
Enabling Scalability:

Graph Hierarchies and Fault Tolerance

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Lars Demian Hespe

Tag der mündlichen Prüfung: 21. Juli 2023

1. Referent: Prof. Dr. Peter Sanders

Karlsruher Institut für Technologie

Deutschland

2. Referent: Prof. Dr. Henning Meyerhenke

Humboldt-Universität zu Berlin

Deutschland

To my family.

Abstract

In this dissertation, we explore approaches to two techniques for building scalable
algorithms. First, we look at different graph problems. We show how to exploit
the input graph’s inherent hierarchy for scalable graph algorithms. The second
technique takes a step back from concrete algorithmic problems. Here, we consider
the case of node failures in large distributed systems and present techniques to
quickly recover from these.

In the first part of the dissertation, we investigate how hierarchies in graphs
can be used to scale algorithms to large inputs. We develop algorithms for three
graph problems based on two approaches to build hierarchies. The first approach
reduces instance sizes for NP-hard problems by applying so-called reduction rules.
These rules can be applied in polynomial time. They either find parts of the input
that can be solved in polynomial time, or they identify structures that can be
contracted (reduced) into smaller structures without loss of information for the
specific problem. After solving the reduced instance using an exponential-time
algorithm, these previously contracted structures can be uncontracted to obtain an
exact solution for the original input. In addition to a simple preprocessing procedure,
reduction rules can also be used in branch-and-reduce algorithms where they are
successively applied after each branching step to build a hierarchy of problem kernels
of increasing computational hardness. We develop reduction-based algorithms for
the classical NP-hard problems Maximum Independent Set and Maximum Cut. The
second approach is used for route planning in road networks where we build a
hierarchy of road segments based on their importance for long distance shortest
paths. By only considering important road segments when we are far away from
the source and destination, we can substantially speed up shortest path queries.

In the second part of this dissertation, we take a step back from concrete graph
problems and look at more general problems in high performance computing (HPC).
Here, due to the ever increasing size and complexity of HPC clusters, we expect
hardware and software failures to become more common in massively parallel
computations. We present two techniques for applications to recover from failures
and resume computation. Both techniques are based on in-memory storage of
redundant information and a data distribution that enables fast recovery. The first
technique can be used for general purpose distributed processing frameworks: We
identify data that is redundantly available on multiple machines and only introduce
additional work for the remaining data that is only available on one machine. The
second technique is a checkpointing library engineered for fast recovery using a

v

Abstract

data distribution method that achieves balanced communication loads. Both our
techniques have in common that they work in settings where computation after a
failure is continued with less machines than before. This is in contrast to many
previous approaches that—in particular for checkpointing—focus on systems that
keep spare resources available to replace failed machines.

Overall, we present different techniques that enable scalable algorithms. While
some of these techniques are specific to graph problems, we also present tools
for fault tolerant algorithms and applications in a distributed setting. To show
that those can be helpful in many different domains, we evaluate them for graph
problems and other applications like phylogenetic tree inference.

vi

Acknowledgements

First and foremost, I would like to thank Peter Sanders for giving me the
opportunity to work in his research group as well as providing guidance when needed
and letting me pursue my own research interests. I would also like to thank Henning
Meyerhenke for agreeing to review this dissertation.

Furthermore I would like to thank my co-authors Jonathan Dees, Damir Feri-
zovic, Lorenz Hübschle-Schneider, Lukas Hübner, Alexey Kozlov, Sebastian Lamm,
Matthias Mnich, Peter Sanders, Christian Schorr, Dominik Schreiber, Christian
Schulz, Alexandros Stamatakis, Darren Strash, and Martin Weidner for all the
fruitful cooperations as well as my students Damir Ferizovic, Tom George, Lukas
Hübner, Charel Mercatoris, and Christian Schorr.

I really enjoyed working with all my colleagues from over the years. The work-
related (or not) discussions, the immense combined knowledge, the virtual coffee
breaks while we were all stuck at home, the nights out, and the group retreats made
this a wonderful place to work. Thank you, Yaroslav Akhremtsev, Michael Axtmann,
Tomáš Balyo, Timo Bingmann, Daniel Funke, Simon Gog, Lars Gottesbüren, Tobias
Heuer, Lukas Hübner, Lorenz Hübschle-Schneider, Markus Iser, Florian Kurpicz,
Sebastian Lamm, Moritz Laupichler, Hans-Peter Lehmann, Nikolai Maas, Tobias
Maier, Matthias Schimek, Sebastian Schlag, Dominik Schreiber, Christian Schulz,
Daniel Seemaier, Jochen Speck, Tim Niklas Uhl, Marvin Williams, and Sascha Witt.

I thank Shengjia Feng, Florian Kurpicz, Moritz Laupichler, Matthias Schimek,
Dominik Schreiber, Daniel Seemaier, and Tim Niklas Uhl for proof-reading parts of
this dissertation and their helpful comments and suggestions.

Finally, I would like to thank my family and Shengjia Feng for their love and
support throughout the years as well as my friends for keeping me sane.

vii

Table of Contents

1 Introduction and Overview 1
1.1 Contributions . 2

I Hierarchical Graph Algorithms 5

2 Introduction 7
2.1 Preliminaries . 7

3 Maximum Independent Sets 9
3.1 Introduction . 9
3.2 Preliminaries . 10
3.3 Related Work . 10

3.3.1 Reduction Rules . 13
3.4 WeGotYouCovered: The Winning PACE 2019 Solver 16

3.4.1 Introduction . 16
3.4.2 Techniques . 17
3.4.3 Putting it all Together . 19
3.4.4 Experimental Results . 19
3.4.5 Conclusion . 22

3.5 Targeted Branching . 27
3.5.1 Introduction . 27
3.5.2 Related Work . 28
3.5.3 Decomposition Branching . 30
3.5.4 Reduction Branching . 32
3.5.5 Experimental Evaluation . 37
3.5.6 Conclusion and Future Work 42
3.5.7 Detailed Experimental Results 43

4 Maximum Cuts 51
4.1 Introduction . 51
4.2 Preliminaries . 53

4.2.1 Related Work . 54
4.3 New Data Reduction Rules . 54
4.4 Implementation . 61

4.4.1 Kernelization Framework . 61

ix

Table of Contents

4.4.2 Timestamping . 62
4.5 Experimental Evaluation . 62

4.5.1 Methodology and Setup . 62
4.5.2 Performance of Individual Rules 64
4.5.3 Exactly Computing a Maximum Cut 65
4.5.4 Analysis on Large Instances 67

4.6 Conclusions . 67

5 Route Planning in Road Networks 69
5.1 Introduction . 69
5.2 Preliminaries . 71
5.3 More Related Work . 72
5.4 Edge Hierarchies . 72

5.4.1 Shortcut Selection . 74
5.4.2 Edge Selection . 75
5.4.3 Stalling . 76

5.5 Experimental Evaluation . 76
5.5.1 Data Sets . 77
5.5.2 Choosing the Right Stalling Technique 78
5.5.3 Main Results . 79

5.6 Future Work . 81

II Data Recovery for Fault-Tolerant MPI Applications 85

6 Introduction 87
6.1 Preliminaries . 88
6.2 Experimental Environment . 88
6.3 Acknowledgements . 89

7 Fault Tolerance for Distributed Processing Frameworks 91
7.1 Introduction . 91
7.2 Related Work . 92

7.2.1 Thrill . 93
7.3 A Simple Version for MapReduce . 93

7.3.1 Analysis . 95
7.4 The General Framework . 97

7.4.1 Details on Operations . 99
7.5 Supporting Multiple Failures . 102

7.5.1 Supporting Failure of Predefined Sets of PEs 103
7.5.2 Supporting Multiple Single-PE Failures 103

7.6 Experiments . 103
7.6.1 Experimental Setup . 103
7.6.2 Experimental Results . 104

7.7 Conclusion and Future Work . 106

x

Table of Contents

8 Fast General Purpose Data Recovery 109
8.1 Introduction . 109
8.2 Related Work . 110

8.2.1 Reproducibility Study . 111
8.3 In-Memory Replica for Fast Recovery 112

8.3.1 General Framework . 113
8.3.2 Breaking Up Access Patterns for Faster Recovery 113
8.3.3 Memory Usage . 115
8.3.4 Probability of Irrecoverable Data Loss. 116
8.3.5 Recovering Lost Replicas After a Node Failure 116

8.4 Implementation . 117
8.5 Experimental Evaluation . 118

8.5.1 Environment and Experimental Setup 118
8.5.2 Isolated Evaluation . 118
8.5.3 Applications . 121
8.5.4 Comparison with Other Approaches 125

8.6 Conclusion and Future Work . 127

Publications and Supervised Theses 131

Bibliography 135

xi

1
Chapter 1

Introduction and Overview

In this chapter, we motivate the work presented in the rest of this dissertation and
summarize the contributions of the following chapters. We develop new algorithms
that enable scaling to large problem instances based on two approaches: Exploiting
hierarchy in graph problem instances and tolerating compute node failures in
distributed applications that scale to large cluster computers.

Graphs are a common tool to model real-world or digital data. Examples
include road networks, friendship relations, web links, VLSI design, or image
segmentation [DGJ09; LK14; RA15; DGS18]. With the size of today’s networks in
the billions we need algorithms that can scale to large graphs. For example, in 2011,
the Facebook graph contained 721 million vertices and 68.7 billion edges [Uga+11].
On real-world instances even presumably fast algorithms like Dijkstra’s algorithm
for shortest paths [Dij59] can take seconds [Bas+16] which becomes a problem when
it has to be run thousands of times in route planning services. We present algorithms
that aim to scale to large graphs by building or exploiting graph hierarchies. These
help to identify parts of the graph that need the most attention or the most
computational resources. By focusing work on these important parts and spending
less resources on the unimportant parts, we develop practically fast algorithms.

When scaling to increasingly large inputs, at some point a single machine is not
sufficient for solving many problems. Either because of the limited computational
power or because the input would simply not fit into the memory of a single machine.
At this point, we move to distributed systems. In the scientific world, these are often
large High Performance Computing (HPC) clusters consisting of tens to hundreds
of thousands of compute cores, e.g., [Ste23; Lei23]. With the increasing number
of processors in HPC clusters, the probability that some processors fail during a
computation rises. Handling such failures constitutes a major challenge for future
exascale systems [SDM10]. For example ORNL’s Jaguar Titan Cray XK7 system had
on average 2.33 failures/day between August 2008 and 2010 [Gam+14]. In upcoming
systems, we expect a hardware failure to occur every 30 to 60 minutes [Cap+14;
DHR15; Sni+14]. We develop techniques to recover from such failures based on
replication and purpose-built data distributions that cause little overhead during
normal operation and fast recovery after a failure.

1

1 Introduction and Overview

1.1 Contributions

Hierarchical Graph Algorithms (Part I)

In Part I, we investigate hierarchies in graph problems using two underlying ap-
proaches: Problem size reduction and identification of important roads in road
networks.

For the first approach, we investigate algorithms that reduce the problem size
by either solving the “easy” parts of an instance beforehand, or by “compressing”
subgraphs into smaller ones to be solved later. These reductions can then be used in
so-called branch-and-reduce algorithms which work similarly to branch-and-bound
algorithms with an additional reduction step after each branching step.

For the second approach, we identify important roads in a road network and
use that information to build auxiliary data structures that speed up shortest
path queries.

For both approaches, we present algorithms that either improve on or match
the performance of the current state-of-the-art on meaningful and standard bench-
mark sets.

Maximum Independent Sets (Chapter 3). We present two results for the Max-
imum Independent Set (MIS) Problem. First, we show an engineered algorithm
based on both branch-and-reduce and branch-and-bound that won the 2019 PACE
Implementation Challenge1 by 13% more instances solved than the second place.
Second, we develop new branching rules for branch-and-reduce algorithms that
specifically target branching points that either enable the reduction step to further
decrease the problem size or separate the graph into two or more components that
can be solved independently. Our experiments show that this enables us to solve the
instances of the aforementioned PACE challenge 30% faster than with the standard
branching strategy.

Maximum Cuts (Chapter 4). We present the first practical reduction algorithm for
the Maximum Cut Problem. While previous theoretical kernelization2 algorithms
for Maximum Cut exist, they were not evaluated in practice before. We implement
and generalize the theoretical reduction rules such that they can be applied with
less restrictions and are faster to compute. We show that these new rules are able
to substantially reduce the problem size for specific graph classes. We also show
that the size reduction leads to up to 900 times shorter running times to fully solve
our benchmark instances than using a state-of-the-art solver on the original graph.

Route Planning in Road Networks (Chapter 5). Some of the most successful
algorithms for shortest path calculations in road networks compute a hierarchy of

1Parameterized Algorithms and Computational Experiments Challenge: a yearly international
competition on changing problems from the world of parameterized algorithms. https://

pacechallenge.org/2019/
2The term used for problem size reduction in fixed parameter tractable (FPT) algorithms that

have more strict requirements for the reduction rules

2

https://pacechallenge.org/2019/
https://pacechallenge.org/2019/

1.1 Contributions

the graph in a preprocessing step after which shortest path queries can be answered
multiple orders of magnitude faster than in algorithms that do not preprocess
the graph. Previously, new algorithms were able to achieve faster query times by
adding more levels of hierarchy. This culminated in Contraction Hierarchies where
each vertex in the graph represents its own level in the hierarchy. We present
Edge Hierarchies that go even further and put each edge on its own level. We
show that Edge Hierarchies can achieve comparable query times to Contraction
Hierarchies on continental-sized road networks and under specific metrics can even
outperform them.

Data Recovery for Fault-Tolerant MPI Applications (Part II)

When scaling algorithms to the largest compute clusters we have today (or the
even larger ones we expect to have in the future), we have to expect some compute
nodes to fail during the execution of a program. Thus, in order to finish such a
computation, we have to make the underlying algorithm fault tolerant. While most
existing solutions assume that spare resources are available to replace failed ones,
our work focuses on continuing work on the remaining compute nodes as well as fast
recovery. In Part II, we present an approach to fault tolerance in general purpose
parallel processing frameworks and a generic library for the rapid recovery of data
after a failure. Of course, this also relates to graph algorithms similar to those
presented in Part I. In fact, frameworks like the ones we study in Section 7 are
often used to parallelize graph algorithms. Either directly, as shown in our own
experimental evaluation, or through graph processing frameworks built on top of
them [Xin+13].

Fault Tolerance for Distributed Processing Frameworks (Chapter 7). One way
of developing parallel algorithms is the use of parallel processing frameworks like
MapReduce [DG08], Spark [Zah+12], or Thrill [Bin+16]. By expressing an algo-
rithm in terms of their restricted set of operations, these frameworks can parallelize
the execution without any explicit parallelization efforts by the application pro-
grammer. This can also include transparently tolerating node failures without
any intervention by the application programmer or system administrator. Many
existing implementations—especially for MapReduce—use local hard disks and
distributed filesystems for this or, in the case of MPI-based implementations, do
not support fault tolerance at all. We present an approach for tolerating failures
in parallel processing frameworks without the need for (local or remote) disks by
storing messages sent between the participating nodes in memory. This only has
a small impact on fault-free execution times of at most 4% for most benchmark
problems and enables fast recovery after a failure.

Fast General Purpose Data Recovery (Chapter 8). One main concern of fault
tolerant applications is recovering the data lost after a failure. Most existing
approaches focus on the fast creation of checkpoints for rapidly changing data but in
turn show relatively slow recovery times. In some cases, however, this data is static

3

1 Introduction and Overview

or only changes rarely. We present a library for these cases where fast recovery times
are needed. This will become increasingly important when failures become more
frequent in even larger systems. We store all required data in-memory and optimize
the data distribution such that a large fraction of the nodes can participate in the
data recovery procedure. We also use our library in a widely used bioinformatics
application where we are able to reduce recovery times by often more than an order
of magnitude.

4

Part I

Hierarchical Graph Algorithms

5

2
Chapter 2

Introduction

Today’s graph networks can have up to billions of edges. For example, the Facebook
graph contained 721 million vertices and 68.7 billion edges in 2011 [Uga+11]. In
order to process large graph we need scalable graph algorithms: Even presumably
fast algorithms like Dijkstra’s algorithm for shortest paths [Dij59] can take sec-
onds [Bas+16] on real-world inputs. For more computationally complex problems, a
solution cannot be found within hours. In the following chapters we present results
for three different graph problems: Maximum independent sets, maximum cuts,
and shortest paths. All these problems have in common that they scale to large
graphs by using or building some kind of hierarchy in the graph.

For the maximum independent set and maximum cut problems we employ
problem size reductions where we take an input graph and remove all the “easy”
parts. These reduction techniques are often used in so-called branch-and-reduce
algorithms where (in addition to traditional branching) a hierarchy of smaller and
smaller graphs is built using reductions.

For shortest path problem, we build a hierarchy of the edges of a road network.
The hierarchy is given by the importance of a road for long trips. Here, highways are
usually preferred over gravel roads. Small streets must still be considered though,
especially at the beginning and end of a route.

References and Attribution. This part is based on the conference papers [Hes+20;
HLS21a; Fer+20] and [HS19a]. In all of these papers the author of this thesis is (one
of) the main author(s). Further information on contributions are provided in the
chapters covering these papers. Large segments of this part were copied verbatim
from the conference papers or the corresponding technical reports [Hes+19b; HLS21b;
Fer+19; HS19b].

2.1 Preliminaries

Here, we give some general definitions and notations used for all our graph algorithms.
We provide more specific definitions and notations used only for some problems in
the respective chapters.

A graph is a tuple G = (V,E) with a set of n vertices V = {0, . . . , n − 1} and a
set of m edges E. To specify the vertex and edge sets of a specific graph G, we use
V (G) and E(G), respectively. In the case of undirected graphs, edges are subsets

7

2 Introduction

of V of size 2, i. e., E ⊆ {{u, v} ∣ u, v ∈ V }. In the case of directed graphs, edges
are 2-tuples of vertices, i. e., E ⊆ V × V . We assume that G is simple, i. e., it has
no self loops or multi-edges. In the rest of this section, any definition made for
directed graphs also applies to the undirected case. Definitions using the undirected
notation are only used for undirected graphs in this dissertation.

In case of (edge) weighted graphs, we additionally use an edge weight function
ω ∶ E → R>0 (or some other set of numbers). We then sometimes write G = (V,E,ω).
For unweighted graphs, the weight for each edge is 1.

The complement Ḡ of a graph G is the graph where every edge becomes a
non-edge and every non-edge becomes an edge, i.e., V (G) = V (G) and E(G) =
(V (G) × V (G)) / E(G).

The (open) neighborhood of a vertex v ∈ V is denoted by N(v) = {u ∣ {v, u} ∈ E}.
Furthermore, we denote the closed neighborhood of a vertex by N[v] = N(v) ∪ {v}.
We define the open and closed neighborhood of a set of vertices U ⊆ V as N(U) =
⋃u∈U N(v) / U and N[U] = N(U) ∪U , respectively. The degree of a vertex v ∈ V
is the size of its neighborhood d(v) = ∣N(v)∣ and ∆ =maxv∈V {d(v)}. For a vertex
v ∈ V , we further define the two-neighborhood N2(v) = N(N(v)) / N[v].

For a subset of vertices VS ⊆ V , the (vertex-)induced subgraph G[VS] = (VS ,ES) is
given by restricting the edges of G to vertices of VS , i. e., ES = {{u, v} ∈ E ∣ u, v ∈ VS}.
Likewise, for a subset of edges ES ⊆ E, the edge-induced subgraph G[ES] = (VS ,ES)
is given by restricting the vertices of G to the endpoints of edges in ES , i. e.,
VS = {u ∈ V ∣ {u, v} ∈ ES}. For a subset of vertices U ⊂ V , we further define G −U
as the induced subgraph G[V / U].

A path is a sequence of vertices (v0, . . . , vn) such that (vi, vi+1) ∈ E for 0 ≤ i < n.
The length of a path is the sum of its edge weights. A path with n + 1 vertices is
called an n-path because it contains n edges. A path with v0 = vn is called a cycle
of G. A cordless cycle is a cycle with no edges between the vertices that are not
part of the cycle, i.e., there are no edges (vi, vj) with j ≠ i + 1. The length of a
shortest path with source vertex s and target vertex t is also called the distance
between s and t, or dist(s, t).

A subgraph of G induced by a maximal subset of vertices that are connected by
a path is called a connected component. Furthermore, a graph that only contains
one connected component is called connected. Likewise, a graph with more than one
connected component is called disconnected. A subset S ⊂ V of a connected graph G
is called a vertex separator if the removal of S from G makes the graph disconnected.
A (sub-)graph is biconnected if it remains connected after removing any single
vertex, i.e., there is no vertex separator of size 1. A biconnected component is a
maximal subgraph that is biconnected.

8

3
Chapter 3

Maximum Independent Sets

References and Attribution. This chapter is based on the conference papers
[Hes+20] and [HLS21a]. Together with Sebastian Lamm, the author of this thesis is
one of the main authors of these paper with editing done by Christian Schulz and
Darren Strash for [Hes+20] and Christian Schorr for [HLS21a]. Further information
on contributions are provided in the sections covering these papers. Large parts of
this chapter were copied verbatim from the conference papers or the corresponding
technical reports [Hes+19b; HLS21b].

3.1 Introduction

An independent set of a graph G = (V,E) is a set of vertices I ⊆ V of G such
that no two vertices in this set are adjacent. The problem of finding such an
independent set of maximum cardinality, the maximum independent set problem,
is a fundamental NP-hard problem [GJS74]. Its applications (either directly or
through its complementary problems) cover a wide variety of fields including
computer graphics [San+08], network analysis [Put+15], route planning [Kie+10]
and computational biology [BW06; Che+08]. In computer graphics for instance,
large independent sets can be used to optimize the traversal of mesh edges in
a triangle mesh. Further applications stem from its complementary problems
minimum vertex cover and maximum clique.

One of the best known techniques for finding maximum independent sets, both
in theory [XN17; CKX10] and practice [AI16], are data reduction algorithms. These
algorithms apply a set of reduction rules to decrease the size of an instance while
maintaining the ability to compute an optimal solution afterwards. A recently
successful type of data reduction algorithm are so-called branch-and-reduce algo-
rithms [AI16], which exhaustively apply a set of reduction rules to compute an
irreducible graph. If no further rule can be applied, the algorithm branches into (at
least) two smaller subproblems, which are then solved recursively. To make them
more efficient in practice, these algorithms also make use of problem-specific upper
and lower bounds to quickly prune the search space.

Complementary to independent sets are vertex covers and cliques. Many tech-
niques have been proposed for solving these problems, and papers in the literature
usually focus on one of these problems in particular. However, all of these problems
are equivalent: a minimum vertex cover C in G is the complement of a maximum

9

3 Maximum Independent Sets

MIS of G MVC of G MC of G

Figure 3.1: A graph G with a Maximum Independent Set (MIS), a Minimum
Vertex Cover (MVC), and a Maximum Clique (MC) of the complement graph G.

independent set V / C in G, which is a maximum clique V / C in G. Thus, an
algorithm that solves one of these problems can be used to solve the others.

3.2 Preliminaries

For general definitions and notations for graphs see Section 2.1. Here we give some
more definitions specific to maximum independent sets and its related problems.
Note that in this chapter, we consider undirected, unweighted graphs.

An independent set of a graph is a subset of vertices I ⊆ V such that no two
vertices of I are adjacent. A maximum independent set (MIS) is an independent set
of maximum cardinality. Closely related to independent set are vertex covers and
cliques. A vertex cover is a set of vertices C ⊆ V such that for each edge {u, v} ∈ E
either u or v is contained in C. The complement of a (maximum) independent
set of a graph G is a (minimum) vertex cover (MVC) of G. A clique is a subset
of vertices K ⊆ V such that all vertices of K are adjacent to each other, i. e.,
∀u, v ∈ K ∶ {u, v} ∈ E. Finally, a (maximum) independent set of a graph G is a
(maximum) clique (MC) in the complement graph G. Figure 3.1 shows an example
graph with the three sets described in this section.

