
Split Boot—True Network-Based Booting
on Heterogeneous MPSoCs

Marvin Fuchs , Luis E. Ardila-Perez , Torben Mehner, and Oliver Sander

Abstract— In the context of the high-luminosity (HL) upgrade
of the large hadron collider (LHC), many custom ATCA
electronic boards are being designed containing heterogeneous
system-on-chip (SoC) devices, more specifically the Xilinx Zynq
UltraScale+ (ZUS+) family. While the application varies greatly,
these devices are regularly used for performing board man-
agement tasks, making them a fundamental element in the
correct operation of the board. A large number of hundreds
of SoC devices create significant challenges in their firmware
deployment, maintenance, and accessibility. Even though U-Boot
on ZUS+ devices supports network boot through the preboot
execution environment (PXE), the standard ZUS+ boot process
contains application-specific information at earlier boot steps,
particularly within the first-stage bootloader (FSBL). This pre-
vents the initialization of several devices from a universal image.
Inspired by the PXE boot process on desktop PCs, this article
describes split boot, a novel boot method tailored to the specific
needs of the ZUS+. All application-specific configuration is
moved to a network storage device and automatically fetched
during the boot process. We considered the entire process, from
firmware and software development to binary distribution in a
large-scale system. The developed method nicely integrates with
the standard Xilinx development toolset workflow.

Index Terms— Booting, large-scale experiments, multiproces-
sor system-on-chip (MPSoC), network booting, preboot execution
environment (PXE), system-on-chip (SoC), Zynq ultrascale+
(ZUS+).

I. INTRODUCTION

THE Xilinx Zynq UltraScale+ (ZUS+) devices are het-
erogeneous multiprocessor system-on-chips (MPSoCs)

that, in addition to the programmable logic (PL), contain
a processing system (PS) with a number of hard process-
ing units, such as an ARM Cortex-A53 named application
processing unit (APU), an ARM Cortex-R5 named real-time
processing unit (RPU), and the platform management unit
(PMU) based on the MicroBlaze architecture [1]. Even though
not all processors have to be involved in the boot process,
it usually relies on several of them. To make the ZUS+ devices
deployable in a wide range of applications, they are designed
to be highly configurable. To a certain extent, this also applies

This work was supported by the Doctoral School “Karlsruhe School of 
Elementary and Astroparticle Physics: Science and Technology.”

The authors are with the Institute for Data Processing and Electronics 
(IPE), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, 
Germany (e-mail: marvin.fuchs@kit.edu).

Fig. 1. Default software stack used to boot Xilinx Zynq UltraScale+ devices.
The solid lines describe one possible example of a boot process, whereas the
dashed lines show alternative possibilities to load a bitfile for the PL and the
firmware for the RPU.

to the boot process, as shown in Fig. 1. For example, it is
possible to load both, the bitfile for the PL and the firmware
for the RPU, in either the first stage bootloader (FSBL), the
second-stage boot loader U-Boot or from Linux. In some
cases, it is also possible to change the order, for example,
to load the PMU firmware either before or after the FSBL.

The first stage in the boot process that contains application-
specific information is the FSBL. Vivado generates a C code
to configure the PS and to optionally divide it into multiple
subsystems via an isolation configuration according to the
settings selected in the Vivado PS configuration wizard (PCW)
GUI [2]. When the FSBL software project is set up, this source
code is automatically integrated.

The FSBL contains information on how to configure the
various internal clocks, the interfaces to the PL, and exter-
nal interfaces such as the universal asynchronous receiver-
transmitters (UARTs) or the network. The application-specific
code contained in it to do this is one of the reasons why the
FSBL cannot be factory-saved to a nonvolatile memory within
the MPSoC. Thus, it is one of the first components loaded from
external storage (e.g., a quad serial peripheral interface (QSPI)
memory or an SD Card). The same storage location is usually
also used for the PMU firmware, the arm trusted firmware
(ATF), and U-Boot. In contrast, entirely generic software like
the PMU ROM and the configuration security unit (CSU)
ROM is stored on nonvolatile memory within the ZUS+ [3].



