KIT | KIT-Bibliothek | Impressum | Datenschutz

Methods Comparison for Load Sensitivity Identification

Courcelle, Maëva ORCID iD icon 1; Tao, Qiucen ORCID iD icon 1; Geis-Schroer, Johanna ORCID iD icon 2; Bruno, Sergio; Leibfried, Thomas 2; Carne, Giovanni ORCID iD icon 1
1 Institut für Technische Physik (ITEP), Karlsruher Institut für Technologie (KIT)
2 Institut für Elektroenergiesysteme und Hochspannungstechnik (IEH), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The increase in renewable power generation leads to the need for more controllability on the demand side. The integration of power electronic devices, such as Smart Transformers, brings more flexibility into the modern grid. Demand-side management has large potential, but the lack of grid information limits the realization of precise control. Thus, there is a renewed interest in investigating the power-to-voltage and power-to-frequency sensitivity of the load in real-time. The exponential load model is a commonly used model to describe the load dependency on voltage and frequency. As a non-linear equation, the load model can be determined by linearization or by using an iterative algorithm. This work compares two load sensitivity identification methods: the online load sensitivity identification method, using the linearization approach, and the Newton method, using an iterative algorithm. The variance in the distribution of the load sensitivity identification results is studied, which is an important feature of precision. The reliability and accuracy of the results are also analyzed by using the calculated parameters to reconstruct the power signals, which are compared with the power measurements.


Originalveröffentlichung
DOI: 10.1109/PowerTech55446.2023.10202677
Scopus
Zitationen: 3
Dimensions
Zitationen: 3
Zugehörige Institution(en) am KIT Institut für Elektroenergiesysteme und Hochspannungstechnik (IEH)
Institut für Technische Physik (ITEP)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 25.06.2023
Sprache Englisch
Identifikator ISBN: 978-1-6654-8779-5
KITopen-ID: 1000161305
HGF-Programm 37.12.03 (POF IV, LK 01) Smart Areas and Research Platforms
Erschienen in 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25-29 June 2023
Veranstaltung IEEE Belgrade PowerTech (2023), Belgrad, Serbien, 25.06.2023 – 29.06.2023
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Projektinformation HGF, HGF IVF2016 TALENT, VH-NG-1613
Schlagwörter Load sensitivity, parameter estimation, Newton method, power control, demand-side management
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page