3.3 Related Work

Research results in the area can be found through work on the minimum vertex cover
problem and its complementary maximum clique and independent set problems, and
can often be categorized depending on the angle of attack. For exact exponential
(theoretical) algorithms, the maximum independent set problem is canonically
studied, for parameterized algorithms, the minimum vertex cover problem is studied,
and the maximum clique problem is normally solved exactly in practice (though
there are recent exceptions). However, these problems are only trivially different—
techniques for solving one problem require only subtle modifications to solve the
other two.

10

3.3 Related Work

Theoretical Exponential-time Algorithms. The maximum independent set problem
is most often considered when designing exact (exponential-time) algorithms, and
much research has be devoted to reducing the base of the exponential running
time. A primary technique is to develop rules to modify the graph, removing or
contracting subgraphs that can be solved simply, which reduces the graph to a
smaller instance. These rules are referred to as data reduction rules (often simplified
to reduction rules or reductions). Reduction rules have been used to reduce the
running time of the brute force O(n22n) algorithm to the O(2n/3) time algorithm of
Tarjan and Trojanowski [TT77], and to the current best polynomial space algorithm
with running time of O∗(1.1996n) by Xiao and Nagamochi [XN17].

The reduction rules used for these algorithms are often staggeringly simple, in-
cluding pendant vertex removal, vertex folding [CKJ01] and twin reductions [XN13],
which eliminate nearly all vertices of degree three or less from the graph. These
algorithms apply reductions during recursion, only branching when the graph can no
longer be reduced [FK10], and are referred to as branch-and-reduce algorithms. Fur-
ther techniques used to accelerate these algorithms include branching rules [KLR09;
FGK09] which eliminate unnecessary branches from the search tree, as well as faster
exponential-time algorithms for graphs of small maximum degree [XN17].

Parameterized Algorithms. For parameterized algorithms, we now turn to the
minimum vertex cover problem. The most efficient algorithms for computing a
minimum vertex cover in both theory and practice repeatedly apply data reduction
rules to obtain a (hopefully) much smaller problem instance. If this smaller instance
has size bounded by a function of some parameter, it’s called a kernel, and producing
a polynomially-sized kernel gives a fixed-parameter tractable Algorithm in the chosen
parameter. Reductions are surprisingly effective for the minimum vertex cover
problem. In particular, letting k be the size of a minimum vertex cover, the
well-known crown reduction rule produces a kernel of size 3k [CFJ05] and the
LP-relaxation reduction due to Nemhauser and Trotter [NT75], produces a kernel
of size 2k [CKJ01]. Chen et al. [CKX10] developed the current best parameterized
algorithm for minimum vertex cover, giving a branch-and-reduce algorithm with
running time O(1.2738k + kn) and polynomial space. For more information on the
history of vertex cover kernelization, see the recent survey by Fellows et al. [Fel+18].

Exact Algorithms in Practice. The most efficient maximum clique solvers use a
branch-and-bound search with advanced vertex reordering strategies and pruning
(typically using approximation algorithms for graph coloring, MaxSAT [LFX13]
or constraint satisfaction). The long-standing canonical algorithms for finding
the maximum clique are the MCS algorithm by Tomita et al. [Tom+10] and the
bit-parallel algorithms of San Segundo et al. [Seg+13; SRJ11]. Recently, Li et
al. [LJM17] introduced the MoMC algorithm, which uses incremental MaxSAT logic
to achieve speed ups of up to 1 000 over MCS. Experiments by Batsyn et al. [Bat+14]
show that MCS can be sped up significantly by giving an initial solution found
through local search. However, even with these state-of-the-art algorithms, graphs
on thousands of vertices remain intractable. For example, a difficult graph on 4 000

11

3 Maximum Independent Sets

vertices required 39 wall-clock hours in a highly-parallel MapReduce cluster, and is
estimated to require over a year of sequential computation [XGA13]. Recent clique
solvers for sparse graphs investigate applying simple data reduction rules, using
an initial clique given by some inexact method [VBB15; SLP16; Cha19]. However,
these techniques rarely work on dense graphs, such as the complement graphs that
we consider here. A thorough discussion of many results in clique finding can be
found in the survey of Wu and Hao [WH15].

Data reductions have been successfully applied in practice to solve many problems
that are intractable with general algorithms. Butenko et al. [But+02; But+09] were
the first to show that simple reductions could be used to compute exact maximum
independent sets on graphs with hundreds vertices for graphs derived from error-
correcting codes. Their algorithm works by first applying isolated clique removal
reductions, then solving the remaining graph with a branch-and-bound algorithm.
Later, Butenko and Trukhanov [BT07] introduced the critical independent set
reduction, which was able to solve graphs produced by the Sanchis graph generator.
Larson [Lar07] later proposed an algorithm to find a maximum critical independent
set, but in experiments it proved to be slow in practice [Str16]. Iwata et al. [IOY14]
then showed how to remove a large collection of vertices from a maximum matching
all at once.

For the minimum vertex cover problem, it has long been known that two such
simple reductions, called pendant vertex removal and vertex folding, are particularly
effective in practice. However, two seminal experimental works explored the efficacy
of further reductions. Abu-Khzam et al. [Abu+07] showed that crown reductions are
as effective (and sometimes faster) in practice than performing the LP relaxation
reduction (which, as they show in the paper, removes crowns) on graphs. We
briefly note that critical independent sets, together with their neighborhoods, are
in fact crowns, and thus in some ways the work of Butenko and Trukhanov [BT07]
replicates that by Abu-Khzam et al. [Abu+07], though their experiments are run
on different graphs.

Later, Akiba and Iwata [AI16] showed that an extensive collection of advanced
data reduction rules (together with branching rules and lower bounds for pruning
search) are also highly effective in practice. Their algorithm finds exact minimum
vertex covers on a corpus of large social networks with hundreds of thousands of
vertices or more in mere seconds. More details on the reduction rules follow in
Section 3.3.1.

We briefly note that we considered other reduction techniques that emphasize
fast computation at the cost of a larger (irreducible) graph [CLZ17; Str16; HSS18];
however, we did not find them as effective as Akiba and Iwata [AI16] for exactly
solving difficult instances. This is somewhat expected, however, since these tech-
niques are optimized to produce fast high-quality solutions when combined with
inexact methods such as local search.

12

3.3 Related Work

v v

Figure 3.2: Pendant vertex reduction. Vertex v has degree one, so it is added
to the MIS and removed from the graph along with its neighbor.

v v′

u w

Figure 3.3: Vertex folding reduction. Vertex v has degree two and its neighbors
u and w are not connected. Vertices v, u, and w are contracted into a new
vertex v′.

3.3.1 Reduction Rules

As both contributions presented in this chapter rely on the use of data reduction
rules, we now give a brief description of the reductions used in our contributions—
some of them will be explained in more detail later on. Each reduction allows us
to choose vertices that are either in some maximum independent set, or for which
we can locally choose a vertex in a maximum independent set after solving the
remaining graph by following simple rules. If a maximum independent set is found
in the reduced graph, then each reduction may be undone, producing a maximum
independent set in the original graph. Refer to Akiba and Iwata [AI16] for a more
thorough discussion, including implementation details. Our implementation of the
reductions is an adaptation of Akiba and Iwata’s original code.

Pendant vertices: Any vertex v of degree one, called a pendant, it is in some
maximum independent set, therefore v and its neighbor u can be removed from G.
See Figure 3.2 for an example.

Vertex folding: For a vertex v with degree 2 whose neighbors u and w are not
adjacent, either v is in some maximum independent set, or both u and w are in
some maximum independent set. Therefore, we can contract u, v, and w to a single
vertex v′. If v′ is in the computed maximum independent set of the reduced graph,
then u and w are in a maximum independent set of the original graph. Otherwise,
v is in a maximum independent set. Figure 3.3 shows an example application of
vertex folding.

Linear Programming Relaxation: First introduced by Nemhauser and Trotter [NT75]
for the vertex packing problem, they present a linear programming relaxation with
a half-integral solution (i.e., using only values 0, 1/2, and 1) which can be solved

13

3 Maximum Independent Sets

u v u v

Figure 3.4: Twin reduction, case 1. Vertices u and v have degree three and the
same neighborhood with an edge connecting two of their neighbors. Vertices
u and v are added to the MIS and removed from the graph along with their
neighborhood.

u v w

Figure 3.5: Twin reduction, case 2. Vertices u and v have degree three and the
same neighborhood with no edges within their neighborhood. Vertices u, v,
and their neighborhood are contracted into a new vertex w.

using bipartite matching. Their relaxation may be formulated as follows: maximize

∑v∈V xv, such that for each edge (u, v) ∈ E, xu + xv ≤ 1 and for each vertex v ∈ V ,
xv ≥ 0. There is a maximum independent set containing all vertices with value 1,
and are therefore added to the solution and removed from the graph together with
their neighbors. We use the further improvement from Iwata et al. [IOY14], which
computes a solution whose half-integral part is minimal.

Unconfined [XN13]: Though there are several definitions of an unconfined vertex
in the literature, we use the simple one from Akiba and Iwata [AI16]. A vertex v
is unconfined when determined by the following simple algorithm. First, initialize
S = {v}. Then find a u ∈ N(S) such that ∣N(u) ∩ S∣ = 1 and ∣N(u) / N[S]∣ is
minimized. If there is no such vertex, then v is confined. If N(u) / N[S] = ∅, then
v is unconfined. If N(u) / N[S] is a single vertex w, then add w to S and repeat
the algorithm. Otherwise, v is confined. Unconfined vertices can be removed from
the graph, since there always exists a maximum independent set that does not
contain unconfined vertices.

Twin [XN13]: Let u and v be vertices of degree 3 with N(u) = N(v). If G[N(u)]
has edges, then add u and v to the maximum independent set and remove u, v,
N(u), N(v) from G. Otherwise, N(u) may belong to some maximum independent
set. We still remove u, v, N(u), N(v) from G, and add a new gadget vertex w to
G with edges to u’s two-neighborhood (vertices at a distance 2 from u). If w is in
the computed maximum independent set, then u’s (and v’s) neighbors are in some
maximum independent set, otherwise u and v are in a maximum independent set.

14

3.3 Related Work

v

u

v

u

w w

Figure 3.6: Funnel reduction. Vertices u and v are neighbors and N(v) / {u}
induces a clique. We remove u, v, and N(v) ∩N(u) = {w} from the graph and
connect all of u’s neighbors to all of v’s neighbors.

a1 b1

a2b2

a1 b1

a2b2

Figure 3.7: Desk reduction. Vertices a1, b1, a2, b2 induce a cordless 4-cycle with
a minimum degree of three and the total number of neighbors of A = {a1, a2}
and B = {b1, b2} is two. Also, A and B do not share any neighbors except each
others. This is reduced by removing the entire 4-cycle and adding edges from
each vertex adjacent to an a-vertex to each vertex adjacent to a b-vertex.

Figures 3.4 and 3.5 show example applications for both cases of the twin reduction.

Alternative: Two sets of vertices A and B are said to be alternatives if ∣A∣ = ∣B∣ ≥ 1
and there exists an maximum independent set I such that I ∩ (A ∪B) is either A
or B. Then we remove A and B and C = N(A) ∩N(B) from G and add edges
from each a ∈ N(A) / C to each b ∈ N(B) / C. Then we add either A or B to I,
depending on which neighborhood has vertices in I. Two structures are detected
as alternatives. First, if v and u are neighbors and N(v) / {u} induces a complete
graph, then {u} and {v} are alternatives (a funnel). Next, if there is a cordless
4-cycle a1b1a2b2 where each vertex has at least degree 3. Then sets A = {a1, a2} and
B = {b1, b2} are alternatives (called a desk) when ∣N(A) / B∣ ≤ 2, ∣N(A) / B∣ ≤ 2,
and N(A) ∩N(B) = ∅. Figures 3.6 and 3.7 show examples of the funnel and desk
reduction, respectively.

15

3 Maximum Independent Sets

3.4 WeGotYouCovered: The Winning PACE 2019 Solver

Abstract. We present the winning solver of the PACE 2019 Implemen-
tation Challenge, Vertex Cover Track. Our algorithm uses a portfolio of
techniques, including an aggressive kernelization strategy, local search,
branch-and-reduce, and a state-of-the-art branch-and-bound solver. Of
particular interest is that several of our techniques were not from the
literature on the vertex over problem: they were originally published
to solve the (complementary) maximum independent set and maximum
clique problems.

Aside from illustrating our solver’s performance in the PACE 2019
Implementation Challenge, our experiments provide several key insights
not yet seen before in the literature. First, kernelization can boost the
performance of branch-and-bound clique solvers enough to outperform
branch-and-reduce solvers. Second, local search can significantly boost
the performance of branch-and-reduce solvers. And finally, somewhat
surprisingly, kernelization can sometimes make branch-and-bound algo-
rithms perform worse than running branch-and-bound alone.

References and Attribution. This section is based on the conference paper [Hes+20].
Together with Sebastian Lamm, the author of this thesis is one of the main au-
thors of this paper with editing done by Christian Schulz and Darren Strash. The
author made major contributions to the algorithms used as well as the time slic-
ing approach. The implementation and experiments were done by the author in
close cooperation with Sebastian Lamm. Large parts of this section were copied
verbatim from the conference paper or the corresponding technical report [Hes+19b].

Note that this section is written in terms of the minimum vertex cover problem
as this was the problem to be solved in the PACE 2019 challenge.

3.4.1 Introduction

To win the Vertex Cover track of the PACE 2019 Implementation Challenge, we
deployed a portfolio of solvers, using techniques from the literature on maximum
independent sets, minimum vertex covers, and maximum cliques. These include data
reduction rules and branch-and-reduce for the minimum vertex cover problem [AI16],
iterated local search for the maximum independent set problem [ARW12], and a
state-of-the-art branch-and-bound maximum clique solver [LJM17].

Our Results. In this chapter, we describe our techniques and solver in detail and
analyze the results of our experiments on the data sets provided by the challenge.
Not only do our experiments illustrate the power of the techniques spanning the
literature, they also provide several new insights not yet seen before. In particu-
lar, kernelization followed by branch-and-bound can outperform branch-and-reduce

16

3.4 WeGotYouCovered: The Winning PACE 2019 Solver

solvers; seeding branch-and-reduce by an initial solution from local search can signifi-
cantly boost its performance; and, somewhat surprisingly, kernelization is sometimes
counterproductive: branch-and-bound algorithms can perform significantly worse
on the kernel than on the original input graph.

Organization. In Section 3.4.2 we outline each of the techniques that we use, and
describe in Section 3.4.3 how we combine all of the techniques in our final solver
that scored the most points in the PACE 2019 Implementation Challenge. Lastly,
in Section 3.4.4 we perform an experimental evaluation to show the impact of the
components used on the final number of instances solved during the challenge.

3.4.2 Techniques

We now describe the techniques that we use in our solver.

3.4.2.a) Kernelization

We use the full collection of data reduction rules explained in Section 3.3.1 whose
efficacy was studied by Akiba and Iwata [AI16]. To compute a kernel, Akiba
and Iwata [AI16] apply their reductions r1, . . . , rj by iterating over all reductions
and trying to apply the current reduction ri to all vertices. If ri reduces at
least one vertex, they restart with reduction r1. When reduction rj is executed,
but does not reduce any vertex, all reductions have been applied exhaustively,
and a kernel is found. Following their study we order the reductions as follows:
degree-one vertex (i.e., pendant) removal, unconfined vertex removal [XN13], a
well-known linear-programming relaxation [IOY14; NT75] (which, consequently,
removes crowns [Abu+07]), vertex folding [CKJ01], and twin, funnel, and desk
reductions [XN13].

3.4.2.b) Branch-and-Reduce

Branch-and-reduce is a paradigm that intermixes data reduction rules and branching.
We use the algorithm of Akiba and Iwata, which exhaustively applies their full suite
of reduction rules before branching, and includes a number of advanced branching
rules as well as lower bounds to prune search.

Branching. When branching, a vertex of maximum degree is chosen for inclusion
into the vertex cover. Mirrors and satellites are detected when branching, in order
to eliminate branching on certain vertices. A mirror of a vertex v is a vertex
u ∈ N2(v) such that N(v) / N(u) is a clique or empty. Fomin et al. [FGK09] show
that either the mirrors of v or N(v) is in a minimum vertex cover, and we can
therefore branch on all mirrors at once. This branching prevents branching on
mirrors individually and decreases the size of the remaining graph (and thus the
depth of the search tree). A satellite of a vertex v is a vertex u ∈ N2(v) such that
there exists a vertex w ∈ N(v) such that N(w) / N[v] = {u}. If a vertex v has no

17

3 Maximum Independent Sets

mirrors, then either v is in a minimum vertex cover or the neighbors of v’s satellites
are in a minimum vertex cover. Akiba and Iwata [AI16] further introduce packing
branching, maintaining linear inequalities for each vertex included or excluded from
the current vertex cover (called packing constraints) throughout recursion; when a
constraint is violated, further branching can be eliminated.

Lower Bounds. We briefly remark that Akiba and Iwata [AI16] implement lower
bounds to prune the search space. Their lower bounds are based on clique cover,
the LP relaxation, and cycle covers (see their paper for further details). The final
lower bound used for pruning is the maximum of these three.

3.4.2.c) Branch-and-Bound

Experiments by Strash [Str16] show that the full power of branch-and-reduce is
only needed very rarely in real-world instances; kernelization followed by a standard
branch-and-bound solver is sufficient for many real-world instances. Furthermore,
branch-and-reduce does not work well on many synthetic benchmark instances,
where data reduction rules are ineffective [AI16], and instead add significant overhead
to branch-and-bound. We use a state-of-the-art branch-and-bound maximum clique
solver (MoMC) by Li et al. [LJM17], which uses incremental MaxSAT reasoning to
prune search, and a combination of static and dynamic vertex ordering to select the
vertex for branching. We run the clique solver on the complement graph, giving
a maximum independent set from which we derive a minimum vertex cover. In
preliminary experiments, we found that a kernel can sometimes be harder for the
solver than the original input; therefore, we run the algorithm on both the kernel
and on the original graph.

3.4.2.d) Iterated Local Search

Batsyn et al. [Bat+14] showed that if branch-and-bound search is primed with a high-
quality solution from local search, then instances can be solved up to thousands of
times faster. We use the iterated local search algorithm by Andrade et al. [ARW12]
to prime the branch-and-reduce solver with a high-quality initial solution. To the
best of our knowledge, this has not been tried before. Iterated local search was
originally implemented for the maximum independent set problem, and is based on
the notion of (j, k)-swaps. A (j, k)-swap removes j nodes from the current solution
and inserts k nodes. The authors present a fast linear-time implementation that,
given a maximal independent set, can find a (1,2)-swap or prove that none exists.
Their algorithm applies (1, 2)-swaps until reaching a local maximum, then perturbs
the solution and repeats. We implemented the algorithm to find a high-quality
solution on the kernel. Calling local search on the kernel has been shown to produce
a high-quality solution much faster than without kernelization [CLZ17; Dah+16].

18

3.4 WeGotYouCovered: The Winning PACE 2019 Solver

3.4.3 Putting it all Together

Our algorithm first runs a preprocessing phase, followed by 4 phases of solvers.

Phase 1. (Preprocessing) Our algorithm starts by computing a kernel of the graph
using the reductions by Akiba and Iwata [AI16]. From there we use iterated
local search to produce a high-quality solution Sinit on the (hopefully smaller)
kernel.

Phase 2. (Branch-and-Reduce, short) We prime a branch-and-reduce solver with
the initial solution Sinit and run it with a short time limit.

Phase 3. (Branch-and-Bound, short) If Phase 2 is unsuccessful, we run the MoMC
clique solver [LJM17] on the complement of the kernel, also using a short
time limit1. Sometimes kernelization can make the problem harder for MoMC.
Therefore, if the first call was unsuccessful we also run MoMC on the comple-
ment of the original (unkernelized) input with the same short time limit.

Phase 4. (Branch-and-Reduce, long) If we have still not found a solution, we run
branch-and-reduce on the kernel using initial solution Sinit and a longer time
limit. We opt for this second phase because—while most graphs amenable
to reductions are solved very quickly with branch-and-reduce (less than a
second)—experiments by Akiba and Iwata [AI16] showed that other slower
instances either finish in at most a few minutes, or take significantly longer—
more than the time limit allotted for the challenge. This second phase of
branch-and-reduce is meant to catch any instances that still benefit from
reductions.

Phase 5. (Branch-and-Bound, remaining time) If all previous phases were unsuc-
cessful, we run MoMC on the original (unkernelized) input graph until the
end of the time given to the program by the challenge. This is meant to
capture only the hardest-to-compute instances.

The algorithm time limits (discussed in the next section) and ordering were care-
fully chosen so that the overall algorithm outputs solutions of the “easy” instances
quickly, while still being able to solve hard instances.

3.4.4 Experimental Results

We now look at the impact of the algorithmic components on the number of
instances solved. Here, we focus on the instances of the PACE 2019 Implementation
Challenge, Vertex Cover Track A [DFH19a]. This set contains 200 instances overall,
split up into 100 public instances that were known before the competition and
100 private instances that were used to evaluate the solvers. We also summarize

1Note that repeatedly checking the time can slow down a highly optimized branch-and-bound
solver considerably; we therefore simulate time checking by using a limit on the number of
branches.

19

3 Maximum Independent Sets

the results comparing against the second and third best competing algorithms
on the private instances during the challenge (the running times can be found at
https://www.optil.io/optilion/problem/3155).

3.4.4.a) Methodology and Setup

All of our experiments were run on a machine with four sixteen-core Intel Xeon
Haswell-EX E7-8867 processors running at 2.5 GHz, 1 TB of main memory, and
32 768 KB of L2-Cache. The machine runs Debian GNU/Linux 9 and Linux kernel
version 4.9.0-9. All algorithms were implemented in C++11 and compiled with
gcc version 6.3.0 with optimization flag -O3. Our source code is publicly available
under the MIT license at [Hes+19a] and on github2. Each algorithm was run
sequentially with a time limit of 30 minutes—the time allotted to solve a single
data set in the PACE 2019 Implementation Challenge. Our primary focus is on the
total number of instances solved.

3.4.4.b) Evaluation

We now explain the main configuration that we use in our experimental setup. In
the following, MoMC runs the MoMC clique solver by Li et al. [LJM17] on the
complement of the input graph; RMoMC applies reductions to the input graph
exhaustively, and then runs MoMC on the complement of the resulting kernel; LSBnR
applies reductions exhaustively, then runs local search to obtain a high-quality
solution on the kernel which is used as a initial bound in the branch-and-reduce
algorithm that is run on the kernel; BnR applies reductions and then runs the
branch-and-reduce algorithm on the kernel (no local search is used to improve an
initial bound); FullA is the full algorithm as described in the previous section, using
a short time limit of one second and a long time limit of thirty seconds.

Tables 3.1 and 3.2 give an overview of the public instances that each of the
solvers solved, including the kernel size, and the minimum vertex cover size for
those instances solved by any of the four algorithms. Overall, MoMC can solve
30 out of the 100 instances. Applying reductions first enables RMoMC to solve
68 instances. However, curiously, there are two instances (instances 131 and 157)
that MoMC solves, but that RMoMC can not solve. In these cases, kernelization
reduced the number of nodes, but increased the number of edges. This is due to
the alternative reduction, which in some cases can create more edges than initially
present. This is why we choose to also run MoMC on the unkernelized input graph
in FullA (in order to solve those instances as well).

