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ARTICLE INFO ABSTRACT
Keywords: In this article, the uncertainty of a three-dimensional turbulent natural convection transient is quantified in
POD a geometry representing an idealized spent fuel pool. The assessment is carried out through the creation of a

Uncertainty quantification
ROM

surrogate fast model. This is build utilizing Proper Orthogonal Decomposition and Galerkin projection applied
to a K-¢ turbulent Navier-Stokes formulation. We discuss the uncertainties created by a uncertain heat release

of the spent fuel elements. We consider the hypothesis of deviations that follow the normal distribution around
a certain nominal value, with different standard deviations and sample size. The expected results and its
uncertainty are henceforth computed by Monte—Carlo method, calculating hundreds of solutions of the Initial
Value Problem with the surrogate model.

1. Introduction

The prediction of nuclear reactor’s thermal hydraulics relied in
the past almost exclusively on experiments. In contrast, future de-
velopments and designs may count more intensively on numerical
simulations.

With an enhanced usage of computational fluid dynamics (CFD),
it is significant not only to obtain results, but also to assess its own
statistical reliability. Additionally, for design and optimization it is
relevant to analyze sensitivity of the layout on parameters, initial and
boundary conditions.

In terms of Physics, the analysis of reactor’s thermal hydraulics
requires the study of convection. Several of the designs of fast reactors
in actual development, i.e., the Lead-Cooled Fast Reactor, the Molten
Salt Reactor and the Sodium-Cooled Fast Reactor (Alemberti et al.,
2020; Merle-Lucotte et al., 2008; Moisseytsev and Sienicki, 2012), rely
on natural convection of an non-compressible fluid for the residual heat
removal in case of an emergency. The onset of the natural convection
— from the operation forced regime — and the transients arising can be
investigated utilizing a turbulent CFD calculation.

The extensive and exclusive usage of experiments for analysis of re-
actor’s thermal hydraulics was not without grounds. Performing calcu-
lations, the accuracy of the results obtained — in conditions of potential
instability — may be prone to bifurcation phenomena (Sheu and Lin,
2011). Under that circumstances, e.g. small divergences on the initial
conditions may result in completely irrelevant aftermath. Therefore, a
thorough assessment of the statistical trustworthiness of the numerical
outcome is required to obtain conservative applicable results.

* Corresponding author.

For the analysis of the convection, it is worth mentioning that
the Standard k-¢ model (Launder and Spalding, 1983) has been the
workhorse for turbulent flow simulation since its creation in 1974.
Its popularity has mean that it has been one of the most utilized
methodologies for the simulation of turbulence in fluids. Conceptually,
Standard k-¢ model belongs to the Reynolds-Averaged Navier—Stokes
(RANS) equations approach (Tennekes and Lumley, 1992), a common
frames in which the equations of fluid are time-averaged. Several other
models belong to this category. Among others, we may cite the k-w
model (Wilcox, 1988), the Re-Normalisation Group k-¢ model (Yakhot
et al., 1992) and the Shear Stress Transport turbulence model (Menter,
1994). In spite of the existence of these more modern models, Standard
k-¢ model, remains available in OpenFOAM (Weller et al., 1998) or
Star-CCM (Siemens, 2018).

Independently of the kind of turbulence modeling we are consid-
ering and of the model we are utilizing, CFD calculations share a
common characteristic: its deterministic nature. This feature implies
that the statistical trustworthiness of the results cannot be assessed.
For the matters incumbent to this study we may mention that CFD
calculations disregard: (a) the accuracy of the simulation parameters,
such as: dimensionless numbers, input or operational conditions, etc;
(b) the bias and the unavoidable random variation of the realistic initial
conditions compared with the nominal.

We may now illustrate the problematic enunciated before with an
example. Consider an initial value problem in which real conditions
are similar but not exactly the same as the nominal considered in the
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analysis. Since only a single result is obtained, the confidence interval
of the solution remains unknown. The effect of a small, but certain,
initial divergence in the final solution remains an arcane. Actually, it
cannot be mathematically stated that such small error in the initial
conditions does not have a significant effect on the final result. The
discrepancy may even trigger bifurcation (Drazin and Drazin, 1992)
phenomena. That is, a minimal discrepancy, may make the solution to
converge to another completely different result.

