacian acting only in the cross-plane. Relation (7.12)

can be interpreted in such a way that 〈ω f ,x〉xt is the local source term of the Poisson equation, while
〈ψ〉xt is of non-local character obtained by twofold integration of the streamwise vorticity such that
〈ψ〉xt depends on 〈ω f ,x〉xt in the entire domain Ω⊥. As pointed out by Pinelli et al. (2010), this inter-
pretation is conceptually similar to the non-local role of the pressure field in the Poisson equation (2.12)
that is obtained by applying the divergence operator to the Navier-Stokes equations. In both open and
closed duct flows, the non-locality of 〈ψ〉xt manifests itself in the fact that 〈ψ〉xt effectively scales in
outer units, whereas 〈ω f ,x〉xt scales in inner units (Pinelli et al., 2010; Sakai, 2016). The only exception
of this general behaviour is the afore discussed inner vortex in the mixed corners between free surface
and lateral sidewalls, for which 〈ψ〉xt shows a similar inner-scaling as 〈ω f ,x〉xt.

Similar to the mean secondary flow streamfunction 〈ψ〉xt, the overall distribution of 〈ω f ,x〉xt is qual-
itatively similar in all considered cases including those over a mobile sediment bed, as can be seen
in figure 7.17. As reported by Sakai (2016), the regions of intense vorticity in the lower left and right
quadrant of the duct tend towards the corners as the Reynolds number is increased for smooth-wall
and particle-laden cases likewise. Also, the relatively wide but thin regions of high streamwise vortic-
ity amplitude located below the free surface on either side of the duct bisector resemble each other in
both flow configurations.

Despite the generally similar structure of 〈ω f ,x〉xt in the upper half of the duct, the organisation of the
mean vorticity near the mobile sediment bed in figures 7.17(c,d,f ) differs from that over smooth bottom
walls (figures 7.17(a,e)) and stationary sediment beds (figure 7.17(b)): In the same way as the mean bot-
tom vortex associated with 〈ψ〉xt is seen to shrink in size for the mobile sediment cases (DS250H2,
DL250H2 and DL500H2), the corresponding patterns of 〈ω f ,x〉xt in figure 7.17(c,d,f ) reduce in size
and are more confined to the lower corners than their counterparts over smooth walls and stationary
sediment beds. Also, while the quasi-streamwise vortices in the smooth-wall cases DL200H2

smooth and
DL400H2

smooth induce mirror vortex regions along the no-slip bottom walls with finite values of 〈ω f ,x〉xt

along the latter due to the applied boundary conditions (Orlandi, 1990), this is not the case at the top
of a permeable sediment bed. In the latter case, velocity components and their gradients tend to zero
when approaching the porous sediment bed and so does 〈ω f ,x〉xt. Instead of the mirror vortex cells at
the solid walls, regions of intense vorticity arise that peak slightly above the bed and spread, in contrast
to the mirror vortex cells in the smooth wall ducts, only up to the first sediment ridge. Apparently, the
new ‘additional’ cells of strong vorticity in the vicinity of the sediment bed drive the remaining vorticity
regions out, such that these latter are more strongly inclined w.r.t. the xz-plane in the mobile particle
cases, as can be inferred when comparing figures 7.17(e,f ). In section 7.3.3 below, we will show that
the different structure of the mean streamwise vorticity field in the presence of a mobile sediment bed
is in fact caused by a different organisation of the individual quasi-streamwise vortices in these cases.
Eventually, it seems worth highlighting that the streamwise-minimal simulation DS250H2 recovers, in
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Figure 7.17: Mean streamwise vorticity 〈ω f ,x〉+xt = 〈ω f ,x〉xt/(uτ/δν) for cases (a) DL200H2
smooth, (b) DL220H2

f ix, (c) DS250H2,

(d) DL250H2, (e) DL400H2
smooth and (f ) DL500H2. For the sake of comparison, the intensity and orientation of the

mean secondary flow field (〈v f 〉xt, 〈w f 〉xt)
T/ub are shown as vector plot. Clockwise (counterclockwise) rotation

is indicated by solid red (dashed blue) contours, while the black solid curve marks the location of the time-
averaged fluid-bed interface profile. Isocontours refer to values of 〈ω f ,x〉+xt in the interval [−0.04, 0.04] with an
increment of 0.04/10.

spite of its severe spatial restrictions, fairly well the mean streamfunction and vorticity patterns ob-
served in case DL250H2 which features a six times longer domain, in accordance with our observations
concerning the mean flow 〈u f 〉xt in the previous section.

As we shall see in the following, the locally different structure of the secondary flow patterns in the
mobile sediment cases cause an enhancement of the global secondary flow amplitude. For convenience,
let us repeat in the following the definitions of the instantaneous and mean secondary flow intensity,
u⊥(t) (cf. equation (6.37)) and U⊥ (cf. equation (6.38)), respectively:

u⊥(t) =
[

1

Lz 〈h f 〉xz(t)

∫ Lz

0

∫ Ly

〈hb〉xz(t)

(
〈v f 〉2

x + 〈w f 〉2
x

)
dydz

]1/2

U⊥ =

[
1

Lz H f

∫ Lz

0

∫ Ly

Hb

E⊥ dydz

]1/2

.
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Figure 7.18: Intensity of the mean secondary flow field U⊥ in open duct cases with AR ≈ 1 scaled in (a) outer units as a func-
tion of Reb and (b) inner units as a function of Reτ . Symbols represent data from current open duct simulations
over fixed (◦) and mobile sediment beds (�), current smooth-wall open duct simulations (⊲) and smooth-wall
open duct data from Sakai (2016) (◮).

Here, we have introduced the mean kinetic energy of the secondary flow field as E⊥(y, z) = (〈v f 〉2
xt +

〈w f 〉2
xt). In figure 7.18, we first compare the mean secondary flow intensity U⊥ in the smooth-wall duct

simulations presented by Sakai (2016) with those of the current simulations. Therein, U⊥ is scaled in
both outer and inner units as a function of the corresponding Reynolds numbers Reb and Reτ, respec-
tively. The data points from Sakai (2016) indicate that the outer-scaled mean secondary flow intensity
U⊥/ub (cf. figure 7.18(a)) in smooth-wall open duct flows initially increases with the bulk Reynolds
number as long as the latter is of marginal to moderate size, whereas it is seen to settle at a plateau
of approximately 1.5% for Reb & 3500. The same quantity scaled in inner units U+

⊥ (cf. figure 7.18(b))
exhibits a quite similar trend, but it reaches a plateau-like level of approximately 0.25 only for the last
simulations of the series at the highest values of Reτ. This different behaviour is a consequence of the
fact that Reτ varies not exactly linearly with Reb, as can be seen from the implicit formula (7.9) of Jones
(1976) above.

For the sake of comparison, figure 7.18 contains in addition to the long-time statistics for the smooth-
wall cases DL200H2

smooth and DL400H2
smooth also the values computed for the rather short time intervals of

around 300 bulk time units that have been simulated in the current study at these parameter points. In
both cases, a very good agreement with the corresponding data from Sakai (2016) is concluded, even
though the latter statistics were collected over approximately 9000 and 4800 bulk time units, respec-
tively. The comparison indicates that even though very long averaging intervals are usually required to
obtain converged statistics fulfilling the statistical symmetries (Pinelli et al., 2010; Vinuesa et al., 2014a),
the mean secondary flow intensity seems to converge relatively fast to its long-time average. Note that
the influence of the averaging time interval and that of the spatial domain size on the convergence of
the statistics will be discussed in the context of figure 7.20 below.

In accordance with our earlier observations that the secondary flow field over the hydraulically smooth
stationary sediment bed of case DL220H2

f ix agrees fairly well with that in the respective smooth-wall
reference simulation DL200H2

smooth, it is seen here that also the mean secondary flow intensities U⊥/ub

differ only slightly between the two cases. Considering inner-scaling, U+
⊥ is somewhat lower than the

corresponding smooth-wall simulations. In the mobile sediment bed simulations, in turn, the outer-
scaled secondary flow intensities U⊥/ub are markedly higher than in the smooth-wall simulations at
comparable bulk Reynolds number, with DL500H2 attaining a value that is approximately 50% higher
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Chapter 7 Coherent structures and sediment ridges in open duct flow

than in the corresponding single-phase case. Interestingly, at least part of this pronounced deviation
can be compensated when scaling U⊥ in inner units, as the friction velocity uτ increases with growing
bed friction due to the sediment motion, whereas the bulk velocity does not depend on the specific
roughness configuration in the duct. Remarkable in this context is that the secondary flow intensity in
the low Shields number simulation DL240H2 is, depending of the applied scaling, only slightly lower
or even higher than the values observed in cases DS250H2 and DL250H2, respectively. This rather
surprising finding suggests that even the weak particle transport in the former case causes a non-
negligible increase of the secondary flow intensity.

Lastly, it should be stressed that the data points of cases DS250H2 and DL250H2 essentially collapse in
both scalings, irrespective of the fact that their streamwise domain extensions differ by factor six, fur-
ther supporting that the typical secondary flow pattern is correctly represented even in the streamwise
minimal simulations not only qualitatively, but also quantitatively. A very similar observation was re-
cently made by Xie et al. (2020), who studied the flow over laterally heterogeneous bottom roughness
by means of direct numerical simulations in streamwise minimal domains (Lx/δ ≈ 0.4, with δ denoting
the boundary layer thickness). The authors concluded that while the streamwise turbulent intensities
were stronger than in the spatially unconstrained reference experiments, the secondary currents in-
duced by the laterally heterogeneous bottom wall were accurately captured, which let them conjecture
that the characteristic secondary flow patterns over such bottom topography cannot depend on the
presence of individual long streamwise-elongated velocity structures which were naturally absent in
their streamwise minimal boxes.

While the time-averaged mean secondary flow seems to be well reproduced even in the streamwise-
minimal simulation concerning both general structure and amplitude, this does not hold for the instan-
taneous secondary flow intensity u⊥(t): As can be seen in figures 7.19(a,b), u⊥(t) is in case DS250H2

almost twice as high as in most of the remaining simulations that feature streamwise domain lengths
Lx > 10H f . For the longer domain simulations, variations are mainly observed between smooth-wall
and mobile sediment simulations (cf. figure 7.19(a)). A general trend here is that the latter attain, on
average, somewhat higher values of u⊥(t) than the former, even though also the smooth-wall simu-
lations intermittently attain peak values that are of comparable size as those reached in the mobile
sediment cases. As for the mean secondary flow intensity U⊥, we conclude that scaling u⊥(t) in uτ

compensates at least part of the deviations between smooth-wall and mobile sediment simulations (cf.
figure 7.19(b)).

Unfortunately, u⊥ as a global measure for the secondary flow intensity does not provide information
in which regions of the cross-section the secondary fluid motion is enhanced. To this end, we have
evaluated u⊥ for the near-bed/-wall region ỹ/H f ∈ [0, 0.2] (cf. figure 7.19(c,d)) and the outer flow
region ỹ/H f ∈ [0.2, 1] (cf. figure 7.19(e,f )) separately. The decomposition shows that, as expected, the
main contribution to the secondary flow intensity comes from the large-scale outer mean vortex cells,
while the secondary flow intensity in the region ỹ/H f ∈ [0, 0.2] is markedly weaker. This highlights the
fact that the pronounced deviations of u⊥ that have been detected in figure 7.19(a,b) do not originate
in the different secondary flow patterns in the near-bed/-wall region, but from the slight variations in
the outer flow.

In the context of figure 7.16, it was concluded that the gradients of the streamfunction 〈ψ〉xt associated
with the mean outer secondary vortices are stronger in the mobile particle simulations. Indeed, com-
paring the regions of intense secondary mean flow kinetic energy E⊥ for both smooth-wall and mobile
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Figure 7.19: Time evolution of the instantaneous secondary flow intensity u⊥(t) in open duct flow with AR ≈ 1 scaled in
(a,c,e) outer and (b,d,f ) inner units, respectively. In (a,b), u⊥(t) is determined by integrating the streamwise-
averaged transverse velocity components over the entire mean fluid height H f , as defined in equation (7.13). In
(c-f ), on the other hand, integration in the wall-normal direction is performed (c,d) over the near-bed/near-wall
region ỹ/H f ∈ [0, 0.2] and in (e,f ) over the outer region ỹ/H f ∈ [0.2, 1] only, respectively. Note that the black
curves in all panels represent the short domain simulation of case DL200H2

smooth with Lx = 4πH f .

sediment cases (plots omitted), it turns out that E⊥ is dominated for most wall-normal distances ỹ by
the strong upward motion 〈v f 〉xt > 0 along the two sidewalls that has been seen to be higher for the
mobile sediment simulations in figure 7.16. We therefore believe that the increase in both the instanta-
neous and mean secondary flow intensity in the mobile sediment cases is mainly due to an enhanced
vertical velocity at the two lateral sidewalls and a thus intensified outer mean vortex cell.

The reason for this stronger upflow close to the sidewalls over mobile sediment beds could not yet
entirely be clarified, but there exists some evidence from experiments that the outer mean secondary
vortex cell is intensified in corners enclosed by a rough bottom wall/sediment bed on one side and a
smooth sidewall on the other, while the bottom vortex weakens (Nezu and Nakagawa, 1993; Rodríguez
and García, 2008; Albayrak and Lemmin, 2011). Note that in contrast to the current study, these exper-
iments were performed over a fixed and hydraulically rough bottom, but we have seen earlier that the
mobile sediment in the here considered cases can lead to a significant increase in friction compared
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Figure 7.20: Cumulative mean of the secondary flow intensity U⊥,cum(t) in low aspect ratio open duct flows as a function of
the averaging time interval scaled in (a) outer and (b) inner units, respectively. The length of the time window
over which statistics are gathered is given in ‘effective time units’ ∆tav = (t − t0)(Lx/H f )/(Lx/H f )re f , with
t0 = 0 and (Lx/H f )re f = 2 for all considered cases, and is scaled in eddy turnover times. The insets show
the same quantity, but as a function of the standard non-weighted time measure (t − t0)/Tb, t0 = 0. Note that
the black curves represent again the time evolution of the short domain simulation of case DL200H2

smooth with
Lx = 4πH f .

to what would be expected based on their roughness height. In regard of the fact that the secondary
flow is essentially not enhanced over the stationary bed of case DL220H2

f ix for comparable averaging time
intervals, these considerations suggest that it is indeed the sediment mobility that makes the difference.

A second conceivable effect that could contribute to a further enhancement of the strength of the mean
outer vortex cell is also related to the mobility of the sediment bed: As was discussed in the context of
figure 7.10, the mobile sediment transported along the sediment bed reduces the streamwise velocity
in the vicinity of the bed, which leads to an increase of the mean shear in the outer regions required
to maintain the constant mass flow rate in the duct. It is not unlikely that the modification of the
primary mean flow towards an enhanced mass flow rate in the upper part of the channel results in an
intensification of the wall-normal velocity.

In the current discussion, though, we should keep in mind that the time-averaging interval in the
particle-laden cases is relatively short, compared with the single-phase data of Sakai (2016). In order
to assess the level of statistical convergence in the current simulations, we introduce in the following
an effective time averaging interval ∆tav = (t − t0)(Lx/H f )/(Lx/H f )re f with t0 = 0 that is addition-
ally weighted by the relative streamwise domain size, similar to approaches applied, for instance, by
Vinuesa et al. (2016) or Bauer et al. (2017). The advantage of considering ∆tav as measure for the obser-
vation time interval lies in the fact that it quantifies both the temporal and spatial ensemble size and
thus allows a more objective comparison of the statistics in the current simulations, which feature a
fairly wide range of domain sizes Lx ∈ [1.9H f , 8πH f ]. In this measure, a single ‘flow through’ time
interval for the longest domains with Lx = 8πH f is equivalent to more than 12 ‘flow through’ periods
in the shortest one for, apart from that, identical parameters. As a reference duct length, we choose
(Lx/H f )re f = 2 which approximately matches that of the shortest considered domains, such that for
case DS250H2, ∆tav is almost equivalent to the standard time scale. Note that the choice of the refer-
ence length is more or less arbitrary, and an alternative physically motivated value is (Lx/H f )re f = 6

(Vinuesa et al., 2016), which represents the streamwise length of the minimal log-layer unit reported
by Flores and Jiménez (2010) for a canonical closed channel.
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7.2 Sediment ridge formation in the presence of lateral sidewalls

In figure 7.20, we show the cumulative mean of the secondary flow intensity

U⊥,cum(t) =

[
1

Lz H f

∫ Lz

0

∫ Ly

Hb

〈〈v f 〉x〉2
[0,t] + 〈〈w f 〉x〉2

[0,t]dydz

]1/2

(7.14)

as a function of the newly introduced effective time-averaging interval ∆tav normalised in terms of
the eddy-turnover time H f /uτ and in classical time scales normalised in bulk time units. Note that
in the above definition, 〈 〉[0,t] indicates time averaging over the indicated time interval only, such that
the relations U⊥,cum(0) = u⊥(0) and U⊥,cum(Tobs) = U⊥ hold. Considering first the development of
U⊥,cum/ub in figure 7.20(a), it is seen that the smooth-wall and stationary bed simulations seem to con-
verge to values that correspond to the plateau-like region visible in figure 7.18(a) for bulk Reynolds
numbers Reb & 3500. As already seen in this latter figure, U⊥ is in the two smooth-wall simula-
tions DL200H2

smooth (Lx = 4πH f ) and DL400H2
smooth (Lx = 8πH f ) already very close to the correspond-

ing values that Sakai (2016) observed for much longer time-averaging intervals at the same parameter
point. Together with the observation that both curves in figure 7.20(a) settle at a more or less constant
level for times ∆tav > 50H f /uτ without further strong fluctuations, this implies that the statistical
quantities under consideration are good approximations of the fully-converged state. The stationary
bed case DL220H2

f ix, on the other hand, has not reached a comparable state yet, but extrapolating the
general trend, one might expect that it will attain a very similar value U⊥ even in a fully-converged
state.

The situation is somewhat different for the mobile sediment cases, for which the effective simulation
time is limited in the longer domains by the evolution of transverse bedforms, as explained earlier.
Here, it is mainly for case DS250H2 that a more or less converged state is identifiable, while the re-
maining cases could not be studied for sufficiently long time-intervals to observe an eventually quasi-
converged state. Rather, U⊥,cum is seen for cases DL250H2 and DL500H2 to increase even further with
growing averaging interval. Although it was not possible to reach a more or less converged state in
all simulations, it is noticeable that the general trend of all mobile sediment cases is not directed to-
wards the values in the smooth-wall reference simulations, but all seem to either settle or further grow,
supporting the assumption that the observed differences in the secondary flow field over smooth wall
and mobile sediment bed are of physical nature and would be visible also in time averages over much
longer ensemble series.

7.2.4.2 High aspect ratio cases

For open duct flows with aspect ratios much larger than unity, mean secondary currents of Prandtl’s
second kind remain restricted to the near-sidewall region, whereas the mean flow in the duct core is
essentially unidirectional (Tominaga et al., 1989; Sakai, 2016), as can be inferred from figure 7.21(a) that
shows the mean secondary flow streamfunction and the mean streamwise vorticity for the high aspect
ratio case DL150H16

smooth (Tobs = 8140Tb). Indeed, intense regions of 〈ψ〉xt and 〈ω f ,x〉xt are merely seen
up to a distance of 4H f from either sidewall, whereas both quantities attain negligible values in the
central region of the cross-section.

Instantaneously, on the other hand, we observe a substantial cross-stream motion in form of instanta-
neous depth-spanning streamwise rollers with a lateral width of (1-2)H f populating the entire cross-
section, accompanied by alternating regions of intense vorticity that span up to the free surface (cf.
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Figure 7.21: Mean secondary flow streamfunction 〈ψ〉xt/(ub H f ) and mean streamwise vorticity 〈ω f ,x〉+xt in open duct sim-
ulations with aspect ratio AR ≈ 8 for cases: (a,b) DL150H16

smooth, (c) DL210H16
f ix and (d) DL250H16. For each case,

the upper and lower figure show the mean secondary flow streamfunction and the mean streamwise vorticity,
respectively. Note that panels (a,b) show for case DL150H16

smooth (a) the long-time statistics and (b) the respective
quantities for a single randomly-chosen instantaneous flow field. Colour coding and isocontour values are cho-
sen identically to those in figures 7.16 and figures 7.17, respectively.

figure 7.21(b)). Such ‘instantaneous secondary currents’ (Nezu, 2005) have been observed in many
experiments (Nezu and Nakagawa, 1993; Onitsuka and Nezu, 2001) and represent most likely the foot-
print of large-scale streaks and Reynolds stress-carrying structures analogous to those found in open
channel and other canonical wall-bounded flows (Adrian and Marusic, 2012). Let us recall that in
the open channel flow cases discussed in chapter 6, these large-scale features caused the evolution of
mean secondary currents even in the case of single-phase smooth-wall channels, if time averaging in-
tervals of O(10Tb) were considered. The same phenomenon is visible in figure 7.21(c,d) for the high
aspect ratio sediment-laden open duct simulations: Owing to their long lifetime and a relatively weak
lateral mobility that both will be discussed in the subsequent section 7.2.5, the statistical footprint of
these large-scale structures in form of ‘instantaneous secondary currents’ remains detectable for time-
averaging intervals O(10Tb) even far away from the sidewalls.

Interestingly, the general structure of the secondary currents in the instantaneous and short-time aver-
aged fields is qualitatively similar over all considered bed configurations, that are, the smooth bottom
wall of case DL150H16

smooth, the stationary sediment bed of case DL210H16
f ix and the mobile sediment bed in
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Figure 7.22: Wall-normal averaged kinetic energy of the mean secondary flow field 〈E⊥〉y = 1/H f

∫ Ly

Hb

E⊥dy as a function of

the distance to the lateral sidewall (a) scaled in outer and (b) inner units. Note that only the left half of each case
is shown. The thick and thin solid grey lines refer to the temporal mean and the instantaneous value of 〈E⊥〉y for
case DL150H16

smooth, from which the latter has been computed for the field shown in figure 7.21(b). In both figures,
the horizontal dark red line marks the wall-normal and spanwise-averaged mean secondary flow kinetic energy
〈E⊥〉yz in the channel flow reference simulation CL250H3 and the dashed-dotted line indicates the exponential
decay as ∼ exp(−0.5z/H f ), proposed by Sakai (2016).

case DL250H16. In particular, it should be remarked that the latter two cases feature an identical initial
condition at t = 0, but while in the former case the sediment bed is kept stationary, the sediment in
case DL250H16 is allowed to move from this moment on. Despite the entirely different evolution of the
sediment bed in both simulations, the mean secondary currents seen in figure 7.21(c,d) possess very
similar shapes and lateral positions in both simulations. The latter observation strengthens our earlier
conclusions that large-scale structures of this kind in sufficient distance to the sediment bed are more
or less unaffected by the exact dynamics of the latter. In fact, we shall see in the subsequent section
that the opposite is true: As in the open channel case, the dynamics of the large-scale streaks dictate
the formation and organisation of individual sediment ridges and troughs outside the near-sidewall
regions.

Just as for the high- and low-speed streaks of the buffer layer, only those large-scale structures that
live in the neighbourhood of either of the two sidewalls remain visible in the long-time average, as
their spatial mobility is restricted by the lateral domain boundaries and new large-scale features will
always form at a very similar lateral position. In contrast to the near-sidewall structures, the large-scale
structures in the duct core are not bounded and thus may appear at every position in sufficient distance
to the sidewalls with the same probability. Consequently, the contributions from individual large-scale
streaks in the duct centre effectively cancel out if the averaging interval is sufficiently longer than the
lifetime of the individual features.

As a consequence, the mean secondary flow kinetic energy E⊥ averaged over the wall-normal direction
is seen in figure 7.22 to decay exponentially from the sidewall-region towards the duct centre for all
long-time averaged fields. For the low aspect ratio cases with AR ≈ 1, we observe that all simulations
feature a similar decay rate of the mean secondary flow energy from the sidewalls to the duct bisector.
However, the mobile sediment cases are seen to start from a higher value in the vicinity of the sidewalls,
which is in line with our earlier observation that the mean wall-normal velocity along the sidewalls
and thus E⊥ is enhanced in the mobile sediment bed cases compared to the single-phase smooth-wall
reference simulations.
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For larger aspect ratios, Sakai (2016) approximated the decay rate as ∼ exp(−0.5z/H f ), which is seen
to match quite well the evolution of E⊥ for his largest aspect ratio case DL150H16

smooth. For the sake of
comparison, the profile of the secondary flow kinetic energy in the instantaneous flow field previously
shown in figure 7.21(b) was added to figure 7.22. This latter reveals no such decay of E⊥, but main-
tains a constantly high level of kinetic energy from the sidewalls up to the duct bisector, highlighting
that instantaneously large-scale structures near and far from the lateral sidewalls carry a comparable
amount of secondary flow kinetic energy. This interpretation is further supported by the qualitatively
similar energy distribution in the stationary and mobile bed cases DL210H16

f ix and DL250H16, respec-
tively, which similarly lack an exponential decay when approaching the duct centre and which attain
values of comparable size throughout the entire span.

In this regard, it is interesting to note that the attained level of kinetic energy in these cases is of the same
order of magnitude as the mean secondary flow kinetic energy 〈E⊥〉yz in the open channel reference
case CL250H3, agreeing with our above argumentation that the secondary currents are in both cases
related to the same kind of large-scale coherent velocity structures.

7.2.5 Large-scale streak-ridge interaction

In the following, we aim to clarify how exactly these instantaneous large-scale coherent structures
interact with the sediment bed under the influence of lateral sidewalls, in particular in the light of the
top-down formation process that has been discovered in open channel flows in the previous chapter.

To do so, we first analyse the temporal evolution of the streamwise-averaged streamwise velocity fields
provided in figure 7.23 for single- and multiphase open duct simulations as well as for the open chan-
nel reference simulation CL250H3 at two different wall distances ỹ/H f = 0.2 and ỹ/H f = 0.5. In order
to visualise the lateral variation of the streamwise velocity profiles at each height, 〈u f 〉x is shown rel-
ative to a reference velocity ure f averaged over z ∈ [0.25H f , Lz − 0.25H f ] excluding only the regions
in the vicinity of the two sidewalls. The choice of this width is up to a certain point arbitrary, but the
visualisation appears not to be sensitive to small variations of it and the here chosen sidewall-offset
0.25H f appears to well quantify the sidewall boundary layer thickness at both heights, as can be seen
from the lateral velocity profiles previously shown in figure 7.8(b,d,f ).

That way visualised, the data in figure 7.23(f ) indicates that the cross-section of the high aspect ratio
case DL250H16 is sufficiently wide to host at ỹ/H f = 0.5 up to 8 individual large-scale high-speed
zones with the typical lateral spacing 1H f -2H f of large-scale streaks in canonical wall-bounded flows
(Jiménez, 2018). Comparing the positions of the high- and low-speed zones with those of the secondary
currents in the short-time averaged field in figure 7.21(d), it is seen that the secondary rolls are, as
expected, located roughly at the boundary between the high- and low-speed zones. The large-scale
secondary currents rotate in such a way that they sustain the large-scale velocity streaks, moving fluid
downwards inside the high-speed regions and upwards in the neighbouring low-speed zones. The
low aspect ratio of the remaining cases, on the other hand, does not allow to accommodate more than
a single large-scale high-speed zone that then fills the entire cross-section (cf. figures 7.23(a-d)). As
can be seen, the central high-speed regions in these cases exhibit a relatively weak lateral meandering
tendency in time due to the geometrical restrictions imposed by the domain boundaries.

The comparison underlines that, in a quite similar way as the number of buffer layer velocity streaks
that fit into a duct cross-section depends on L+

z , the amount of large-scale coherent structures that can
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Figure 7.23: Space-time plot of the streamwise-averaged fluctuations of the streamwise velocity component (〈u f 〉x − ure f )/uτ

extracted at ỹ/H f = 0.5 (a-f ) and ỹ/H f = 0.2 (g-l). Blue and red regions refer to streamwise-averaged low-
and high-speed regions, respectively. Cases (a,g) DL240H2, (b,h) DL250H2, (c,i) DL400H2

smooth, (d,j) DL500H2, (e,k)

CL250H3, (f,l) DL250H16. For open duct cases, ure f (y, t) = 1/(Lz − 2b)
∫ Lz−b

b
〈u f 〉xdz is the mean velocity in

the duct core (b = 0.25H f ). For the open channel case, we choose b = 0 such that ure f (y, t) = 〈u f 〉xz and
(〈u f 〉x − ure f ) = u′′

f .

be accommodated in a given cross–section is a function of the outer-scaled domain width or the aspect
ratio, as Lz/H f = 2AR. Recalling that the mean spacing between two large-scale structure of same
sign in canonical and open channel flows lies in a range 1H f -2H f (Flores and Jiménez, 2010; Smits et al.,
2011), the mean width of a single prototype large-scale streak can be estimated as roughly 0.5H f -1H f .
An idealised symmetric streak arrangement consisting of a single large-scale low-speed streak in the
duct core flanked by two large-scale high-speed streaks on either side would then feature a width of
1.5H f -3H f . Taking moreover into account that the first large-scale streak in case DL250H16 centres at
a distance of roughly 1H f from the sidewalls, the minimal duct width required to accommodate such
a three-streak state can be quantified as Lz,min ≈ 3H f -4H f , which is equivalent to an aspect ratio of
AR ≈ 1.5-2. Unfortunately, our database does not comprise simulations featuring an intermediate
aspect ratio AR & 2.5 to further test this assumption. However, observations of Nezu and Rodi (1985)
and Sakai (2016) that the velocity dip in the mean velocity field 〈u f 〉xt disappears for cross-sections with
AR & 2-2.5 might be a hint that around this critical aspect ratio, the cross-section is now sufficiently
wide to accommodate more than a single large-scale high-speed region, which are then less restricted
in their mobility by the lateral domain boundaries. Interestingly, even the more or less geometrically
unconstrained large-scale high- and low-speed regions in the centre of case DL250H16 do not reveal a
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Figure 7.24: Space-time plot of the streamwise-averaged fluctuations of the streamwise velocity component (〈u f 〉x − ure f )/uτ

at ỹ/H f = 0.5 (ure f as defined in figure 7.23) in high aspect ratio open duct simulations over (a) a stationary bed
in case DL210H16

f ix and (b) a mobile sediment bed in case DL250H16. Note that both simulations were started from
the same initial condition and are therefore identical at t = 0. Blue and red regions refer to streamwise-averaged
low- and high-speed regions, respectively.

pronounced meandering activity in time for the here considered intervals of O(10Tb) length. Let us
remind that the same phenomenon was also noticed for the equivalent features in the open channel
cases in domains of varying size and is seen here again for the open channel reference case CL250H3 in
figures 7.23(e).

