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Endogenous learning for greenhydrogen in a
sector-coupled energy model for Europe

Elisabeth Zeyen 1,2 , Marta Victoria 3,4 & Tom Brown 1,2

Many studies have shown that hydrogen could play a large role in the energy
transition for hard-to-electrify sectors, but previous modelling has not inclu-
ded the necessary features to assess its role. They have either left out impor-
tant sectors of hydrogen demand, ignored the temporal variability in the
system or neglected the dynamics of learning effects. We address these lim-
itations and consider learning-by-doing for the full greenhydrogenproduction
chain with different climate targets in a detailed European sector-coupled
model. Here, we show that in the next 10 years a faster scale-up of electrolysis
and renewable capacities than envisaged by the EU in the REPowerEU Plan can
be cost-optimal to reach the strictest +1.5oC target. This reduces the costs for
hydrogen production to 1.26 €/kg by 2050. Hydrogen production switches
from grey to green hydrogen, omitting the option of blue hydrogen. If elec-
trolysis costs are modelled without dynamic learning-by-doing, then the
electrolysis scale-up is significantly delayed, while total system costs are
overestimated by up to 13% and the levelised cost of hydrogen is over-
estimated by 67%.

Today hydrogen plays a minor role in European final energy con-
sumptionwith a 2% share1, most of which is produced fromnatural gas
with associated CO2 emissions. In the future, however, hydrogen
produced with low carbon emissions is likely to play an increasing role
in the energy mix as decarbonisation progresses with shares of up to
24% of the final energy demand by 20502. Applications could include
the production of green steel3 or synthetic fuels4,5. There are several
ways in which hydrogen can be produced: (i) from fossil fuels such as
coal or natural gas, (ii) from fossil fuels in combination with CO2 cap-
ture, or (iii) via electrolysis. The production costs for hydrogendepend
in the first two cases on the price of fossil fuels, and in the second case
on the cost of electricity. In order to reduce dependence on fossil fuels
with high gas prices and to accelerate the energy transition, the Eur-
opean Commission aims to boost the deployment of hydrogen elec-
trolysis. This objective has been concretised in the REPowerEU plan6

published in May 2022, which has set a goal to produce 10 million

tonnes of hydrogenwith renewable electricity and to import further 10
million tonnes to the EU by 2030.

Hydrogen produced from water electrolysis using renewable
electricity, so-called green hydrogen, is considered to be crucial to
decarbonise hard-to-electrify sectors of the energy system. Since it is an
immature technology, it is highly likely that costs and efficiencies will
improve as production scales up, a phenomenon known as ‘learning-
by-doing’. Several studies have been carried out on how future
hydrogen electrolysis investment costs develop over time or with
capacity deployment. However, many are based either on predefined
production or capacity developments7–9 or on expert surveys10. Way
et al.8 explore various cost distributions for the world’s energy system
up to year 2070 for multiple technologies via a Monte Carlo approach.
Through the different investment cost trajectories they cover uncer-
tainties in the cost developments, but the path for installed capacities
are exogenously defined and energy dispatch is not modelled.
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The concept of the experience curve, whichmeans that costs and
efficiencies improve as production increases, is not a new idea. Already
in 1936, Wright11 described cost reductions related to aircraft pro-
duction in a mathematical unit cost model. Since then, global cumu-
lative production volume or overall installed capacity is used to
quantify experience, attaining a good match with reality in many dif-
ferent technologies. However, experience curves are often neglected
in energy system models, since they result in non-linear, non-convex
optimisation problems which adds complexity. Modelling the endo-
genous cost curves leads to a better representation of the dynamics of
new technologies12, but requires a significantly higher computational
effort. This is especially important when modelling with perfect fore-
sight over a large timehorizon. If the cost and efficiency improvements
are given exogenously to the model, the model can ‘wait’ with invest-
ments until they are profitable, while in reality, costs would only
dynamically decrease as investments take place. Nevertheless, inmany
models, technology trends including cost reduction or efficiency
improvement, are only considered as exogenously assumptions. An
example of how these exogenous assumptions overestimate future
investment costs is solar photovoltaic (PV). The investment costs of
solar have decreased rapidly due to successful policy support. A
comparison by Krey et al.13 of the cost assumptions in 15 Integrated
Assessment Models (IAM) shows that the cost of PV in 2020 have
already fallen below themodel expectations for 2050.Way et al. 8 show
that the progressive cost projections for solar, onshorewind, batteries
and polymer electrolyte membrane (PEM) electrolysis from several
IAMs and the International Energy Agency (IEA) are high compared to
historical developments or even above costs in 2020. Several other
studies14–17 criticise that the link between cost reduction and capacity
installation is not well represented inmodels and that exogenously-set
constraints such as floor costs or excessively low annual growth rates
lead to anunderestimationof cost reductions. This highlights the need
to model investment costs endogenously without assuming unduly
elevated floor costs, overly limiting constraints on maximum annual
expansion rates or maximum penetration of renewable energies.

Endogenous cost reductions are currently used in some IAMs18–21

which consider learning in multiple sectors and global developments.
But because of the low temporal resolution in these models, they
cannot represent the challenges of an energy system with a high share
of variable renewable generation. In addition, most IAMs apply the
Hotelling rule22 to determine the CO2 prices, which with endogenous
learning is not always applicable23. Bottom-up techno-economical
Energy System Models (ESM) can better capture the temporal varia-
bility of the energy system. However, studies applying endogenous
learning only deal with the power sector24–28 or focus on a single
country29.

