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1. Introduction

In machining production, there are many existing machines
in heterogeneous machine parks that do not have any Industrie 
4.0 functionalities [1]. They therefore do not have digital twins 
and models that describe the dynamic behavior of their feed 
axes. Due to ever smaller batch sizes and thus frequent changes 
in production, the demands on the machines are increasing. 
With exact models of the feed axes, strategies can be derived to 
increase the Overall Equipment Effectiveness (OEE). For 
example, process monitoring solutions during setup or process 
optimization can achieve high quality and productivity at lower 
cost. However, the low costs can only be achieved if no 
additional implementation effort is required through additional 
sensor technology. Since the cost of additional sensor 
technology would increase further with different installation 
spaces and environmental conditions of heterogeneous machine 
parks, the objective should be to monitor the cutting force
indirectly based on existing data such as motor currents and 
position signals.  

However, indirect monitoring based on the mentioned 
signals requires a precise machine model, which is time-

consuming and costly to create. Thus, as in many Industrie 4.0 
implementations, single solutions would occur [1]. Although 
these represent high-performance solutions, they cannot be 
directly transferred to other systems and are therefore not 
scalable. A new implementation effort would be necessary for 
the transfer. For this reason, automation would increase the 
potential for minimizing the implementation effort. In addition, 
there is a new parameterization of the models for the same 
structure of the systems. Therefore, a scalable solution is 
needed, which can be rolled out to different machine types over 
a wide area. This requires component models that can be linked 
to each other by defined input and output variables, enabling a 
modular structure of the overall machine model of a feed axis.  

A scalable solution for autonomous creation of feed axis 
models would be an enabler for optimization of OEE. In 
addition, this would enable the integration of brownfield
systems in the concept of software-defined manufacturing [2].  
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In metal-cutting manufacturing, ever smaller lot sizes lead to frequent changes in machining processes. For this, monitoring solutions help with 
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2. State of the Art and Objectives

2.1. Automated identification of parameters in control systems 

For the implementation of an automated modeling of feed 
axes, control signals are required. Since these are not directly 
available in heterogeneous machine parks in the brownfield in 
most cases, they must also be identified automatically. For this 
purpose, there is an approach in which the signals are 
characterized by machine learning and domain-specific rules. 
[3]

This approach can serve as an upstream step for automated 
model identification to further reduce implementation effort. 

2.2. Dynamic behavior of feed axes 

For feed axes, there are a large number of research 
approaches to describe the dynamics and derive applications 
for them. For example, the effects of the dynamic behavior of 
machine tools on process stability have been studied. The goal 
is to establish general guidelines that can be used to improve 
the process stability of a machine tool and achieve increased 
metal removal rates. [4] 

In addition, a methodology was developed to determine 
local damping influences of linear axes and ball screws in 
machine tools. The damping models derived from the 
methodology allow a better estimation of the dynamic behavior
of the machine. [5] 

In order to improve the dynamic behavior, actuator 
technology can be used in addition to control concepts, which, 
however, are time-consuming to integrate or lack robustness 
under different operating conditions. Thus, an improved 
acceleration behavior and an increasing accuracy, as well as the 
dynamic stiffness can be increased. [6] 

For simulation, elaborate finite element (FE) models are 
used to study the machine stability of vertical milling 
machines. However, these are limited to one configuration. [7]

Further research is concerned with the dynamic behavior of 
machine tools, with the aim of improving the predictive 
capability of dynamic simulations. For this purpose, a 
methodology has been developed to build predictive simulation 
models. The identification and quantification of the 
uncertainties as well as the evaluation of the influencing 
variables on the dynamic behavior of machine tools serve as a 
basis for decision-making in order to improve the predictive 
capability of future FE models. [8] 

In addition, applications are also being developed that use 
artificial neural networks (ANN) to represent these dynamics, 
such as wear detection for tools used in face milling. However, 
suitable sensor technology and data sets are required for this. 
[9] 

Thus, many approaches exist that hinder the dissemination 
of these due to their complexity and effort in implementation. 
In addition, they often do not offer the possibility of 
transferability and usually only consider partial components. 