In figure 7.24, we compare in this context the evolution of the large-scale high- and low-speed regions
at ỹ/H f = 0.5 in case DL250H16 with that in the companion simulation DL210H16

f ix , for which the sed-
iment was not released at t = 0 and instead kept stationary throughout the entire simulation. In this
context, it was already at the end of the previous section in figure 7.21 noticed that many of the mean
secondary currents are very similar over the stationary and the mobile sediment bed. Here, it can be
seen that also the development of the large-scale high- and low-speed regions is qualitatively simi-
lar: The five most dominant high-speed regions exhibit only weak lateral mobility and reside most of
the time interval at the same lateral mean position. During the first 20 bulk time units, moreover, the
streamwise-averaged velocity field is essentially identical in both cases, showing that the formation of
the initial sediment ridges has no particular influence on their organisation. Further progressing in
time, deviations between both cases generally increase, even though individual large-scale high-speed
zones such as the one located in the interval z/H f ∈ [6, 8] reveal even after 70Tb an astonishing similar-
ity in both cases – considering that the chaotic turbulent system is strongly perturbed by the mobilised
sediment and the friction is increased by about 20% compared to the flow over the stationary sediment
bed. We remark that these findings are in agreement with our observations in open channel flow and
further support the idea that the organisation of large-scale coherent structures in the bulk of the flow is
only weakly affected by changes of the lower domain boundary and the roughness of the latter (Flores
and Jiménez, 2006; Flores et al., 2007). Let us underline that the large-scale streaks in both simulations
possess – on account of their size and distance to the bed – a comparably long lifetime (Jiménez, 2013a,
2018), such that their signature in the time-averaged field disappears only slowly. In fact, a similar
space-time analysis combined with cumulative averaging of the flow field in case DL150H16

smooth (plots
not shown) implies that even for averaging intervals of several thousand bulk time units length, a weak
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but detectable up- and downward-motion is found throughout the entire cross-section, reminiscent of
the relatively inert large-scale velocity structures.

Having investigated the dynamics of the large-scale velocity structures, it remains to discuss how their
mutual organisation eventually affects the sediment erosion activity along the sediment bed. For open
channel flow, it was found that the regions of higher and weaker particle erosion correlate quite well
with the lateral positions of large-scale high- and low-speed streaks in the half height of the channel.
The same seems to hold in the core of wide ducts, whereas the situation in the narrow duct cases is
more difficult: When comparing the streamwise-averaged flow field at the two considered heights in
the low aspect ratio flows (top and bottom row of figure 7.23), it is clearly noticeable that the structures
at ỹ/H f = 0.2 are of smaller width than those in the outer region at ỹ/H f = 0.5. At the same time, on
account of their smaller size, the high- and low-speed regions extracted at ỹ/H f = 0.2 are less ‘stable’
than the large high-speed zones in the duct core at ỹ/H f = 0.5 and reveal intermittent reorganisation
phases, including splitting and merging events between different high- and low-speed zones. Also,
zones of relatively higher and lower velocity exhibit a much more vigorous tendency to meander in
time (in the sense that their lateral mean position changes continuously) compared with the large-
scale structures at ỹ/H f = 0.5. Remarkably, the different organisation of the streamwise velocity at
ỹ/H f = 0.2 is not an exclusive feature of duct flow over mobile sediment beds, but also the flow
over the stationary beds (plots not shown) and that in the smooth-wall case in figure 7.23(i) reveal
permanently changing zones of relatively lower and higher streamwise velocity in this distance to the
wall.

In this respect, the organisation of the streamwise velocity is qualitatively different in the doubly-
periodic open channel case CL250H3 and in the core of the wide open duct DL250H16 shown in fig-
ures 7.23(k) and (l), respectively. In both situations, the high- and low-speed regions at ỹ/H f = 0.2

feature a clearly larger width than those in the narrow duct cases, quite comparable to the correspond-
ing large-scale regions at ỹ/H f = 0.5 that appear at roughly the same lateral positions. This similar
arrangement suggests that the large-scale velocity streaks span in these regions over the entire depth
of the channel/duct in a similar way as it was seen in the previous chapter 6 for the open channel
simulations. At the relatively low Reynolds numbers considered in the current study, a full scale sep-
aration between inner- and outer-scaling structures is not yet developed. In particular for the cases at
Reb ≈ 3000, the low- and high-speed regions at ỹ/H f = 0.2 might thus be related to both the buffer and
outer layer at the same time. However, the typical width of the individual high- and low-speed zones
at ỹ/H f = 0.2 of case DL500H2 (cf. figure 7.23(j)) is with 200 to 400 wall units (equivalent to 0.4H f and
0.8H f ) higher than the width of ≈ 50δν usually reported for buffer layer streaks (Kline et al., 1967). It is
therefore assumed that the observed features do not scale in wall units and hence should be detectable
in similar form also at higher Reynolds numbers. In order to investigate the flow organisation in the
different distances to the bottom wall in more detail, simulations comparable to the here performed
ones, but at higher Reynolds numbers are essential and can be hopefully performed in the near future.

In order to eventually assess which flow structures are responsible for the formation and the evolu-
tion of the individual sediment ridges and troughs, we have collected in figure 7.25 the space-time
visualisations of several of the above discussed physical quantities including the sediment bed height
fluctuation h′′b (figure 7.25(a)), the streamwise and wall-normal components of the velocity field 〈u f 〉x

and 〈v f 〉x (figure 7.25(b,c)), respectively, as well as the streamwise particle flux 〈qp,x〉x (figure 7.25(d)).
The combined visualisation of these quantities reveals a strong correlation between the bed evolution,
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Figure 7.25: Space-time evolution of (a) the sediment-bed height fluctuation of the streamwise-averaged bed (identical to
figure 7.3(d)); (b) the streamwise-averaged streamwise velocity fluctuation (〈u f 〉x − ure f )

+ at ỹ/H f = 0.2
(left) and ỹ/H f = 0.5 (right) (identical to figure 7.23(d,j)); (c) the streamwise-averaged wall-normal velocity
〈v f 〉+x at ỹ/H f = 0.2; (d) the streamwise-averaged streamwise particle flux 〈qp,x〉x(z, t)/qx,rms with qx,rms(t) =

(〈〈qp,x〉x〈qp,x〉x〉z)1/2 (identical to figure 7.6(d)). Data is visualised exemplary for case DL500H2.

the particle flux and the streamwise velocity at ỹ/H f = 0.2 in a very similar way as it was observed for
the open channel flows before. For instance, it is seen that the trough in the duct centre is ‘carved’ into
the bed as a consequence of the strong high-velocity region that develops approximately 10 bulk time
units after the onset of sediment erosion. On its right, on the other hand, the streamwise velocity is
rather low such that sediment is predominantly deposited in this region, supporting the evolution of
a local sediment ridge. Comparing the positions of troughs and ridges with the profile of the stream-
wise velocity in a larger distance to the bed at ỹ/H f = 0.5, however, the correlation is visibly much
poorer, in contrast to the open channel case. This is insofar expected, as we have seen above that the
large-scale organisation of the velocity field itself strongly varies along the wall-normal direction in
the low aspect ratio ducts. Note that this marks an important difference to the open channel case and
generally to canonical flow configurations, where, in the absence of lateral sidewalls, the largest-scale
streaks spread from the centreline down to the bed maintaining an essentially constant width along
most of the wall-normal direction. As a consequence, these structures are capable of inducing regions
of increased bed shear stress and hence of stronger erosion that are of comparable size as their own
width (Hutchins and Marusic, 2007b). In the duct flow, by contrast, regions of preferred erosion and
deposition as well as the corresponding sediment troughs and ridges are seen to rather have the same
width and location as the smaller high- and low-speed regions that centre at ỹ/H f = 0.2.

Comparing figures 7.25(b) and 7.25(c) furthermore reveals that in most of the low-speed regions at
ỹ/H f = 0.2, fluid is preferentially moving away from the bed while the opposite is the case in regions
of higher streamwise velocity. In this context, it is particularly interesting that the zones of local up-
and downward motion in the vicinity of the lateral sidewalls show almost no lateral motion in the
considered time interval. As a consequence, they are visible in form of the up- and downward oriented
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Figure 7.26: P.d.f. of the lateral position of (a) local maxima and (b) minima of the streamwise velocity as well as (c) local
minima and (d) maxima of the wall-normal velocity at ỹ/H f = 0.2. The p.d.f. has been computed for wall-
parallel planes filtered using a 2D Gaussian filter with dimensions ∆x = 0.6H f and ∆z = 0.3H f , respectively.
The presented datasets have been normalised such that its integral over the entire width of the duct Lz is unity.
Data is shown for cases DL240H2 ( ), DL250H2 ( ) and DL500H2 ( ).

parts of the mean bottom vortex in the time-averaged secondary flow field, whereas the instantaneous
local up- and downflow regions in the duct centre are meandering more strongly in time such their
signature disappears in the time average. Important to pronounce is that the current observations
do not imply that the wall-normal velocity organises in streamwise-elongated structures with lengths
comparable to the domain length Lx. Rather, the here discussed streamwise-averaged regions of local
up- and downflow represent the preferential locations of the usually much shorter instantaneous wall-
normal velocity structures (Jiménez, 2018) in the cross-section – just as the corresponding regions of
locally higher and lower streamwise velocity indicate the preferential positions of streamwise velocity
streaks, as will be discussed in the following.

To this end, figure 7.26 shows the p.d.f. of the preferential location of local minima and maxima of
the streamwise and wall-normal velocity in a distance of ỹ/H f = 0.2 from the mean bed height in the
particle-laden narrow duct simulations. In order to remove small-scale fluctuations, the investigated
xz-planes of the instantaneous velocity fields were first filtered using the two-dimensional version of
the Gaussian filter introduced in equation (6.26). In order to maintain the divergence-freedom of the
field, we treat the periodic boundary conditions as before, but mirror the flow field at the two solid
sidewalls while this time reversing the sign of w f in analogy to the treatment of the bottom no-slip
wall proposed by Lozano-Durán et al. (2016). Thereafter, the lateral positions of the local extrema of
both velocity components were determined for each streamwise location and all instantaneous flow
field realisations.

197



Chapter 7 Coherent structures and sediment ridges in open duct flow

The streamwise velocity profile is seen to typically attain a first maximum at a lateral distance of about
0.25H f from either sidewall, a region that is at the same time most probably characterised by a marked
downward fluid motion (cf. figure 7.26(a,c)). The p.d.f. of the preferential location of local streamwise
velocity minima reveals less pronounced peaks, but still indicates a preferential location of regions
with relatively lower streamwise velocity at a spanwise distance of approximately 0.5H f from the clos-
est sidewall. Roughly at the same location, the probability for an upward fluid motion is strongest,
while that for a local minimum of the wall-normal velocity is lowest (cf. figure 7.26(b-d)). The latter
zones mark the upflow regions of the mean secondary bottom vortices and are, due to the relatively
lower streamwise velocity, regions of weaker sediment erosion, such that sediment ridges predomi-
nantly evolve in this part of the cross-section, as seen earlier in figure 7.16. In this context, it appears
noteworthy that the curves of the different p.d.f.s more or less collapse for all three simulations despite
the differing Reynolds number which is in case DL500H2 with Reτ = 515 roughly twice as high as in the
remaining simulations, suggesting that the positions of low- and high-speed regions in this distance
to the bottom wall scale indeed in outer rather than in inner units, as claimed earlier. For the sake of
completeness, let us furthermore remark that v f typically attains the strongest maxima in the direct
vicinity of the sidewalls, which leads in the time average to a mean upflow in the mean secondary flow
field along the lateral domain boundaries. In the context of the Gaussian filtering, these near-sidewall
peaks are filtered out such that their footprint is not visible in the p.d.f.s shown in figure 7.26. For the
current problem of the interaction between the near-bed flow structures and the individual sediment
ridges, however, these near-sidewall motions are of no direct relevance such that their absence in the
filtered fields does not affect our general conclusions.

The strong correlation between the bed evolution and the organisation of the flow field even though at
a lower wall-normal distance strongly suggests that the interaction of the turbulent flow with the bed
is a comparable top-down mechanism as the one we have discovered in the context of the open channel
case (cf. section 6.4). For the open channel case CM850H3, the time lag between the bed evolution and
the flow organisation at the channel centreline at ỹ/H f = 0.5 was seen to be about 10 bulk time units.
Assuming that in the current open duct case DL500H2 the speed of information propagation along the
wall-normal direction is similar to the former case, one might expect a time-lag between the dynamics
of the flow structures at ỹ/H f = 0.2 and that of the sediment bedforms of less than 5 bulk time units.
In general, this relatively short time lag is hardly visible in the data, but there are few distinct instances
which imply that a similar mechanism as in the open channel simulations also drives the evolution
of sediment ridges in open ducts: For instance, we observe in figure 7.25 the development of a small
sediment ridge in the right half of the cross-section left of the higher dominant ridge at approximately
t = 45Tb (cf. figure 7.25(a)), where the streamwise velocity is seen to be relatively low such that sedi-
ment preferentially agglomerates in this region (cf. figure 7.25(b)). However, the streamwise velocity in
this region has reduced already a few bulk time units before at approximately t = 41Tb, but the trough
is only slowly filled up with sediment such that the small sediment ridge develops with a small delay
to the reduction of the fluid velocity.

In the previous chapter, the time lag and thus the causality between flow dynamics and bedform evo-
lution could be unambiguously shown by evaluation of the two-point two-time cross-correlation func-
tion ρt

ua(y, δt), as defined in equation (6.34). In the context of the open duct simulations, on the other
hand, the definition in its original form does not represent an appropriate measure as in the vicinity of
both sidewalls, the streamwise-averaged profiles of the sediment bed contour and that of the velocity
are necessarily uncorrelated: The velocity at each height is subject to the no-slip boundary conditions,
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Figure 7.27: Two-point cross-time correlations−ρt
uhb

(y, δt, b) between (〈u f 〉x(y, z, t+ δt)− ure f (y, t+ δt, b)) and the sediment

bed height fluctuations h′′b (z, t) in case DL500H2 computed over different lateral subintervals [b, Lz − b] of the
duct span and for different wall-normal positions ỹ/H f : (a) b/H f = 0, (b) b/H f = 0.10, (c) b/H f = 0.25
and (d) b/H f = 0.50. For each line, the horizontal distance between each two square symbols indicates the
time intervals in which consecutive flow fields have been stored for the present analysis. Filled squares mark
the time separation at which the maximum correlation is reached for the respective wall-normal location. The
colouring indicates the wall-normal location: y+ = 10 ( ), y+ = 30 ( ), y/H f = 0.2 ( ), y/H f = 0.3 ( ) and
y/H f = 0.5 ( ).

whilst h′′b does in general not vanish at the sidewalls. The easiest solution therefore is to restrict the
analysis, as before, to the duct centre excluding some region of width b next to the two sidewalls. An
accordingly modified version of equation (6.34) for the two-point two-time cross-correlation function
then reads

ρt
ua(y, δt, b) =

〈(〈u f 〉x(y, z, t + δt)− ure f (y, t + δt, b)) a′′(z, t)〉[b,Lz−b]t[
〈(〈u f 〉x(y, z, t + δt)− ure f (y, t + δt, b))2〉[b,Lz−b]t 〈(a′′(z, t))2〉[b,Lz−b]t

]1/2
, (7.15)

where 〈•〉[b,Lz−b]t indicates temporal and spanwise averaging over the interval z ∈ [b, Lz − b] only. The
duct core reference velocity ure f is defined as in figure 7.23, viz.

ure f (y, t, b) = 〈〈u f 〉x(y, z, t)〉[b,Lz−b] =
1

Lz − 2b

∫ Lz−b

b
〈u f 〉x(y, z, t)dz. (7.16)

Since the choice of the parameter b is, as stated above, more or less arbitrary, we show in figures 7.27(a-
d) the two-point two-time cross-correlation function between the sediment bed evolution and that of
the flow field, −ρt

uhb
(y, δt, b), in case DL500H2 for different values of b ∈ {0, 0.1, 0.25, 0.5} in order to

assess the sensitivity of ρt
uhb

to changes of b. Note that for the first two values of b, both sediment ridges
and the trough in their middle are included in the analysis, whereas for a parameter value b = 0.5, ρt

uhb

basically describes the correlation between the temporal evolution of the trough and the flow field in
the duct core above it.
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As expected, the exact amplitude of ρt
uhb

clearly depends on the chosen spatial averaging interval
[b, Lz − b] due to the inhomogeneity of the flow field in the lateral direction. Of higher interest is
for us, however, that the peak of the correlation function continuously shifts towards earlier times (i.e.
negative values of δt) when moving away from the sediment bed for all considered parameter values
b. Indeed, this confirms our observations in figure 7.25 and the associated conjecture that quite similar
to the ‘top-down formation mechanism’ seen to act in open channel flows, sediment ridge formation
is also in open duct flows controlled by the dynamics of the turbulent flow, not vice versa.

Interestingly, a qualitative difference is seen between the correlation profiles at wall-normal locations
ỹ/H f ≤ 0.3 and those at the duct half height ỹ/H f = 0.5: In fact, ρt

uhb
features only for locations in the

lower half of the duct ỹ/H f ≤ 0.3 a pronounced peak that is indicative of a clear causal relation between
velocity field and sediment ridge organisation. For ỹ/H f = 0.5, as opposed to the former, the correla-
tion profile features much weaker peaks and a slow decay with increasing values δt. This agrees well
with our earlier observations that the typical width of individual velocity structures varies across the
wall-normal direction of the duct and that the smaller scales closer to the bed control where sediment
is predominantly eroded and deposited. One sign for an, even though weak, causal relation between
the flow in the duct centre and the sediment bed evolution might be seen in figure 7.25(d), where ρt

uhb

is determined only over the duct centre [0.5H f , Lz − 0.5H f ] and thus, for ỹ/H f = 0.5, basically indi-
cates how the lateral position of the global maximum of the outer velocity profile is correlated to the
minimum of the central sediment trough. For this particular relation, we obtain a time lag of about ten
bulk time units quite similar to the corresponding values observed in the open channel case CM850H3

in section 6.3.6. Let us finally mention that the correlations in the remaining considered duct flows
reveal qualitatively similar characteristics, whilst the open channel reference case CL250H3 features –
as expected – a relatively high correlation between the sediment ridge patterns and the organisation of
the turbulent flow field even at ỹ/H f = 0.5, attaining a peak at a negative time lag of around ten bulk
time units, quite similar to case CM850H3.

7.3 Organisation of coherent structures in open duct flows

The close correlation between the evolution of individual sediment ridges and the dynamics of the flow
field motivates a more detailed investigation of individual coherent structures and their preferential
organisation. In the previous chapter 6, we have studied the interplay between individual large-scale
velocity streaks and evolving sediment ridges in the absence of lateral sidewalls. As strongly suggested
by the results reported in the previous sections, the large-scale velocity structures in the core of large-
aspect ratio ducts closely resemble those in laterally periodic channels, and so does the sediment bed
formation process. In open ducts of low aspect ratio, on the other hand, coherent structures everywhere
in the domain ‘feel’ the presence of the lateral sidewalls and a substantially different flow develops. In
the following, we therefore restrict ourselves to the investigation of coherent structures in low aspect
ratio open duct flows over both smooth bottom walls and mobile sediment beds.

While the dynamics of individual coherent structures in canonical flows have attained much attention
during the last decades (Robinson, 1991; Adrian, 2007; Jiménez, 2018), the number of studies that focus
on the same structures in ducts of non-circular cross-section is significantly smaller. For closed square
duct flows, Uhlmann et al. (2007) and Pinelli et al. (2010) were the first to systematically investigate the
role of instantaneous coherent structures for the peculiar pattern of the time-averaged turbulent mean

200



7.3 Organisation of coherent structures in open duct flows

0 1 2
0

0.5

1

z/Hf

ỹ
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Figure 7.28: Conceptual sketch of streaks and vortices in different locations of the cross-section that contribute to the mean
flow and/or the fluctuating field. Idealised clockwise (counterclockwise) rotating vortices are indicated by red
(light blue) arrows, while red (light blue) circles indicate high-speed (low-speed) streaks. Structures that are
constrained in their position by the domain boundaries and thus contribute to the long-time average are shown
in the respective colours. Grey and dashed objects are not restricted by the domain boundaries and are therefore
free to meander and to form at different lateral positions (indicated by the black double-arrow). They will not
contribute to the mean flow field and will instead appear only in the fluctuating fields u′

f and ω′
f ,x, respectively.

secondary flow. For open duct flow, in turn, the work of Sakai (2016) appears to be the first and only
one of its kind that focusses in detail on the importance of such structures. In both cases, i.e. open
and closed duct flows, the presence of lateral sidewalls breaks the statistical lateral homogeneity of
the flow such that the mean flow becomes a two-dimensional field 〈u f 〉xt(y, z), in contrast to the one-
dimensional mean flow profile in canonical channel or pipe flows. This has important implications for
the analysis of coherent structures which can contribute here to both the mean and the fluctuating field,
whereas in canonical flows coherent velocity structures are conventionally defined as subdomains in
which the fluctuating field u′

f (x, t) exceeds a given threshold (cf. also the discussion on the implications
of this conventional choice in section 5.4 of Jiménez, 2018).

As an example, let us consider the mean bottom wall shear stress in either closed or open duct flows
which has been discussed earlier in this chapter (cf. figure 7.14). As outlined by Pinelli et al. (2010),
the first local peaks of the wall shear stress refer to the preferential positions of the instantaneous high-
speed streaks that are closest to the duct corner. These features are strongly restricted in their mobility
and in their preferential location by the flanking sidewalls, such that they leave a marked imprint in the
mean flow field in form of the aforementioned wall shear stress peaks. Streaks further away from the
sidewalls (in terms of wall units) are not laterally bounded, and for time-averaging intervals sufficiently
longer than their lifetime, contributions from streaks of different signs effectively cancel out each other
in the statistical average. Consequently, these streaks can be considered as objects of the fluctuating
field exclusively. It might be worth noting that this effect is certainly not limited to the buffer layer
streaks, and indeed we have seen in figure 7.26 that local peaks of the streamwise velocity appear
at a preferential distance to the sidewalls also in larger distances to the bottom wall, whilst they are
essentially homogeneously distributed over the rest of the duct cross-section. A conceptual sketch of
features that contribute to the mean field and those that are contained in the fluctuating field only is
provided in figure 7.28.

In this context, let us pronounce that above considerations are under the assumption that the time-
averaging interval is sufficiently longer than the lifetime of the largest structures in the domain. While
this is more or less given for the smooth-wall duct reference simulations which feature observation
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Figure 7.29: Instantaneous wall-parallel planes of the streamwise and wall-normal velocity fluctuations in case DL400H2
smooth

at t = 99.4Tb in different distances to the bottom wall: (a) ỹ+ ≈ 15, (b) ỹ/H f = 0.2, (c) ỹ/H f = 0.5. Each panel
shows two different flow field visualisations, from which the upper one represents u′

f /uτ and the bottom one

v′f /uτ .

intervals of O(103Tb) length, the particle-laden simulations are studied over two orders of magnitude
shorter time intervals in virtue of the evolving transverse bedforms. As was discussed in the context
of figure 7.21, the consequence of the shorter time interval is that the statistical footprints of individual
large-scale velocity structures are still visible in the mean flow field even in the duct centre, whereas
such signatures are essentially invisible for the corresponding long-time single-phase duct simulations.
In the latter case, a large-scale velocity streak in the domain centre contributes only to the fluctuating
field. For the subsequently considered low aspect ratio open duct cases, however, the mean flow field
agrees quite well between short-time particle-laden and long-time smooth-wall simulations despite
the different investigated time intervals. The reason for this is most likely that the cross-sections of
these duct flows are too narrow to accommodate more than a single large-scale streak of dimensions
comparable with H f , as discussed earlier. These streaks are, in addition, strongly constrained in their
lateral mobility and, thus, they contribute considerably to both the mean flow and the fluctuating field.

In the following, we now focus exclusively on those contributions of the streaks that are contained
in the fluctuating velocity field. Figure 7.29 shows different horizontal xz-slices of the streamwise and
wall-normal fluctuating velocity field exemplary for case DL400H2

smooth, extracted from an instantaneous
state of the flow field at three different wall-normal positions ỹ/H f = 0.04 (ỹ+ = 15), ỹ/H f = 0.2

(ỹ+ = 83) and ỹ/H f = 0.5 (ỹ+ = 208), respectively. Even though the friction Reynolds number is
with Reτ = 416 still moderate, it is sufficiently high to allow a clear distinction between near-wall
buffer layer and outer-scaling large-scale coherent structures. Figure 7.29(a) shows the characteristic
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elements of the buffer layer comprising relatively smooth streamwise-elongated velocity streaks with
typical characteristic spacing O(100δν) and shorter quasi-streamwise vortices indicated by locally high
positive and negative wall-normal velocity amplitudes. While in most areas of rather low magnitude
due to the underlying impermeable bottom wall, v f attains locally higher values in particular in regions
where the streaks are seen to get disordered and vorticity gains in strength, as conventionally expected
in the bursting phase of the self-sustaining buffer layer cycle (Hamilton et al., 1995; Waleffe, 1997).
Similar to their counterparts in the smooth channel simulations discussed in section 6.3.5, the streaks
are not randomly distributed across the domain. Instead, they are seen to organise themselves in larger
clusters whose dimension are comparable to the size of the larger structures further away from the
wall. Indeed, it can be visually identified that the positions of these clusters correlate quite well with
the larger turbulent streaks found at ỹ/H f = 0.2 in figure 7.29(b), taking into account that the mean
speed of propagation varies with the mean shear along the wall-normal direction.

At ỹ/H f = 0.2, the streamwise velocity streaks reveal a ‘rougher’ shape and are of larger size reaching
lengths of several H f and widths up to 0.7H f (approximately 300δν), which suggests that these features
are fully-turbulent structures that are not part of the buffer layer anymore. Due to their larger size,
the cross-section of the duct can usually accommodate only between two and four streaks of either
sign. The corresponding wall-normal velocity structures are again of shorter streamwise extent such
that, typically, several individual structures of positive wall-normal velocity can be associated with
a single low-speed streak and vice versa for the high-speed streaks. In the near-sidewall region, both
streaks and structures of intense wall-normal velocity are inclined to the no-slip sidewalls and thus
also to the mean flow direction, just as individual coherent structures in canonical flows are inclined
to the bottom wall (Jiménez, 2018). Recalling that v′f attains in this context the role of the wall-parallel
velocity component (Huser and Biringen, 1993), the observed inclination angle agrees reasonably well
with values ≈ 35° found in two-point correlations of the spanwise velocity component of canonical
flows (cf. Sillero, 2014, and the subsequent section 7.3.1). Further increasing the distance to the bottom
wall, velocity structures are seen to further grow in size: At ỹ/H f = 0.5, i.e. half way between the
bottom wall and the free surface, streamwise velocity structures reach sizes comparable to the duct
width such that not more than one or two individual streaks fit into the cross-section, as is seen in
figure 7.29(c). The wall-normal velocity structures are similarly larger than their counterparts closer to
the wall and partly exhibit significant inclinations w.r.t. the mean flow direction, often larger than 45°.

7.3.1 Two-point velocity statistics

The seeming correlation between the locations of outer-scaling flow structures at ỹ/H f ≈ 0.2 and the
organisation of the smaller buffer layer streaks into larger clusters are in good agreement with our
observation in the sediment-laden flows, as it implies that the regions of strong and weak wall shear
stress and hence erosion activity are again controlled by larger outer-scaling structures from outside
the buffer layer.

With this in mind, we focus in the following on the preferential organisation of velocity structures
in this distance to the wall. In consequence of the two non-homogeneous spatial directions in open
and closed duct flows, an analysis of the lateral organisation of individual velocity streaks based on
premultiplied energy spectra as in the doubly-periodic channel is not possible. Instead, the method
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of choice is an analysis of the two-point correlation in physical space. To this end, we introduce the
two-point velocity covariances as (Townsend, 1976; Pope, 2000)

Ruiui
(δx, y, z, y̌, ž) = 〈u′

f i(x, y, z, t)u′
f i(x + δx, y̌, ž, t)〉t, i = 1, 2, 3 (7.17)

where (y̌, ž) is a reference point in the yz-plane and δx is the streamwise separation length. The cor-
responding two-point velocity correlations are then obtained by normalising Ruiui

with the respective
turbulence intensities u f i,rms, viz.