A strategy to address these matters simultaneously — error quantifi-
cation, parameter sensitivity, initial condition sensitivity —, is to create
a very fast model and run it in numerous varying cases. This surrogate
model is called Reduced Order Model (ROM) (Quarteroni et al., 2014).
Among other methodologies, those can be obtained utilizing the Proper
Orthogonal Decomposition (POD) and Galerkin Projection. Very briefly
summarized, the POD-Galerkin ROM methodology lie in computing a
set of solutions with a CFD and post process them to find a reduced
base. To finalize, simply project the governing equations in this new
coordinate system. Since the methodology is mostly a clever change of
basis, the procedure is mathematically sound, transformed equations
are still derived from first principles, and the computation is quite fast
and accurate.

The suitability of the methodology for uncertainty quantification
and parametric studies has not remained unremarked and POD has
been widely utilized (Hesthaven et al., 2016; Quarteroni et al., 2015).
For a very recent, encyclopedic state of the art in the field we refer
to the novel (Benner et al., 2021, 2020a,b). In the field of thermal-
hydraulics with interesting applications for the nuclear industry we
may cite, among others (Star et al., 2021a; Vergari et al., 2020; Star
et al.,, 2021b; Yanez and Class, 2021b; Escanciano and Class, 2019;
Yanez and Class, 2021b,a). POD is also suitable for investigation of
applied fast reactors problems. In one hand the approach does not
have restrictions in terms of spatial resolution. On the other hand,
because of its promptitude, it provides the speed to analyze the possible
bifurcations by massive force, through a Monte Carlo method (Sobol,
2018).

Therefore, and taking into account all previous considerations, we
devote this document to the POD-Galerkin ROM for the standard k-¢
model. The creation of a POD-Galerkin methodology for this turbulence
model is a complicated task that we endeavored in Yanez and Class
(2022). The complexity is due to the non-linearity of the equations,
that poses a serious challenge for the development of a ROM. Those
difficulties nevertheless were addressed mostly by the heuristic usage
of the Discrete Empirical Interpolation Method (DEIM) (Chaturantabut
and Sorensen, 2010), following the procedure described in Yanez and
Class (2022).

With our methodology and construct ready, we apply our model
for the investigation of the transient phenomena of natural convec-
tion (Grishchenko et al., 2015). We employ our construct with an
idealized spent fuel pool, a similar — but more simplified - facility as
the ones investigated in Wang et al. (2012), Hung et al. (2013), Jang
et al. (2006) and Galik et al. (2016). This is relevant for the design of
refrigeration pools for nuclear industry (Abderrahim et al., 2010).

We carry out our study to asses the accuracy of the results that can
be obtained in case some impreciseness is present in the heat released
by burned fuel elements. This inaccuracy may be due to an inadequate
determination of the usage of the element, human error of the operator
selecting the element, etc.

In spite of the fact that we apply our model to a very idealized
spent fuel pool, since the construct created applies to any convective
system with heat and momentum sources/sinks, we want the set the
emphasis of the study in the feasibility of the method. We illustrate
the performance of the model, demonstrating the viability of a uncer-
tainty quantification study by a POD model of a RANS calculation. We
derive mean, standard deviation as well as the accuracy of the last by
performing calculations, feasible in short times with different sample
sizes, studying the computational performance of the model.

2. ROM

The ROM is derived originally from the incompressible and dimen-
sionless Navier-Stokes equations utilizing the Boussinesq approxima-
tion. Such system is complemented with the k-e equations. Utilizing
the Einstein notation,
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where y; is the velocity, T the temperature, p pressure, p density, k the
turbulent kinetic energy, ¢ the rate of dissipation of turbulent kinetic
energy. The main scales of the problem are the main length L, time
ty = Lg /k where « is thermal diffusivity, velocity v, = L,/t, and the
two temperatures T, and T,. x defines the length coordinate whilst i,
j are the sub-indexes addressing the different directions. Additionally,
K designate the resistant coefficient, v, the dimensionless turbulent vis-
cosity (Inverse of Re,), Q are the volumetric heat sources, ¢, is the heat
capacity at specific pressure, g the coefficient of thermal expansion, y is
the dynamic viscosity, g the module of the dimensionless acceleration
of gravity and e its direction. S, = Ly/(vgty), Pr, Re = pvyLy/u,
Ra = p?gf(T, - TO)LS /(1% Pr) are the Strouhal, Prandtl, Reynolds and
Rayleigh numbers. The specific constants of the Standard k-¢ model are
or=1,0,=13,¢.=144,¢;, =192 and ¢ =1.