The goal of the modified boot process presented in this
article is to fetch all application-specific data including the
PS configuration from a network source. This is, however,
not trivial because the FSBL itself is a low-level stage in
the boot process and it is not designated to communicate
via a network connection. Just as with PCs that boot via
preboot execution environment (PXE), the greatest advantage
for MPSoCs that obtain all application-specific data from the
network appears in large systems where many devices need to
be maintained. One example is the distribution of updates in
a large and distributed system, comprised of many identically
configured boards. In its most efficient implementation, split
boot enables accomplishing the task by only updating the
single network storage and rebooting the devices. Significant
time is saved compared to having to flash the local storage of
each board. In the remainder of this contribution, we present a
two-step approach that essentially supports fetching the entire
PS configuration via network and applying it to the PS.

II. RELATED WORK

U-Boot already features PXE, which allows devices to boot
into an operating system such as Linux via the network.
However, it does not cover the configuration of the PS [4].
Such functionality is not provided, because PXE was origi-
nally designed for computer networks rather than networks of
highly configurable system-on-chips (SoCs) such as the ZUS+

family. Modifications to the FSBL on MPSoC devices might
be required regularly due to containing application-specific
information. This is a major drawback compared to the boot of
a desktop PC, where updates to the basic input–output system
(BIOS) and all other software used before the second-stage
boot loader are very rarely necessary. Research regarding PXE
usually targets desktop PCs [5] or servers [6], but not embed-
ded devices. Xilinx provides means to adapt the boot process
based on the application domain [1] and further describes in a
patent the boot process possibilities of MPSoC devices [7].
However, the ability to load the PS configuration from a
remote location is not mentioned. In the context of the high-
luminosity (HL) upgrade of the large hadron collider (LHC),
active research is being conducted about the boot process of
MPSoC devices. To date, though, work has focused primarily
on investigating and securing the possibilities provided by
Xilinx [8] and building the Linux distribution for use on the
device [9].

III. SPLIT CONFIGURATION APPROACH

Simply moving the entire configuration of the PS part of a
ZUS+ MPSoC to network storage is not feasible. Some initial
configuration is needed to bring up the essential functionality
of the device. This includes, first and foremost, the network
interface and the configuration of the DDR memory controller,
but also some internal configuration. While this configuration
is board-specific, it is not application-specific. In conclusion,
we propose using a base configuration that is static and
reduced to the absolute minimum to boot into U-Boot with
network access. This approach is similar in many ways to that

Fig. 2. Split boot approach removes from the FSBL the application-specific
PS configuration and the isolation configuration. As a result, only generic
information remains on the local boot medium.

of a PC BIOS. Updates to the base firmware are possible, but
they are expected to happen rarely.

The application-specific data for the PS can be split into
two tasks. The first one includes the configuration of all the
individual components like clocks within the PS, the PS-PL
interfaces, and some peripherals like the DDR memory. The
second task is the application of the so-called isolation con-
figuration, which divides the PS into multiple subsystems and
defines access permissions between them. For both, we pro-
pose to move the application-specific data into separate binary
configuration files, which are then fetched from a network
source and applied by U-Boot during the boot process. Fig. 2
shows how removing the application-specific configuration
data from the FSBL leads to a system where only generic
software remains on the local boot medium and everything
application-specific is stored on the network.

IV. MODIFIED BOOT PROCESS

Xilinx ZUS+ devices require multiple tweaks in the default
boot process to allow for changes to the PS configuration after
it has been initially configured in the FSBL. An overview of
these modifications is provided by the example boot sequence
in Fig. 3, where the changes are shown as white boxes with red
frames. The boot procedure starts as usual with the software
components PMU ROM and CSU ROM stored on nonvolatile
memory within the ZUS+. Afterward, the PMU firmware is
started, in this case, before the FSBL.

The FSBL contains the first modification in the proposed
boot process. Usually, at this stage, the PS gets initialized
with its complete configuration. During the split boot process,
however, this is where the PS receives its base configuration
(psu_init_base), which includes the boot-related peripheral and
memory configuration.

The source code that is used to configure the PS is generated
by Vivado according to the options selected in the PCW and
inserted into the FSBL automatically. Because of this, the
software architecture of the FSBL allows us to easily replace
this part of the source code, for example, with that of our
generic base configuration.