2.3. Dynamic parameter identification in machine tools 

There are studies to identify the dynamic parameters of a 
CNC machine tool feed system. Here, a standardized structure 
of a CNC machine feed system is assumed with servo drive, AC 
servo motor and mechanical system. To ensure high speed and 
high accuracy and stability due to increasing rotation and feed 
rates, relevant system parameters are identified to model the 
dynamics of the axis. A simplified control model and linear 
identification model of the feed system is used here. Input and 
output signals come from sensors embedded in the CNC 
machine tool. The unbiased least square algorithm is used here 
to determine the friction values. However, the simulation values 
determined in this way have values between ten and seventy 
percent deviation. However, the parameter identification used 
can be applied. Thus, the system is suitable to evaluate 
variations of the overall mechanical stiffness in different 
working environments/life phases of a WZM. [10]

Accurate modeling and identification of feed axis dynamics 
is also enormously important in the design of a high 
performance CNC machine. Here the parameters are estimated 
using unbiased least squares scheme, Kalman filter. For this, 
the axes are jogged in closed loop at different speeds. However, 
the problem of transferability applies here again. [11] 

For the identification of system parameters, e.g. vibrations 
of the machine table, genetic algorithms (GA) are successfully 
used. However, additional sensor technology is required for 
this. [12] 

2.4.  Modular digital twin for machine tools 

There are also approaches to build digital twins of machine 
tools modularly based on structured experimental parameter 
identifications. The focus here is on the overall model of the
machine. Thus, when the configuration of the machine 
parameters changes, the submodels can be modified without 
recalibrating the overall model. [13] 

However, there is no methodology here to adapt these to 
different types of feed axis.  

In summary, there are thus currently no scalable approaches 
that meet the requirements of modeling with low expenditure 
of time and money for different axis types, which serve as the 
basis for various applications such as force monitoring. 
Therefore, an approach is needed which determines the 
configuration of the feed axis in order to be able to transfer 
these models.  

3. Auto-identification of dynamic axis models

In order to meet these requirements, a concept was 
developed which focuses on the automated construction and 
parameterization of precise and individual feed axis models for 
a wide variety of feed axes. Three phases were defined for this 
purpose. In the first step, the components of the axis must be 
identified in order to build a precisely adapted model. Then, the 
structure of the axis is determined and the identified 
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components are built up in an overall model. The resulting 
parameter list is optimized using a genetic algorithm based on 
the initial reference run.  

The basis of the methodology is a decision tree. This tree 
contains all possible components of feed axes. These 
components are grouped into categories such as engine and 
gearbox. The different component categories are divided into 
logical branches starting from the motor. For example, a ball 
screw is only placed in series after a belt gear. This is done by 
the condition that the belt has no possible connectors to other 
submodels in the later setup, because these are changed from 
rotatory to translatory by the ball screw. Therefore, all possible 
setups of feed axes are represented by one path each in the tree. 

 Due to this structure, different components can occur more 
often in the tree. However, this provides a high degree of 
traceability for the user. The nodes of the decision tree are 
enriched with domain knowledge. Thus, they contain all 
possible designs of the categories, such as belts and planetary 
gears for the category gearbox. In addition, knowledge about 
possible data sources of a component is also introduced. This 
can be used later for identification. The tree also shows the 
submodels of the components. Thus behind each expression of 
a node in the tree one or more models stand for the respective 
components. The system represents a superordinate structure 
for different component models. Component models can be 
implemented in their complexity adapted to the respective 
optimization application. So the models are regarded first as 
Black boxes and are defined by input/output variables. This 
opens the possibility of letting expert knowledge flow into the 
structure in the form of single component models. Fig.1 
outlines the structure of the decision tree.  