The extensive procedure carried out to obtain ROM of k-¢ equa-
tions has been detailed on the publication (Yanez and Class, 2022).
Therefore, we just sketch the procedure for completion and describe
the points were minor differences exist with that reference.

The derivation procedure consist of three stages: (a) computation of
the reduced basis; (b) projection of the equations in the new basis; (c)
the so called hyper-reduction, i.e. the process intended to deal efficiently
with non-linear terms.

2.1. Reduced basis computation

We utilize the Method of Snapshots (Berkooz et al., 1993) to obtain
a reduced basis. we apply it separately to each variable, v, T, k, €.
That is, we obtain solutions y of k-¢ equations with the high fidelity
solver STAR-CCM at times {7, ..., } for a set of initial value problems
{yl 0,%), ..., ¥, (0, x)}. Note that we shall define the geometry and
boundary conditions of the case as well as the selected initial value
conditions later, in the following sections of this document. Also,
we consider the one parametric H' Sobolev inner product, (f ,g)és =
Jo f8dR2+ 6 [, 0,f0,8dR2, where 5 is a small positive parameter and
f and g generic function.
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Therefore, we form matrix Y,
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We carry out the Singular Value Decomposition, ¥ = VXG”. V is an
orthogonal matrix that allow to project the n dimensional vector space
in a reduced-subspace of dimension n — j dropping the last j vectors
in V. Note that mall parameter of Sobolev inner product (Iollo et al.,
2000) was determined in the same manner as it has been performed
in Escanciano and Class (2019) and Yanez and Class (2021b,a).

As this stage it is pertinent to mention that we have post-process the
solutions, to compute the gradients, externally with a self-developed
code. We are carrying a completely non-intrusive approach, since the
commercial code utilized is completely closed for the authors.

2.2. Projection of the equations

We rewrite our system of equations into a variational formulation,
in terms of the reduced order basis. We follow a Galerkin formulation,
thus, we express test and trial functions in terms of the same reduced
order basis. Note also, that we utilize H' inner product to derive
variational formulation. To do this, we follow the now conventional
procedure described in e.g. Quarteroni et al. (2015), in the same
manner as in our previous publications (Escanciano and Class, 2019;
Yanez and Class, 2021b,a,b).

2.3. Hyperreduction

At this stage with the determination of the non-linear variables,
the ROM is closed. For Standard k-¢ model those are |u|, k?/e and
€/k. The Discrete empirical interpolation method (DEIM) (Quarteroni
et al., 2015; Chaturantabut and Sorensen, 2010) allows treating such
variables efficiently.

DEIM consists of calculating the values of the non-linear magni-
tudes in the CFD results. Then, apply the Method of Snapshots to
this database to derive a reduced basis of the non-linear variable. The
amplitudes of the non-linear variables in its own reduced basis can
be then obtained. To do so, the values of the non-linear variable is
calculated in a reduced set of points which cardinality is equal or
larger (but of similar order) than the reduced basis of the non-linear
magnitude. The amplitudes can be obtained resolving a linear system,
over-determined or not, depending on the amount of points.

Pitifully, the application of DEIM — now a conventional method,
ology — to the problem in hand is not straightforward. This has to do
with the rational nature of the functions k?/e and ¢/k. Note that both
k and e take very small values in some domains. Tiny inaccuracies
in the denominator can result in a value for the non-linear variable
that invalidate the DEIM procedure. Those inaccuracies are not fortu-
itous. The small mistakes originated by the ROM combined with the
numerical discrepancies coming from the CDF and the deficiencies of
the standard k-e model generate them steadily in certain regions. The
heuristic procedure to overcome this severe deficiency has been the
main object of our paper (Yanez and Class, 2022), and refer the readers
to this reference for further details.

Fig. 1. Sketch of the geometry.

2.4. Final model

This process culminates in the final numerical system,
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Note that D, E, G are matrices — for their exact form see Yanez and
Class (2022) — dependent on the dimensions of the reduced basis only.
Also, note that they should partially recalculated every time step of the
integration procedure.