Cuiui
(δx, y, z, y̌, ž) =

Ruiui

u f i,rms(y, z)u f i,rms(y̌, ž)
, (7.18)

such that Cuiui
is unity at the reference point as, by definition,

Ruiui
(0, y̌, ž, y̌, ž) = u f i,rms(y̌, ž)u f i,rms(y̌, ž). (7.19)

As discussed in Jiménez (2018), the two-point velocity covariances and correlations are in general func-
tions in R6, but their dimension reduces by one for each homogeneous direction. In regard of the
streamwise periodicity of the here considered domain, the investigated velocity correlations in duct
flows are therefore five-dimensional objects. For a fixed reference point (y̌, ž) in the duct cross-section,
however, Cuiui

reduces to a three-dimensional field which can be visualised as done in figure 7.30(a),
exemplary for Cuu and (y̌, ž)=(0.2H f , Lz/2) in case DL400H2

smooth. Therein, red and blue surfaces refer to
manifolds of constant positive and negative streamwise correlation Cuu = ±0.1, respectively. The cor-
relation field features a region of high positive correlation around the reference point in the duct centre
with a maximum streamwise extent of about 5H f , flanked by two essentially symmetric negative lobes
with a somewhat shorter streamwise length. All three objects are quasi-parallel and aligned with the
streamwise direction, but are inclined to the bottom wall. In addition, it is noticed that the streamwise
dimension is not symmetric w.r.t. the reference point at δx = 0, but all three feature longer tails that
span further in negative δx-direction than their heads do in positive δx-direction.

The length of the positive lobe is best seen in figure 7.30(b), where a cut through Cuu along the stream-
wise direction is shown for cases DL400H2

smooth and DL500H2, respectively. Similar visualisations for
the remaining velocity components, supplemented with cross-sectional views of the respective cross-
correlations, follow in the remaining panels of figure 7.30. The isocontours of the different correlation
functions show a qualitatively good agreement between the smooth-wall and the particle-laden case,
even though the data in the latter case shows a stronger scatter and in particular the large positive
object in the centre of Cuu is clearly shorter than its counterpart in case DL400H2

smooth. It is assumed that
different effects contribute to this deviation: First, let us recall that the streamwise domain extension is
shorter by approximately factor two in the particle-laden case, which might affect the streamwise di-
mensions of the correlation objects. Second, the number of ensembles that underly the shown statistics
differs markedly: while for case DL400H2

smooth, 1200 individual fields are available over a time frame of
t = 286Tb, the observation time is in case DL500H2 with t = 50Tb significantly shorter and with only
40 individual flow realisations, the available data is rather limited. Eventually, in addition to the nu-
merical restrictions, the role of the mobile sediment bed is not entirely clear: While the investigations
throughout the previous and the present chapter have shown that the large-scale structures in some
distance to the bed seem to be rather unaffected by the presence of mobile particles in the near-bed
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Figure 7.30: Two-point auto-correlation function of the individual velocity components in the open duct simula-
tions DL400H2

smooth and DL500H2 with respect to the reference point (y̌, ž) = (0.2H f , Lz/2). (a) Three-dimensional
visualisation of Cuu(δx, y, y̌, (z − ž), ž), where red (blue) iso-surfaces represent manifolds of constant Cuu = 0.1
(Cuu = −0.1). (b,d,f ) Streamwise wall-normal xy- and (c,e,g) spanwise wall-normal yz-sections through Cuiui ,
with solid (red) contours indicating a positive correlation at Cuiui = {0.05, 0.1, 0.3, 0.5} and dashed (blue) con-
tours representing a negative correlation at Cuiui = {−0.1,−0.05}. Coloured and grey lines refer to the mobile
particle case DL500H2 and the smooth-wall reference case DL400H2

smooth, respectively. (b,c) Streamwise velocity
Cuu, (d,e) wall-normal velocity Cvv, (f,g) spanwise velocity Cww. The black dashed line in (f ) indicates an inclina-
tion angle of 30° w.r.t. the bottom wall.

region, it is not unlikely that they do contribute to a shortening of the correlation tails compared to the
smooth wall case near the bed, predominantly in negative δx-direction.

In contrast to the streamwise correlation function, those of the cross-stream velocity components are
more localised in the streamwise direction and do not spread over streamwise extents as long as the
objects associated with Cuu (cf. figures 7.30(d,f )). In particular for Cvv, we observe that a relevant cor-
relation is only given in a distance of ±0.5H f up- and downstream of the reference point, which is in
accordance with the fact that the instantaneous structures of intense wall-normal velocity seen in fig-
ure 7.29 are shorter than the streamwise velocity streaks. The spanwise correlation Cww, in turn, reveals
two smaller negative and a single tilted positive correlation object, from which the latter features the
strongest inclination w.r.t. the bottom wall of all velocity components. The angle between this positive
lobe and the bottom wall is slightly lower than 30° and thus very similar to values 30°-35° observed in
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canonical boundary layers (Sillero, 2014; Sillero et al., 2014) and closed channels (Jiménez, 2018). Gen-
erally, the discovered characteristic shapes of the two-point correlation objects exhibit an astonishing
qualitative similarity with those observed for canonical flows at significantly higher Reynolds num-
bers up to Reτ ≈ 2000 in the latter three studies, even though the streamwise correlation lengths are
markedly different for the three cases. The strikingly similar shape of the correlation objects in bound-
ary layer, closed channel and open duct flows supports the suggestion that not only the characteristic
buffer layer structures, but also the larger outer-scaling coherent motions in duct flows share many
similarities with those in canonical wall-bounded flows. A qualitative comparison with the datasets
of Sillero (2014), Sillero et al. (2014) and Jiménez (2018) as well as a discussion of the varying stream-
wise correlation lengths in the different flow configurations is out of the scope of the current work, but
would be worth performing in a follow-up study.

The cross-sectional cut through Cuu in figure 7.30(c) shows that the three main objects of the streamwise
velocity correlation are all between 0.4H f and 0.5H f wide and span merely over the lower half of the
duct cross-section. As such, they represent the largest objects for which more than a single representa-
tive fit into the cross-section of the duct, considering the typical aspect ratio of the streamwise velocity
streaks reported by Sillero (2014). In the sense of the attached-eddy model (Townsend, 1961; Jiménez,
2012), the extracted correlation objects might refer to the family of self-similar streamwise velocity
streaks attached to the bottom wall, that we will investigate in more detail in the following section.
Though, it has to be kept in mind that the considered correlations are mean statistics themselves and
thus have to interpreted accordingly. In particular, the shown organisation of three neighbouring ve-
locity patterns of alternating sign should not be expected to occur in this symmetric arrangement in
instantaneous flow fields. Nonetheless, the shown correlations suggest that individual structures of
the given size might significantly contribute to the full correlations.

In this context, it is especially interesting to compare the spanwise organisation of the correlation ob-
jects of the different velocity components with each other. Both canonical boundary layers and closed
channels feature a homogeneous transverse direction such that the two-point correlations do not de-
pend on the physical spanwise position, but they are functions of the spanwise separation length δz

only. As a consequence, the correlations shown for these two flow configurations have to be under-
stood w.r.t. an arbitrary spanwise position in physical space, which is not necessarily the same for
Cuu, Cvv and Cww. In these configurations, it is therefore hardly possible to comment on the relative
organisation of the different velocity components w.r.t. each other only based on the two-point statis-
tics. In the current case, on the other hand, all three correlation functions are extracted relative to a
single point of the cross-section in physical space, such that the only possible shift between the corre-
lations is in the homogeneous streamwise direction. Comparing the lateral positioning of the objects
of Cuu with that of the wall-normal counterparts associated with Cvv in figure 7.30(e), we remark that
the positive wall-normal velocity correlation object similarly features two smaller zone of negative cor-
relation on either side. Although the comparison of Cuu and Cvv neither provides information on the
sign of the velocity components nor does it ensure that intense events of the two velocity components
occur simultaneously (Jiménez, 2018), the results are most likely reflecting the conventionally observed
upward-directed fluid motion inside instantaneous low-speed streaks and the corresponding down-
flow in the high-speed streaks. In this regard, objects of Cvv and Cww in the respective locations are
assumed to form closed conditional rollers between the streaks, as similarly concluded for canonical
flows by Jiménez (2018).
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Figure 7.31: Spanwise wall-normal yz-section through the two-point auto-correlation function Cuiui of the individual ve-
locity components in the open duct simulations DL400H2

smooth and DL500H2 with respect to different reference
points: (a-c) (y̌, ž) = (0.2H f , Lz/2), (d-f ) (y̌, ž) = (0.2H f , Lz/4), (g-i) (y̌, ž) = (0.2H f , Lz/8) and (j-l) (y̌, ž) =
(0.2H f , Lz/16), respectively. Solid (red) contours indicate a positive correlation at Cuiui = {0.05, 0.1, 0.3, 0.5},
while dashed (blue) contours represent a negative correlation at Cuiui = {−0.1,−0.05}. (a,d,g,j) Streamwise ve-
locity Cuu, the grey contours in the background correspond to case DL400H2

smooth. Note that due to the slightly
different aspect ratio, the reference points do not exactly collapse. (b,e,h,k) Wall-normal velocity Cvv; (c,f,i,l) span-
wise velocity Cww.

In figure 7.31, the correlation functions Cuiui
are compared for different lateral reference positions

ž/Lz ∈ {1/16, 1/8, 1/4, 1/2} across the cross-section of case DL500H2 for a constant reference height
y̌/H f = 0.2. For the cross-stream velocity components, the two-point correlations exhibit essentially
no dependence on the spanwise position of the reference point. Even if this latter is chosen in the direct
vicinity of the wall as for ž = Lz/16 in figures 7.31(k,l), there is only a weak asymmetry visible. The
relatively weak influence of the spanwise location is most probably a consequence of the small size of
the v f - and w f -structures in this distance to the bottom wall. In fact, the structures essentially do not
feel the presence of the lateral sidewalls unless they are located in their direct vicinity, which indeed
corroborates our observations concerning the instantaneous field in figure 7.29.

The isocontours of the streamwise two-point correlations Cuu reveal in case DL500H2 again a rather
strong scatter as a consequence of the relatively low number of samples in the particle-laden cases. For
the sake of comparison, we therefore show Cuu in addition in the smooth-wall reference case DL400H2

smooth

(cf. figure 7.31(a,d,g,j)). In this context, one should note that the reference points cannot exactly col-
lapse for both simulations as their aspect ratios slightly differ. It is nevertheless identifiable that the
general shape and size of the positive correlation object changes little with the lateral variation of the
reference point. The characteristics of the neighbouring negative correlation cells, on the other hand,
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indeed depend on the spanwise position: If the positive lobe associated with the reference point is
located in sufficient distance to the sidewall, it is flanked by negative correlation objects on either side
which are essentially of same shape and size as the positive object itself. Choosing a reference point
closer to the wall, the correlation pattern becomes single-sided in the sense that there is not enough
space between the positive object and the sidewall to accommodate another streak of this size. While
the positive correlation object in the particle-laden case is always accompanied by at least one second
object of opposite sign no matter how close the reference point approaches the wall, this is not the case
in the smooth-wall simulation (cf. figure 7.31(j)). In the latter case, we generally observe a faster decay
of the two-point correlation in the spanwise direction, while for case DL500H2 Cuu is of non-trivial am-
plitude even in significant distance to the reference point, which is another indication that the statistics
in the latter case are less converged than those in the smooth-wall case.

7.3.2 Streamwise velocity streaks

The organisation of the two-point correlation functions implies that instantaneous streamwise velocity
streaks with a width of (0.4-0.5)H f are a key feature of the turbulent flow in the investigated wall-
parallel layer ỹ/H f = 0.2. However, two-point correlations themselves are mean flow statistics, such
that they represent the average organisation of the flow, but their meaningfulness concerning the in-
stantaneous structure of the turbulent flow field is limited. In the following, we will therefore extract
fully three-dimensional instantaneous streamwise velocity streaks from the individual flow fields and
study their preferential organisation in the duct cross-section depending on their size.

To do so, we make use of an extraction technique that was first used by Moisy and Jiménez (2004) to
detect regions of strong vorticity and dissipation in isotropic turbulence and by Del Álamo et al. (2006)
to identify self-similar vortex cluster in a turbulent closed channel flow. Ever since, it has been applied
to detect coherent structures associated with different physical quantities such as velocity fluctuations
or Reynolds stresses in a variety of turbulent shear flows, including channels (Lozano-Durán et al.,
2012; Bae and Lee, 2021), boundary layers (Sillero, 2014), free shear (Dong et al., 2017) and closed
duct flows (Atzori et al., 2021). The basic idea is to define an instantaneous structure as a connected
subdomain of Ω f , for which a physical quantity of interest a fulfils a given condition, for instance, that it
exceeds a given threshold. Here, connectivity is understood along the orthogonal lines of the Cartesian
computational grid, i.e. a given grid point that fulfils the condition is connected to a neighbouring
structure if at least one of its six orthogonal neighbours is an element of this structure.

Surely, the technique depends on the adopted threshold and a reasonable choice of the latter is crucial
to obtain physically meaningful results. In the extreme cases of a very low or high threshold, the tech-
nique can be assumed to detect either a single very large object as the condition is fulfilled essentially
everywhere in the domain or only few very small features, as the condition is fulfilled almost nowhere.
Of interest is therefore a threshold somewhere in between these two extremes, which is in most of the
above listed studies chosen based on the results of a ‘percolation analysis’ (Moisy and Jiménez, 2004),
in which the extraction of structures is performed repeatedly while slowly increasing the threshold.
An optimal choice of the threshold is then typically defined around what is called the ‘percolation cri-
sis’, a range of thresholds for which the ratio between the volume of the largest extracted structure and
the total extracted volume abruptly decreases, while the number of extracted structures is close to its
maximum. Needless to say, such percolation analyses are relatively expensive from a computational
point of view as a large amount of data has to be analysed again and again. That is why in most of
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7.3 Organisation of coherent structures in open duct flows

Figure 7.32: Visualisation of instantaneous streamwise high- and low-speed streaks in case DL500H2 (t/Tb = 23), as seen
from the top of the open duct. High- and low-speed streaks were detected as connected regions for which
u′

f
+(x, t) > 2 and u′

f
+(x, t) < −2, respectively, with flow from left to right. High-speed streaks are indicated

by reddish colours, while the surface of low-speed streak structures is coloured in blue. In both cases, brighter
colours indicate a larger distance to the bottom wall and thus to the sediment bed.

the above studies, extra simulations at lower resolution are performed only for the purpose of defining
the optimal threshold (Sillero, 2014), or the percolation analysis is performed on a subdomain of the
total computational domain only (Del Álamo et al., 2006; Lozano-Durán et al., 2012). Performing this
relatively expensive and time-consuming analysis for the current open duct simulations is out of the
scope of the current work. However, in the past years percolation analyses have been performed for
all physical quantities that we will focus on in the following such that we choose the same thresholds
adopted in these studies, also to allow for a comparison of our data with that in previous investigations
of other flow configurations such as channel and developing boundary layer flows.

In the current section, we will first study the organisation of streamwise velocity streaks in the duct
cross-section. In this context, we define high- and low-speed streaks as connected regions for which
u′

f
+(x, t) > 2 and u′

f
+(x, t) < −2, respectively, using the velocity threshold detected by means of a

percolation analysis by Sillero (2014) in turbulent boundary layers. As an example, figure 7.32 shows
the so extracted high- and low-speed streaks for an instantaneous flow realisation of case DL500H2.
In agreement with the procedure described in Sillero (2014), we evaluate statistics only for structures
that possess a volume larger than (30δν)3 to avoid resolution issues in the framework of the discrete
numerical grid. For the same reason, we additionally exclude all structures with streamwise extensions
∆̃x ≤ 3∆x from the analysis (the definition of ∆̃x follows below). Note that in terms of wall-bounded
turbulent structures, this does not pose a series restriction on the analysis as even the quasi-streamwise
vortices of the buffer layer are typically larger than the adopted thresholds.

An overview of the available number of individual flow fields and the simulated time intervals is
given in table 7.3 for all simulations considered in this section and the appendices of this work. Also,
it is shown which of the performed coherent structure detection techniques that will be used in the
remainder of this section are applied to which simulation. Due to the relatively short observation
interval and the consequently small number of available fields, statistics on three-dimensional flow
structures remain relatively poor for the particle-laden case. For the subsequent study, we therefore
restrict ourselves to a discussion of the results obtained for the smooth-wall duct case DL400H2

smooth, for
which a sufficiently large ensemble of 1200 individual flow fields could be collected. For the particle-
laden cases, on the other hand, we performed an alternative streak eduction analysis per cross-section
following the concept first presented by Nakatsuji (2012) for closed duct and later applied to open duct
flows by Sakai (2016). Details on the extraction procedure and a comparison of the streak organisation
in particle-laden and single-phase smooth-wall simulations are given in appendix D.
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Case Reτ N f ields
tub

H f

tuτ

H f

tuτ

δν
u′

f 2D
ω f ,x2D

u′
f 3D

D3D ψ2D

DL240H2 244 153 159 13 3157 × × − − −
DL220H2

f ix 226 225 237 18 4037 × × − − −
DL250H2 259 71 72 6 1617 × × − − −
DL500H2 515 40 49 4 2168 × × − − −
DL200H2

smooth 198 1000 767 51 10 073 × × − − −
DL400H2

smooth 416 1200 286 17 7100 × − × × ×
Table 7.3: Overview of available datasets for the coherent structure eduction in open duct flow simulations. In the course of

this analysis, coherent structures are extracted from N f ields individual flow field realisations in a total observation
time t that is presented in terms of bulk, eddy turnover and viscous time units, respectively. Except for the statis-
tics in case DL200H2

smooth which are taken from Sakai (2016), all statistics have been computed in the course of this
work. In the remainder of this section, different coherent structure eduction techniques will be discussed, including
eduction of streak centres in the cross-plane (u′

f 2D
, appendix D), individual vortex cores in the cross-plane (ω f ,x2D

,

section 7.3.3), three-dimensional streamwise velocity streaks (u′
f 3D

, section 7.3.2), three-dimensional vortex clus-
ters (D3D, section 7.3.4) and two-dimensional streamwise rolls (ψ2D, appendix E). Crosses in the corresponding
columns indicate in which cases the respective coherent structure eduction technique was applied.

In the following, for each three-dimensional streak a mean streamwise velocity fluctuation is deter-
mined as the mean value over its volume Vu, viz.

u′
V =

∫

Vu

u′
f (x, t)dv
∫

Vu

dv
. (7.20)

Dimensions of the streaks are quantified based on the size of their bounding box, which represents the
smallest cuboid with edges parallel to the three Cartesian unit vectors that encloses the entire volume
Vu. The minimal and maximal coordinates of this bounding box in the ith direction are xi,min and xi,max,
respectively, such that the edge length of the bounding box in the respective direction accordingly is
∆̃xi = xi,max − xi,min (i ∈ {1, 2, 3}). In the remainder of this study, we associate each individual structure
with its centre of gravity xc = (xc, yc, zc)T, where

xc,i =

∫

Vu

xidv
∫

Vu

dv
∀i ∈ {1, 2, 3}. (7.21)

Figure 7.33 shows the p.d.f. of the preferential locations of streamwise velocity streaks of different size
in the duct cross-plane for high- and low-speed streaks separately. As a characteristic cross-sectional
length scale of the individual streaks, we choose the edge length of an equivalent square with identical
cross-sectional area as the bounding box, viz. l̃yz = (∆̃y∆̃z)1/2. Velocity streaks of different size are
seen to cluster in different regions of the cross-section: The smallest structures with a characteristic
length l̃+yz ∈ [25, 50) shown in figures 7.33(a,b) are the inner-scaling streaks inside the buffer layer,
and thus they are found almost exclusively in the direct vicinity of the three solid walls. The locally
highest values of the p.d.f. are in this context attained in the lower two solid-solid corners as well as
in the mixed corners enclosed by the sidewalls and the free surface, respectively. Let us remark that
low-speed streaks are seen to preferentially reside directly inside the two solid-solid corners, whereas
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Figure 7.33: P.d.f.s of the preferential positioning of instantaneous three-dimensional streamwise velocity streaks in the cross-
plane of case DL400H2

smooth. Individual streaks are associated with their centre of gravity (yc, zc). (a,c,e,g) High-

and (b,d,f,h) low-speed streaks were identified as connected regions of high (u′
f
+ > 2) and low streamwise

velocity fluctuations (u′
f
+ < −2) (Sillero, 2014). The streaks are further classified according to the cross-sectional

size of their bounding box, with a characteristic length scale defined as l̃yz = (∆̃y∆̃z)1/2: (a,b) 25 < l̃+yz ≤ 50; (c,d)

50 < l̃+yz ∧ l̃yz/H f ≤ 0.5; (e,f ) 0.5 < l̃yz/H f ≤ 0.75; (g,h) 0.75 < l̃yz/H f . Contour lines contain 10, 30, 50, 70 and
90% of the total mass of the respective p.d.f.s.

the peaks of the p.d.f. associated with the high-speed streaks are attained in a small distance to the
corner along each of the enclosing solid walls. From the investigation of the mean shear stress and the
findings of Pinelli et al. (2010) and Sakai (2016), on the other hand, it is known that the first velocity
streak next to the corner is indeed a high-speed streak. This apparent contradiction originates in the
above discussed averaging effect: The high-speed streaks in the corner are more or less locked in their
position by the presence of the two solid walls, such that their signature is visible in the mean flow field
〈u f 〉xt as a locally higher streamwise velocity. As a consequence, the velocity fluctuations considered
here have to be understood w.r.t. the mean flow signature of the high-speed streaks.

211



Chapter 7 Coherent structures and sediment ridges in open duct flow

The high concentration of the smallest streaks along the solid sidewalls is in contrast to the relatively
low probability of small streaks residing along the free surface. This changes for the larger structures
of size l̃yz ∈ [50δν, 0.5H f ), whose p.d.f.s are presented in figure 7.33(c,d): Streaks of this size seem
to populate both the near-wall regions and the vicinity of the free surface, the latter revealing the
highest probability for the occurrence of high-speed streaks in the entire cross-section. Note that due
to the rather moderate Reynolds number, this intermediate interval features structures that can be part
of both the buffer and outer layer, while a distinct logarithmic layer can hardly develop due to the
missing scale separation. Apart from the streaks that agglomerate along the sidewalls and the free
surface, a small but non-negligible number of low- and high-speed streaks is found at all positions in
the cross-section, also in quite large distance to the solid domain boundaries. It is assumed that these
structures belong to a family of detached structures/eddies in the sense of the attached-eddy model
(Townsend, 1961, 1976) and its more recent interpretations (Jiménez, 2012; Lozano-Durán et al., 2012;
Jiménez, 2018). Such detached structures are generally small in size and live in regions away from the
solid walls, where they can be created by the action of the local shear without the need to ever visit
the near wall region (Jiménez, 2018). In Lozano-Durán et al. (2012), corresponding detached Reynolds
stress carrying structures are reported to represent background turbulent fluctuations that, on average,
do not significantly contribute to the overall Reynolds stress. In a similar way, the here discovered
detached velocity streaks are assumed to belong to the same kind of background turbulence. They are,
in particular, of no direct relevance for the erosion and transport of sediment grains along the sediment
bed as they are not in contact with the latter.

Large-scale streaks reaching sizes l̃yz/H f > 0.5 (cf. figure 7.33(e-h)), on the other hand, are typically
attached to either of the domain boundaries, from where they spread wide into the bulk flow (Sillero,
2014) and thus undoubtedly scale with the outer length scale H f . Their centres are hence seen to be
preferentially located at distances of around (0.2-0.3)H f to the closest part of the domain boundary,
extending from there towards the solid walls or the free surface on the one hand and the duct core on
the other hand. Comparing the p.d.f.s for streaks with sizes 0.5 < l̃yz/H f ≤ 0.75 in figure 7.33(e,f )
and those with l̃yz/H f > 0.75 in figure 7.33(g,h) which each other, it is seen that only streaks of the
first category appear in the upper half of the duct with their centre being predominantly located close
to the upper left and right corner of the cross-section. The largest high-speed structures for which
l̃yz/H f > 0.75, on the other hand, centre merely in three distinct regions in some distance to the free
surface, from which two are located at a lateral distance of (0.2-0.3)H f from either sidewall and a third
one is found approximately at the duct bisector, ỹ/H f = 0.2 above the bottom wall. While the former
two regions are located in a zone of mean secondary upflow and they consequently spread over a wider
wall-normal range, the latter zone lies below the mean secondary downflow and is more confined to
the bottom wall. For the low-speed streaks, a qualitatively similar distribution is visible, even though
a much larger fraction of the total mass of the p.d.f. is concentrated in a narrow region in the duct
centre. The reason for this peculiar distribution of the probability density for large-scale low-speed
streaks is not completely clear and it would require longer time series to verify whether this effect is
of statistical or physical nature, as the current simulation time is with approximately 286Tb or 17 eddy
turnover times still relatively short compared to the lifetime of the largest streaks. Eventually, it should
be pointed out that the preferential location of the larger high-speed streaks with 0.5 < l̃yz/H f agrees
reasonably well with the general organisation of the two-point correlation functions in figures 7.30 and
7.31, respectively. Choosing, for instance, the reference point at (y̌, ž)=(0.2H f , Lz/2), around which the
high-speed streak p.d.f. in figure 7.33(g) exhibits a local maximum. Then, the neighbouring zones
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in which less large high-speed streaks have been detected collapse with the regions of strongest anti-
correlation, being then representative of local low-speed streaks.

Figures D.3 and D.4 in appendix D show a comparable set of p.d.f.s for the streak organisation in the
here considered case DL400H2

smooth as well as for the corresponding particle-laden case DL500H2, respec-
tively, computed based on the alternative two-dimensional extraction technique of Nakatsuji (2012) and
Sakai (2016) that was mentioned earlier. In the latter procedure, regions of high and low streamwise
velocity fluctuations are detected in each two-dimensional yz-plane of the flow field separately, and
statistics are computed based on the size and preferential organisation of these two-dimensional struc-
tures (cf. appendix D for a detailed overview of the methodology). The different procedure based
on which the streaks are extracted from the individual flow realisations and the deviating definition
of the characteristic length scale adopted therein do not allow a direct quantitative comparison of the
two datasets, but we observe a qualitative agreement of both statistics concerning the regions in which
small- and large-scale structures typically cluster. Also, the results in appendix D show – within the
bounds of the available data in the particle-laden cases – that the general organisation of streamwise
high- and low-speed streaks in the cross-section is not strongly altered by the presence of a mobile
sediment bed and the thereon emerging ridges.

In the following, we further investigate the size and aspect ratio of the detected streaks. To this end,
figure 7.34(a) provides the joint p.d.f. of the minimum (y+min) and maximum distance (y+max) of a given
streak to the bottom wall. In agreement with earlier studies in canonical channel and boundary layer
flows considering different types of coherent structures (Del Álamo et al., 2006; Lozano-Durán et al.,
2012; Sillero, 2014), the streaks can be classified as either attached to the bottom wall or detached from
it. Following the aforementioned studies, we categorise a structure as attached to the bottom wall if
y+min ≤ 20, and as detached otherwise. Here, we do not further distinguish between structures that
are attached or detached to one of the sidewalls or the free surface as done by Atzori et al. (2021) for
closed duct flows, as our main interest is in those structures that are attached to the bottom wall and
that, thus, influence the wall shear stress as well as the near-wall flow organisation. By definition, the
attached structures base inside the buffer layer and part of them can spread far into the outer layer,
while others, the actual buffer layer streaks, do not. Note that in some studies, the former larger-scale
structures are separately studied as ‘tall-attached structures’ (Sillero, 2014), but we will forego such
additional distinction for the moment. In figure 7.34(a), attached structures correspond to the data on
the left of the vertical dashed line, whereas the contributions to the joint p.d.f. on the right are related
to the detached streak family. Members of the latter are seen to be limited in their wall normal extent,
revealing for all distances to the wall essentially the same range of heights ∆̃y that are seldom larger
than 100δν (0.24H f ).

The mass distribution of the joint p.d.f. in the (ymin, ymax)-plane of the here considered open duct
flow is very similar to those found in canonical flows, with one remarkable difference: In contrast to
closed channels where y+ = Reτ marks the channel centreline, here y+ = Reτ refers to the wall-normal
location of the free surface, to which structures can again be attached. Indeed, figure 7.34(a) shows a
second horizontal band of locally increased p.d.f. values, that are related to surface attached streaks
with y+max ≈ Reτ. Apparently, some of these surface attached structures span more than 200 wall
units towards the duct centre. As the focus of this study is the influence of coherent structures on the
erosion and transport of sediment and the related evolution of sediment bedforms, unfortunately, a
more elaborate investigation of the velocity and vortex structures in the vicinity of the free surface as
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Figure 7.34: Joint p.d.f. of the axis-parallel extensions of individual wall-attached streamwise velocity streaks in case
DL400H2

smooth, measured in terms of their circumscribing bounding box. (a) Joint p.d.f. of the minimum (ymin) and
maximum wall-normal distance (ymax) of the structure to the bottom wall. The vertical and horizontal dashed
lines mark y+min = 20 and y+max = Reτ , respectively. (b) Joint p.d.f. of the streamwise (∆̃x) and wall-normal di-
mension (∆̃y) of the circumscribing bounding box of streaks that are attached to the bottom wall (i.e. y+min ≤ 20);
(c) same for the streamwise (∆̃x) and spanwise dimension (∆̃z) and (d) the spanwise (∆̃z) and wall-normal di-
mension (∆̃y). Horizontal dashed lines indicate the domain sizes in the respective directions, i.e. H f and Lz,

while the diagonal lines mark: (a) ymin = ymax, (b) ∆̃x = 5∆̃y, (c) ∆̃x = 5∆̃z, (d) ∆̃z = ∆̃y. Red (high-speed
streaks) and blue (low-speed streaks) contours contain 20 and 90% of the total mass of the joint p.d.f.s.

in Nagaosa (1999) for open channel flow is beyond the scope of this study, but represents a valuable
task for a future study.

