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Abstract

Anomaly detection is a critical aspect of safe autonomous driving systems, where detecting and un-

derstanding uncommon and unpredictable scenarios, often referred to as corner cases or anomalies,

is crucial for ensuring the safety of passengers and pedestrians. In this bachelor’s thesis, I quantita-

tively evaluate an anomaly detection method proposed by Sartoris [38] that utilizes Light Detection

and Ranging (lidar) data for detecting anomalies. The method combines a supervised (SV) and

a self-supervised (SSV) part to detect motion anomalies in the environment. By analyzing the

discrepancies between the two parts, the detection method identifies points that deviate from the

expected behavior, indicating potential anomalies.

This evaluation utilizes the Common Anomaly Detection in Autonomous Driving (CODA)

dataset [25], which provides the only anomaly dataset including lidar data. However, the cor-

ner cases are only labeled in the form of 2D bounding boxes. To address this limitation, I convert

the 2D bounding boxes in the CODA dataset into 3D point-wise labels. The CODA dataset is

then translated into the KITTI-odometry data format suitable for evaluating Sartoris’ method. Ad-

ditionally, improvements are proposed for the clustering algorithms used to create 3D point-wise

labels, aiming to reduce the need for manual verification.

Given the lack of suitable metrics for semantic segmentation, except for Mean Intersection over

Union (mIoU), I propose two novel approaches that utilize the metrics Average Precision (AP),

Average Recall (AR), and F1 Score (F1) to quantitatively evaluate Sartoris’ anomaly detection

approach on the CODA dataset. The results demonstrate the potential of this method in detecting

anomalies compared to standard object detection techniques carried out by Li et al. [25], despite

the challenge of comparing my metrics with theirs.

In the outlook of this thesis, the potential extensions and improvements to the detection approach

are discussed, such as fine-tuning the models for the original datasets and addressing challenging

scenarios like fast turns or speed bumps. Furthermore, the need for appropriate metrics to effec-

tively evaluate Sartoris’ anomaly detection methods is addressed.
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1 Introduction

Critical situations in road traffic occur on a daily basis, presenting challenges that autonomous

vehicles must overcome to ensure safe and reliable driving. These situations can arise due to

various factors, such as adverse weather conditions, sudden appearance of pedestrians from behind

obstacles, or abrupt lane changes. Detecting and addressing these critical situations before they

escalate is crucial for establishing a robust autonomous driving system. Literature refers to such

situations as corner cases or anomalies [18]. This thesis, in line with previous works [18, 7], adopts

the definition of corner cases proposed by Bolte et al. [5], where corner cases are identified as

situations involving non-predictable relevant objects or classes in specific locations. Consequently,

corner cases encompass situations that deviate significantly from the learned ones and cannot be

easily anticipated by the autonomous driving system. To effectively address these corner cases, it

is necessary to detect and classify them accurately.

One of the essential tasks for self-driving cars is to perceive the movement of other road users,

enabling the distinction between dynamic and static objects. This task becomes particularly chal-

lenging in urban areas where pedestrians, cyclists, and various other road users interact with traffic.

Reliable prediction of an object’s movement is crucial in such environments. Autonomous vehi-

cles employ multiple sensors to perceive the surrounding environment, leveraging the strengths

of each sensor to compensate for their individual limitations. Cameras provide high-resolution

colored images, facilitating the identification of road signs, traffic lights, and other visual cues.

Cameras are susceptible to low light conditions and reduced visibility [28, 46]. Radar sensors,

on the other hand, utilize high-frequency electromagnetic waves to detect obstacles and are not

affected by lighting or weather conditions. However, they suffer from coarse resolutions and sen-

sitivity to target reflectivity [28, 46]. Lidar sensors generate 3D point clouds by measuring the

time taken for a laser beam to return after reflecting on objects. While lidar sensors are robust

in capturing depth information, they can be affected by adverse weather conditions and exhibit

reduced detection rates for dark or specular objects. Furthermore, distant objects may result in

sparse point clouds [13].

Motivated by the need to detect anomalies in road traffic, this thesis aims to re-evaluate the ap-

proach of Sartoris [38] on the new CODA dataset. His approach is based on identifying anomalies

in lidar data by examining the consistency of point-wise motion predictions from SV and SSV

models. In this context, an anomaly is defined as an object whose motion label cannot be ac-

curately predicted. Inconsistencies between the supervised and self-supervised models serve as

indicators of incorrect predictions, shedding light on the limitations of each model. This quan-

titative evaluation enhances the comparability of the proposed method to state-of-the-art object

detection methods.
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1 Introduction

To accomplish this goal, the first step involves converting the 2D bounding boxes of corner

cases of the CODA dataset into 3D point-wise labels. Subsequently, the CODA data format is

transformed into the KITTI odometry format, as utilized by Sartoris [38]. In the next step, Sar-

toris’ approach is applied to the CODA dataset, enabling a quantitative evaluation of the method

against the ground truth.

Chapter 2 provides a concise overview of frustums and clustering methods, essential for con-

verting labels from 2D to 3D. In Chapter 3, the state of the art in anomaly detection is discussed,

highlighting the existing research gap. Chapter 4 explains the principle of utilizing the CODA

dataset for this research. Chapter 5 states the methods employed to prepare the CODA dataset,

as well as the reimplementation and evaluation of Sartoris’s work [38] against the ground truth.

Lastly, Chapter 6 presents the evaluation of the generated 3D ground truth data for the CODA

dataset and assesses the quantitative performance of Sartoris’ detection method against the ground

truth.

This research contributes to the advancement of anomaly detection in autonomous driving sys-

tems, offering valuable insights into the strengths and limitations of combining SV and SSV mod-

els for anomaly detection in lidar data. By addressing corner cases in road traffic, this thesis makes

strides toward developing safer and more reliable autonomous driving systems.
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2 Background

This background chapter presents a comprehensive overview of the methodology used to generate

the ground truth data for the CODA dataset, which involves the utilization of frustums and clus-

tering techniques. Given that the existing labeling in CODA is limited to 2D bounding boxes for

corner cases, my objective was to accurately label the corresponding 3D point clouds to facilitate

the re-evaluation of Sartoris’ work [38]. To achieve this, frustums are employed to restrict the anal-

ysis on specific regions in the point cloud corresponding to the 2D bounding boxes. Subsequently,

clustering techniques are applied to precisely determine the 3D points of the corner cases.

2.1 Frustum

Frustums play a fundamental role in the translation of 2D to 3D data in autonomous driving. A

frustum is the portion of a body that lies between two parallel planes cutting this body. In this case,

the body is a pyramid, defined by the viewing point and the 2D bounding box, see Figure 2.1. In

perception systems, frustums provide an upper bound of potentially related points in 3D in relation

to a bounding box in 2D.

The importance of frustums arises from their ability to geometrically relate the 2D bounding

box to the three-dimensional position of objects in 3D point clouds [33, 35, 40, 43]. By projecting

a 2D bounding box onto the corresponding point cloud, I obtain a frustum that encompasses a

subset of the point cloud data potentially associated with the object of interest. This localized

region enables focused analysis and facilitates robust estimation of the object’s spatial properties.

This restrictive step saves computational resources and improves real-time performance. Sec-

ondly, they allow me to integrate pixel-accurate object estimations from image-based object detec-

tion by utilizing 2D bounding boxes [35]. Combining these two modalities achieves more accurate

and comprehensive 3D bounding box estimation [27]. Frustums also help handle occlusions bet-

ter, as I can mitigate the impact of occluded or partially visible objects through localized analysis

within the point cloud.

To achieve a more precise localization of the 3D objects within the point cloud, clustering

algorithms were employed to provide point-wise labeling of the point cloud.

2.2 Clustering

To cluster point clouds in my study, I employed the Mean shift (mean shift) and DBSCAN al-

gorithms, as proposed in [34]. In the following subsection, I provide a brief overview of both

algorithms.
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2 Background

Figure 2.1: Frustum for extracting a part of the point cloud based on the 2D bounding box.

Iteration 1

Iteration 2

Figure 2.2: Visualization of the mean shift algorithm, adapted from [39].

2.2.1 Mean shift

The mean shift algorithm outlined in [34] employs a one-parameter clustering approach to identify

regions of high density in the data distribution. This is achieved by iteratively updating the position

of each data point, shifting it towards the mean of the neighboring points within a predefined

radius, see Figure 2.2. The iterative process continues until convergence, causing the points to

settle in the densest regions and form clusters. It is important to note that the effectiveness of the

mean shift algorithm heavily relies on the bandwidth parameter, which determines the radius.

One advantage of this algorithm is its ability to cluster data without requiring a predefined

number of clusters, making it suitable for situations with unknown cluster counts. Moreover, the

mean shift algorithm can cluster data points of various shapes. However, a significant drawback is

the sensitivity of the results to the bandwidth parameter. If this parameter is not appropriately set,

there is a risk of excessive clustering or missing certain clusters.

The mean shift algorithm is particularly well-suited for clustering larger objects that encompass

clusters with varying shapes.
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Cluster 2Cluster 1
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Core molecule

Boundary
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min_points

Figure 2.3: Visualization of the DBSCAN algorithm, adapted from [22].

2.2.2 DBSCAN

The DBSCAN algorithm, an acronym for Density-Based Spatial Clustering of Applications with

Noise, characterizes clusters as dense regions separated by sparser areas. The algorithm initiates by

selecting a random point and extends the cluster by linking neighboring points within a specified

distance threshold, see Figure 2.3. Moreover, it identifies points situated in sparser regions as noise

or outliers. In this context, the size of the neighborhood is defined by the eps parameter, while the

min_points parameter specifies the minimum number of neighboring points required within the

eps distance for a point to be considered part of a cluster.

The adaptability of parameter selection is deemed unnecessary, as mentioned in the study by

Yabroudi et al. [45] when a single set of suitable parameters exists for the given dataset. The

DBSCAN algorithm obviates the need for a fixed number of clusters. It should be noted, however,

that the algorithm tends to generate an excessive number of clusters for complex structures, yet it

is particularly well-suited for smaller and simpler objects.
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3 State of the Art

This chapter establishes the contextual background for the presented method. It discusses the

different types of anomalies and shows a categorization approach for them. It also provides an

overview of the existing research conducted in anomaly detection on lidar data, highlighting the

current research gap. Finally, it presents the contribution of this work in addressing the identified

research gap.

3.1 Corner Cases in Autonomous Driving

Outlier, Anomaly, and Novelty are widely utilized terms in scientific literature, and they bear a

strong relationship to corner cases, often exhibiting overlapping meanings [6, 18]. An outlier is an

observation that deviates significantly from other observations, arousing suspicions of a distinct

generating mechanism [17]. For instance, in corner cases, such deviations occur when a lidar beam

experiences maximum reflection or absorption. Anomalies do not conform to learned patterns or

general normal behavior [9]. In corner cases, the consideration of anomalies needs to be com-

bined with their relevance to driving behavior [5], often arising in complex scenarios that exhibit

overall anomalous characteristics but do not consist of individual anomalous objects. Conversely,

novelties represent instances or objects that have not previously been encountered [9]. They are

correlated with corner cases in that the appearance of new situations, objects, and movement pat-

terns is an essential characteristic of corner cases [18]. In this thesis, the terms corner cases and

anomalies are used interchangeably, following Heidecker et al. [18]. Generally, machine learning

(ML) systems often exhibit poor performance on corner case data, as such data encompasses novel

situations or effects absent from the system’s trained data. Identifying these corner cases poses a

significant challenge [18], as they are crucial for validating and retraining the system.