3. Problem

We apply our ROM to investigate the transients of natural convec-
tion (Grishchenko et al., 2015) into a simplified spent fuel refrigeration
pool. The facility is represented by the gray cuboid of 4 x 4 x 5.8 m
shown in Fig. 1. It is considered to be isolated, so that all variables have
a gradient equal to zero in the direction perpendicular to the walls.

The volume is filled with water, which is considered to have con-
stant properties, with density 997 kg m~3, specific heat 4200 Jkg~! K~!
and heat conductivity 0.0269 W/m/K.

The decay heat of the spent fuel elements is considered as two
volumetric heat sources of 1 MW m~3 shown in magenta in the figure. In
the center, marked in green, two smaller parallelepipeds that represent
volumetric sinks are located vertically aligned one above the other. The
upper one is disconnected, whilst the lower sink removes —2.3 MW m~3.
Heat sources and losses occur directly in water.

We consider the problem initially at rest, a moment in which the
sources and sinks are set up and the simulation started. As a high
fidelity solver, we utilize STAR-CCM version 2020.3. After 150 s, some
flow has been established, but the problem is still far from stationary
conditions. The situation at this stage can be seen in Figs. 2(a)-3(b).
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Fig. 2. Fields at 150s.

The flow still has transients which are the main interest of the sim-
ulation. After this moment, we make several runs —at conditions that
will be detailed later, in Section 4.1- with the CFD collecting snapshots
every second for the next 50 s, between 150 s and 200 s. In each run,
we regard the decay heat of the spent fuel elements as the parameter
of our study. Therefore, we vary this magnitude, considering ratios of
the thermal output.

4. Uncertainty quantification
4.1. Description of the parametric experiment

We consider the heat sources intensities Q in Eq. (3) as the parame-
ter of our statistical experiment. We consider the following hypothesis
for our statistical experiment. We define the values of O combining the
nominal conditions corresponding to the high fidelity calculation ap-
pearing in Yanez and Class (2022), QO with a perturbation. We consider
perturbations following a Truncated Normal distribution (Kroese et al.,
2013) centered in the design values. We clip the distribution in values
corresponding to 0% and 200% of the nominal amplitudes. We also
regard each of the perturbations to be completely uncorrelated with
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(b) ¢, values in m?s™3.

Fig. 3. Fields at 150s bis.

the others. Summarizing, the occurrence i of the decay heat of the spent
fuel is

0, = N,.(u,0,a,b)- Q. (10)

Here we have considered N,, is the truncated normal distribution,
u = 1 is the design average of 100% of the nominal output, ¢ is
the standard deviation, and the parameters a = (clip,,, — #)/o, b =
(clipy;,; — H)/ o, are so related to the intended clipping of clip,,,, = 0%
and clipy;,;, = 200%.

4.2. CDF calculations

At this stage, it is necessary to define which CFD calculations should
be carried out in order to cover the range [0%,200%] of the nominal
heat output in the domain 150 s to 200 s. The snapshots collected
from these calculations will enrich the database from which the reduced
basis will be derived. Per definition, we have decided to consider the
nominal value and the limits of the interval. Then we have added
calculations to keep the a posteriori relative error of the ROM - defined
later in Section 4.3 — under the value of 5%. Note that this magnitude
encloses the divergences due to the reduced basis plus the inherent
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deviations of the ROM integration. It is derived utilizing a double
threshold of mistake for the derivation of the reduced database (Yanez
and Class, 2021b). A small trial and error procedure has allowed us
to conclude that CFD calculations every 25% allow us to achieve the
desired accuracy. In an abstract manner, we have formed a matrix
constituted by calculation vectors in the following way

(CFDyg,, CFD,s4,, CFDsg,, CFD59,, CFD 1909,
CFD)555,, CFD) 50, CFDy 755, CFDyq ) - an

The j index of formula (8) corresponds to each of the entries of vector
(11). A total of 450 snapshots have been collected.

In this study, the relevance of the results of the CFD in terms of
verification and validation is a working hypothesis. We concentrate on
the creation and usage of the ROM so that statistical magnitudes can
be extracted from the analysis.

4.3. Reduced basis

The reduced basis is obtained utilizing the procedure discussed
in Section 2.1. The post-processing of the snapshots considering a
maximum distance of 10~ to the projection space provides dimen-
sions (J,,Jp. I, J.) = (15,9,17,20). Utilization of a second thresh-
old, 1077, for the determination of the a posteriori error (Yanez and
Class, 2021b,a) provides a projection space of an enhanced dimension

(L. I3 ] = (24,16,26,28).