For canonical boundary layer and closed channel flows, Sillero (2014) and Jiménez (2018) report that the
bottom wall-attached streamwise velocity streaks are self-similar throughout the logarithmic layer, fea-
turing a constant aspect ratio of approximately ∆̃x/∆̃y/∆̃z = 5/1/1. Even though the here considered
Reynolds number is too low to exhibit a distinct log-layer, the joint p.d.f.s of the two-dimensional aspect
ratios ∆̃x/∆̃y, ∆̃x/∆̃z and ∆̃z/∆̃y shown in figures 7.34(b-d) follow quite well the predicted aspect ratio
for both low- and high-speed streaks for most scales. Similar to Sillero (2014) and Jiménez (2018), how-
ever, we also observe an ‘overhanging’ tail at the upper end of all three p.d.f.s, which is indicative of
very long streamwise-elongated streaks that reach streamwise dimensions of ∆̃x = O(10H f ). Clearly,
the aspect ratio 5/1/1 cannot be maintained for streaks of that length as the cross-stream dimensions
are, in contrast to the streamwise extent, geometrically restricted by the presence of the lateral sidewalls
and can thus not grow any further. The determined cross-sectional dimensions of the largest streaks are
in excellent agreement with those estimated by Sekimoto (2011) for closed square duct flows based on
two-point correlations similar to those evaluated in the previous section. Similar to our observations,
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he concludes that the surrounding (no-slip) boundaries hinder the streaks in their growth, causing
their maximum width to saturate at about ∆̃z/H ≈ 1.0-1.2 (H indicating the half height of the closed
duct).

Note that some of the very long streaks even span the entire domain length, and thus have to be
interpreted as infinitely long modes. As discussed by Lozano-Durán et al. (2012), structures with
streamwise length O(10H f ) most likely correspond to what is conventionally termed as ‘global modes’
(Del Álamo and Jiménez, 2003), ‘superstructures’ or ‘very-large scale motions’ (VLSMs) (Adrian, 2007;
Smits et al., 2011). In consequence, these features do not belong to the family of self-similar streaks that
includes all scales from the buffer layer streaks to the outer-scaling large-scale streaks/motions with
streamwise lengths O(H f ), as argued by Jiménez (2013a).

7.3.3 Quasi-streamwise vortices

In contrast to the self-similar velocity streaks, quasi-streamwise vortices do not scale self-similarly
across the log-layer. Instead, these structures are more or less of the same scale close to and far away
from the solid wall (Jiménez, 2012). In section 7.2.4, the relation between the mean streamwise vorticity
field 〈ω f ,x〉xt and the mean secondary flow streamfunction 〈ψ〉xt was discussed for smooth-wall and
particle-laden flows. It was observed that the organisation of both quantities in the lower half of the
duct is modified for all simulations that feature a mobile sediment bed, while it is essentially identical
for simulations over smooth walls and stationary sediment beds in the considered roughness regime.
This qualitative difference leads to the question, how the mean organisation of the streamwise vorticity
is altered by the presence of mobile particles. As shown by Uhlmann et al. (2007), Pinelli et al. (2010)
and Sakai (2016) for closed and open duct flows, the mean streamwise vorticity field 〈ω f ,x〉xt in fact rep-
resents the preferential organisation of instantaneous quasi-streamwise vortices in the cross-plane. In
order to better understand the influence of a mobile sediment bed on the preferential location of these
instantaneous quasi-streamwise vortices, we will identify in the following the instantaneous position of
the vortex centres in each cross-plane. The here applied method was first presented by Uhlmann et al.
(2007) and bases on a criterion proposed by Kida and Miura (1998), according to which vortex cores are
represented by local minima of the pressure field in the yz-plane, at which the local two-dimensional
velocity gradient tensor ∇⊥(v f , w f )

T fulfils a ‘swirl-condition’ D⊥ < 0. In the latter expression, D⊥ is
the two-dimensional discriminant of the velocity gradient tensor (i.e. of its characteristic polynomial),
defined as

D⊥ =
1

4

(
∂v f

∂y
− ∂w f

∂z

)2

+
∂v f

∂z

∂w f

∂y
. (7.22)

In this context, a negative value of D⊥ refers to an elliptic arrangement of the streamlines around the
given point, which indicates that the latter lies inside a region of vortical motion. Note that, in this
context, D⊥ can be understood as the two-dimensional analogue of the three-dimensional discriminant
D of the full velocity gradient tensor ∇u f that was introduced in equation 6.35 in the previous chapter.
As in Uhlmann et al. (2007), relation (7.22) is evaluated for all local pressure minima detected in each
cross-section of an instantaneous field. In the subsequent analysis, only those points are included
for which D⊥ < 0 holds and the local streamwise vorticity attains non-negligible values |ω f ,x| >

0.01 max
y,z

(|〈ω f ,x〉xt|).

Figure 7.35 provides the corresponding p.d.f.s of the vortex centre locations in the duct cross-section
for the flow over a smooth wall (case DL200H2

smooth) and a mobile sediment bed (case DL250H2), further
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ỹ
/H

f

0 1
0

0.5

1

z/Hf

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 7.35: P.d.f. of the preferential positioning of quasi-streamwise vortices in the cross-plane of (a,c,e,g) the smooth-wall
case DL200H2

smooth and (b,d,f,h) the mobile sediment bed case DL250H2. Vortex cores were identified as local min-
ima of the pressure field in each cross-section that additionally fulfil the swirl condition D⊥ < 0 and for which
|ω f ,x| is larger than 1% of the maximum of |〈ω f ,x〉xt|. Each p.d.f. is normalised with its global maximum. (a,b)
vortices with negative sense of rotation (ω f ,x < 0), isocontours are 0.1(0.1)0.9; (c,d) vortices with positive sense
of rotation (ω f ,x > 0), isocontours are 0.1(0.1)0.9; (e,f ) difference between the p.d.f.s for vortices featuring posi-
tive and negative vorticity, isocontours are −0.9(0.1)0.9. In case DL200H2

smooth, the shown data was additionally
symmetrised about the duct bisector taking care of the reversed sign. (g,h) Mean streamwise vorticity 〈ω f ,x〉xt

(red: positive, blue: negative) as in figure 7.17, repeated for convenience. In the individual panels, solid white
and black lines indicate the location of the mean fluid-bed interface.
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distinguished based on the sign of the local streamwise vorticity ω f ,x. For the sake of comparison,
the presented data is supplemented with a visualisation of the respective mean streamwise vorticity
field 〈ω f ,x〉xt, which has been presented earlier in this chapter (cf. figure 7.17). The overall distribution
of clockwise and counterclockwise rotating quasi-streamwise vortices across the cross-section shows
a reasonable agreement between both simulations in all regions except for the near-bed zone (cf. fig-
ure 7.35(a-d)). In particular, the preferential agglomeration of vortices with a common sense of rotation
in the mixed corners due to the vortex sorting process proposed by Sakai (2016) is clearly identifiable
in both simulations.

The good match of the p.d.f.s in most regions of the cross-section is expected, since we have seen earlier
that the mobile sediment bed has little influence on the dynamics of individual turbulent structures
except for those in its direct vicinity. In the fluid layer above the mean fluid-bed interface, on the
other hand, significantly more individual vortex cores are counted than in the corresponding region
over a smooth wall, such that the local probability for the occurrence of a vortex core in the vicinity
of the sediment bed is comparable with that in the mixed corners. The larger number of extracted
vortex cores along the sediment bed is most likely related to vortex shedding processes in the wake
of individual sediment grains, located near by or directly at the top of the sediment bed (Zeng et al.,
2010; Li et al., 2019). Even though large in number, these individual vortices are induced by quasi-
randomly occurring events and thus appear with more or less the same probability along the cross-
section for clockwise and counterclockwise rotation. In the unconditioned average, thus, contributions
from these structures cancel out (cf. figure 7.35(f )) such that there is no net mean vorticity seen in the
corresponding 〈ω f ,x〉xt field (cf. figure 7.35(h)). For the smooth wall case, a lower number of individual
vortices is measured in the duct centre compared to the particle-laden case, but the effect is similar:
In sufficient distance to the sidewalls, vortices with opposite sense of rotation occur with the same
probability at all positions (cf. figure 7.35(e)), such that there is essentially no net mean streamwise
vorticity 〈ω f ,x〉xt in these regions.

As pointed out earlier, the situation is different in the proximity of the sidewalls, where the positions
of quasi-streamwise vortices with a given sense of rotation are geometrically restricted, such that these
structures can occur only in distinct regions. For the smooth-wall case, figure 7.35(e) reveals that each
of the two lower solid-solid corners contains two regions with an excess of either clockwise or counter-
clockwise rotating vortices. This peculiar arrangement eventually leads to the characteristic patterns
of the mean streamwise vorticity 〈ω f ,x〉xt in these regions, visualised in figure 7.35(g) and described in
detail by Sakai (2016). The mean mirror vorticity cells along the bottom wall, on the other hand, are in-
duced by quasi-streamwise vortices approaching the impermeable no-slip wall in consequence of the
there applied boundary conditions (Orlandi, 1990, and references therein). Indeed, figures 7.35(a,c)
underline that the impermeable no-slip bottom wall does not allow vortices to come very close to the
wall.

Corresponding regions for the particle-laden case, in which vortices with a certain sense of rotation
cluster close to the sidewalls, are visible in figure 7.35(f ), but these zones are of smaller size and span
less wide into the duct than in the smooth-wall case. Most strikingly is, however, the appearance of a
third zone of strong net vortical activity in the particle-laden case, located directly above the sediment
bed. While the no-slip condition along the walls in the single-phase case prevents the agglomeration
of vortices in the direct vicinity of the walls, such regions of intense vorticity can indeed form near a
mobile and permeable lower boundary, explaining the presence of intense mean vorticity zones 〈ω f ,x〉xt
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in figure 7.35(h). Further, a comparison of figures 7.35(b,d) exhibits that vortices of both sense of rotation
are detected in these near-bed regions of intense vortical activity, but the ones supporting the mean
transport of fluid into the corner along the bed are clearly dominant. Their dominance is, however,
restricted to the narrow region between the sidewalls and the first sediment ridge crest, where particle
transport is comparably weak and, thus, particle-induced vortices form less frequently. The different
organisation of the quasi-streamwise vortices in the lower left and right corners of the duct is of direct
relevance for the structure of the mean secondary flow 〈ψ〉xt near the bed in form of the mean secondary
bottom vortices, which have been seen to be more restricted to the near-sidewall region in the mobile
sediment cases (cf. section 7.2.4). As both are connected via the Poisson equation (7.12), a modification
in the organisation of the quasi-streamwise vortices immediately affects the structure of 〈ψ〉xt as well.

7.3.4 Instantaneous vortex clusters and mean secondary flow

The small-scale quasi-streamwise vortices discussed in the previous section naturally scale in wall
units. As a consequence, the mean vorticity patterns seen in figures 7.35(g,h) move towards the re-
spective corners as the Reynolds number is increased, whereas the outer-scaling mean secondary flow
streamfunction 〈ψ〉xt changes little for non-marginal Reynolds numbers (Sakai, 2016). As was pointed
out by Pinelli et al. (2010), the different scaling behaviour of streamwise vorticity and mean secondary
flow is indeed compatible with the physical interpretation of the Poisson equation (7.12), highlight-
ing the analogy with the Poisson equation for the pressure. In equation (7.12), 〈ω f ,x〉xt represents a
local source term that scales in inner units, whereas the mean secondary flow streamfunction 〈ψ〉xt

is of non-local character and depends on 〈ω f ,x〉xt everywhere in the domain by the action of the two-
dimensional Laplace operator ∆⊥. While the characteristic patterns of 〈ω f ,x〉xt are undoubtedly related
to the preferential quasi-streamwise vortices, the question remains whether it is possible to associate
instantaneous vortical structures of larger scales up to H f with the mean secondary flow pattern in a
similar way, as was speculated by Pinelli et al. (2010).

One candidate for such larger-scale vortical structures are the self-similar attached vortex clusters in-
vestigated by Del Álamo et al. (2006) in canonical closed channels, which represent concatenations of
small-scale vortices. Structures of this kind can be extracted from the flow field analogously to the
way streamwise velocity streaks were identified in section 7.3.2. Based on the results of the percola-
tion analysis of Del Álamo et al. (2006), we define vortex clusters as connected regions for which the
discriminant of the velocity gradient tensor D(x, t) defined in equation (6.35) exceeds 2% of the local
r.m.s. value Drms(y, z) = 〈D′D′〉1/2

xt . In figure 7.36, the extracted vortex clusters are visualised for an
instantaneous state of the flow field of case DL500H2. In the following, we however restrict ourselves
to the analysis of the vortex clusters in the smooth wall case DL400H2

smooth, for which the number of
available flow field realisations is large enough to obtain meaningful statistics.

In analogy to figure 7.33, figure 7.37 provides p.d.f.s of the preferential location of the vortex cluster
centres xc in the cross-section, classified based on their characteristic length scale l̃yz and the sign of
the mean vorticity of each cluster defined as the average over the cluster volume VD as

ωx,V =

∫

VD
ω f ,x(x, t)dv
∫

VD
dv

. (7.23)
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Figure 7.36: Visualisation of instantaneous vortex clusters in case DL500H2 (t/Tb = 23) as seen from the top of the open duct.
The structures were detected as connected regions for which the discriminant of the velocity gradient tensor, D,
is larger than 2% of its local r.m.s. value. In contrast to the extraction procedure outlined in the text, we here use
for visualisation purposes only the instantaneous r.m.s. value 〈(D − 〈D〉x)2〉1/2

x rather than Drms, as statistics of
D have not been computed for the entire time series in this case. Colouring of the individual structures represents
their distance to the bottom wall and thus the sediment bed, with brighter green clusters being located closer to
the free surface than dark green objects. Flow is from left to right.

In addition, figure 7.38 shows the difference between the p.d.f.s associated with clusters of positive
and negative mean vorticity ωx,V for each length scale range, that way highlighting regions of the
cross-section in which either of the two types of vortex clusters is dominant.

Most of the small-scale clusters with l̃yz = O(10δν) seen in figures 7.37(a-d) and figures 7.38(a,b) can be
assumed to consist of a single quasi-streamwise vortex. Indeed, their spatial organisation follows more
or less that of the inner-scaling vortices discussed in the previous section and consequently also the
mean vorticity distribution 〈ω f ,x〉xt (cf. figure 7.38(e)), with a markedly high concentration of individ-
ual structures enclosed in the two mixed corners and along the free surface itself. A comparison with
the individual structures displayed in figure 7.36 reveals that the vortex clusters directly beneath the
free surface are indeed of rather small size and more or less parallel to the free surface, either aligned
with the mean flow or inclined to it if they are additionally attached to one of the sidewalls. Note that
surface-parallel vortices of different scales have been observed to be of high relevance for mass and
momentum transport in the vicinity of the free surface (Nagaosa, 1999; Pinelli et al., 2022), and thus
a more detailed future analysis of their dynamics under the influence of near lateral sidewalls could
be of large interest in the context of heat and gas transfer in the vicinity of and across the air-water
interface.

On the other hand, vortex clusters much larger than single quasi-streamwise vortices are found in
some distance to the solid walls and the free surface, reaching characteristic length scales of l̃yz >

0.5H f . Structures with 0.5 < l̃yz/H f ≤ 0.75 for which the corresponding p.d.f.s are presented in
figures 7.37(e,f ) and figure 7.38(c) predominantly occur in a horizontal layer approximately 0.2H f below
the free surface, separated depending on the sign of ωx,V : Clockwise and counterclockwise rotating
structures reside primarily in the left and right half of the cross-section, respectively. This distance to
the free surface roughly corresponds to the height of the outer mean secondary flow cells’ centre, and
the sense of rotation of these large-scale clusters favours the rotating motion of the mean secondary
currents (cf. figure 7.38(f )). In spite of their larger size and their accordingly larger distance to the free
surface, the vortex clusters in this layer are assumed to be still attached to the former and thus, there
is no reason why the vortex sorting process proposed by Sakai (2016) should not apply to them in a
similar way as it does to the small-scale quasi-streamwise vortices. The latter would explain the clear
separation of clockwise and counterclockwise rotating structures to the respective sides of the cross-
section. Even though the highest probability for the occurrence of these larger clusters is found in the
near-surface region, structures of similar size also appear in the lower half of the duct, in particular
inside the mean secondary bottom vortex cell (cf. figure 7.38(f )). Again, clusters that possess the same
sense of rotation as the mean secondary motion dominate the p.d.f.s.
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Figure 7.37: P.d.f.s of the preferential positioning of instantaneous three-dimensional vortex clusters in the cross-plane of
case DL400H2

smooth. Individual clusters are associated with their centre of gravity (yc, zc). (a,c,e,g) Vortex clus-
ter with a positive (ωx,V > 0) and (b,d,f,h) negative mean sense of rotation (ωx,V < 0). Vortex cluster were
identified as connected regions for which the discriminant of the velocity gradient tensor, D, exceeds a value of
0.02Drms(y, z) (Del Álamo et al., 2006). The vortex clusters are further classified according to the cross-sectional
size of their bounding box: (a,b) 25 < l̃+yz ≤ 50; (c,d) 50 < l̃+yz ∧ l̃yz/H f ≤ 0.5; (e,f ) 0.5 < l̃yz/H f ≤ 0.75; (g,h)

0.75 < l̃yz/H f . Contour lines contain 10, 30, 50, 70 and 90% of the total mass of the respective p.d.f.s.

The even larger structures with characteristic lengths l̃yz > 0.75H f reveal a qualitatively similar distri-
bution across the cross-section, with clockwise rotating clusters dominating the upper left and lower
right quadrant of the plane and vice versa for the counterclockwise circulating structures, as can be
seen in figures 7.37(g,h) and 7.38(d). The vortex clusters in the upper half of the duct are not randomly
distributed over the cross-section, but their centres of gravity are seen to agglomerate in two rather
narrow regions around the points (0.35H f , Ly − 0.35H f ) and (Lz − 0.35H f , Ly − 0.35H f ), respectively.
Recalling that the mean extent of these structures is with l̃yz > 0.75H f comparable to the half duct
width, it is quite conceivable that these structures are, owing to their size, more or less locked in their
spatial position by the lateral sidewalls and the free surface to which they are attached. The detection
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ỹ
/
H

f

0 1 2
0

0.5

1

0 1 2
0

0.5

1

ỹ
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Figure 7.38: Differences between p.d.f.s of the preferential positioning of instantaneous three-dimensional vortex clusters
with positive and negative mean vorticity ωx,V in the cross-plane of the open duct simulation DL400H2

smooth which
are shown in figure 7.37. The here presented data are additionally symmetrised about the duct bisector taking
care of the reversed sign. The p.d.f.s are normalised with their maximum absolute value and isocontours refer
to values −0.9(0.1)0.9, with reddish (blueish) regions indicating local dominance of structures with ωx,V > 0

(ωx,V < 0). (a) 25 < l̃+yz ≤ 50; (b) 50 < l̃+yz ∧ l̃yz/H f ≤ 0.5; (c) 0.5 < l̃yz/H f ≤ 0.75; (d) 0.75 < l̃yz/H f . In (e) and
(f ), the mean streamwise vorticity 〈ω f ,x〉xt and the mean secondary flow streamfunction 〈ψ〉xt are repeated for
convenience, respectively, with red (blue) contours indicating clockwise (counterclockwise) rotation.

of the large-scale vortex clusters highlights that small-scale vortices do not only preferentially reside in
distinct regions of the cross-section making them visible in the time-averaged vorticity field 〈ω f ,x〉xt,
but they also aggregate instantaneously in form of these large-scale clusters that feature a mean rotation
themselves.

Similar to the three-dimensional velocity streaks, the here discussed vortex clusters can be classified
into three different families depending on their minimal (y+min) and maximal distance (y+max) to the
bottom wall: The corresponding p.d.f. provided in figure 7.39(a) indicates that a first set of clus-
ters is attached to the bottom wall (i.e. y+min < 20), a second one is attached to the free surface (i.e.
(Reτ − y+max) < 20) and the remaining structures are detached from both. While the mean height of the
detached structures does essentially not vary with the wall-normal coordinate being limited to about
∆̃y+ ≈ 150, the attached clusters partly extend over more than ∆̃y ≈ 0.75H f (312δν), in agreement with
the largest structures seen to contribute to the p.d.f.s in figures 7.37 and 7.38.

The aspect ratios of the vortex clusters attached to the bottom wall and those connected to the free
surface are depicted in figure 7.39(b-d) in terms of the joint p.d.f.s of the bounding box edge lengths. In
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Figure 7.39: Joint p.d.f. of the axis-parallel extensions of individual wall-attached and surface-attached vortex clusters in the
open duct simulation DL400H2

smooth, measured in terms of their circumscribing bounding box. (a) Joint p.d.f. of
the minimum (ymin) and maximum wall-normal distance (ymax) of the structures to the bottom wall. The vertical
and horizontal dashed lines mark y+min = 20 and y+max = Reτ , respectively. (b) Joint p.d.f. of the streamwise (∆̃x)
and wall-normal dimension (∆̃y) of the circumscribing bounding box of vortex cluster attached to the bottom
wall (y+min < 20, ) or the free surface ((Reτ − y+max) < 20, ); (c) same for the streamwise (∆̃x) and spanwise
dimension (∆̃z) and (d) the spanwise (∆̃z) and wall-normal dimension (∆̃y). Horizontal dashed lines indicate
the domain sizes in the respective directions H f and Lz, while the diagonal lines mark: (a) ymin = ymax; (b)

∆̃x = 3∆̃y (black); (c) ∆̃x = 1.5∆̃z (black), ∆̃x = 3∆̃y (red); (d) ∆̃z = 2∆̃y (black), ∆̃z = ∆̃y (red). In (b,c), the
vertical grey dashed line marks ∆̃x = 3∆x which is the minimal streamwise length that structures have to possess
to be included in the present analysis. In each panel, contours contain 20 and 90% of the total mass of the joint
p.d.f.s.

agreement with the findings of Del Álamo et al. (2006) and Lozano-Durán et al. (2012) in closed channel
flow, the bottom-attached vortex clusters exhibit a comparable self-similar behaviour as the streamwise
velocity streaks. However, they feature in the self-similar regime with ∆̃x/∆̃y/∆̃z = 3/1/1 a slightly
different aspect ratio than the one found by the aforementioned authors in closed channel flow, that
is, ∆̃x/∆̃y/∆̃z = 3/1/2. The apparently different aspect ratio should be interpreted with caution, as
we here do not separate between the structures in the centre of the duct and those in the near-sidewall
regions, as was done for instance by Atzori et al. (2021) for closed ducts. It is imageable that the clusters
located near the sidewalls feature a ‘flipped’ aspect ratio compared with that in the duct core which feel
the presence of the lateral sidewalls only in form of the modified mean shear, with the consequence that
the structures reveal – on average – a symmetric cross-sectional aspect ratio ∆̃y/∆̃z = 1/1. Indeed, to
clarify the possible effect of sidewalls on the shape and aspect ratio of individual large-scale structures,
further investigations are required which are beyond the scope of the current study and are thus left
for future studies.
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The p.d.f.s of the surface-attached clusters in figure 7.39(b-d), in turn, show two different regimes:
On the one hand, structures shorter than approximately ∆̃x ≈ 0.2H f (83δν) reveal essentially no self-
similarity and feature more or less constant cross-sectional dimensions for varying streamwise exten-
sions. Indeed, checking the spatial distribution of clusters with a given streamwise length (plots not
shown) reveals that these very short structures live almost exclusively in the direct vicinity of the free
surface, where the local flow is fairly different from that in the vicinity of an impermeable no-slip wall.
With increasing streamwise length ∆̃x > 0.2H f , on the other hand, the aspect ratio of the surface-
attached structures approaches that of the bottom wall-attached structures. Note that this is not unex-
pected, as the dimensions of the largest structures are assumed to be essentially controlled by the outer
geometry of the domain, rather than by the specific boundary conditions on the boundaries they are
connected to (Jiménez, 2018). The question is where these structures are actually born: In contrast to
the near-wall region, the mean shear and with it the turbulent kinetic energy production along the free
surface is fairly low, but the mean shear is the main source of energy for turbulent coherent structures
and it is closely linked to the self-similar log-layer cascade (Jiménez, 2012). In agreement with Sakai
(2016), it is assumed that the larger structures that are attached to the free surface are actually formed
along one of the solid walls as members of the self-similar family of attached cluster. At some point,
these structures detach from the walls and move upwards towards the free surface. Alternatively, when
born at one of the lateral sidewalls, vortex clusters might also be attached to both a sidewall and the
free surface at the same time.

Note that an alternative attempt to locate large-scale rotating structures was made by Nakatsuji (2012)
and Kawahara et al. (2012a) based on a poloidal-toroidal decomposition of the instantaneous velocity
field in square duct flows. Since both publications are, except for the abstracts, written in Japanese,
we will briefly summarise the main findings in the following. The mathematical background of the
underlying poloidal-toroidal decomposition is discussed in appendix E, appropriate boundary con-
ditions for the open duct case are proposed and an application of their methodology to the current
dataset is presented.

In complete agreement with the here observed vortex clusters, Kawahara et al. (2012a) found two fam-
ilies of large-scale rotations, from which the first one consists of self-similar outer-scaling structures
that are attached to the duct walls. The second one features both smaller and larger structures which
are, however, detached from the solid walls and scale, depending on their size, either in inner or outer
units. The preferential location of the circulating structures depends on their size, with larger struc-
tures found further away from the walls than smaller ones. The authors argue that the mean secondary
flow pattern is the collective effect of the individual small and large circulating structures and their par-
ticular mutual organisation in the duct cross-section. Eventually, Kawahara et al. (2012a) pronounce
the close similarity of the structures detected in their study with the vortex clusters investigated in
Del Álamo et al. (2006). Indeed, when comparing the data presented in figure 7.37 with the preferential
organisation of the streamwise rolls shown in figure E.1 in appendix E, it is seen that all but the largest
rolls organise in a very similar way as the vortex clusters discussed above. The largest streamwise rolls
concentrate somewhat more in the bottom half of the duct cross-section. Note that for consistency with
the original work of Kawahara et al. (2012a), we have for now classified the streamwise rolls extracted
in appendix E based on the same length scale and with the same definition of the roll centre as in their
study, which are not exactly the same as the definitions considered here for the vortex clusters. So,
further investigations are necessary to directly compare the results. Nonetheless, the good agreement
between the mutual organisation of small- and large-scale streamwise rolls on the one hand and that
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cated by red (light blue) colour. The vector field visualisation in the background represents the mean secondary
flow field (〈v f 〉xt/ub, 〈w f 〉xt/ub)

T in case DL400H2
smooth.

of the vortex clusters on the other hand strengthen the assumption of Kawahara et al. (2012a) that both
structures might be related to each other.

In analogy to a visualisation presented in Nakatsuji (2012) for closed duct flow, figure 7.40 shows a con-
ceptual sketch of the preferential organisation of small and large vortex clusters in the open duct cross-
section, created based on the spatial organisation of small- and large-scale vortex clusters observed in
figures 7.37 and 7.38. The visualisation is supplemented with a vector field representation of the mean
secondary flow field in case DL500H2. Based on the observations of Kawahara et al. (2012a) and the here
discussed dataset, we believe that the mean secondary flow in the shown open duct flow represents the
collective statistical footprint of a large number of instantaneous vortex clusters of different size and
scale. Owing to their size, these structures are not randomly distributed over the duct cross-section:
While small-scale clusters are found all along the walls and the free surface where they are indicative
of the quasi-streamwise buffer layer vortices, large-scale clusters are controlled and bounded in their
cross-sectional size by the domain boundaries. The largest structures that feature cross-sectional di-
mensions of comparable size as the mean fluid height H f are strongly restricted in their mobility, and
they are seen to centre predominantly in a relatively narrow region in the upper left and right duct
quadrant, in some distance to the mixed corners. Along the free surface, in turn, small- and large-scale
structures that are essentially attached to the free surface are seen to agglomerate either on the left or
on the right of the duct bisector depending on their sense of rotation and the thereby induced lateral
direction of motion, most likely as a result of the sorting process proposed by Sakai (2016). The so
arranged vortex clusters naturally induce, by virtue of their mean rotation, a secondary flow in the
cross-section of the duct that strikingly resembles the mean secondary flow, as can be inferred from
the idealised conditional rollers provided in figure 7.40.

