KIT | KIT-Bibliothek | Impressum | Datenschutz

In Situ Pyrolysis of 3D Printed Building Blocks for Functional Nanoscale Metamaterials

Sun, Qing ORCID iD icon 1; Dolle, Christian 1; Kurpiers, Chantal 2; Kraft, Kristian 1; Islam, Monsur 3; Schwaiger, Ruth; Gumbsch, Peter 2; Eggeler, Yolita M. M. ORCID iD icon 1
1 Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien (IAM), Karlsruher Institut für Technologie (KIT)
3 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

This study presents a novel approach for investigating the shrinkage dynamics of 3D-printed nanoarchitectures during isothermal pyrolysis, utilizing in situ electron microscopy. For the first time, the temporal evolution of 3D structures is tracked continuously until a quasi-stationary state is reached. By subjecting the 3D objects to different temperatures and atmospheric conditions, significant changes in the resulting kinetic parameters and morphological textures of the 3D objects are observed, particularly those possessing varying surface-to-volume ratios. Its results reveal that the effective activation energy required for pyrolysis-induced morphological shrinkage is approximately four times larger under vacuum conditions than in a nitrogen atmosphere (2.6 eV vs. 0.5–0.9 eV, respectively). Additionally, a subtle enrichment of oxygen on the surfaces of the structures for pyrolysis in nitrogen is found through a postmortem electron energy loss spectroscopy study, differentiating the vacuum pyrolysis. These findings are examined in the context of the underlying process parameters, and a mechanistic model is proposed. As a result, understanding and controlling pyrolysis in 3D structures of different geometrical dimensions not only enables precise modification of shrinkage and the creation of tensegrity structures, but also promotes pyrolytic carbon development with custom architectures and properties, especially in the field of carbon micro- and nano-electromechanical systems.


Verlagsausgabe §
DOI: 10.5445/IR/1000161258
Veröffentlicht am 10.08.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Laboratorium für Elektronenmikroskopie (LEM)
Institut für Angewandte Materialien – Werkstoff- und Grenzflächenmechanik (IAM-MMI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1616-301X, 1057-9257, 1099-0712, 1616-3028
KITopen-ID: 1000161258
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Vorab online veröffentlicht am 08.07.2023
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page