When the FSBL has finished its execution, it hands over to
the ATF. The ATF is a reference implementation of an ARM
secure world software provided by Xilinx, and in the example



Fig. 3. Modified boot process for Xilinx ZUS+ devices. The modifications are represented by the red-bordered boxes. The first modification in the boot
process, psu_init_base, marks were usually the configuration of the PS would happen. Here, the source code to completely configure the PS is replaced by
the source code that applies a base configuration, allowing to continue the boot process and using a network interface later on. The remaining modifications
can all be found in U-Boot. They include fetching configuration data, modifying the configuration of the PS (psu_init_ext), and optionally configuring the
isolation within the PS.

depicted in Fig. 3, the first software executed on the APU.
Such software is necessary to utilize the Armv8-A Exception
Model that is implemented in the APU [10].

When the ATF is running, U-Boot can be started. It contains
the remaining modifications to the original boot process. The
first modification (Fetch Cfg.) loads all the required config-
uration data using standard U-Boot features from a trivial
file transfer protocol (TFTP) server. This includes, in addition
to the regular Linux kernel, a custom binary file for the
modification of the PS configuration, a file to configure the
isolation within the PS, and the PL bitstream. The next step
is to extend the configuration of the PS to its complete state
(psu_init_ext). U-Boot running on ARM Exception Level 2
is not allowed to access the required configuration registers
directly. Instead, it is possible to request the ATF running at
Exception Level 3 via a secure monitor call (SMC) to instruct
the PMU firmware to access a configuration register. The PMU
has unrestricted access to all configuration registers within
the PS [3]. Using this methodology, the ATF can remain
unmodified, while only a minor modification to the PMU
firmware is required to temporarily allow U-Boot to make all
these requests until the PS is fully configured.

After the reconfiguration of the PS is finished, it might be
necessary to rebind some U-Boot drivers, for example, the one
used for Ethernet. Then, the bitstream can be written to the
PL. It is also possible to configure isolation within the PS
(Setup isolation) if desired. At this point, the system is fully
configured, operational, and behaves exactly the same as it
would with the traditional boot. Finally, U-Boot can continue
to boot Linux on the APU. In the example boot process shown
in Fig. 3, PXE is used to load the Linux kernel, and the kernel
itself uses network file system (NFS) to mount the root file
system (rootfs).

TABLE I

LIST OF REGISTERS THAT CANNOT BE MODIFIED FROM U-BOOT [11]

Modifying the configuration of some critical components
within the PS is not possible from U-Boot. This applies
to the DDR interface and a very limited number of other
configuration registers as shown in Table I. However, for many
resources that are used by U-Boot but are not essential for it to
run, it is possible to overwrite the configuration. Activating the
isolation within the PS from U-Boot brings some limitations as
well. All software that are running while the isolation is being
activated must observe the restrictions enforced by them. If the
isolation includes a restriction of the memory ranges used by
the APU, for instance, it is mandatory that U-Boot observes
this restriction before the activation of the isolation. Otherwise,
U-Boot might lose access to essential data when the isolation
is activated, which can lead to undesired behavior or even to
a crash of the system.



TABLE II
LIST OF FUNCTIONS REPRESENTED IN
THE BINARY CONFIGURATION FILES

Listing 1. Source code snippet from psu_init.c.

V. CUSTOM CONFIGURATION FILES

The PS configuration files that are stored and later fetched
from the network are encoded using a binary format. This
is done to efficiently process them in U-Boot. Despite the
many features of U-Boot, it is still low-level software. There-
fore, working with more complex data formats based on
American standard code for information interchange (ASCII)
like extensible markup language (XML) would significantly
increase the overhead. While human-readable code would be
an advantage, the wish to manually change about one thousand
32-bit registers is rather unlikely.

The internal structure of the binary configuration files is
strongly inspired by the architecture of the source code that
is used in the FSBL to configure the PS. This code can be
unwrapped to a long list of calls of eight different functions
listed in Table II [11]. The configuration of the PS is, therefore,
fully represented by this list of function calls including the
respective call arguments. Therefore, this is the only infor-
mation that must be stored in the binary configuration files.
Listings 1 and 2 show the encoding of the function calls
in the binary format. All call arguments of the functions in
Table II are 32-bit values, which can also be realized by
macros in the source code. It is possible to represent each of
the eight different functions with a unique 32-bit ID. As seen

Listing 2. Encoding of the source code in Listing 1 in a binary configuration
file.

in Listings 1 and 2, the function PSU_Mask_Write has the
ID 0x00000001. The binary file is now composed of the
list of function calls from the FSBL encoded in this format.
It is possible to navigate through the different function calls
in such a binary file because the number of arguments of
each function is constant and known. Finally, a distinct unique
ID 0x0000000F is used to mark the end of the file, as can
be seen at the end of the file in Listing 2.