7.4 Summary and conclusion

The current chapter was dedicated to the interaction between turbulent coherent structures and sed-
iment ridges in domains that are laterally bounded by impermeable sidewalls. For this purpose, the
database on turbulent flows in infinitely wide open channel flows that was build up in the previous
chapter was extended by a series of 13 open duct simulations with finite aspect ratio, over a range of
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friction Reynolds numbers 140 ≤ Reτ ≤ 515. This new simulation series comprises simulations with
three different bed/bottom configurations, including the flow over a mobile sediment bed, that over a
stationary porous sediment bed as well as four simulations of single-phase smooth-wall open duct flow.
Part of the latter smooth-wall reference data were kindly provided by Y. Sakai (Sakai, 2016). Individ-
ual simulations were performed in a wide range of different domain sizes, from streamwise-minimal
narrow duct cases with streamwise and spanwise domain size Lx × Lz ≈ 2H f × 2H f to simulations in
relatively long domains (10 . Lx/H f . 26) and either low (AR ≈ 1) or high aspect ratios (AR ≈ 8).
The variation of the lateral domain size offers the possibility to investigate sediment ridge formation
both in the vicinity as well as in some distance to the laterally bounding sidewalls and to compare the
results with our observations in spanwise homogeneous open channel flows. The Shields number θbed,
on the other hand, was varied between fairly low values only slightly above the threshold for the onset
of sediment erosion and relatively high values θbed ≈ 0.22, the latter indicating the development of
an intense bedload transport layer. Purpose of this parameter variation was primarily to investigate
whether the evolution of transverse ripple-like sediment bedforms can be delayed, as the appearance
of these bed features strongly limits the time window during which sediment ridge dynamics can be
studied exclusively. Indeed, the growth rate of the amplitude associated with initial ripple-like fea-
tures was for the lowest Shields number about 50% lower than in a simulation with θbed ≈ 0.15 and
otherwise essentially identical parameters.

The newly created database corroborates observations in laboratory experiments that sediment ridges
evolve quasi-simultaneously at varying positions of the duct span, readily covering the entire cross-
section of the duct (Nezu and Nakagawa, 1989). This is in line with our investigations in open channel
flows in the previous chapter, where it was shown that sediment ridge formation is essentially inde-
pendent of the presence of lateral sidewalls. Nonetheless, the formation of sediment ridges near lateral
sidewalls and in some distance to the latter was seen to differ qualitatively. Most narrow ducts with
an aspect ratio AR ≈ 1 were seen to typically accommodate a single trough roughly in the duct cen-
tre enclosed by two sediment ridges, which are seen to form about 0.3H f -0.5H f away from the lateral
sidewalls. The specific bedform arrangement is in good accordance with those observed in the exper-
iments conducted by McLelland et al. (1999) in a slightly wider duct (AR = 1.5) with weakly bimodal
sediment. The here observed bedforms are, on average, of smaller amplitude than their counterparts
investigated in open channel flows or in the core of large aspect ratio ducts with AR ≈ 8. In the latter
case, the first sediment ridges evolve at a slightly larger distance of 0.5H f -0.8H f to the sidewalls and
are relatively weaker in amplitude than their counterparts in the duct core, where the bedforms reveal
essentially the same characteristics as those studied in infinitely wide channels. Especially, the mean
lateral spacing between two ridges agrees fairly well with the values observed in open channel flow
simulations as well as laboratory flume experiments (Wolman and Brush, 1961; McLelland et al., 1999)
and the most-amplified wavelength of 1.3H f in the linear stability analysis of Colombini (1993) that we
have analysed in a previous chapter.

The qualitatively different properties of sediment ridges in narrow open duct flows compared to the
open channel cases was found to be a consequence of the different organisation of the turbulent flow
field near sidewalls and in sufficient distance to them. In fact, the core regions of sufficiently wide open
ducts accommodate essentially the same alternating large-scale high- and low-speed streaks with aver-
age widths of (1-2)H f as in canonical or open channel flows (Jiménez, 2013a). Similar to the latter case,
these large-scale structures are elongated in the streamwise direction and span over the entire depth
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of the clear fluid region, thereby inducing regions of strong and weak erosion activity along the sedi-
ment bed in which troughs and sediment ridges develop with time, respectively. In virtue of their long
lifetime and their relatively weak lateral mobility, such large-scale velocity streaks and the associated
Reynolds stress-carrying structures leave an imprint in the short-time averaged flow field (O(10Tb)) in
form of large-scale depth-spanning secondary rollers that populate the entire duct cross-section. Such
‘instantaneous secondary currents’ (Nezu, 2005) have been observed earlier in experimental studies
and were, in agreement with our observations here, suspected to interact with a mobile sediment bed
to form sediment ridges and troughs, respectively. Again, these features are the largest analogue of the
conditional quasi-streamwise rollers of Lozano-Durán et al. (2012) and Jiménez (2018) and they occur
over smooth walls, stationary and mobile sediment beds in essentially the same form.

For sufficiently longer averaging intervals of Tobs ≥ O(103Tb) length, mean secondary currents in some
distance z & 4H f to the sidewalls disappear, as the instantaneous large-scale velocity structures appear
over time at different positions of the cross-section and contributions from structures with different sign
cancel in the averaged framework. Their counterparts in the near-sidewall regions, on the other hand,
are restricted in both their mobility and their preferential location, appearing in distinct lateral posi-
tions such that they remain visible even in the long-time statistics. For sediment-laden cases, a clear
prognosis on the long-time evolution cannot be given based on the current database, as the ridges
are typically displaced by transverse ripple-like bedforms after approximately 100-200 bulk time units.
Therefore, it is not clear whether or not the sediment ridges indeed possess the potential to ‘lock’ or sta-
bilise instantaneous large-scale velocity structures in their lateral position, as is often suggested based
on experimental observations (Nezu and Nakagawa, 1993). At least in the initial phase of pattern for-
mation considered in this study, the sediment ridges seemed to follow the evolution of the turbulent
flow field rather than the other way round, what might however be related to the adopted Shields
numbers. Indeed, the mobility of individual sediment ridges was observed to reduce with decreasing
Shields number, and so it is not unlikely that a stabilisation of the large-scale structures by the devel-
oped ridges similar to the situation over fixed inhomogeneous bottom walls (Kevin et al., 2019a) can
occur as long as the Shields number is sufficiently low. This latter assumption is also in line with the fact
that sediment ridges are mostly observed in experiments with limited sediment transport availability,
such that larger bedforms cannot develop (Wolman and Brush, 1961; Kleinhans et al., 2002). Future
numerical simulations comparable to the here conducted that additionally sweep a range of different
Shields numbers could clarify this open question.

In contrast to the situation in sufficient distance to lateral sidewalls, sediment ridges that evolve in
the vicinity of solid sidewalls necessarily ‘feel’ the presence of the impermeable domain boundaries,
especially in form of a clearly modified organisation of the flow field: The narrow domain width can
accommodate only a single large-scale high-speed region in its centre, and it was observed that the
peculiar domain geometry does not allow this structure to extend down to the bed in a similar way as
the large-scale structures in the open channel do. Instead, it was seen that velocity structures of lower
width that centre at approximately ỹ/H f ≈ 0.2 control the regions of weak and strong erosion along
the sediment bed, which in turn leads to the development of local sediment ridges and troughs. In
analogy to the open channel case, the causal relation between the dynamics of these smaller structures
and the organisation of sediment ridges and troughs along the sediment bed was shown based on two-
point two-time correlations. These latter imply a time lag of several bulk time units length that it takes
for the sediment bed to adapt to changes of the flow organisation at ỹ/H f ≈ 0.2. Note that this time lag
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is accordingly smaller than the one observed for the open channel case, as in the latter we measured
the time lag w.r.t. the flow field evolution in the centreline at ỹ/H f ≈ 0.5.

The presence of a mobile sediment bed was seen to affect predominantly the flow field in its direct vicin-
ity, whereas characteristic large-scale structures are seen to be rather weakly influenced, in agreement
with the corresponding observations in the sediment-laden open channel cases or canonical closed
channel flows past fully-rough walls (Flores and Jiménez, 2006; Flores et al., 2007). In a similar way as
for the open channel case, particles that move inside the bedload layer above the sediment bed sub-
stantially reduce the mean velocity in the near-bed region while, simultaneously, the bottom friction
is markedly enhanced compared to the corresponding smooth-wall reference cases at matching bulk
Reynolds numbers Reb: In case DL500H2, for instance, Reτ is about 38% higher than the value detected
in the smooth-wall single-phase simulation at identical Reb. In a similar way as in the corresponding
open channel simulations, the turbulence activity in the bedload layer is damped and the characteris-
tic peak of the streamwise turbulence intensity that is indicative of the buffer-layer regeneration cycle
(Hamilton et al., 1995) is moved away from the bed, while its amplitude is clearly reduced. However, in
contrast to the higher Reynolds number open channel case CM850H3 discussed in the previous chapter,
the relative particle size D+ and the intensity of the bedload transport layer seem to be in all simulations
low enough such that the buffer layer can remain intact.

The general pattern of both the mean secondary flow streamfunction 〈ψ〉xt and the streamwise vor-
ticity field 〈ω f ,x〉xt were seen to be qualitatively similar over all three considered bottom wall/bed
configurations in some distance to the bed. In the lower left and right corners of the duct, however,
the there residing mean secondary bottom vortex is seen to shrink as sediment is mobilised and the
vorticity organisation in these corners is accordingly modified. Nonetheless, the cross-plane averaged
mean secondary flow intensity is higher over the mobile sediment beds, which is related to an inten-
sification of the outer mean secondary flow cells in the upper half of the duct due to a stronger mean
upflow along the two sidewalls. Noteworthy, the secondary flow intensity over the stationary sediment
bed is not significantly higher than the value in the single-phase case, highlighting that the origin of
the secondary flow intensification is indeed the particle mobility. The exact mechanism that causes
this enhancement of the outer secondary flow cell over mobile sediment beds cannot be fully clarified
based on the current database, but it is assumed that a stronger redistribution of momentum in the
cross-plane occurs due to the difference in friction between the two smooth sidewalls on the one hand
and the mobile sediment bed on the other hand, as was suspected in a number of experimental studies
for fully-rough beds (Nezu and Nakagawa, 1993; Rodríguez and García, 2008; Albayrak and Lemmin,
2011). To the best of the author’s knowledge, no high-fidelity numerical study exists that investigates
the exact role of bottom and/or sidewall roughness on the strength of the mean bottom and outer sec-
ondary flow cell, which could shed some light on this discussion. It would be therefore of high interest
to perform simulations of this kind in the near future to clarify the impact of boundary roughness
on the secondary flow pattern. In order to be able to compare the results with the above listed ex-
periments, it appears suitable to perform such simulations over similar fixed roughness elements (e.g.
particles) with a roughness height large enough to ensure fully-rough conditions, in analogy to the
investigations of Mazzuoli and Uhlmann (2017) in open channel flows over fully-rough bottom walls.

Similar to the mean field, the preferential organisation of individual instantaneous coherent structures
is seen to be essentially unaffected by the underlying mobile sediment bed unless the structures are
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located in its direct vicinity. The characteristics of the large-scale high- and low-speed streaks that dic-
tate the bed organisation in sufficient distance to the sidewalls have been discussed in the previous
chapter and much is known about them from studies in canonical wall-bounded flows, that is why
we focused in a second part of the chapter on the peculiar organisation of the coherent structures in
narrow open duct flows. In this context, one major focus was set on the organisation of the fluctuating
velocity field u′

f (x, t) in the cross-section. To this end, two-point velocity correlations were analysed
for flows over smooth walls and mobile sediment beds, focussing primarily on the organisation of the
flow at a wall-normal distance ỹ/H f ≈ 0.2 above the bed/wall, as the flow organisation in this layer
had been previously found to play a major role in the formation process of sediment ridges. Indeed,
the evaluated two-point correlations reveal elongated streamwise velocity objects of laterally alternat-
ing sign of comparable width (0.4-0.5)H f as the high- and low-speed regions that have been seen to
influence the sediment bed evolution. The corresponding wall-normal correlation objects are clearly
shorter, but reveal a similar laterally alternating sign which leads to the conjecture that these pairs of
streamwise and wall-normal correlation patterns represent high- and low-speed streaks with associ-
ated down- and upflow regions, respectively. Interestingly, correlation objects of all velocity compo-
nents bear an astonishing qualitative and in part also quantitative similarity with those investigated by
Sillero (2014) and Jiménez (2018) in developing boundary layer and closed channel flow, respectively.
This provides some evidence that not only the buffer layer structures studied by Pinelli et al. (2010), but
also larger-scale velocity structures in duct flows feature important similarities with their counterparts
in canonical flows.

This hypothesis was further strengthened by analysing the preferential organisation and size distri-
bution of individual three-dimensional streamwise velocity structures, using the extraction procedure
proposed by Moisy and Jiménez (2004) and Del Álamo et al. (2006). In complete agreement with an
analogous investigation of velocity streaks in turbulent boundary layer flow by Sillero (2014) at how-
ever much higher Reynolds number, high- and low-speed streaks could be classified into a group of
self-similar structures that are attached to the bottom wall and a second family of structures that are
detached from it. In the special case of the open duct flow, a third group of structures was identi-
fied that is attached to the free surface which is naturally not existing in boundary layer flows. The
bottom-wall attached objects scale self-similarly with their distance to the bottom, maintaining an as-
pect ratio of roughly 5/1/1 in the streamwise, wall-normal and spanwise direction that is measured
in terms of the structure enclosing cuboidal bounding box, in very good agreement with the results
of Sillero (2014). The smallest structures of the self-similar family essentially correspond to the buffer
layer streaks, while the largest objects feature dimensions comparable to the clear fluid height H f . Ad-
ditionally, a two-dimensional streak eduction study was performed following the approach proposed
by Nakatsuji (2012) and adopted to open duct flows by Sakai (2016), which turned out to be better
suited for the sediment-laden cases due to the clearly smaller number of available flow realisations
in these cases, as opposed to the considered smooth-wall simulations. Both methods agreed in that
streaks of different cross-sectional scale preferentially agglomerate in different regions of the domain
for single-phase and particle-laden cases likewise, with the small buffer layer structures residing pre-
dominantly near the three solid sidewalls. Larger structures, on the other hand, were seen to centre
preferentially in some distance to the walls and the free surface in virtue of their larger size, revealing
some similarity with the earlier discussed organisation of the two-point correlations.

Perhaps most strongly affected from the mobile sediment were the statistics of the preferential posi-
tioning of quasi-streamwise vortices, that were extracted from the fields using a technique first used
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by Uhlmann et al. (2007) in the context of closed ducts based on the swirl-condition criterion of Kida
and Miura (1998). As for the streaks, the organisation of small-scale vortices was in most areas of the
cross-section similar for smooth-wall and mobile sediment beds. In the direct vicinity of the sediment
bed, a substantial amount of individual vortex cores were counted, most likely related to individual
vortices that develop in the context of vortex shedding in the wake of the bed and mobile sediment
grains. In consequence, these vortices are essentially randomly distributed and thus cancel when av-
eraging in time, such that they do not contribute to the mean vorticity field 〈ω f ,x〉xt. In the lower left
and right corners, however, individual vortices were seen to organise in such a way that they induce
a mean flow into the corner along the sediment bed. The resulting mean vorticity cell is naturally ab-
sent in the single-phase case, where the no-slip conditions do not allow vortices to come so close to
the wall. Recalling that 〈ω f ,x〉xt and 〈ψ〉xt are directly linked by a Poisson equation, it was concluded
that the different organisation of the quasi-streamwise vortices in the corner regions affect not only the
mean vorticity distribution, but also indirectly that of the mean secondary flow streamfunction, that
way causing the observed modification of the bottom secondary flow cell.

In a final section, the instantaneous spatial aggregation of small-scale vortices in form of larger-scale
vortex clusters and their relation to the mean secondary flow were studied. As for the streamwise
velocity streaks, these vortex cluster can be classified into families of bottom-wall or surface-attached
structures on the one hand and objects that are detached from both on the other hand. In agreement
with the observations of Del Álamo et al. (2006), the bottom-wall attached clusters scale again self-
similarly with their distance to the wall. While the smallest representatives of this family essentially
represent a single quasi-streamwise vortex, the largest clusters reach dimensions comparable to H f

and thus take up a significant fraction of the cross-section. As for the velocity streaks, vortex clus-
ters preferentially agglomerate in different regions of the cross-section depending on their size: The
smallest clusters primarily concentrate in the vicinity of the domain boundaries, whereas the largest
are typically located in the upper left and right quadrant roughly 0.35H f away from both the side-
walls and the free surface. The organisation of the vortex clusters of different size and sense of rotation
reveals an astonishing similarity with the general secondary flow pattern. In this context, Kawahara
et al. (2012a) investigated large-scale circulating quasi-streamwise rolls in square duct flows based on
a poloidal-toroidal decomposition of the flow field and conjectured that these features are related to
the here studied vortex clusters. We have applied their methodology to the current open duct case,
which revealed that except for the largest rolls in the domain, the vortex clusters and the streamwise
rolls organise indeed in a very similar way in the cross-section. Based on the conclusions of Kawahara
et al. (2012a) and the current investigations of the self-similar vortex clusters and rolls, we believe that
the mean secondary flow could be the collective statistical footprint of the individual vortex clusters or
large-scale rolls. In order to verify this hypothesis, additional efforts are necessary and a more detailed
analysis of both types of structures in closed as well as open channel flows should be performed. In
this regard, the analysis could be ideally applied to datasets at higher Reynolds numbers that allow for
a proper scale separation between buffer layer and outer-scaling structures.

Even though turbulent flows in ducts of square or rectangular cross-section have raised much more at-
tention since the pioneering works of Uhlmann et al. (2007) and Pinelli et al. (2010) and higher Reynolds
number simulations up to Reτ ≈ 1000 were indeed performed (Modesti et al., 2018), there are only few
studies that really focus on the characteristics and dynamics of the individual structures (Atzori et al.,
2021). In the case of open duct flows, as stated earlier, the database of Sakai (2016) represents, to the best
of the author’s knowledge, in fact the only set of fully-resolved simulations at sufficient size to cover
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also the largest emerging flow structures. In the same way, the current simulations seem to be the
first of its kind that allow to study the evolution of sediment bedforms under ‘laboratory conditions’,
i.e. in domains of finite aspect ratio analogously to experimental flumes. In this regard, simulations
of the current setup at desirably higher Reynolds numbers will hopefully soon provide the opportu-
nity for a direct comparison between carefully planned laboratory and numerical experiments. It is in
this context also worth considering to perform simulations featuring bimodal sediment mixtures, that
can additionally enhance the development of sediment ridges in form of sediment sorting processes
(Colombini and Parker, 1995; McLelland et al., 1999).
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Chapter 8

Transition from sediment ridges to
initial ripples – an outlook

In the previous chapters, our goal was to investigate the relation between large-scale turbulent struc-
tures and a mobile sediment bed that causes the evolution of sediment ridges. In this context, it was
repeatedly mentioned that the time window during which sediment ridges can be studied exclusively
is limited by the appearance of larger amplitude ripple-like bedforms for t & 100Tb. This last chapter
is devoted to the transformation of the ridge-covered sediment bed into a ripple-dominated one and
should be understood as an outlook on future studies that are planned to investigate this transition
phase.

To this end, we have analysed the bed evolution in the large-domain open channel (CL250H16) and
open duct simulations (DL250H16) well over the earlier studied time interval by letting the bed evolve
over 500 bulk time units (cf. tables 8.1 and 8.2 for the respective parameters determined over the longer
time interval).

An instantaneous state of the sediment bed and the overlying flow field in a later stage of bedform
evolution is visualised in figure 8.1, wherein the transverse bedforms are clearly seen to dominate the
bed surface. A cross-section of the flow field indicating instantaneous high- and low-speed regions
at the downstream end of the periodic domain highlights that the general lateral organisation of the
flow field in alternating large-scale high- and low-speed streaks is maintained even over developed
transverse bedforms. In the near-bed region, on the other hand, we expect a significant altering of
the flow, for instance, downstream of the ripple crests, where the flow detaches from the bed and a
recirculation zone develops (Kidanemariam et al., 2022). In this regard, the here shown patterns belong
to the class of ‘vortex dunes’ (Ouriemi et al., 2009). Note that the terms ripples and dunes typically refer
to bedforms with a much longer evolution time than the patterns that arise in the current simulations,
and so the here discussed transverse bedforms should be understood as ‘initial ripples’ (Langlois and
Valance, 2007; Kidanemariam and Uhlmann, 2017). For the sake of simplicity, we nevertheless term
these earliest evolving transverse bedforms as ‘ripples’ in the remainder, keeping in mind that the
term refers to this specific type of early-stage bedforms.

Figure 8.1 also shows a ‘pseudo free surface’ of the open duct, visualising the local amplitude of the
pressure fluctuations along the strictly flat free-slip plane of the open duct. Even though the currently
used computational method does not allow for a deformation of the free surface, it is that way possible
to estimate how a freely-deformable surface would react to the pressure fluctuations in the domain.
Interestingly, the pressure fluctuations are seen to be correlated with the evolving bedforms in that
they would cause an upwelling of a deformable free surface downstream of the bedform crest over
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Figure 8.1: Three-dimensional visualisation of an instantaneous state of the sediment bed and the flow field in case DL250H16

in the ripple-dominated time period. Flow is from bottom left to top right. As before, the particle colour ranges
from dark to light brown with increasing distance to the bottom wall. The local turbulence activity is indicated by
individual vortices, visualised as isosurfaces of constant negative value of λ2 (second eigenvalue of the Hessian of
the pressure, cf. Jeong and Hussain (1995)). White and black regions in the cross-plane at the downstream end of
the periodic domain indicate high- and low-speed regions of the streamwise velocity (u′

f ). The curved manifold at
the top of the domain indicates pressure fluctuations along the free surface, which was kept flat in the simulation
and thus represents a ‘pseudo-deformable fluid-air interface’. Vertical deformations with dark (light) blue colour
indicate low (high) values of the pressure field p f at ỹ = H f . For the sake of visualisation, the second sidewall in
the foreground has been removed.

the recirculation zone. Here, the streamlines expand and so-called ‘kolk-boil vortices’ are generated
which are typically assumed to detach from the sediment bed contour and to afterwards propagate
towards the free surface (Nezu and Nakagawa, 1993, and references therein). More detailed investiga-
tions of the free-surface dynamics cannot be performed at this point due to the strictly flat free surface
in our simulations, but it strongly motivates to perform such analysis using appropriate numerical
tools that are able to capture the deformation of the duct free surface. In this field, some progress
is recently observed in that nowadays fully-resolved numerical studies of turbulent flows over com-
plex bottom topographies and their interaction with a deformable free surface can be performed (e.g.
Kidanemariam and Marusic, 2020).

In the following, we now focus on the bedform dynamics in the phase subsequent to the ridge-
dominated time-interval. Figure 8.2(a) shows the time evolution of the streamwise- and spanwise-
averaged r.m.s. of the sediment bed height fluctuations for the open channel and duct cases, respec-
tively, which we typically consider as a measure for the mean amplitude of streamwise-aligned sedi-
ment ridges and transverse-oriented ripples, respectively. For the sake of comparison, the presented
datasets are supplemented with corresponding curves for a narrow open channel case from Kidane-
mariam and Uhlmann (2017) (case H121 in their notation) with streamwise and spanwise domain
periods Lx/H f ≈ 12 and Lz/H f ≈ 3, respectively, under otherwise comparable physical conditions.
Interestingly, the time evolution of σh,x is markedly different in the wide open channel case CL250H16

compared to the narrow channel H121 and the wide open duct case DL250H16, respectively. The
strongest increase is observed in the narrow open channel case H121, where we observe an initial ex-
ponential growth almost from the very beginning of particle erosion – an effect that has been studied
in detail by Kidanemariam and Uhlmann (2017). The wide open duct case DL250H16 reveals a compa-
rable growth rate, but the onset of the phase of strong increase is shifted in time by about 50 bulk time
units. The wide open channel case CL250H16, finally, exhibits a much slower increase of σh,x at least
for the first 400 bulk time units of the simulation. Only then, a stronger increase of the mean bedform
amplitude is observed. In this phase, the remaining two simulations seem to have already reached a
quasi-stationary plateau regime.
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Case Reb Reτ ρp/ρ f Ga D+ H f /D Hb/D H f /Hb θbed

CL250H16 3012 283.67 2.5 28.37 10.68 26.57 11.83 2.25 0.14
DL250H16 2998 286.72 2.5 28.37 10.77 26.62 11.78 2.26 0.14

Table 8.1: Physical parameters of long-time ripple-featuring open channel and high aspect ratio duct flow simulations. The
presented parameters are defined as described in sections 6.1 and 7.1, respectively.

Case [Lx × Lz]/H f [Lx × Lz]/D D/∆x ∆y+ Np Tobs/Tb

CL250H16 11.56 × 15.42 307.2 × 409.6 10 1.07 1 406 983 503
DL250H16 11.54 × 15.39 307.2 × 409.6 10 1.08 1 402 849 499

Table 8.2: Numerical parameters of long-time ripple-featuring open channel and high aspect ratio duct flow simulations.
The shown parameters follow the definitions in sections 6.1 and 7.1, respectively.

The strikingly different evolution of the amplitude of the spanwise-averaged sediment bed motivates
a more detailed analysis of the bedform development in the three cases. To this end, figure 8.2(b)
shows the time evolution of the two-dimensional r.m.s. of the sediment bed height fluctuations that is
determined for the non-averaged bed in analogy to equation (6.7), viz.

σh,2D(t) =
[
〈(hb(x, z, t)− 〈hb〉xz(t))

2〉xz

]1/2
. (8.1)

In Scherer et al. (2020), this alternative measure was used to identify the growth of bedforms that
are arbitrarily oriented w.r.t. the mean flow direction (e.g. bedforms that span diagonally across the
domain) and thus might disappear in the spanwise average. Indeed, the time evolution of σh,2D is
seen to be very similar for the three cases in figure 8.2(b), implying that the bed instability mechanism
and the associated growth rate is comparable in narrow and wide domains. However, the narrow
width of the channel case H121 artificially forces the bedforms to be quasi two-dimensional, i.e. more
or less independent of the spanwise direction. The wide domains, on the other hand, allow for the
development of initial bed perturbations that represent nuclei for the later evolving ripples at different
locations in the domain, which can be shifted to one another in both the streamwise and spanwise
direction. In such cases, contributions from different local sediment patches can cancel in the spanwise
average and thus do not contribute to σh,x.

This effect is discernible in figure 8.3, which shows instantaneous states of the extracted fluid-bed in-
terface at different instances of the bedform development t/Tb ∈ {50, 150, 400, 500} for the wide open
channel and duct simulations. During the early phase of sediment bed evolution at t/Tb = 50 (cf. fig-
ures 8.3(a,b)), the bed is entirely covered by streamwise-elongated sediment ridges that reveal only a
weak streamwise modulation. Already 100 bulk time units later (cf. figures 8.3(c,d)), a dominant span-
wise organisation of the sediment bed is clearly visible superimposed on streamwise sediment ‘lines’,
being reminiscent of the original sediment ridges. However, the local sediment agglomerations are
only partly connected and some of them feature a three-dimensional shape comparable to small-scale
versions of three-dimensional barchan dunes (Franklin and Charru, 2011). The described evolution is
in line with the observations of Kleinhans et al. (2002) according to which “gradual transitions exist
from sand ribbons to barchans, and from barchans to fully developed dunes” with increasing particle
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Figure 8.2: Time evolution of the mean bedform amplitude in the long-time ripple-featuring open channel and high aspect
ratio duct flow simulations CL250H16 ( ) and DL250H16 ( ), respectively. (a) One-dimensional root mean square
of the fluctuation of the streamwise-averaged (σh,z/D, ) and spanwise-averaged fluid-bed interface (σh,x/D, ).
(b) Two-dimensional root mean square of the fluctuation of the non-averaged fluid-bed interface σh,2D/D (cf.
definition (8.1)). The same quantities have been also evaluated for a narrow domain open channel case H121 from
Kidanemariam and Uhlmann (2017) ( ), which features except for the domain width Lz/H f ≈ 3 comparable
parameters: Reτ ≈ 250, Lx/H f ≈ 12 and H f /D ≈ 26. In (b), additional vertical dashed lines refer to the times at
which the instantaneous snapshots of the fluid-bed interface have been extracted in the following figure 8.3.

transport intensity. In good agreement with the evolution process described therein, we observe that
the initially localised sediment seeds connect with each other after a while (cf. figures 8.3(e,f )), forming
spanwise-elongated sediment bedforms that span the entire cross-section of almost 16H f width. The
synchronisation of individual bedforms is most likely associated with varying pattern heights, as it is
well known that the streamwise propagation velocity of sediment patterns is inversely proportional
to their size (Kidanemariam and Uhlmann, 2017). Hence, small patterns travel faster than larger ones
such that they can ‘catch up’ and merge with the latter (Zgheib et al., 2018a,b).

However, there is a remarkable difference between the channel and the duct case in that the crest lines
of the bedforms in the latter case are more or less aligned with the spanwise direction, such that the
local bed profile at a given position z is essentially the same as in the spanwise average. In the open
channel, on the other hand, the crest lines of the ripple-like patterns oscillate w.r.t. the lateral direction
such that spanwise averaging partially leads to a cancelling of troughs and crests at specific streamwise
positions. Time-resolved visualisations of the bedform evolution in the open channel case CL250H16

further strengthen the conclusion that it is predominantly due to this ‘cancelling effect’ in the span-
wise averaging that σh,x features a markedly lower growth rate compared to that in the open duct
case DL250H16. In this regard, it is worth noting that the lateral synchronisation of the individual local
sediment patterns occurs much earlier for the open duct case than for the open channel simulation,
which motivates the question whether lateral sidewalls have a ‘stabilising’ effect on the formation of
transverse sediment ripples. To clarify this point, more simulations have to be performed to allow for
ensemble averages that will show whether or not there is such an effect that is of statistical relevance.