LSBnR solves 55 of the 100 instances. Priming the branch-and-reduce algorithm
with an initial solution computed by local search has a significant impact: LSBnR
solves 13 more instances than BnR, which solves 42 instances. In particular, using
local search to find an initial bound helps to solve large instances in which the initial
kernelization step does not reduce the graph fully. Surprisingly, RMoMC solves 26

2https://github.com/KarlsruheMIS/pace-2019

20

https://www.optil.io/optilion/problem/3155
https://github.com/KarlsruheMIS/pace-2019

3.4 WeGotYouCovered: The Winning PACE 2019 Solver

0.1 1 10 100 1000 10000
Time t (s)

0

40

80

120

160

200

In
st

an
ce

s
so

lv
ed

MoMC
RMoMC

LSBnR
BnR

FullA

Figure 3.8: Number of instances solved over time by each algorithm over all
instances. At each time step t, we count each instance solved by the algorithm
in at most t seconds.

instances that BnR does not (and even LSBnR is only able to solve one of these
instances). To the best of our knowledge, this is the first time that kernelization
followed by branch-and-bound is shown to significantly outperform branch-and-
reduce. Our full algorithm FullA solves 82 of the 100 instances and, as expected,
dominates each of the other configurations. This can be further seen from the plot
in Figure 3.8, which shows how many instances each algorithm solves over time
(this includes all 100 public and 100 private instances of the challenge). Note that
LSBnR and RMoMC solve more instances in narrow time gaps, due to FullA’s set up
cost and running multiple algorithms. However, FullA quickly makes up for this
and overtakes all algorithms at approximately eight seconds. In addition to the
100 public instances, the PACE Implementation Challenge tests all submissions
on 100 private instances. Tables 3.3 and 3.4 give detailed per instances results
on those instances. The results are similar to the results on the public instances.
On the private instances, MoMC can solve 35 out of the 100 instances, RMoMC
solves 62, LSBnR solves 58 and BnR solves 35 instances. Our full algorithm FullA
solved 87 of the 100 instances, which is 10 more instances than the second-place
submission (peaty [PT19], solving 77), and 11 more than the third-place submission
(bogdan [Zav19]), solving 76). Our solver dominates these other solvers: with the
exception of one graph, our algorithm solves all instances that peaty and bogdan
can solve combined.

We briefly describe these two solvers. The peaty solver uses reductions to compute
a problem kernel of the input followed by an unpublished maximum weight clique
solver on the complement of each of the connected components of the kernel to
assemble a solution. The clique solver is similar to MaxCLQ by Li and Quan [LQ10],

21

3 Maximum Independent Sets

but is more general. Local search is used to obtain an initial solution. On the other
hand, bogdan implemented a small suite of simple reductions (including vertex
folding, isolated clique removal, and degree-one removal) together with a recent
maximum clique solver by Szabó and Zavalnij [SZ18].

Lastly, we note that our choice of using MoMC as our chosen branch-and-bound
solver is significant on the private instances. Eight instances solved exclusively by
our solver are solved in Phase 5, where MoMC is run until the end of the challenge
time limit.

3.4.5 Conclusion

We presented the winning solver of the PACE 2019 Implementation Challenge
Vertex Cover Track. Our algorithm uses a portfolio of techniques, including an
aggressive kernelization strategy with all known reduction rules, local search, branch-
and-reduce, and a state-of-the-art branch-and-bound solver. Of particular interest
is that several of our techniques were not from the literature on the vertex over
problem: they were originally published to solve the (complementary) maximum
independent set and maximum clique problems. Lastly, our experiments show the
impact of the different solver techniques on the number of instances solved during
the challenge. In particular, the results emphasize that data reductions are an
important tool to boost the performance of branch-and-bound, and local search is
highly effective to boost the performance of branch-and-reduce.

Acknowledgments

We wish to thank the organizers of the PACE 2019 Implementation Challenge
for providing us with the opportunity and means to test our algorithmic ideas.
We also are indebted to Takuya Akiba and Yoichi Iwata for sharing their original
branch-and-reduce source code3, and to Chu-Min Li, Hua Jiang, and Felip Manyà
for not only sharing—but even open sourcing—their code for MoMC at our request4.
Their solver was of critical importance to our algorithm’s success.

3https://github.com/wata-orz/vertex_cover
4https://home.mis.u-picardie.fr/~cli/EnglishPage.html

22

https://github.com/wata-orz/vertex_cover
https://home.mis.u-picardie.fr/~cli/EnglishPage.html

3.4 WeGotYouCovered: The Winning PACE 2019 Solver

Table 3.1: Detailed per instance results for public instances. The columns n
and m refer to the number of nodes and edges of the input graph, n′ and m′

refer to the number of nodes and edges of the kernel graph after reductions
have been applied exhaustively, and ∣V C ∣ refers to the size of the minimum
vertex cover of the input graph. We list a ‘✓’ when a solver successfully solved
the given instance in the time limit, and ‘−’ otherwise.

inst# n m n′ m′ MoMC RMoMC LSBnR BnR FullA ∣V C∣

001 6 160 40 207 0 0 − ✓ ✓ ✓ ✓ 2 586
003 60 541 74 220 0 0 − ✓ ✓ ✓ ✓ 12 190
005 200 819 192 800 ✓ ✓ ✓ ✓ ✓ 129
007 8 794 10 130 0 0 − ✓ ✓ ✓ ✓ 4 397
009 38 452 174 645 0 0 − ✓ ✓ ✓ ✓ 21 348
011 9 877 25 973 0 0 − ✓ ✓ ✓ ✓ 4 981
013 45 307 55 440 0 0 − ✓ ✓ ✓ ✓ 8 610
015 53 610 65 952 0 0 − ✓ ✓ ✓ ✓ 10 670
017 23 541 51 747 0 0 − ✓ ✓ ✓ ✓ 12 082
019 200 884 194 862 ✓ ✓ ✓ ✓ ✓ 130
021 24 765 30 242 0 0 − ✓ ✓ ✓ ✓ 5 110
023 27 717 133 665 0 0 − ✓ ✓ ✓ ✓ 16 013
025 23 194 28 221 0 0 − ✓ ✓ ✓ ✓ 4 899
027 65 866 81 245 0 0 − ✓ ✓ ✓ ✓ 13 431
029 13 431 21 999 0 0 − ✓ ✓ ✓ ✓ 6 622
031 200 813 198 818 ✓ ✓ ✓ ✓ ✓ 136
033 4 410 6 885 138 471 − ✓ ✓ ✓ ✓ 2 725
035 200 884 189 859 ✓ ✓ ✓ ✓ ✓ 133
037 198 824 194 810 ✓ ✓ ✓ ✓ ✓ 131
039 6 795 10 620 219 753 − ✓ ✓ ✓ ✓ 4 200
041 200 1 040 200 1 023 ✓ ✓ ✓ ✓ ✓ 139
043 200 841 198 844 ✓ ✓ ✓ ✓ ✓ 139
045 200 1 044 200 1 020 ✓ ✓ ✓ ✓ ✓ 137
047 200 1 120 198 1 080 ✓ ✓ ✓ ✓ ✓ 140
049 200 957 198 930 ✓ ✓ ✓ ✓ ✓ 136
051 200 1 135 200 1 098 ✓ ✓ ✓ ✓ ✓ 140
053 200 1 062 200 1 026 ✓ ✓ ✓ ✓ ✓ 139
055 200 958 194 938 ✓ ✓ ✓ ✓ ✓ 134
057 200 1 200 197 1 139 ✓ ✓ ✓ ✓ ✓ 142
059 200 988 193 954 ✓ ✓ ✓ ✓ ✓ 137
061 200 952 198 914 ✓ ✓ ✓ ✓ ✓ 135
063 200 1 040 200 1 011 ✓ ✓ ✓ ✓ ✓ 138
065 200 1 037 200 1 011 ✓ ✓ ✓ ✓ ✓ 138
067 200 1 201 200 1 174 ✓ ✓ ✓ ✓ ✓ 143
069 200 1 120 196 1 077 ✓ ✓ ✓ ✓ ✓ 140
071 200 984 200 952 ✓ ✓ ✓ ✓ ✓ 136
073 200 1 107 200 1 078 ✓ ✓ ✓ ✓ ✓ 139
075 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
077 200 988 193 954 ✓ ✓ ✓ ✓ ✓ 137
079 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
081 199 1 124 197 1 087 ✓ ✓ ✓ ✓ ✓ 141
083 200 1 215 198 1 182 ✓ ✓ ✓ ✓ ✓ 144
085 11 470 17 408 3 539 25 955 − − − − −
087 13 590 21 240 441 1 512 − ✓ − − ✓ 8 400
089 57 316 77 978 16 834 54 847 − − − − −
091 200 1 196 200 1 163 ✓ ✓ ✓ ✓ ✓ 145
093 200 1 207 200 1 162 ✓ ✓ ✓ ✓ ✓ 143
095 15 783 24 663 510 1 746 − ✓ − − ✓ 9 755
097 18 096 28 281 579 1 995 − ✓ − − ✓ 11 185
099 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300

23

3 Maximum Independent Sets

Table 3.2: Detailed per instance results for public instances. The columns n
and m refer to the number of nodes and edges of the input graph, n′ and m′

refer to the number of nodes and edges of the kernel graph after reductions
have been applied exhaustively, and ∣V C ∣ refers to the size of the minimum
vertex cover of the input graph. We list a ‘✓’ when a solver successfully solved
the given instance in the time limit, and ‘−’ otherwise.

inst# n m n′ m′ MoMC RMoMC LSBnR BnR FullA ∣V C∣

101 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
103 15 783 24 663 513 1 752 − ✓ − − ✓ 9 755
105 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
107 13 590 21 240 435 1 500 − ✓ − − ✓ 8 400
109 66 992 90 970 20 336 66 350 − − − − −
111 450 17 831 450 17 831 ✓ ✓ − − ✓ 420
113 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
115 18 096 28 281 573 1 986 − ✓ − − ✓ 11 185
117 18 096 28 281 582 2 007 − ✓ − − ✓ 11 185
119 18 096 28 281 588 2 016 − ✓ − − ✓ 11 185
121 18 096 28 281 579 1 998 − ✓ − − ✓ 11 185
123 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
125 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
127 18 096 28 281 582 2 001 − ✓ − − ✓ 11 185
129 15 783 24 663 507 1 752 − ✓ − − ✓ 9 755
131 2 980 5 360 2 179 6 951 ✓ − − − ✓ 1 920
133 15 783 24 663 507 1 746 − ✓ − − ✓ 9 755
135 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
137 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
139 18 096 28 281 579 1 995 − ✓ − − ✓ 11 185
141 18 096 28 281 576 1 995 − ✓ − − ✓ 11 185
143 18 096 28 281 582 2 001 − ✓ − − ✓ 11 185
145 18 096 28 281 576 1 989 − ✓ − − ✓ 11 185
147 18 096 28 281 567 1 974 − ✓ − − ✓ 11 185
149 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
151 15 783 24 663 501 1 728 − ✓ − − ✓ 9 755
153 29 076 45 570 2 124 16 266 − − − − −
155 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
157 2 980 5 360 2 169 6 898 ✓ − − − ✓ 1 920
159 18 096 28 281 582 2 004 − ✓ − − ✓ 11 185
161 138 141 227 241 41 926 202 869 − − − − −
163 18 096 28 281 582 2 004 − ✓ − − ✓ 11 185
165 18 096 28 281 576 1 995 − ✓ − − ✓ 11 185
167 15 783 24 663 510 1 746 − ✓ − − ✓ 9 755
169 4 768 8 576 3 458 11 014 − − − − −
171 18 096 28 281 576 1 989 − ✓ − − ✓ 11 185
173 56 860 77 264 17 090 55 568 − − − − −
175 3 523 6 446 2 723 8 570 − − − − −
177 5 066 9 112 3 704 11 797 − − − − −
179 15 783 24 663 504 1 740 − ✓ − − ✓ 9 755
181 18 096 28 281 573 1 989 − ✓ ✓ − ✓ 11 185
183 72 420 118 362 30 340 133 872 − − − − −
185 3 523 6 446 2 723 8 568 − − − − −
187 4 227 7 734 3 264 10 286 − − − − −
189 7 400 13 600 5 802 18 212 − − − − −
191 4 579 8 378 3 539 11 137 − − − − −
193 7 030 12 920 5 510 17 294 − − − − −
195 1 150 81 068 1 150 81 068 − − − − −
197 1 534 127 011 1 534 127 011 − − − − −
199 1 534 126 163 1 534 126 163 − − − − −

24

3.4 WeGotYouCovered: The Winning PACE 2019 Solver

Table 3.3: Detailed per instance results for private instances. The columns n
and m refer to the number of nodes and edges of the input graph, n′ and m′

refer to the number of nodes and edges of the kernel graph after reductions
have been applied exhaustively, and ∣V C ∣ refers to the size of the minimum
vertex cover of the input graph. We list a ‘✓’ when a solver successfully solved
the given instance in the time limit, and ‘−’ otherwise.

inst# n m n′ m′ MoMC RMoMC LSBnR BnR FullA ∣V C∣

002 51 795 63 334 0 0 − ✓ ✓ ✓ ✓ 10 605
004 8 114 26 013 0 0 − ✓ ✓ ✓ ✓ 2 574
006 200 751 188 716 ✓ ✓ ✓ ✓ ✓ 126
008 7 537 72 833 0 0 − ✓ ✓ ✓ ✓ 3 345
010 199 774 189 756 ✓ ✓ ✓ ✓ ✓ 127
012 53 444 68 044 0 0 − ✓ ✓ ✓ ✓ 10 918
014 25 123 31 552 0 0 − ✓ ✓ ✓ ✓ 5 111
016 153 802 153 802 − − − − −
018 49 212 63 601 0 0 − ✓ ✓ ✓ ✓ 10 201
020 57 287 71 155 0 0 − ✓ ✓ ✓ ✓ 11 648
022 12 589 33 129 0 0 − ✓ ✓ ✓ ✓ 6 749
024 7 620 47 293 0 0 − ✓ ✓ ✓ ✓ 4 364
026 6 140 36 767 0 0 − ✓ ✓ ✓ ✓ 2 506
028 54 991 67 000 0 0 − ✓ ✓ ✓ ✓ 11 211
030 62 853 79 557 0 0 − ✓ ✓ ✓ ✓ 13 338
032 1 490 2 680 1 081 3 426 ✓ − − − ✓ 960
034 1 490 2 680 1 090 3 467 ✓ ✓ − − ✓ 960
036 26 300 41 500 500 3 000 − ✓ ✓ ✓ ✓ 16 300
038 786 14 024 460 6 623 ✓ ✓ ✓ ✓ ✓ 605
040 210 625 210 625 ✓ ✓ − − ✓ 145
042 200 974 200 952 ✓ ✓ ✓ ✓ ✓ 136
044 200 1 186 200 1 147 ✓ ✓ ✓ ✓ ✓ 142
046 200 812 200 812 ✓ ✓ ✓ ✓ ✓ 137
048 200 1 052 198 1 022 ✓ ✓ ✓ ✓ ✓ 138
050 200 1 048 200 1 025 ✓ ✓ ✓ ✓ ✓ 140
052 200 1 019 198 1 000 ✓ ✓ ✓ ✓ ✓ 138
054 200 985 198 951 ✓ ✓ ✓ ✓ ✓ 137
056 200 1 117 200 1 089 ✓ ✓ ✓ ✓ ✓ 141
058 200 1 202 200 1 171 ✓ ✓ ✓ ✓ ✓ 142
060 200 1 147 200 1 118 ✓ ✓ ✓ ✓ ✓ 141
062 199 1 164 199 1 128 ✓ ✓ ✓ ✓ ✓ 141
064 200 1 071 198 1 040 ✓ ✓ ✓ ✓ ✓ 138
066 200 884 198 875 ✓ ✓ ✓ ✓ ✓ 134
068 200 983 198 961 ✓ ✓ ✓ ✓ ✓ 135
070 200 887 198 856 ✓ ✓ ✓ ✓ ✓ 133
072 200 1 204 198 1 176 ✓ ✓ ✓ ✓ ✓ 140
074 200 820 194 785 ✓ ✓ ✓ ✓ ✓ 132
076 26 300 41 500 500 3 000 − ✓ ✓ − ✓ 16 300
078 11 349 17 739 357 1 245 − ✓ − − ✓ 7 015
080 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
082 200 978 196 956 ✓ ✓ ✓ ✓ ✓ 138
084 13 590 21 240 435 1 503 − ✓ − − ✓ 8 400
086 26 300 41 500 500 3 000 − ✓ ✓ − ✓ 16 300
088 26 300 41 500 500 3 000 − ✓ ✓ − ✓ 16 300
090 11 349 17 739 357 1 245 − ✓ − − ✓ 7 015
092 450 17 794 450 17 794 ✓ ✓ − − ✓ 420
094 5 960 10 720 4 217 13 456 − − − − −
096 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
098 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
100 26 300 41 500 500 3 000 − ✓ ✓ ✓ ✓ 16 300

25

3 Maximum Independent Sets

Table 3.4: Detailed per instance results for private instances. The columns n
and m refer to the number of nodes and edges of the input graph, n′ and m′

refer to the number of nodes and edges of the kernel graph after reductions
have been applied exhaustively, and ∣V C ∣ refers to the size of the minimum
vertex cover of the input graph. We list a ‘✓’ when a solver successfully solved
the given instance in the time limit, and ‘−’ otherwise.

inst# n m n′ m′ MoMC RMoMC LSBnR BnR FullA ∣V C∣

102 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
104 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
106 2 980 5 360 2 136 6 809 ✓ − − − ✓ 1 920
108 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
110 98 128 161 357 29 168 140 392 − − − − −
112 18 096 28 281 576 1 992 − ✓ − − ✓ 11 185
114 15 783 24 663 504 1 740 − ✓ − − ✓ 9 755
116 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
118 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
120 70 144 116 378 6 029 38 285 − − − − −
122 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
124 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
126 18 096 28 281 582 2 001 − ✓ − − ✓ 11 185
128 26 300 41 500 500 3 000 − − − − −
130 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
132 15 783 24 663 513 1 755 − ✓ − − ✓ 9 755
134 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
136 18 096 28 281 585 2 007 − ✓ − − ✓ 11 185
138 18 096 28 281 576 1 992 − ✓ − − ✓ 11 185
140 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
142 2 980 5 360 2 180 6 946 ✓ − − − ✓ 1 920
144 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
146 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
148 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
150 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
152 13 590 21 240 438 1 506 − ✓ ✓ − ✓ 8 400
154 15 783 24 663 504 1 737 − ✓ − − ✓ 9 755
156 450 17 809 450 17 809 ✓ ✓ − − ✓ 420
158 15 783 24 663 507 1 746 − ✓ − − ✓ 9 755
160 18 096 28 281 576 1 989 − ✓ − − ✓ 11 185
162 50 635 83 075 13 066 63 758 − − − − −
164 29 296 46 040 1 210 8 666 − − − − −
166 3 278 5 896 2 400 7 643 ✓ − − − − 2 112
168 2 980 5 360 2 180 6 943 ✓ − − − ✓ 1 920
170 15 783 24 663 507 1 746 − ✓ − − ✓ 9 755
172 4 025 7 435 3 158 9 863 − − − − −
174 2 980 5 360 2 180 6 955 ✓ − − − ✓ 1 920
176 15 783 24 663 501 1 734 − ✓ − − ✓ 9 755
178 18 096 28 281 573 1 995 − ✓ − − ✓ 11 185
180 15 783 24 663 501 1 731 − ✓ − − ✓ 9 755
182 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
184 6 290 11 560 4 904 15 397 − − − − −
186 26 300 41 500 500 3 000 − − ✓ − ✓ 16 300
188 6 660 12 240 5 220 16 375 − − − − −
190 3 875 7 090 2 997 9 424 − − − − −
192 2 980 5 360 2 180 6 941 ✓ − − − ✓ 1 920
194 1 150 80 851 1 150 80 851 ✓ ✓ − − ✓ 1 100
196 1 534 126 082 1 534 126 082 − − − − −
198 1 150 80 072 1 150 80 072 ✓ ✓ − − ✓ 1 100
200 1 150 80 258 1 150 80 258 ✓ ✓ − − ✓ 1 100

26

3.5 Targeted Branching

3.5 Targeted Branching

Abstract. Previous results in improving the performance of branch-
and-reduce solvers for the maximum independent set problem were to a
large part achieved by developing new, more practical reduction rules.
However, other components that have been shown to have a significant
impact on the performance of these algorithms have not received as much
attention. One of these is the branching strategy, which determines
what vertex is included or excluded in a potential solution. Even now,
the most commonly used strategy selects vertices solely based on their
degree and does not take into account other factors that contribute to
the performance of the algorithm.

In this work, we develop and evaluate several novel branching strate-
gies for both branch-and-bound and branch-and-reduce algorithms. Our
strategies are based on one of two approaches which are motivated by
existing research. They either (1) aim to decompose the graph into two
or more connected components which can then be solved independently,
or (2) try to remove vertices that hinder the application of a reduction
rule which can lead to smaller graphs. Our experimental evaluation on
a large set of real-world instances indicates that our strategies are able
to improve the performance of the state-of-the-art branch-and-reduce
algorithm by Akiba and Iwata. To be more specific, our reduction-based
packing branching rule is able to outperform the default branching strat-
egy of selecting a vertex of highest degree on 65% of all instances tested.
Furthermore, our decomposition-based strategy based on edge cuts is able
to achieve a speedup of 2.29 on sparse networks (1.22 on all instances).

References and Attributions. This section is based on the conference paper
[HLS21a]. Together with Sebastian Lamm, the author of this thesis is a main
author of this paper with editing done by Christian Schorr. The author made
major contributions to the design of the branching rules, instance selections as
well as the experiment design. In particular, the author made major contributions
to the nested dissection-based and packing-based approaches. The ideas for the
other reduction-based approaches were developed in close cooperation with Sebas-
tian Lamm. The implementation and experiments were done by Christian Schorr.
Large parts of this section were copied verbatim from the conference paper or the
corresponding technical report [HLS21b].

3.5.1 Introduction

Due to the practical impact of data reduction, most of the research aimed at
improving the performance of branch-and-reduce algorithms so far has been focused
on either proposing more practically efficient special cases of already existing
rules [CLZ17; Dah+16], or maintaining dependencies between reduction rules to

27

3 Maximum Independent Sets

reduce unnecessary checks [AC20; HSS19a]. However, improving other aspects
of branch-and-reduce has been shown to benefit its performance [PvdG21]. The
branching strategy in particular has been shown to have a significant impact on
the running time [AI16]. Up to now, the most frequently used branching strategy
employed in state-of-the-art solvers selects branching vertices solely based on
their degree. Other factors, such as the actual reduction rules used during the
algorithm are rarely taken into account. Recently, there have been some attempts to
incorporate such branching strategies for other problems, e.g., finding a maximum
k-plex [Gao+18].

3.5.1.a) Contribution

In this section, we propose and examine several novel strategies for selecting
branching vertices. These strategies follow two main approaches that are motivated
by existing research: (1) Branching on vertices that decompose the graph into
several connected components that can be solved independently. Solving components
individually has been shown to substantially improve the performance of branch-and-
reduce in practice, especially when the size of the largest component is small [AC20].
(2) Branching on vertices whose removal leads to reduction rules becoming applicable
again. In turn, this leads to a smaller reduced graph and thus improved performance.
For each approach we present several concrete strategies that vary in their complexity.
Finally, we evaluate their performance by comparing them to the aforementioned
default strategy used in the state-of-the-art solver by Akiba and Iwata [AI16]. For
this purpose we make use of a wide spectrum of instances from different graph
classes and applications. Our experiments indicate that our strategies are able to
find an optimal solution faster than the default strategy on a large set of instances.
In particular, our reduction-based packing rule is able to outperform the default
strategy on 65% of all instances. Furthermore, our decomposition-based strategies
achieve a speedup of 1.22 (over the default strategy) over all instances.

3.5.2 Related Work

The most commonly used branching strategy for maximum independent sets and min-
imum vertex covers is to select a vertex of maximum degree. Fomin et al. [FGK09]
show that using a vertex of maximum degree that also minimizes the number of
edges between its neighbors is optimal with respect to their complexity measure.
The algorithm by Akiba and Iwata [AI16] (which we augment with our new branch-
ing rules) also uses this strategy. Akiba and Iwata also compare this strategy
to branching on a vertex of minimum degree and a random vertex. They show
that both of these perform substantially worse than branching on a maximum
degree vertex.