In this work, we explore how learning-by-doing on the full
hydrogen production chain interacts with a fully sector-coupled
energy model. We apply endogenous learning for electrolysis and
renewable energy in the European model PyPSA-Eur-Sec30 with full
sector coupling and enough temporal resolution to capture renewable
variability. The period between 2020-2050 is investigated with seven
investment periods and perfect foresight over the whole modelling
horizon. We do not specify the maximum annual expansion rates of
renewable capacities nor CO2 emission targets for every single year.
These additional conditions often lead to a lower computational effort
but also predetermine the transition paths. In this way, we determine
the cost-optimal annual expansion rates without making any
assumptions about expansion limits. Such limits have been estimated
to be artificially low in many studies compared to actual capacity
developments. We want to address the following two research ques-
tions: What are the possible cost developments of green hydrogen
production in Europe under the assumption of different CO2 budgets
without fixed capacity deployment projections? How do different
methods of modelling cost reduction influence the results?

We consider three different competing options for producing
hydrogen: (i) grey hydrogen (via steammethane reforming (SMR)), (ii)
blue hydrogen (SMR + carbon capture, capture rate 90%), and (iii)
green hydrogen (via electrolysis). Hydrogen can be used for metha-
nation, for heating (hydrogen boilers), electricity (fuel cells and ret-
rofitted open cyclic gas turbines (OCGT)), in the industry, and in the
transport sector. The synthetic gas from methanation can be used in
the heating sector (gas boilers or combined heat and power plants
(CHPs)), for industry processes or in the power sector (OCGTs or
closed cyclic gas turbines CCGTs). The demand pathway for hydrogen
in parts of industry and transport is exogenously defined, while in all
others sectors, hydrogen competes with other ways of supplying
demand. This means both demand for hydrogen (e.g. where it com-
peteswith heatpumps in the heating sector) and the supply side (e.g. if
the hydrogen is produced via electrolysis or SMR with or without
carbon capture), are part of the optimisation. OCGTand gas boilers for
heating can be retrofitted to run flexibly with natural gas or hydrogen
(see Fig. 1).

There are various technologies for hydrogen electrolysis. In this
study, cost and efficiency assumptions of alkaline electrolysis cells
(AEC) are used since they are currently themost commonelectrolysers
available on themarket.Weonly consider large plants (above 100MW)
to avoid the scaling effects of very small plants. These costs consist of
the equipment and installation costs. They include the expenses for
the stack, power electronics, gas conditioning, balanceof the plant and
labour. The annual operational andmaintenance costs are estimated in
ref. 31 based on current projects to be 2% of the investment costs. The
cost of replacing the stack is not included in the fixed operational and
maintenance cost (FOM) since it is assumed that the stack does not
need to be replacedwithin the technical lifetime. The investment costs
do not include costs for water purification, transformer costs, or
connection fees to the transmission system. AEC is currently the
dominant technology, but there are other types of electrolysis, such as
PEM or solid oxide electrolysis cell (SOEC), which may play a more
prominent role in the future. We analyse the impact of higher initial
investment costs (comparable to the investment cost of PEM) in
the Supplementary Material. All costs are given in real 2015 Euro.

We minimise total system costs for the period 2020-2050 with
perfect foresight and investments in new capacity in a five-years
interval for three different CO2 budgets. The investment costs of
renewable generation capacity (solar, onshore and offshore wind) and
hydrogen electrolysis are endogenous and thus a result of the opti-
misation in the form of a piecewise-linearised one-factor experience
curve. This results in a mixed integer linear problem MILP which is
further described in theMethods Section. Endogenous global learning
of the renewable generation capacities for solar PV, onshore and off-
shore wind is applied. Global learning assumes that global capacity
grows proportionally to European capacity. The relative factor corre-
sponds to today’s share. For example, if 1 GW of solar PV is newly built
in Europe and the shareof European solar PV capacity is 22%, the global
capacity grows by about 4.5 GW. Further details about the initial
investment cost assumptions of renewable generation are given in
the SupplementaryMaterial. For hydrogen electrolysis local learning is
applied, since it cannot be assumed that global expansion will keep up
with Europe. This means investment costs reduce only based on
installed capacities within Europe. Learning rates are varied by ± 10%
for all learning technologies to understand the robustness of the
results. Only the extreme cases are covered, i.e. a very optimistic sce-
nario in which all default learning rates are higher by +10% and a
pessimistic case in which all learning rates are -10% compared to the
base case. The cost and efficiency assumptions for all other technol-
ogies are exogenously given depending on their build year.

In this study, we investigate the potential cost developments of
green hydrogen production in Europe under different CO2 budgets
and analyse the impact of various cost reduction modelling methods.
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Here, we show that hydrogen production costs drop to as low as 1.26
€/kgH2

by 2050. The production of hydrogen shifts fromgrey to green,
bypassing the need for blue hydrogen. The scaling-up of electrolysis is
delayed, and overall system costs are overestimated by up to 13%. The
levelised cost of hydrogen is inflatedby 67% if electrolysis costs are not
modelled with endogenous learning-by-doing.

Results
Total system costs to achieve the carbon targets
To stay within the +1.5oC budget, the direct total annualised system
costs (ignoring any costs of climate change damages) are up to 27%
higher than the +2.0oC budget (Fig. 2). Cost are higher in the +1.5oC
scenario because (i) existing assets with high CO2 emissions are
phased out before the end of their lifetime, (ii) large-scale invest-
ments are made before the costs are reduced by learning, and (iii)
major parts of the oil demand are already supplied by synthetic fuels
in 2030, which are more expensive to produce. However, total
annualised system costs of the scenarios in 2050 are similar and vary
only by 2% between the +1.5oC and +2.0oC budget since the invest-
ment costs decline. The annualised system costs of the +1.7oC sce-
nario in 2050 are 2% lower compared to the +2.0oC scenarios. The
reason is that investments in low-carbon infrastructure with the
+1.7oC budget happen earlier, while for the +2.0oC scenarios a major
infrastructure transformation with associated higher costs is needed
in 2050 to meet the condition of climate neutrality. The European
Union target of 55% greenhouse gas reduction in 2030 compared to
199032, applied to CO2, is within the +1.7oC and +2.0oC scenarios
(Fig. 3). If estimated costs of climate change damage with a social
cost of carbon (SCC) of 120 € per tonne CO2 are added, the total
system costs are even slightly higher in the +2.0oC scenarios com-
pared to the +1.5oC and +1.7oC scenario in the period 2025–2045 due
to the higher CO2 emissions (see Fig. S26 in the Supplementary
Material). A previous study33 deals in more detail with the impact of
SCC on the total system costs.