In agreement with our earlier observations in chapter 7, it is seen that the lower mass flow rate in the
near-sidewall region of the open duct case DL250H16 leads to a rather weak streamwise particle trans-
port in the corner regions. While the time period investigated in the previous chapter was too short
to observe how the bed-sidewall corner is filled up with sediment, it is now seen that the streamwise-
averaged bed profile h′′b (z, t) even attains its global maxima at the sidewalls. In figures 8.3(e-h), the sed-
iment agglomerations in the near-sidewall regions are seen to be still connected to transverse-bedforms
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Figure 8.3: Instantaneous snapshots of the fluid-bed interface as seen from the top in the long-time ripple-featuring open
channel and high aspect ratio duct flow simulations at (a,b) t = 50Tb, (c,d) t = 150Tb, (e,f ) t = 400Tb and (g,h)
t = 500Tb. Flow is from bottom to top in each panel. (a,c,e,g) CL250H16 ( ), (b,d,f,h) DL250H16 ( ).
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Figure 8.4: Long-time evolution of individual Fourier modes of the single-sided two-dimensional amplitude spectra of the
fluid-bed interface in the large-domain open channel flow simulation CL250H16 in (a) linear and (b) logarithmic
scaling. Dominant modes which exceed a value of 0.4D at least once during the time interval are highlighted with
the following colours: Âh
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/D ( ) and Âh
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/D ( ). Here, the notation Âh

(i,k)

refers to the single-sided amplitude of the (i, k)th harmonic w.r.t. the computational domain (Lx, Lz).

in the duct core that have already travelled downstream, resembling in that way a kind of ‘shear layer’
along the sidewalls. Finally, figures 8.3(g,h) indicate that 500 bulk time units after the onset of sed-
iment erosion, the transverse bedforms in the open channel case CL250H16 have almost reached an
essentially spanwise independent state. In the open duct case DL250H16, on the other hand, the gen-
eral structure of the fluid-bed interface is almost the same as at t = 400Tb, implying that this case has
already reached a quasi-stationary state. Note that quasi-stationary should be understood in the con-
text of the time scale and phase of pattern evolution on which our study focuses. For much longer time
intervals and sufficiently large domains, on the other hand, the patterns are expected to further grow
towards larger-scale bedforms (Coleman and Melville, 1996).

The transition of the ridge-covered sediment bed to one that is dominated by ripple-like patterns in the
doubly-periodic channel can be conveniently quantified in spectral space, as can be seen in figure 8.4.
Having exploited the analogy of the bed undulations to a two-dimensional wave earlier when defin-
ing wavelength and amplitude of the bedforms, it is now straightforward to extend the study to the
Fourier transform of the fluid-bed interface fluctuations, viz. ĥb(kx, kz, t) = F (hb(x, z, t)− 〈hb〉xz(t)).
We compute the single-sided amplitude spectra for the physically relevant non-negative wavenumbers
kx, kz ≥ 0 as (Kidanemariam, 2016; Scherer et al., 2020)

Âh(kx, kz, t) = 2|ĥb(kx, kz, t)| = 2
[

ĥb(kx, kz, t)ĥ∗b(kx, kz, t)
]1/2

. (8.2)

In the remainder of this chapter, we will make use of the short-hand notation Âh
(i,k) to refer to the

single-sided amplitude of the (i, k)th harmonic w.r.t. the computational domain (Lx, Lz).

Figure 8.4 shows the time evolution of the first 15 streamwise and spanwise harmonics as well as the
‘mixed’ modes with i, k 6= 0 for case CL250H16, such that the shortest spanwise wavelength consid-
ered therein is close to unity, while the shortest streamwise wavelength is somewhat lower. Only four
out of 225 considered modes exceed an amplitude of 0.4D at least once during the simulation interval
(coloured in figure 8.4). These four modes are related to the second to forth streamwise harmonic and
are thus associated with transverse ripple-like bedforms. In figure 8.4(b), it can be seen that the four
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‘dominant’ modes initially feature an essentially exponential increase in agreement with earlier obser-
vations in linear stability analyses and numerical simulations (Colombini and Stocchino, 2011; Kidane-
mariam and Uhlmann, 2017). They become relevant during the ripple-dominated phase t & 150Tb,
while their amplitude is negligible in the initial 100 bulk time units during which the pure spanwise
harmonics Âh

(i=0,k) related to sediment ridges still dominate the spectra, even though at relatively low
amplitude O(0.1D). Three of the four coloured modes dominate the spectra for a while, and the se-
quence at which these modes rise and fall is directly correlated with the different phases of bedform
evolution observed in figures 8.3(a,c,e,g): Between t = 100Tb and t = 200Tb, the domain accommodates
three transverse patterns at shorter streamwise wavelength, followed by a period between t = 250Tb

and t = 450Tb during which a ‘mixed’ mode (2, 1) is dominant. This mode is indicative of two larger
transverse bedforms which are however oscillating in the lateral direction, in complete agreement with
the shape of the two sediment patterns in figure 8.3(e). At the end of the observation interval, the crests
of the ripple-like bedforms in figure 8.3(g) are more or less aligned with the z-direction, accordingly
the spanwise constant mode (2, 0) now dominates the spectra.

A detailed analysis of the flow modulation around individual, partly three-dimensional initial bed-
forms is outside the scope of the current study. But the here generated datasets will allow to perform
exactly these kinds of studies in the future by offering the ‘full’ flow field and sediment bed informa-
tion in sufficiently large domains to investigate how ‘vortex ripples’ and the associated shear layers
evolve. The results of such studies are expected to be of high interest for hydraulic and environmental
engineers likewise.

Let us finally comment on a conceivable mechanism in the consequence of which sediment ridges
transform into transverse ripple-like bedforms. The minimal streamwise wavelength of these initial
sediment ripples was recently quantified to be about λcrit ≈ 80D in the current parameter regime (Ki-
danemariam and Uhlmann, 2017; Scherer et al., 2020), which is in excellent agreement with the current
observation that initially three distinct transverse patterns form on the sediment bed (λh,x/D ≈ 100).
In Scherer et al. (2020), a mechanism was proposed following the conceptual ideas of Coleman and
Nikora (2009) according to which a quasi-randomly generated sediment seed induces a downstream
wake in which more quiescent conditions lead to a considerably weaker erosion activity. Consequently,
downstream initial seeds in this wake lack a sufficient sediment supply from upstream to grow further,
such that the next ‘amplified crest’ can develop only at a certain downstream distance to the initial seed
where the wake effect has sufficiently weakened. The collective effect of these processes is a relatively
regular streamwise spacing of initial ripple-like bedforms that is of the order of the streamwise exten-
sion of the seed-wake. The here newly created dataset allows to study the proposed mechanism in a
more or less spatially unconstrained environment.

Figure 8.5 shows an exemplary time series of instantaneous snapshots of the fluid-bed interface similar
to figures 8.3(a,c,e,g), but now focussing on a single ridge that is initially located at a lateral position
of z ≈ 3.75H f in the open channel case CL250H16. Initially (t/Tb = 25), the sediment ridge spans
essentially the entire streamwise domain length Lx/H f , revealing two regions of minimally higher
amplitude at approximately x ≈ 4H f and x ≈ 10H f . In spite of their weak amplitude, the two initial
‘perturbations’ of the streamwise sediment ridge are seen to significantly grow in time over the follow-
ing 125 bulk time units, during which both are seen to propagate downstream at an almost constant
propagation speed of O(0.01ub) or O(0.1uτ), as expected slightly faster than the larger bedforms that
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Figure 8.5: Time series of snapshots visualising how a single sediment ridge perturbation can act as initial seed for transverse
bedform development in the long-time open channel flow simulation CL250H16. (a) Instantaneous snapshots of a
subsection of the fluid-bed interface as seen from the top of the channel are presented at a sequence of times t/Tb =
{25, 50, 75, 100, 125, 150} (from top to bottom). In each panel, the flow is from left to right. The colour ranges from
blue (troughs) to red (crests) in the interval (hb − 〈hb〉xz) ∈ [−1.5D, 1.5D]. (b) Mean fluid-bed interface contour
〈hb − 〈hb〉xz〉z/D, computed as an average over the spanwise subsection of the fluid-bed interface shown in the
corresponding panels in (a) only.

are seen at later times of these simulations. Simultaneously, a deepening of the sediment bed on the lee-
ward side of these seeds is observed which eventually causes the initial ridge to break into a sequence
of localised sediment patches. These latter are then seen to connect with neighbouring seeds to form
larger transverse-aligned sediment bed structures. The observed ‘instability’ of the streamwise sedi-
ment ridge further strengthens the above proposed formation mechanism in that local quasi-randomly
occurring perturbations of the sediment bed can lead to the evolution of transverse bedforms at a pref-
erential streamwise spacing.

To conclude, let us remark that the current discussion of the sediment bed transformation is of rather
phenomenological nature and more comprehensive investigations of an ensemble of individual ridges
are necessary to assess whether or not the outlined process is of statistical relevance for the formation
of transverse sediment patterns. However, the present results strongly suggest that the mechanistic
process conceived by Scherer et al. (2020) based on the results of Coleman and Nikora (2009) can indeed
explain the development of transverse ripple-like patterns in spatially unconstrained domains.
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Chapter 9

Summary and conclusion

Sediment bedforms are ubiquitous in many natural ecosystems, ranging from massive sand dunes
down to small sand seeds in subaqueous environments such as rivers or estuaries. In this context,
streamwise-aligned subaqueous sediment ridges represent a peculiar class of sediment bedforms that
are closely coupled to the structure and organisation of the turbulent flow above them, and they typi-
cally appear side by side with large-scale secondary currents of Prandtl’s second kind. Understanding
the formation of these sediment ridges, the development of a mean secondary flow and the relation
of both to individual turbulent structures is a formidable challenge and in spite of almost a century of
intensive scientific work, many questions remain unanswered. The aim of the current work is to con-
tribute to a better understanding of the complex interactions between the chaotic turbulent flow and
a mobile sediment bed that eventually cause the formation of both secondary currents and sediment
ridges. The novelty of the present work lies in the use of direct numerical simulations featuring up to
1.4 million fully-resolved mobile particles in order to study the mutual interaction between a mobile
sediment bed and individual flow structures from first principles. The current work is, to the best of
our knowledge, the first of its kind in providing high-fidelity data of the formation of sediment ridges
at that level of detail. The newly generated database has allowed us to study instantaneous coherent
velocity structures embedded within the turbulent flow field and their impact on the bed topography
in open channel and duct flows. In this regard, a ‘top-down mechanism’ was detected in which large-
scale coherent structures initiate the formation of long streamwise-aligned sediment ridges. A detailed
summary of the most important findings in each of the four chapters is given in the following, together
with an outlook on future works for which the herein presented results might represent a good starting
point.

9.1 Linear instability of a turbulent flow over initial sediment
ridges

Practically the only extensive theoretical work on the evolution of sediment ridges and the develop-
ment of the associated secondary currents was presented roughly 30 years ago by Colombini (1993).
The author performed a linear stability analysis of a coupled fluid-sediment bed system in an infinitely
wide open channel, in which a turbulent base velocity profile is perturbed by a sinusoidal undulation of
the sediment bed with an infinitesimal amplitude. The study was the first to prove that both sediment
ridges and secondary currents can arise only due to an interaction of a turbulent channel flow with
a slightly perturbed sediment bed. In particular, pre-existing secondary currents induced by lateral
sidewalls are not required for this mechanism. In the current work, we first revisited and implemented
the model of Colombini (1993) in its original formulation, using a standard Chebyshev-tau collocation
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method to solve the linearised system of equations. After a validation of the current method against the
original results, the model results were investigated in more detail than it was possible in the original
work, especially in light of recent numerical and theoretical studies on the organisation of secondary
flows over non-homogeneous bottom walls. It turned out that the model – even though originally for-
mulated for the specific case of streamwise-aligned sediment ridges – predicts quite well the overall
organisation of secondary currents in the cross-plane of these more general type of flow configurations.
Specifically, the spanwise wavelength at which the secondary flow kinetic energy attains its maximum
and the secondary currents become ‘space-filling’ is captured, and so is the tendency of secondary cur-
rents to concentrate to the near-bed region when the spanwise wavenumber tends to infinity. Next, a
comparison with a theoretical model recently proposed by Zampino et al. (2022) that predominantly
aims to predict the mean secondary flow patterns over non-homogeneous bottom walls showed very
good agreement with the model of Colombini (1993) revisited here, despite the use of a different tur-
bulence closure. The comparison indicates that the predictions obtained with the original model of
Colombini (1993) are of physical nature and are not sensitive to the specific turbulence model, as long
as it is elaborate enough to allow for the necessary anisotropy of the Reynolds stress tensor, as otherwise
no secondary currents can evolve.

A second part of the chapter was devoted to the analysis of the original model and to the question of
how the most amplified lateral wavelength λh,z ≈ 1.3H f depends on the different ingredients of the
model. It turned out that the bed modulation acts in a similar way as a stationary external force field
to the linearised stationary Navier-Stokes operator, which is required to maintain the lateral instability
that manifests itself in large-scale depth-spanning secondary currents. In order to further scrutinise
this observation, the original theoretical model was modified by replacing the bottom curvature that
induces the lateral perturbation by an arbitrary external force field. To be able to compare the results
with theoretical investigations of the linear processes in canonical turbulent channel flows, we further-
more added viscous terms to the linear operator that were neglected in the original model formulation.
In the remainder, different external forcing schemes and the corresponding induced flow fields were
investigated, in comparison with studies on transient growth mechanisms (Butler and Farrell, 1993;
Del Álamo and Jiménez, 2006; Pujals et al., 2009) and the externally forced Orr-Sommerfeld problem
(Hwang and Cossu, 2010b). Even though the current model is independent of the streamwise direc-
tion and formulated in a stationary way, it was able to reproduce the formation of streamwise velocity
streaks in the buffer layer for the respective wavenumber and under suitable external forcing, in line
with the less simplified linearised model developed by Hwang and Cossu (2010b). Interestingly, most
intense large-scale velocity streaks and secondary currents arose at essentially the same characteristic
lateral wavelength λh,z ≈ 1.3H f as in the original model for all forcing schemes; including one scheme
that exclusively forced the buffer layer region. This striking observation underlines that the choice of
the most-amplified lateral wavelength in the model is mainly due to the structure of the linearised
Navier-Stokes operator, rather than depending on the specific type of external forcing. The findings
thus imply that a perturbed bottom wall is only one conceivable way to trigger the discussed lateral
instability. In particular, other laterally-varying external forcing types at a suitable lateral wavelength
λh,z ≈ 1.3H f are assumed to equally lead to the evolution of sediment ridges and mean secondary
currents.
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9.2 Turbulent large-scale streaks and sediment ridges in
open channel flow

In contrast to the idealised setting in the linear models discussed before, a fully-turbulent flow is
strongly non-linear and of intermittent character. However, it is nowadays well established that a va-
riety of recurrent coherent structures exist in wall-bounded turbulence that are of crucial importance
for the physical processes in such flows. Of particular relevance for sediment transport are laterally
alternating large-scale high- and low-speed streaks of the streamwise velocity which represent an in-
termittent finite-amplitude modulation of the turbulent mean flow profile (Smits et al., 2011; Jiménez,
2018). In order to study the role of these flow structures for the sediment ridge evolution, a series of di-
rect numerical simulations of doubly-periodic open channel flow has been performed in the course of
this chapter. The series comprises simulations of both single-phase smooth-wall open channel flows as
well as multiphase simulations over thick mobile sediment beds at varying friction Reynolds numbers
200 . Reτ . 830. Remarkably, it was observed that the large-scale velocity structures centring in the
channel bulk are essentially the same in both flow configurations in what concerns shape, organisation
and energy contribution. Conversely, this striking similarity strongly suggests that the presence of a
mobile sediment bed has a rather weak influence on the turbulent large-scale structures, which is in
line with corresponding observations over fully-rough walls (Townsend, 1976; Jiménez, 2004a; Flores
et al., 2007).

Turbulent large-scale structures in canonical wall-bounded flows are well known to penetrate deep
into the near-wall region, where they are able to alter the organisation of the small-scale near-wall flow
structures and to induce outer-scaling regions of intense high and low wall shear stress. The same ob-
servation was made in the context of the flow over mobile sediment beds, where the large-scale velocity
streaks generated laterally alternating zones of high and low bed shear stress, which directly implies
an inhomogeneous erosion activity along the lateral channel direction. After short time intervals of
O(10) bulk time units, this laterally varying erosion rate led to the formation of sediment ridges below
the large-scale low-speed streaks where erosion is reduced. Troughs developed accordingly below the
corresponding large-scale high-speed streaks.

That the bed organisation in the context of this ‘top-down mechanism’ is indeed controlled from the
bulk of the channel by these large-scale streaks was shown by means of two-point two-time correlations.
These implied a strong correlation between the formation of sediment ridges at a given time and the
organisation of the turbulent large-scale structures at an earlier time (about ten bulk time units for the
investigated case CM850H3), revealing the causality between flow structures and the sediment patterns.
In the context of the ‘top-down mechanism’, the sediment ridges naturally ‘inherit’ the characteristic
spanwise spacing of the large-scale structures of λz/H f ≈ 1-2 (Jiménez, 2013a), values that are in
complete agreement with those measured for sediment ridges in laboratory experiments (Wolman and
Brush, 1961; McLelland et al., 1999).

Finally, the loop back to the secondary currents that typically flank sediment ridges on either side
was closed by showing that this mean secondary fluid motion is basically the statistical footprint of the
well-organised large-scale Reynolds stress-carrying structures. In turn, the associated laterally varying
regions of lower and higher mean streamwise velocity in the up- and downflow regions, respectively,
are the signature of the large-scale velocity streaks and their preferential alignment. In particular,
when averaged over intermediate time intervals of O(10) bulk time units length, secondary currents

241



Chapter 9 Summary and conclusion

evolved even in the laterally homogeneous smooth wall open channel featuring a similar size, shape
and strength as their counterparts in the particle-laden cases. These observations eventually strengthen
the conclusion that both secondary currents and sediment ridges originate in the same turbulent large-
scale flow structures, with the secondary currents representing an analogue to the conditional rollers
discussed by Lozano-Durán et al. (2012) and Jiménez (2013a, 2018).

The observed ‘top-down mechanism’ is in accordance with the conceptual model on turbulent struc-
tures of different type and scale in turbulent wall-bounded shear flows proposed by Jiménez (2018, and
references therein) and further supported by Zhou et al. (2022). Therein, turbulent coherent structures
are assumed to form at arbitrary distances to the solid walls in virtue of the local mean shear, rather
than being generated exclusively in the vicinity of the bottom wall. Our simulations show indeed that
large-scale turbulent streaks intermittently break up in analogy to the log-layer bursting of Flores and
Jiménez (2010) and afterwards form again in the channel bulk in significant distance to the sediment
bed. With time, they extend over the entire channel depth, which is again in agreement with the afore-
mentioned model, wherein for the Reynolds stresses, on average, a preferred direction of information
propagation towards the wall was established. In contrast, the ‘top-down mechanism’ conceptually dif-
fers from the linearised model of Colombini (1993) in that a finite-amplitude modulation of the mean
velocity profile in form of the large-scale streaks induces sediment ridge formation, whereas in the
theoretical model an initial infinitesimal bed perturbation triggers a spanwise variation of the velocity
field (‘bottom-up mechanism’). However, even in the model of Colombini (1993) the lateral spacing of
the sediment bedforms is chosen by the linearised Navier-Stokes operator, as it represents the lateral
wavelength for which the flow field exhibits the strongest response (i.e. the maximum lateral bed shear
stress) to the bed formation. This eventually explains the good match of the lateral ridge-spacing in
both cases, despite the conceptually different formation mechanisms.

The data analysed in this chapter contains for the first time a simulation of sediment transport at a
friction Reynolds number high enough to provide a reasonable scale separation between the typical
size of buffer layer structures and that of the large-scale structures in the bulk. On the other hand,
execution of simulations at moderate Reynolds numbers Reτ ≈ 250 are today relatively affordable
even if they include O(105) fully-resolved particles. We are thus now in a position to perform nu-
merical experiments in the style of Jiménez and Moin (1991), Jiménez and Pinelli (1999) or Kwon and
Jiménez (2021), wherein the conditions of the simulations are intentionally modified to exclude, iso-
late or deactivate specific parts or scales of the flow field and check the influence of this modifications
on the remaining flow. In the context of sediment transport, one might, for instance, artificially damp
the outer large-scale flow structures to ‘deactivate’ them such that they cannot contribute to the sedi-
ment erosion and transport. An alternative way of studying the interaction of sediment with turbulent
structures at a very specific scale is by means of multiphase simulations of invariant solutions such as
travelling waves or periodic orbits. Pestana et al. (2020) recently used the upper branch solution of Na-
gata (1990) to investigate the dynamics of a small number of particles in such systems, allowing them
to reproduce the typical behaviour of particles in fully-turbulent flows to propagate into the low-speed
streaks of the buffer layer. One of the advantages of such simulations is that they consist exclusively
of ‘exact coherent structures’ (Waleffe, 2003) whose dynamics are known a priori (except for particle-
induced modulations), which greatly simplifies the analysis of causal connections between individual
flow structures and the particle dynamics.
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9.3 Coherent structures and sediment ridges in open duct
flow

Even though lateral sidewalls as they appear in man-made canals or in form of river side-banks in
natural flows have been shown to be not required for the evolution of sediment ridges, the presence of
lateral domain boundaries nonetheless affects the afore discussed formation process. The subsequent
chapter was therefore dedicated to the analysis of sediment ridge formation in narrow and wide open
duct flows. For this purpose, a series of direct numerical simulations of sediment bed evolution in open
duct flows was performed for low and high aspect ratios of AR ≈ 1 and AR ≈ 8 (AR = Lz/(2H f )),
respectively. The simulations cover a range of friction Reynolds numbers 150 . Reτ . 500 and were
supplemented with a number of single-phase smooth-wall open duct flows, that were partly performed
in the course of this work. The remaining single-phase datasets and long-time statistics of those were
kindly provided by Y. Sakai (Sakai, 2016).

The formation of sediment ridges turns out to be somewhat different in narrow open duct flows, where
the influence of the lateral sidewalls on the flow is omnipresent, and in the core of wide open duct
flows, where the impact of the boundary is much weaker. The flow organisation in the core of high-
aspect ratio open ducts thus closely resembled that in open channel flows, including the appearance of
large-scale velocity streaks and Reynolds stress-carrying structures at essentially the same preferential
lateral spacing of λz/H f ≈ 1-2 as in canonical wall-bounded flows. As a consequence, sediment ridges
and troughs were seen to form in virtue of the same ‘top-down mechanism’ as in open channel cases,
caused by large-scale velocity streaks that span the entire channel depth and thus induce a laterally
varying bed shear stress. Considering time averaging intervals of O(10) bulk time units length, the
entire cross-section of the single-phase and particle-laden wide ducts were covered by depth-spanning
counterrotating large-scale secondary currents. These features thus represent the ‘instantaneous sec-
ondary currents’ that were postulated by Nezu (2005) to play a role in sediment ridge formation. Only
for sufficiently long time intervals of at least O(103) bulk time units length, the mean secondary cur-
rents were seen to disappear in the duct core due to a cancelling of structures of different sign in the
long-time average. The ridge-featuring cases, on the other hand, could not be executed over compara-
bly long time intervals which would be however necessary to give a conclusive answer on whether or
not ridges are able to stabilise secondary currents, as was argued in some experimental studies (Nezu,
2005).

Sediment ridges in narrow open duct flows feature – on average – a lower amplitude than those in the
core of wide ducts. In these cases, the small duct width typically allows to accommodate two ridges
and a single trough in between, roughly located at the duct bisector where the mean secondary flow
transports high momentum fluid down to the bed. The flow structures responsible for the develop-
ment of these ridges cannot be the same as in the open channel case, since the domain is too narrow
to host more than a single large-scale high-speed region. In fact, it was seen that the bed development
is in these narrow cases predominantly controlled by smaller, but nevertheless outer-scaling velocity
structures, which centre roughly 0.2H f above the sediment bed. The causal connection between these
flow structures and the sediment ridges and troughs was shown in a similar way as for the open chan-
nel case based on two-point two-time correlations, which similarly revealed a time shift at which the
sediment bed evolution lags the dynamics of the turbulent velocity streaks.
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The presence of a mobile sediment bed was seen to alter the mean secondary flow patterns in the
duct cross-section. On the one hand, the mean bottom vortices in the corners between sidewalls and
sediment bed were seen to shrink, being more confined to the corner regions for sediment-laden flows
than for smooth-wall ducts. On the other hand, the mean secondary flow intensity averaged over the
entire cross-section seemed to increase over the mobile sediment bed due a strengthening of the outer
mean secondary vortex cells. Even though this point cannot be finally clarified based on the current
datasets alone due to the relatively short averaging time interval, we nevertheless suspect that the
intensification of the mean secondary flow is a consequence of a stronger redistribution of momentum
across the cross-section due to the different friction along the smooth sidewall and the mobile sediment
bed, in agreement with findings of various experimental investigations (Nezu and Nakagawa, 1993;
Rodríguez and García, 2008; Albayrak and Lemmin, 2011). The question on the influence of sidewall
and bottom roughness on the secondary flow organisation is here of particular interest, but to the best of
the author’s knowledge no detailed numerical investigations of this problem exist up to the present day.
On the other hand, channel flow over a fully rough wall covered by fully-resolved spherical roughness
elements was recently studied by Mazzuoli and Uhlmann (2017), and a similar scenario with immobile
spheres attached to the bottom wall, the sidewalls or both is also conceivable for the here considered
open ducts in future studies.

Having seen that the flow organisation responsible for the sediment ridge evolution in narrow do-
mains differed clearly from that in laterally more or less unconstrained regions of the flow, a special
focus was placed on the preferential organisation of instantaneous coherent structures in the remainder
of the chapter. To this end, two-point velocity correlations were analysed in order to get an impression
on the average organisation of large-scale flow structures. The correlation patterns exhibit a surpris-
ingly good qualitative similarity to their counterparts in canonical wall-bounded flows (Sillero et al.,
2014; Jiménez, 2018). Also, the characteristic structures of the correlation field in the lower half of the
duct cross-section revealed comparable sizes as the flow structures seen to be responsible for the sed-
iment ridge formation. In addition to these two-point statistics, instantaneous small- and large-scale
streamwise velocity streaks were extracted from the available flow realisations using two different ap-
proaches, one originally proposed by Moisy and Jiménez (2004) to detect three-dimensional coherent
structures and one used by Nakatsuji (2012) and Sakai (2016) to extract high- and low-speed regions in
instantaneous cross-sections of closed and open duct flows, respectively. Both agree in the conclusion
that streamwise velocity streaks of different size preferentially reside in different regions of the domain
for single-phase and particle-laden simulations likewise. In agreement with studies in turbulent chan-
nels and boundary layers (Sillero, 2014; Jiménez, 2018), the streaks could be classified into a self-similar
family of wall-attached structures (Townsend, 1976; Jiménez, 2012) and a group of detached objects. In
addition, a third group was seen to be attached to the free surface. While the shortest representatives
of the self-similar family are the small-scale buffer layer streaks, the largest ones feature dimensions
comparable to the mean fluid height H f .

As opposed to large-scale streaks, the preferential locations of small-scale quasi-streamwise vortices
appearing in the near-bed and near-sidewall region were seen to clearly differ in the presence of a
mobile particle bed. On the one hand, more vortices were generated along the bed in the wakes of
individual particles, but these are rather randomly spaced and cancel each other such that they do not
contribute to the mean vorticity field 〈ω f ,x〉xt. In the corners between the sidewalls and the sediment
bed where sediment transport is rather weak, on the other hand, the preferred organisation of the
quasi-streamwise vortices was seen to differ from that in the smooth wall case due to the absence of
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a nearby impermeable bottom wall. This deviation is most likely responsible for the modified mean
secondary bottom vortex, which is in turn connected to the local vorticity field by a Poisson equation.

In the final section of the chapter, agglomerations of individual smaller vortices in form of small- and
large-scale vortex clusters were scrutinised, in a similar way as in the studies by Del Álamo et al. (2006)
and Lozano-Durán et al. (2012) on closed channel flows. In accordance with their findings, also the
vortex clusters could be classified into a self-similar cascade of structures attached to the bottom wall
and a second group of detached clusters, from which some where however attached to the free surface.
These latter are of large interest especially in the context of interfacial mass transfer (Nagaosa, 1999;
Pinelli et al., 2022) and a more detailed investigation of these structures could be of high relevance
for the understanding of gas exchange processes across the fluid-air interface. The vortex clusters
themselves span a range of sizes, from the smallest clusters that basically consist of single buffer layer
vortices to structures whose dimensions attain values comparable to H f and thus take up a significant
fraction of the cross–section. The particular organisation of these small- and large-scale structures
within the cross-section together with their sense of rotation revealed an astonishing similarity with
the mean secondary flow field. These observations corroborate those of Kawahara et al. (2012b) who
investigated large-scale rotating motions in closed ducts by means of a poloidal-toroidal decomposition
and concluded that these features are closely related to both the mean secondary flow and the vortex
clusters studied in the current work. It was therefore claimed that the mean secondary flow could be
the collective statistical footprint of the small- and large-scale vortex clusters. In the current work, the
analysis of Kawahara et al. (2012b) was repeated for the here considered open duct flows and similar
conclusions could be drawn. In the near future, further investigations both in open and closed duct
flows are planned in order to clarify this suspected relation. In this context, it might be also worth
studying the dynamics of the extracted streaks and vortex clusters in greater detail, following a similar
approach as in Lozano-Durán and Jiménez (2014b) or in Sakai (2016). In particular, such analysis would
tackle the question where in the cross-section coherent structures are born, whether they are advected
throughout the cross-section and where they eventually ‘die’.

