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A B S T R A C T

In this article, the uncertainty of a three-dimensional turbulent natural convection transient is quantified in
a geometry representing an idealized spent fuel pool. The assessment is carried out through the creation of a
surrogate fast model. This is build utilizing Proper Orthogonal Decomposition and Galerkin projection applied
to a K-𝜖 turbulent Navier–Stokes formulation. We discuss the uncertainties created by a uncertain heat release
of the spent fuel elements. We consider the hypothesis of deviations that follow the normal distribution around
a certain nominal value, with different standard deviations and sample size. The expected results and its
uncertainty are henceforth computed by Monte–Carlo method, calculating hundreds of solutions of the Initial
Value Problem with the surrogate model.
1. Introduction

The prediction of nuclear reactor’s thermal hydraulics relied in
the past almost exclusively on experiments. In contrast, future de-
velopments and designs may count more intensively on numerical
simulations.

With an enhanced usage of computational fluid dynamics (CFD),
it is significant not only to obtain results, but also to assess its own
statistical reliability. Additionally, for design and optimization it is
relevant to analyze sensitivity of the layout on parameters, initial and
boundary conditions.

In terms of Physics, the analysis of reactor’s thermal hydraulics
requires the study of convection. Several of the designs of fast reactors
in actual development, i.e., the Lead-Cooled Fast Reactor, the Molten
Salt Reactor and the Sodium-Cooled Fast Reactor (Alemberti et al.,
2020; Merle-Lucotte et al., 2008; Moisseytsev and Sienicki, 2012), rely
on natural convection of an non-compressible fluid for the residual heat
removal in case of an emergency. The onset of the natural convection
– from the operation forced regime – and the transients arising can be
investigated utilizing a turbulent CFD calculation.

The extensive and exclusive usage of experiments for analysis of re-
actor’s thermal hydraulics was not without grounds. Performing calcu-
lations, the accuracy of the results obtained – in conditions of potential
instability – may be prone to bifurcation phenomena (Sheu and Lin,
2011). Under that circumstances, e.g. small divergences on the initial
conditions may result in completely irrelevant aftermath. Therefore, a
thorough assessment of the statistical trustworthiness of the numerical
outcome is required to obtain conservative applicable results.

∗ Corresponding author.

For the analysis of the convection, it is worth mentioning that
the Standard k-𝜖 model (Launder and Spalding, 1983) has been the
workhorse for turbulent flow simulation since its creation in 1974.
Its popularity has mean that it has been one of the most utilized
methodologies for the simulation of turbulence in fluids. Conceptually,
Standard k-𝜖 model belongs to the Reynolds-Averaged Navier–Stokes
(RANS) equations approach (Tennekes and Lumley, 1992), a common
frames in which the equations of fluid are time-averaged. Several other
models belong to this category. Among others, we may cite the k-𝜔
model (Wilcox, 1988), the Re-Normalisation Group k-𝜖 model (Yakhot
et al., 1992) and the Shear Stress Transport turbulence model (Menter,
1994). In spite of the existence of these more modern models, Standard
k-𝜖 model, remains available in OpenFOAM (Weller et al., 1998) or
Star-CCM (Siemens, 2018).

Independently of the kind of turbulence modeling we are consid-
ering and of the model we are utilizing, CFD calculations share a
common characteristic: its deterministic nature. This feature implies
that the statistical trustworthiness of the results cannot be assessed.
For the matters incumbent to this study we may mention that CFD
calculations disregard: (a) the accuracy of the simulation parameters,
such as: dimensionless numbers, input or operational conditions, etc;
(b) the bias and the unavoidable random variation of the realistic initial
conditions compared with the nominal.

We may now illustrate the problematic enunciated before with an
example. Consider an initial value problem in which real conditions
are similar but not exactly the same as the nominal considered in the
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analysis. Since only a single result is obtained, the confidence interval
of the solution remains unknown. The effect of a small, but certain,
initial divergence in the final solution remains an arcane. Actually, it
cannot be mathematically stated that such small error in the initial
conditions does not have a significant effect on the final result. The
discrepancy may even trigger bifurcation (Drazin and Drazin, 1992)
henomena. That is, a minimal discrepancy, may make the solution to
onverge to another completely different result.

A strategy to address these matters simultaneously – error quantifi-
ation, parameter sensitivity, initial condition sensitivity –, is to create
very fast model and run it in numerous varying cases. This surrogate
odel is called Reduced Order Model (ROM) (Quarteroni et al., 2014).
mong other methodologies, those can be obtained utilizing the Proper
rthogonal Decomposition (POD) and Galerkin Projection. Very briefly

ummarized, the POD-Galerkin ROM methodology lie in computing a
et of solutions with a CFD and post process them to find a reduced
ase. To finalize, simply project the governing equations in this new
oordinate system. Since the methodology is mostly a clever change of
asis, the procedure is mathematically sound, transformed equations
re still derived from first principles, and the computation is quite fast
nd accurate.

The suitability of the methodology for uncertainty quantification
nd parametric studies has not remained unremarked and POD has
een widely utilized (Hesthaven et al., 2016; Quarteroni et al., 2015).
or a very recent, encyclopedic state of the art in the field we refer
o the novel (Benner et al., 2021, 2020a,b). In the field of thermal-
ydraulics with interesting applications for the nuclear industry we
ay cite, among others (Star et al., 2021a; Vergari et al., 2020; Star

t al., 2021b; Yanez and Class, 2021b; Escanciano and Class, 2019;
Yanez and Class, 2021b,a). POD is also suitable for investigation of
applied fast reactors problems. In one hand the approach does not
have restrictions in terms of spatial resolution. On the other hand,
because of its promptitude, it provides the speed to analyze the possible
bifurcations by massive force, through a Monte Carlo method (Sobol,
2018).