Electrolysis investment costs
The investment costs of electrolysis decline strongly for all three
assumed CO2 budgets. For the base learning rate assumptions
(Table 1), investment costs are for every year, and the budget is below
the cost estimates of the Danish Energy Agency (DEA) (Fig. 4). The
tighter the budget, the more renewable generation and electrolysis
capacities are employed and the stronger is the cost decline. All sce-
narios lead to a significant reduction in the investment costs of elec-
trolysis, ranging from 140 to 380 €/kWelec already in 2030. The largest
cost reductions for the +1.5oC scenario occur until 2025, for the +1.7oC
budget until 2030 while the investment costs in the +2.0oC scenarios

Fig. 2 | Total annualised system costs compared to the endogenous +2oC
budget scenario without estimated costs of climate change damage. The costs
of individual years are shown here, however, the entire period from 2020–2050 is
solved in one single optimisation. The shaded areas represent the sensitivity ana-
lysis to ± 10% learning rates for different technologies.

Fig. 1 | Overview of hydrogen usage and production in the model. In most
sectors, both the production and demand of hydrogen is endogenous. With the
exception of the production of ammonia and steel in industry, for these sectors
fixed hydrogen demands are specified for the respective reference year. For the

transport sector, e.g. the share of internal combustion engine (ICE) vehicles is
predefined for each year (exogenous demand), and whether the fuel is of fossil or
synthetic origin is optimised (endogenous supply).
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decline most strongly in later years between 2035 and 2040. In 2050,
investment costs for electrolysis decrease down to 75 and 95 €/kWelec

(compared to DEA 250 €/kWelec) for +1.5oC and +2oC respec-
tively (Fig. 4).

To examine the robustness of the results, the learning rates are
varied by± 10% in additional scenarios. In the scenarios with the most
pessimistic assumptions (all learning rates are 10% less than the base
case), the electrolysis investment costs range between 317 and 360
€/kWelec in 2050.

Installed electrolysis capacities and hydrogen usage
The +1.5oC scenario sees the cost-optimal deployment of 435 GW of
electrolysiswhichproduce 36million tonnes of hydrogen in 2030. This
is clearly not realistic given the necessary scale-up of production
facilities that would be required. In the scenario corresponding to a
temperature increase of +1.7oC, 60 GW of electrolysis are installed by
2030 which produce 4 million tonnes of hydrogen. Under the +2oC
scenario, 4 GW of electrolysis are deployed and 0.1 million tonnes of
hydrogen are produced (see Fig. 5). The European Commission’s
REPowerEU plan6 targets to produce 10 million tonnes of hydrogen
within Europe, which corresponds to electrolysis capacities of 140
GWel assuming average utilisation factors of 43% and 70% conversion
efficiency34, and importing further 10million tonnes of hydrogen from
neighbouring countries by 2030. This target is in between our +1.5oC
budget and +1.7oC budget result, given that we do not consider
hydrogen imports from outside Europe.

The production of hydrogen switches from SMR (grey hydrogen)
to electrolysis (green hydrogen) in all scenarios, while SMR in combi-
nation with carbon capture (blue hydrogen) is not installed in any
scenario. To further explore the option of SMR with carbon capture,
we run sensitivity scenarios for blue hydrogen production depending
on capture rate, investment costs and available CO2 sequestration
potential (see Supplementary Material). Blue hydrogen is only pro-
duced at scale under certain optimistic conditions. For example, with
our base assumptions for CO2 storage potential (200 MtCO2

/a) and
capture rate (90%), blue hydrogenhas a shareof 8% in total production
with SMR investment costs of 286 EUR/kWH2 (50% of our reference
assumption). A large sequestration potential of 2000 MtCO2

per year

with base assumptions on investment costs (572 EUR/kWH2) and cap-
ture rate (90%) leads to production of blue hydrogen with a share of
19% of total production.Withmore optimistic assumptions on capture
rate (100%) and CO2 storage potential (2000 MtCO2

/a), most of the
hydrogen is produced as blue hydrogen from investment costs below
286 EUR/kWH2.

The timing of the transition from grey to green hydrogen pro-
duction differs between the scenarios. In the scenario with a +1.5oC
budget, green hydrogen is already produced in 2025, while in the
scenario with a +2oC budget hydrogen is supplied by SMR until
2040–2045 (see Figure S30 in the Supplementary Material for a
breakdown of hydrogen supply and usage). For all budgets, hydrogen
demand increases from about 110 TWhH2

/a in 2020 to up to 4000
TWhH2

/a in 2050. In the +1.5oC scenario, the hydrogen is primarily used
to produce synthetic fuels (1800 TWhH2

in 2050) and synthetic
methane (700 TWhH2

/560 TWhCH4
in 2050). The produced synthetic

methane is mainly used in industry processes (424 TWhCH4
) but also in

OCGTs (135 TWhCH4
). There is an option to convert the OCGTs to run

on hydrogen, but this option is not used. A smaller fraction of the
hydrogen is used in the industry (500 TWhH2

in 2050), to power fuel
cells (440 TWhH2

in 2050) and for shipping (200 TWhH2
in 2050). The

option of retrofitting existing natural gas boilers for operation with
hydrogen is not exploited. The natural gas boilers are largely replaced
by heat pumps until 2040.