We may make an estimate the a posteriori error E, and thus on the
accuracy of the ROM, by

(12)

where the u; are the amplitudes of an arbitrary variable. This is
the magnitude we utilize to check the goodness of the set of CFD
calculations in Section 4.2.

On the other hand, we may make a very simple assessment of the

effectiveness of the reduced basis considering the a priori error of

I =vvHri/isl, (13)

which provides the capabilities of the reduced database to reproduce
the original values. Such assessment has been carried out for the
variables u, T, k and ¢ in the Figs. 4(a)-5(b)

In those plots we have represented the values of the formula (13) for
factors of the nominal output. Note that all the mistakes remain under
1.5%. Also see that in spite of the low values, the mistakes noticeable
increase with time. Thus, for an enhanced result an augmentation of the
CDF physical calculation time, maybe advisable. For the study in hand
the level of mistake is wholly acceptable, and therefore, no expansion
in time of the database has been considered.

4.4. Statistical magnitudes as a function of the reduced order model

4.4.1. Obtaining of the statistical parameters

To study the uncertainty quantification, we aim to obtain by an
statistical procedure E(y(f,x)) and o&(y(t,x)). For conciseness, in this
section we consider that y is a generic variable with integration results
u, with probability density p(u), which has modes ¢, obtained for a set
of parameters g,. The amount of modes is J’, the quantity of parameters
N and the dimension of the CFD calculations is n. We utilize the Monte-
Carlo method (Sobol, 1974, 2018) to derive these magnitudes. Since the
output of the ROM are the amplitudes in the reduced basis we need
to express the statistical magnitudes as a function of that quantities.
Following Yanez and Class (2021b), the average can be expressed as,
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The accuracy of the previous magnitudes is defined in terms of expec-
tations. For the mean,

E, (t x)= . (16)

/Qp(q)u(t, x,q)dq — % Z u(x,1,q,)

To simplify the notation for further analysis we define I(r,x) =
fQ p(@u(t,x,q)dq and U(t,x) = /N (X, u(x,1,q,)). The accuracy of the
variance is,

E 0t %) = ‘ / p(q) (u(t, x, ) = E(y(t, x)))* dq
Q

) a7)

_% Z (u(x,1,q9,) — })2

where we define J(t,x) = [ p(u(x,t,x) — E)(x,1))*dx, and s*(t,x) =
N (X wx, 1, xp) = E(u)(x,1)?). In Yanez and Class (2021b,a) we have
already studied these expectations. The accuracy of the mean can be
assessed by,
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For the standard deviation we have,
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The only remaining variable to be calculated is o%(s%). Two expressions
for it were derived in Yanez and Class (2021b). In this study we recall
the expression,

vy — v% 2vy — 2\/%) vy = 3v§
- +

o*(sH) ~ ~ = ~ (20)
where the v, are the ¢ sample moments from the mean,
N (T ¥
vt =1 Y| Y 600 <u,~(z, - ul, qs>> : @1
W s

4.5. Sample size. Accuracy of the statistical hypothesis

Sample size affects the determination of the accuracy of the mean
and standard deviation. The deceiving dependence on N'/2 and N'/* of
Monte Carlo method in Egs. (18) and (19) is an example of this. Also —
more significant for this section -, it affects how good the assumption
on the sample distribution is fulfilled. Note that if our own precondition
is not fulfilled, in our case the N,.(u,0,a,b) sample distribution, no
effective conclusions can be obtained.
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Therefore, the effect of sample size on the adjustment to the in-
tended distribution premise has been shown in Fig. 6.

In this diagram we compare the histograms constructed for three
samples of size 100, 1000 and 10000 with the theoretical results that
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Fig. 7. Amplitudes of the first and third ROM mode of temperature for ¢ = 0.5 and
different samples.

should be obtained for N,.(u,6,—1/0,1/0) for values of sigma 0.1, 0.25
and 0.5.

Note the quite regular approximation that is achieved with the
sample of the lowest size. The adjustment is even bad for the lowest
of the standard deviations. In spite of it, with the lowest of the sigma
values a reduced sample may produce meaningful results. The moments
from the mean, namely 100%, grow with the value of sigma. The error
induced in the histogram for the highest sigma is large in therms of the
moments (integral areas).