Therefore, and taking into account all previous considerations, we
devote this document to the POD-Galerkin ROM for the standard k-𝜖
model. The creation of a POD-Galerkin methodology for this turbulence
model is a complicated task that we endeavored in Yanez and Class
(2022). The complexity is due to the non-linearity of the equations,
that poses a serious challenge for the development of a ROM. Those
difficulties nevertheless were addressed mostly by the heuristic usage
of the Discrete Empirical Interpolation Method (DEIM) (Chaturantabut
and Sorensen, 2010), following the procedure described in Yanez and
Class (2022).

With our methodology and construct ready, we apply our model
for the investigation of the transient phenomena of natural convec-
tion (Grishchenko et al., 2015). We employ our construct with an
idealized spent fuel pool, a similar – but more simplified – facility as
the ones investigated in Wang et al. (2012), Hung et al. (2013), Jang
et al. (2006) and Galik et al. (2016). This is relevant for the design of
refrigeration pools for nuclear industry (Abderrahim et al., 2010).

We carry out our study to asses the accuracy of the results that can
be obtained in case some impreciseness is present in the heat released
by burned fuel elements. This inaccuracy may be due to an inadequate
determination of the usage of the element, human error of the operator
selecting the element, etc.

In spite of the fact that we apply our model to a very idealized
spent fuel pool, since the construct created applies to any convective
system with heat and momentum sources/sinks, we want the set the
emphasis of the study in the feasibility of the method. We illustrate
the performance of the model, demonstrating the viability of a uncer-
tainty quantification study by a POD model of a RANS calculation. We
derive mean, standard deviation as well as the accuracy of the last by
performing calculations, feasible in short times with different sample

sizes, studying the computational performance of the model.
2. ROM

The ROM is derived originally from the incompressible and dimen-
sionless Navier–Stokes equations utilizing the Boussinesq approxima-
tion. Such system is complemented with the k-𝜖 equations. Utilizing
the Einstein notation,
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𝑆2 = 2𝑆𝑖𝑗𝑆𝑖𝑗 , (7)

where 𝑢𝑖 is the velocity, 𝑇 the temperature, 𝑝 pressure, 𝜌 density, 𝑘 the
turbulent kinetic energy, 𝜖 the rate of dissipation of turbulent kinetic
energy. The main scales of the problem are the main length 𝐿0, time
𝑡0 = 𝐿2

0∕𝜅 where 𝜅 is thermal diffusivity, velocity 𝑣0 = 𝐿0∕𝑡0 and the
two temperatures 𝑇0 and 𝑇1. 𝑥 defines the length coordinate whilst 𝑖,
𝑗 are the sub-indexes addressing the different directions. Additionally,
𝐾 designate the resistant coefficient, 𝜈𝑡 the dimensionless turbulent vis-
cosity (Inverse of 𝑅𝑒𝑡), �̇� are the volumetric heat sources, 𝑐𝑝 is the heat
capacity at specific pressure, 𝛽 the coefficient of thermal expansion, 𝜇 is
the dynamic viscosity, 𝑔 the module of the dimensionless acceleration
of gravity and 𝑒 its direction. 𝑆𝑡 = 𝐿0∕(𝑣0𝑡0), 𝑃𝑟, 𝑅𝑒 = 𝜌𝑣0𝐿0∕𝜇,
𝑅𝑎 = 𝜌2𝑔𝛽(𝑇1 − 𝑇0)𝐿3

0∕(𝜇
2𝑃𝑟) are the Strouhal, Prandtl, Reynolds and

Rayleigh numbers. The specific constants of the Standard k-𝜖 model are
𝜎𝑘 = 1, 𝜎𝜖 = 1.3, 𝑐1𝜖 = 1.44, 𝑐2𝜖 = 1.92 and 𝑐′3𝜖 = 1.

The extensive procedure carried out to obtain ROM of k-𝜖 equa-
tions has been detailed on the publication (Yanez and Class, 2022).
Therefore, we just sketch the procedure for completion and describe
the points were minor differences exist with that reference.

The derivation procedure consist of three stages: (a) computation of
the reduced basis; (b) projection of the equations in the new basis; (c)
the so called hyper-reduction, i.e. the process intended to deal efficiently
with non-linear terms.

2.1. Reduced basis computation

We utilize the Method of Snapshots (Berkooz et al., 1993) to obtain
a reduced basis. we apply it separately to each variable, 𝑣, 𝑇 , 𝑘, 𝜖.
That is, we obtain solutions 𝑦 of k-𝜖 equations with the high fidelity
solver STAR-CCM at times

{

𝑡1,… , 𝑡𝑛
}

for a set of initial value problems
{

𝑦1(0, 𝑥),… , 𝑦𝑚(0, 𝑥)
}

. Note that we shall define the geometry and
boundary conditions of the case as well as the selected initial value
conditions later, in the following sections of this document. Also,
we consider the one parametric 𝐻1 Sobolev inner product, ⟨𝑓, 𝑔⟩𝛿𝑠 =
∫𝛺 𝑓𝑔𝑑𝛺 + 𝛿𝑠 ∫𝛺 𝜕𝑖𝑓𝜕𝑖𝑔𝑑𝛺, where 𝛿𝑠 is a small positive parameter and
𝑓 and 𝑔 generic function.
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Therefore, we form matrix Y,