Hydrogen is stored in salt caverns and the energy capacity ranges
between 278–349 TWh from the +2.0oC to the +1.5oC scenario. These
storage capacities are comparable to existing natural gas storage of
1075 TWh, once adjusted for the lower volumetric energy density of
hydrogen, andbelow the European technical potential of 84.8 PWhH2

35.
No costs are assumed in themain results for the hydrogen transport. A
sensitivity analysis of a scenario with a higher spatial resolution and
corresponding costs for electricity and hydrogen infrastructure, as
well as an annual breakdown of hydrogen supply and usage and
installed capacities, is shown in the Supplementary Material. In sce-
narios with a higher spatial resolution, the hydrogen and electricity
grids account for a share of 0.1-7.6% of the total system costs, higher
electrolysis capacities are installed and total system cost increases by
12-16%. The trade-offs of an electricity and hydrogen grid in a dec-
arbonised European energy system are discussed in more detail in a
further publication36.

Renewable generation costs and capacities
In order to achieve net-zero emissions in 2050, renewable generation
capacity must be strongly expanded in all scenarios to at least 3.2 TW
solar, 1.7 TW onshore wind, and 175 GW offshore wind. The timing of
the capacity build-out differs across the individual scenarios: with an
ambitious budget, there is a strong expansion between 2030–2040,
while in theother scenarios the strongest expansion takes place in later
years from 2040 (+1.7oC) or 2045 (+2.0oC). The REPowerEU plan6, with
targeted PV capacities of 750 GWDC

37 (which corresponds to 600
GWAC) by 2030, lies within our results of +1.7oC with 764 GW and +2oC
with 422 GW.However, the wind expansion targets of REPowerEUwith

Fig. 3 | Annual CO2 emissions. Three different budgets are assumed for Europe
deducted from the global budget assuming equalper capita share (i) budget 25.7 Gt
(+1.5oC), (ii) 45 Gt (+1.7oC), (iii) 73.9 Gt (+2oC). Further, carbon neutrality is required
in all scenarios by 2050. The hashed line shows a scenario with the default learning
rate presented in Table 1. Contour indicates scenarios with ± 10% variation of the
learning rate for all technologies with endogenous learning. We compare the
budget scenarios with a fourth scenario (noCO2limit) in which we do not specify
any CO2 constraints.

Table 1 | Global capacity, European share of global capacity
and learning rates (cost reduction for every doubling of
cumulative capacity)

Technology Global capa-
city [GW]

European
share [%]

Learning
rate [%]

Solar PV 70758 2258 2431

Onshore wind 69958 2658 1031

Offshore wind 3458 7358 1031

Electrolysis 1159 Local learning 169

1only considering alkaline electrolysis and no other electrolysis type.
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480 GW38 by 2030, lag behind our findings with at least 555 GW in the
+2oC scenario by 2030.

In scenarios with base learning rate assumptions and endogen-
ous learning, investment costs (without grid connection costs) for
renewable generation capacity in 2050 range between 171–237 €/kW
for solar PV, 818–900 €/kW for onshore wind, and 1327 €/kW for
offshore wind from the tight +1.5oC to the +2oC budget (see Figure
S23 in the Supplementary Material). These are below the DEA’s cost
projections. In particular, the costs for solar PV decrease significantly
and are 43% lower in 2050 with ambitious climate targets than the
DEA estimates of 300 €/kW. One should be aware that grid connec-
tion costs are added to these investment costs in the model that do
not undergo any learning. For offshore wind, grid connection costs
depend on the location and connection type, while for solar and
onshore wind additional grid connection costs of 133 €/kW
are added.

+1.5oC budget hard to accomplish
The build-out rates of renewables and electrolysis in scenarios with a
+1.5oC budget are significantly higher than the historical record, which
emphasises the challenge to stay within this budget. For example, the

average annual build out rate is 77 GW for solar PV in the +1.5oC sce-
nario between 2020–2030. This corresponds to almost a tripling of the
historical maximum annual expansion rates in Europe39. The same
applies to onshore and offshore wind, with average annual build-out
rates of 97 GW and 16 GW between 2020–2030 in our scenario, which
are roughly five times the historical maximum annual build-out
rates40,41. Between 2030–2040 even higher build rates are required
of up to 200 GW solar capacity per year while the annual expansion of
onshore wind decreases to 58 GW. A sensitivity analysis, in which the
maximum annual expansion rates of renewables are limited, can be
found in the Supplementary Material. Limiting maximum annual
expansion rates leads to higher costs becausemore offshore wind and
nuclear power plants are deployed instead of less costly onshore wind
and solar. Hydrogen production is lower because methanation is no
longer favoured. The option of producing blue hydrogen is not used.
One should be aware, that we do not assume any negative emissions
after 2050, nor any additional sufficiencymeasures, nor do we allow a
fully endogenous transition path for the transport sector. These are all
factors that could reduce the necessary build-out rates and make the
+1.5oC scenarios more achievable.

Scenario without any carbon target
In one further scenario, no constraints on CO2 emissions are
assumed in order to investigate what a cost-optimal system
without a carbon target looks like. As in the previous scenarios,
the investment costs of renewables and green hydrogen are
subject to endogenous experience curves. Compared to the cur-
rent system, the share of renewable hydrogen increases even
without climate targets. CO2 emissions reduce from historical
levels of 3.2 Gt/a in 2020 to 1.9 Gt/a in 2050 (Fig. 3). Emissions in
2030 are 2.3 Gt/a, which is only slightly above the EU’s 2030
target. Hydrogen is largely produced via SMR. In 2050, 23% of the
hydrogen demand in the CO2-unconstrained scenario is covered
by green hydrogen via electrolysis. CO2 emissions stagnate from
2040 onward even with very high learning rates, whereby a large
part of the emissions is generated by the use of fossil gas in the
heating and power sector, as well as emissions from aviation and
feedstocks for the petrochemical industry. It should be noted that
our CO2-unconstrained scenario does not continue historical
trends, but allows for the transformation of energy sectors if it is
cost-effective. For example, even without a set CO2 limit, the
comparatively expensive coal-fired power generation is phased
out and ICE vehicles are replaced by electric vehicles and
hydrogen-powered trucks, as in the other scenarios with a CO2

budget. Sectors in which decarbonisation is not cost-optimal, are
not transformed and continue to generate emissions, such as the
production of feedstocks for the petrochemical industry.