Xiao and Nagamochi [XN17] also use this strategy in most cases. For dense
subgraphs, however, they use an edge branching strategy: They branch on an edge
{u, v} where ∣N(u) ∩N(v)∣ is sufficiently large (depending on the maximum degree

28

3.5 Targeted Branching

of the graph) by excluding both u and v in one branch and applying the alternative
reduction (see Sections 3.3.1 and 3.5.4.b)) to {u} and {v} in the other branch.

Bourgeois et al. [Bou+12] use maximum degree branching as long as there are
vertices of degree at least five. Otherwise, they utilize specialized algorithms to solve
subinstances with an average degree of three or four. Those algorithms perform a
rather complex case analysis to find a suitable branching vertex. The analysis is
based on exploiting structures that contain 3- or 4-cycles. Branching on specific
vertices in such structures often enables further reduction rules to be applied.

Chen et al. [CKX10] use a notion of good pairs that are advantageous for
branching. They chose these good pairs by a set of rules which are omitted here.
They combine these with so-called tuples of a set of vertices and the number of
vertices from this set that have to be included in an MIS. This information can be
used when branching on a vertex contained in that set to remove further vertices
from the graph. Akiba and Iwata [AI16] use the same concept in their packing
rule. Chen et al. combine good pairs, tuples and high degree vertices for their
branching strategy.

Most algorithms for MC (e.g., [ST14; Tom+13]) compute a greedy coloring and
branch on vertices with a high coloring number. More sophisticated MC algorithms
use MaxSAT encodings to prune the set of branching vertices [LFX13; LJM17;
LQ10]. Li et al. [LJX15] combine greedy coloring and MaxSAT reasoning to further
reduce the number of branching vertices.

Another approach used for MC is using the degeneracy order v1 < v2 < ⋅ ⋅ ⋅ <
vn where vi is a vertex of smallest degree in G − {v1, . . . vi−1}. Carraghan and
Pardalos [CP90] present an algorithm that branches in descending degeneracy
order. Li et al. [LFX13] introduce another vertex ordering using iterative maximum
independent set computations (which might be easier than MC on some graphs)
and breaking ties according to the degeneracy order.

The Algorithm by Akiba and Iwata [AI16]. We now explain the aspects of Akiba
and Iwata’s algorithm most relevant to our techniques. Their algorithm is the
baseline which we use to develop new branching strategies. Akiba and Iwata
repeatedly reduce the instance size using a set of polynomial-time reduction rules
and then branch on a vertex once no more reduction rules can be applied. Since
branching removes at least one vertex from the graph, more reduction rules might
be applicable afterwards. The set of reductions used in their algorithm is described
in Section 3.3.1. Some reduction rules are explained in more detail in Section 3.5.4,
where we show how to target particular reduction rules when branching. Akiba and
Iwata apply the reduction rules in a predefined order. For each rule, their algorithm
iterates over all vertices in the graph and checks whether the rule can be applied. If
a rule is applied successfully, this process is restarted from the first reduction rule.
In order to prune the search space, bounds on the largest possible independent set
of a branch are computed. They implement three different methods for determining
upper bounds: clique cover, LP relaxation and cycle cover. Additionally, they
employ special reduction rules that can be applied during branching. Another

29

3 Maximum Independent Sets

optimization done by their algorithm is to solve connected components separately.
We utilize this in Section 3.5.3, where we introduce branching rules that decompose
the graph into connected components.

3.5.3 Decomposition Branching

Our first approach to improve the default branching strategy of using a vertex of
larges degree found in many state-of-the-art algorithms (including that of Akiba and
Iwata [AI16]) is to decompose the graph into several connected components. Subse-
quently, processing these components individually has been shown to improve the
performance of branch-and-reduce in practice [AC20]. To this end, we now present
three concrete strategies with varying computational complexity: articulation points,
edge cuts and nested dissections.

3.5.3.a) Articulation Points

First, we are concerned with finding single vertices that are able to decompose a
graph into at least two separated components. Such points are called articulation
points (or cut vertices). Articulation points can be computed in linear time O(n+m)
using a simple depth-first search (DFS) algorithm (see Hopcroft and Tarjan [HT73]
for a detailed description). In particular, a vertex v is an articulation point if it is
either the root of the DFS tree and has at least two children or any non-root vertex
that has a child u, such that no vertex in the subtree rooted at u has a back edge
to one of the ancestors of v.

For our first branching strategy we maintain a set of articulation points A ⊆ V .
When selecting a branching vertex, we first discard all invalid vertices from A, i. e.,
vertices that were removed from the graph by a preceding data reduction step. If
this results in A becoming empty, a new set of articulation points is computed on
the current graph in linear time. However, if no articulation points exist, we select
a vertex based on the default branching strategy. Otherwise, if A contains at least
one vertex, an arbitrary one from A is selected as the branching vertex. Figure 3.9
illustrates branching on an articulation point.

Even though this strategy introduces only a small (linear) overhead, finding
articulation points can be rare depending on the type of graph. This results in
the default branching strategy being selected rather frequently. Furthermore, our
preliminary experiments indicate that articulation points are rarely found at higher
depths in the branching tree. However, due to their low overhead, we can justify
searching for them whenever A becomes empty.

3.5.3.b) Edge Cuts

To alleviate the restrictive nature of finding articulation points, we now propose a
more flexible branching strategy based on (minimal) edge cuts. In general, we aim

30

3.5 Targeted Branching

branch

Figure 3.9: Branching on an articulation point (circled vertex) decomposes
the graph into two connected components (gray boxes) that can be solved
independently. The graphic shows the branch in which the vertex is excluded
from the independent set.

to find small vertex separators, i. e., a set of vertices whose removal disconnects the
graph. We do so by making use of minimum edge cuts.

A cut (S,T) is a partitioning of V into two sets S and T = V / S. Furthermore,
a cut is called minimum if its cut set C = {{u, v} ∈ E ∣ u ∈ S, v ∈ T} has minimal
cardinality. However, in practice, finding minimum cuts often yields trivial cuts
with either S or T only consisting of a single vertex with minimum degree. Thus, we
are interested in finding s-t-cuts, i. e., cuts where S and T contain specific vertices
s, t ∈ V . Finding these cuts can be done efficiently in practice, e. g., using a preflow
push algorithm [GT88]. However, selecting the vertices s and t to ensure reasonably
balanced cuts can be tricky. Natural choices include random vertices, as well as
vertices that are far apart in terms of their shortest path distance. Our preliminary
experiments indicate that selecting random vertices of maximum degree for s and
t seems to produce the best results. Finally, to derive a vertex separator from a
cut, one can compute a minimum vertex cover on the bipartite graph induced by
the cut set, e. g., using the Hopcroft-Karp algorithm [HK73]. This separator can
then be used to select branching vertices. In particular, we continuously branch on
vertices from the separator.

Overall, our second strategy works similar to the first one: We maintain a set of
possible branching vertices that were selected by computing a minimum s-t-cut and
turning it into a vertex separator. Vertices that were removed by data reduction
are discarded from this set and once it is empty a new cut computation is started.
However, in contrast to the first strategy, finding a set of suitable branching vertices
is much more likely. In order to avoid separators that contain too many vertices,
and thus would require too many branching steps to disconnect the graph, we only
keep those that do not exceed a certain size and balance threshold. The specific
values for these thresholds are presented in Section 3.5.5.b). Finally, if no suitable
separator is found, we use the default branching strategy (branching on a vertex of
largest degree). Furthermore, in this case we do not try to find a new separator for
a fixed number of branching steps as finding one is both unlikely and costly.

31

3 Maximum Independent Sets

3.5.3.c) Nested Dissection

Both of our previous strategies dynamically maintain a set of branching vertices.
Even though this comes at the advantage that most of the computed vertices remain
viable candidates for some branching steps, it introduces a noticeable overhead. To
alleviate this, our last strategy uses a static ordering of possible branching vertices
that is computed once at the beginning of the algorithm. For this purpose we make
use of a nested dissection ordering [Geo73].

A nested dissection ordering of the vertices of a graph G is obtained by recursively
computing balanced bipartitions (A,B) and a vertex separator S, that separates
A and B. The actual ordering is then given by concatenating the orderings of A
and B followed by the vertices of S. Thus, if we select branching vertices based on
the reverse of a nested dissection ordering, we continuously branch on vertices that
disconnect the graph into balanced partitions. We compute such an ordering once,
after finishing the initial data reduction phase.

There are two main optimizations that we use when considering the nested
dissection ordering. First, we limit the number of recursive calls during the nested
dissection computation, because we noticed that vertices at the end of the ordering
seldom lead to a decomposition of the graph. This is due to the graph structure
being changed by data reduction which can lead to separators becoming invalid.
Furthermore, similar to the edge-cut-based strategy, we limit the size of separators
considered during branching using a threshold. Again, this is done to ensure that
we do not require too many branching steps to decompose the graph. The specific
value for this size threshold is given in Section 3.5.5.b). If any separator in the
nested dissection exceeds this threshold, we use the default branching strategy.

3.5.4 Reduction Branching

Our second approach to selecting good branching vertices is to choose a vertex
whose removal will enable the application of new reduction rules. During every
reduction step we find a list of candidate vertices to branch on. The following
sections will demonstrate how we identify such branching candidate vertices with
little computational overhead in practice. For an easier overview we will also repeat
the reduction rules used here. Out of the candidates found we then select a vertex
of maximum degree. If the degree of all candidate vertices lies below a threshold
(defined in Section 3.5.5.b)) or no candidate vertices were found, we fall back to
branching on a vertex of maximum degree. The rational here is that a vertex of
large degree changes the structure of the graph more than a vertex of small degree
even if that vertex is guaranteed to enable the application of a reduction rule. Also,
our current strategies (except the packing-based rule in Section 3.5.4.d)) only enable
the application of the targeted reduction rule in the branch that excludes the vertex
from the independent set, the excluding branch. However, in the case that includes
it into the independent set (including branch) all neighbors are removed from the

32

3.5 Targeted Branching

graph as well because they already have an adjacent vertex in the solution. Thus,
in both branches multiple vertices are removed.

We also performed some preliminary experiments with storing the candidate
vertices in a priority queue without resetting after every branch. However, changes
were too frequent for this approach to be faster because of the high amount of
priority queue operations.

3.5.4.a) Almost Twins

The first reduction we target is the twin reduction by Xiao and Nagamochi [XN13]:

Definition 3.1

(Twins [XN13]) In a graph G = (V,E) two vertices u and v are called twins if
N(u) = N(v) and d(u) = d(v) = 3.

Theorem 3.2

(Twin Reduction [XN13]) In a graph G = (V,E) let vertices u and v be twins. If
there is an edge among N(u), then there is always an MIS that includes {u, v}
and therefore excludes N(u). Otherwise, let G′ = (V ′,E′) be the graph with V ′ =
(V / N[{u, v}]) ∪ {w} where w ∉ V and E′ = (E ∩ (V

′

2
)) ∪ {{w,x} ∣ x ∈ N2(u)}}

and let I ′ be an MIS in G′. Then,

I =
⎧⎪⎪⎨⎪⎪⎩

I ′ ∪ {u, v} , if w ∉ I ′

(I ′ / {w}) ∪N(u) , else

is an MIS in G.

We now define almost twins as follows:

Definition 3.3

(Almost Twins) In a graph G = (V,E) two non adjacent vertices u and v are called
almost twins if d(u) = 4, d(v) = 3 and N(v) ⊆ N(u) (i. e., N(u) = N(v) ∪ {w}).

Clearly, after removing w, u and v are twins so we can apply the twin reduction.
Finding almost twins can be done while searching for twins: The original algorithm
checks for each vertex v of degree-3 whether there is a vertex u ∈ N2(v) with
d(u) = 3 and N(u) = N(v). We augment this algorithm by simultaneously also
searching for u ∈ N2(v) with d(u) = 4 and N(v) ⊂ N(u). This induces about the
same computational cost for degree-4 vertices in N2(v) as for degree 3 vertices.
While there might be instances where this causes high overhead, we expect the
practical slowdown to be small. Figure 3.10 illustrates branching for almost twins.

33

3 Maximum Independent Sets

branch twin
a b a b

Figure 3.10: Vertices a and b are almost twins. After branching on the circled
vertex they become twins (in the excluding branch) and can be reduced.

3.5.4.b) Almost Funnels

Next, we consider the funnel reduction which is a special case of the alternative
reduction by Xiao and Nagamochi [XN13]:

Definition 3.4

(Alternative Sets [XN13]) In a graph G = (V,E) two non empty, disjoint subsets
A,B ⊆ V are called alternatives if ∣A∣ = ∣B∣ and there is an MIS I in G such that
I ∩ (A ∪B) is either A or B.

Theorem 3.5

(Alternative Reduction [XN13]) In a graph G = (V,E) let A and B be alternative
sets. Let G′ = (V ′,E′) be the graph with V ′ = V / (A ∪B ∪ (N(A) ∩N(B))) and
E′ = {{u, v} ∈ E ∣ u, v ∈ V ′} ∪ {{u, v} ∣ u ∈ N(A) / N[B], v ∈ N(B) / N[A]} and let
I ′ be an MIS in G′. Then,

I =
⎧⎪⎪⎨⎪⎪⎩

I ′ ∪A , if (N(A) / N[B]) ∩ I ′ = ∅
I ′ ∪B , else

is an MIS in G.

Note that the alternative reduction adds new edges between existing vertices
of the graph which might not be beneficial in every case. To counteract this, the
algorithm by Akiba and Iwata [AI16] only uses special cases, one of which is the
funnel reduction:

Definition 3.6

(Funnel [XN13]) In a graph G = (V,E) two adjacent vertices u and v are called
funnels if G[N(v) / {u}] is a complete graph, i.e, if N(v) / {u} is a clique.

Theorem 3.7

(Funnel Reduction [XN13]) In a graph G = (V,E) let u and v be funnels. Then,
{u} and {v} are alternative sets.

34

3.5 Targeted Branching

Again, we define a structure that is covered by the funnel reduction after removal
of a single vertex:

Definition 3.8

(Almost Funnel) In a graph G = (V,E) two adjacent vertices u and v are called
almost funnels if u and v are not funnels and there is a vertex w such that
N(v) / {u,w} induces a clique.

By removing w, u and v become funnels. The original funnel algorithm checks
whether u and v are funnels by iterating over the vertices in N(v) / {u} and checking
whether they are adjacent to all previous vertices. Once a vertex is found that is
not adjacent to all previous vertices, the algorithm concludes that u and v are not
funnels and terminates. We augment this algorithm by not immediately terminating
in this case. Instead, we consider the following two cases: Either the current vertex
w is not adjacent to at least two of the previous vertices. In this case, we can check
whether N(v) / {u,w} induces a clique. In the second case, w is adjacent to all but
one previous vertex w′. In this case, both w and w′ might be candidate branching
vertices. Thus, we check whether N(v) / {u,w} or N(v) / {u,w′} induce a clique.
This adds up to two additional clique checks (of slightly smaller size) to the one
clique check in the original algorithm.

3.5.4.c) Almost Unconfined

The core idea of the unconfined reduction by Xiao and Nagamochi [XN13] is to
detect vertices not required for an MIS that can therefore be removed from the
graph by algorithmically contradicting the assumption that every MIS contains
the vertex.

Definition 3.9

(Child, Parent [XN13]) In a graph G = (V,E) with an independent set I, a vertex
v is called a child of I if ∣N(v) ∩ I ∣ = 1 and the unique neighbor of v in I is called
the parent of v.

Algorithm 3.1 shows the algorithm used by Akiba and Iwata [AI16] to detect so
called unconfined vertices.

Theorem 3.10

(Unconfined Reduction [XN13]) In a graph G = (V,E), if Algorithm 3.1 returns true
for an unconfined vertex v, then there is always an MIS that does not contain v.

Again, we define a vertex to be almost unconfined:

Definition 3.11

(Almost Unconfined) In a graph G = (V,E) a vertex v is called almost unconfined
if v is not unconfined but there is a vertex w such that v is unconfined in G − {w}.

35

3 Maximum Independent Sets

Algorithm 3.1 : Unconfined – Xiao and Nagamochi [XN13]

Input : A graph G, a vertex v
1 Unconfined(G, v) begin
2 S ← {v}
3 while S has child u with ∣N(u) / N[S]∣ ≤ 1 do
4 if ∣N(u) / N[S]∣ = 0 then
5 return true
6 else
7 {w} ← N(u) / N[v] —by assumption w also has to
8 S ← S ∪ {w} —be contained in every MIS

9 return false

Output : true if v is unconfined, false otherwise

Here, we only present an augmentation that detects some almost unconfined
vertices. In particular, if at any point during the algorithm there is only one
extending child, i.e., a child u of S with N(u) / N[S] = {w}, then removal of
w makes v unconfined. During Algorithm 3.1 we collect all these vertices w
and add them to the set of candidate branching vertices if the algorithm cannot
already remove v. This only adds the overhead of temporarily storing the potential
candidates and adding them to the actual candidate list if v is not removed.

3.5.4.d) Almost Packing

The core idea behind the packing rule by Akiba and Iwata [AI16] is that when
the excluding branch of a vertex v is selected, one can assume that no maximum
independent set contains v. Otherwise, if there is a maximum independent set
that contains v, the algorithm finds it in the branch including v. Based on the
assumption that no maximum independent set includes a vertex v, constraints for
the remaining vertices can be derived. For example, a maximum independent set
that does not contain v has to include at least two neighbors of v. The corresponding
constraint is ∑u∈N(v) xu ≥ 2, where xu is a binary variable that indicates whether a
vertex is included in the current solution. Otherwise, we will find a solution of the
same size in the branch including v. The algorithm creates such constraints when
branching or reducing, and updates them accordingly during the data reductions
and branching steps. When a vertex v is eliminated from the graph, xv gets removed
from all constraints. If v is included into the current solution, the corresponding
right sides are also decreased by one.

A constraint ∑v∈S⊂V xv ≥ k can be utilized in two reductions. Firstly, if k is
equal to the number of variables ∣S∣, all vertices from S have to be included into the
current solution. If there are edges between vertices from S, then no valid solution
can include all vertices from S, so the branch is pruned. Secondly, if there is a vertex

36

3.5 Targeted Branching

v such that ∣S∣ − ∣N(v) ∩S∣ < k, then v has to be excluded from the current solution.
If k > ∣S∣, the constraint can not be fulfilled and the current branch is pruned.

In our branching strategy we target both reductions. If there is a constraint

∑v∈S⊂V xv ≥ k, where ∣S∣ = k + 1, excluding any vertex of S from the solution or
including a vertex of S that has one neighbor in S enables the first reduction. Thus,
we consider all vertices in S for branching. Note that including a vertex from S
that has more than one neighbor in S makes the constraint unfulfillable and the
branch is pruned.

If there is a constraint ∑v∈S⊂V xv ≥ k and a vertex v, such that k = ∣S∣−∣N(v)∩S∣,
excluding any vertex of S / N(v) from the solution or including a vertex of S / N(v)
that has at least one neighbor in S / N(v) enables the second reduction. Thus, we
consider all vertices in S / N(v) for branching.

Note that in contrast to our previous reduction-based branching rules, packing
reductions can also be applied in the including branch in many cases.

Detecting these branching candidates can be done with small constant overhead
whilst performing the packing reduction.

3.5.5 Experimental Evaluation

In this section, we present the results of our experimental evaluation. Tables and
figures here show aggregated results. For detailed results for all of our algorithms
across all instances, see Section 3.5.7.

3.5.5.a) Experimental Environment

We augment a C++-adaptation of the algorithm by Akiba and Iwata [AI16] with
our branching strategies and compile it with g++ 9.3.0 using full optimizations
(-O3). Our code is publicly available on GitHub5. We execute all our experiments
on a machine with 4 8-core Intel Xeon E5-4640 CPUs (2.4 GHz) and 512 GiB
DDR3-PC1600 RAM running Ubuntu 20.04.1 with Linux Kernel 5.4.0-64. To speed
up our experiments we use two identical machines and run at most 8 instances at
once on the same machine (using the same machine for all algorithms on a specific
instance). All numbers reported are arithmetic means of three runs with a timeout
of ten hours.

3.5.5.b) Algorithm Configuration

We use a C++ adaptation of the implementation by Akiba and Iwata [AI16]
in its default configuration as a basis for our algorithm. During preliminary
experiments we found suitable values for the parameters of our techniques. These
experiments were run on a subset of our total instance set. We use the geometric
mean over all instances of the speedup over the default branching strategy as a
basis for the following decisions: for the technique based on edge cuts, we only

5https://github.com/Hespian/CutBranching

37

https://github.com/Hespian/CutBranching

3 Maximum Independent Sets

use cuts that contain at most 25 vertices and where the smaller side of the cut
contains at least ten percent of the remaining vertices. If no suitable separator
is found, we skip ten branching steps. For computing nested dissections, we use
InertialFlowCutter [Got+19] with the KaFFPa [SS13] backend. The KaFFPa
partitioner is configured to use the strong preset with a fixed seed of 42. For
branching, we use three levels of nested dissections with a minimum balance of
at least 40% of the vertices in the smaller part of each dissection. Furthermore,
we only use the nested dissection if separators contain at most 50 vertices. For
the reduction-based branching rules, we fall back to the default branching strategy
if all candidates have a degree of less than ∆ − k. In the case of twin-, funnel-
and unconfined-reduction-based branching strategies we choose k as 2. For the
packing-reduction-based branching rule, k is set to 5 and for the combined branching
rule, k is set to 4.

3.5.5.c) Instances

We use instances from several sources: The “easy” instances used for the PACE 2019
Challenge on Minimum Vertex Cover [DFH19b]. Complements of Maximum Clique
instances from the second DIMACS Implementation Challenge [Joh93] and sparse
instances from the Stanford Network Analysis Project (SNAP) [LK14], the 9th
DIMACS Implementation Challenge on Shortest Paths [DGJ09] and the Network
Data Repository [RA15]. Detailed instance information can be found in Table 3.5.
Directed instances were converted into undirected graphs by ignoring the direction
of edges and removing duplicates. Our original set of instances contained the first
80 PACE instances, 53 DIMACS instances and 34 sparse networks. From these
instances, we excluded all instances that (1) required no branches, (2) on which all
techniques had a running time of less than 0.1 seconds, or (3) on which no technique
was able to find a solution within 10 hours. The remaining set of instances is
composed of 48 PACE instances, 37 DIMACS instances and 16 sparse networks.

3.5.5.d) Plot Types

Figures 3.11 and 3.12 show performance profiles [DM02] of the running time and
number of branches of our decomposition-based branching strategies: Let T be the
set of all techniques we want to compare, I the set of instances, and tT (I) the running
time/number of branches of technique T ∈ T on instance I ∈ I. The y-axis shows
for each technique T the fraction of instances for which tT (I) ≤ τ ⋅minT ′∈T tT ′(I),
where τ is shown on the x-axis. For τ = 1, the y-axis shows the fraction of instances
on which a technique performs best. Note that these plots compare the performance
of a technique relative to the best performing technique and do not show a ranking
of all techniques. Instances that were not finished by a technique within the time
limit are marked with U.

The top plot always shows the performance profiles in terms of their running
times on our benchmark machines. The bottom plot shows the number of branching

38

3.5 Targeted Branching

Table 3.5: Number of vertices ∣V ∣ and edges ∣E∣ for each graph.