⎡

⎢

⎢

⎢

⎢

⎣

𝑦1(𝑡1, 𝑥) 𝑦1(𝑡2, 𝑥) … 𝑦1(𝑡𝑛, 𝑥)
√

𝛿𝑠𝜕𝑥𝑦1(𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑥𝑦1(𝑡2, 𝑥) …
√

𝛿𝑠𝜕𝑥𝑦1(𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑦𝑦1(𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑦𝑦1(𝑡2, 𝑥) …
√

𝛿𝑠𝜕𝑦𝑦1(𝑡1, 𝑥) …
√

𝛿𝑠𝜕𝑧𝑦1(𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑧𝑦1(𝑡2, 𝑥) …
√

𝛿𝑠𝜕𝑧𝑦1(𝑡1, 𝑥)

𝑦𝑗 (𝑡1, 𝑥) 𝑦𝑗 (𝑡2, 𝑥) … 𝑦𝑗 (𝑡𝑛, 𝑥)
√

𝛿𝑠𝜕𝑥𝑦𝑗 (𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑥𝑦𝑗 (𝑡2, 𝑥) …
√

𝛿𝑠𝜕𝑥𝑦𝑗 (𝑡1, 𝑥)
…

√

𝛿𝑠𝜕𝑦𝑦𝑗 (𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑦𝑦𝑗 (𝑡2, 𝑥) …
√

𝛿𝑠𝜕𝑦𝑦𝑗 (𝑡1, 𝑥) …
√

𝛿𝑠𝜕𝑧𝑦𝑗 (𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑧𝑦𝑗 (𝑡2, 𝑥) …
√

𝛿𝑠𝜕𝑧𝑦𝑗 (𝑡1, 𝑥)

𝑦𝑚(𝑡1, 𝑥) 𝑦𝑚(𝑡2, 𝑥) … 𝑦𝑚(𝑡𝑛, 𝑥)
√

𝛿𝑠𝜕𝑥𝑦𝑚(𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑥𝑦𝑚(𝑡2, 𝑥) …
√

𝛿𝑠𝜕𝑥𝑦𝑚(𝑡1, 𝑥)
…

√

𝛿𝑠𝜕𝑦𝑦𝑚(𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑦𝑦𝑚(𝑡2, 𝑥) …
√

𝛿𝑠𝜕𝑦𝑦𝑚(𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑧𝑦𝑚(𝑡1, 𝑥)
√

𝛿𝑠𝜕𝑧𝑦𝑚(𝑡2, 𝑥) …
√

𝛿𝑠𝜕𝑧𝑦𝑚(𝑡1, 𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

. (8)

We carry out the Singular Value Decomposition, 𝑌 = 𝑉 𝛴𝐺𝑇 . 𝑉 is an
rthogonal matrix that allow to project the 𝑛 dimensional vector space
n a reduced–subspace of dimension 𝑛 − 𝑗 dropping the last 𝑗 vectors
n 𝑉 . Note that mall parameter of Sobolev inner product (Iollo et al.,
000) was determined in the same manner as it has been performed
n Escanciano and Class (2019) and Yanez and Class (2021b,a).

As this stage it is pertinent to mention that we have post-process the
olutions, to compute the gradients, externally with a self-developed
ode. We are carrying a completely non-intrusive approach, since the
ommercial code utilized is completely closed for the authors.

.2. Projection of the equations

We rewrite our system of equations into a variational formulation,
n terms of the reduced order basis. We follow a Galerkin formulation,
hus, we express test and trial functions in terms of the same reduced
rder basis. Note also, that we utilize 𝐻1 inner product to derive
ariational formulation. To do this, we follow the now conventional
rocedure described in e.g. Quarteroni et al. (2015), in the same

manner as in our previous publications (Escanciano and Class, 2019;
anez and Class, 2021b,a,b).

.3. Hyperreduction

At this stage with the determination of the non-linear variables,
he ROM is closed. For Standard k-𝜖 model those are |𝑢|, 𝑘2∕𝜖 and
∕𝑘. The Discrete empirical interpolation method (DEIM) (Quarteroni
t al., 2015; Chaturantabut and Sorensen, 2010) allows treating such
ariables efficiently.

DEIM consists of calculating the values of the non-linear magni-
udes in the CFD results. Then, apply the Method of Snapshots to
his database to derive a reduced basis of the non-linear variable. The
mplitudes of the non-linear variables in its own reduced basis can
e then obtained. To do so, the values of the non-linear variable is
alculated in a reduced set of points which cardinality is equal or
arger (but of similar order) than the reduced basis of the non-linear
agnitude. The amplitudes can be obtained resolving a linear system,

ver-determined or not, depending on the amount of points.
Pitifully, the application of DEIM – now a conventional method,

logy – to the problem in hand is not straightforward. This has to do
ith the rational nature of the functions 𝑘2∕𝜖 and 𝜖∕𝑘. Note that both
and 𝜖 take very small values in some domains. Tiny inaccuracies

n the denominator can result in a value for the non-linear variable
hat invalidate the DEIM procedure. Those inaccuracies are not fortu-
tous. The small mistakes originated by the ROM combined with the
umerical discrepancies coming from the CDF and the deficiencies of
he standard k-𝜖 model generate them steadily in certain regions. The
euristic procedure to overcome this severe deficiency has been the
ain object of our paper (Yanez and Class, 2022), and refer the readers

o this reference for further details.
 c
Fig. 1. Sketch of the geometry.