Fig. 4 | Investment costs of electrolysis for different carbon budgets. Hashed
line shows a scenario with the default learning rate presented in Table 1. Contour
indicates scenarios with ± 10% variation of the learning rate for all technologies

which undergo learning. Investment costs of the other endogenous learning
technologies are shown in Supplementary Material Fig. S23.

Fig. 5 | Electrolysis capacity of the three different budgets. For the +1.5oC sce-
narios also the three different methods are compared. The sequential cost (seq-
cost) and the exogenous (exogen) method results in later investments and
underestimations of installed electrolysis capacities compared to the endogenous
method (endogen).
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Comparing differentmethods ofmodelling technology learning
In this section, we examine the difference that modelling learning-by-
doing dynamically makes to the results. We compare three different
methods of modelling investment cost reduction typically used in
ESM, including (i) the endogenousmethodwhere investment costs are
adjusted according to the installed capacity, (ii) the standard exo-
genous method with given fixed cost trajectories for each technology
and investment year and (iii) the sequential method. In the sequential
method, the optimisation problem is first solved using the exogenous
cost assumptions, then the investment costs are updated depending
on the optimised installed capacities. The same experience curves are
assumed as in the endogenous method. The process of solving and
updating investment costs is iteratively repeated until thedifferenceof
investment costs between two iterations is below a threshold. The
threshold is set to a maximal mean square difference between opti-
mised investment costs of the current and the previous iteration of 5%.
The sequential method is a linear problem that requires less compu-
tational resources than the MILP of the endogenous method, but
unlike the exogenousmethod, the investment costs are adjustedbased
on the installed capacities.

The cost difference of not using endogenous learning-by-doing is
shown in Fig. 6. In contrast to the exogenous method, the investment
costs of the endogenous and sequential method depend on the
installed capacities. For the +1.5oC budget, the sequential and exo-
genous methods result in up to 7% and 13% higher annualised total
system costs compared to the endogenous method. The cost differ-
ence between the +1.5oC and the +2.0oC budget is smaller with the
endogenous method compared to the sequential and exogenous
method, because although larger capacities of renewables and elec-
trolysis are needed at an earlier point in time, the costs also decrease
more due to the faster scaling up and the foresight of the endogenous
method of potential investment cost reductions. The endogenous
method, therefore, allows a better comparison of costs of scenarios
with different infrastructure needs or transition speeds.

The endogenous method leads to an earlier deployment of the
learning technologies since it is the only one of the threemethods that
has the foresight ofhow far costs candecrease. As a result, investments

are made early in order to reduce investment costs. With the
sequential and exogenous methods, investment is delayed and the
model ‘waits’ until costs fall. For example in +1.5oC scenarios in 2025,
214 GW of electrolysis are installed in the endogenous scenarios and
only 20 GW electrolysis in both the sequential and exogenous cost
scenarios. With the endogenous method, the hydrogen is used for the
synthesis of fuels and methane earlier and to a larger extent. In sce-
narios corresponding to a +1.7oC budget about 1800 TWhH2

are pro-
duced in 2045 mainly via electrolysis, while only half of this amount is
produced in the exogenous case. The larger volume of hydrogen is
used in the endogenous case for synthetic fuels while in the exogenous
case they have a fossil origin. This is particularly noteworthy since
most ESM assume exogenous cost reductions and thereby under-
estimate initial investments in early years (Fig. S30 in the Supplemen-
taryMaterial). The foresight of the endogenous method is particularly
important whenmodelling the dynamics of emerging technologies for
which strong cost reductions are possible. The endogenous method
can consider the potential cost development during optimisation and
make investment decisions based on this. With the sequential and
exogenous method, the investment decisions are strongly subject to
the initial assumed cost projection.

The prices for hydrogen are an output of the linear optimisation
and are determined by the dual variables. For the exogenous and
sequential method, these are obtained directly from the optimisation.
In the endogenous scenarios, the investment costs and capacities of
the learning technologies determined from the optimisation are
assumed fixed and the optimisation is rerun as a linear problem. The
exogenousmethodoverestimates the cost of hydrogenbyup to67% in
2030 and 38% in 2050 compared to the endogenous scenarios. For
example, in endogenous scenarios with a +1.5oC budget hydrogen
costs drop to 1.32 €/kgH2

in 2030, while in the sequential and exo-
genous scenarios they are 1.95 €/kgH2

and 2.22 €/kgH2
respectively. In

2050, the costs in the endogenous scenarios reach 1.26 €/kgH2
and the

exogenous ones 1.73 €/kgH2
.

The system composition in 2050 is primarily influenced by the
assumed CO2 budget and not by the modelling method (see Fig. 5).
However, our results show deviations between the methods. The
exogenous method leads to the lowest installed electrolysis capacities
in 2050 followed by the sequential method with -33% and -17%
respectively compared to the endogenous method in the +1.5oC sce-
narios. This can be explained by the lower investment costs for elec-
trolysis obtained in the endogenous scenarios (75 €/kWelec in 2050
with a +1.5oC budget), which are below the sequential optimised
investment costs of 79€/kWelec and the exogenous assumptions of 250
€/kWelec. The produced volume of hydrogen differs between the
methods. For example, in scenarios corresponding to a +1.5oC budget,
24% and 30% less hydrogen is produced with the sequential and exo-
genous methods in 2030. With the endogenous method, more
hydrogen is used formethanation and for re-electrification in fuel cells
compared to the other two methods.