PACE [DFH19b] instances:
Graph ∣V ∣ ∣E∣
05 200 798
06 200 733
10 199 758
16 153 802
19 200 862
31 200 813
33 4 410 6 885
35 200 864
36 26 300 41 500
37 198 808
38 786 14 024
39 6 795 10 620
40 210 625
41 200 1 023
42 200 952
43 200 841
44 200 1 147
45 200 1 020
46 200 812
47 200 1 093
48 200 1 025
49 200 933
50 200 1 025
51 200 1 098
52 200 992
53 200 1 026
54 200 961
55 200 938
56 200 1 089
57 200 1 160
58 200 1 171
59 200 961
60 200 1 118
61 200 931
62 199 1 128
63 200 1 011
64 200 1 042
65 200 1 011
66 200 866
67 200 1 174
68 200 961
69 200 1 083
70 200 860
71 200 952
72 200 1 167
73 200 1 078
74 200 805
77 200 961

DIMACS [Joh93] instances:
Graph ∣V ∣ ∣E∣
C125.9 125 787
MANN a27 378 702
MANN a45 1 035 1 980
brock200 1 200 5 066
brock200 2 200 10 024
brock200 3 200 7 852
brock200 4 200 6 811
gen200 p0.9 44 200 1 990
gen200 p0.9 55 200 1 990
hamming8-4 256 11 776
johnson16-2-4 120 1 680
keller4 171 5 100
p hat1000-1 1 000 377 247
p hat1000-2 1 000 254 701
p hat1500-1 1 500 839 327
p hat300-1 300 33 917
p hat300-2 300 22 922
p hat300-3 300 11 460
p hat500-1 500 93 181
p hat500-2 500 61 804
p hat500-3 500 30 950
p hat700-1 700 183 651
p hat700-2 700 122 922
san1000 1 000 249 000
san200 0.7 1 200 5 970
san200 0.7 2 200 5 970
san200 0.9 1 200 1 990
san200 0.9 2 200 1 990
san200 0.9 3 200 1 990
san400 0.5 1 400 39 900
san400 0.7 1 400 23 940
san400 0.7 2 400 23 940
san400 0.7 3 400 23 940
sanr200 0.7 200 6 032
sanr200 0.9 200 2 037
sanr400 0.5 400 39 816
sanr400 0.7 400 23 931

Sparse networks:
Graph ∣V ∣ ∣E∣ source
as-skitter 1 696 415 11 095 298 [LK14]
baidu-relatedpages 415 641 2 374 044 [RA15]
bay 321 270 397 415 [DGJ09]
col 435 666 521 200 [DGJ09]
fla 1 070 376 1 343 951 [DGJ09]
hudong-internallink 1 984 484 14 428 382 [RA15]
in-2004 1 382 870 13 591 473 [RA15]
libimseti 220 970 17 233 144 [RA15]
musae-twitch DE 9 498 153 138 [LK14]
musae-twitch FR 6 549 112 666 [LK14]
petster-fs-dog 426 820 8 543 549 [RA15]
soc-LiveJournal1 4 847 571 42 851 237 [LK14]
web-BerkStan 685 230 6 649 470 [LK14]
web-Google 875 713 4 322 051 [LK14]
web-NotreDame 325 730 1 090 108 [LK14]
web-Stanford 281 903 1 992 636 [LK14]

points where the algorithm had to consider both subproblems without being able
to prune the search after finishing the first branch.

39

3 Maximum Independent Sets

all instances - running time

0.01
0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
F
ra
ct
io
n
of

in
st
an

ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101 103 U
τ

all instances - number of branches

0.75

0.80

0.85

0.90

0.95

1.00

F
ra
ct
io
n
o
f
in
st
an

ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101 102 U
τ

maximum degree
articulation points

edge cuts
nested dissection

Figure 3.11: Performance plots for decomposition-based branching strategies

3.5.5.e) Decomposition Branching

The running time plot in Figure 3.11 shows that for most instances, the default
strategy of branching on a vertex of maximum degree outperforms our decomposition-
based approaches. However, for instances that have suitable candidates for decom-

40

3.5 Targeted Branching

Table 3.6: Speedup of our decomposition-based techniques over maximum
degree branching.

PACE DIMACS Sparse net. All Instances
articulation points 0.99 0.99 2.17 1.20
edge cuts 1.00 0.99 2.29 1.22
nested dissections 1.00 0.99 2.15 1.21

position, such as sparse networks, substantial speedups compared to the default
strategy can be seen. To be more specific, assigning a time of ten hours (our timeout
threshold) for unfinished instances, we achieve a total speedup6 of 2.15 to 2.29
over maximum degree branching for our decomposition-based techniques on sparse
networks (see Table 3.6). In particular, there is one instance (web-stanford) that
causes a timeout with the default strategy but can be solved in 8 (articulation
points) to 43 (nested dissections) seconds using a decomposition-based approach.
Table 3.6 shows that overall, our technique using edge cuts seems to be the most
beneficial, achieving an overall speedup of 22% over maximum degree. Finally,
Figure 3.11 shows that most running times are only slightly slower than the default
strategy with a few instances showing a speedup. This is mainly because the
number of branches required to solve the instances does not change in most cases
and most of the running time difference is caused by the overhead from searching
for branching vertices.

3.5.5.f) Reduction Branching

Figure 3.12 shows the performance profiles (see Section 3.5.5.d)) for our reduction-
based branching strategies. Here, we see that targeting the packing reduction
results in the fastest time for the most number of instances. In fact, targeting the
packing reduction performs better than maximum degree branching on all but 3
PACE instances, achieving a speedup of 34% (Table 3.7) on these instances. On
the DIMACS instances, performance is closer to that of maximum degree with an
overall speedup of 4%. On sparse networks, packing is only faster than maximum
degree branching on 6 out of 16 instances but still achieves an overall speedup of
31% due to being considerably faster on some of the longer running instances. The
performance of our packing-based technique might be explained by its property
of enabling a reduction in both the including and the excluding branch, while our
other reduction-based techniques only enable a reduction in the excluding branch.
Our funnel-based technique is faster than maximum degree branching for all but
4 of the PACE instances, resulting in a speedup of 14% on these instances but
only a 2% speedup over all instances due to slightly slower running times on the
other instance classes. We also show results for a strategy that targets all reduction

6calculated by dividing the running times to solve all instances for two algorithms, excluding
instances unsolved by both algorithms

41

3 Maximum Independent Sets

Table 3.7: Speedup of our reduction-based techniques over maximum de-
gree branching.

PACE DIMACS Sparse net. All Instances
Twin 1.00 1.00 0.97 0.99
Funnel 1.14 0.99 0.98 1.02
Unconfined 0.79 1.00 0.86 0.92
Packing 1.34 1.04 1.31 1.16
Combined 1.14 1.03 1.30 1.12

rules described in Section 3.5.4 (called combined). Even though this approach leads
to the second lowest number of branches for most instances, the time required to
identify candidate vertices for all reduction rules causes too big of an overhead to be
competitive. In fact, preliminary experiments showed that the number of branches
is still small for a technique that only combines twin-, funnel- and unconfined-based
branching. Optimizing the algorithms to identify candidate vertices could lead to
making this combined strategy competitive.

3.5.6 Conclusion and Future Work

In this section, we presented several novel branching strategies for the maximum
independent set problem. Our strategies either follow a decomposition-based or
reduction-rule-based approach. The decomposition-based strategies make use of
increasingly sophisticated methods of finding vertices that are likely to decompose
the graph into two or more connected components. Even though these strategies
often come with a non negligible overhead, they work well for graphs that have a
suitable structure, such as social networks. For instances that still favor the default
branching strategy of branching on the vertex of highest degree, our reduction-rule-
based strategies provide a smaller but more consistent speedup. These rules aim to
facilitate the application of reduction rules which leads to smaller graphs that can
be solved more quickly.

Overall, using one of our proposed strategies allows us to find the optimal so-
lution the fastest for most instances tested. However, deciding which particular
strategy to use for a given instance still remains an open problem. Finding suitable
graph characteristics to do so provides an interesting opportunity for future work.
Furthermore, our experimental evaluation on a combined approach that tries to
use all reduction-rule-based strategies at the same time achieves a smaller number
of branches than the default strategy for a large set of instances. However, the
running time of this approach still suffers from frequent checks whether a particular
vertex is a potential branching vertex. A more sophisticated and incremental way
of tracking when a vertex becomes a branching vertex might provide substantial
performance benefits. In turn, this might lead to a branching strategy that consis-
tently outperforms branching on the vertex of highest degree independent of the
instance type.

42

3.5 Targeted Branching

all instances - running time

0.01
0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
F
ra
ct
io
n
of

in
st
a
n
ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101 102 U
τ

all instances - number of branches

0.01
0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F
ra
ct
io
n
of

in
st
an

ce
s

1 1.02 1.04 1.06 1.08 1.1 1.5 2 101102 U
τ

maximum degree
combined

twin
funnel

unconfined
packing

Figure 3.12: Performance plots for reduction-based branching strategies

3.5.7 Detailed Experimental Results

We now present detailed results of our experimental evaluation. Detailed tables
show running times t (in seconds) and speedup s. Speedups are computed by
dividing the running time of maximum degree branching by the running time of

43

3 Maximum Independent Sets

the respective technique. Timeouts are assigned a running time of ten hours. Note,
that this is the same as our time limit. We also present the aggregated speedup
stotal computed by dividing the running time of both algorithms over all instances
(omitting instances were both algorithms do not finish within our time limit). A
value is highlighted in bold if it is the best one within a row.

Table 3.8: Detailed results for our decomposition-based strategies on the
PACE instances.

Graph max. deg. articulation edge cuts nested dis.
PACE t t (s) t (s) t (s)
05 1.97 2.00 (0.98) 2.00 (0.99) 2.44 (0.81)
06 0.85 0.87 (0.98) 0.87 (0.98) 1.33 (0.64)
10 2.24 2.27 (0.99) 2.26 (0.99) 2.66 (0.84)
16 25 836.77 26 175.23 (0.99) 25 763.30 (1.00) 25 865.40 (1.00)
19 3.17 3.22 (0.98) 3.18 (0.99) 3.63 (0.87)
31 74.37 76.03 (0.98) 75.45 (0.99) 74.82 (0.99)
33 1.01 1.03 (0.98) 1.02 (0.99) 40.09 (0.03)
35 7.64 7.84 (0.97) 7.77 (0.98) 8.13 (0.94)
36 1.84 1.87 (0.98) 1.85 (0.99) 3.93 (0.47)
37 10.27 10.48 (0.98) 10.47 (0.98) 10.75 (0.96)
38 12.33 11.24 (1.10) 3.25 (3.79) 15.35 (0.80)
39 93.79 96.82 (0.97) 95.96 (0.98) 95.21 (0.99)
40 4 690.64 4 794.37 (0.98) 4 758.15 (0.99) 4 712.57 (1.00)
41 48.56 49.84 (0.97) 49.39 (0.98) 49.35 (0.98)
42 37.32 38.11 (0.98) 37.91 (0.98) 37.87 (0.99)
43 175.11 178.81 (0.98) 177.26 (0.99) 175.24 (1.00)
44 92.90 95.13 (0.98) 94.28 (0.99) 93.40 (0.99)
45 25.41 26.01 (0.98) 25.73 (0.99) 25.90 (0.98)
46 109.55 111.95 (0.98) 111.00 (0.99) 110.22 (0.99)
47 58.47 59.70 (0.98) 59.38 (0.98) 59.22 (0.99)
48 25.28 25.80 (0.98) 25.60 (0.99) 25.80 (0.98)
49 17.80 18.19 (0.98) 18.10 (0.98) 18.30 (0.97)
50 48.87 50.01 (0.98) 49.56 (0.99) 49.40 (0.99)
51 56.70 58.00 (0.98) 57.63 (0.98) 57.52 (0.99)
52 22.16 22.68 (0.98) 22.53 (0.98) 22.69 (0.98)
53 59.88 61.42 (0.97) 60.77 (0.99) 60.42 (0.99)
54 32.08 32.89 (0.98) 32.73 (0.98) 32.67 (0.98)
55 6.83 6.97 (0.98) 6.92 (0.99) 7.32 (0.93)
56 97.00 99.09 (0.98) 98.31 (0.99) 97.80 (0.99)
57 66.01 67.76 (0.97) 67.18 (0.98) 66.83 (0.99)
58 48.12 48.83 (0.99) 48.72 (0.99) 48.63 (0.99)
59 13.30 13.60 (0.98) 13.54 (0.98) 13.80 (0.96)
60 79.56 81.58 (0.98) 80.94 (0.98) 80.23 (0.99)
61 21.91 22.31 (0.98) 22.26 (0.98) 22.36 (0.98)
62 66.22 68.48 (0.97) 67.40 (0.98) 66.80 (0.99)
63 69.06 70.55 (0.98) 69.91 (0.99) 69.35 (1.00)
64 29.58 30.07 (0.98) 29.99 (0.99) 30.09 (0.98)
65 36.84 37.53 (0.98) 37.28 (0.99) 37.29 (0.99)
66 8.06 8.28 (0.97) 8.23 (0.98) 8.63 (0.93)
67 122.74 124.79 (0.98) 124.25 (0.99) 123.38 (0.99)
68 8.79 8.92 (0.99) 8.86 (0.99) 9.24 (0.95)
69 43.11 44.13 (0.98) 43.85 (0.98) 43.63 (0.99)
70 11.79 12.00 (0.98) 11.97 (0.99) 12.25 (0.96)
71 36.20 36.83 (0.98) 36.66 (0.99) 36.64 (0.99)
72 46.44 47.47 (0.98) 46.91 (0.99) 46.86 (0.99)
73 43.02 44.07 (0.98) 43.77 (0.98) 43.65 (0.99)
74 7.06 7.24 (0.97) 7.14 (0.99) 7.49 (0.94)
77 13.30 13.65 (0.97) 13.51 (0.98) 13.79 (0.96)
stotal 1.00 0.99 1.00 1.00

44

3.5 Targeted Branching

Table 3.9: Detailed results for our decomposition-based strategies on the DI-
MACS instances.

Graph max. deg. articulation edge cuts nested dis.
DIMACS t t (s) t (s) t (s)
C125.9 0.98 1.01 (0.97) 1.00 (0.98) 1.43 (0.69)
MANN a27 0.48 0.49 (0.98) 0.49 (0.98) 0.98 (0.49)
MANN a45 73.80 75.24 (0.98) 74.93 (0.98) 74.70 (0.99)
brock200 1 137.34 140.20 (0.98) 137.56 (1.00) 140.01 (0.98)
brock200 2 4.59 4.69 (0.98) 4.70 (0.98) 10.07 (0.46)
brock200 3 22.06 22.33 (0.99) 21.92 (1.01) 26.39 (0.84)
brock200 4 28.34 28.72 (0.99) 28.35 (1.00) 32.48 (0.87)
gen200 p0.9 44 152.61 156.30 (0.98) 154.50 (0.99) 153.49 (0.99)
gen200 p0.9 55 131.24 134.64 (0.97) 133.04 (0.99) 132.58 (0.99)
hamming8-4 19.29 19.65 (0.98) 19.49 (0.99) 25.38 (0.76)
johnson16-2-4 39.87 41.17 (0.97) 40.21 (0.99) 40.33 (0.99)
keller4 2.62 2.68 (0.98) 2.65 (0.99) 4.37 (0.60)
p hat1000-1 860.24 868.71 (0.99) 870.04 (0.99) 906.24 (0.95)
p hat1000-2 33 035.45 33 656.50 (0.98) 33 508.10 (0.99) 33 247.45 (0.99)
p hat1500-1 8 935.77 9 015.15 (0.99) 9 015.74 (0.99) 8 994.28 (0.99)
p hat300-1 3.70 3.79 (0.98) 3.82 (0.97) 23.94 (0.15)
p hat300-2 5.53 5.66 (0.98) 5.63 (0.98) 21.76 (0.25)
p hat300-3 189.58 191.06 (0.99) 188.96 (1.00) 196.89 (0.96)
p hat500-1 38.63 39.26 (0.98) 39.41 (0.98) 59.29 (0.65)
p hat500-2 96.36 97.82 (0.99) 97.58 (0.99) 107.29 (0.90)
p hat500-3 14 860.70 14 895.15 (1.00) 14 979.65 (0.99) 14 909.35 (1.00)
p hat700-1 163.30 162.84 (1.00) 163.17 (1.00) 177.34 (0.92)
p hat700-2 906.32 917.87 (0.99) 914.96 (0.99) 917.50 (0.99)
san1000 895.34 902.64 (0.99) 903.38 (0.99) 920.28 (0.97)
san200 0.7 1 10.85 11.01 (0.98) 10.90 (1.00) 14.45 (0.75)
san200 0.7 2 0.33 0.34 (0.95) 0.32 (1.01) 2.34 (0.14)
san200 0.9 1 13.93 14.37 (0.97) 14.08 (0.99) 14.94 (0.93)
san200 0.9 2 34.15 34.77 (0.98) 34.35 (0.99) 34.90 (0.98)
san200 0.9 3 1 069.00 1 094.54 (0.98) 1 078.09 (0.99) 1 071.31 (1.00)
san400 0.5 1 9.21 9.35 (0.98) 9.36 (0.98) 16.76 (0.55)
san400 0.7 1 1 125.52 1 139.20 (0.99) 1 131.38 (0.99) 1 130.07 (1.00)
san400 0.7 2 3 062.38 3 053.97 (1.00) 3 083.59 (0.99) 3 073.66 (1.00)
san400 0.7 3 4 411.82 4 464.53 (0.99) 4 447.19 (0.99) 4 423.16 (1.00)
sanr200 0.7 48.35 49.51 (0.98) 48.71 (0.99) 52.13 (0.93)
sanr200 0.9 679.25 696.41 (0.98) 688.51 (0.99) 680.29 (1.00)
sanr400 0.5 373.40 374.20 (1.00) 374.26 (1.00) 380.08 (0.98)
sanr400 0.7 29 766.80 30 390.80 (0.98) 30 270.10 (0.98) 30 001.55 (0.99)
stotal 1.00 0.99 0.99 0.99

45

3 Maximum Independent Sets

Table 3.10: Detailed results for our decomposition-based strategies on sparse net-
works.

Graph max. deg. articulation edge cuts nested dis.
Sparse net. t t (s) t (s) t (s)
as-skitter 2 058.32 2 100.57 (0.98) 2 071.06 (0.99) 2 068.46 (1.00)
baidu-relatedpages 0.82 0.88 (0.94) 0.86 (0.96) 7.22 (0.11)
bay 1.68 1.87 (0.90) 1.31 (1.28) 23.43 (0.07)
col 5 019.93 4 737.48 (1.06) 3 872.65 (1.30) 5 101.46 (0.98)
fla 25.33 23.47 (1.08) 24.58 (1.03) 329.42 (0.08)
hudong-internallink 0.99 1.55 (0.64) 1.46 (0.68) 1.99 (0.50)
in-2004 5.22 5.46 (0.96) 5.37 (0.97) 16.18 (0.32)
libimseti 1 497.59 1 507.54 (0.99) 1 503.49 (1.00) 1 704.53 (0.88)
musae-twitch DE 20 906.93 21 470.00 (0.97) 20 987.30 (1.00) 20 949.83 (1.00)
musae-twitch FR 37.13 37.81 (0.98) 37.32 (1.00) 41.55 (0.89)
petster-fs-dog 6.82 10.21 (0.67) 8.67 (0.79) 12.47 (0.55)
soc-LiveJournal1 9.87 11.50 (0.86) 11.06 (0.89) 23.91 (0.41)
web-BerkStan 134.22 360.88 (0.37) 138.84 (0.97) 207.92 (0.65)
web-Google 0.61 0.85 (0.71) 0.68 (0.89) 1.46 (0.41)
web-NotreDame 12.10 9.07 (1.33) 12.11 (1.00) 48.83 (0.25)
web-Stanford >36 000 8.38 (>4 294.84) 27.41 (>1 313.18) 42.80 (>841.16)
stotal 1.00 2.17 2.29 2.15

46

3.5 Targeted Branching

Table 3.11: Detailed results for our reduction-based strategies on the PACE in-
stances.

Graph max. deg. Twin Funnel Unconfined Packing Combined
PACE t t (s) t (s) t (s) t (s) t (s)
05 1.97 1.96 (1.01) 1.99 (0.99) 2.04 (0.97) 1.66 (1.19) 2.11 (0.93)
06 0.85 0.85 (1.00) 0.74 (1.15) 0.92 (0.92) 0.67 (1.27) 0.81 (1.05)
10 2.24 2.23 (1.01) 2.23 (1.00) 2.32 (0.97) 1.88 (1.19) 2.06 (1.09)
16 25 836.77 25 856.57 (1.00) 22 446.13 (1.15) 34 642.13 (0.75) 18 511.88 (1.40) 22 590.78 (1.14)
19 3.17 3.14 (1.01) 2.90 (1.09) 3.25 (0.98) 2.60 (1.22) 3.04 (1.04)
31 74.37 74.31 (1.00) 58.14 (1.28) 73.23 (1.02) 55.99 (1.33) 54.11 (1.37)
33 1.01 1.01 (1.00) 1.15 (0.88) 1.14 (0.89) 1.02 (0.99) 1.29 (0.79)
35 7.64 7.63 (1.00) 7.37 (1.04) 7.90 (0.97) 6.54 (1.17) 7.75 (0.99)
36 1.84 1.86 (0.99) 11.44 (0.16) 162.22 (0.01) 1.90 (0.97) 75.52 (0.02)
37 10.27 10.31 (1.00) 10.27 (1.00) 10.63 (0.97) 8.21 (1.25) 10.90 (0.94)
38 12.33 12.36 (1.00) 11.08 (1.11) 11.40 (1.08) 11.44 (1.08) 10.05 (1.23)
39 93.79 93.99 (1.00) 32.43 (2.89) 127.32 (0.74) 93.99 (1.00) 98.25 (0.95)
40 4 690.64 4 689.28 (1.00) 4 285.37 (1.09) 4 530.07 (1.04) 4 176.59 (1.12) 4 131.79 (1.14)
41 48.56 48.42 (1.00) 42.00 (1.16) 48.66 (1.00) 36.87 (1.32) 38.74 (1.25)
42 37.32 37.19 (1.00) 35.69 (1.05) 37.60 (0.99) 28.55 (1.31) 36.07 (1.03)
43 175.11 174.63 (1.00) 158.08 (1.11) 172.91 (1.01) 130.75 (1.34) 154.96 (1.13)
44 92.90 92.97 (1.00) 82.64 (1.12) 94.37 (0.98) 69.68 (1.33) 90.20 (1.03)
45 25.41 25.37 (1.00) 25.29 (1.01) 26.20 (0.97) 19.83 (1.28) 26.38 (0.96)
46 109.55 109.47 (1.00) 92.61 (1.18) 108.01 (1.01) 79.76 (1.37) 82.72 (1.32)
47 58.47 58.18 (1.00) 53.01 (1.10) 59.16 (0.99) 42.32 (1.38) 52.28 (1.12)
48 25.28 25.21 (1.00) 22.65 (1.12) 25.72 (0.98) 18.56 (1.36) 22.93 (1.10)
49 17.80 17.76 (1.00) 16.43 (1.08) 19.02 (0.94) 12.97 (1.37) 16.18 (1.10)
50 48.87 48.90 (1.00) 46.07 (1.06) 49.75 (0.98) 37.70 (1.30) 47.09 (1.04)
51 56.70 56.58 (1.00) 51.45 (1.10) 57.63 (0.98) 43.45 (1.31) 50.32 (1.13)
52 22.16 22.12 (1.00) 20.56 (1.08) 22.99 (0.96) 15.78 (1.40) 20.82 (1.06)
53 59.88 59.88 (1.00) 54.78 (1.09) 60.43 (0.99) 46.87 (1.28) 55.74 (1.07)
54 32.08 32.02 (1.00) 29.29 (1.10) 32.89 (0.98) 26.55 (1.21) 27.76 (1.16)
55 6.83 6.80 (1.00) 6.50 (1.05) 6.99 (0.98) 5.23 (1.31) 6.35 (1.08)
56 97.00 96.45 (1.01) 88.78 (1.09) 98.09 (0.99) 70.18 (1.38) 81.46 (1.19)
57 66.01 65.97 (1.00) 57.60 (1.15) 65.90 (1.00) 49.95 (1.32) 52.45 (1.26)
58 48.12 47.74 (1.01) 45.82 (1.05) 48.56 (0.99) 35.94 (1.34) 46.62 (1.03)
59 13.30 13.30 (1.00) 12.73 (1.04) 13.72 (0.97) 10.61 (1.25) 12.30 (1.08)
60 79.56 79.36 (1.00) 71.73 (1.11) 80.70 (0.99) 59.65 (1.33) 71.85 (1.11)
61 21.91 21.91 (1.00) 20.47 (1.07) 22.28 (0.98) 17.50 (1.25) 21.06 (1.04)
62 66.22 66.18 (1.00) 59.16 (1.12) 67.83 (0.98) 49.87 (1.33) 59.64 (1.11)
63 69.06 68.81 (1.00) 61.23 (1.13) 70.81 (0.98) 53.40 (1.29) 58.65 (1.18)
64 29.58 29.38 (1.01) 26.96 (1.10) 29.46 (1.00) 22.35 (1.32) 26.78 (1.10)
65 36.84 36.72 (1.00) 33.42 (1.10) 37.93 (0.97) 28.23 (1.30) 31.17 (1.18)
66 8.06 8.06 (1.00) 7.47 (1.08) 8.21 (0.98) 6.21 (1.30) 7.97 (1.01)
67 122.74 122.34 (1.00) 113.33 (1.08) 123.58 (0.99) 95.55 (1.28) 112.43 (1.09)
68 8.79 8.75 (1.00) 8.92 (0.99) 8.94 (0.98) 6.69 (1.31) 8.57 (1.03)
69 43.11 43.11 (1.00) 38.46 (1.12) 44.18 (0.98) 33.88 (1.27) 39.86 (1.08)
70 11.79 11.73 (1.00) 10.09 (1.17) 12.22 (0.96) 9.71 (1.21) 9.76 (1.21)
71 36.20 35.91 (1.01) 32.22 (1.12) 35.37 (1.02) 27.23 (1.33) 33.39 (1.08)
72 46.44 46.18 (1.01) 41.66 (1.11) 46.68 (0.99) 36.28 (1.28) 41.86 (1.11)
73 43.02 43.00 (1.00) 40.38 (1.07) 43.77 (0.98) 31.91 (1.35) 43.51 (0.99)
74 7.06 7.06 (1.00) 6.67 (1.06) 7.86 (0.90) 5.48 (1.29) 6.96 (1.01)
77 13.30 13.25 (1.00) 12.74 (1.04) 13.80 (0.96) 10.61 (1.25) 12.31 (1.08)
stotal 1.00 1.00 1.14 0.79 1.34 1.14

47

3 Maximum Independent Sets

Table 3.12: Detailed results for our reduction-based strategies on the DI-
MACS instances.