2.4. Final model

This process culminates in the final numerical system,

(

D + 𝛥𝑡
2
E
)

⎛

⎜

⎜

⎜

⎜

⎝

𝛿𝑢
𝛿𝑇
𝛿𝑘
𝛿𝜖

⎞

⎟

⎟

⎟

⎟

⎠

− 𝛥𝑡G = 0. (9)

Note that D, E, G are matrices – for their exact form see Yanez and
Class (2022) – dependent on the dimensions of the reduced basis only.
Also, note that they should partially recalculated every time step of the
integration procedure.

3. Problem

We apply our ROM to investigate the transients of natural convec-
tion (Grishchenko et al., 2015) into a simplified spent fuel refrigeration
pool. The facility is represented by the gray cuboid of 4 × 4 × 5.8 m
hown in Fig. 1. It is considered to be isolated, so that all variables have
gradient equal to zero in the direction perpendicular to the walls.

The volume is filled with water, which is considered to have con-
tant properties, with density 997 kgm−3, specific heat 4200 J kg−1 K−1

nd heat conductivity 0.0269 W/m/K.
The decay heat of the spent fuel elements is considered as two

olumetric heat sources of 1 MWm−3 shown in magenta in the figure. In
he center, marked in green, two smaller parallelepipeds that represent
olumetric sinks are located vertically aligned one above the other. The
pper one is disconnected, whilst the lower sink removes −2.3 MWm−3.
eat sources and losses occur directly in water.

We consider the problem initially at rest, a moment in which the
ources and sinks are set up and the simulation started. As a high
idelity solver, we utilize STAR-CCM version 2020.3. After 150 s, some
low has been established, but the problem is still far from stationary
onditions. The situation at this stage can be seen in Figs. 2(a)–3(b).
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Fig. 2. Fields at 150 s.

he flow still has transients which are the main interest of the sim-
lation. After this moment, we make several runs –at conditions that
ill be detailed later, in Section 4.1– with the CFD collecting snapshots

very second for the next 50 s, between 150 s and 200 s. In each run,
e regard the decay heat of the spent fuel elements as the parameter
f our study. Therefore, we vary this magnitude, considering ratios of
he thermal output.

. Uncertainty quantification

.1. Description of the parametric experiment

We consider the heat sources intensities �̇� in Eq. (3) as the parame-
er of our statistical experiment. We consider the following hypothesis
or our statistical experiment. We define the values of �̇� combining the
ominal conditions corresponding to the high fidelity calculation ap-
earing in Yanez and Class (2022), �̇�0 with a perturbation. We consider

perturbations following a Truncated Normal distribution (Kroese et al.,
2013) centered in the design values. We clip the distribution in values
corresponding to 0% and 200% of the nominal amplitudes. We also
regard each of the perturbations to be completely uncorrelated with
Fig. 3. Fields at 150 s bis.

the others. Summarizing, the occurrence 𝑖 of the decay heat of the spent
fuel is

�̇�𝑖 = 𝑁𝑡𝑟(𝜇, 𝜎, 𝑎, 𝑏) ⋅ �̇�0. (10)

Here we have considered 𝑁𝑡𝑟 is the truncated normal distribution,
𝜇 = 1 is the design average of 100% of the nominal output, 𝜎 is
the standard deviation, and the parameters 𝑎 = (clip𝑙𝑜𝑤 − 𝜇)∕𝜎, 𝑏 =
(clipℎ𝑖𝑔ℎ − 𝜇)∕𝜎, are so related to the intended clipping of clip𝑙𝑜𝑤 = 0%
and clipℎ𝑖𝑔ℎ = 200%.

4.2. CDF calculations

At this stage, it is necessary to define which CFD calculations should
be carried out in order to cover the range [0%, 200%] of the nominal
heat output in the domain 150 s to 200 s. The snapshots collected
from these calculations will enrich the database from which the reduced
basis will be derived. Per definition, we have decided to consider the
nominal value and the limits of the interval. Then we have added
calculations to keep the a posteriori relative error of the ROM – defined
later in Section 4.3 – under the value of 5%. Note that this magnitude

encloses the divergences due to the reduced basis plus the inherent
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deviations of the ROM integration. It is derived utilizing a double
threshold of mistake for the derivation of the reduced database (Yanez
and Class, 2021b). A small trial and error procedure has allowed us
to conclude that CFD calculations every 25% allow us to achieve the
desired accuracy. In an abstract manner, we have formed a matrix
constituted by calculation vectors in the following way
(

CFD0%,CFD25%,CFD50%,CFD75%,CFD100%,

CFD125%,CFD150%,CFD175%,CFD200%
)

. (11)

he 𝑗 index of formula (8) corresponds to each of the entries of vector
(11). A total of 450 snapshots have been collected.

In this study, the relevance of the results of the CFD in terms of
verification and validation is a working hypothesis. We concentrate on
the creation and usage of the ROM so that statistical magnitudes can
be extracted from the analysis.

4.3. Reduced basis

The reduced basis is obtained utilizing the procedure discussed
in Section 2.1. The post-processing of the snapshots considering a
maximum distance of 10−6 to the projection space provides dimen-
ions (𝐽𝑢, 𝐽𝑇 , 𝐽𝑘, 𝐽𝜖) = (15, 9, 17, 20). Utilization of a second thresh-
ld, 10−7, for the determination of the a posteriori error (Yanez and

Class, 2021b,a) provides a projection space of an enhanced dimension
(𝐽 ′

𝑢 , 𝐽
′
𝑇 , 𝐽

′
𝑘, 𝐽

′
𝜖 ) = (24, 16, 26, 28).