This approach enables the implementation of modular and 
self-configuring local monitoring functions, which is done here 
on the basis of a local force monitoring function. 

3.1. Component identification 

To build an axis-specific model, all components of the axis 
must be known. The concept provides two possibilities for this. 
In the first, the machine operator knows the structure of the feed 
axis. In this way, a skilled worker can select from existing 
components in his machine and thus determine the path in the 
decision tree. However, this involves an initial configuration 
effort on the part of the operator. To avoid this or to preserve 
missing knowledge of the machine, the second option offers an 
automated recognition of the components. This is based on a 
reference run. The structure of the reference run depends on the 
number and type of axes. These can be specified by the user or 
read out from the machine's control system.  

When the reference run is performed, all possible data 
sources are recorded in the control. For identification, the 
decision tree is supplemented by rules. These rules are derived 
from an analysis of the features from the time series of the 
reference run. Thus, each node has one or more rules, which 
determine probabilities for the different paths of the tree by a 
fuzzy logic. In addition, probabilities are determined for the 
different subcategories of the nodes. The starting point is the 
motor node. To optimize the computing time, a threshold value 
can be defined for the probabilities. If this threshold is not 
exceeded, further probabilities in the subsequent nodes are not 
determined and only the promising configurations are pursued. 

The rules are derived experimentally by time series data 
from tests with differently configured machine axes and axis 
test benches. In addition, the deposited domain knowledge is 
included. This allows existing data sources from the control 
system to confirm the existence of a component and thus 
increase the probability of the node. At the end of the step, all 
components are available to the system.   

Fig. 1. Rule based decision tree.

Fig. 2.. Creation of the overall model
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3.2. Modeling 

In the next step of the methodology, the individual overall 
model of the feed axis is created. The probabilities determined
from the component identification are used for this. Starting 
from the node of the motor, the probabilities along each path 
are multiplied. This is done for all paths for which probabilities 
were determined. As a result, total probabilities are available 
for the different configurations of an axis. A ranking is created 
from the compositions available in this way.  

The most probable configuration represents thereby the 
solution. Now the component models, which are contained in 
this solution, are taken from the decision tree. These are put 
together again starting from the engine at the defined interfaces 
and form the individual total model of the axis. The complexity 
of the models depends on the application. The overall model 
results in a parameter list for describing the model. Fig. 2 shows 
an example of the modeling process.

3.3. Parameterization 

In the next step, the model parameters must now be 
determined. This is again data-based. In order to minimize the 
configuration effort of the overall system, the same reference 
run is again used for this as for component identification. For 
the determination of the parameters of the model a genetic 
algorithm is used for this. Global optimization algorithms are 
necessary because some submodels have a strong starting point 
dependency.  

For optimization, the measured encoder signal of the glass 
scales of the real reference run and the position signal of the 
simulated reference run are used. The motor current of the real 
run is used as input to the model. Fig.3 shows the optimization 
process. 

 To limit the search space of the genetic algorithm, the 
stored model parameters are provided with domain knowledge. 
Thus, for the individual parameters in the components, value 
ranges are specified in which the parameter must lie, for 
example, a stiffness of a ball screw. If the quality criterion 
cannot be fulfilled with the available model, iterative jumps 
back to the model building step. There, the model that comes 
next in the ranking is created. With this model, the 
parameterization step is carried out again. As the complexity of 
the models increases, the complexity of the reference run must 
also increase in order to be able to determine the parameters of 
the models. 

If the optimization criterion is again fulfilled, the 
parameterized model is available as a result. The model 
obtained in this way can be used to determine optimizations on 
the feed axis in order to increase the OEE of the plant. 

3.4. Experimental Setup 

To demonstrate the implementation of the third phase of the 
concept, a reference run was carried out with the X-axis of a 4-
axis CNC machining center. A DMG DMC 60 H at the wbk 
Institute of Production Engineering from 1997 was used as the 
test machine for this purpose. The reference run was performed 
with the X-axis of the machine. To represent the simplest case 
of a reference run, the x-axis was moved by 400 mm. The 
specified feed rate was 5000 mm/min. The time series data 
were recorded at a sampling rate of 500 Hz with an edge device 
on the machine. The signals considered here are the current 
signal of the motor and the position signal at the glass scale of 
the stand. The system is shown in Fig. 4. 