Graph max. deg. Twin Funnel Unconfined Packing Combined
DIMACS t t (s) t (s) t (s) t (s) t (s)
C125.9 0.98 0.98 (1.00) 0.92 (1.07) 0.98 (1.00) 0.85 (1.15) 0.91 (1.08)
MANN a27 0.48 0.48 (1.00) 0.57 (0.85) 0.52 (0.92) 0.48 (1.01) 0.59 (0.82)
MANN a45 73.80 73.76 (1.00) 83.81 (0.88) 78.58 (0.94) 71.86 (1.03) 85.47 (0.86)
brock200 1 137.34 136.98 (1.00) 140.15 (0.98) 137.32 (1.00) 135.14 (1.02) 138.64 (0.99)
brock200 2 4.59 4.60 (1.00) 4.71 (0.98) 4.59 (1.00) 4.58 (1.00) 4.70 (0.98)
brock200 3 22.06 21.78 (1.01) 22.38 (0.99) 21.85 (1.01) 21.76 (1.01) 22.46 (0.98)
brock200 4 28.34 28.15 (1.01) 29.09 (0.97) 28.16 (1.01) 28.25 (1.00) 29.24 (0.97)
gen200 p0.9 44 152.61 152.40 (1.00) 136.94 (1.11) 169.47 (0.90) 132.81 (1.15) 149.63 (1.02)
gen200 p0.9 55 131.24 131.20 (1.00) 125.61 (1.04) 127.51 (1.03) 102.10 (1.29) 50.64 (2.59)
hamming8-4 19.29 19.30 (1.00) 19.78 (0.98) 19.12 (1.01) 19.35 (1.00) 19.67 (0.98)
johnson16-2-4 39.87 39.79 (1.00) 41.63 (0.96) 41.40 (0.96) 38.70 (1.03) 43.09 (0.93)
keller4 2.62 2.62 (1.00) 2.68 (0.98) 2.63 (1.00) 2.58 (1.02) 2.65 (0.99)
p hat1000-1 860.24 859.74 (1.00) 870.92 (0.99) 873.91 (0.98) 862.77 (1.00) 871.60 (0.99)
p hat1000-2 33 035.45 33 314.15 (0.99) 32 999.15 (1.00) 32 812.80 (1.01) 30 913.22 (1.07) 31 202.52 (1.06)
p hat1500-1 8 935.77 8 935.50 (1.00) 9 009.69 (0.99) 8 954.18 (1.00) 8 958.19 (1.00) 9 046.97 (0.99)
p hat300-1 3.70 3.69 (1.00) 3.78 (0.98) 3.69 (1.00) 3.68 (1.00) 3.78 (0.98)
p hat300-2 5.53 5.53 (1.00) 5.68 (0.97) 5.54 (1.00) 5.48 (1.01) 5.63 (0.98)
p hat300-3 189.58 187.77 (1.01) 189.16 (1.00) 185.68 (1.02) 175.01 (1.08) 179.53 (1.06)
p hat500-1 38.63 38.70 (1.00) 39.36 (0.98) 39.03 (0.99) 38.61 (1.00) 39.34 (0.98)
p hat500-2 96.36 96.39 (1.00) 97.87 (0.98) 96.21 (1.00) 95.08 (1.01) 96.96 (0.99)
p hat500-3 14 860.70 14 887.15 (1.00) 14 624.90 (1.02) 14 765.90 (1.01) 13 429.92 (1.11) 13 712.38 (1.08)
p hat700-1 163.30 160.75 (1.02) 163.63 (1.00) 160.81 (1.02) 163.24 (1.00) 163.31 (1.00)
p hat700-2 906.32 908.46 (1.00) 914.56 (0.99) 906.78 (1.00) 866.08 (1.05) 879.99 (1.03)
san1000 895.34 898.16 (1.00) 906.21 (0.99) 901.40 (0.99) 913.29 (0.98) 932.29 (0.96)
san200 0.7 1 10.85 10.78 (1.01) 11.01 (0.99) 10.91 (0.99) 10.93 (0.99) 11.06 (0.98)
san200 0.7 2 0.33 0.32 (1.04) 0.33 (0.98) 0.31 (1.07) 0.32 (1.01) 0.33 (0.99)
san200 0.9 1 13.93 13.90 (1.00) 13.35 (1.04) 4.94 (2.82) 12.03 (1.16) 12.13 (1.15)
san200 0.9 2 34.15 33.87 (1.01) 21.46 (1.59) 12.32 (2.77) 15.80 (2.16) 10.01 (3.41)
san200 0.9 3 1 069.00 1 068.17 (1.00) 1 016.33 (1.05) 639.01 (1.67) 843.40 (1.27) 600.71 (1.78)
san400 0.5 1 9.21 9.21 (1.00) 9.37 (0.98) 9.13 (1.01) 9.24 (1.00) 9.37 (0.98)
san400 0.7 1 1 125.52 1 121.99 (1.00) 1 146.32 (0.98) 1 125.12 (1.00) 1 132.10 (0.99) 1 151.14 (0.98)
san400 0.7 2 3 062.38 3 063.23 (1.00) 3 066.62 (1.00) 3 463.29 (0.88) 3 048.94 (1.00) 3 489.72 (0.88)
san400 0.7 3 4 411.82 4 405.26 (1.00) 4 487.18 (0.98) 4 398.18 (1.00) 4 497.81 (0.98) 4 521.80 (0.98)
sanr200 0.7 48.35 48.34 (1.00) 50.09 (0.97) 48.41 (1.00) 48.49 (1.00) 50.25 (0.96)
sanr200 0.9 679.25 679.65 (1.00) 633.59 (1.07) 664.95 (1.02) 531.48 (1.28) 567.49 (1.20)
sanr400 0.5 373.40 370.59 (1.01) 376.93 (0.99) 377.71 (0.99) 370.72 (1.01) 376.10 (0.99)
sanr400 0.7 29 766.80 29 838.40 (1.00) 30 466.35 (0.98) 29 844.65 (1.00) 29 473.60 (1.01) 30 242.80 (0.98)
stotal 1.00 1.00 0.99 1.00 1.04 1.03

48

3.5 Targeted Branching

Table 3.13: Detailed results for our reduction-based strategies on sparse net-
works.

Graph max. deg. Twin Funnel Unconfined Packing Combined
Sparse net. t t (s) t (s) t (s) t (s) t (s)
as-skitter 2 058.32 2 054.41 (1.00) 1 849.79 (1.11) 1 977.94 (1.04) 1 681.87 (1.22) 1 704.73 (1.21)
baidu-relatedpages 0.82 0.80 (1.02) 0.84 (0.97) 0.85 (0.97) 0.83 (0.98) 0.93 (0.88)
bay 1.68 1.68 (1.00) 8.22 (0.20) 4.71 (0.36) 1.89 (0.89) 8.38 (0.20)
col 5 019.93 5 752.08 (0.87) 5 416.72 (0.93) 8 187.80 (0.61) 9 370.05 (0.54) 5 924.10 (0.85)
fla 25.33 25.41 (1.00) 45.62 (0.56) 76.60 (0.33) 34.78 (0.73) 42.75 (0.59)
hudong-internallink 0.99 1.31 (0.76) 1.27 (0.78) 1.21 (0.82) 1.55 (0.64) 1.12 (0.88)
in-2004 5.22 4.88 (1.07) 5.25 (0.99) 10.85 (0.48) 5.50 (0.95) 10.73 (0.49)
libimseti 1 497.59 1 452.17 (1.03) 1 620.09 (0.92) 1 440.71 (1.04) 1 476.25 (1.01) 1 706.07 (0.88)
musae-twitch DE 20 906.93 20 996.87 (1.00) 21 190.67 (0.99) 22 650.53 (0.92) 19 345.03 (1.08) 23 006.50 (0.91)
musae-twitch FR 37.13 37.04 (1.00) 38.58 (0.96) 41.15 (0.90) 35.60 (1.04) 42.46 (0.87)
petster-fs-dog 6.82 6.62 (1.03) 8.16 (0.84) 8.66 (0.79) 9.68 (0.70) 9.20 (0.74)
soc-LiveJournal1 9.87 6.64 (1.49) 9.57 (1.03) 9.49 (1.04) 11.33 (0.87) 10.69 (0.92)
web-BerkStan 134.22 135.47 (0.99) 122.30 (1.10) 146.94 (0.91) 123.60 (1.09) 174.07 (0.77)
web-Google 0.61 0.53 (1.15) 0.69 (0.87) 0.68 (0.89) 0.78 (0.78) 0.68 (0.89)
web-NotreDame 12.10 12.63 (0.96) 15.23 (0.79) 12.38 (0.98) 14.09 (0.86) 17.52 (0.69)
web-Stanford >36 000 >36 000 >36 000 >36 000 17 886.35 (>2.01) 17 989.97 (>2.00)
stotal 1.00 0.97 0.98 0.86 1.31 1.30

49

4
Chapter 4

Maximum Cuts

Abstract. For the fundamental Max Cut problem, kernelization algo-
rithms are theoretically highly efficient for various parameterizations.
However, the efficacy of these reduction rules in practice—to aid solv-
ing highly challenging benchmark instances to optimality—remains en-
tirely unexplored.

We engineer a new suite of efficient data reduction rules that subsume
most of the previously published rules, and demonstrate their significant
impact on benchmark data sets, including synthetic instances, and data
sets from the VLSI and image segmentation application domains. Our
experiments reveal that current state-of-the-art solvers can be sped up by
up to multiple orders of magnitude when combined with our data reduc-
tion rules. On social and biological networks in particular, kernelization
enables us to solve four instances that were previously unsolved in a
ten-hour time limit with state-of-the-art solvers; three of these instances
are now solved in less than two seconds.

References and Attribution. This chapter is based on the conference paper [Fer+20].
Together with Sebastian Lamm, the author of this thesis is a main author of this
paper with editing done by Damir Ferizovic, Matthias Mnich, Christian Schulz and
Darren Strash. The author made major contributions to the theoretical proofs and
analyses of the reduction rules developed as well as the time stamping approach
and the experiment design. The implementation was done by Damir Ferizovic and
the experiments were done by Sebastian Lamm and Damir Ferizovic. Large parts of
this chapter were copied verbatim from the conference paper or the corresponding
technical report [Fer+19].

4.1 Introduction

The (unweighted) Max Cut problem is to partition the vertex set of a given graph
G = (V,E) into two sets S ⊆ V and V / S so as to maximize the total number of
edges between those two sets. Such a partition is called a maximum cut. Comput-
ing a maximum cut of a graph is a well-known problem in the area of computer
science; it is one of Karp’s 21 NP-complete problems [Kar72]. While signed and
weighted variants are often considered throughout the literature [Bar82; Bar96;
Bar+88; Chi+07; dSHK13; Har59; HLW02], the simpler (unweighted) case still

51

4 Maximum Cuts

presents a significant challenge for researchers, and solving it quickly is of paramount
importance to all variants. Max Cut variants have many applications, including
social network modeling [Har59], statistical physics [Bar82], portfolio risk analy-
sis [HLW02], VLSI design [Bar+88; Chi+07], network design [Bar96], and image
segmentation [dSHK13].

Theoretical approaches to solving Max Cut primarily focus on producing efficient
parameterized algorithms through data reduction rules, which reduce the input size
in polynomial time while maintaining the ability to compute an optimal solution
to the original input. If the resulting (irreducible) graph has size bounded by a
function of a given parameter, then it is called a kernel. Recent works focus on
parameters measuring the distance k between the maximum cut size of the input
graph and a lower bound ℓ guaranteed for all graphs. The algorithm then must
decide if the input graph admits a cut of size ℓ + k for a given integer k ∈ N. Two
such lower bounds are the Edwards-Erdős bound [Edw73; Edw75] and the spanning
tree bound. Crowston et al. [CJM15] were the first to show that unweighted Max Cut
is fixed-parameter tractable when parameterized by distance k above the Edwards-
Erdős bound. Moreover, they show the problem admits a polynomial-size kernel
with O(k5) vertices. Their result was extended to the more general Signed Max
Cut problem, and the kernel size was decreased to O(k3) vertices [Cro+13]. Finally,
Etscheid and Mnich [EM18] improved the kernel size to an optimal O(k) vertices
even for signed graphs, and showed how to compute it in linear time O(k ⋅(∣V ∣+∣E∣)).

Many practical approaches exist to compute a maximum cut or (alternatively)
a large cut. Two state-of-the-art exact solvers are Biq Mac (a solver for binary
quadratic and Max-Cut problems) by Rendl et al. [RRW10], and LocalSolver
[Ben+11; Gar+14], a powerful generic local search solver that also verifies optimality
of a cut. Many heuristic (inexact) solvers are also available, including those using
unconstrained binary quadratic optimization [Wan+13], local search [BH13], tabu
search [Koc+13], and simulated annealing [AO09].

Curiously, data reduction, which has shown promise at preprocessing large
instances of other fundamental NP-hard problems [Abu+07; HSS18; Lam+17], is
currently not used in implementations of Max Cut solvers. To the best of our
knowledge, no research has been done on the efficiency of data reduction for Max
Cut, in particular with the goal of achieving small kernels in practice.

Our Results. We introduce new data reduction rules for the Max Cut problem,
and show that nearly all previous reduction rules for the Max Cut problem
can be encompassed by only four reduction rules. Furthermore, we engineer
efficient implementations of these reduction rules and show through extensive
experiments that kernelization achieves a substantial reduction on sparse graphs.
Our experiments reveal that current state-of-the-art solvers can be sped up by
up to multiple orders of magnitude when combined with our data reduction rules.
We achieve speedups on all instances tested. On social and biological networks
in particular, kernelization enables us to solve four instances that were previously

52

4.2 Preliminaries

unsolved in a ten-hour time limit with state-of-the-art solvers; three of these
instances are now solved in less than two seconds with our kernelization.

4.2 Preliminaries

For general definitions and notations for graphs see Section 2.1. Here we give some
more definitions specific to maximum cuts and the algorithms used in this chapter.
Note that in this chapter, we consider undirected, weighted graphs.

The set of edges between the vertices of different vertex sets S1, S2 ⊆ V is written
as E(S1, S2) ∶= E ∩ (S1 ×S2). For vertex sets S ⊆ V (G), the set of external vertices
is Cext(S) = {v ∈ S ∣ ∃w ∈ V (G) / S,{v,w} ∈ E(G)}, which is the set of vertices in S
that have some neighbor in G outside S. In similar fashion, Cint(S) = S / Cext(S)
defines the set of internal vertices.

A clique is a complete subgraph, and a near-clique is a clique minus a single
edge. A clique tree is a connected graph whose biconnected components are cliques,
and a clique forest is a graph whose connected components are clique trees. In such
graphs, we use the term block to refer to a biconnected component.

The Max Cut problem is to find a vertex set S ⊆ V , such that ∣E(S,V / S)∣
is maximized. We denote the cardinality of a maximum cut by β(G). At times,
we may need to reason about a maximum cut given a fixed partitioning of a
subset of G’s vertices. A partition of vertices V ′ ⊆ V (G) is given as a 2-coloring
δ ∶ V ′ → {0,1}. We let βδ(G) denote the size of a maximum cut of G, given that
V ′ ⊆ V (G) is partitioned according to δ. The Weighted Max Cut problem is to
find a vertex set S of a given graph G with additive weight function ω such that
ω(E(S,V (G) / S)) is maximum. The weight of a maximum cut is then given by
β(G,ω) ∶= ω(E(S,V / S)). We denote instances of the Max Cut decision problem
as (G,k)MC, where G is a graph and k ∈ N0, If the weight of a maximum cut in G
is at least k, then (G,k)MC is a “yes”-instance; otherwise, it is a “no”-instance.

We address two more variations of Max Cut in this chapter. The Vertex-
Weighted Max Cut problem takes as input a graph G and two vertex weight functions
ω0, ω1 ∶ V (G) → R; the objective is to compute a bipartition V0 ∪ V1 = V (G) that
maximizes ∣E(V0, V1)∣+∑v∈V0

w0(v)+∑v∈V1
w1(v). The Signed Max Cut problem

takes as input a graph G together with an edge labeling l ∶ E(G) → {“+”,“−”};
the goal is to find an S ⊆ V (G) which maximizes the number negative (“−”) edges
between S and V (G) / S plus the number of positive (“+”) edges inside of S
and V (G) / S. Formally, maximize β(G, l) ∶= ∣E−l (S,V (G) / S)∣ + ∣E+(G[S], l) ∪
E+(G[V (G) / S], l)∣, where Ec

l (S,V (G) / S) ∶= {e ∈ E(S,V (G) / S) ∣ l(e) = c} and
Ec(G, l) ∶= {e ∈ E(G) ∣ l(e) = c} for c ∈ {“−”,“+”}. Similarly, for the neighborhood
of a vertex (set), we use the notations N c

l (v) ∶= {w ∈ V (G) ∣ {v,w} ∈ Ec(l)} and
N c

l (X) ∶= ⋃v∈X N c
l (v) / X. We call a triangle positive if its number of “−”-edges

is even. Any Max Cut instance can be transformed into a Signed Max Cut
instance by labeling all edges with “−”.

53

4 Maximum Cuts

Let Σ∗ denote the set of input instances for a decision problem. A parameterized
problem Π ⊆ Σ∗ ×N is fixed-parameter tractable if there is an algorithm A (called
a fixed-parameter algorithm) that decides membership in Π for any input pair
(x, k) ∈ Σ∗ ×N in time f(k) ⋅ ∣(x, k)∣O(1) for some computable function f ∶ N→ N.

A data reduction rule (often shortened to reduction rule) for a parameterized
problem Π is a function ϕ ∶ Σ∗ ×N→ Σ∗ ×N that maps an instance (x, k) of Π to
an equivalent instance (x′, k′) of Π such that ϕ is computable in time polynomial
in ∣x∣ and k. We call two instances of Π equivalent if either both or none belong to
Π. Observe that for two equivalent “yes”-instances (G,β(G)) and (G′, β(G′)), the
relationship β(G) = β(G′) + k holds for some k ∈ Z.

4.2.1 Related Work

Several studies have been made in the direction of providing fixed-parameter
algorithms for the Max Cut problem [Cro+13; CJM15; EM18; MSZ18]. Among
these, a fair amount of kernelization rules have been introduced with the goal of
effectively reducing Max Cut instances [Cro+13; CJM15; EM18; MSZ18; Pri05;
Far+17]. Those reductions typically have some constraints on the subgraphs,
like being clique forests or so-called clique-cycle forest. Later, we propose a new
set of reductions that does not need this property and cover most of the known
reductions [CJM15; EM18; MSZ18; Far+17]. There are other reductions rules that
are fairly simplistic and focus on very narrow cases [Pri05]. We now explain the
Edwards-Erdős bound and the spanning tree bound.

Edwards-Erdős Bound. For a connected graph, the Edwards-Erdős bound

[Edw73; Edw75] is defined as EE(G) = ∣E(G)∣
2
+ ∣V (G)∣−1

4
. A linear-time algorithm

that computes a cut satisfying the Edwards-Erdős bound for any given graph is
provided by Van Ngoc and Tuza [VT93]. The Max Cut Above Edwards-Erdős
(Max Cut AEE) problem asks for a graph G and integer k ∈ N0 if G admits a
cut of size EE(G) + k. All kernelization rules for Max Cut AEE require a set
S ⊆ V set such that G−S is a clique forest. Etscheid and Mnich [EM18] propose an
algorithm that computes such a set S of at most 3k vertices in time O(k ⋅ (∣V ∣+ ∣E∣)).

Spanning Tree Bound. Another approach is based on utilizing the spanning
forest of a graph [MSZ18]. For a given k ∈ N0, a Max Cut of size ∣V ∣−1+k is searched
for. This decision problem is denoted as Max Cut AST (Max Cut Above
Spanning Tree). For sparse graphs, this bound is larger than the Edwards-Erdős
bound. The reductions for the problem require a set S ⊂ V (G) such that G−S is a
so-called clique-cycle forest.

4.3 New Data Reduction Rules

We now introduce our new data reduction rules and prove their correctness. The
main feature of our new rules is that they do not depend on the computation
of a clique-forest to determine if they can be applied. Furthermore, our new

54

4.3 New Data Reduction Rules

Table 4.1: Reduction rules from previous work subsumed by our new rules. A
✓ in row a and column b means that the rule from row a subsumes the rule
from column b. If there are multiple ✓s in a column (say, rows a and b in
column c), then rules a and b combined subsume rule c.

Source [Far+17] [CJM15] [Cro+13] [EM18] [MSZ18]

Rule A 5 6 7 8 9 9 6 7 8 9 10 11 12 13

7w=1 ✓ ✓
1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓ ✓
5 ✓

Figure 4.1: Reduction Rule 1. The shown vertices induce a clique of size four
with two external vertices. All edges within the clique are removed from the
graph. Since the internal vertices have no incident edges after this, they can
also be removed from the graph.

rules subsume almost all rules from previous works [Cro+13; CJM15; EM18;
MSZ18; Far+17] with the exception of Reduction Rules 10 and 11 by Crowston
et al. [Cro+13]. Proofs for this were done by Damir Ferizovic in his Master
Thesis [Fer19]. For an overview of how rules are subsumed, consult Table 4.1.

Reduction Rule 1. Let G = (V,E) be a graph and let S ⊆ V induce a
clique in G. If ∣Cext(G)(S)∣ ≤ ⌈∣S∣/2⌉, then β(G) = β(G′) + β(K∣S∣) for G′ =
(V / Cint(G)(S),E / E(G[S])), where Kn is the complete graph of n vertices,
i.e., a clique of size n. Figure 4.1 shows an example of an application of Reduc-
tion Rule 1.