To effectively investigate and develop suitable detection methods for corner cases, it is crucial

to address their inherent ambiguity and provide precise specifications [18, 7]. Heidecker et al. pro-

pose a comprehensive framework that classifies sensor-specific corner cases into different levels,

demonstrating their diverse nature [18, 7]. These levels, ordered by theoretical complexity, span

three layers: sensor, content, and temporal. The sensor layer encompasses the hardware level,

which involves corner cases arising from a faulty sensor setup, and the physical level, which en-

compasses corner cases resulting from specific limitations of the sensor technology itself, such as

the occurrence of absorbing solid surfaces in the case of lidar sensors. Moving to the content layer,

corner cases manifest at the domain level, wherein anomalies arise due to disparities between the

observed world and the model’s ability to explain it. An example is the presence of unfamiliar

road markings in a different country. At the object level, corner cases revolve around single-point

clouds and the objects contained within them. The scene level describes whether these unknown

7



3 State of the Art

Figure 3.1: Categorization of single-source corner cases based on used sensor, reprinted from [18]

objects are in unseen quantities or locations. Finally, the temporal layer addresses scenario level

anomalies that span multiple scenes and involve analyzing patterns across a sequence of point

clouds, such as detecting a person violating traffic rules, see Figure 3.1.

Furthermore, Heidecker et al. [18] also introduces a method level to complement the sensor-

specific corner cases. This level pertains to anomalies that arise from applying specific methods,

often due to a lack of knowledge or understanding. Distinguishing between a method level anomaly

and a single-source anomaly, as discussed in [18], can be challenging since they can coexist and

influence each other.

3.2 Anomaly Detection on 3D Data

Recently, there has been a surge of research in image-based anomaly detection [7, 12, 30, 21].

However, the field of anomaly detection on lidar data still exhibits significant gaps, as highlighted

by Bogdoll [2], see Figure 3.2. In the subsequent discussion, I provide a concise overview of the

proposed approaches for anomaly detection specifically tailored to lidar data.

Classical deep learning methods for object detection in lidar data operate under the closed-set

assumption, limiting their ability to handle unknown objects during testing. Wong et al. [44], and

Cen et al. [8] proposed open-set 3D object detection approaches to address this limitation. Among

these, Cen et al.’s method, known as Metric Learning with Unsupervised Clustering (MLUC),

employs metric learning techniques to identify regions containing unknown objects and refines

bounding boxes using an unsupervised clustering algorithm. The MLUC method utilizes Eu-

clidean distance-based probability to position embeddings of unknown objects at the center of the

embedding space, facilitating their differentiation from known objects. In a different approach,

Masuda et al. [29] utilize a reconstruction-based method for anomaly detection in lidar data by

employing a Variational Autoencoder (VAE). The discrepancy between input and reconstructed

point clouds is leveraged to indicate anomalies, with smaller differences indicating normal data

and larger differences suggesting deviations from normality. Iqbal et al. [20] propose a technique

to detect abnormal motion in point clouds by estimating scene flows and learning motion fea-

tures. By clustering points based on distance metrics, the method identifies the closest object to

the autonomous vehicle and converts it into a 3D grid structure known as Voxel-Carries-Flows

(VoxCF). Dynamic features extracted from VoxCF, capturing the direction of an object’s motion,

8



3.2 Anomaly Detection on 3D Data

Figure 3.2: Overview of anomaly detection approaches based on camera, lidar, radar, multimodal, and
abstract object level data, reprinted from [2].

are compared with predictions from a Long Short-Term Memory (LSTM) network to quantify ab-

normality. Addressing the impact of weather conditions on lidar scans, Zhang et al. [48] tackle the

problem of lidar degradation in rainy weather using an anomaly detection model. They transform

lidar point clouds into a 2D image representation, where changes in laser beam intensity due to

degradation are associated with specific pixels. The Deep Semi-Supervised Anomaly Detection

(DeepSAD) [37] model is employed to learn a hypersphere in the latent space, with non-degraded

images mapping close to the hypersphere center and degraded images mapping further away. Dur-

ing testing, the distance between the hypersphere center and the mapped image is a degradation

score.

All of the methods above exclusively address the domain, object, or scenario level, leaving a

gap in anomaly detection on the scene level in lidar data. The method proposed by Masuda et

al. [29] does not apply to autonomous driving, as it does not operate on complete point clouds.

Zhang et al. [48] focus explicitly on differentiating between normal and rainy weather conditions,

while Iqbal et al. [20] only detect anomalies in the nearest object to the vehicle.

In contrast to the anomaly detection approaches mentioned above, Sartoris [38] introduces a

novel method for detecting anomalies in lidar data. Sartoris exploits the limitations of existing

methods to identify anomalies at the method level. Anomalies can be detected by identifying

inconsistencies in point-wise motion labels between the SV and SSV methods. Sartoris’s approach

revolves around evaluating the individual motion of each point to determine whether it is static or

dynamic rather than focusing on abnormal motion, as emphasized in Iqbal et al.’s method [20].

The terms SV and SSV refer to different training methods used in anomaly detection. SV training

involves supervised learning, where a model learns to map input and output data by comparing

predictions to manually labeled data. This requires extensive manual labeling efforts. On the other

hand, SSV training is unsupervised and relies on the model to generate supervisory signals based

on the data’s structure. SSV training offers advantages in terms of scalability and not requiring

manual labeling. Both SV and SSV models are employed for anomaly detection in lidar data.

The approach consists of two parts: the SV part predicts semantic motion labels using a semantic

segmentation model and a motion segmentation model. In contrast, the SSV part uses a scene

flow model and an odometry model to predict motion labels. Sartoris defines a corner case as a

discrepancy in labeling between the two methods, enabling the detection of anomalies regardless

9



3 State of the Art

of external conditions. Moreover, this approach considers the significance of corner cases in terms

of their impact on driving behavior [18], particularly when static and dynamic objects are taken

into account.

3.3 Research Gap

Sartoris [38] acknowledged that, during his work, only one dataset was available for anomaly de-

tection on lidar data, namely CODA [25]. However, since the publication of CODA was relatively

recent and close to the time of his study, Sartoris relied on a purely qualitative evaluation for assess-

ing anomaly detection. In this thesis, I will re-evaluate Sartoris’s work and conduct a quantitative

evaluation using an existing ground truth dataset designed for corner cases. In the next Chapter 4,

I will provide a concise overview of existing datasets for anomaly detection and substantiate why

CODA currently stands as the most suitable dataset for evaluating Sartoris’s approach.

10
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This chapter concisely presents an overview of datasets for anomaly detection in autonomous

driving scenarios. The chapter introduces the tool ad-datasets and identifies datasets suitable for

anomaly detection. It discusses the rationale for selecting the CODA dataset and provides a brief

introduction to the CODA dataset itself, along with the challenges it poses.

4.1 Data Selection

The number of annual publications on autonomous driving datasets has been consistently increas-

ing over the years [3]. However, there is a lack of good tools that can provide researchers with a

quick, comprehensive, and up-to-date overview of datasets and their features. To address this issue,

Bogdoll et al. introduced an online tool called "ad-datasets" [3]. This tool effectively tackles the

problem by offering an extensive overview of more than 150 datasets, allowing users to sort and

filter them based on 16 categories. Consequently, researchers gain a comprehensive understanding

of the current landscape of autonomous driving datasets.

An in-depth analysis of 40 datasets reveals that all but one utilize camera data, while 23 incorpo-

rate lidar data. Radar data, however, is only used in eight datasets, none published before the end

of 2018. Further examination focusing on anomaly detection narrows down the dataset selection

to only seven. Unfortunately, none of these datasets include annotations for lidar point clouds or

any lidar data, for that matter.

Bogdoll et al. [4] comprehensively covers eight anomaly datasets, with five of them overlapping

with the seven datasets mentioned earlier. The paper provides a detailed analysis of these datasets,

focusing on their value for anomaly detection. All the datasets discussed in the paper are pub-

licly available as of February 1, 2023, and include sensor data captured from the ego perspective,

along with pixel- or point-wise anomaly labels. These datasets primarily focused on object- and

scene-level anomalies and were specifically created to evaluate anomaly detection methods. They

can be categorized into three groups: datasets with real anomalies in real-world scenarios, datasets

with synthetic anomalies augmented into real-world data, and datasets with completely synthetic

scenes. Detecting such atypical and hazardous situations is crucial for ensuring the safety of all

road users, making anomaly detection a critical factor for scaling autonomous vehicles.

Anomaly datasets can be classified based on six different techniques, anomaly sources, used

to create them, as Bogdoll et al. [4] outlined. The first technique, called Automated OOD Pro-

posal, involves using an automated proposal method to generate anomaly proposals, which are

manually reviewed and refined to eliminate false positives. The Misc Classes technique involves

relabeling all regions labeled as void or misc by human experts. Class Exclusion is performed on

11
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Dataset Year Sensors Size (Test/Val) Anomaly Source Temporal OOD Classes Groundtruth

Fishyscapes
FS Lost and Found 2019 Camera 275 / 100 Recording ✗ 1 Semantic Mask
FS Static 2019 Camera 1,000 / 30 Data Augmentation ✗ 1 Semantic Mask

CAOS
StreetHazards 2019 Camera 1,500 Simulation ✓ 1 Semantic Mask
BDD-Anomaly 2019 Camera 810 Class Exclusion ✗ 3 Semantic Mask

SegmentMeIfYouCan
RoadAnomaly21 2021 Camera 100 / 10 Web Sourcing ✗ 1 Semantic Mask
RoadObstacle21 2021 Camera 327 (+55) / 30 Recording ✓ 1 Semantic Mask

CODA
CODA-KITTI 2022 Camera, Lidar 309 Void Classes ✗ 6 Bounding Boxes
CODA-nuScenes 2022 Camera, Lidar 134 Void Classes ✗ 17 Bounding Boxes
CODA-ONCE 2022 Camera, Lidar 1,057 Automated OOD Proposal ✗ 32 Bounding Boxes
CODA2022-ONCE 2022 Camera, Lidar 717 Automated OOD Proposal ✗ 29 Bounding Boxes
CODA2022-SODA10M 2022 Camera 4,167 Automated OOD Proposal ✗ 29 Bounding Boxes

Wuppertal OOD Tracking
Street Obstacle Sequences (SOS) 2022 Camera, Depth 1,129 Recording ✓ 13 Instance Mask
CARLA-WildLife (CWL) 2022 Camera, Depth 1,210 Simulation ✓ 18 Instance Mask

Misc
Lost and Found 2016 Stereo Cameras 2,104 Recording ✓ 42 Semantic Mask
WD-Pascal 2019 Camera 70 Data Augmentation ✗ 1 Semantic Mask
Vistas-NP 2020 Camera 11,167 Varying Class Exclusion ✗ 4 Semantic Mask

Table 4.1: Overview over all analyzed datasets, clustered by the benchmark in which they were presented,
adapted from [4]

Figure 4.1: WD-Pascal: Two examples of synthetically inserted anomalies into real-world scenes, reprinted
from [4].

a labeled dataset by excluding frames containing known classes from the training and validation

splits, treating the selected classes as anomalies. The Web Sourcing approach involves experts

actively searching for images with atypical classes. Recording and Simulation methods collect

anomalies by driving in the real world or generating them in synthetic environments. Lastly, Data

Augmentation involves augmenting any dataset by synthetically adding anomalies to the original

images. A review of the datasets reveals that most of them are based on these techniques, in-

volving introducing additional data, creating artificial anomalies, or excluding specific classes, see

Table 4.1. However, many of these anomalies are not highly realistic, as exemplified by the WD-

Pascal dataset, which unrealistically employs data augmentation, see Figure 4.1.