The configuration of the axis was determined using the 
decision tree and is composed as follows: 
 Engine
 Belt drive

Fig. 3. Parameterization procedure.

Fig. 4. DMC 60 H at wbk.



Alexander Puchta  et al. / Procedia CIRP 118 (2023) 175–180 179

 Ball screw drive
 Vertical column
 Y-axis
 Main spindle

The submodels were built in Simulink and interconnected at
their interfaces. The resulting Simulink model is shown in Fig. 
5. The components can be described by parameters such as
mass, stiffness, damping and moments of inertia.  

4. Results and discussion

For testing the genetic algorithm, 7 quantities are
determined in the system to ensure clarity. These are: 
 Damper stand
 Stiffness stand
 Mass stand
 Damper main spindle
 Stiffness main spindle
 Mass y-axis
 Mass main spindle
 Mass main spindle

A genetic algorithm from MATLAB's Global Optimization
Toolbox was used to determine the seven system parameters. 

Table 1. Validation of the genetic algorithm 

The default settings of the Global Optimization Toolbox 
were used for the calculation. A 10-minute time limit was used 
as a termination criterion. The subsequent application of the 

algorithm in the simulation model for the reference run 
provides concrete results for the individual system parameters. 
Fig.5 shows the real and the simulated reference run after 
optimization. The objective function has a value of 43235.4 
mm. This refers to a total of 2433 data points. 

The basis for the validation of the algorithm are the real 
values of the seven system parameters from the data sheets and 
CAD models. The search space was limited to 5 percent of the 
real value. Table 1 below shows the real and determined values 
of the system parameters and the percentage deviations. The 
real values were determined from the data sheets and CAD 
models of the system. It is noticeable here that the values for 
the damping of the column and the spindle deviate the least 
from the real values. A large influence of these two parameters 
on the objective function is assumed, which is why the 

Components 
Parameter

Real value Value - GA Unit Deviation 
in %

Damper stand 100000 100464.84 N/(m/s) 0.465

Stiffness stand 1500000000 1425000000 N/m 5

Mass stand 1000 950 kg 5

Damper main
spindle

100000 102060.81 N/(m/s) 2.061

Siffness main 
spindle

100000000 95000000 N/m 5

Mass y-axis 500 475 kg 5

Mass main 
spindle

250 237.5 kg 5

Fig. 5. Simulation model X-axis.

Fig. 6. Position of X-axis simulated (blue) and reference drive (orange).
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algorithm mainly focused on the determination of the damping 
of the column and the spindle.  

For the calculation of the masses and the stiffnesses, the 
algorithm was oriented to the lower slope of the value range 
defined in advance.  

The results show that by a simple reference run and a simple 
spring-damper model of the axis, the damping of the system 
can be determined with small deviations by 2%, but the 
stiffnesses and masses of the system cannot be determined. 
Thus, a simple reference run and simplest models are not 
sufficient for a more detailed model parameterization. 

5. Conclusion and Outlook

For the optimization of the OEE, models of the feed axis are 
required. These are often not available for existing machines 
and can only be determined at high cost and time. In addition, 
a different configuration of the feed axis makes a transferability 
of the models and the associated scalability of the application 
impossible. This paper presents an approach for the individual 
generation of dynamic feed axis models. It was shown that 
damping in the model can be determined by simple reference 
runs, but not masses and stiffnesses. 

Future work will address, on the one hand, the derivation of 
the rules for the first phase of the methodology. For the second 
phase, it must be ensured that sufficiently complex models are 
used. In addition, the possibility of a more complex reference 
run must be investigated in order to be able to determine all 
parameters. 
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