VI. PSU CONFIGURATION GENERATOR

A Python tool called the PSU Configuration Generator was
developed to keep the effort of developing a project using the
split boot mechanism to a minimum. This tool handles, among
other things, the generation of binary configuration files. It was
designed to integrate seamlessly with the development tools
provided by Xilinx. Thus, the *.xsa [Xilinx support archive
(XSA)] files exported from Vivado are used as input data.
Within this archive, psu_init.c and psu_init.h contain the C
source code that is used in the FSBL to configure the PS. They
also contain a more abstract description of the configuration
of the PS and the PL in the XML file zusys.hwh. The current
implementation of the PSU Configuration Generator uses the
*.xsa file containing the complete PS configuration as input.

The files psu_init.c and psu_init.h are parsed to identify
the function calls that need to be written to the configuration
files. The parser uses a depth-first search to find all calls of the
eight functions listed in Table II, starting with the functions
that can be called directly from the FSBL. If a function call
is allowed in U-Boot, or, in other words, if the addressed
registers can be modified from U-Boot, the function call is
encoded in the binary format, resolving all macros contained
in it, and appended to the binary output file. Furthermore, to be
adaptable, the PSU Configuration Generator allows skipping
selected registers or ignoring some function calls specified in
a JSON file. There are only a few interfaces to the FSBL that
represent root nodes. Using the functions in Table II, all nodes
representing termination conditions for the depth-first search
are identified. Both, the root and termination nodes, form the
boundary conditions for the search algorithm.

The file psu_init.c contains two main interfaces to the FSBL:
one to configure the PS and one to set up the isolation.
To execute these two actions separately from U-Boot, the
PSU Configuration Generator offers the possibility to export
separate configuration files. Additionally, it provides the option
to extract the bitfile for the PL from the *.xsa archive.
Therefore, it achieves a higher degree of automation as all
these files need to be copied to the same TFTP server.

VII. DEVELOPMENT WORKFLOW

To make split boot usable in real-world applications,
it is important to integrate the required modifications to the



Fig. 4. Creation flow of all software and firmware components to be stored
on the local boot medium. They are based on a Vivado project representing
the base configuration of the PS and optionally also the PL. Output files are
packed in the single boot image called BOOT.bin.

different software components and the additional steps in the
development process with the default workflow of the Xilinx
development tools. To achieve this, an approach based on
two Vivado projects was chosen. One project represents the
base configuration of the PS, and optionally also of the PL,
which are applied at the FSBL. The other project contains the
complete configuration, which is fetched by U-Boot via the
network. Both Vivado projects are integrated into a workflow
that is divided into two independent subprocesses. The first
one leads to the generation of all files that are needed in the
boot routine before network access is possible. The second
subprocess produces the necessary files that can be loaded
from the network. This distinct separation enables only the
second subprocess to be required for each new project. The
first subprocess, containing only generic data, is only executed
once per hardware platform. As a result, the development
effort with the split boot is comparable to a project without it.

A. Creation of the Base Configuration

The creation of all files needed for the early stages of the
boot process, before a network connection can be utilized,
are depicted in Fig. 4. In particular, they also contain the base
configuration for the PS. As can be seen, these files are entirely
based on the *.xsa file exported from the Vivado project rep-
resenting the base configuration base.xsa. The PetaLinux tools
are the only additional tools from the Xilinx development suite
that are required in the process. After creating a respective
PetaLinux project, the tools automate the process of building
all individual software components. However, one manual step
might be required if the complete configuration includes an
isolation setting because the memory regions used by U-Boot
need to be restricted according to it. This can be achieved in
the device tree, and it is the only limitation we have thus far
observed as a result of the activation of the isolation within
the PS from U-Boot. As can be seen in Fig. 4, patches are
used to apply the required modifications to U-Boot and the

PMU firmware. The use of patch files is an integral part
of developing the PetaLinux software suite, and thus both
the creation and the application during the build process are
automated.