CODA [25] stands out among all anomaly datasets as the only dataset incorporating both the

Automated OOD Proposal and Misc Classes techniques. This distinction makes CODA unique,

as it is based on real-world data encompassing situations where existing detection methods fail

to identify objects. Consequently, CODA fulfills the novelty criteria outlined in my corner case

definition. Moreover, all anomalies presented in CODA are categorized under the Misc Classes,

indicating their potential impact on driving behavior since they are not confined to sidewalks or

background regions. This characteristic also applies to anomalies generated through the Automated

12



4.2 CODA Dataset

Figure 4.2: Cumulated masks of all contained anomalies within the respective datasets, reprinted from [4].

OOD Proposal, elaborated in Section 4.2 Common Anomaly Detection in Autonomous Driving

Dataset. Notably, the anomalies in CODA are evenly distributed across the image space, setting

it apart from most other datasets, see Figure 4.2. Given that Sartoris’s approach relies on flow-

based methods that require preceding frames to determine whether an object is static or dynamic,

CODA becomes the ideal choice. Despite lacking temporal context, as indicated in Table 4.1,

CODA remains an unaltered selection of raw datasets, allowing for the derivation of preceding

frames from the original data. As Sartoris’s work revolves around detecting corner cases using

lidar data, the inclusion of lidar data is crucial. Consequently, the CODA-2022 dataset is excluded

due to the absence of lidar data, specifically, the inclusion of SODA10M [16]. This leaves us with

the Common Anomaly Detection in Autonomous Driving dataset, which comprises frames from

ONCE [19], KITTI [15], and NuScenes [31]. The subsequent section introduces the Common

Anomaly Detection in Autonomous Driving dataset and addresses the associated challenges.

4.2 CODA Dataset

As previously stated, there is a scarcity of publicly available datasets suitable for evaluating object

detectors on corner cases. Addressing this gap, the Common Anomaly Detection in Autonomous

Driving (CODA) dataset [25], referred to as CODA from now on, offers a comprehensive collec-

tion of nearly 6,000 object level corner cases across 1,500 images, encompassing over 30 object

categories. In CODA, classes are denoted as categories, and henceforth, I will utilize the term

"categories" to address them. The dataset’s characteristics not only diminish the performance of

standard object detectors to a mere 12.8% mAR, see Figure 4.3, but also pose significant chal-
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Figure 4.3: Detection results (%) on CODA, reprinted from [25].

lenges for the state-of-the-art open-world object detector in accurately identifying novel objects.

The CODA dataset is composed of selected images from three sources: ONCE [19], the KITTI

object [15], and nuScenes [31]. It provides labels for seven supercategories: vehicle, pedestrian,

cyclist, animal, traffic facility, obstruction, and misc, encompassing a total of 34 fine-grained cat-

egories. These categories can be divided into novel categories, such as dogs and strollers, and

common categories, including cars and pedestrians. Notably, over 90% of all instances belong

to novel categories. The dataset exhibits diversity at the object-level, reflecting real-world repre-

sentations. Consequently, certain categories have only a limited number of instances due to the

inherent scarcity of corner cases, while others, like traffic cones and barriers, are more prevalent in

both frequency and quantity. At the scene-level, diversity is achieved by incorporating scenes from

three distinct countries, each offering unique object variations and contributing to domain shifts.

This is evident in the distribution of the top-four common categories from each source dataset, see

Figure 4.4. Additionally, the dataset encompasses variations in weather conditions and daytime,

further expanding the scene-level diversity.

As previously discussed, CODA satisfies the defined criteria for corner cases, as they present

risks to the driving vehicle and exhibit novelty by not aligning with any of the common categories

in SODA10M [16], making them challenging to detect. A two-stage approach is proposed to

address the detection of these corner cases. The first stage involves an automated generation of

proposals for potential corner cases, referred to as the Automated OOD Proposal by Bogdoll et

14



4.2 CODA Dataset

Figure 4.4: Distribution of the top-4 categories in: A ONCE, B Kitti, and C NuScenes, reprinted from [25].

Figure 4.5: The Corner Case Proposal Generation (COPG) pipeline. The input to the pipeline includes the
point cloud and the camera image of a given scene. The point cloud is used to compute (a), while the camera
image (b) is utilized to produce (c) and (d). The results from (c) and (d) are then used to remove invalid
proposals. The final output (g) consists of a set of bounding boxes indicating the proposed corner cases in
the camera image, reprinted from [25].

al. [4]. This stage utilizes a novel pipeline called COPG, which leverages raw sensor data from

the camera and the lidar sensor to identify potential corner cases, see Figure 4.5. Notably, the

automatic proposal generation step is bypassed for the images sourced from KITTI and NuScenes,

as these instances were manually selected, with all objects labeled as misc in the case of KITTI. For

the second stage, CLIP [36] is employed for pre-labeling the objects, followed by the utilization

of the toolkit developed by Wada et al. [42] to refine the labels manually.

As a result, the images are annotated with 2D bounding boxes for each anomaly. However, since

Sartoris’s approach [38] focuses on point-wise labeled lidar point clouds, the 2D bounding boxes

must be projected into the 3D lidar space to label the lidar point clouds accurately. The dataset

used in Sartoris’s work, KITTI odometry [15], consists of 21 driving scenes and is organized into

scenes with poses and calibration files in the KITTI odometry format. As described in Chapter 5.1,

it is necessary to translate not only the KITTI object [15] dataset but also the ONCE and nuScenes

datasets, which have distinct data formats compared to KITTI, into the KITTI odometry data

15



4 Evaluation Data

format.
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In this chapter, I will present the data processing steps involved in converting the CODA dataset

into the KITTI odometry data format. I will explain the process of translating the 2D annotations

of corner cases into 3D to generate accurate ground truth annotations for the lidar point clouds.

Additionally, I will examine the methods proposed by Sartoris [38] and outline my approach for

evaluating them using the ground truth data from CODA.

5.1 Data Processing

Certain adaptations were necessary to align the CODA dataset with the KITTI odometry dataset

used by Sartoris [38]. The KITTI odometry dataset consists of 21 scenes, including images from

cam2 and cam3, as well as lidar point clouds. Each scene is accompanied by a calibration, times-

tamp, and poses file. The calibration file contains projection matrices for each camera and a

transformation matrix for converting coordinates from lidar to camera space, see Figure 5.2. The

timestamp files offer synchronized timestamps for the images and lidar point clouds, while the

poses files supply the odometry data for the scenes. This odometry data is utilized by the SV

motion segmentation component, as discussed in Section 5.3.

The downloaded CODA dataset includes ONCE-sourced images, a JSON file defining the

images and classes used, and two JSON files for mapping images from the KITTI object and

nuScenes to their original datasets. Since Sartoris’ methods require only the left camera images

(cam2), the translation process focuses on converting the images from other datasets to this format.

Hence, determining the values P2 and Tr is necessary for the calibration file.

To create a scene suitable for flow-based methods, I extracted a selection of eight preceding

and eight subsequent images using the mappings to the original raw data of the datasets. For the

ONCE dataset, an additional step involves applying the distortion matrix to undistort the images,

similar to the originally included CODA-ONCE (ONCE) images in the CODA dataset.

The lidar coordinates of nuScenes and ONCE exhibit noticeable differences, see Figure 5.1. To

address this, the lidar point clouds of nuScenes and ONCE needed to be rotated to align with the

lidar coordinates of KITTI. This was achieved by simply rotating the point clouds.

The calibration file is crucial in translating lidar coordinates to the image space. Specifically

for the cam2 camera, this translation was achieved by using the P2 (3x4) and Tr (3x4) matrices,

as shown in formula 5.1. In the formula, cam represents the points in camera coordinates, while

points refers to the points in lidar coordinates.

cam = P2 × Tr × points [5.1]
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Figure 5.1: Lidar coordinate for each original dataset [14, 19, 31].

Figure 5.2: KITTI sensor coordinates, reprinted from [14].
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For the KITTI object dataset, the P2 matrix was already provided, and the Tr matrix was calcu-

lated using the following formula:

Tr = R0_rect × Tr_velo_to_cam

In the case of the nuScenes dataset, the Tr matrix was obtained by combining the lidar_to_ego

and ego_to_cam matrices. These matrices were derived by rotating the translation matrices of

the calibrated_sensors. Additionally, the combined matrix was further rotated by an angle of π/2

around the z-axis. The P2 matrix for nuScenes was obtained from the camera_intrinsic parameter

of the raw data.

Tr = ego_to_cam × lidar_to_ego × R
(

π

2

)
For the ONCE dataset, the Tr matrix was obtained by inverting the original cam_to_velo matrix

and then rotating it by −π/2 along the z-axis to align with KITTI’s lidar coordinates. The P2

matrix was obtained using the getOptimalNewCameraMatrix function from the OpenCV package,

using the camera’s cam_intrinsic and distortion parameters.

Tr = cam_to_velo−1 × R
(
−π

2

)

The timestamps in the original data were given in milliseconds in UNIX time format. For

ONCE, the timestamps were extracted from the file names, while for KITTI and nuScenes, separate

files provided the timestamps. To align the timestamps with the KITTI odometry format, they were

converted to be relative to the first timestamp in their respective raw data sequences and expressed

in seconds.

The poses files in the KITTI odometry dataset consisted of (3x4) matrices for each frame, rep-

resenting the translation from the i-th point to the first point of the scene. In the KITTI raw

data [14], only the OXTS files were provided, which included GPS data for each frame. These

GPS data could be used to calculate the pose for each frame relative to the first frame of the com-

plete scene in the raw data. However, in the case of nuScenes and ONCE datasets, only ego poses

were available. To derive the poses for each frame, the ego poses were first converted into GPS

data, and then into poses for every frame. It should be noted that the GPS data in ONCE does

not correspond to the real world due to the absence of starting GPS positions. However, since the

poses were relative to the first point of the sequence, this discrepancy had no effect. Once the poses

for every scene in the raw data were created, only the required poses from the original image, as

well as the eight preceding and eight succeeding images, were copied to the new scene for CODA.

As a result, a single scene was generated for each image in CODA, consisting of 17 images,

17 lidar point clouds, and their corresponding timestamps and poses. A calibration file was also

included to facilitate the translation from lidar to image coordinate space.
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5.2 Data Labeling

The methods proposed by Sartoris [38] result in the point-wise labeling of the lidar point cloud

for anomaly detection 5.3. However, CODA [25] provides only 2D bounding boxes for corner

cases. Therefore, I needed to generate my own ground truth labels in the form of 3D point-wise

annotations. This allowed me to evaluate Sartoris’s work by comparing the labels generated using

Sartoris’s detection methods with the ground truth corner case labels.

In the Background section, I introduced the concept of frustums to narrow down the point cloud

and propose clustering to accurately determine the 3D points of the corner cases. As discussed

in the previous section, frustums are an effective way to restrict the point cloud based on the

2D bounding box by translating it into the 3D point cloud space. However, many approaches in

the literature focus on localizing well-known objects such as cars and pedestrians [24, 43, 27].

These objects are relatively easier to locate using image processing [27] and are associated with a

higher number of 3D points compared to most corner cases investigated in this thesis. Proposed

approaches cannot be utilized in my thesis since most of the cited work relies on highly trained

networks that require large datasets with labeled corner cases, which are not available at this time.

Therefore, I propose a more labor-intensive approach to create point-wise labels for the corner

cases. In this approach, I first used frustums to restrict the point cloud to the space of the 2D

bounding box. Afterwards, I used clustering methods to determine the individual point of the ac-

tual anomaly.

The frustums were generated by first filtering the point cloud to include only the points in front

of the vehicle. Then, the point clouds are translated into the image coordinate space using the

transformation methods specified for each dataset. To account for perspective distortion, I divided

each x-value and y-value by the corresponding z-value, bringing all the points onto a single 2D

plane. From there, I further filtered the remaining point cloud based on the coordinates of the

2D bounding box. The filtered point cloud was preserved in both 2D coordinates and its original

lidar coordinate space during the subsequent clustering steps. This preservation was necessary for

further visual analysis as well as the ground truth for evaluation purposes.