We may make an estimate the a posteriori error 𝐸, and thus on the
accuracy of the ROM, by

𝐸𝐽 ′

𝐽 =

√

√

√

√

√

𝐽 ′
∑

𝑗=𝐽
𝑢2𝑗

/

√

√

√

√

√

𝐽 ′
∑

𝑗=1
𝑢2𝑗 , (12)

where the 𝑢𝑗 are the amplitudes of an arbitrary variable. This is
the magnitude we utilize to check the goodness of the set of CFD
calculations in Section 4.2.

On the other hand, we may make a very simple assessment of the
effectiveness of the reduced basis considering the a priori error of

‖(𝐼 − 𝑉 𝑉 𝑇 )𝑓‖∕‖𝑓‖, (13)

which provides the capabilities of the reduced database to reproduce
the original values. Such assessment has been carried out for the
variables 𝑢, 𝑇 , 𝑘 and 𝜖 in the Figs. 4(a)–5(b)

In those plots we have represented the values of the formula (13) for
factors of the nominal output. Note that all the mistakes remain under
1.5%. Also see that in spite of the low values, the mistakes noticeable
increase with time. Thus, for an enhanced result an augmentation of the
CDF physical calculation time, maybe advisable. For the study in hand
the level of mistake is wholly acceptable, and therefore, no expansion
in time of the database has been considered.

4.4. Statistical magnitudes as a function of the reduced order model

4.4.1. Obtaining of the statistical parameters
To study the uncertainty quantification, we aim to obtain by an

statistical procedure E(𝑦(𝑡, 𝑥)) and 𝜎(𝑦(𝑡, 𝑥)). For conciseness, in this
section we consider that 𝑦 is a generic variable with integration results
𝑢, with probability density 𝜌(𝑢), which has modes 𝜙𝑖 obtained for a set
of parameters 𝑞𝑟. The amount of modes is 𝐽 ′, the quantity of parameters
𝑁 and the dimension of the CFD calculations is 𝑛. We utilize the Monte-
Carlo method (Sobol, 1974, 2018) to derive these magnitudes. Since the
output of the ROM are the amplitudes in the reduced basis we need
to express the statistical magnitudes as a function of that quantities.
Following Yanez and Class (2021b), the average can be expressed as,

𝑦(𝑥, 𝑡) =
𝐽 ′
∑

𝑖

(

1
𝑁

𝑁
∑

𝑟
𝑢𝑖(𝑡, 𝑞𝑟)

)

𝜙𝑖(𝑥), (14)

whist the variance expansion in terms of the modes is,
Fig. 4. Achievable relative error of the database.

𝜎2𝑦 (𝑥, 𝑡) =
1
𝑁

𝑁
∑

𝑟

⎛

⎜

⎜

⎝

𝐽 ′
∑

𝑖
𝜙𝑖(𝑥)

(

𝑢𝑖(𝑡, 𝑞𝑟) −
1
𝑁

∑

𝑠
𝑢𝑖(𝑡, 𝑞𝑠)

)

⎞

⎟

⎟

⎠

2

. (15)

he accuracy of the previous magnitudes is defined in terms of expec-
ations. For the mean,

𝑎𝑣(𝑡, 𝑥) =
|

|

|

|

|

∫𝑄
𝜌(𝑞)𝑢(𝑡, 𝑥, 𝑞)𝑑𝑞 − 1

𝑁
∑

𝑟
𝑢(𝑥, 𝑡, 𝑞𝑟)

|

|

|

|

|

. (16)

To simplify the notation for further analysis we define 𝐼(𝑡, 𝑥) =
∫𝑄 𝜌(𝑞)𝑢(𝑡, 𝑥, 𝑞)𝑑𝑞 and 𝑈 (𝑡, 𝑥) = 1∕𝑁

(
∑

𝑟 𝑢(𝑥, 𝑡, 𝑞𝑟)
)

. The accuracy of the
variance is,

𝐸𝑣𝑎𝑟(𝑡, 𝑥) =
|

|

|

|

|

∫𝑄
𝜌(𝑞) (𝑢(𝑡, 𝑥, 𝑞) − E (𝑦(𝑡, 𝑥)))2 𝑑𝑞

− 1
𝑁

∑

𝑟

(

𝑢(𝑥, 𝑡, 𝑞𝑟) − 𝑦
)2||
|

|

|

, (17)

where we define 𝐽 (𝑡, 𝑥) = ∫ 𝜌(𝑢(𝑥, 𝑡, 𝑥0) − 𝐸(𝑢)(𝑥, 𝑡))2𝑑𝑥0, and 𝑠2(𝑡, 𝑥) =
1∕𝑁

(
∑

𝑘(𝑢(𝑥, 𝑡, 𝑥0𝑘) − 𝐸(𝑢)(𝑥, 𝑡))2
)

. In Yanez and Class (2021b,a) we have
already studied these expectations. The accuracy of the mean can be
ssessed by,

⎛

⎜

⎜

⎜

|𝐼(𝑡, 𝑥) − 𝑈 (𝑡, 𝑥)| < 3

√

𝜎2sample(𝑢(𝑥, 𝑡))

𝑁

⎞

⎟

⎟

⎟

≥ 0.997. (18)
⎝ ⎠
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Fig. 5. Achievable relative error of the database, II.