The patch applied to the U-Boot source code is used to add
the functionality to modify the configuration of the PS and
to apply the isolation. This functionality is packaged in the
custom U-Boot-command psuinite. As an argument, this com-
mand needs the address of the configuration file to be applied
in memory. It then iterates over the configuration file and
executes the function calls listed there. The command contains
implementations of all functions listed in Table II. The source
code is derived from the implementations in psu_init.c and
only slightly modified to use the drivers available in U-Boot
and to request access to the required configuration registers
via SMC from the PMU firmware instead of accessing them
directly. A flag can be passed to the command if the access
to the configuration registers from the APU should be locked
in the PMU firmware after the configuration file is applied.
Finally, a debugging flag exists that enables print outputs
for each register access made. Another patch applied to the
U-Boot source code inserts all the additional steps required by
a split boot to the regular steps U-Boot performs to boot the
system. This patch also includes checks if the additional steps
were executed successfully or not. If a failure is detected, the
boot process is immediately aborted with an error message
because the errorless execution of each of these steps is
essential for a successful boot.

The patch applied to the PMU firmware is required to allow
U-Boot to access all needed configuration registers via SMC
calls. By default, the PMU firmware verifies that the requesting
instance is authorized to access the requested resource. This
mechanism must be temporarily disabled until U-Boot has
completed all required configuration register accesses. The
patch enables all such accesses from the start of the PMU
firmware and gives U-Boot the option to restore the default
access control when the configuration has been extended to its
complete state.

PetaLinux tools are able to build the PMU firmware, the
FSBL, the ATF, and U-Boot once the patches have been
applied. Since this FSBL is based on the base.xsa, it already
contains the desired configuration for the PS in psu_init.c and
psu_init.h, so modifying these files is not necessary. However,
the FSBL contains one more application-specific section. The
structure XPm_ConfigObject contains, among other things,
the information about which components in the PS will be
used in the given configuration. One of the final steps in the
FSBL is to send this information to the PMU firmware. If a
component is not marked as active in this structure, it is not
possible to activate it later purely via configuration registers.
One workaround for this limitation is to mark every node
in the XPm_ConfigObject as active. The downside is that
this increases the power consumption of the MPSoC as all
nodes will be powered, which also leads to potential security
vulnerabilities. Therefore, it is still being investigated if this
structure can be modified at a later stage of the boot process.

Having the PMU firmware, the FSBL, the ATF, and U-Boot
ready, the final step is to use the Xilinx tool bootgen to package



Fig. 5. Creation of all software and firmware components that are fetched
from the network during boot. They are based on a Vivado project representing
the complete configuration of the PS and PL. The tool PSU Configuration
Generator was developed to automate the creation of the binary configuration
files, it could optionally also use the file base.xsa.

them in a boot image. This file can then be copied to a local
boot medium such as an SD Card.

B. Creation of the Complete Configuration

Fig. 5 shows the process to create all files used for the
later stages of the boot process that can be fetched from a
TFTP server in the network, including the binary configuration
files to extend the configuration of the PS. It can be seen that
two paths are used to create the files. One uses PetaLinux
tools to build the Linux kernel and the other path uses the
custom tool PSU Configuration Generator to generate the two
custom binary configuration files and to extract the bitfile
for the PL. In contrast to the files created for the early
stages of the boot process, the files created here contain
application-specific information and are thus mainly based on
the *.xsa file exported from the Vivado project representing
the complete configuration complete.xsa. The information in
base.xsa can be used optionally to achieve a higher degree of
automation.

The path in Fig. 5 for building the Linux kernel uses solely
the file complete.xsa as input. This archive is used as the
basis to set up a PetaLinux project. Afterward, the PetaLinux
framework fully automates the process of building the kernel.
The tools provided by the PetaLinux software suite can be
used to customize the kernel as usual.

To prevent redundant reconfigurations, the path in Fig. 5
showing the usage of the PSU Configuration Generator could
use both complete.xsa and base.xsa. However, currently, only
the complete configuration is used as input. The redundant
reconfigurations that occur because of this have not caused
any problems so far. However, the registers that cannot be
modified from U-Boot (see Table I) must be declared in the
JSON configuration files. Fig. 5 also makes clear why it is
efficient to use the PSU Configuration Generator to extract
the bitfile for the PL from complete.xsa. This feature helps
to have as many of the files that must be copied to the
remote server ready at the same time and the same location.

Fig. 6. Setup used to test the reconfigurability of the AXI and clock
interfaces between PS and PL by the split boot mechanism. After the
initial configuration, both interfaces were enabled with 32-bit AXI width and
100-MHz clock. Later, they were changed to 128-bit and 200 MHz.

Only the Linux kernel needs to be collected from a different
location.