The approximation achieved with samples with 10000 points is very
good, virtually indistinguishable form the exact value, for ¢ = 0.1 and
o = 0.25. For ¢ = 0.5 it is possible to distinguish the two curves. Still,
its divergences are minimal.

The intermediate sample, with 1000 specimens, represent a compro-
mise between the exactness of the large example —and its numerical
overhead- and the roughness of the small —-with its reduced accuracy-.
It shows significant deviations from the exact values. On the other side,
the deviations constitute an oscillation among the correct values, which
global result should be acceptable.

We may see this concretely considering the average amplitudes
of the modes of the ROM, term between brackets in Eq. (14). This
magnitude has been represented in Fig. 7 for temperature.

Note that to the deviations represented in Fig. 6, the average am-
plitudes of Fig. 7 do not converge for the smaller sample. This happens
both for the first mode 7(a) as well as for the third 7(b). Observe also
that at the same time, the results obtained for the medium and the
large examples are completely superimposed. That is, the medium size
sample manages to produce a result that converges.

4.6. Main results

Utilization of the formula (14) for the results obtained with 10 000
samples with ¢ = 0.5 produces the mean fields shown in Fig. 8. In these
figure, we see the evolution of the transient temperature, in the whole
interval of 50 s, among the initial 150 s to the final 200 s.

Usage of the equivalent equation for the variance (15) produces also
a field. Here, we have chosen to show the square root of the variance,
the standard deviation, for its simpler interpretation, which has been
represented in Fig. 9, for the temperature at different times for ¢ = 0.5
and 10000 calculations.

For each figure, two presentations are included. On the right side,
two cuts of the field are portrayed. On the left side, ten iso-surfaces
are depicted. Note the complex pattern and local variation of this
magnitude and therefore the uneven distribution of the error.

Take notice of the evolution of the relative distribution of the
standard deviation and of its magnitude. Initially, the pattern is quite
widespread, while it apparently concentrates with the increase of time.
Note that the magnitude of the variable very significantly increases
with time. This evolution is completely natural considering the con-
ditions of the experiment. In our considerations, we accept the initial
conditions are exactly know, but regard as uncertain the heat release
of the sources. That is, the evolution is regarded as undetermined.

The evolution of the maximum of the standard deviation and thus
of the scales of the patterns of Fig. 9 can be seen in Fig. 10. Note
the significant increment of the times in the values reached for this
magnitude. Also the fact that the values obtained for the three samples
are nearly coincident in spite of the disparities of the sample’s size.

Recall that the uncertainty of the mean - in its probabilistic
assessment —, and thus the incertitude of the average, Fig. 7, is rep-
resented by the fields of Fig. 9, re-scaled by the factor 3/ \/F, see
Eq. (18).

Finally, we represent the evolution of the accuracy of the standard
deviation of the temperature field, obtained for ¢ = 0.5 and 10000
samples. By this accuracy is understood as the maximum probability
bound of Eq. (19), v/3{/ Var me(s?)/ N, that was depicted in Fig. 11.

Note the unequal distribution of the bound as well as the increasing
magnitude of the accuracy with the growth of time. The evolution of
the scale of the magnitude with time can be better observed study-
ing Fig. 12. We see there, how importantly the size of the sample affect
the verisimilitude of the standard deviation.

4.7. Performance

4.7.1. Taxonomy of computational cost

In previous section the accuracy of the results obtained with dif-
ferent amount of samples was compared. Certainly, the experiments
carried out with an enhanced amount of instances are superior in
accuracy to the ones with a more modest amount of tests. Clearly,
this accuracy comes in parallel with an enhanced amount of numerical
burden.

Let us have a look on the computational cost of the methodology.
In terms of machine power, the ROM procedure can be initially divided
into two parts. The first, the offline phase mainly consists on the
creation of the ROM. It has been described in detail (Yanez and Class,
2022) and is of no concern for this document. The second, the online
stage regards the calculations, that is the utilization of the ROM for
statistical purposes.
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Fig. 8. Average results of temperature, ¢ = 0.5, 10000 calculations.