Technology learning depends on global developmentswhilemost
ESM model single regions or continents. Cost in Europe, for example
for solar PV, would reduce if solar panels are employed at a large scale
in China. In this study, we have assumed that global renewable capa-
cities increase in proportion to the growth in Europe. For electrolysis,
we assume local learning. The exogenousmethod can provide a better
description of cost developments for technologies for which large
expansion rates outside the modelled region are expected. One could
circumvent this problem with the sequential and endogenous method
by splitting up the technology learning into two factors describing
regional and global learning. The regional factor depends on the
installed capacities in the regional model, while the global factor
describes an exogenous cost decrease dependent on expected global
development. The split into two factors was outside the scope of
this study.

Fig. 6 | Difference in total system costs for +1.5oC scenarios compared to the
endogenous method with base learning rate. Exogenous (exogen) and sequen-
tial (seqcost) method result in higher total annualised system costs compared to
the endogenous scenarios. The comparison for the +1.7oC and +2.0oC scenarios and
the impact of different learning rates can be found in the Supplementary
Material S28.
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The exogenous and sequential method require significantly less
memory and computing time compared to the endogenous method.
For example, using the commercial solver Gurobi42 with 12 threads, the
scenarios with endogenous learning need about 21 hours to solve and
require 30 GB RAM, while the sequential models solve in less than
1 hour with only 3 GB RAM and the exogenous method solves in
1 minute with only 3 GB RAM. The sequential and the exogenous
method require lower computational effort and thus offer the possi-
bility to calculate e.g. with higher spatial resolution. The solution time
and memory requirements for the endogenous method increase with
the number of modelled learning technologies. In contrast, the com-
putational effort of the sequential method is independent of the
number of learning technologies, since the costs are only updated
after optimisation. This allows us to consider cost reductions for all
technologies depending on the installed capacity without increasing
the computing time.

The chosen method of modelling technology learning should
depend on the particular research question. The sequential and exo-
genous method are advantageous if the available computational
resources are small or a greater level of detail (e.g. higher spatial
resolution) is important. The number of technologies that are subject
to learning can be increased with the sequential method without
additional computational effort. The exogenousmethod can represent
developments outside the modelled region. If the cost reductions are
expected primarily through local learning within the modelled region,
the sequential and endogenous methods are appropriate. The endo-
genous method is favourable if the timing of the investment is ana-
lysed, costs of different climate target scenarios are compared or
trade-offs between emerging technologies are considered. Technolo-
gies with a large learning potential can be better modelled with the
endogenous method, since small additional capacities already lead to
strong cost reductions.

Discussion
In the following, we compare our costs for green hydrogen production
with other studies and outline the limitations of this work. In the Sup-
plementaryMaterial, we offer amore comprehensive comparisonwith
other studies and a detailed discussion of the limitations associated
with this research. We find the cost of green hydrogen production of
1.26-1.51 €/kgH2

, which is in good agreement with results from ETC of
1.21 €/kgH2

43, Hydrogen council of 1.4 €/kgH2

44 and BloombergNEF of
0.68-1.55 €/kgH2

45. In contrast to our study, these studies assume an
average electricity price and a fixed number of full load hours for
electrolysis and thus cannot reflect the system advantage of electro-
lysis running at very low electricity prices. However, we only assume
local learning for electrolysis and do not consider learning due to
capacity expansion in other regions, while the other studies analyse
global developments. Odenweller et al.46 show that fast scale-ups of
electrolysis capacities until 2030 as we see in our +1.5oC scenariosmay
be infeasible. However, in this study, wewant to show the cost-optimal
capacities that are necessary to achieve a given CO2 budget. The
demonstrated findings have multiple limitations, firstly in the
approach used tomodel experience curves and secondly in the overall
assumptions made for the scenarios. For example, we make the sim-
plified assumption that the electrolysis costs are only influenced by
local learning. However, in case electrolysis is scaled up in China or the
US, this would also lower the costs in Europe. Furthermore, we assume
no imports of hydrogen, which would reduce the need for renewable
capacity and electrolysis in Europe.

In this study, we use a sector-coupled European model with
endogenous cost reductions through experience curves for electro-
lysis and renewable generation technologies, assuming different CO2

budgets. In all scenarios, CO2 neutrality is required as an additional
condition in the model by 2050. In the second part, we explore the
trade-offs of three different methods modelling learning-by-doing.

We find that in scenarios with ambitious climate targets, costs for
green hydrogen electrolysis can be reduced to 1.26 €/kgH2

by 2050. In
our results, scenarios with a tight budget corresponding to +1.5oC
warming require a rapid transformation of the energy system already
in 2025 and high build-out rates of both electrolysis and renewable
generation. This indicates that, without negative emissions after 2050
or further efforts such as sufficiency measures, the scenarios with
+1.5oC warming are difficult to achieve. Hydrogen production shifts
from grey to green hydrogen. Depending on climate targets, more
than half of hydrogen demand is met by electrolysis in 2025 (+1.5oC
scenario) or2045 (+2.0oC scenario). Theoptionof bluehydrogen is not
used in any scenario.

A rapid build-up of both electrolysis and renewable generation
capacity is necessary by 2030 to staywithin a +1.5–2oC target.While for
the former, the European Union’s targets for electrolysis are in line
with our +1.5–1.7oC budget scenarios, for the latter, the proposed
capacities for wind and solar in REPowerEU6 are behind the capacities
necessary to provide sufficient green electricity.