For clustering, I used two of the three clustering methods proposed by Peng et al. [34], as they

are suitable for clustering without a predefined number of clusters. The mean shift clustering

algorithm is particularly effective for clustering data points of various shapes, while DBSCAN is

better suited for simple and small objects. For the mean shift algorithm, automated bandwidth

estimation with a quantile value of 0.3 is employed, which provides the best results across all three

datasets contained in CODA. Through experimentation, I determined that for DBSCAN, using

parameters eps = 0.15 and min_samples = 6 yields the best results for all three datasets. Since

DBSCAN is primarily designed to detect smaller objects, the point clouds get compressed by a

factor of ten in the x-axis to improve the detection of flat surfaces as a single cluster rather than

splitting them into multiple clusters.

The selection of the labeled cluster containing the anomaly involved identifying the five nearest
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Figure 5.3: The manual evaluation is based on several visual representations. Firstly, the DBSCAN cluster-
ing results are depicted in an image, followed by presenting all identified clusters in the 3D scatter plot in
the center. In the right 3D scatter plot, the selected cluster is highlighted in red. Similarly, the same process
is repeated for the mean shift clustering, with the corresponding results displayed in the bottom row.

points in the 2D image space around the center point of the 2D bounding box. The point closest to

the lidar sensor among these five points was chosen, and the cluster containing this selected point

was labeled as 1, while all other clusters received a label of -1.

As a result, binary files are obtained containing seven values for each point within the frustum.

The first three values represent the original coordinates of the points in their respective data for-

mats, corresponding to their lidar coordinate space. The fourth value denotes the label assigned

by the DBSCAN clustering algorithm, where each integer value represents a distinct cluster, and

outliers are denoted with -1. The fifth value indicates the selected cluster from the DBSCAN

clustering, as described earlier, with either -1 or 1. The sixth and seventh values serve the same

purpose as the DBSCAN labels but for the mean shift clustering algorithm.

To assess the suitability of the clustering, I conducted a manual inspection for each individual

anomaly in the CODA dataset and assigned each anomaly a number to facilitate evaluating and

selecting the appropriate cluster for the ground truth labeling.

DB-SCAN right cluster1 meanshift right cluster2 both clusters are the same3

mix of DB-SCAN and mean-

shift

4 DB-SCAN wrong cluster5 wrong clustering6

wrong annotation7 meanshift wrong cluster8 too many small clusters9

The ground truth labeled point cloud was generated by combining the clustering results with the

manual evaluation conducted earlier. The labels were copied from column five or seven, depending

on the clustering algorithm used. For cases where both clusterings were the same, the labels were

directly copied from the corresponding clustering. When the selection process resulted in the
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wrong cluster being chosen, the negated clustering was copied to rectify the error, as it often

indicated the background instead of the object. In situations where a mixture of both clustering

results was deemed appropriate, a label of 1 was assigned if at least one of the clusterings classified

the point as 1, while all other points were assigned a label of -1. In cases where numerous small

clusters were present, all points were labeled as 1, as these clusters typically represented parts

of a larger object incorrectly segmented. The single instance where the original bounding box

contained no object was also labeled as 1. Additionally, the misclassified points, accounting for

seven percent of the entire dataset, were labeled as 1 to avoid discarding a significant portion of

the data. These misclassifications primarily occurred due to factors such as bicycles on the side of

the road, where each bicycle was labeled as a separate anomaly with very few lidar points.

The rotation method described in Section 5.1 was applied to the ONCE and nuScenes point

clouds in order to align the lidar points with the labels generated by Sartoris’ detection methods.

As a result, pixel-wise ground truth annotations were generated for each annotation in the CODA

dataset. Furthermore, the annotations within each of the 1500 original images were combined, as

Sartoris’ labeling is based on entire images, not individual anomalies. These results now facilitate

the quantitative evaluation of Sartoris’ approach.

5.3 Anomaly Detection

Sartoris’s work integrates both SV and SSV methods for analyzing lidar data. The objective is

to identify discrepancies between the semantic class assigned to a point using SV models and the

motion label assigned to the same point using SSV models. Figure 5.4 depicts the interaction

between these models.

The SV part, indicated in red in Figure 5.4, encompasses an SV semantic segmentation model

and an SV motion segmentation model in Sartoris’s work [38]. The SV semantic segmentation

model assigns class labels to each point in the point cloud, distinguishing between static and

dynamic classes. However, for certain classes such as person, which can exhibit both static and

dynamic behavior, further subdivision into moving person and standing person is performed using

the SV motion segmentation model. The resulting labels are referred to as semantic motion labels.

The SSV part, highlighted in green in Figure 5.4, comprises an SV ground segmentation, an

SSV scene flow model, and an SSV odometry model. Before applying the scene flow model, a

common step in SSV methods involves performing ground segmentation to preprocess the data.

Many SSV scene flow models tend to discard points that fall below a fixed threshold, typically

set at 0.3 m [23, 41, 1]. However, this static threshold does not account for road inclinations or

the potential filtering out of small objects. Additionally, parts of larger objects, such as car tires,

may be removed. Sartoris trains an SV ground segmentation model to filter out ground points

specifically to address these limitations. The SSV scene flow model calculates a 3D displacement

vector for each point in the first point cloud by considering two consecutive point clouds. To

account for the ego motion of the vehicle, the SSV odometry model estimates a relative rigid body

transformation between the two point clouds. This transformation allows for the transformation of

the second point cloud into the coordinate frame of the first point cloud. The points are classified
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Figure 5.4: Sartoris proposed an approach [38] that consists of two main components: the SV part and the
SSV part. In the SV part, each point is assigned a semantic motion class, which represents the motion
state of the point. This assignment is achieved by combining an SV semantic segmentation model and an
SV motion object segmentation model. These models provide information about the semantic category of
the point and its motion characteristics, respectively. In the SSV part, a displacement vector is predicted
for each non-ground point using an SSV scene flow model. Additionally, the ego-motion of the vehicle
is predicted using an SSV odometry model. By combining the predicted displacement vectors and ego
motion, a motion label is assigned to each point. A comparison is then made between the motion labels
obtained from the SV part and the SSV part for each point. Points that have inconsistent motion labels
are identified as potential anomalies. These inconsistent points are clustered together, forming clusters that
serve as indications of anomalies in the scene, reprinted from [38].
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SV Part SSV Part Consistent Color

Scenario 1 static static ✓ green

Scenario 2 dynamic dynamic ✓ blue

Scenario 3 static dynamic ✗ red

Scenario 4 dynamic static ✗ yellow

Table 5.1: All possible scenarios that can occur when comparing the labels between the SV and the SSV
part, reprinted from [38].

as either static or dynamic by applying a threshold to the resulting displacement vectors, yielding

the motion labels.

The semantic motion labels and the motion labels are then compared point-wise. Inconsistencies

arise when a point is labeled static in terms of semantic motion but is labeled as dynamic based

on the motion label, and vice versa, see Table 5.1. Individual inconsistent points are clustered

using the DB-SCAN algorithm to identify and localize anomalies. This clustering process results

in labels for entire inconsistent objects, indicating anomalies within the context of the work. The

colors green and blue signify consistency between the two models, while red and yellow represent

inconsistencies, suggesting possible anomalies.

In my evaluation, I utilized the pre-trained models from Sartoris’s work, which were trained on

the KITTI-360 dataset.

5.4 Evaluation Method

In the evaluation of the anomaly detection method, I considered the entire image by evaluating

all points in the image space as well as individual anomalies in isolation. The comparison was

conducted between the original labels generated by Sartoris’ methods and the 3D ground truth

data obtained from the CODA dataset. It should be noted that the comparison was performed

solely with the original images, disregarding the additional eight preceding and eight subsequent

images. By combining the two point clouds and preserving all the original information, new

labels were created. The labels were combined based on the presence of points in both point

clouds, the ground truth, or the detection method’s labels. The resulting labels were represented

by combinations of numbers, such as -12 for points present in both with a ground truth label of

-1 and a detection method label of 2. For points that exist solely in the ground truth data, their

labels were combined with a 0. For instance, if a point was labeled as 1 in the ground truth but

does not have a corresponding label in the detection method, it would be assigned a label of 10.

Points solely labeled by the detection method retained their original label. Table 5.2 provides an

overview of these label combinations and their corresponding positions in the confusion matrix.

Every position within the confusion matrix corresponds to a specific color, which is utilized to

visually represent the points in Figure 5.5. This image displays all the scenarios collectively,

providing a visual representation of the associated colors for each point. The color coding scheme

follows Sartoris’ approach 5.1, with blue and green representing positive cases and red and yellow
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GT Label Detected Label New Label Consufion Matrix Color

Scenario 1 -1 1 -11 TN blue

Scenario 2 -1 2 -12 TN blue

Scenario 3 -1 3 -13 FP red

Scenario 4 -1 4 -14 FP red

Scenario 5 1 1 11 FN yellow

Scenario 6 1 2 12 FN yellow

Scenario 7 1 3 13 TP green

Scenario 8 1 4 14 TP green

Scenario 9 -1 - -10 TN blue

Scenario 10 1 - 10 FN yellow

Scenario 11 - 1 1 TN blue

Scenario 12 - 2 2 TN blue

Scenario 13 - 3 3 FP red

Scenario 14 - 4 4 FP red

Table 5.2: Overview of all possible scenarios encountered during the comparison of labels between the
ground truth and the anomaly detection method. The New Label represents the combined labels for each
point, while the Confusion Matrix denotes the corresponding position of each scenario within the matrix.
The Color column indicates the color assigned to visualize each scenario during the evaluation process.

representing errors.

To further analyze the individual data points, the evaluation was performed by partitioning the

overall results based on the original datasets ONCE, KITTI, and nuScenes, as well as by reducing

the spatial extent of the analysis. The reduction was achieved by considering only the points within

the original 2D bounding box with corresponding ground truth labels (scenarios 1-10: boxes). Sub-

sequently, a narrower subset was considered by including only the points that had labels from both

the ground truth and the detection method (scenarios 1-8: overlap). All the parts based on reduc-

tion of the point cloud are shown in Figure 5.6. This approach aimed to assess the performance of

the proposed method within smaller areas, as the comparison of the entire point cloud with only

the anomalies makes it challenging to draw comparisons with other object detection methods. It is

Figure 5.5: Image 1137 from CODA, an example of all possible scenarios in one image.
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Figure 5.6: The visualized boxes represent the various aspects evaluated at the image level. The first image
corresponds to the evaluation of all points from both the detection method and the ground truth combined
(scenarios 1-14). The middle image corresponds to the part boxes (scenarios 1-10), and the bottom image
corresponds to the part overlap (scenarios 1-8).

important to note that for the evaluation of individual anomalies, only the parts boxes, and overlap

were calculated. This corresponds to a single box in the middle or bottom image in Figure 5.6.

Evaluating all points detected by Sartoris’ method would not be meaningful, as a single anomaly

can be relatively small compared to the entire image. Therefore, focusing on these specific parts

provides a more relevant assessment of the detection performance.

Figure 5.7 displays the resulting confusion matrix, which clearly illustrates the correspondence

between each scenario and its corresponding position in the matrix. As previously mentioned, a

pixel-wise analysis was conducted to label the points for a confusion matrix.