or the standard deviation we have,
(

|

√

𝐽 (𝑡, 𝑥) −
√

𝑠2(𝑡, 𝑥)| ≤
√

3 4
√

𝜎2𝑠𝑎𝑚𝑝𝑙𝑒(𝑠
2)∕𝑁

)

> 0.997. (19)

he only remaining variable to be calculated is 𝜎2(𝑠2). Two expressions
or it were derived in Yanez and Class (2021b). In this study we recall
he expression,

2(𝑠2) ≈
𝜈4 − 𝜈22

𝑁
−

2(𝜈4 − 2𝜈22 )

𝑁2
+

𝜈4 − 3𝜈22
𝑁3

, (20)

here the 𝜈𝑞 are the 𝑞 sample moments from the mean,

𝑞(𝑡, 𝑥) =
1
𝑁

𝑁
∑

𝑟

⎛

⎜

⎜

⎝

𝐽 ′
∑

𝑖
𝜙𝑖(𝑥)

(

𝑢𝑖(𝑡, 𝑞𝑟) −
1
𝑁

∑

𝑠
𝑢𝑖(𝑡, 𝑞𝑠)

)

⎞

⎟

⎟

⎠

𝑞

. (21)

4.5. Sample size. Accuracy of the statistical hypothesis

Sample size affects the determination of the accuracy of the mean
and standard deviation. The deceiving dependence on 𝑁1∕2 and 𝑁1∕4 of

onte Carlo method in Eqs. (18) and (19) is an example of this. Also –
ore significant for this section –, it affects how good the assumption

n the sample distribution is fulfilled. Note that if our own precondition
s not fulfilled, in our case the 𝑁𝑡𝑟(𝜇, 𝜎, 𝑎, 𝑏) sample distribution, no
ffective conclusions can be obtained.
6

Fig. 6. Measured probability density function.

Therefore, the effect of sample size on the adjustment to the in-
tended distribution premise has been shown in Fig. 6.

In this diagram we compare the histograms constructed for three
samples of size 100, 1000 and 10 000 with the theoretical results that
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Fig. 7. Amplitudes of the first and third ROM mode of temperature for 𝜎 = 0.5 and
ifferent samples.

hould be obtained for 𝑁𝑡𝑟(𝜇, 𝜎,−1∕𝜎, 1∕𝜎) for values of sigma 0.1, 0.25
nd 0.5.

Note the quite regular approximation that is achieved with the
ample of the lowest size. The adjustment is even bad for the lowest
f the standard deviations. In spite of it, with the lowest of the sigma
alues a reduced sample may produce meaningful results. The moments
rom the mean, namely 100%, grow with the value of sigma. The error
nduced in the histogram for the highest sigma is large in therms of the
oments (integral areas).

The approximation achieved with samples with 10 000 points is very
ood, virtually indistinguishable form the exact value, for 𝜎 = 0.1 and
= 0.25. For 𝜎 = 0.5 it is possible to distinguish the two curves. Still,

ts divergences are minimal.
The intermediate sample, with 1000 specimens, represent a compro-

ise between the exactness of the large example –and its numerical
verhead– and the roughness of the small –with its reduced accuracy–.
t shows significant deviations from the exact values. On the other side,
he deviations constitute an oscillation among the correct values, which
lobal result should be acceptable.

We may see this concretely considering the average amplitudes
f the modes of the ROM, term between brackets in Eq. (14). This
agnitude has been represented in Fig. 7 for temperature.
 s
Note that to the deviations represented in Fig. 6, the average am-
plitudes of Fig. 7 do not converge for the smaller sample. This happens
oth for the first mode 7(a) as well as for the third 7(b). Observe also
hat at the same time, the results obtained for the medium and the
arge examples are completely superimposed. That is, the medium size
ample manages to produce a result that converges.

.6. Main results

Utilization of the formula (14) for the results obtained with 10 000
samples with 𝜎 = 0.5 produces the mean fields shown in Fig. 8. In these
figure, we see the evolution of the transient temperature, in the whole
interval of 50 s, among the initial 150 s to the final 200 s.

Usage of the equivalent equation for the variance (15) produces also
a field. Here, we have chosen to show the square root of the variance,
the standard deviation, for its simpler interpretation, which has been
represented in Fig. 9, for the temperature at different times for 𝜎 = 0.5
and 10 000 calculations.

For each figure, two presentations are included. On the right side,
two cuts of the field are portrayed. On the left side, ten iso-surfaces
are depicted. Note the complex pattern and local variation of this
magnitude and therefore the uneven distribution of the error.

Take notice of the evolution of the relative distribution of the
standard deviation and of its magnitude. Initially, the pattern is quite
widespread, while it apparently concentrates with the increase of time.
Note that the magnitude of the variable very significantly increases
with time. This evolution is completely natural considering the con-
ditions of the experiment. In our considerations, we accept the initial
conditions are exactly know, but regard as uncertain the heat release
of the sources. That is, the evolution is regarded as undetermined.

The evolution of the maximum of the standard deviation and thus
of the scales of the patterns of Fig. 9 can be seen in Fig. 10. Note
the significant increment of the times in the values reached for this
magnitude. Also the fact that the values obtained for the three samples
are nearly coincident in spite of the disparities of the sample’s size.

Recall that the uncertainty of the mean – in its probabilistic
assessment –, and thus the incertitude of the average, Fig. 7, is rep-
resented by the fields of Fig. 9, re-scaled by the factor 3∕

√

𝑁 , see
Eq. (18).