We show that ignoring the virtuous circle between capacity
expansion and lower costs leads todelayed investments. A comparison
of total costs of scenarios with different transformation speeds should
consider cost reductions depending on the usage of technology. A
faster expansion of technology than predicted in the exogenous cost
assumptions thus leads to lower costs, a slower expansion to higher
costs. In our results, total annual system costs are thereby up to 13%
higher and levelised cost of hydrogen increase by up to 67% with the
exogenous compared to the endogenous method. A middle ground
approachwhere costs are updated sequentially offers the advantage of
a lower computational effort compared to the endogenous method
and maintains the correlation between investment costs and
capacities.

Significant cost reductions in the production of green hydrogen
to 1.26 €/kgH2

by 2050 are possible. As further cost reductions and
scale-up of electrolysis are expected in the coming years, endogen-
ous costmodelling of electrolysis is important to compare total costs
of different scenarios and to determine the right timing for
investments.

Methods
Model description
We use the open-source European sector coupled model PyPSA-Eur-
Sec30, whichminimises total system costs while optimising generation,
storage and distribution capacity and dispatch. It covers energy and
feedstock demand in the sectors electricity, heating, transport and
industry. The model has already been presented in detail in various
publications33,47–49, so in the following only the newly implemented
features for this study are presented.

The period from 2020 to 2050 is modelled, with perfect foresight
and 7 investment periods at 5-year intervals. Three different CO2

budgets of 25.7, 45 and 73.9 Gt CO2 are assumed for the whole mod-
elling horizon. These budgets correspond respectively to warming of
+1.5oC, +1.7oC, +2oC, assuming a per capita share of the global CO2

budgets (further explanations about the chosen budgets are given in
an earlier publication33). The CO2 emission paths are not fixed, except
that CO2 neutrality (or negative emissions) is enforced for 2050, in line
with the European Commission’s target for net-zero greenhouse gas
emissions.

Existing generation capacities (lignite, coal, gas, hydro, nuclear,
solar, offshore and onshore wind) are taken from the IRENA 2020
report9 and the open-source package powerplantmatching50. Costs,
lifetime and efficiencies are assumed for the respective year of the
Danish Energy Agency DEA31. The investment costs of renewable gen-
eration capacity (solar, onshore and offshore wind) and hydrogen
electrolysis are in the endogenous case not exogenously specified but
are part of the optimisation in form of a piecewise-realised one-factor
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experience curve. This results in a mixed integer linear problem MILP
which is further described below. The total system costs are not dis-
counted by a social discount rate that reflects the value of future
investments in order to investigate the impact of learning in isolation
from other effects. A high discount rate leads to a significantly lower
weighting of costs in 2050 and thus shifts investments into the future
while endogenous learning leads to earlier investments.

There are three different competing options for producing
hydrogen in the model: (i) grey hydrogen (via steam methane
reforming (SMR)), (ii) blue hydrogen (SMR + carbon capture) and (iii)
green hydrogen (via electrolysis). Hydrogen can be used for metha-
nation, for heating (hydrogen boilers), electricity (fuel cells and ret-
rofitted OCGT), in the industry, and in the transport sector. The
demand pathway for hydrogen in parts of industry and transport is
exogenously defined, while in all others sectors, hydrogen competes
with other ways of supplying demand in these sectors. This means
both demand for hydrogen (e.g. where it competes with heat pumps in
the heating sector) and the supply side, for example if the hydrogen is
produced via electrolysis or SMR, are part of the optimisation. OCGT
and gas boilers for heating can be retrofitted to run flexibly with nat-
ural gas or hydrogen (Fig. 1). There are various electrolysis technolo-
gies. In this study, cost and efficiency assumptions of alkaline
electrolysis cells (AEC) are used since they are currently the most
common electrolysers available on the market.

In contrast to other studies, no maximum annual expansion rate
of renewable generation capacity and no annual CO2 emission paths
are specified. Those constraints often reduce strongly the solution
timeof the optimisationproblem, but alsopredetermine the transition
paths. Since we consider multiple sectors and investment periods, the
optimisationproblem is aggregated spatially and temporally tomake it
computationally solvable. Spatially, energy transmission networks are
reduced to a single node for Europe, while six different typical regions
are used to represent the variability of renewable generation. We
optimise the power transfer capacity between transmission and dis-
tribution level. No existing grid infrastructure of distribution grids is
assumed. Losses indistribution areneglected. Costs of the distribution
grid of 500 €/kWelec are applied. Electricity demands, heat pumps,
resistive heaters, rooftop PV, home batteries, and electric vehicles are
connected to the distribution grid. All remaining technologies of the
power sector (e.g. large scale storage, wind parks, conventional power
plants, electrolysers) are connected to the high-voltage grid. In
the Supplementary Material, we analyse the impact of spatial aggre-
gation on our results by comparing scenarios with higher spatial
resolution and the exogenous method with our results from the
manuscript (see Fig. S17a). The infrastructure cost contributes
0.1–7.6% to the total annualised costs only by a small margin. In terms
of temporal aggregation, 10 typical days per investment period are
considered. This allows, in contrast to most IAMs, the possibility to

represent the temporal variation of the renewable generation and is
comparable to other ESM like PRIMES using two or nine typical days51

or Heuberger et al.28 using 11 temporal days. The 10 typical days are
obtained through k-medoids clustering using the Python package
tsam52,53, so that they represent the average statistics of weather and
demand, while also capturing more extreme events. To find the
optimal solution we use the commercial solver Gurobi42 using 12
threads.