The evaluation of the confusion matrices involved the utilization of several metrics, namely

mIoU, AP, AR, and F1. Notably, the mIoU is the most commonly used metric in evaluating

semantic segmentation, as observed in previous studies [11, 10]. The variable N denotes the total

number of images or annotations present in the specific partitioning of the CODA dataset.

mIoUindividual =
1
N

N

∑
i=1

T Pi

T Pi +FPi +FNi

mIoUaggregated =
∑

N
i=1 T Pi

∑
N
i=1 T Pi +∑

N
i=1 FPi
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Figure 5.7: The confusion matrix for all scenarios in 5.2. The true positive (TP) labels are 13 and 14. The
false positive (FP) labels are -13, -14, 3, and 4. The false negative (FN) labels are 11, 12, and 10. The true
negative (TN) labels are -11, -12, 1, 2, and -10.

Considering that Sartoris’ approach does not include single object detection and lacks prediction

scores for individual objects, it can be considered as a semantic segmentation task and, therefore,

evaluated accordingly. Li et al.[25] stated that the AP metric is not employed to evaluate differ-

ent object detection methods on CODA due to their proficiency in detecting foreground objects

regardless of whether they occupy the road, resulting in low AP scores. In contrast, the purpose of

my detection method was to identify anomalies, which was why I had included the AP metric in

my evaluation.

APindividual =
1
N

N

∑
i=1

T Pi

T Pi +FPi

APaggregated =
∑

N
i=1 T Pi

∑
N
i=1 T Pi +∑

N
i=1 FPi +∑

N
i=1 FNi

AR is widely regarded as the most informative metric for anomaly detection methods in au-

tonomous driving, as errors of the second type are of greater significance [25].

ARindividual =
1
N

N

∑
i=1

T Pi

T Pi +FNi

ARaggregated =
∑

N
i=1 T Pi

∑
N
i=1 T Pi +∑

N
i=1 FNi

The F1 metric was used to provide a condensed and comparable result based on the AP and AR

values.
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F1individual = 2 · APindividual ·ARindividual

APindividual +ARindividual

F1aggregated = 2 ·
APaggregated ·ARaggregated

APaggregated +ARaggregated

Due to the absence of prediction scores in Sartoris’ method, this study could not utilize curve-

based evaluation metrics like the Area Under the Precision Recall curve (AUPR) or the Area under

the Receiver Operating Characteristics (AUROC).

As there is, to the best of my knowledge, currently no standardized method for applying these

metrics to semantic segmentation data, I adopted two different approaches to address this issue,

providing future researchers with options to evaluate against. Traditional object detection metrics

typically classify predictions of objects or images as positive or negative based on a threshold, then

compare them to the ground truth, and generate a confusion matrix for the entire dataset. However,

since the labels produced by Sartoris’ method were on the image level and the ground truth on the

object level, I utilized individual points to construct confusion matrices, as shown in Table 5.2.

My first approach involved creating a confusion matrix for each annotation or image, computing

metrics for each of them, and then calculating the mean average of these metrics across all images,

denoted as individual metrics. In the second approach, I aggregated points from all images to cre-

ate a single confusion matrix containing all annotations or images, on which I applied the metrics,

referred to as aggregated metrics.

To evaluate my own clustering, I additionally used all points contained in the 2D bounding

box to calculate the metrics (no clustering). This corresponds to setting all GT Label to 1 and

therefore bringing all scenarios with a negative New Label to the left side of the confusion matrix,

in Figure 5.7.

The upcoming chapter presents the findings obtained from evaluating the generation of 3D

ground truth data for the CODA dataset and assessing the performance of Sartoris’ detection

method against the ground truth.
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This Chapter contains the quantitative evaluation of Sartoris’ anomaly detection method on the

CODA dataset. Firstly, I want to quickly evaluate the CODA dataset and the translation from

the 2D bounding boxes to the 3D pixel-wise annotation. Afterwards, I will evaluate Sartoris’

anomaly detection method, pointing out difficulties, and presenting some ideas on how to improve

the detection method and the dataset to achieve better results.

6.1 CODA Evaluation

Containing data from different countries and varying weather and daylight conditions, the CODA

dataset encompasses various domain-level anomalies [18]. However, I employed CODA to eval-

uate Sartoris’ approach to detect anomalies at the method level [38]. Sartoris trained his models

on KITTI360 to reduce the impact of domain-level anomalies, as it exhibits similarity to his eval-

uation dataset, KITTI odometry. For my evaluation, I utilized Sartoris’ pre-trained models for

all steps. With 309 images of the KITTI object dataset present in CODA, I not only evaluated

the entire dataset but also performed separate evaluations for each original dataset, i.e., CODA-

KITTI (KITTI), ONCE, and CODA-nuScenes (nuScenes). This allowed me to use KITTI as a

baseline and compare its performance to ONCE and nuScenes.

The three parts of the CODA dataset not only differ at the domain-level but also in the categories

of annotated anomalies. Among the 5937 anomalies in CODA, 4746 correspond to the supercat-

egory traffic_facility, 929 to vehicle, and 197 to obstruction, as shown in Figure 6.1. All other

anomaly supercategories together have only 65 instances. Notably, 396 of KITTI’s 399 anomalies

are vehicles, while ONCE and nuScenes mainly consist of traffic_facility anomalies.

6.2 3D CODA Groundtruth

As discussed in Chapter 5.2, I opted for simple clustering methods instead of complex machine

learning approaches [24, 43, 27] to identify the points corresponding to anomalies in the 3D point

cloud. To evaluate the effectiveness of this method, I visually represented the results of manual

inspection by showing the percentage of each label in Figure 6.2. The graph on the left displays

the overall performance across all anomalies in the CODA dataset, indicating that 79.8% of the

clustering results accurately identified the anomalies in the 3D point cloud. In 9.2% of the cases,

the DBSCAN clustering proposed incorrect clusters, primarily due to foreground objects situated

near the center of the 2D bounding box, see Figure 6.3. Incorrect clustering in both methods

occurred only when the anomaly itself was hard to detect. As illustrated in Figure 6.3, this is often

related to anomalies with small surface areas stacked with other objects, such as bicycles on the

29



6 Evaluation

Figure 6.1: Number of occurrences of supercategories in the respective datasets.

Figure 6.2: Results of the manual inspection of the two different clustering methods mean shift and
DBSCAN. The different labels refer to those defined in 9. On the left is the distribution over all CODA
anomalies, and on the right the distribution is split into the original datasets.
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6.2 3D CODA Groundtruth

Figure 6.3: In the left image, an example is presented where a foreground object cluster is selected due to its
proximity to the center of the 2D bounding box. In the right image, an illustration is provided of a fence-like
structure with a low surface area.

Figure 6.4: Distibution of images and anomalies in CODA across the three original datasets.

side of the road or small fence-like structures.

The differences between the original datasets are presented on the right side of Figure 6.2. No-

tably, there is an dissimilar distribution of anomalies in the different datasets. Despite CODA con-

taining twice as many images from KITTI as from nuScenes, there are nearly three times as many

anomalies in the nuScenes images compared to those from KITTI (Figure 6.4). Consequently,

the 90.3% correct annotated clusters in KITTI were not given as much weight as the 31.9% of

wrong clustering in nuScenes. Although mean shift clustering performed better on the KITTI

and nuScenes datasets, the nearly one-to-two ratio between mean shift and DBSCAN in ONCE

contributed to DBSCAN showing superior overall distribution performance. The lower clustering

accuracy of 53% in nuScenes can be attributed primarily to the thin point cloud generated by the

lidar sensor used in nuScenes, as depicted in Figure 6.5. This resulted in many anomalies being

represented by only a few lidar points, especially for small objects like traffic cones situated far

away, where some anomalies were not even detected by a single lidar point (Figure 6.7). For

further details about individual supercategories see Figure A.1.

In addition to the findings mentioned above, it is worth highlighting the disparity in the anoma-

lies present in CODA concerning the number of lidar points. Figure 6.6 illustrates that KITTI
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6 Evaluation

Figure 6.5: Difference in lidar point density between the different datasets: ONCE - left; KITTI - middle;
nuScenes - right

Figure 6.6: The distribution of points labeled as anomalies in the three datasets.

anomalies, as defined in the 3D lidar space, comprise a significantly higher number of lidar points

compared to ONCE and nuScenes. All three datasets exhibit a notably lower median compared to

the mean number of lidar points per anomaly. Furthermore, the distribution of positive and neg-

ative labeled points within the original 2D bounding box varies among the datasets. Specifically,

nuScenes contains only 56.89% positive-labeled points, while ONCE and KITTI comprise 64.45%

and 69.54% positive-labeled points, respectively.

The original assumptions made for the clustering methods in Chapter 2 regarding their different

advantages were validated. Meanshift proved to be more effective in detecting larger and more

complex objects with varying shapes, such as two cars from the side, where one is partly ob-

structed by the other (Figure 6.7). Whereas DBSCAN has its benefits in detecting plain surface

areas against the background, as seen in the left image of Figure 6.3, although the wrong cluster

was selected, both signs were clustered perfectly against the background.
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6.3 Quantitative Anomaly Detection

Figure 6.7: In the left image, an example of a distant object is depicted, with no single lidar point hitting it
(near the middle above the white car). The right image displays two cars, with one significantly occluding
the other. The mean shift algorithm correctly clustered both cars together as a single cluster.

The primary challenge with my method of translating 2D bounding boxes into 3D point-wise

labeling is the significant manual effort it demands to verify the labeling accuracy. In this study, it

consumed approximately 12 hours to validate all 5937 annotations, averaging to approximately

500 annotations per hour. However, this level of manual inspection is not feasible for larger

datasets due to time constraints and resource limitations.

Several additional steps and improvements can be implemented to enhance the translation pro-

cess from 2D bounding boxes to 3D point-wise labels and reduce the need for manual verification.

Firstly, a ground segmentation method, such as gndnet [32], could be applied to remove all ground

points. For anomaly detection, simpler ground segmentation techniques, like segmenting points

below a certain threshold, e.g. 30 cm [23, 41, 1] as ground, could not be effective, as many anoma-

lies in datasets like CODA are small objects, such as traffic cones on the road, which would be

separated by this method. Semantic segmentation could be utilized to further refine the point cloud

to determine the position of the anomaly within the 2D bounding box. This information can then

be used to create a frustum that encompasses the region of interest based on the semantic mask.

However, this approach requires a semantic segmentation method capable of detecting novel ob-

ject classes. Regarding clustering, improvements can be achieved by dynamically adjusting the

clustering parameters based on the lidar point cloud characteristics of different datasets. Addition-

ally, the selection of the final cluster could be optimized by considering the shapes and sizes of

the clusters. Implementing these enhancements could lead to a more accurate and efficient con-

version of 2D bounding boxes to 3D point-wise labels, making the process less reliant on manual

verification.

6.3 Quantitative Anomaly Detection

For the quantitative analysis of Sartoris’ detection approach [38] on the CODA dataset, I only used

1412 out of the 1500 images contained in CODA. This decision was made because 88 images

lacked either eight preceding or eight subsequent images in their original dataset sequence. As

these additional images are crucial for enabling the motion-based detection methods, they were

omitted to maintain consistency with Sartoris’ method and avoid potential results variations due to

the reduced number of images.
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6 Evaluation

Figure 6.8: The top-left diagram represents the distribution for the CODA dataset, while the other three
diagrams pertain to the individual components of the CODA dataset. Notably, all y-scales are logarithmized,
and the scenarios correspond to those from Sartoris’ original work 5.1.

To begin the analysis, the number of points labeled by the detection method was examined.

Figure 6.8 presents the logarithmized number of points per scenario in the entire CODA dataset and

splits the data into its individual components. Sartoris’ original diagram is included for comparison

in Figure 6.9. Notably, CODA contains fewer points labeled as static by the SV part and dynamic

by the SSV part but a slightly higher number of points labeled as dynamic by both methods.