The latter can, in turn, be divided into two parts: (I) Phase I: It
concerns the performance of the calculations themselves, obtaining the
amplitudes of the modes of the reduced basis by integration of the
ROM, Eq. (9), in the conditions pertinent for the particular task in
hand. (b) Phase II: It pertains the post-processing of the results for the
derivation of the relevant statistical magnitudes — that may differ for

each particular problem -, such as the ones described by Egs. (14)-(15)
and (18)—(21).

4.7.2. Numerical performance of the statistical experiment

The performance of our model and its implementation for the online
stage can be seen in Table 1 for the cases that have been the object of
the discussion of the paragraphs above.
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4.7.2.1. Numerical cost of Phase I. The results obtained for this stage
the online phase corresponds to the second and third column of Table 1
and coincide with the time spend in integration of the ROM.

The computation overhead accounts for the solution of the system
(9) and the computation of its matrices components D, E, G. Note
that these should be, at least partially, recalculated each time step,
see Yanez and Class (2022). This recalculation is based — at least in
part — on pre-computed blocks and can be done efficiently. In spite of
the effective implementation, this constitutes a bothersome specificity.
Nevertheless, it is intrinsically due to the non-linearity of the original
equation system, see Yanez and Class (2022) for further details.

The individual ROM runs are, from the point of view of usage
of memory, relatively small. The matrices of Eq. (9) are finally only
94 x 94. Therefore, independent runs are better carried out separately
in a single processor. Parallelism can be more efficiently and simply
achieved, launching several runs at same time, which number depends
on the characteristics of the computer utilized, in our case, a machine
with 8 Intel Core i7-3770, 3.40 GHz processors. In the table, for the
purposes of comparison, the time shown is serialized, that is, expressed
as if only a single processor was involved in all computations. Note
that in the actual implementation the consumed time per run is of the
order of 2.5s. Such performance has been reached after a significant
code profiling for efficiency.

4.7.2.2. Numerical cost of Phase II. The figures portraying the time
required to post process the results and derive the pertinent statistical
information is shown in last column of the Table 1.

The outcome of the post-processing include the mean, standard
deviation and the corresponding accuracy of these variables, Eqs. (14)—
(15) and (18)—(21). This has been carried out for the same numbers of
times at which the snapshots where collected, namely 50.

The time expend in the post-processing stage is comparable to the
ROM running time. This may appear as surprising, considering the
simplicity of the statistical procedure, compared with the complexity
of the ROM. To understand this fact one need to regard the nature of
Egs. (14) and e.g. (21). One can see that in the former, complexity is
N-J’-nand in the latter N-J'-n-log(q). That is Egs. (14)-(15) and (18)-
(21) have a dependence on n, and thus a significant larger complexity
than the dimensions of the ROM.

4.7.3. Supplementary numerical experiment

We propose now a secondary exercise to study the performance of
the ROM related to the results shown previously.

We reduce the domain of interest of power release from 0%-200%
to 0%-100%. We consider half Gaussian distribution of heat release

Table 1
Performance of the numerical experiments.

c Calcs. Time, [s] Time/Calc., [s] Statistics time, [s]
0.1 100 246 2.4 66
0.25 100 254 2.5 52
0.5 100 240 2.4 52
0.5 1000 2458 2.4 2596
0.5 10000 23744 2.3 7474
Table 2
Amount of reduced basis vectors per variable.
Model 14 T k € Total Squared
0%-200% 24 16 26 28 96 9216
0%-100% 16 11 17 18 62 3844
100%-200% 16 10 18 21 65 4225
Table 3

Performance of the numerical experiments, 0%-100% branch.

o Calcs. Time, [s] Time/Calc., [s] Statistics time, [s]
Full model

0.1 1000 2719 2.7 3719

0.25 1000 2664 2.6 3638

0.5 1000 2629 2.6 3632

Reduced model

0.1 1000 1092 1.0 2326

0.25 1000 903 0.9 2176

0.5 1000 899 0.8 2301

factor, that is N,.(0,0,—1/0,0), that is, centered on 100% but having
only the negative tail. We apply to this experiment our ROM model,
constructed based on snapshots covering the range 0%-200% of heat
release. We also build a second ROM model, this time constructed
utilizing the same database, but based only the snapshots corresponding
to 0%-100%. This second model is build with the same procedure as
the first one and thus we do not repeat any details here. We do the
same for the interval 100%—-200%.

