Formulated requirements for a representative test specimen

- The process-induced material orientation must be represented according to the structure under investigation.
- Process speed and the associated time interval between two deposited strands should be constant.
- To ensure a representative specimen, the scattering of experimental results should be minimized.
- Influences by possible preparation procedures should be minimized as far as possible.

Motivation

- There are several approaches for the preparation of specimens for the mechanical characterization of additively manufactured structures. [1-3]
- Due to inconsistent specimen preparation, the measured properties are difficult to compare.
- Studies are required to prepare the specimen that is representative of the structure to be tested.

Material and Method

- Material: BASF Ultrafuse PLA filament.
- Specimen 1B according to DIN EN ISO 527-2 with 100% infill and different strand orientation.
- Printer: Ultimaker 2+
- Cutting method: waterjet cutting
- Tensile test with integrated GOM system for DIC measurements.

Directly printed vs. cut

- The perimeter leads to non-uniform loading.
- Cut specimens allow the investigation of the structure under test.
- Cut specimens allow the study of local effects when loading specific infill structures.

Large plate vs. Small plate

- Smaller plate leads to less scattering.
- Smaller plate leads to higher mechanical properties.
- Due to shorter cooling time between two adjacent strands.

Study

Studies are required to prepare the specimen that is representative of the structure to be tested. [1-3]

Conclusions

- Cut specimens allow experimental investigation of the structure under test within a component.
- Smaller plates result in a smaller scatter of the measured parameters.
- With this method, reproducible results can be obtained while maintaining process and preparation parameters.

References