Finally, we represent the evolution of the accuracy of the standard
deviation of the temperature field, obtained for 𝜎 = 0.5 and 10 000
samples. By this accuracy is understood as the maximum probability
bound of Eq. (19),

√

3 4
√

𝑉 𝑎𝑟𝑠𝑎𝑚𝑝𝑙𝑒(𝑠2)∕𝑁 , that was depicted in Fig. 11.
Note the unequal distribution of the bound as well as the increasing

agnitude of the accuracy with the growth of time. The evolution of
he scale of the magnitude with time can be better observed study-
ng Fig. 12. We see there, how importantly the size of the sample affect
he verisimilitude of the standard deviation.

.7. Performance

.7.1. Taxonomy of computational cost
In previous section the accuracy of the results obtained with dif-

erent amount of samples was compared. Certainly, the experiments
arried out with an enhanced amount of instances are superior in
ccuracy to the ones with a more modest amount of tests. Clearly,
his accuracy comes in parallel with an enhanced amount of numerical
urden.

Let us have a look on the computational cost of the methodology.
n terms of machine power, the ROM procedure can be initially divided
nto two parts. The first, the offline phase mainly consists on the
reation of the ROM. It has been described in detail (Yanez and Class,
022) and is of no concern for this document. The second, the online
tage regards the calculations, that is the utilization of the ROM for

tatistical purposes.
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Fig. 8. Average results of temperature, 𝜎 = 0.5, 10 000 calculations.
The latter can, in turn, be divided into two parts: (I) Phase I: It
concerns the performance of the calculations themselves, obtaining the
amplitudes of the modes of the reduced basis by integration of the
ROM, Eq. (9), in the conditions pertinent for the particular task in
hand. (b) Phase II: It pertains the post-processing of the results for the

derivation of the relevant statistical magnitudes – that may differ for
each particular problem –, such as the ones described by Eqs. (14)–(15)
and (18)–(21).

4.7.2. Numerical performance of the statistical experiment
The performance of our model and its implementation for the online

stage can be seen in Table 1 for the cases that have been the object of
the discussion of the paragraphs above.
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Fig. 9. Standard deviation of temperature, 𝜎 = 0.5, 10 000 calculations.
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Fig. 10. Evolution of the maximum of the standard deviations for several samples,
obtained for the temperature for the case 𝜎 = 0.5.

.7.2.1. Numerical cost of Phase I. The results obtained for this stage
the online phase corresponds to the second and third column of Table 1
nd coincide with the time spend in integration of the ROM.

The computation overhead accounts for the solution of the system
9) and the computation of its matrices components D, E, G. Note
hat these should be, at least partially, recalculated each time step,
ee Yanez and Class (2022). This recalculation is based – at least in
art – on pre-computed blocks and can be done efficiently. In spite of
he effective implementation, this constitutes a bothersome specificity.
evertheless, it is intrinsically due to the non-linearity of the original
quation system, see Yanez and Class (2022) for further details.

The individual ROM runs are, from the point of view of usage
f memory, relatively small. The matrices of Eq. (9) are finally only
4 × 94. Therefore, independent runs are better carried out separately
n a single processor. Parallelism can be more efficiently and simply
chieved, launching several runs at same time, which number depends
n the characteristics of the computer utilized, in our case, a machine
ith 8 Intel Core i7-3770, 3.40 GHz processors. In the table, for the
urposes of comparison, the time shown is serialized, that is, expressed
s if only a single processor was involved in all computations. Note
hat in the actual implementation the consumed time per run is of the
rder of 2.5 s. Such performance has been reached after a significant
ode profiling for efficiency.

.7.2.2. Numerical cost of Phase II. The figures portraying the time
equired to post process the results and derive the pertinent statistical
nformation is shown in last column of the Table 1.

The outcome of the post-processing include the mean, standard
eviation and the corresponding accuracy of these variables, Eqs. (14)–
15) and (18)–(21). This has been carried out for the same numbers of

times at which the snapshots where collected, namely 50.
The time expend in the post-processing stage is comparable to the

ROM running time. This may appear as surprising, considering the
simplicity of the statistical procedure, compared with the complexity
of the ROM. To understand this fact one need to regard the nature of
Eqs. (14) and e.g. (21). One can see that in the former, complexity is
𝑁 ⋅𝐽 ′ ⋅𝑛 and in the latter 𝑁 ⋅𝐽 ′ ⋅𝑛⋅𝑙𝑜𝑔(𝑞). That is Eqs. (14)–(15) and (18)–
(21) have a dependence on 𝑛, and thus a significant larger complexity
than the dimensions of the ROM.

4.7.3. Supplementary numerical experiment
We propose now a secondary exercise to study the performance of

the ROM related to the results shown previously.
We reduce the domain of interest of power release from 0%–200%

to 0%–100%. We consider half Gaussian distribution of heat release
Table 1
Performance of the numerical experiments.
𝜎 Calcs. Time, [s] Time/Calc., [s] Statistics time, [s]

0.1 100 246 2.4 66
0.25 100 254 2.5 52
0.5 100 240 2.4 52
0.5 1000 2458 2.4 2596
0.5 10 000 23 744 2.3 7474

Table 2
Amount of reduced basis vectors per variable.