Proof. Note that any partition of the clique G[S] into two vertex sets of size
⌈∣S∣/2⌉ and ⌊∣S∣/2⌋ is a maximum cut of G[S]. Suppose we fix the partitions of the
at most ⌈∣S∣/2⌉ external vertices of S. Then the at least ⌊∣S∣/2⌋ internal vertices
can be assigned to the partitions so they each contain ⌈∣S∣/2⌉ and ⌊∣S∣/2⌋ vertices.
Thus, regardless of how Cext(G)(S) is partitioned, the size of a maximum cut of
G[S] remains the same. ◻

We can exhaustively apply Reduction Rule 1 in O(∣V ∣ ⋅∆2) time by scanning
over all vertices in the graph. When scanning vertex v, we check whether N[v]
induces a clique. This finds all cliques with at least one internal vertex. Checking
whether Reduction Rule 1 is applicable is then straightforward by counting the
number of vertices with degree higher than the size of the clique.

55

4 Maximum Cuts

a′

a b

b′ a′

a b

b′

Figure 4.2: Reduction Rule 2. Vertices a′, a, b, and b′ induce a 3-path with
N(a) = {a′, b} and N(b) = {a, b′}. Th edges of the path are removed and a new
edge between a′ and b′ is inserted. Since a and b now have degree zero, they
can also be removed from the graph.

e′

Figure 4.3: Reduction Rule 3. The vertices shown induce a near-clique with
three internal vertices and a missing edge between two internal vertices. The
missing edge e′ is added to the graph.

Reduction Rule 2. Let (a′, a, b, b′) be an induced 3-path in a graph G with
N(a) = {a′, b} and N(b) = {a, b′}. Construct G′ from G by adding a new edge
{a′, b′} and removing the vertices a and b. Then β(G) = β(G′)+2. Figure 4.2 shows
and example of this reduction rule.

Proof. Let S = {a′, a, b, b′} and let δ ∶ V → {0,1} be an assignment of vertices to
the partitions of a cut in G. We distinguish two cases:

• Case δ(a′) = δ(b′): If δ(a) = δ(b) = δ(a′), then no edges of G[S] are cut.
Notice that this cut is not maximum since moving b between partitions
increases the cut size by two. If δ(a) ≠ δ(a′) or δ(b) ≠ δ(b′), then exactly two
edges in G[S] are cut.

• Case δ(a′) ≠ δ(b′): By choosing δ(a) = δ(b′) and δ(b) = δ(a′), all three edges
in G[S] are cut. In G′, the edge between a′ and b′ is cut, so β(G) = β(G′)+ 2.
◻

Reduction Rule 3. Let G be a graph and let S ⊆ V (G) induce a near-clique
in G where the missing edge e′ connects two internal vertices. Let G′ be the graph
obtained from G by adding e′ so that S induces a clique in G′. If ∣S∣ is odd or
∣Cint(G)(S)∣ > 2, then β(G) = β(G′). See Figure 4.3 for an example.

Proof. Let e′ = (u, v) be the edge added to the graph and δ any 2-coloring of
Cext(G)(S). We show that a maximum cut of G′ exists such that u and v are in
the same partition. As G has one less edge than G′, this means that βδ(G[S]) =
βδ(G′[S]), which implies that β(G) = β(G′).

56

4.3 New Data Reduction Rules

Define Vc = {x ∈ Cext(G′)(S) ∣ δ(x) = c} for c ∈ {0,1}. Without loss of generality,
assume ∣V0∣ ≥ ∣V1∣. Note that, given the partition for Cext(G′)(S), maximizing the
cut of S means minimizing ∣∣V0∣ − ∣V1∣∣. We distinguish three cases:

• ∣V0∣ − ∣V1∣ ≥ 2: By adding u and v to V0, ∣∣V0∣ − ∣V1∣∣ decreases. The rest of the
internal vertices have to be distributed among V0 and V1 such that ∣∣V0∣ − ∣V1∣∣
is minimized.

• ∣V0∣ − ∣V1∣ = 1: By adding u and v to V0, ∣∣V0∣ − ∣V1∣∣ stays 1. If ∣S∣ is odd, then
1 is the minimal value possible and ∣Cint(G)(S)∣ is even. So the remaining
internal vertices can be distributed evenly between V0 and V1. If S is even,
then an odd number of internal vertices are left (and at least one by the
definition of the rule) which can be distributed to balance V0 and V1.

• ∣V0∣ = ∣V1∣: By adding u and v to V0, ∣∣V0∣ − ∣V1∣∣ becomes 2. If ∣S∣ is odd, then
an odd number of internal vertices is left to assign to such that ∣∣V0∣ − ∣V1∣∣
becomes 1. If ∣S∣ is even then there is an even number of internal vertices left
which can be distributed to balance V0 and V1.

Since some cliques are irreducible by currently known rules, it may be beneficial
to also apply Reduction Rule 3 ‘in reverse’. Although this ‘reverse’ reduction neither
reduces the vertex set nor (as our experiments suggest) lead to applications of other
rules, it can undo unfruitful additions of edges made by Reduction Rule 3 and may
remove other edges from the graph.

Reduction Rule 4. Let G be a graph and let S ⊆ V (G) induce a clique in G. If ∣S∣
is odd or ∣Cint(G)(S)∣ > 2, an edge between two vertices of Cint(G)(S) is removable.
That is, β(G) = β(G′) for G′ = (V,E / {e}), e ∈ E(G[Cint(G)(S)]).

Proof. Follows from the correctness of Reduction Rule 3. ◻

The following reduction rule is closely related to the upcoming generalization
of Reduction Rule 8 by Crowston et al. [Cro+13]. It is able to further reduce the
case where ∣X ∣ = ∣N(X)∣ for a clique X of G. In comparison, the generalization of
Reduction Rule 8 from [Cro+13] is able to handle the case ∣X ∣ > ∣N(X)∣. Due to
the degree by which these rules are similar, they are also merged together in our
implementation, as the techniques to handle both are the same.

Reduction Rule 5. Let X ⊆ V induce a clique in a graph G, where ∣X ∣ = ∣N(X)∣ ≥ 1
and N(X) = N(x) / X for all x ∈X. Create G′ from G by removing an arbitrary
vertex of X. Then β(G) = β(G′) + ∣X ∣. Figure 4.4 shows an example for ∣X ∣ = 2.

Proof. Let S ∶= X ∪ NG(X) and δ be any 2-coloring of NG(X). Note that
Cext(G)(S) ⊆ NG(X), i.e., the removal of NG(X) disconnects X from the remainder
of the graph.

Define Vc = {x ∈ NG(X) ∣ δ(x) = c} and zc ∶= ∣Vc∣ for c ∈ {0,1}. We distribute
the vertices in X among V0 and V1 such that E(V0, V1) is maximized. Notice that
every vertex in X is connected to all other vertices in S. The size of any cut is

57

4 Maximum Cuts

u v u v

Figure 4.4: Reduction Rule 5. Vertices u and v induce a clique and have the
same neighborhood of two vertices outside the clique. We remove v along with
all its edges from the graph.

therefore p(c0, c1) = c0z1 + c1z0 + c0c1 + ∣E(V0, V1)∣, where c0 and c1 denote the
number of vertices from X that we want to insert into V0 and V1, respectively. This
can be rewritten as p(c0, c1) = (z0 + c0) ⋅ (z1 + c1) − z0z1 + ∣E(V0, V1)∣. As all other
parts are constant, this reduces to maximizing (z0 + c0) ⋅ (z1 + c1). As z0 + c0 +z1 + c1
is constant, (z0 + c0) ⋅ (z1 + c1) is maximized when ∣(z0 + c0)− (z1 + c1)∣ is minimized.

Because ∣X ∣ = ∣NG(X)∣, it is always possible to distribute the vertices of X such
that z0 + c0 = z1 + c1 = ∣X ∣, which then maximizes p(c0, c1). Removing any vertex
x ∈ X from G will change the cut by −∣X ∣: without loss of generality, let x ∈ V0.
Then ∣X ∣ + ∣NG(X)∣ is odd and ∣(z0 + (c0 − 1)) − (z1 + c1)∣ = 1, which maximizes the
cut. Then, p(c0 − 1, c1) = p(c0, c1) − ∣X ∣. ◻

The following algorithm identifies all candidates of Reduction Rule 5 in linear
time. First, we order the adjacencies of all vertices. That is, for every vertex v ∈ V ,
the vertices in N(v) are sorted according to a numeric identifier assigned to every
vertex. For this, we create an auxiliary array of empty lists of size ∣V (G)∣. We then
traverse the vertices w ∈ N(v) for every vertex v ∈ V (G) and insert each pair (v,w)
in a list identified by indexing the auxiliary array with w. We then iterate once
over the array from the lowest identifier to the highest and recreate the graph with
sorted adjacencies. In total, this process takes O(∣V ∣ + ∣E∣) time.

For any clique X of G, we have to check if for all pairs (x1, x2) of vertices from X
thatN[x1] = N[x2] holds (neighborhood condition). Our algorithm uses tries [Fre60;
De 59] to find all candidates. A trie supports two operations, Insert(key,val) and
Retrieve(key). The key parameter is an array of integers and val is a single
integer. Function Retrieve returns all inserted values by Insert that have the
same key. Internally, a trie stores the inserted elements as a tree, where every node
corresponds to one integer of the key and every prefix is stored only once. That
means that two keys sharing a prefix share the same path through the trie until the
position where they differ.

For each vertex v ∈ V , we use the ordered set N(v) ∪ {v} as key and v as the
val parameter. Notice that N(v) is already sorted. The key N(v) ∪ {v} can be
then computed through an insertion of v into the sequence N(v) in time O(∣N(v)∣).
After Insert(N(v) ∪ {v},v) is done for every vertex v ∈ V , each trie leaf contains
all vertices that satisfy the condition of Reduction Rule 5. Meaning, for every
vertex pair (x1, x2) of a trie leaf, the neighborhood condition is met. We then verify

58

4.3 New Data Reduction Rules

whether the vertex set X of a leaf is a clique, in O(∣X ∣2) time. Since every vertex
is only contained one leaf and each leaf forms a clique due to the neighborhood
condition, this takes O(∣V ∣ + ∣E∣) time in total. As a last step, we check whether
∣X ∣ > ∣N(X)∣ ≥ 1 by using the observation that ∀x ∈ X ∶ ∣N(X)∣ = deg(x) − ∣X ∣. In
Section 4.4, we describe a timestamping system that assists the above procedure in
not having to repeatedly check the same structures after any amount of vertices and
edges are added or removed from G. However, in those later applicability checks,
we disregard sorting the adjacencies of all vertices in linear time again. Rather we
simply use a comparison based sort on the adjacencies.

The next reduction rule is our only rule whose application turns unweighted
instances into instances of Weighted Max Cut. Our experiments show that this
can reduce the kernel size substantially. This is noteworthy, given that existing
solvers for Max Cut usually support weighted instances.

Reduction Rule 6. Let G be a graph, w ∶ E → Z a weight function, and (a, b, a′)
be an induced 2-path with N(b) = {a, a′}. Let e1 be the edge between vertex a and
b; let e2 be the one between b and a′. Construct G′ from G by deleting vertex b and
adding a new edge {a, a′} with w′({a, a′}) = max{w(e1),w(e2)} −max{0,w(e1) +
w(e2)}. Then β(G,w) = β(G′,w) +max{0,w(e1) +w(e2)}.

Proof. Let δ be a maximum cut of G and consider the following two cases:
• δ(a) = δ(a′): If w(e1) + w(e2) > 0, then cutting both edges increases the
cut, so δ(b) ≠ δ(a). Otherwise, δ(b) = δ(a). In total, the path contributes
max{0,w(e1) + w(e2)} to the cut. In G′, the edge between a and a′ is not
cut, so β(G,w) = β(G′,w′) +max{0,w(e1) +w(e2)}.

• δ(a) ≠ δ(a′): If w(e1) > w(e2), then cutting e1 increases the cut by more than
e2, so δ(b) = δ(a′). Otherwise, δ(b) = δ(a). In total, the path contributes
max{w(e1),w(e2)} to the cut. In G′, the edge between a and a′ is cut and
contributes w′({a, a′}) = max{w(e1),w(e2)} −max{0,w(e1) +w(e2)} to the
cut, so again β(G,w) = β(G′,w′) +max{0,w(e1) +w(e2)}. ◻

Our next two rules (Reduction Rules 7w=1 and 7) generalize Reduction Rule 8
by Crowston et al. [Cro+13], which we restate for completeness.

Reduction Rule 8. ([Cro+13], Reduction Rule 8)
Let (G, l) be a signed graph, S ⊆ V a set of vertices such that G[V / S] is a

clique forest, and C a block in G[V / S]. If there is a X ⊆ Cint(G[V / S])(C) such
that ∣X ∣ > ∣C∣+∣N(X)∩S∣

2
≥ 1, N+l (x)∩S = N+l (X)∩S and N−l (x)∩S = N−l (X)∩S for

all x ∈X. Construct the graph G′ from G by removing any two vertices x1, x2 ∈X,
then β(G′) −EE(G′) = β(G) −EE(G).

Note that, for unsigned graphs, N+l (x) = ∅ and N−l (x) = N(x) for every vertex x.
Here, different choices of S lead to different applications of this rule. Our gener-

alizations do not require such a set anymore and can find all possible applications
for any choice of S.

59

4 Maximum Cuts

Reduction Rule 7w=1. Let X be the vertex set of a clique in G with ∣X ∣ >
max{∣N(X)∣,1} and N(X) = N(x) / X for all x ∈ X. Construct the graph G′ by
deleting two arbitrary vertices x1, x2 ∈ X from G. Then β(G) = β(G′) + ∣N(x1)∣.
See Figure 4.5 for an example.

We show the correctness of Reduction Rule 7w=1 by reducing it to Reduction
Rule 8 by Crowston et al. [Cro+13].

Proof. Let S = V / X and C =X. Since X is a clique, G[V / S] is a clique forest.

From ∣X ∣ >max{∣N(X)∣,1} it follows that ∣X ∣ > ∣X ∣+∣N(X)∣
2

= ∣C∣+∣N(X)∩S∣
2

≥ 1. Also,
N(x) / X = N(x)∩S and N(X)∩S = N(X), so all conditions for Reduction Rule 8
are satisfied.

It remains to show that β(G) = β(G′) + ∣N(x1)∣. Note that ∣E(G′)∣ = ∣E(G)∣ −
∣NG(x1)∣ − (∣NG(x2)∣ − 1) and ∣V (G′)∣ = ∣V (G)∣ − 2. By Reduction Rule 8, we know
that β(G′) −EE(G′) = β(G) −EE(G), therefore we have that

β(G) − β(G′) (4.1)

= EE(G) −EE(G′)

=
∣E(G)∣

2
+
∣V (G)∣ − 1

4
− (
∣E(G′)∣

2
+
∣V (G′)∣ − 1

4
)

=
∣E(G)∣

2
+
∣V (G)∣ − 1

4
− (
∣E(G)∣ − ∣NG(x1)∣ − (∣NG(x2)∣ − 1)

2
+
(∣V (G)∣ − 2) − 1

4
)

=
(∣V (G)∣ − 1) − ∣V (G)∣ + 2 + 1

4
−
−∣NG(x1)∣ − (∣NG(x2)∣ − 1)

2

=
2

4
−
−∣NG(x1)∣ − ∣NG(x1)∣ + 1

2
(4.2)

=
2

4
−
−2∣NG(x1)∣ + 1

2

=
2

4
−
1

2
+ ∣NG(x1)∣

= ∣NG(x1)∣.

Where (4.2) follows from NG(x1) = NG(x2). ◻

Reduction Rule 7. Let X ⊆ V induce a clique in a signed graph (G, l) such
that ∀e ∈ E(X) ∶ l(e) = “−” and ∣X ∣ > max{∣N(X)∣,1}, N+l (X) = N+l (x) / X,
and N−l (X) = N−l (x) / X for all x ∈ X. Construct G′ by deleting two arbitrary
vertices x1, x2 ∈X from G. Then β(G) = β(G′) + ∣N(x1)∣.

Proof (Sketch). The proof for this rule is almost identical to the proof of Reduction
Rule 7w=1. ◻

Using an almost equivalent approach as we did for Reduction Rule 5, we can
find all candidates of this reduction rule in linear time.

60

4.4 Implementation

u

v

w u

v

w

Figure 4.5: Reduction Rule 7w=1. Vertices u, v and w induce a clique and have
the same neighborhood of two vertices outside the clique. We remove u and w
along with all their edges from the graph.

In order to also reduce weighted instances to some degree, we use a simple
weighted scaling of two reduction rules. That is, we extend their applicability from
an unweighted subgraph to a subgraph where all edges have the same weight c ∈ R.
We do this for Reduction Rules 1 and 3.

Reduction Rule 1w=c. Let (G,ω) be a weighted graph and let S ⊆ V (G) induce
a clique with ω(e) = c for every edge e ∈ E(G[S]) for some constant c ∈ R. Let
G′ = (V (G) / Cint(G)(S),E(G) / E(G[S])) with ω′(e) = ω(e) for every e ∈ E(G′).
If ∣Cext(G)(S)∣ ≤ ⌈ ∣S∣2 ⌉, then β(G,ω) = β(G′, ω′) + c ⋅ β(K∣S∣).

Reduction Rule 3w=c. Let (G,ω) be a weighted graph and let S ⊆ V (G) induce
a near-clique in G. Furthermore, let ω(e) = c for every edge e ∈ E(G[S]) for some
constant c ∈ R. Let G′ be the graph obtained from G by adding the edge e′ so that
S induces a clique in G′. Set ω′(e′) = c, and ω′(e) = ω(e) for e ∈ E(G). If ∣S∣ is odd
or ∣Cint(G)(S)∣ > 2, then β(G,ω) = β(G′, ω′).

4.4 Implementation

4.4.1 Kernelization Framework

We now discuss our overall kernelization framework in detail. Our algorithm begins
by generating an unweighted instance by replacing every weighted edge by an
unweighted subgraph with a specific structure. Afterwards, we apply our full set of
unweighted reduction rules: 1, 7w=1 (together with 5), 2, and 3. We then create a
signed instance of the graph by exhaustively executing weighted path compression
using Reduction Rule 6 with the restriction that the resulting weights are −1 or
+1. We then exhaustively apply Reduction Rule 7. Once the signed reductions are
done, we apply Reduction Rule 6 to fully compress all paths into weighted edges.
This is then succeeded by Reduction Rule 1w=c and 3w=c. We then transform the
instance into an unweighted one and apply Reduction Rule 4 in order to avoid
cyclic interactions between itself and Reduction Rule 3. Finally, if a weighted solver
is to be used on the kernel, we exhaustively perform Reduction Rule 6 to produce a

61

4 Maximum Cuts

weighted kernel. Note that different permutations of the order in which reduction
rules are applied can lead to different results.

4.4.2 Timestamping

Next, we describe how to avoid unnecessary checks for the applicability of reduction
rules. For this purpose, let the time of the most recent change in the neighborhood
of a vertex be T ∶ V (G) → N0 and let the variable t ∈ N describe the current time.
Initially, T (v) = 0,∀v ∈ V and t = 1. Every time a reduction rule performs a change
on N(v), set T (v) = t and increment t. For each individual Reduction Rule r, we
also maintain a timestamp tr ∈ N0 (initialized with 0), indicating the upper bound
up to which all vertices have already been processes. Hence, all vertices v ∈ V
with T (v) ≤ tr do not need to be checked again by Reduction Rule r. Note that
timestamping only works for “local” reduction rules—the rules whose applicability
can be determined by investigating the neighborhood of a vertex. Therefore, we
only use this technique for Reduction Rules 1 and 7.

4.5 Experimental Evaluation

4.5.1 Methodology and Setup

All of our experiments were run on a machine with four Octa-Core Intel Xeon
E5-4640 processors running at 2.40 GHz CPUs with 512 GB of main memory.
The machine runs Ubuntu 18.04. All algorithms were implemented in C++ and
compiled using gcc version 7.3.0 with optimization flag -O3. We use the following
state-of-the-art Weighted Max Cut solvers for comparisons: the exact solvers
LocalSolver [Ben+11] (heuristically finds a large cut, and can then verify if it
is maximum), Biq Mac [RRW10] as well as the heuristic solver MqLib [DGS18].
MqLib is unable to determine on its own when it reaches a maximum cut and always
exhausts the given time limit. We also evaluated an implementation of the reduction
rules used by Etscheid and Mnich [EM18]; however, preliminary experiments
indicated that our new reduction rules produce smaller kernels in less time. In the
following, for a graph G = (V,E), Gker denotes the graph after all reductions have
been applied exhaustively. For this purpose, we examine the following efficiency
metric: we denote the kernelization efficiency by e(G) = 1− ∣V (Gker)∣/∣V (G)∣. Note
that e(G) is 1 when all vertices are removed after applying all reduction rules, and
0 if no vertices are removed.

For our experiments we use four different datasets: First, we use random instances
from four different graph models that were generated using the KaGen graph
generator [Fun+19; SS16]. In particular, we used Erdős-Rényi graphs (GNM),
random geometric graphs (RGG2D), random hyperbolic graphs (RHG) and Barabási-
Albert graphs (BA). The main purpose of these instances is to study the effectiveness
of individual reduction rules for a variety of graph densities and degree distributions.

62

4.5 Experimental Evaluation

Table 4.2: Number of vertices ∣V ∣ and edges ∣E∣ of our benchmark graphs.

Rudy instances [Wie18]:

Graph ∣V ∣ ∣E∣
g05_60 60 885
g05_80 80 1 580
g05_100 100 2 475
pm1d_80 80 3 128
pm1d_100 100 4 901
pm1s_80 79 316
pm1s_100 100 495
pw01_100 100 495
pw05_100 100 2 475
pw09_100 100 4 455
w01_100 100 470
w05_100 100 2 356
w09_100 100 4 245

Medium-sized instances:

Graph ∣V ∣ ∣E∣ source

ca-CSphd 1 882 1 740 [RA15]
ego-facebook 2 888 2 981 [RA15]
ENZYMES_g295 123 278 [RA15]
road-euroroad 1 174 1 417 [RA15]
bio-yeast 1458 1 948 [RA15]
rt-twitter-copen 761 1 029 [RA15]
bio-diseasome 516 1 188 [RA15]
ca-netscience 379 914 [RA15]
soc-firm-hi-tech 33 125 [RA15]
g000302 317 476 [DGS18]
g001918 777 1 239 [DGS18]
g000981 110 188 [DGS18]
g001207 84 149 [DGS18]
g000292 212 381 [DGS18]
imgseg_271031 900 1 027 [DGS18]
imgseg_105019 3 548 4 325 [DGS18]
imgseg_35058 1 274 1 806 [DGS18]
imgseg_374020 5 735 4 427 [DGS18]
imgseg_106025 1 565 2 629 [DGS18]

Large-sized instances [RA15]:

Graph ∣V ∣ ∣E∣
inf-road_central 14 081 816 16 933 413
inf-power 4 941 6 594
web-google 1 299 2 773
ca-MathSciNet 332 689 820 644
ca-IMDB 896 305 3 782 463
web-Stanford 281 903 1 992 636
web-it-2004 509 338 7 178 413
ca-coauthors-dblp 540 486 15 245 729

To analyze the practical impact of our algorithm on current-state-of-the-art solvers
we use a selection of sparse real-world instances by Rossi and Ahmed [RA15], as
well as instances from VLSI design (g00*) and image segmentation (imgseg-*) by
Dunning et al. [DGS18]. Note that the original instances by Dunning et al. [DGS18]
use floating-point weights that we scaled to integer weights. We further subdivide
these instances into medium- and large-sized instances. Finally, we evaluate denser
instances taken from the rudy category of the Biq Mac Library [Wie18]. See
Table 4.2 for an overview of our benchmark graphs.