Significant differences exist among the individual parts of CODA. For instance, nuScenes exhibits

a considerable number of scenario 3 points, while scenario 4 and scenario 2 points are relatively

scarce. This could indicate potential issues with the nuScenes lidar format and the SV part, as it

seems to detect very few dynamic points in nuScenes. The same observations apply to KITTI,

where scenario 4 dominates. It is crucial to acknowledge that nuScenes is underrepresented in the

overall CODA dataset due to its lower total number of points compared to the smallest scenario in

the other datasets.

Table 6.1 presents the evaluation results (in %) for Sartoris’ detection method on the CODA

dataset. The table is divided into different sections, namely all, boxes, and overlap, as described

in Section 5.4. Additionally, the results are categorized according to the individual datasets within

CODA. The metrics are further separated into individual metrics and aggregated metrics, as also
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6.3 Quantitative Anomaly Detection

Figure 6.9: The diagram illustrates the original distribution of points across various scenarios for the KITTI
odometry dataset, reprinted from [38]. The y-scale is logarithmized, and the colors are adopted from Sar-
toris’ original scenario definition.

explained in Section 5.4. Similarly, Table 6.2 focuses on the examination of each individual

anomaly instead of the entire image. In this case, only boxes and overlap evaluations are per-

formed, as considering the entire point cloud would not be meaningful for assessing individual

anomalies. All the metrics are derived from the confusion matrices presented in Figure A.2,

and A.3.

The direct comparison of the quantitative evaluation of Sartoris’ detection method with the

object detection methods assessed by Li et al.[25] is limited due to the constraints discussed in

Section 5.4. Nevertheless, it is worth noting that Sartoris’ method outperforms all other object

detection methods evaluated by Li et al. [25] in terms of the AR metric. While the best overall

performance was achieved by RetinaNet [26] trained on BBD100K [47] with an AR of 12.8%,

Sartoris’ method obtained an AR of 26.2% for individual metrics and 33.5% for aggregated met-

rics.

The mIoU scores are relatively low compared to most standard object detection methods [11].

Notably, KITTI exhibits better overall performance across all metrics compared to ONCE. The

strong similarities between ONCE and the overall CODA performance indicates the dominance of

ONCE, representing 70.5% of the entire CODA dataset. nuScenes shows the poorest performance,

with one outlier in the AP of the aggregated metrics for boxes and overlap. This outcome is likely

attributed to the presence of numerous small overlapping anomalies in the nuScenes dataset.

Analyzing individual anomaly categories, as shown in Table 6.3, it becomes apparent that ob-

jects contained in normal object detection datasets, even when labeled as anomalies, outperform

the average anomaly in CODA. Notably, the pedestrian, cyclist, and car categories exhibit supe-

rior performance to the average anomaly in CODA. It should be noted that these three categories

combined only account for 120 of the 5937 anomalies in CODA. The motorcycle category with

89 occurrences in CODA stands out as the largest outlier, with an mIoU of 37.2% for individual

metrics (38.7% aggregated metrics) and an AR of 52.0% for individual metrics (51.9% aggre-

gated metrics). Detailed metrics for the individual supercategories and categories are provided in

Tables A.1, A.2, and A.3 in the appendix.
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6 Evaluation

Part Dataset Count Individual Metrics Aggregated Metrics
mIoU AP AR F1 mIoU AP AR F1

All
CODA 1412 8.9 13.2 26.2 17.5 10.8 13.7 33.5 19.4
CODA-ONCE 1034 8.9 14.0 27.1 18.4 8.8 11.1 29.4 16.1
CODA-KITTI 307 10.9 13.3 29.0 18.3 14.9 19.0 40.9 25.9
CODA-nuScenes 71 0.4 0.7 1.0 0.8 0.4 0.6 1.4 0.9

Boxes
CODA 1412 23.1 50.8 26.2 34.6 31.2 81.4 33.5 47.5
CODA-ONCE 1034 24.4 57.6 27.1 36.9 27.2 78.2 29.4 42.7
CODA-KITTI 307 24.0 37.8 29.0 32.8 38.2 85.3 40.9 55.3
CODA-nuScenes 71 1.0 7.6 1.0 1.8 1.4 69.1 1.4 2.7

Overlap
CODA 1304 32.4 55.0 37.9 44.9 40.5 81.4 44.6 57.6
CODA-ONCE 985 33.9 60.5 38.8 47.2 36.6 78.2 40.7 53.6
CODA-KITTI 250 35.0 46.4 44.2 45.3 47.1 85.3 51.3 64.0
CODA-nuScenes 69 2.4 7.9 2.5 3.8 1.9 69.1 1.9 3.7

Table 6.1: The evaluation results (in %) on CODA are presented for entire images. Individual Metrics refer
to the computation of the given metric for all points in each image, followed by calculating the mean of these
metrics across all images. Aggregated Metrics are obtained by consolidating all points from all images into
a single confusion matrix and then calculating the metrics based on this unified confusion matrix.

During my manual inspection of the clusters, I observed that the anomalies in CODA are well-

defined and suitable for Sartoris’ detection method. This observation is supported by the point dis-

tribution across different scenarios, as depicted in Figure 6.6. The proposed anomalies in CODA

by Sartoris’ detection method closely align with the findings in his original work on the KITTI

odometry dataset.

Since the models are pre-trained on KITTI360, the anomaly detection results could be improved

by retraining the models used in the SV and SSV part on the corresponding original datasets and

splitting up the anomaly detection accordingly. To further improve the results, the settings of

the individual methods could be adjusted for every dataset, e.g. the field of view for the motion

segmentation and the clustering at the end.

The evaluation of the unclustered ground truth is depicted in Figure 6.4. As expected, the AP

is considerably higher for the unclustered ground truth compared to the clustered metrics. This

increase in AP is primarily due to a higher number of TP and unchanged FP points. Consequently,

when considering the overall evaluated data, there is an 18.5% decrease in individual AP (18.5%

aggregated) from the unclustered to the clustered scenario.

Since the FN have also increased, the impact on the mIoU is relatively small, with only a 3.3%

decrease in individual (8.5% aggregated) mIoU. However, the crucial observation is that the

increase in FN is more significant than the increase in TP, resulting in a 23.6% improvement in

individual (18.4% aggregated) AR. It is important to note that AR is the most crucial metric for
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6.3 Quantitative Anomaly Detection

Part Dataset Count Individual Metrics Aggregated Metrics
mIoU AP AR F1 mIoU AP AR F1

Boxes
CODA 5142 19.6 34.4 22.7 27.3 31.2 81.2 33.6 47.5
CODA-ONCE 4321 21.1 37.5 24.4 29.6 27.3 78.1 29.6 43.0
CODA-KITTI 397 22.5 34.3 27.7 30.7 38.3 84.9 41.1 55.4
CODA-nuScenes 424 0.8 2.4 0.8 1.1 1.8 76.3 1.4 0.9

Overlap
CODA 4279 29.2 41.3 34.9 37.8 40.5 81.2 44.6 57.6
CODA-ONCE 3693 30.9 43.9 36.6 39.9 36.8 78.1 41.0 53.8
CODA-KITTI 305 34.6 44.7 45.0 44.8 47.0 84.9 51.3 64.0
CODA-nuScenes 281 1.5 3.6 1.5 2.1 2.4 76.3 2.4 4.7

Table 6.2: The evaluation results (in %) on CODA are presented for single anomalies. Individual Metrics
refer to the computation of the given metric for all points in each image, followed by calculating the mean
of these metrics across all images. Aggregated Metrics are obtained by consolidating all points from all
anomalies into a single confusion matrix and then calculating the metrics based on this unified confusion
matrix.

anomaly detection [25], so the clustering of the point clouds has significantly enhanced the ground

truth for anomaly detection.
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6 Evaluation

Part Category Count Individual Metrics Aggregated Metrics
mIoU AP AR F1 mIoU AP AR F1

Boxes
Pedestrian 17 28.3 41.5 31.0 35.5 53.8 79.0 62.7 70.0
Cyclist 24 32.5 53.4 38.6 44.8 38.0 76.6 42.9 55.0
Car 79 35.8 64.1 37.3 47.1 36.0 85.8 38.3 52.9
Motorcycle 89 37.2 52.2 52.0 52.1 38.7 60.3 51.9 55.8

Overlap
Pedestrian 16 33.9 44.1 37.3 40.4 57.7 79.0 68.1 73.2
Cyclist 22 41.6 58.3 49.5 53.5 49.0 76.6 57.6 65.8
Car 75 44.4 67.5 46.3 54.9 41.2 85.8 44.2 58.4
Motorcycle 87 47.2 53.4 70.9 61.0 48.0 60.3 70.0 64.8

Table 6.3: The evaluation results (in %) on CODA are presented for selected single anomaly categories.
Individual Metrics refer to the computation of the given metric for all points in each image, followed by
calculating the mean of these metrics across all images. Aggregated Metrics are obtained by consolidating
all points from all anomalies into a single confusion matrix and then calculating the metrics based on this
unified confusion matrix.

Part Dataset Count Individual Metricsnoclustering Aggregated Metricsnoclustering
mIoU AP AR F1 mIoU AP AR F1

All
CODA 1412 9.2 16.2 21.2 18.4 11.8 16.8 28.3 21.1
CODA-ONCE 1034 9.0 16.9 21.5 18.9 9.9 14.2 24.5 18.0
CODA-KITTI 307 11.8 17.4 25.0 20.6 16.0 22.3 36.3 27.6
CODA-nuScenes 71 0.3 1.0 0.6 0.7 0.5 0.9 1.1 1.0

Boxes
CODA 1412 21.2 73.8 21.2 33.0 28.3 100.0 28.3 44.2
CODA-ONCE 1034 21.5 77.9 21.5 33.7 24.5 100.0 24.5 39.4
CODA-KITTI 307 25.0 74.9 25.0 37.5 36.3 100.0 36.3 53.3
CODA-nuScenes 71 0.6 8.5 0.6 1.1 1.1 100.0 1.1 2.3

Overlap
CODA 1304 23.0 79.9 23.0 35.7 28.3 100.0 28.3 44.2
CODA-ONCE 985 22.6 81.8 22.6 35.4 24.5 100.0 24.5 39.4
CODA-KITTI 250 30.8 92.0 30.8 46.1 36.3 100.0 36.3 53.3
CODA-nuScenes 69 0.6 8.7 0.6 1.1 1.1 100.0 1.1 2.3

Table 6.4: The evaluation results (in %) on CODA are presented for entire images, with no previous cluster-
ing of the 2D bounding boxes. Individual Metrics refer to the computation of the given metric for all points
in each image, followed by calculating the mean of these metrics across all images. Aggregated Metrics are
obtained by consolidating all points from all images into a single confusion matrix and then calculating the
metrics based on this unified confusion matrix.
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7 Conclusion and Outlook

In this thesis the anomaly detection approach proposed by Sartoris [38] using SV and SSV mod-

els on the CODA dataset is evaluated quantitatively. To achieve this, I first create suitable 3D

point-wise labeling by translating the different data formats of CODA’s constituent datasets into a

unified format. During this process, I highlight the benefits of adopting consistent data formats for

future anomaly datasets merged from multiple sources, as it would streamline research efforts and

enable more comprehensive evaluations. Furthermore, I emphasize the importance of considering

differences among the datasets included in a fusion, as significant disparities, such as point cloud

density, could impact the applicability of certain detection models. While CODA is well-suited

for Sartoris’ detection method, it is evident that nuScenes is less compatible, but it only makes up

a small portion of CODA.

The clustering algorithms employed for translating 2D bounding boxes to 3D point-wise labels

exhibit good performance. After manual inspection, approximately 79.8% of all anomalies are

correctly clustered. With the correct selection of some wrongly clustered instances (9.2%), the

overall percentage of accurately clustered anomalies is about 85%. Moreover, the evaluation of

anomaly detection exhibited a noteworthy improvement of 23.6% individual AR in comparison to

the unclustered dataset. I also propose additional improvements to enhance the detection rate and

reduce the labor-intensive manual inspection, discussed at the end of Section 6.2.