Generally, it would be desirable to extend the current database of open duct flows both over smooth
walls and mobile sediment beds, which is today still limited to relatively low Reynolds numbers Reτ .

500. To allow for a clear scale separation of at least one order of magnitude between the buffer layer
and the outer length scales, Reynolds numbers of Reτ ≥ 1000 are required such that H+

f /100 & 10.
Recently, this level was reached for direct numerical simulations in closed ducts (Pirozzoli et al., 2018),
but for open duct flows such datasets are still lacking.

9.4 Transition from sediment ridges to initial ripples

While the main objective of the previous chapters was to contribute to the understanding of the ba-
sic formation processes due to which sediment ridges arise, in the final chapter we aimed to provide
a prospect on later stages of the bed evolution during which sediment ridges are concurring and in-
teracting with more dominant transverse bedforms. Specifically, we showed how the ridge-covered
sediment bed gradually transforms into a ripple-featuring sediment bed in the largest domains with
streamwise and spanwise dimensions Lx/H f ≈ 12 and Lz/H f ≈ 16, respectively. Three main stages
of the sediment bed evolution can be distinguished in this context, the first of which is characterised
by a set of streamwise-elongated sediment ridges at rather low amplitude. In the third phase, on the
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other hand, the domain accommodates two ripple-like transverse bedforms at clearly higher ampli-
tude whose crest-lines are essentially parallel to the lateral direction. The phase in between these two
states is a transient period, during which small sediment seeds were observed to appear on the sedi-
ment ridges that grow and propagate downstream, while a trough region develops in their lee. This
evolution of transverse bedforms starting from initially localised sediment seeds is in good agreement
with recently proposed formation mechanisms for this kind of bedforms (Kleinhans et al., 2002; Cole-
man and Nikora, 2009; Scherer et al., 2020). Eventually, the sediment ridge breaks into several of these
seeds, which were seen to synchronise with their lateral neighbours after a while to connect to wider
bedforms that finally span over the entire channel or duct width. However, the transformation process
itself was observed to happen faster for the duct flow, while the bed in the channel flow remained over
a longer period in an intermediate state during which the transverse bedforms still exhibited a lateral
variation.

A full analysis of this later stages of bedform evolution would have taken us too far from the actual topic
of this work, i.e. the evolution of sediment ridges and their relation to turbulent coherent structures,
but the datasets provided in this final chapter represent an interesting point of departure for future
studies on transverse pattern formation. In particular, it will be an interesting task to scrutinise in
detail how the near-bed flow field changes with rising amplitude of the transverse bedforms with a
focus on the flow separation that occurs as soon as the pattern crests reach a sufficiently large height.
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Appendix A

Derivation of the perturbed system for
the linear stability analysis

A.1 Derivation of the perturbed linearised equations

A.1.1 Governing equations in the new non-orthogonal coordinate system

Substituting the transformed derivatives (5.18) into the reduced non-dimensional system (5.2) and mul-
tiplying by H(ζ), we eventually obtain the transformed governing equations of fluid motion as

H(ζ)
∂U

∂t
+ [V − m(ζ)W]

∂U

∂η
+ H(ζ)W

∂U

∂ζ
=

∂τxy

∂η
− m(ζ)

∂τxz

∂η
+ H(ζ)

∂τxz

∂ζ
+ H(ζ)

S

Fr2
(A.1a)

H(ζ)
∂V

∂t
+ [V − m(ζ)W]

∂V

∂η
+ H(ζ)W

∂V

∂ζ
=

∂τyy

∂η
− m(ζ)

∂τyz

∂η
+ H(ζ)

∂τyz

∂ζ
− ∂P

∂η
(A.1b)

H(ζ)
∂W

∂t
+ [V − m(ζ)W]

∂W

∂η
+ H(ζ)W

∂W

∂ζ
=

∂τyz

∂η
− m(ζ)

∂τzz

∂η
+ H(ζ)

∂τzz

∂ζ

+ m(ζ)
∂P

∂η
− H(ζ)

∂P

∂ζ
(A.1c)

∂V

∂η
− m(ζ)

∂W

∂η
+ H(ζ)

∂W

∂ζ
= 0. (A.1d)

For the sake of readability, we have therein introduced the notation

m(ζ) =

[
η

dH

dζ
+

dB

dζ

]
= − [h1 η + 1] ǫ exp(σT)α sin(αζ).
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A.1.2 Perturbed mean rate of strain tensor

Inserting the perturbation ansatz functions (5.14) for the velocity gradients in Dij, the six independent
entries of the mean rate of strain tensor are obtained as





Dxx = 0

Dxy =
1

2

dU0

dy
+

1

2
ǫ

du1

dy
exp(σT) cos(αz)

Dxz = −1

2
ǫu1α exp(σT) sin(αz)

Dyy = ǫ
dv1

dy
exp(σT) cos(αz)

Dyz = −1

2
ǫ

[
dw1

dy
+ v1

]
α exp(σT) sin(αz)

Dzz = −ǫw1α2 exp(σT) cos(αz).

(A.2)

It can then directly be seen that the quadratic terms DimDmj and DmnDmn in equation (5.9) are of order
O(ǫ0) or O(ǫ1) if and only if one of the two matrix entries is Dxy. Mapping Dij into the new coordi-
nate system (η, ζ) using the non-orthogonal coordinate transformation introduced in equations (5.16),
(5.17b) and (5.18), the components of the mean rate of strain tensor Dij transform into





Dxx = 0

Dxy =
1

2H(ζ)

dU0

dη
+

1

2H(ζ)
ǫ

du1

dη
exp(σT) cos(αζ)

Dxz = − m(ζ)

2H(ζ)

dU0

dη
− m(ζ)

2H(ζ)
ǫ

du1

dη
exp(σT) cos(αζ)− 1

2
ǫ u1α exp(σT) sin(αζ)

Dyy =
1

H(ζ)
ǫ

dv1

dη
exp(σT) cos(αζ)

Dyz = − m(ζ)

2H(ζ)
ǫ

dv1

dη
exp(σT) cos(αζ)− 1

2
ǫ

[
1

H(ζ)

dw1

dη
+ v1

]
α exp(σT) sin(αz)

Dzz =
m(ζ)

H(ζ)
ǫ

dw1

dη
α exp(σT) sin(αζ)− ǫ w1α2 exp(σT) cos(αζ).

(A.3)
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A.1.3 Perturbed non-linear Reynolds stresses

The resulting entries of the linear turbulent shear stress tensor τL then read





τL
xy =

νt0

H(ζ)
U′

0 + ǫ
νt0

H(ζ)
[2u′ + U′

0h1] exp(σT) cos(αζ) +O(ǫ2)

τL
xz = −m(ζ)

H(ζ)
νt0U′

0 − ǫ

[
m(ζ)

H(ζ)
νt0 (2u′ + U′

0h1)

]
exp(σT) cos(αζ)

−ǫ [νt0u1α] exp(σT) sin(αζ) +O(ǫ2)

τL
yy = −2

3
k + ǫ

[
2

H(ζ)
νt0v′1

]
exp(σT) cos(αζ) +O(ǫ2)

τL
yz = −ǫ

[
m(ζ)

H(ζ)
νt0v′1

]
exp(σT) cos(αζ)

−ǫ

[
v1νt0α +

1

H(ζ)
νt0w′

1α

]
exp(σT) sin(αζ) +O(ǫ2)

τL
zz = −2

3
k + ǫ

[
2m(ζ)

H(ζ)
νt0w′

1α

]
exp(σT) sin(αζ)− ǫ

[
2νt0w1α2

]
exp(σT) cos(αζ)

+O(ǫ2).

In the equations for τL
xy and τL

xz, we have made use of the relation ν = νt0 (h1 + u′
1/U′

0) (equation
(5.7a, b) in Colombini, 1993) which originates in the adopted mixing length hypothesis. Similarly, one
derives the non-linear contribution of the Reynolds stress tensor, τNL, arising from the turbulence
model presented by Speziale (1987). Keeping only contributions of order O(ǫ0) or O(ǫ1) therein, the
individual entries read:





τNL
xy = ǫ

1

H(ζ)2

[(
1

2
CD − 3

2
CE

)
l2
0U′

0v′1 +
1

2
l2
0U′′

0 v1

]
exp(σT) cos(αζ) +O(ǫ2)

τNL
xz = ǫ

1

H(ζ)

[
−
(

1

4
CD − CE

)
l2
0U′

0w′
1α −

(
1

4
CD − 1

2
CE

)
l2
0U′

0v1α

]
exp(σT) sin(αζ)

+O(ǫ2)

τNL
yy = ǫ

1

H(ζ)2

[(
1

6
CD +

2

3
CE

)
l2
0U′

0u′
1 +

(
1

6
CD +

2

3
CE

)
l2
0(U

′
0)

2h1

]
exp(σT) cos(αζ)

+O(ǫ2)

τNL
yz = − m(ζ)

H(ζ)2

[
1

4
CD(U

′
0)

2l2
0

]

−ǫ
1

H(ζ)

[
1

4
CDU′

0u1αl2
0

]
exp(σT) sin(αζ)

+O(ǫ2)

τNL
zz = − 1

H(ζ)2

[(
1

6
CD − 1

3
CE

)
(U′

0)
2l2

0

]

+ǫ
1

H(ζ)2

[(
1

3
CD − 2

3
CE

)
l2
0U′

0u′
1 −

(
1

3
CD − 2

3
CE

)
(U′

0)
2l2

0h1

]
exp(σT) cos(αζ)

+O(ǫ2)
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A.1.4 Perturbed linear system

The equations for the perturbation amplitudes u1, v1, w1 and p1 are found when collecting all terms of
O(ǫ1) in the transformed equations (A.1) after having inserted the above derived expressions for the
Reynolds stress components. The resulting linear system can be written in matrix-vector form as

Aq =




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44







u1

v1

w1

p1


 = h1B + R, (A.4)

where the individual entries of the matrix A are defined as:




a11 = 2
(
vt0d2/dη2 + v′t0d/dη

)
− α2vt0

a12 = −
[

U′
0 +

(
1

4
CD − 1

2
CE

)
α2l2

0U′
0 − CEl0l′0U′′

0 − 1

2
CEl2

0U′′′
0

]

a13 =

(
1

4
CD − 1

2
CE

)
α2l2

0U′
0d/dη +

[(
1

2
CD − 3

2
CE

)
α2
(
2l0l′0U′

0 + l2
0U′′

0

)
+

1

2
CEα2l2

0U′′
0

]

a14 = 0

a21 =

(
1

6
CD +

2

3
CE

) [
l2
0U′

0d2/dη2 +
(
2l0l′0U′

0 + l2
0U′′

0

)
d/dη

]
− 1

4
CDα2l2

0U′
0

a22 = −α2vt0, a23 = α2vt0d/dη + 2α2v′t0, a24 = −d/dη

a31 = −
(

1

12
CD − 2

3
CE

)
l2
0U′

0d/dη +
1

4
CD

(
2l0l′0U′

0 + l2
0U′′

0

)

a32 = v′t0
a33 = 1

(
vt0d2/dη2 + v′t0d/dη

)
− α2vt0

a34 = −1

a41 = 0, a42 = d/dη, a43 = −α2, a44 = 0.
(A.5)

Note that it is not explicitly written in Colombini (1993) that the pre-factor in a11 differs from that in
a33, but it was verified in the course of the present derivations that this is indeed the case. The vectors
B and R that form the RHS of equation (A.4) read

B =




−C0 − α2νt0U′
0η

−1

4
CDα2l2

0(U
′
0)

2η

1

4
CDl2

0(U
′
0)

2

0




, R =




−α2νt0U′
0

−1

4
CDα2l2

0(U
′
0)

2

0

0




. (A.6)

Note that in the equations presented in appendix A of Colombini (1993), a minus sign (highlighted
in red) is missing in the second entry of B and R, as can be verified by either deriving the equations
following the procedure described above or by comparison with the respective equations provided
in Colombini and Parker (1995). The current problem is a special case of the more general situation
described therein.
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For the perturbed flow equations, no-slip boundary conditions are imposed at the reference level η0

(i.e. u1(η0) = v1(η0) = w1(η0) = 0), while at the free surface a solution has to fulfil the following
boundary conditions:

τyz|η=1 = 0 =⇒ 0 = νt0 (v1 + w′
1) +

1

4
CDl2

0U′
0u1

τxy|η=1 = 0 =⇒ 0 = 2νt0u′
1 +

(
1

2
CD − 3

2
CE

)
l2
0U′

0α2w1 +
1

2
CEl2

0U′′
0 v1

(
P + τyy

)
|η=1 = 0 =⇒ 0 = −p1 +

h1

Fr2
+ 2νt0α2w1 +

(
1

6
CD +

2

3
CE

)
l2
0U′

0u′
1

V|η=1 = 0 =⇒ 0 = v1.

(A.7)

While the first three equations represent dynamical boundary conditions, the last line indicates an im-
permeability condition for the free surface, i.e. it ensures that there is no mass flux across the interface.

A.1.5 Perturbed sediment bed continuity equation

In a similar way as for the reduced RANS system (5.2), the bed continuity equation (5.4) can be rewritten
in the context of the new non-orthogonal coordinate system (η, ζ)T as

∂B

∂t
= −Qre f

(
−m(ζ)

H

∂Q

∂η
+

∂Q

∂ζ

)
. (A.8)

Inserting the empirical relation of Meyer-Peter and Müller (1948) (i.e. relation (5.5b)) into equation (A.8)
to link the spanwise sediment flux to the fluid shear stress, we obtain

∂B

∂
(
tQre f

) = −
(
−m(ζ)

H

∂

∂η
+

∂

∂ζ

) [
Φ(θ)

(
τt

τ
− 0.3

θ1/2

(
−m(ζ)

H

∂B

∂η
+

∂B

∂ζ

))]
. (A.9)

Recalling the following expressions for the derivatives of the sediment bed height B(ζ)

∂B

∂
(
t Qre f

) =
∂B

∂T
= ǫσ exp(σT) cos(αζ)

∂B

∂η
= 0

∂B

∂ζ
= −ǫ α exp(σT) sin(αζ)

∂2B

∂ζ2
= −ǫ α2 exp(σT) cos(αζ)

and focussing on terms of O(ǫ1) only, equation (A.9) can be further simplified, viz.

1

Φ(θ0)
ǫ σ exp(σT) cos(αζ) = −

[
∂

∂ζ

(τt

τ

)]

η0

− ǫ α2 0.3

θ1/2
exp(σT) cos(αζ). (A.11)
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Substituting the first term on the RHS which contains the ratio between tangential perturbed shear
stress τt = W ′(η) and the amplitude of the bottom shear stress in the base flow τ = U′

0(η), viz.

[
∂

∂ζ

(τt

τ

)]

η0

=

[
∂

∂ζ

(
ǫ w′

1α exp(σT) sin(αζ)

U′
0

)]

η0

=

[
−ǫ

w′
1α2

U′
0

exp(σT) cos(αζ)

]

η0

,

(A.12)

we finally arrive at a dispersion relation for the growth rate σ as

σ

Φ (θ0) α2
=

[
w′

1

U′
0

]

η0

− 0.3

θ1/2
0

. (A.13)

A.2 Discrete problem

The continuous problem consisting of the base flow equations (5.25) and the perturbed equations (A.4)
is in the following discretised on a set of Nη + 1 Chebyshev-Gauss-Lobatto collocation points following
the definitions in section 5.2.

For the base flow equations (5.25), the discrete system reads

(Dηνt0N Dη + diag(νt0N)Dηη)U0N = −C01(Nη+1)×1, (A.14)

introducing the notations 1m×n for a m × n matrix whose entries are all equal to unity and diag(an) for
a n × n diagonal matrix whose main diagonal is filled with the n entries of vector an. By integration of
the second equation in (5.25), we arrive at an algebraic expression for the linear profile of the discrete
pressure

(P0N)k = P0|η=1 −
(

1

6
Cd +

2

3
Ce

)
C0

2
(1 − ηk). (A.15)

It should be noted that U0N and P0N are (Nη + 1)× 1 vectors that contain the unknowns evaluated at
each collocation point.
The discrete version of the perturbed system (A.4) can be written in the following matrix-vector form:

AqN =




(a11)N (a12)N (a13)N (a14)N

(a21)N (a22)N (a23)N (a24)N

(a31)N (a32)N (a33)N (a34)N

(a41)N (a42)N (a43)N (a44)N







uN

vN

wN

pN


 = h1BN + RN . (A.16)

Here, uN , vN , wN , pN are vectors of size (Nη + 1)× 1 that contain the unknowns evaluated at each of
the collocation points, e.g. [uN ]k = û1(ηk). The discrete counterpart to the continuous vector q contains
the four sub-vectors, i.e.

qN = (uN , vN , wN , pN)
T

= (û1(η0) . . . û1(ηN), v̂1(η0) . . . v̂1(ηN), ŵ1(η0) . . . ŵ1(ηN), p̂1(η0) . . . p̂1(ηN))
T ,

(A.17)
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and is thus of size 4(Nη + 1) × 1, just as the right hand side vectors BN and RN . Similarly, (aij)N

represents a submatrix of the discrete linear differential operator of size (Nη + 1)× (Nη + 1) in which
the derivatives w.r.t. η are expressed using the afore defined collocation derivative matrices:

(a11)N = 2 diag(νt0N)Dηη + 2 diag(Dηνt0N)Dη − α2 diag(νt0N)

(a12)N = −
[
diag(DηU0) +

(
1
4 CD − 1

2 CE

)
α2 diag(l0N)

2 diag(DηU0N)

−CE diag(l0N) diag(Dη l0N) diag(DηηU0N)− 1
2 CE diag(l0N)

2 diag(DηηηU0N)
]

(a13)N =
(

1
4 CD − 1

2 CE

)
α2 diag(l0N)

2 diag(DηU0N)Dη

+
[(

1
2 CD − 3

2 CE

)
α2
(
2 diag(l0N) diag(Dη l0N) diag(DηU0N)

+ diag(l0N)
2 diag(DηηU0N)

)
+ 1

2 CEα2 diag(l0N)
2 diag(DηηU0N)

]

(a14)N = 0(Nη+1)×(Nη+1)

(a21)N =
(

1
6 CD + 2

3 CE

) [
diag(l0N)

2 diag(DηU0N)Dηη

+
(
2 diag(l0N) diag(Dη l0N) diag(DηU0N) + diag(l0N)

2 diag(DηηU0N)
)

Dη

]

− 1
4 CDα2 diag(l0N)

2 diag(DηU0N)

(a22)N = −α2 diag(νt0N)

(a23)N = α2 diag(νt0N)Dη + 2α2 diag(Dηνt0N)

(a24)N = −Dη

(a31)N = −
(

1
12 CD − 2

3 CE

)
diag(l0N)

2 diag(DηU0N)Dη

+ 1
4 CD

(
2 diag(l0N) diag(Dη l0N) diag(DηU0N) + diag(l0N)

2 diag(DηηU0N)
)

(a32)N = diag(Dηνt0N)

(a33)N = 1 diag(νt0N)Dηη + 1 diag(Dηνt0N)Dη − α2 diag(νt0N)

(a34)N = −I(Nη+1)×(Nη+1)

(a41)N = 0(Nη+1)×(Nη+1), (a42)N = Dη

(a43)N = −α2I(Nη+1)×(Nη+1), (a44)N = 0(Nη+1)×(Nη+1).

(A.18)

Here, we have used the matrix definitions 0m×n for a zero matrix of dimensions m × n and In×n for the
n × n identity matrix. The vectors BN and RN are defined as (again highlighting the minus sign that
was missing in Colombini (1993) by red colour)

BN =




−C01(Nη+1)×1 − α2 diag(νt0N) diag(DηU0N)ηN

−1

4
CDα2 diag(l0N)

2 diag(DηU0N)
2ηN

1

4
CD diag(l0N)

2 diag(DηU0N)
21(Nη+1)×1

0(Nη+1)×1




(A.19)

and
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RN =




−α2 diag(νt0N) diag(DηU0N)1(Nη+1)×1

−1

4
CDα2 diag(l0N)

2 diag(DηU0N)
21(Nη+1)×1

0(Nη+1)×1

0(Nη+1)×1




, (A.20)

respectively. It should be noted that the component-wise product of two vectors (also known as
‘Hadamard product’) is here established as the product of the diagonal matrices of the two vectors. In
matlab, there is an alternative way to come to the same result, i.e. by taking the .* product between
two vectors. Usually, both procedures lead to identical results in matlab, but this is not true in the case
of a singularity in one of the two vectors, as it appears in the present case for l′0(1). In this case, only
the .* product ensures that the singularity remains in the same vector entry also for the product, while
the matrix resulting from the product of the diagonalised vectors becomes singular. For this reason,
above equations are implemented in matlab making use of the .* product.
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A.2.1 Discrete boundary conditions

In the framework of the here chosen Chebyshev-tau method, the discrete linearised boundary condi-
tions are directly written into the discrete linear operator matrix AN in the rows related to ηN(1) (i.e.
k = 0) and ηN(Nη + 1) (i.e. k = Nη). Thus, for the no-slip condition, [AN ]ii = 1 and [BN · h1 + RN ]i = 0

for i = {1, (Nη + 1) + 1, 2(Nη + 1) + 1}. For the free surface conditions, on the other hand, we have to
replace the entire row of the matrix for i = {(Nη + 1), 2(Nη + 1), 3(Nη + 1), 4(Nη + 1)}, respectively,
by the discretised version of the boundary conditions:

for i = Nη + 1, iloc = Nη + 1 :

[
1

4
CDl2

0N(iloc)Dη(iloc, •)U0N

]
uN(iloc) + [νt0N(iloc)] vN(iloc)

+
[
νt0N(iloc)Dη(iloc, •)

]
wN + [0] pN(iloc)

= [0] h1 + [0]

for i = 2(Nη + 1), iloc = Nη + 1 :

[
2νt0N(iloc)Dη(iloc, •)

]
uN +

[
1

2
CEl2

0N(iloc)Dηη(iloc, •)U0N

]
vN(iloc)

+

[(
1

2
CD − 3

2
CE

)
l2
0N(iloc)Dη(iloc, •)U0Nα2

]
wN(iloc) + [0] pN(iloc)

= [0] h1 + [0]

for i = 3(Nη + 1), iloc = Nη + 1 :

[(
1

6
CD +

2

3
CE

)
l2
0N(iloc)Dη(iloc, •)U0N Dη(iloc, •)

]
uN + [0] vN(iloc)

+
[
2νt0N(iloc)α

2
]

wN(iloc) + [−1] pN(iloc)

=

[
− 1

Fr2

]
h1 + [0]

for i = 4(Nη + 1), iloc = Nη + 1 :

[0] uN(iloc) + [1] vN(iloc) + [0]wN(iloc) + [0] pN(iloc)

= [0] h1 + [0] ,

(A.21)

where iloc is the local row-index in each of the (Nη + 1)× (Nη + 1) sub-matrices (aij)N . A • as matrix
index indicates that the entire index range is used here, so the notation Dη(i, •) stands for the ith row
of the derivative matrix. In case of De Vriend (1977)’s model, however, l0(η = 1) = νt0(η = 1) = 0 and
thus, the first two equations reduce to the trivial statement 0 = 0. To avoid a singular discrete linear
differential operator AN , we set homogeneous Neumann boundary conditions at the free surface for
u1, w1, p1 instead.
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Appendix A Derivation of the perturbed system for the linear stability analysis

A.2.2 Discrete linear system

In case the solution of the linear system should be solved for the case that h1 is a free additional pa-
rameter, we reformulate problem (A.16) by adding h1 to the vector of unknowns qN :

ÃN q̃N =




(a11)N (a12)N (a13)N (a14)N −(BN)1

(a21)N (a22)N (a23)N (a24)N −(BN)2

(a31)N (a32)N (a33)N (a34)N −(BN)3

(a41)N (a42)N (a43)N (a44)N −(BN)4

top b.c. in z-momentum







uN

vN

wN

pN

h1




=




(RN)1

(RN)2

(RN)3

(RN)4

0




. (A.22)

Here, we have used the free surface boundary condition that results from the momentum equation in
the z-direction as constraint for the parameter h1 to give the system a unique solution. The remaining
boundary conditions at the bottom and at the free surface are directly imposed into the matrix by
replacing the respective rows in the modified system matrix and vectors.

A.2.3 Discrete dispersion relation

As a consequence of the assumptions concerning the different time scales of flow field dynamics and
sediment bed evolution, the perturbed equations for fluid and sediment bed are only ‘one-way cou-
pled’, i.e. the linearised equations of fluid motion are completely decoupled from the sediment bed
continuity equation and can be solved independently of the latter. The discretised sediment bed con-
tinuity equation which has the role of a dispersion relation in the given problem, on the other hand,
depends on the perturbed and base flow via the term [w′

1/U′
0]η0

. Thus, the growth rate σ can be com-
puted a posteriori from the discretised version of equation (A.13) that reads

σ

Φ (θ0) α2
=

[
ŵ′

1(1)

U′
0

N(1)

]
− c

θ1/2
0

. (A.23)

A.3 Finite-Reynolds number horizontal channel

In the case of finite Reynolds number flows in which viscous effects are not neglected, the boundary
conditions at the free surface change slightly compared to those used in case of an infinitely large
Reynolds number in equations (A.7). For the perturbed flow equations, no-slip boundary conditions
are imposed at the reference level which is for the smooth wall case η0 = 0 (i.e. u1(η0) = v1(η0) =
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A.3 Finite-Reynolds number horizontal channel

w1(η0) = 0), while at the free surface an admissible solution has to fulfil the following boundary
conditions:

(τyz + τv
yz)|η=1 = 0 =⇒ 0 =

(
νt0 +

1

Reb

)
(v1 + w′

1) +
1

4
CDl2

0U′
0u1

(τxy + τv
xy)|η=1 = 0 =⇒ 0 =

(
2νt0 +

1

Reb

)
u′

1 +

(
1

2
CD − 3

2
CE

)
l2
0U′

0α2w1 +
1

2
CEl2

0U′′
0 v1

(P + τyy + τv
yy)|η=1 = 0 =⇒ 0 = −p1 + 2

(
νt0 +

1

Reb

)
α2w1 +

(
1

6
CD +

2

3
CE

)
l2
0U′

0u′
1

V|η=1 = 0 =⇒ 0 = v1.
(A.24)

Here, τv
ij = (∂iUj + ∂jUi)/Reb are the components of the non-dimensional Newtonian viscous stress

tensor. In practice, we use again homogeneous Neumann boundary conditions at the free surface for
u1, w1, p1 instead.
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Appendix B

Definition of discrete averaging
operators

B.1 Wall-parallel plane-averaged flow fields

The following definitions of the discrete fluid phase averaging operators are introduced in analogy to
the definitions in Kidanemariam et al. (2013) and Kidanemariam (2016). First, let us introduce a fluid
indicator function I f (x, t) which provides information on whether a given position x ∈ Ω is at time t

occupied by the fluid phase, viz.

I f (x, t) =

{
1 if x ∈ Ω f (t)

0 else
. (B.1)

Further, we denote the number of grid points in the streamwise, wall-normal and spanwise direction
with Nx, Ny and Nz, respectively, for a number of Nt available flow field realisations over the simulation
interval. Discrete grid positions will be written in the following as xi = i∆x, yj = j∆y and zk = k∆z and
can be collected in a triple vector xijk = (xi, yj, zk). Discrete time instances tm = m∆t are introduced
accordingly. The total number of grid points occupied by the fluid phase in a given wall-parallel plane
at wall-normal position yj is expressed by the following sums

nxz(yj, tm) =
Nx−1

∑
i=0

Nz−1

∑
k=0

I f (xijk, tm) (B.2a)

nxzt(yj) =
Nx−1

∑
i=0

Nz−1

∑
k=0

Nt−1

∑
m=0

I f (xijk, tm), (B.2b)

where nxzt indicates the total number of samples in the fluid phase for the entire simulation interval.
The instantaneous wall-plane average and the average over a given wall-parallel plane and time for an
arbitrary Eulerian vector field ξ(x, t) are then introduced as

〈ξ〉xz(yj, tm) =
1

nxz(yj, tm)

Nx−1

∑
i=0

Nz−1

∑
k=0

ξ(xijk, tm)I f (xijk, tm) (B.3a)

〈ξ〉xzt(yj) =
1

nxzt(yj)

Nx−1

∑
i=0

Nz−1

∑
k=0

Nt−1

∑
m=0

ξ(xijk, tm)I f (xijk, tm). (B.3b)
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Appendix B Definition of discrete averaging operators

B.2 Streamwise-averaged flow fields

In an analogous way, the number of grid points occupied by the fluid phase at a point (yj, zk)
T in the

cross-plane of the domain accumulated over the streamwise direction (and time) is

nx(yj, zk, tm) =
Nx−1

∑
i=0

I f (xijk, tm) (B.4a)

nxt(yj, zk) =
Nx−1

∑
i=0

Nt−1

∑
m=0

I f (xijk, tm). (B.4b)

Based on these expressions, the instantaneous streamwise average and the average over the streamwise
direction and time can be defined as

〈ξ〉x(yj, zk, tm) =
1

nx(yj, zk, tm)

Nx−1

∑
i=0

ξ(xijk, tm)I f (xijk, tm) (B.5a)

〈ξ〉xt(yj, zk) =
1

nxt(yj, zk)

Nx−1

∑
i=0

Nt−1

∑
m=0

ξ(xijk, tm)I f (xijk, tm). (B.5b)

Note that analogous definitions can be obtained for the spanwise-averaging operators 〈•〉z and 〈•〉zt

for the fluid phase, respectively, and defining a particle indicator function as 1 − I f (xijk, tm) leads to
accordingly-defined averaging operators of Eulerian fields associated with the dispersed solid phase.
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Appendix C

Validation of the open duct boundary
conditions in the ibm-code

C.1 Simulation parameters

In the current validation study, the in-house multiphase finite-difference code is used to simulate
single-phase flow in an open duct configuration at moderate Reynolds number Reb = 2195-2225, which
corresponds to a friction Reynolds number Reτ = 150-154. Two finite-difference simulations have been
performed, one on a finer grid (∆x+ = 0.80, statistics accumulated over 1.41 · 105 time steps) and one
on a coarser grid (∆x+ = 1.17, statistics accumulated over 1.60 · 105 time steps). For open duct flow
with the same aspect ratio and a very similar Reynolds number of Reb = 2205 (Reτ = 150), a dataset
computed with a pseudo-spectral method is available (Sakai, 2016). The results of this latter work are
used in the following to validate the newly implemented open duct boundary conditions in the finite-
difference code. The relevant physical and numerical parameters of all three simulations are presented
in table C.1.

