KIT | KIT-Bibliothek | Impressum | Datenschutz

Strain‐Driven Bidirectional Spin Orientation Control in Epitaxial High Entropy Oxide Films

Zhao, Zhibo 1; Jaiswal, Arun Kumar ORCID iD icon 2; Wang, Di ORCID iD icon 1,3; Wollersen, Vanessa 1,3; Xiao, Zhengyu 1; Pradhan, Gajanan; Celegato, Federica; Tiberto, Paola; Szymczak, Maria; Dabrowa, Juliusz; Waqar, Moaz; Fuchs, Dirk 2; Pan, Xiaoqing; Hahn, Horst 1; Kruk, Robert 1; Sarkar, Abhishek 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)
3 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

High entropy oxides (HEOs), based on the incorporation of multiple-principal cations into the crystal lattice, offer the possibility to explore previously inaccessible oxide compositions and unconventional properties. Here it is demonstrated that despite the chemical complexity of HEOs external stimuli, such as epitaxial strain, can selectively stabilize certain magneto-electronic states. Epitaxial (Co$_{0.2}$Cr$_{0.2}$Fe$_{0.2}$Mn$_{0.2}$Ni$_{0.2}$)$_{3}$O$_{4}$-HEO thin films are grown in three different strain states: tensile, compressive, and relaxed. A unique coexistence of rocksalt and spinel-HEO phases, which are fully coherent with no detectable chemical segregation, is revealed by transmission electron microscopy. This dual-phase coexistence appears as a universal phenomenon in (Co$_{0.2}$Cr$_{0.2}$Fe$_{0.2}$Mn$_{0.2}$Ni$_{0.2}$)$_{3}$O$_{4}$ epitaxial films. Prominent changes in the magnetic anisotropy and domain structure highlight the strain-induced bidirectional control of magnetic properties in HEOs. When the films are relaxed, their magnetization behavior is isotropic, similar to that of bulk materials. However, under tensile strain, the hardness of the out-of-plane (OOP) axis increases significantly. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000161248
Veröffentlicht am 08.08.2023
Originalveröffentlichung
DOI: 10.1002/advs.202304038
Scopus
Zitationen: 3
Web of Science
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2198-3844
KITopen-ID: 1000161248
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Weitere HGF-Programme 47.11.02 (POF IV, LK 01) Emergent Quantum Phenomena
Erschienen in Advanced Science
Verlag Wiley Open Access
Band 10
Heft 27
Seiten Art.-Nr.: 2304038
Projektinformation BeMAGIC (EU, H2020, 861145)
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 28.07.2023
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page