The anomaly detection method produces point-wise labels for entire images, resembling a se-

mantic segmentation of the entire scene without distinct anomaly proposals. Due to the lack of

defined metrics for evaluating data from semantic segmentation methods other than mIoU, I used

two different approaches for calculating AP, AR, and F1 metrics, providing future researchers

with options for assessment. According to these metrics, Sartoris’ method outperforms standard

object detectors by a significant margin. This achievement is noteworthy despite the presence of

approximately 15% incorrect clustering in the CODA ground truth and the fact that the detection

method is not finely tuned for CODA. To improve performance even further, I suggest adjusting

the settings of the different methods and retraining pre-trained models for each of the original

datasets, as detailed in Section 6.3.

For future evaluations of anomaly detection methods, including original labels for all objects in

anomaly datasets is crucial to enhance comparability between anomalies and non-anomalies. This

inclusion would facilitate more accurate assessments and promote advancements in the field of

anomaly detection.

39



7 Conclusion and Outlook

7.1 Outlook

Anomalies are characterized by their scarcity in large labeled datasets, rendering them challenging

for machine learning approaches to learn effectively. Therefore, a crucial aspect of anomaly label-

ing lies in clustering 3D point clouds based on straightforward principles. While I have proposed

simple enhancements for the clustering method, other methods from different domains of object

detection may already exist for detecting previously unknown objects in 3D point clouds.

With the successful completion of the first quantitative evaluation of Sartoris’ work, promis-

ing avenues for further research have opened up. Fine-tuning Sartoris’ method to address errors

encountered in his qualitative evaluation, such as handling fast turns or speed bumps [38], is one di-

rection for future exploration. Additionally, retraining the models for CODA or assessing Sartoris’

methods on other anomaly datasets could yield valuable insights. Sartoris also suggests exploring

the determination of the wrong part during inference, conducting in-depth analyses of individual

components, or combining the SSV part with a closed-set object detector to detect anomalies at

the object-layer.

The evaluation reveals a lack of suitable metrics tailored to this particular detection scenario.

To address this issue, new indicators for evaluating the performance of such methods could be

sought. For instance, including the labeling of all objects from the original datasets could enhance

the assessment. Another approach involves examining the individual clusters formed for all incon-

sistent points and treating each as an individual anomaly rather than aggregating all points within

an image. An alternative perspective to address this issue involves considering it from another

angle. The results of standard object detectors on CODA can be transformed into my metrics by

extracting the 3D lidar point cloud from the 2D bounding boxes proposed by the detectors. The

comparison between the extracted point cloud and the ground truth labels can then be performed

on a point-wise level, which follows the approach used in this thesis.

In conclusion, the quantitative evaluation has shed light on the potential of Sartoris’ detection

approach, and there are numerous avenues for further exploration and refinement to advance the

field of anomaly detection in autonomous driving systems.
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Figure A.1: Results of the manual inspection of the two different clustering methods mean shift and
DBSCAN devided according to supercategory. The different labels refer to those defined in 9.

Part Supercategory Count Individual Metrics Aggregated Metrics Individual Metricsnoclustering Aggregated Metricsnoclustering
mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1

Boxes
pedestrian 17 28.3 41.5 31.0 35.5 53.8 79.0 62.7 70.0 24.6 64.7 24.6 35.7 38.3 100.0 38.3 55.3
cyclist 24 32.5 53.4 38.6 44.8 38.0 76.6 42.9 55.0 24.4 75.0 24.4 36.8 28.4 100.0 28.4 44.2
vehicle 866 22.8 41.0 27.3 32.8 35.2 82.3 38.1 52.1 23.9 68.6 23.9 35.5 33.8 100.0 33.8 50.5
animal 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
traffic_facility 4062 19.1 33.0 22.0 26.4 25.3 78.9 27.2 40.4 17.0 46.9 17.0 25.0 21.7 100.0 21.7 35.7
obstruction 150 11.1 28.3 12.0 16.8 14.2 79.7 14.7 24.9 9.5 38.0 9.5 15.2 12.4 100.0 12.4 22.1
misc 15 25.2 60.7 25.8 36.2 27.4 88.6 28.4 43.1 18.4 73.3 18.4 29.4 19.2 100.0 19.2 32.2

Overlap
pedestrian 16 33.9 44.1 37.3 40.4 57.7 79.0 68.1 73.2 26.2 68.8 26.2 37.9 38.3 100.0 38.3 55.3
cyclist 22 41.6 58.3 49.5 53.5 49.0 76.6 57.6 65.8 26.6 81.8 26.6 40.1 28.4 100.0 28.4 44.2
vehicle 736 33.0 48.3 41.0 44.4 43.3 82.3 47.7 60.4 28.2 80.7 28.2 41.8 33.8 100.0 33.8 50.5
animal 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
traffic_facility 3360 28.6 39.9 33.9 36.7 35.8 78.9 39.6 52.7 20.6 56.7 20.6 30.2 21.7 100.0 21.7 35.7
obstruction 125 20.5 34.0 22.9 27.4 22.8 79.7 24.2 37.1 11.4 45.6 11.4 18.2 12.4 100.0 12.4 22.1
misc 15 36.7 60.7 37.9 46.7 37.7 88.6 39.6 54.8 18.4 73.3 18.4 29.4 19.2 100.0 19.2 32.2

Table A.1: Evaluation results (in %) on CODA for single anomaly supercategories. Individual Metrics
correspond to calculating the given metric for all points in every anomaly and calculating the mean of all
these metrics. Aggregated Metrics are achieved by cumulating all points of all annotations together into one
confusion matrix and calculating the metrics on this one confusion matrix. Additionally, the metrics for the
unclustered ground truth are shown.
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Figure A.2: Confusion matrices as piecharts for CODA and ONCE.
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Figure A.3: Confusion matrices as piecharts for KITTI and nuScenes.
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Part Category Count Individual Metrics Aggregated Metrics Individual Metricsnoclustering Aggregated Metricsnoclustering
mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1

Boxes
pedestrian
pedestrian 17 28.3 41.5 31.0 35.5 53.8 79.0 62.7 70.0 24.6 64.7 24.6 35.7 38.3 100.0 38.3 55.3
cyclist
cyclist 24 32.5 53.4 38.6 44.8 38.0 76.6 42.9 55.0 24.4 75.0 24.4 36.8 28.4 100.0 28.4 44.2
vehicle
car 79 35.8 64.1 37.3 47.1 36.0 85.8 38.3 52.9 34.3 84.8 34.3 48.8 33.9 100.0 33.9 50.6
truck 6 28.4 67.0 30.2 41.6 28.7 81.8 30.7 44.6 29.5 83.3 29.5 43.6 31.0 100.0 31.0 47.3
tram 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tricycle 16 24.1 60.4 29.0 39.2 26.4 72.9 29.3 41.8 24.6 81.2 24.6 37.7 27.3 100.0 27.3 42.9
bus 71 15.5 27.3 16.3 20.4 51.9 95.0 53.4 68.4 14.8 49.3 14.8 22.8 47.1 100.0 47.1 64.1
bicycle 58 22.4 43.5 28.3 34.3 30.6 64.0 37.0 46.9 24.0 60.3 24.0 34.4 35.3 100.0 35.3 52.2
moped 224 20.1 42.6 23.4 30.2 22.7 71.2 25.0 37.0 20.6 62.9 20.6 31.1 22.5 100.0 22.5 36.8
motorcycle 89 37.2 52.2 52.0 52.1 38.7 60.3 51.9 55.8 44.7 88.8 44.7 59.5 43.0 100.0 43.0 60.2
stroller 17 18.2 64.3 19.4 29.8 15.5 87.7 15.8 26.8 14.2 82.4 14.2 24.2 10.9 100.0 10.9 19.7
wheelchair 11 6.7 8.7 6.9 7.7 15.6 95.5 15.7 27.0 6.0 9.1 6.0 7.2 9.8 100.0 9.8 17.9
cart 23 22.8 51.2 30.6 38.3 23.1 61.9 27.0 37.6 24.5 78.3 24.5 37.4 24.4 100.0 24.4 39.2
trailer 155 20.5 27.9 24.9 26.3 31.9 82.8 34.2 48.4 20.1 60.6 20.1 30.2 28.1 100.0 28.1 43.9
construction_vehicle 25 13.1 26.0 15.8 19.7 26.7 76.1 29.2 42.2 11.2 36.0 11.2 17.0 24.8 100.0 24.8 39.7
recreational_vehicle 92 19.2 33.5 21.5 26.2 36.7 90.1 38.3 53.7 23.3 90.2 23.3 37.1 36.6 100.0 36.6 53.6
animal
dog 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
traffic_facility
barrier 737 19.3 39.2 21.1 27.4 22.4 80.2 23.7 36.6 17.9 53.1 17.9 26.8 20.9 100.0 20.9 34.5
bollard 1125 20.6 32.0 24.0 27.4 24.2 74.5 26.4 39.0 18.7 44.8 18.7 26.4 18.9 100.0 18.9 31.8
warning_sign 3 16.5 66.7 16.5 26.5 14.1 100.0 14.1 24.7 12.1 66.7 12.1 20.5 9.0 100.0 9.0 16.4
sentry_box 13 27.5 60.7 29.6 39.8 28.1 81.9 29.9 43.9 25.3 76.9 25.3 38.1 26.5 100.0 26.5 41.9
traffic_box 1 36.3 100.0 36.3 53.3 36.3 100.0 36.3 53.3 26.9 100.0 26.9 42.5 26.9 100.0 26.9 42.5
traffic_cone 1836 16.8 29.1 20.2 23.8 20.8 67.8 23.0 34.4 14.3 42.7 14.3 21.4 15.3 100.0 15.3 26.5
traffic_island 33 12.2 48.2 12.3 19.6 16.8 86.6 17.3 28.8 11.8 60.6 11.8 19.8 14.1 100.0 14.1 24.7
traffic_light 19 28.7 55.9 33.8 42.1 29.4 58.6 37.0 45.4 29.0 89.5 29.0 43.7 31.7 100.0 31.7 48.1
traffic_sign 295 26.7 41.2 28.3 33.6 36.2 85.7 38.5 53.1 24.7 59.7 24.7 34.9 31.4 100.0 31.4 47.8
obstruction
debris 58 9.4 27.9 10.0 14.7 12.2 83.4 12.5 21.8 8.1 39.7 8.1 13.5 10.5 100.0 10.5 19.1
suitcace 19 15.1 60.6 15.3 24.4 18.9 89.0 19.4 31.8 9.0 68.4 9.0 15.9 9.3 100.0 9.3 17.0
dustbin 47 10.9 18.1 11.6 14.2 15.6 96.1 15.7 27.0 9.1 19.1 9.1 12.3 12.0 100.0 12.0 21.4
concrete_block 12 7.0 16.1 7.3 10.1 8.5 62.1 9.0 15.7 6.9 25.0 6.9 10.9 11.3 100.0 11.3 20.2
machinery 4 37.7 74.5 38.1 50.4 29.1 99.0 29.1 45.0 35.2 75.0 35.2 47.9 25.8 100.0 25.8 41.0
chair 4 6.4 11.6 9.1 10.2 9.3 44.2 10.5 17.0 9.8 50.0 9.8 16.4 13.9 100.0 13.9 24.4
phone_booth 2 29.6 30.5 47.5 37.2 23.0 42.2 33.5 37.3 36.3 100.0 36.3 53.2 29.2 100.0 29.2 45.2
basket 4 1.1 8.3 1.2 2.1 0.8 14.3 0.9 1.7 4.1 50.0 4.1 7.5 4.0 100.0 4.0 7.8
misc
misc 15 25.2 60.7 25.8 36.2 27.4 88.6 28.4 43.1 18.4 73.3 18.4 29.4 19.2 100.0 19.2 32.2