To limit the computational expenses of this validation study, the streamwise extension of the domain is
with Lx/H f = 12 not long enough to ensure a decorrelation of the two-point velocity correlations, for
which a two times longer domain as in the spectral simulation would be necessary (Sakai, 2016). Also,
due to the significantly higher computational cost of the finite-difference simulations, the simulated
time interval was limited to approximately 1070 bulk time units, while in the pseudo-spectral case
statistics could be gathered over a roughly ten times longer time interval. The following comparison
should therefore be interpreted in view of the statistical error that comes with the shorter domain
length and observation interval in the finite-difference simulations.

To increase the ensemble size in all three cases, we exploit in the following the statistical symmetry in
a fully-developed open duct flow w.r.t. the duct bisector z = Lz/2, that read

〈u f 〉xt(e) 〈v f 〉xt(e) 〈w f 〉xt(o)

〈u′
f u′

f 〉xt(e) 〈v′f v′f 〉xt(e) 〈w′
f w′

f 〉xt(e)

〈u′
f v′f 〉xt(e) 〈u′

f w′
f 〉xt(o) 〈v′f w′

f 〉xt(o).
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Appendix C Validation of the open duct boundary conditions in the ibm-code

Case Reb Reτ Lx/H f AR Nx × Ny × Nz ∆x+ max{∆y+, ∆z+} tstat/Tb

FD1 2225 154 12.0 1.0 2304 × 193 × 385 0.80 0.80 1069
FD2 2196 150 12.0 1.0 1536 × 129 × 257 1.17 1.17 1068
Spec 2205 150 8π 1.0 256 × 97 × 193 14.8 2.46 12 940

Table C.1: Physical and numerical parameters in the single-phase open duct flow simulations conducted to validate the
boundary conditions in the finite-difference IBM. Cases FD1 (1.41 · 105 samples) and FD2 (1.60 · 105 samples) have
been computed with the finite-difference code, while the simulation Spec is from Sakai (2016), using a pseudo-
spectral method. FD1 and FD2 differ only in the number of grid points per unit width, i.e. the grid in case FD1
is finer by a factor 1.5 with respect to FD2 in each direction. Ni is the number of grid points in the ith coordinate
direction, while tstat is the time period over which statistics have been accumulated.

The notation is such that (o) and (e) stand for an odd and even parity in the spanwise direction w.r.t.
the duct bisector, respectively. We can take advantage of these symmetry properties when investigating
the statistics in the following by averaging all field variables over the left and the right half of the duct
(taking into account the possibly changing sign for the odd symmetries).

C.2 Pointwise comparison of velocity field and Reynolds
stresses

To allow for pointwise comparison of the finite-difference results with the data obtained by the pseudo-
spectral code, the results obtained with the latter method have been linearly interpolated to the equidis-
tant finite-difference pressure grid, which collapses in the cross-stream plane with the grid points of the
streamwise velocity component. Note that linear interpolation might bring an additional interpolation
error into play, which should be taken into account when interpreting the following results.

In table C.2, the root mean square error (RMSE) of the finite difference quantities w.r.t. the pseudo-
spectral results is provided. The RMSE has been computed for the mean velocity fields as

εRMSE(〈u f 〉xt) =
1

max

(∣∣∣∣
uj,k

ub

∣∣∣∣
)Spec

·


 1

NyNz

Ny−1

∑
j=0

Nz−1

∑
k=0

((
uj,k

ub

)FD

−
(

uj,k

ub

)Spec
)2



1

2
, (C.1)

where Ni is the number of grid points of the finite-difference pressure grid in the ith direction and
uj,k = 〈u f 〉xt(yj, zk). For the computation of the RMSE of the Reynolds stresses, the bulk velocity ub

in equation (C.1) has been replaced by the turbulent kinetic energy averaged over the cross-plane, viz.
〈k〉yzt = 〈(〈u′

f u′
f 〉xt + 〈v′f v′f 〉xt + 〈w′

f w′
f 〉xt)〉yz/2. In the case of the streamwise vorticity component

〈ω f ,x〉xt, the field is normalised by (ub/H f ). The RMSE has been computed for both the symmetrised
and the non-symmetrised statistics. It is seen that the deviation is for all variables at most of order
O(1%). Taking into account the statistical error as well as that originating in the linear interpolation,
the finite-difference results show a reasonably good agreement with the pseudo-spectral datasets.

262



C.2 Pointwise comparison of velocity field and Reynolds stresses
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Figure C.1: Variation of (a) the bottom wall and (b) sidewall shear stress distribution in the finite-difference and pseudo-
spectral open duct flow simulations, conducted to validate the boundary conditions in the finite-difference IBM.
Results are symmetrised about the duct bisector, thus only the left half of the bottom wall shear stress profile and
only one curve for the sidewall shear stress are shown. ( , ) finite-difference simulations FD1 and FD2; ( )
pseudo-spectral simulations.
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Figure C.2: (a-c) Mean secondary flow streamfunction 〈ψ〉xt/(ub H f ) and (d-f ) mean streamwise vorticity 〈ω f ,x〉+xt in the
finite-difference and pseudo-spectral open duct flow simulations, conducted to validate the boundary condi-
tions in the finite-difference IBM. (a,d) pseudo-spectral simulation, (c,e) finite-difference simulation FD1, (d,f )
finite-difference simulation FD2. Results are symmetrised about the duct bisector, thus only the left half of the
duct cross-section is shown. Clockwise (counterclockwise) secondary flow and vorticity rotation is indicated by
red (blue) isolines. The shown contours indicate 20 equally spaced subintervals of the interval [−max

y,z
|a|, max

y,z
|a|]

with a ∈ {〈ψ〉xt, 〈ω f ,x〉xt}.
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FD1 (∆x+ = 0.80) FD2 (∆x+ = 1.17)
εRMSE εRMSE,sym εRMSE εRMSE,sym

〈u f 〉xt 0.015063 0.011831 0.009850 0.004714

〈v f 〉xt 0.099569 0.070640 0.082093 0.034196

〈w f 〉xt 0.077027 0.056956 0.059063 0.025583

〈u′
f u′

f 〉xt 0.023123 0.013583 0.032820 0.018377

〈v′f v′f 〉xt 0.049985 0.037907 0.042106 0.029909

〈w′
f w′

f 〉xt 0.031975 0.025697 0.032684 0.025059

〈u′
f v′f 〉xt 0.078483 0.054857 0.065519 0.033934

〈u′
f w′

f 〉xt 0.042477 0.027355 0.049159 0.021112

〈ω f ,x〉xt 0.043553 0.024142 0.033570 0.012907

Table C.2: Root mean square error of the mean velocities and Reynolds stresses of the finite-difference simulations w.r.t the
pseudo-spectral results, conducted to validate the boundary conditions in the finite-difference IBM. The RMSE
has been computed for the whole flow field (εRMSE) as well as for the half duct statistics, in which the symmetry is
used to double the number of samples for the statistics (εRMSE,sym), using expressions analogue to equation (C.1).
Note that for the Reynolds stresses, the mean turbulent kinetic energy 〈k〉yzt is used for normalisation instead
of the bulk velocity in the above equation, whereas in the case of the streamwise vorticity component, the scale
(ub/H f ) is used.

C.3 Wall-shear stress

Figure C.1 shows the wall-shear stress distribution along the bottom and sidewalls, normalised with
the mean wall shear stress τw that was determined as the average along the entire perimeter. It can
be seen that the finite-difference simulations correctly reproduce the general shape of the shear stress
distribution obtained with the pseudo-spectral code along bottom and sidewalls, with some small de-
viations of 0.1-0.2τw which are partly because the Reynolds number is not exactly the same in the three
simulations.

C.4 Mean secondary flow and streamwise vorticity

Figure C.2 shows contours of constant mean secondary streamfunction 〈ψ〉xt and mean streamwise
vorticity 〈ω f ,x〉xt for the finite-difference and pseudo-spectral simulations, respectively. All three cases
reveal very similar patterns of both 〈ψ〉xt and 〈ω f ,x〉xt, even though the exact contours still differ some-
what. The slight deviations are assumed to be of statistical nature, recalling that the statistics in the
pseudo-spectral simulation were gathered over a ten times longer averaging interval.
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Appendix D

Two-dimensional streak eduction in
open duct flows

For the sake of comparison with the three-dimensional streak detection procedure described in sec-
tion 7.3.2, we have performed a second streak eduction study in which connected subdomains are
identified in each cross-section of the discrete velocity field which are characterised by a high positive
or negative streamwise velocity fluctuation. The methodology in the here discussed form was first
used by Nakatsuji (2012) to detect streamwise streaks in closed square duct flows and later adopted to
open duct flows by Sakai (2016).

D.1 Analysis of the preferential organisation of streamwise
velocity streaks

In a similar way as in the detection method of quasi-streamwise vortex cores presented in Uhlmann
et al. (2007) (cf. also section 7.3.3), we seek for connected regions for which the normalised streamwise
velocity fluctuations exceed a given threshold uth, viz.

u′
f /σu > uth and u′

f /σu < −uth (D.1)

for high- and low-speed streaks, respectively. The velocity fluctuations u′
f are therein normalised by

the root mean square of the velocity fluctuations averaged over the clear fluid region, σu =
√
〈u′

f u′
f 〉V f

,

where the volume-averaging operator reads

〈•〉V f
=

1

Lx〈hb〉xz(t)Lz

∫ Lz

0

∫ Ly

〈hb〉x(z,t)

∫ Lx

0
( • ) I f (x, t) dxdydz. (D.2)

In order to include only the fluid domain in the analysis, we use a fluid-phase indicator function I f (x, t)

that attains a value of unity if the point x lies at time t in the fluid domain Ω f and zero if not (cf.
definition (B.1) in appendix B). Each detected high- and low-speed streak region is in the following
associated with a single point in the cross-section with wall-normal and spanwise coordinates

yc,2D =

∫

As

u′
f y dydz

∫

As

u′
f dydz

and zc,2D =

∫

As

u′
f z dydz

∫

As

u′
f dydz

, (D.3)
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respectively, which represent the centre of gravity of the streaks’ cross-sectional area As, additionally
weighted with the local velocity fluctuations. The cross-sectional area is then also considered to define
a characteristic cross-sectional length scale of the streaks as ls =

√
As.

As in the case of the three-dimensional streak structures extracted in section 7.3.2, the choice of an
appropriate velocity threshold uth is crucial in the extraction procedure to obtain meaningful physical
results. In analogy to the percolation analysis that is conventionally used to determine such a suitable
threshold for the three-dimensional extraction process (Moisy and Jiménez, 2004), Nakatsuji (2012) and
Sakai (2016) varied the velocity threshold in a range 0.25 ≤ uth ≤ 2 and investigated the characteristic
length scale and the number of extracted structures for each of the values. We have applied the same
thresholds to the current simulations as well, but for the sake of brevity we will restrict ourselves in
the following on the results for a single threshold value uth = 0.5.

Figures D.1 and D.2 show the p.d.f.s of the preferential location of the streak centre points (yc,2D, zc,2D)
T

in the cross-plane of the smooth wall case DL200H2
smooth and the mobile bed simulation DL250H2, respec-

tively. Note that the former dataset is based on the data in Appendix B, Figure B.4 of Sakai (2016) and
has been replotted here for the sake of comparison with the sediment-laden case. The p.d.f.s are fur-
ther conditioned on the sign of the streaks and their characteristic length scale ls, based on which they
are classified into four categories: (i) ls ≤ 25δν, (ii) 25δν < ls ≤ 50δν, (iii) 50δν < ls < 0.5H f and (iv)
0.5H f < ls.

Figures D.3 and D.4 show the analogous p.d.f.s for the high Reynolds number smooth-wall case DL400H2
smooth

and the corresponding mobile sediment case DL500H2, respectively.
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ỹ
/H

f

0 1 2
0

0.5

1

z/Hf

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure D.1: P.d.f.s of the preferential positioning of instantaneous two-dimensional streamwise velocity streaks in the cross-
plane of the open duct simulation DL200H2

smooth. Individual streaks are associated with their weighted centre of
gravity (yc,2D, zc,2D). (a,c,e,g) High- and (b,d,f,h) low-speed streaks were identified as two-dimensional connected
regions of high (u′

f /σu > 0.5) and low streamwise velocity fluctuations (u′
f /σu < −0.5) in each cross-plane. The

streaks are further classified according to their characteristic cross-sectional length scale ls: (a,b) ls ≤ 25δν; (c,d)
25δν < ls ≤ 50δν; (e,f ) 50δν < ls ≤ 0.5H f ; (g,h) 0.5H f < ls. Each p.d.f. is normalised by its global maximum
and contours represent 0.1(0.1)0.9 of this maximum. Note that in this specific case, statistics are additionally
symmetrised over the left and right half of the duct cross-section.
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Figure D.2: P.d.f.s of the preferential positioning of instantaneous two-dimensional streamwise velocity streaks in the cross-
plane of the open duct simulation DL250H2. Individual streaks are associated with their weighted centre of
gravity (yc,2D, zc,2D). (a,c,e,g) High- and (b,d,f,h) low-speed streaks were identified as two-dimensional connected
regions of high (u′

f /σu > 0.5) and low streamwise velocity fluctuations (u′
f /σu < −0.5) in each cross-plane. The

streaks are further classified according to their characteristic cross-sectional length scale ls: (a,b) ls ≤ 25δν; (c,d)
25δν < ls ≤ 50δν; (e,f ) 50δν < ls ≤ 0.5H f ; (g,h) 0.5H f < ls. Each p.d.f. is normalised by its global maximum
and contours represent 0.1(0.1)0.9 of this maximum. The mean fluid bed interface is represented by a white solid
line.
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Figure D.3: P.d.f.s of the preferential positioning of instantaneous two-dimensional streamwise velocity streaks in the cross-
plane of the open duct simulation DL400H2

smooth. Individual streaks are associated with their weighted centre of
gravity (yc,2D, zc,2D). (a,c,e,g) High- and (b,d,f,h) low-speed streaks were identified as two-dimensional connected
regions of high (u′

f /σu > 0.5) and low streamwise velocity fluctuations (u′
f /σu < −0.5) in each cross-plane. The

streaks are further classified according to their characteristic cross-sectional length scale ls: (a,b) ls ≤ 25δν; (c,d)
25δν < ls ≤ 50δν; (e,f ) 50δν < ls ≤ 0.5H f ; (g,h) 0.5H f < ls. Each p.d.f. is normalised by its global maximum and
contours represent 0.1(0.1)0.9 of this maximum.
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Figure D.4: P.d.f.s of the preferential positioning of instantaneous two-dimensional streamwise velocity streaks in the cross-
plane of the open duct simulation DL500H2. Individual streaks are associated with their weighted centre of
gravity (yc,2D, zc,2D). (a,c,e,g) High- and (b,d,f,h) low-speed streaks were identified as two-dimensional connected
regions of high (u′

f /σu > 0.5) and low streamwise velocity fluctuations (u′
f /σu < −0.5) in each cross-plane. The

streaks are further classified according to their characteristic cross-sectional length scale ls: (a,b) ls ≤ 25δν; (c,d)
25δν < ls ≤ 50δν; (e,f ) 50δν < ls ≤ 0.5H f ; (g,h) 0.5H f < ls. Each p.d.f. is normalised by its global maximum
and contours represent 0.1(0.1)0.9 of this maximum. The mean fluid bed interface is represented by a white solid
line.
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Appendix E

Two-dimensional streamwise roll
eduction in open duct flows

In the following, we discuss the poloidal-toroidal decomposition used by Kawahara et al. (2012a) and
Nakatsuji (2012) to identify instantaneous small- and large-scale rotating motions in the cross-section of
closed square ducts at varying Reynolds numbers. Note that the basic extraction procedure is similar to
the one used by the same authors to detect individual velocity streaks that was outlined in the previous
section appendix D.

E.1 Poloidal-toroidal decomposition in open duct flows

Let Ω f be a bounded and simply connected domain and u f : R3 × I → R3, u f ∈ C1(Ω f ) ∩ C0(Ω f )

be a solenoidal vector field defined on this domain. Then, ∃ φ, ψ : R3 × I → R s.t. (Warner, 1972;
Chandrasekhar, 1981; Marqués, 1990)

u f = ∇× (ψe) +∇×∇× (φe), (E.1)

where e denotes a unit vector of arbitrary direction. The two scalar fields φ and ψ are typically referred
to as poloidal and toroidal potentials, respectively. Note that for a Cartesian basis, there might be
additional terms appearing on the RHS of relation (E.1) related to the mean flow in the directions
perpendicular to e depending on the particular choice of the latter (Nagata, 1990; Clever and Busse,
1997; Waleffe, 2003). In contrast to the latter studies, however, Kawahara et al. (2012b) and Nakatsuji
(2012) choose a unit vector e = (1, 0, 0)T that is parallel to the streamwise direction such that the toroidal
potential ψ is associated with fluid motions in the duct cross-plane. In consequence, there is no global
mean flow in the directions orthogonal to e in this case due to the impermeability of the surrounding
walls and no additional terms arise in equation (E.1). For the here considered choice of the unit vector,
the velocity field can be rewritten in terms of the two potentials, viz. (Nakatsuji, 2012)

u f =




−∆⊥φ

∂x∂yφ + ∂zψ

∂x∂zφ − ∂yψ


 . (E.2)
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Cross-differentiation and subtraction of the spanwise and wall-normal velocity components then di-
rectly lead to a Poisson equation for the toroidal potential ψ(x, t), with the streamwise vorticity field
ω f ,x(x, t) = ∂yw f − ∂zv f as source term quite similar to equation (7.12):





∆⊥ψ = −ω f ,x in Ω⊥

ψ = 0 on ∂ΩD
⊥

∂ψ

∂n
= 0 on ∂ΩN

⊥

, (E.3)

where n is a unit vector normal to the boundary at each x ∈ Ω⊥ oriented such that it is pointing into
the domain Ω f . In a similar way, the streamwise flow field represents the source term of a Poisson
equation for the poloidal potential φ(x, t), viz.





∆⊥φ = −u f in Ω⊥

φ = 0 on ∂ΩD
⊥

∂φ

∂n
= 0 on ∂ΩN

⊥

, (E.4)

In both cases, ∂ΩD
⊥ and ∂ΩN

⊥ refer to the parts of the domain boundary at which homogeneous Dirich-
let and Neumann boundary conditions are applied, respectively, such that ∂Ω⊥ ≡ ∂ΩD

⊥ ∪ ∂ΩN
⊥ and

∅ = ∂ΩD
⊥ ∩ ∂ΩN

⊥ . Kawahara et al. (2012a) apply homogeneous Dirichlet conditions for φ and homo-
geneous Neumann conditions for ψ in the closed duct, supplied with a zero mean condition for the
latter to give the pure Neumann problem a unique solution. For the closed duct, this choice of the
boundary conditions for the two potentials ensures the no-slip and impermeability conditions along
the four solid walls for all velocity components, as shown by Nakatsuji (2012). Note that when aver-
aging equation (E.3) along the streamwise direction and time, we recover the Poisson equation (7.12)
for 〈ψ〉xt. It can be shown that only in this case, the boundary conditions for all velocity components
in both open and closed duct flows are fulfilled even for the pure homogeneous Dirichlet problem for
〈ψ〉xt, which were chosen to solve equation (7.12) (G. Kawahara, personal communication).

In analogy to the study of Kawahara et al. (2012a), we first derive in the following the correct set of
boundary conditions for both potentials at the four domain boundaries of an open duct, starting with
the bottom wall at y = 0. Following Kawahara et al. (2012a), we impose at the solid wall homogeneous
Dirichlet boundary conditions for φ and homogeneous Neumann conditions for ψ, viz.

φ = 0 =⇒ ∂φ

∂z
=

∂φ

∂x
= 0;

∂ψ

∂y
= 0 at y = 0, ∀z ∈ [0, Lz]. (E.5)

The potential φ is determined by solving the Poisson equation (E.4), the source term of which is −u f

which vanishes at the wall due to the imposed no-slip condition. So, the boundary condition for u f is
directly fulfilled. Considering next the wall-parallel velocity component w f , it is seen that it vanishes
identically at y = 0 due to the chosen boundary conditions, viz.

w f =

(
∂2φ

∂x∂z
− ∂ψ

∂y

)
= 0. (E.6)
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E.1 Poloidal-toroidal decomposition in open duct flows

Next we consider the streamwise vorticity ω f ,x at the bottom wall, which reduces due to the imperme-
ability condition v f = ∂zv f = 0 at y = 0 to

ω f ,x =
∂w f

∂y
− ∂v f

∂z
=

∂w f

∂y
. (E.7)

Recalling that the streamwise vorticity represents the RHS of the Poisson equation (E.3) for the potential
ψ, we obtain

∂2ψ

∂y2
+

∂2ψ

∂z2
= −∂w f

∂y

= − ∂

∂y

(
∂2φ

∂x∂z
− ∂ψ

∂y

)

⇐⇒ 0 =
∂

∂z

(
∂2φ

∂x∂y
+

∂ψ

∂z

)
=

∂v f

∂z
.

(E.8)

The last equality indicates that v f is constant along the bottom wall. Note that this information was
first brought into the system by ω f ,x as the RHS of the Poisson equation.

In the following, we move on to the lateral sidewalls at z = {0, Lz}, where the boundary conditions are
chosen as

φ = 0 =⇒ ∂φ

∂y
=

∂φ

∂x
= 0;

∂ψ

∂z
= 0 at z = {0, Lz} ∀y ∈ [0, Ly]. (E.9)

As before, the potential φ is determined by solving the Poisson equation (E.4) with the RHS −u f , which
vanishes also at the sidewalls due to the imposed no-slip condition. The boundary condition for u f is
therefore again directly fulfilled. Considering next the wall-parallel velocity component v f , it is seen
that this latter vanishes identically at z = {0, Lz} due to the applied boundary conditions, viz.

v f =

(
∂2φ

∂x∂y
+

∂ψ

∂z

)
= 0. (E.10)

Again, the streamwise vorticity ω f ,x at the sidewalls then reduces due to the impermeability constraint
w f = ∂yw f = 0 at z = {0, Lz} to

ω f ,x =
∂w f

∂y
− ∂v f

∂z
= −∂v f

∂z
. (E.11)

With this as RHS, the Poisson equation (E.3) for the potential ψ reads

∂2ψ

∂y2
+

∂2ψ

∂z2
=

∂v f

∂z

=
∂

∂z

(
∂2φ

∂x∂y
+

∂ψ

∂z

)

⇐⇒ 0 =
∂

∂y

(
∂2φ

∂x∂z
− ∂ψ

∂y

)
=

∂w f

∂y
,

(E.12)

which implies that w f is constant along both sidewalls. Considering the corner points at which side-
walls and bottom wall meet, we conclude that w f is constant along both sidewalls but w f = 0 along
the bottom wall, such that w f = const. = 0 follows for the sidewalls. In a similar way, we show that
v f = 0 at the sidewalls and v f = const. at the bottom wall imply that v f = 0 at all three solid walls.
Under the given boundary conditions, the no-slip and impermeability conditions at all three walls are
fulfilled.
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Appendix E Two-dimensional streamwise roll eduction in open duct flows

Eventually, let us discuss the boundary conditions at the top of the domain y = H f , where free-slip
conditions are imposed for the surface-parallel components (∂yu f = ∂yw f = 0) and an impermeability
condition has to be fulfilled for the surface-normal component v f = 0. Simply applying, as before,
homogeneous Dirichlet boundary conditions for φ and homogeneous Neumann boundary conditions
for ψ wrongly implies a no-slip rather than a shear-free boundary condition for w f along the free surface
y = H f , viz.

w f =

(
∂2φ

∂x∂z
− ∂ψ

∂y

)
= 0. (E.13)

Instead, we ‘reverse’ the boundary conditions at the free surface, choosing homogeneous Dirichlet
boundary conditions for ψ and homogeneous Neumann boundary conditions for φ, viz.

ψ = 0 =⇒ ∂nψ

∂nz
=

∂nψ

∂nx
= 0;

∂φ

∂y
= 0 at y = H f , ∀z ∈ [0, Lz]. (E.14)

As for the remaining boundaries, u f fulfils by definition the boundary condition at the free surface and
as it is the RHS of the Poisson equation in relation (E.4), this latter automatically fulfils the condition
∂yu f = 0 at the free surface. Next, considering the transverse velocity component w f , we obtain due
the boundary conditions for its surface-normal derivative

∂w f

∂y
=

∂

∂y

(
∂2φ

∂x∂z
− ∂ψ

∂y

)
=

∂2

∂x∂z

∂φ

∂y
− ∂2ψ

∂y2
= −∂2ψ

∂y2
. (E.15)

It turns out that the streamwise vorticity ω f ,x vanishes at the free surface due to the free-slip and im-
permeability conditions, which imply that ∂yw f = ∂zv f = ω f ,x = 0 at y = H f . As a consequence, the
Poisson equation (E.3) for the potential ψ reduces to the following condition

0 =
∂2ψ

∂y2
+

∂2ψ

∂z2

=⇒ −∂2ψ

∂y2
=

∂w f

∂y
=

∂2ψ

∂z2
= 0,

(E.16)

where for the last equality we have used the Dirichlet boundary condition ψ = ∂zzψ = 0. It remains
to show the impermeability condition for v f , which again directly follows from the imposed boundary
conditions, viz.

v f =

(
∂2φ

∂x∂y
+

∂ψ

∂z

)
=

∂

∂x

(
∂φ

∂y

)
+

∂ψ

∂z
= 0. (E.17)

We conclude that the impermeability and free-slip conditions are fulfilled for the chosen boundary
condition at the free surface.

E.2 Analysis of the preferential organisation of streamwise
rolls

Based on the afore discussed mathematical decomposition of the flow field subject to the appropriate
boundary conditions at the no-slip and free-slip boundaries, the toroidal velocity potential ψ can be
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Figure E.1: P.d.f.s of the preferential positioning of instantaneous two-dimensional streamwise rolls in the cross-plane of
the open duct simulation DL400H2

smooth. Individual rolls are associated with their weighted centre of gravity
(yc,2D, zc,2D). (a,c,e,g) Clockwise- and (b,d,f,h) counterclockwise rotating rolls were identified as two-dimensional
connected regions of high (ψ/σψ > 1.0) and low values of the toroidal potential (ψ/σψ < −1.0) in each cross-
plane. The streamwise rolls are further classified according to their characteristic cross-sectional length scale ls:
(a,b) ls ≤ 25δν; (c,d) 25δν < ls ≤ 50δν; (e,f ) 50δν < ls ≤ 0.5H f ; (g,h) 0.5H f < ls. Each p.d.f. is normalised by its
global maximum and contours represent 0.1(0.1)0.9 of this maximum.

computed in analogy to the streak detection process outlined in appendix D. In the following, we then
seek for connected regions for which the normalised potential ψ exceeds a given threshold ψth, viz.

ψ/σψ > ψth and ψ/σψ < −ψth (E.18)

for clockwise and counterclockwise rotating motions, respectively, where the r.m.s. of ψ over the
fluid dominated volume reads σψ =

√
〈ψψ〉V f

using the averaging operator 〈•〉V f
introduced in equa-

tion (D.2).
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Appendix E Two-dimensional streamwise roll eduction in open duct flows

Figure E.1 shows the p.d.f.s of the preferential location of the streamwise rolls’ centre points (yc,2D, zc,2D)
T

in the cross-plane of the smooth wall case DL400H2
smooth for the same threshold ψth = 1.0 as in Kawahara

et al. (2012a). Note that the coordinates yc,2D and zc,2D are defined in analogy to equations D.3, using
the local values of ψ as weights.

In analogy to appendix D, the p.d.f.s are further conditioned on the sign of the rolls’ sense of rotation
and their characteristic length scale ls, based on which they are classified into four categories: (i) ls ≤
25δν, (ii) 25δν < ls ≤ 50δν, (iii) 50δν < ls < 0.5H f and (iv) 0.5H f < ls.
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