Because fewer snapshots are involved in the narrower intervals the
new ROMs reduced basis contain fewer vectors. This has been illus-
trated in Table 2. Note that the construct intended for 0%-100% has
35% fewer modes than the full model whilst the one for 100%-200%
just 32%.

The matrices of ROM systems, like the one of Eq. (9), are dense and
has the dimensions of the reduced order system J’ x J’. Note that in
contrast high accuracy solvers do mostly have sparse matrices but of
dimensions n. Because of this squared dependence, a relatively small
reduction in J' represents a very significant relief, see last column in
Table 2. This amounts for a 55% and 58% increase of performance.

We may try to see the previous influence in terms of the imple-
mented models, that also include additional overhead necessary to
perform the calculations. The comparison of the calculation times of
the full ROM and the restricted ROMs are included in Tables 3 and
4. Note that the time necessary for the completion of a single run is
reduced by a 65% due to the selection of the restricted model, what
is completely coherent with the previous statements. The computation
time (also that of statistic derivation), are obtained considering serial
computation, that is disregarding parallelization.

Note also that probably due to the load of the system, the time
required to post process the solutions and obtain the statistics is slightly
larger than the computation time.

Parallelization of the statistics extraction, that regards a single time
for all the computations, is very effective, and is actually mostly limited
by the usage of memory that the accumulation of solutions may require.
RAM limitations were severe for the post-processing of the numerical
experiment containing 10000 samples, see Table 1. Therefore, an al-
ternative more advanced post-processing routine was created to reduce
memory consumption based on Cython (Behnel et al., 2011).
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Fig. 11. Accuracy of the standard deviation of temperature, ¢ = 0.5, 10000 calculations.

5. Summary and conclusions it constitutes an analogue to the papers (Yanez and Class, 2021b,a) with
turbulence modeling included.

This article describes a statistical exercise utilizing our ROM of the In this case, we conventionally regard the heat released by spent fuel

standard k — e turbulence model, for the analysis of the effect of a elements as random and study the effect of this on the mean, standard

random variable in the result of a natural convention calculation. Thus, deviation, and accuracy of the standard deviation. The model has been
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Table 4

Performance of the numerical experiments, 100%-200% branch.
c Calcs. Time, [s] Time/ Statistics

Calc., [s] time, [s]

Full model
0.1 1000 2964 2.9 3175
0.25 1000 3022 3.0 3188
0.5 1000 2935 2.9 2597
Reduced model
0.1 1000 977 0.9 2337
0.25 1000 1084 1.0 2172
0.5 1000 1141 1.1 2104

created in a conventional manner, utilizing the known techniques of
Proper Orthogonal Decomposition and Galerkin projection, following
our previous developments in Yanez and Class (2022).

The application presented here concerns spent fuel refrigeration
pools. But this is just a demonstration problem. The procedure followed
here is suitable — defining the particular statistical hypothesis for the
case of interest — to treat other cases. Particularly, we regard it as
effective tool to assess the uncertainty quantification of fast reac-
tors utilizing incompressible refrigerants. Specifically, those where the
Boussinesq approximation is reasonable, namely the Lead-Cooled Fast
Reactor, the Molten Salt Reactor and the Sodium-Cooled Fast Reactor.

We have also studied the performance of the method, demonstrat-
ing the possibility of performing ten thousand calculations inside the
working time of a day with a common desktop computer. This means,
that from the point of computational power, the methodology is usable
for practitioners. Besides, we have shown the important additional per-
formance increase that one may obtain by usage of a focused statistical
case, strictly bounding the experiment defining a restrictive statistical
hypothesis.

In terms of sample size, it was confirmed that one should very
carefully balance performance with accuracy. The adequacy of small
samples to obtain significant statistical magnitudes, and fulfill the
statistical hypothesis imposed, without unacceptable deviations is lim-
ited. Strict bounds that warranty the accuracy of the results are only
achievable through the usage of the large samples. These bounds are
nevertheless problem dependent regarding the accuracy necessary for
a particular task.

Trial-error procedure quickly provided a fair assessment of the sizes
of the necessary samples to verify the statistical hypothesis and achieve
the accuracy requirements. Therefore, a practical way of assessing
sample size is to carry out tentative calculations firstly, to arrive to an
adequate compromise. Finally, performance can by highly improved, if
necessary, restricting the extension of the statistical experiment.
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