Table A.2: Evaluation results (in %) on CODA for single anomaly categories. Individual Metrics correspond
to calculating the given metric for all points in every anomaly and calculating the mean of all these metrics.
Aggregated Metrics are achieved by cumulating all points of all annotations together into one confusion
matrix and calculating the metrics on this one confusion matrix. Additionally, the metrics for the unclustered
ground truth are shown.
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Part Category Count Individual Metrics Aggregated Metrics Individual Metricsnoclustering Aggregated Metricsnoclustering
mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1

Overlap
pedestrian
pedestrian 16 33.9 44.1 37.3 40.4 57.7 79.0 68.1 73.2 26.2 68.8 26.2 37.9 38.3 100.0 38.3 55.3
cyclist
cyclist 22 41.6 58.3 49.5 53.5 49.0 76.6 57.6 65.8 26.6 81.8 26.6 40.1 28.4 100.0 28.4 44.2
vehicle
car 75 44.4 67.5 46.3 54.9 41.2 85.8 44.2 58.4 36.1 89.3 36.1 51.4 33.9 100.0 33.9 50.6
truck 5 36.2 80.4 38.7 52.3 31.6 81.8 34.0 48.1 35.4 100.0 35.4 52.3 31.0 100.0 31.0 47.3
tram 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tricycle 16 35.9 60.4 42.3 49.8 31.6 72.9 35.8 48.0 24.6 81.2 24.6 37.7 27.3 100.0 27.3 42.9
bus 35 38.7 55.4 40.6 46.8 73.0 95.0 75.8 84.4 30.0 100.0 30.0 46.2 47.1 100.0 47.1 64.1
bicycle 52 34.2 48.6 45.6 47.0 41.4 64.0 54.0 58.6 26.8 67.3 26.8 38.4 35.3 100.0 35.3 52.2
moped 205 29.0 46.5 35.2 40.1 30.9 71.2 35.3 47.2 22.5 68.8 22.5 34.0 22.5 100.0 22.5 36.8
motorcycle 87 47.2 53.4 70.9 61.0 48.0 60.3 70.0 64.8 45.7 90.8 45.7 60.8 43.0 100.0 43.0 60.2
stroller 17 23.5 64.3 25.1 36.1 20.7 87.7 21.3 34.2 14.2 82.4 14.2 24.2 10.9 100.0 10.9 19.7
wheelchair 11 8.4 8.7 8.8 8.7 24.7 95.5 25.0 39.6 6.0 9.1 6.0 7.2 9.8 100.0 9.8 17.9
cart 23 27.9 51.2 40.0 44.9 29.6 61.9 36.2 45.7 24.5 78.3 24.5 37.4 24.4 100.0 24.4 39.2
trailer 109 33.5 39.7 42.8 41.2 40.0 82.8 43.6 57.1 28.6 86.2 28.6 43.0 28.1 100.0 28.1 43.9
construction_vehicle 18 19.4 36.2 23.3 28.3 33.1 76.1 36.9 49.7 15.5 50.0 15.5 23.7 24.8 100.0 24.8 39.7
recreational_vehicle 83 23.2 37.2 26.0 30.6 42.3 90.1 44.3 59.4 25.9 100.0 25.9 41.1 36.6 100.0 36.6 53.6
animal
dog 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
traffic_facility
barrier 547 34.4 52.8 38.2 44.3 34.2 80.2 37.4 51.0 24.2 71.5 24.2 36.1 20.9 100.0 20.9 34.5
bollard 973 28.3 37.0 33.6 35.2 31.5 74.5 35.3 47.9 21.6 51.8 21.6 30.5 18.9 100.0 18.9 31.8
warning_sign 3 33.9 66.7 33.9 45.0 37.5 100.0 37.5 54.5 12.1 66.7 12.1 20.5 9.0 100.0 9.0 16.4
sentry_box 12 46.4 65.8 50.0 56.8 38.5 81.9 42.0 55.6 27.5 83.3 27.5 41.3 26.5 100.0 26.5 41.9
traffic_box 1 36.3 100.0 36.3 53.3 36.3 100.0 36.3 53.3 26.9 100.0 26.9 42.5 26.9 100.0 26.9 42.5
traffic_cone 1546 25.3 34.5 31.6 33.0 29.9 67.8 34.9 46.1 17.0 50.7 17.0 25.5 15.3 100.0 15.3 26.5
traffic_island 28 26.3 56.8 26.8 36.4 34.4 86.6 36.3 51.2 13.9 71.4 13.9 23.3 14.1 100.0 14.1 24.7
traffic_light 17 35.8 62.5 43.6 51.4 36.0 58.6 48.3 53.0 32.4 100.0 32.4 48.9 31.7 100.0 31.7 48.1
traffic_sign 233 37.5 52.2 39.9 45.2 43.9 85.7 47.3 61.0 31.3 75.5 31.3 44.2 31.4 100.0 31.4 47.8
obstruction
debris 46 21.1 35.1 25.1 29.3 25.8 83.4 27.2 41.0 10.2 50.0 10.2 17.0 10.5 100.0 10.5 19.1
suitcace 19 27.3 60.6 27.9 38.2 34.2 89.0 35.7 50.9 9.0 68.4 9.0 15.9 9.3 100.0 9.3 17.0
dustbin 39 16.3 21.9 17.5 19.4 20.9 96.1 21.1 34.5 11.0 23.1 11.0 14.9 12.0 100.0 12.0 21.4
concrete_block 8 15.4 24.1 16.5 19.6 13.5 62.1 14.7 23.8 10.4 37.5 10.4 16.3 11.3 100.0 11.3 20.2
machinery 4 51.2 74.5 51.7 61.0 45.7 99.0 45.9 62.7 35.2 75.0 35.2 47.9 25.8 100.0 25.8 41.0
chair 4 7.3 11.6 11.0 11.3 11.4 44.2 13.4 20.5 9.8 50.0 9.8 16.4 13.9 100.0 13.9 24.4
phone_booth 2 29.6 30.5 47.5 37.2 23.2 42.2 34.1 37.7 36.3 100.0 36.3 53.2 29.2 100.0 29.2 45.2
basket 3 4.8 11.1 6.7 8.3 2.1 14.3 2.4 4.2 5.4 66.7 5.4 10.0 4.0 100.0 4.0 7.8
misc
misc 15 36.7 60.7 37.9 46.7 37.7 88.6 39.6 54.8 18.4 73.3 18.4 29.4 19.2 100.0 19.2 32.2

Table A.3: Evaluation results (in %) on CODA for single anomaly categories. Individual Metrics correspond
to calculating the given metric for all points in every anomaly and calculating the mean of all these metrics.
Aggregated Metrics are achieved by cumulating all points of all annotations together into one confusion
matrix and calculating the metrics on this one confusion matrix. Additionally, the metrics for the unclustered
ground truth are shown.

Part Dataset Count Individual Metrics Aggregated Metrics Individual Metricsnoclustering Aggregated Metricsnoclustering
mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1

All
CODA 1412 8.9 13.2 26.2 17.5 10.8 13.7 33.5 19.5 9.2 16.2 21.2 18.4 11.8 16.8 28.3 21.1
CODA-ONCE 1034 8.9 14.0 27.1 18.4 8.8 11.1 29.4 16.1 9.0 16.9 21.5 18.9 9.9 14.2 24.5 18.0
CODA-KITTI 307 10.9 13.3 29.0 18.3 14.9 19.0 40.9 25.9 11.8 17.4 25.0 20.6 16.0 22.3 36.3 27.6
CODA-nuScenes 71 0.4 0.7 1.0 0.8 0.4 0.6 1.4 0.9 0.3 1.0 0.6 0.7 0.5 0.9 1.1 1.0

Boxes
CODA 1412 23.1 50.8 26.2 34.6 31.2 81.4 33.5 47.5 21.2 73.8 21.2 33.0 28.3 100.0 28.3 44.2
CODA-ONCE 1034 24.4 57.6 27.1 36.9 27.2 78.2 29.4 42.7 21.5 77.9 21.5 33.7 24.5 100.0 24.5 39.4
CODA-KITTI 307 24.0 37.8 29.0 32.8 38.2 85.3 40.9 55.3 25.0 74.9 25.0 37.5 36.3 100.0 36.3 53.3
CODA-nuScenes 71 1.0 7.6 1.0 1.8 1.4 69.1 1.4 2.7 0.6 8.5 0.6 1.1 1.1 100.0 1.1 2.3

Overlap
CODA 1304 32.4 55.0 37.9 44.9 40.5 81.4 44.6 57.6 23.0 79.9 23.0 35.7 28.3 100.0 28.3 44.2
CODA-ONCE 985 33.9 60.5 38.8 47.2 36.6 78.2 40.7 53.6 22.6 81.8 22.6 35.4 24.5 100.0 24.5 39.4
CODA-KITTI 250 35.0 46.4 44.2 45.3 47.1 85.3 51.3 64.0 30.8 92.0 30.8 46.1 36.3 100.0 36.3 53.3
CODA-nuScenes 69 2.4 7.9 2.5 3.8 1.9 69.1 1.9 3.7 0.6 8.7 0.6 1.1 1.1 100.0 1.1 2.3

Table A.4: The evaluation results (in %) on CODA are presented for entire images. Individual Metrics
refer to the computation of the given metric for all points in each image, followed by calculating the mean
of these metrics across all images. Aggregated Metrics are obtained by consolidating all points from all
images into a single confusion matrix and then calculating the metrics based on this unified confusion
matrix. Additionally, the metrics for the unclustered ground truth are shown.
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Part Dataset Count Individual Metrics Aggregated Metrics Individual Metricsnoclustering Aggregated Metricsnoclustering
mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1 mIoU AP AR F1

Boxes
CODA 5142 19.6 34.4 22.7 27.3 31.2 81.2 33.6 47.5 18.0 50.5 18.0 26.6 28.4 100.0 28.4 44.2
CODA-ONCE 4321 21.1 37.5 24.4 29.6 27.3 78.1 29.6 42.9 19.1 53.2 19.1 28.1 24.6 100.0 24.6 39.5
CODA-KITTI 397 22.5 34.3 27.7 30.7 38.3 84.9 41.1 55.4 24.6 71.5 24.6 36.7 36.4 100.0 36.4 53.4
CODA-nuScenes 424 0.8 2.4 0.8 1.1 1.8 76.3 1.8 3.5 0.7 2.8 0.7 1.1 1.3 100.0 1.3 2.6

Overlap
CODA 4279 29.2 41.3 34.9 37.8 40.5 81.2 44.6 57.6 21.6 60.7 21.6 31.9 28.4 100.0 28.4 44.2
CODA-ONCE 3693 30.9 43.9 36.6 39.9 36.8 78.1 41.0 53.8 22.4 62.3 22.4 32.9 24.6 100.0 24.6 39.5
CODA-KITTI 305 34.6 44.7 45.0 44.8 47.0 84.9 51.3 64.0 32.1 93.1 32.1 47.7 36.4 100.0 36.4 53.4
CODA-nuScenes 281 1.5 3.6 1.5 2.1 2.4 76.3 2.4 4.7 1.0 4.3 1.0 1.6 1.3 100.0 1.3 2.6

Table A.5: The evaluation results (in %) on CODA are presented for single anomalies. Individual Metrics
refer to the computation of the given metric for all points in each image, followed by calculating the mean
of these metrics across all images. Aggregated Metrics are obtained by consolidating all points from all
anomalies into a single confusion matrix and then calculating the metrics based on this unified confusion
matrix. Additionally, the metrics for the unclustered ground truth are shown.
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