VIII. IMPLEMENTATION AND TESTING

The split boot mechanism as described here was devel-
oped and tested on a Trenz Electronic TE0803-03-4BE11-
A MPSoC System-on-Module (SoM) plugged onto a custom
carrier board [13] that included, among other things, an solid-
state drive (SSD), two UART interfaces, and two network
interfaces, one via serial gigabit media-independent interface
(SGMII) and one via reduced gigabit media-independent inter-
face (RGMII). On the software side, the development tools of
the Xilinx toolset 2020.2 were used.

Because the split boot process in its most efficient imple-
mentation loads the configuration for the PL from a network
server, the ability to configure the interfaces between PS and
PL at run time is of great interest. Two independent tests were
run for validation. With the clocks generated in the PS directly
connected to multiplexed input–output (MIO) pins of the PL,
the ability to activate the signal and change the frequency
was confirmed with an externally connected oscilloscope. The
second test targets the Advanced eXtensible Interface (AXI)
interfaces. A block RAM (BRAM) intellectual property (IP)
core instantiated in the PL was used to confirm the possibility
to activate them at run time and to change the width of the
bus. Fig. 6 shows the setup used for both tests.

The reconfigurability of interfaces using serializer/
deserializer (SerDes) was examined using the connected
SSD. SerDes interfaces are highlighted in particular here,
because they are not only configured but also calibrated by
the FSBL and this calibration step was also relocated to
U-Boot. After changing the configuration and performing the
calibrating in U-Boot, read and write access to the SSD from
Linux was possible without any limitations. Another interface
using SerDes is Ethernet via SGMII. The Ethernet interface,
however, needs to be configured in the FSBL because it is
used in the split boot mechanism. Thus, the only test possible
was to use U-Boot to clear the respective configuration
registers with zeros before restoring the configuration values.
This test was also successful. After rebinding the Ethernet
driver in U-Boot, the interface could be used normally.
The same procedure was also successfully tested with the
Ethernet interface based on RGMII that consequently does
not use SerDes. In addition, it was also tested whether the
configuration of the MIO pins of the PS can be changed.



Fig. 7. Custom Zynq Ultrascale+ MPSoC-based FMC+ mezzanine board
designed for slow control tasks.

For this purpose, two MIO pins were assigned to one of the
UARTs in the PS at run time. After that, the UART could be
used without restrictions for input and output.

Aside from these tests aiming at the configurability of a
single component, booting Linux on the MPSoC after extend-
ing the configuration in U-Boot was used as a comprehensive
test. This is possible because the majority of components in the
PS that are configured as part of the complete configuration
are targeted and initialized by a Linux driver loaded during
the kernel’s boot process. Linux was able to boot on the
reconfigured MPSoC in the same way as if the PS had
been fully configured in the FSBL. This supports the claim
that after reconfiguration in U-Boot, the MPSoC behaves
exactly as if the configuration had been done completely in
the FSBL.

To investigate whether the isolation configured in U-Boot
behaves the same way as if it had been configured in the
FSBL, two types of tests were run. The access to different
regions in the address range of the DDR memory, separated
by the isolation, was examined before and after the isolation
was enabled. A similar access check was also performed for
multiple registers belonging to different isolated components
within the PS. In both cases, the isolation behaved the same
way as if it had been activated in the FSBL. This outcome
was expected because, despite the fact that the configuration
of the isolation is handled in software, the actual separation
of the PS into multiple subsystems is enforced directly by
the hardware and thus unaffected by the order in which the
software is executed [3].

In addition to the Trenz Electronic MPSoC, split boot based
on version 2020.2 of the Xilinx development tools was also
implemented on a Xilinx ZCU102 evaluation board and a
custom ZUS+-based FPGA Mezzanine Card Plus (FMC+)
mezzanine board, depicted in Fig. 7 [14]. Furthermore, it was
implemented on a Xilinx Kria K26 SoM plugged onto a
KV260 development platform using version 2020.2.2 of the
Xilinx toolset. Despite some minor changes to the patches
required due to the different versions of the toolset used for the
Kria K26, the test results were identical. The implementation
process on these different hardware platforms was also used
to estimate the effort required to create all the projects and
files needed for a new platform. Due to the two Vivado and
PetaLinux projects used, the process takes longer than with
the regular boot process, but the additional time required was

typically well under an hour, especially when the patches for
the version of the toolset used were already available.