Endogenous learning
Experience curves are an economic concept based on empirical evi-
dence in which the specific investment costs c decrease by a constant
factor α with each doubling of experience E

cðEÞ= c0 � E

E0

 !�α

withα givenbyα = log2
1

1� LR

� �
: ð1Þ

The constants c0 and E0 are fixed starting points, LR is the so-called
learning rate (Table 2). If for example the learning rate is 20%
(LR = 0.2), the costs are reduced by 20% for each doubling of
cumulative experience. Typically learning rates range between 5%-
25%. Smaller modular technologies (e.g. PV or wind) tend to have
higher learning rates than large-scale plants54,55. In this study, the global
cumulative capacity is used as a proxy for experience. c represents the
investment costs [EUR per MW], c0 the initial investment costs [EUR
per MW] Tables 1 and 2.

Experience curves make ESM optimisation problems both non-
linear and non-convex, which makes solving particularly challenging.
There are twomain approaches25 to integrate experience curveswithin
ESM: direct non-linear implementation and piecewise linear approx-
imation of cumulative costs. In this paper, we follow the latter and use
special ordered sets of type 2 (SOS2). Compared to the non-linear
implementation this has several advantages: it can find a global mini-
mum rather thangetting stuck in a local one, it does not dependon the
initial starting point of the solver, and it can be solved faster using
commercial solver algorithms.

Total technology cost TC. The cumulative investment costs for
technology can be obtained by integrating the experience curve
(Equation 1). For α ≠ 1→ LR ≠0.5 this results in

TC=
Z E

E0

c dE 0 =
1

1� α
cðEÞE � c0E0

� �
: ð2Þ

Thecumulative costs TCare stepwise linearisedwith a givennumberof
line segments (Fig. 7). The greater the number of segments, the more
precise the solution. However, this also increases the number of vari-
ables and thus the solution time.

Table 2 | Summary of parameters (left) and variables (right)

Parameter Definition Variable Definition

c0 initial investment costs c investment costs

E0 initial experience E experience, cumulative installed capacity

α learning index TC cumulative technology costs

LR learning rate δ continuous variables∈ [0, 1], part of SOS2

s technology (e.g. solar) cap new build capacity per investment period

t investment period inv investment cost per investment period

i interpolation point

N total number of interpolation points used for piece-wise linearisation

gf global factor, share of global capacity installed in Europe

ðEi,TCiÞ interpolation points of piece-wise linearisation

ms,j slope of line segment j for technology s
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Other models use the following number of segments: In ERIS56 6,
global MARKAL 6–8, MARKAL-Europe 6–2057. Heuberger et al. 28 5. In
this study we assume five line segments. This corresponds to six
interpolation points ðTCi,EiÞ (marked in Fig. 7with a star) for i∈ [0,N-1]
where N is the number of interpolation points.

The definition of the line segments follows Barreto’s approach27:
line segments at the beginning of the learning are shorter to capture
the steep part of the experience curve more precisely. With each line
segment the cumulative cost increase doubles.

Special ordered set of type 2 SOS2. We define a set of continuous
variables δs,t,i∈ [0, 1] for each technology s (e.g. solar PV), investment
period t and interpolation point i∈ [0,N − 1] of the linearisation. N is
the total number of interpolation points used for the piece-wise line-
arisation. The continuous variable indicates which line segment is
active. Only two adjacent delta variables are non-zero at the same time
t for technology s and their sum is equal one

XN�1

i=0

δs,t,i = 1: ð3Þ

For example, if line segment i is active then only δs,t,i and δs,t,i+1 are
non-zero.

Cumulative experience E. The cumulative capacity Es,t of a technol-
ogy s, time t and interpolation points i is defined as a summation of the
product of the continuous variable δ and the x-position of the inter-
polation points Es,i

Es,t =
XN�1

i=0

δs,t,i � Es,i: ð4Þ

For example, if line segment i is active, then (4) will interpolate
between Es,i and Es,i+ 1.

The new installed capacity caps,t per investment period in Europe
is the difference of the cumulative experience weighted by a global

factor gf

caps,t =gf � ðEs,t � Es,t�1Þ: ð5Þ

The global factor is one for local learning (assumed for hydrogen
electrolysis in this study). For global learning (as considered for PV,
onshore and offshore wind in the following results) it represents
today’s share of European compared to global capacities.

Linear combination. If no time-delay for the learning effects would be
considered, one could express the cumulative cost TC similar to the
cumulative experience E with the help of the SOS2 variables δ and the
y-position of the interpolation points TCs,i as

TCs,t =
XN�1

i=0

δs,t,i � TCs,i: ð6Þ

Temporal-delayed learning effect. In this study we consider a
temporal-delayed learning effect which means that the investment
cost decrease in an investment period t depends on the cumulative
installed capacities at the previous investment period t − 1. This
represents learning effects more realistically, as investment costs do
not decrease immediately in the same reference year as the emerging
technology is employed, but are subject to a time lag. One should be
aware that this results in an overestimating of the cumulative cost
curve shown exemplary in Fig. 7. The cumulative costs are definedwith
the delayed learning as

TCs,t =TCs,t�1 +ms,t�1,i � caps,t : ð7Þ

Here ms,t−1,i is the slope of the line segment at the previous
investment period t − 1. As the total costs are the integral of the
experience curve, the slope ms,t,i is equivalent to the specific
investment costs.

The overall investment costs per investment period invs,t are
defined as

invs,t = gf � ðTCs,t � TCs,t�1Þ: ð8Þ

Data availability
The raw and processed data used in this study are archived at Zenodo
https://zenodo.org/record/6645232#.Yt6L6tJBwkI under a CC-BY-4.0
license.

Code availability
The PyPSA-Eur-Sec model is available under MIT license via Github
https://github.com/PyPSA/pypsa-eur-sec. Model documentation
https://pypsa-eur-sec.readthedocs.io/en/latest/. All the technology
assumptions are available via Github https://github.com/PyPSA/
technology-data, version v0.3.0 is used in this study. The source
code and input data for this study are openly available at Zenodo
https://zenodo.org/record/6645232#.Yt6L6tJBwkI under a CC-BY-4.0
license.
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