Model 𝑉 𝑇 𝑘 𝜖 Total Squared

0%–200% 24 16 26 28 96 9216
0%–100% 16 11 17 18 62 3844
100%–200% 16 10 18 21 65 4225

Table 3
Performance of the numerical experiments, 0%–100% branch.
𝜎 Calcs. Time, [s] Time/Calc., [s] Statistics time, [s]

Full model
0.1 1000 2719 2.7 3719
0.25 1000 2664 2.6 3638
0.5 1000 2629 2.6 3632
Reduced model
0.1 1000 1092 1.0 2326
0.25 1000 903 0.9 2176
0.5 1000 899 0.8 2301

factor, that is 𝑁𝑡𝑟(0, 𝜎,−1∕𝜎, 0), that is, centered on 100% but having
only the negative tail. We apply to this experiment our ROM model,
constructed based on snapshots covering the range 0%–200% of heat
release. We also build a second ROM model, this time constructed
utilizing the same database, but based only the snapshots corresponding
to 0%–100%. This second model is build with the same procedure as
the first one and thus we do not repeat any details here. We do the
same for the interval 100%–200%.

Because fewer snapshots are involved in the narrower intervals the
new ROMs reduced basis contain fewer vectors. This has been illus-
trated in Table 2. Note that the construct intended for 0%–100% has
35% fewer modes than the full model whilst the one for 100%–200%
just 32%.

The matrices of ROM systems, like the one of Eq. (9), are dense and
has the dimensions of the reduced order system 𝐽 ′ × 𝐽 ′. Note that in
contrast high accuracy solvers do mostly have sparse matrices but of
dimensions 𝑛. Because of this squared dependence, a relatively small
reduction in 𝐽 ′ represents a very significant relief, see last column in
Table 2. This amounts for a 55% and 58% increase of performance.

We may try to see the previous influence in terms of the imple-
mented models, that also include additional overhead necessary to
perform the calculations. The comparison of the calculation times of
the full ROM and the restricted ROMs are included in Tables 3 and
4. Note that the time necessary for the completion of a single run is
reduced by a 65% due to the selection of the restricted model, what
is completely coherent with the previous statements. The computation
time (also that of statistic derivation), are obtained considering serial
computation, that is disregarding parallelization.

Note also that probably due to the load of the system, the time
required to post process the solutions and obtain the statistics is slightly
larger than the computation time.

Parallelization of the statistics extraction, that regards a single time
for all the computations, is very effective, and is actually mostly limited
by the usage of memory that the accumulation of solutions may require.
RAM limitations were severe for the post-processing of the numerical
experiment containing 10 000 samples, see Table 1. Therefore, an al-
ternative more advanced post-processing routine was created to reduce
memory consumption based on Cython (Behnel et al., 2011).
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Fig. 11. Accuracy of the standard deviation of temperature, 𝜎 = 0.5, 10 000 calculations.
5. Summary and conclusions

This article describes a statistical exercise utilizing our ROM of the
standard 𝑘 − 𝜖 turbulence model, for the analysis of the effect of a
random variable in the result of a natural convention calculation. Thus,
it constitutes an analogue to the papers (Yanez and Class, 2021b,a) with
turbulence modeling included.

In this case, we conventionally regard the heat released by spent fuel
elements as random and study the effect of this on the mean, standard
deviation, and accuracy of the standard deviation. The model has been
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a

Fig. 12. Maximum interval of accuracy of the standard deviation for 𝑇 , for 𝜎 = 0.5
nd different samples.

Table 4
Performance of the numerical experiments, 100%–200% branch.
𝜎 Calcs. Time, [s] Time/ Statistics

Calc., [s] time, [s]

Full model
0.1 1000 2964 2.9 3175
0.25 1000 3022 3.0 3188
0.5 1000 2935 2.9 2597
Reduced model
0.1 1000 977 0.9 2337
0.25 1000 1084 1.0 2172
0.5 1000 1141 1.1 2104

created in a conventional manner, utilizing the known techniques of
Proper Orthogonal Decomposition and Galerkin projection, following
our previous developments in Yanez and Class (2022).

The application presented here concerns spent fuel refrigeration
pools. But this is just a demonstration problem. The procedure followed
here is suitable – defining the particular statistical hypothesis for the
case of interest – to treat other cases. Particularly, we regard it as
effective tool to assess the uncertainty quantification of fast reac-
tors utilizing incompressible refrigerants. Specifically, those where the
Boussinesq approximation is reasonable, namely the Lead-Cooled Fast
Reactor, the Molten Salt Reactor and the Sodium-Cooled Fast Reactor.

We have also studied the performance of the method, demonstrat-
ing the possibility of performing ten thousand calculations inside the
working time of a day with a common desktop computer. This means,
that from the point of computational power, the methodology is usable
for practitioners. Besides, we have shown the important additional per-
formance increase that one may obtain by usage of a focused statistical
case, strictly bounding the experiment defining a restrictive statistical
hypothesis.

In terms of sample size, it was confirmed that one should very
carefully balance performance with accuracy. The adequacy of small
samples to obtain significant statistical magnitudes, and fulfill the
statistical hypothesis imposed, without unacceptable deviations is lim-
ited. Strict bounds that warranty the accuracy of the results are only
achievable through the usage of the large samples. These bounds are
nevertheless problem dependent regarding the accuracy necessary for
a particular task.

Trial-error procedure quickly provided a fair assessment of the sizes
of the necessary samples to verify the statistical hypothesis and achieve
the accuracy requirements. Therefore, a practical way of assessing
sample size is to carry out tentative calculations firstly, to arrive to an
adequate compromise. Finally, performance can by highly improved, if

necessary, restricting the extension of the statistical experiment.
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