IX. CONCLUSION

A large number of hundreds of SoC devices used within the
LHC upgrade creates significant challenges in their firmware
deployment, maintenance, and accessibility. Booting from a
singular source would be beneficial and would significantly
ease maintenance. This functionality is supported by the
modified boot process presented in this article. The split boot
process enables a clear separation by having all application-
specific data on a remote server and just a generic base
layer of software remaining on the local boot medium. The
proposed workflow minimizes the overhead of implementing
the modified boot process while relying on official Xilinx tools
wherever possible. The split boot was implemented and tested
on four different hardware platforms with two versions of
the Xilinx development tools. Although the boot sequence is
already fully functional, there is still room for improvement.
A higher level of automation could be attained and will be
addressed in future work.

REFERENCES

[1] Zynq UltraScale+ MPSoC Software Developer Guide, version
2020.2, Xilinx. https://docs.xilinx.com/r/2020.2-English/ug1137-zynq-
ultrascale-mpsoc-swdev. Accessed on: August 2, 2022.

[2] Vivado PS Configuration Wizard Overview. Accessed: Aug. 23, 2022.
[Online]. Available: https://www.xilinx.com/video/hardware/vivado-ps-
configuration-wizard-overview.html

[3] Xilinx. Zynq UltraScale+ Device Technical Reference Manual,
Version 2.3. Accessed: Nov. 11, 2022. [Online]. Available:
https://docs.xilinx.com/r/en-U.S./ug1085-zynq-ultrascale-trm/Zynq-
UltraScale-Device-Technical-Reference-Manual

[4] Xilinx. PetaLinux Tools Documentation Reference Guide. Version
2022.1. Accessed: Aug. 9, 2022. [Online]. Available: https://docs.
xilinx.com/r/en-U.S./ug1144-petalinux-tools-reference-guide

[5] T. Cruz, P. Simoes, F. Bastos, and E. Monteiro, “Integration of PXE-
based desktop solutions into broadband access networks,” in Proc.
Int. Conf. Netw. Service Manage., Niagara Falls, ON, Canada, 2010,
pp. 182–189, doi: 10.1109/CNSM.2010.5691309.

[6] L. Guojie and Z. Jianbiao, “A TPCM-based trusted PXE boot method
for servers,” in Proc. IEEE 5th Int. Conf. Signal Image Process.
(ICSIP), Nanjing, China, Oct. 2020, pp. 996–1000, doi: 10.1109/IC-
SIP49896.2020.9339366.

[7] B. A. S. Krishna, M. J. Sarmah, and A. A. V. Kumar, “Multistage boot
image loading and configuration of programmable logic devices,” W.O.
Patent 2017/06 247 9A1, Apr. 13, 2017.

[8] N. Dzemaili, “A reliable booting system for Zynq Ultrascale+ MPSoC
devices,” B.S. thesis, HU Univ. Appl. Sci. Utrecht, Utrecht, Netherlands,
2021.

[9] K. S. Mor, “An embedded Linux distribution for the data acquisition
hardware of the compact muon solenoid experiment at CERN,” M.S. the-
sis, Eindhoven Univ. Technol., Eindhoven, The Netherlands, 2020.

[10] ARM Privilege and Exception Levels. Accessed: Aug. 2, 2022.
[Online]. Available: https://developer.arm.com/documentation/
102412/0102/Privilege-and-Exception-levels

[11] M. Fuchs, “Highly integrated slow control on heterogeneous SoC archi-
tectures,” M.S. thesis, Karlsruhe Inst. Technol., Karlsruhe, Germany,
2021.

[12] Zynq Ultrascale+ Devices Register Reference. Accessed:
Aug. 16, 2022. [Online]. Available: https://www.xilinx.com/
htmldocs/registers/ug1087/ug1087-zynq-ultrascale-registers.html

[13] L. Ardila-Perez et al., “A novel centralized slow control and board
management solution for ATCA blades based on the Zynq Ultrascale+
system-on-chip,” in Proc. Int. Conf. Comput. High Energy Nucl.
Phys. (CHEP), vol. 245, Nov. 2020, Art. no. 01015, doi: 10.1051/epj-
conf/202024501015.

[14] T. Mehner et al., “ZynqMP-based board-management mezzanines
for Serenity ATCA-blades,” J. Instrum., vol. 17, no. 3, Mar. 2022,
Art. no. C03009, doi: 10.1088/1748-0221/17/03/C03009.