63

4 Maximum Cuts

0.50 1.00 2.00 4.00 8.00

|E|/|V |

0.00

0.25

0.50

0.75

1.00

e(
G
)

RGG2D

0.50 1.00 2.00 4.00 8.00

|E|/|V |

GNM

Full w/o Rule 1 w/o Rule 2 w/o Rule 3 w/o Rule 7

Figure 4.6: Tests consist of 150 synthetic instances. We compare the kerneliza-
tion efficiency of our full algorithm to the efficiency of our algorithm without a
particular reduction rule.

4.5.2 Performance of Individual Rules

To analyze the impact of each individual reduction rule, we measure the size of
the kernel our algorithm procedures when removing a single rule. Fig. 4.6 shows
our results on RGG2D and GNM graphs with 2048 vertices and varying density.
We have settled on those two types of graphs as they represent different ends on
the spectrum of kernelization efficiency. In particular, kernelization performs good
on instances that are sparse and have a non-uniform degree distribution. Such
properties are given by the random geometric graph model used for generating the
RGG2D instances. Likewise, kernelization performs poor on the uniform random
graphs that make up the GNM instances. We excluded Reduction Rule 4 from
these experiments as it only removes edges and thus leads to no difference in the
kernelization efficiency.

Looking at Fig. 4.6, we can see that Reduction Rule 1 gives the most substantial
reduction in size. Its absence always diminishes the result more than any other
rule. In particular, we see a difference in efficiency of up to 0.47 (RGG2D) and
0.41 (GNM) when removing Reduction Rule 1. The second most impactful rule
for the RGG2D instances is Reduction Rule 7 with a difference of only up to 0.04.
For the GNM instances Reduction Rule 2 is second with a difference of up to 0.17.
However, note that Reduction Rules 3 and 7 lead to no difference in efficiency on
these instances. Thus, we can conclude that depending on the graph type, different
reduction rules have varying importance. Furthermore, our simple Reduction Rule 1
seems to have the most significant impact on the overall kernelization efficiency.
Note that this is in line with the theoretical results from Table 4.1, which states
that Reduction Rule 1 covers most of the previously published reduction rules and
Reduction Rule 2 still covers many but less rules from previous work.

64

4.5 Experimental Evaluation

Table 4.3: Impact of kernelization on the computation of a maximum cut
by LocalSolver (LS) and Biq Mac (BM). Times are given in seconds.
Kernelization is accounted for within the timings for Gker. Values in brackets

provide the speedup and are derived from T (G)
T (Gker) . Times labeled with “−”

exceeded the ten-hour time limit and an “f” indicates the solver crashed.

Name ∣V ∣ e(G) TLS(G) TLS(Gker) TBM(G) TBM(Gker)
ca-CSphd 1 882 0.99 24.07 0.32 [75.40] - 0.06 [∞]
ego-facebook 2 888 1.00 20.09 0.09 [228.91] - 0.01 [∞]
ENZYMES_g295 123 0.86 1.22 0.33 [3.70] 0.82 0.13 [6.57]
road-euroroad 1 174 0.79 - - - - - -
bio-yeast 1458 0.81 - - - - 32 726.75 [∞]
rt-twitter-copen 761 0.85 - 834.71 [∞] - 1.77 [∞]
bio-diseasome 516 0.93 - 4.91 [∞] - 0.07 [∞]
ca-netscience 379 0.77 - 956.03 [∞] - 0.67 [∞]
soc-firm-hi-tech 33 0.36 4.67 1.61 [2.90] 0.09 0.06 [1.41]
g000302 317 0.21 0.58 0.49 [1.17] 1.88 0.74 [2.53]
g001918 777 0.12 1.47 1.41 [1.04] 31.11 17.45 [1.78]
g000981 110 0.28 10.73 4.73 [2.27] 531.47 21.53 [24.68]
g001207 84 0.19 1.10 0.16 [6.88] 53.20 0.06 [962.38]
g000292 212 0.03 0.45 0.45 [1.01] 0.43 0.37 [1.14]
imgseg_271031 900 0.99 10.66 0.19 [55.94] - 0.17 [∞]
imgseg_105019 3 548 0.93 234.01 22.68 [10.32] f 13 748.62 [∞]
imgseg_35058 1 274 0.37 34.93 24.71 [1.41] - - -
imgseg_374020 5 735 0.82 1 739.11 72.23 [24.08] f - -
imgseg_106025 1 565 0.68 159.31 34.05 [4.68] - - -

4.5.3 Exactly Computing a Maximum Cut

To examine the improvements kernelization brings for medium-sized instances, we
compare the time required to obtain a maximum cut for both the kernelized and the
original instance. We performed these experiments using both LocalSolver and
Biq Mac. Note that we did not use MqLib as it is not able to verify the optimality
of the cut it computes. The results of our experiments for our set of real-world
instances are given in Table 4.3 (with weighted path compression) and Table 4.4
(without weighted path compression). Since the image segmentation instances are
already weighted, they are omitted from Table 4.4. It is noteworthy that we do
not include the results for the rudy instances from the Biq Mac library. These
instances feature a uniform edge distribution and an overall average degree of at
least 3.5. Our preliminary experiments indicated that kernelization provides little
to no reduction in size for these instances. Therefore, we omit them from further
evaluation and focus on more sparse graphs.

First, we notice that kernelization is able to provide moderate to substantial
speedups for all instances that we have tested. In particular, we achieve a speedup

65

4 Maximum Cuts

Table 4.4: Impact of kernelization on the computation of a maximum cut
by LocalSolver (LS) and Biq Mac (BM). Times are given in seconds.
Kernelization time is included in the solving times for Gker. Values in brackets

provide the speedup and are derived from T (G)
T (Gker) . Times labeled with “−”

exceeded the ten-hour time limit. Weighted path compression by Reduction
Rule 6 is not used at the end—the kernel is unweighted.

Name ∣V ∣ e(G) TLS(G) TLS(Gker) TBM(G) TBM(Gker)
ca-CSphd 1 882 0.98 24.79 1.12 [22.23] - 0.32 [∞]
ego-facebook 2 888 0.93 20.39 1.72 [11.83] 967.99 1.42 [682.04]
ENZYMES_g295 123 0.82 1.83 0.36 [5.09] 0.96 0.37 [2.60]
road-euroroad 1 174 0.69 - - - - - -
bio-yeast 1 458 0.72 - - - - - -
rt-twitter-copen 761 0.80 - 409.47 [∞] - 101.14 [∞]
bio-diseasome 516 0.93 - 6.66 [∞] - 0.35 [∞]
ca-netscience 379 0.67 - 4 116.61 [∞] - 2.10 [∞]
soc-firm-hi-tech 33 0.30 4.92 2.34 [2.10] 0.29 0.31 [0.94]
g000302 317 0.10 0.71 0.50 [1.41] 1.28 0.89 [1.44]
g001918 777 0.06 1.67 1.51 [1.10] 14.90 11.69 [1.27]
g000981 110 0.22 11.32 1.97 [5.74] 0.98 0.44 [2.23]
g001207 84 0.17 1.56 0.15 [10.11] 0.47 0.37 [1.28]
g000292 212 0.01 0.69 0.51 [1.35] 0.56 0.62 [0.91]

between 1.04 and 228.91 for instances that were previously solvable by Local-
Solver. Likewise, for the instances that Biq Mac is able to process, we achieve a
speedup of up to three orders of magnitude. Furthermore, we allow these solvers to
now compute a maximum cut for a majority of instances that have previously been
infeasible in less than 17 minutes.

To examine the impact when allowing a weighted kernel, we now compare
the performance our algorithm using weighted path compression (Table 4.3) with
the unweighted version (Table 4.4). We can see that by including weighted path
compression we can achieve substantially better speedups, especially for the sparse
real-world instances by Rossi and Ahmed [RA15]. For example, on ego-facebook

we achieve a speedup of 228.91 with compression and 11.83 without.

Finally, it is also noteworthy that we get substantial improvements for the
weighted instances from VLSI design and image segmentation. By examining the
performance of each individual reduction rule, we can see that this is solely due
to Reduction Rule 1w=c. These findings could improve the work by de Sousa et
al. [dSHK13], which also affects the work by Dunning et al. [DGS18]. In conclusion,
our novel reduction rules give us a simple but powerful tool for speeding up existing
state-of-the-art solvers for computing maximum cuts. Moreover, as mentioned
previously, even our simple weighted path compression by itself is able to have a
significant impact.

66

4.6 Conclusions

Table 4.5: Evaluation of large graph instances. A three-hour time limit was
used and five iterations were performed. The columns ∆LS and ∆MQ indicate
the percentage by which the size of the largest computed cut is larger on the
kernelized graph compared to the non-kernelized one, for LocalSolver and
MqLib, respectively.

Name ∣V ∣ degavg e(G) Tker(G) ∆LS ∆MQ

inf-road_central 14 081 816 1.20 0.59 362.32 ∞% 2.70%
inf-power 4 941 1.33 0.62 0.04 1.64% 0.45%
web-google 1 299 2.13 0.79 0.01 0.69% 0.19%
ca-MathSciNet 332 689 2.47 0.63 8.02 1.33% 0.55%
ca-IMDB 896 305 4.22 0.42 27.55 0.97% 0.32%
web-Stanford 281 903 7.07 0.18 105.17 0.34% 0.30%
web-it-2004 509 338 14.09 0.91 22.10 0.08% 0.02%
ca-coauthors-dblp 540 486 28.20 0.25 72.39 0.05% 0.04%

4.5.4 Analysis on Large Instances

We now examine the performance of our kernelization framework and its impact
on existing solvers for large graph instances with up to millions of vertices. For
this purpose, we compared the cut size over time achieved by LocalSolver and
MqLib with and without our kernelization. Note that we did not use Biq Mac
as it was not able to handle instances with more than 3 000 vertices. Our results
using a three-hour time limit for each solver are given in Table 4.5. Furthermore,
we present convergence plots in Fig. 4.7.

First, we note that the time to compute the actual kernel is relatively small. In
particular, we are able to compute a kernel for a graph with 14 million vertices
and edges in just over six minutes. Furthermore, we achieve an efficiency between
0.18 and 0.91 across all tested instances. When looking at the convergence plots
(Fig. 4.7) we can observe that the additional preprocessing time of kernelization is
quickly compensated by a significantly steeper increase in cut size compared to the
unkernelized version. Furthermore, for instances where a kernel can be computed
very quickly, such as web-google, we find a better solution almost instantaneously.
In general, the results achieved by kernelization followed by the local search heuristic
are always better than just using the local search heuristic alone. However, the final
improvement on the size of the largest cut found by LocalSolver and MqLib is
generally small for the given time limit of three hours.

4.6 Conclusions

We engineered new efficient data reduction rules for Max Cut that subsume most
existing rules. Our experiments show that kernelization has a substantial impact in

67

4 Maximum Cuts

80%

90%

100%

So
lu

tio
n

si
ze

(%
of

be
st

)
ca-coauthors-dblp web-it-2004

1 10 100 1000

Time (s)

80%

90%

100%

So
lu

tio
n

si
ze

(%
of

be
st

)

web-google

1 10 100 1000

Time (s)

ca-IMDB

Figure 4.7: Convergence of LocalSolver on large instances. The dashed line
represents the size of the cut for the non-kernelized graph, while the full line
does so for the kernelized graph.

practice. In particular, our experiments reveal that current state-of-the-art solvers
can be sped up by up to multiple orders of magnitude when combined with our
data reduction rules.

Developing new reduction rules is an important direction for future research. Of
particular interest are reduction rules for Weighted Max Cut, where reduction
rules yield a weighted kernel.

68

5
Chapter 5

Route Planning in Road
Networks

Abstract. A highly successful approach to speed up query times for
route planning in networks (particularly road networks) is to identify
a hierarchy in the network that allows faster queries after some pre-
processing that inserts additional “shortcut”-edges into a graph. In the
past there has been a succession of techniques that infer a more and
more fine grained hierarchy enabling increasingly more efficient queries.
This appeared to culminate in contraction hierarchies that assign one
hierarchy level to each vertex.

In this chapter we identify an even more fine grained hierarchy that
assigns one level to each edge of the network. Our findings indicate that
this can lead to considerably smaller search spaces in terms of visited
edges. Currently, this leads to comparable query times to contraction
hierarchies and even improved query times on some specialized inputs.
It remains an open question whether edge hierarchies can be improved
to give consistently better performance. We believe that the technique as
such is a noteworthy enrichment of the portfolio of available techniques
that might prove useful in the future.

References and Attribution. This chapter is based on the conference paper [HS19a].
The author of this thesis is the main author of this paper with editing done by
Peter Sanders. The author made major contributions to all parts of this paper. The
implementation and experiments were done by the author of this thesis. Large parts
of this chapter were copied verbatim from the conference paper or the corresponding
technical report [HS19b].

5.1 Introduction

Computing shortest, fastest, or otherwise optimal routes in networks is a fundamen-
tal problem that needs to be solved in many applications. For road networks alone
there are multiple important applications, e.g., car navigation, traffic simulation,
planning in logistics, etc. An important approach to fast route planning is to
preprocess the network in such a way that subsequent queries are accelerated. In
this chapter we focus on point-to-point queries in road networks but note that other
types of queries or networks might also be supported in a way analogous to previous
applications of contraction hierarchies [Gei+12; Bas+16].

69

5 Route Planning in Road Networks

A particularly successful class of preprocessing techniques for road networks is to
exploit hierarchies inherent to the network. An informal way to describe this is that
“usually” the farther away we are from source or destination, the more important are
the roads we use. Hierarchical route planning techniques have a history in becoming
more aggressive in exploiting the hierarchy resulting in smaller and smaller search
spaces. This began with early heuristics based on road categories [Ish+91; JSQ02]
and later used exact techniques that insert shortcut edges. Shortcuts encode that
certain subpaths are important and, together with an appropriate query algorithm,
ensure that optimal paths can be found using hierarchical routing techniques. Such
techniques include overlay graphs [SWZ02; Del+15], reach based routing [Gut04],
highway hierarchies [SS05] and highway node routing [SS07]—so far culminating in
contraction hierarchies (CHs) [Gei+08; Gei+12; DSW16].

CHs order the vertices of the network by importance, i.e., we conceptually have n
levels of hierarchy in a network with n vertices. By inserting appropriate shortcuts,
CHs ensure that there exists an up-down path between any pair of vertices that
is a shortest path. An up-down path progresses from the source vertex to more
important vertices and then descends to less important vertices until reaching the
destination. CHs are widely used since they are simple, allow fast preprocessing
using little space and lead to very small search spaces.

In this chapter we introduce edge hierarchies (EHs) as an even more fine grained
way to define hierarchy in the network. EHs order edges rather than vertices by
importance. They keep the concept of up-down paths resulting in a very simple
query algorithm. Intuitively, this should further reduce search space sizes. EHs1—
in contrast to CHs—only have to explore edges out of a vertex v that are more
important than the edge leading to v in the current query. Also note that EHs are
very close to the informal definition of hierarchical routing that we gave above.

After introducing basic terms and techniques in Section 5.2, and discussing
further related work in Section 5.3, we describe EHs in detail in Section 5.4. While
the basic query algorithm is simple by design, a preprocessing algorithm finding
the “right” shortcuts turns out to be much more complicated. We also discuss some
techniques for pruning the query search space.

In Section 5.5 we perform an experimental evaluation using large real world road
networks and different cost functions. It turns out that EHs relax significantly fewer
edges than CHs in particular for cost functions that are known to be difficult for
CHs: with distance as the main optimization criterion and/or explicit modeling of
turn penalties. Unfortunately, the overall query time is usually slightly worse than
on CHs and preprocessing time is considerably larger. Overall, EHs are thus an
intriguing concept with considerable potential but they need further research to
find out whether they will eventually be useful in some applications. In Section 5.6
we discuss possible research in this direction.

1Technically we are talking about EH queries here, but we will often refer to the algorithms
associated with EHs or CHs like this.

70

5.2 Preliminaries

5.2 Preliminaries

For general definitions and notations for graphs, see Section 2.1. Here we give
additional definitions specific to shortest paths and the techniques used in our
algorithm. Note that in this chapter, we consider directed, weighted graphs with
positive edge weights, i. e., ω ∶ E → R≥0.

The classical algorithm for finding shortest paths is Dijkstra’s algorithm [Dij59].
It maintains a distance label (dist) for each vertex and repeatedly settles the vertex
u with the currently smallest distance label among all unsettled vertices. It then
relaxes all outgoing edges (u, v) by setting dist(v) ←min (dist(v),dist(u) + ω(u, v)).
In the bidirectional version of Dijkstra’s algorithm, the forward search from s is
complemented by a backward search from t that only considers incoming edges of the
settled vertices. This can lead to faster running times than a plain Dijkstra search
because we can stop once a vertex is settled in both searches and it is essential for
the query algorithm in both EHs and CHs.

A shortcut is an edge whose length corresponds to the length of some nontrivial
path in the graph. For example, for edges e1 = (u, v) and e2 = (v,w), a shortcut
es = (u,w) with ω(es) = ω(e1) + ω(e2) can be added to the graph. Note that
adding shortcuts does not change the distance for any pair of vertices in the graph.
Also, by storing skipped vertices, we can recursively unpack shortcuts, e.g., by
replacing es with e1 and e2 to find the corresponding path that only uses original
(non-shortcut) edges.

Contraction Hierarchies [Gei+08; Gei+12; DSW16] use shortcuts to build a
hierarchy where every vertex is on its own level. Vertices are repeatedly removed
from the graph in order of a measure of importance. If for any pair of incoming and
outgoing neighbors u,w the removed vertex v is on the only shortest path (u, v,w),
then a shortcut (u,w) is added. Whether this shortcut is necessary is determined
by a so-called witness search that runs a shortest path search starting at u on the
overlay graph. The overlay graph consists of all vertices not yet removed and all
edges incident to these vertices. The witness search can be restricted to stop after
settling a small amount of vertices. This might add unnecessary shortcuts but does
not affect correctness, while having the potential to speed up the algorithm. Vertex
importance is usually determined by a combination of different measures. Metrics
successfully implemented in previous work (and used in the implementation we
compare against in our evaluation) are the amount of shortcuts added if the vertex
were to be removed next, the number of hops represented by these shortcuts and an
additional level metric that helps removing vertices uniformly throughout the graph.
These numbers have in common that they only change when a neighbor of a vertex is
removed from the graph. The algorithm therefore maintains all vertices in a priority
queue with their importance as key. When a vertex is removed, the importance of
its neighbors is updated. The query algorithm is a bidirectional Dijkstra search
that only relaxes edges that connect a vertex to a more (less) important vertex in
the forward (backward) search. Due to this, edges only need to be stored at the
end point that is removed first.

71

5 Route Planning in Road Networks

5.3 More Related Work

There has been a lot of work on route planning. Refer to [Bas+16] for a recent
overview. Here we only give selected references to describe the place of EHs in the
wider context of route planning techniques. Besides hierarchical route planning
techniques there are also techniques which direct the shortest path search towards
the goal (e.g., landmarks [GKW06], precomputed cluster distances [MSM09], arc
flags [Möh+05]). On road networks goal directed techniques are usually inferior
to hierarchical ones since they need considerably more query or preprocessing
time. However, combining goal directed and hierarchical route planning is a useful
approach [GKW06; Bau+10]. We expect that this is also possible for EHs using
the same techniques as used before. Other techniques allow very fast queries by
building shortest paths directly from two (hub labeling [Abr+11]) or three (transit
node routing [Bas+07; ALS13]) precomputed shortcuts without requiring a graph
search. However, these methods require considerably more space than EHs.

5.4 Edge Hierarchies

The main idea of EHs is to provide a precomputed data structure that allows
queries similar to those of CHs: All shortest paths can be found by a bidirectional
Dijkstra search that only searches “upwards”. In contrast to CHs, which build
a hierarchy of vertices, EHs build a hierarchy of edges. Let r(u, v) denote the
rank assigned to the edge (u, v). Then, paths found by an EH query have the
form (s = v0, . . . , vm, . . . , vn = t) with r(vi−1, vi) ≤ r(vi, vi+1) for 0 < i ≤ m and
r(vi−1, vi) ≥ r(vi, vi+1) for m < i < n (allowing s = vm or t = vm). In line with the
terminology from CHs, we call such paths up-down paths.

The EH query is a modified version of the bidirectional variant of Dijkstra’s
algorithm: In addition to the distance label dist, we maintain a rank label r at every
node, set to 0 for s and t. When settling a vertex u, only edges with r(u, v) ≥ r(u)
are relaxed. Whenever dist(v) is updated while relaxing an edge (u, v), r(v) is set
to r(u, v). For a stopping condition, the algorithm maintains an upper bound d for
dist(s, t) (initially∞) which is updated whenever a vertex is settled that has already
been settled from the other direction. No edges leaving vertices with dist(v) > d are
relaxed. Figure 5.1 illustrates the search space of an Edge Hierarchy Query. Note
how the edges ranked 2 and 3 are not in the search space of the backward search,
even though their target vertex is settled.

Algorithm 5.1 shows an algorithm template for constructing an EH. Initially,
all edges are unranked (which we will treat as rank ∞). In iteration i, we pick an
unranked edge (u, v) and set its rank to i . We then iterate over all unranked edges
(u′, u) and (v, v′) and test whether (u′, u, v, v′) is a shortest path. If yes, we add
either (u′, v) or (u, v′) as a shortcut. If either of these two edges already exists, we
instead adjust its weight and reset its rank to ∞, if it was already ranked before.

72

5.4 Edge Hierarchies

1 21 1 1 61 51 4

3 7

2 3

s t

Figure 5.1: Search space of an EH Query. Blue edges are in the search space
of the forward search, orange edges are in the search space of the backward
search. Boxed numbers are edge ranks, unboxed numbers are edge weights.

Algorithm 5.1 : BuildEdgeHierarchy

1 currentRank ← 0
2 while Unranked edges remain do
3 Pick unranked edge (u, v)
4 r(u, v) ← currentRank++

5 for all unranked edges (u′, u) do
6 for all unranked edges (v, v′) do
7 if dist(u′, v′) = w(u′, u) +w(u, v) +w(v, v′) then
8 Add shortcut (u′, v) or (u, v′) —Or adjust weight + unset rank

Theorem 5.1

For every pair of vertices s and t, such that there is a path from s to t in the input
graph, Algorithm 5.1 assigns ranks and adds shortcuts such that there is a shortest
up-down path from s to t.

Proof. We prove this by showing the following: If at the beginning of iteration i,
there is a shortest path from s to t that only uses unranked edges, then in iteration
j > i, there exists an up-down-path p from s to t that only uses edges of rank
≥ i. As at the beginning of the first iteration, all edges are unranked, this proves
the theorem.

In iteration i, an edge e gets ranked. Let p be a shortest path from s to t
consisting only of unranked edges. If e is not part of p, then p is still a shortest path
that only uses unranked (rank ∞) edges (which is an up-down path by definition).

If e is at neither end of p, then a shortcut is inserted that replaces two edges of
p, so there still is a shortest path only using unranked edges from s to t.

If e = (s, v) (the case e = (v, t) is analogous) we distinguish two cases:

(i) There still exists a shortest path of unranked edges from s to v: Then there
is also a shortest path of unranked edges from s to t.

73

5 Route Planning in Road Networks

1 1

1 1

2

1∞

∞
∞ ∞

a b c

d

Figure 5.2: Example showing that EH construction needs to calculate distances
on the complete graph. Boxed numbers are edge ranks, unboxed numbers are
edge weights.

(ii) There is no shortest path of unranked edges from s to v: Then (s, v) gets
assigned rank i and can never change its rank (note for this, that edges can
only be inserted or assigned to a different rank if there is a shortest path of
unranked edges between their endpoints). Furthermore, there is a shortest
path of unranked edges from v to t. By induction, in every iteration j > i,
there will be an up-down-path from v to t that uses only edges of rank ≥ i.
By adding the edge (s, v) to the beginning of that path, we get an up-down
path from s to t.

As the induction basis, note that at the end of the algorithm, no edges are unranked,
so the claim holds trivially. ◻

Note that from the induction in the proof above, it follows that we can use the
EH query for the distance calculation in Algorithm 5.1.

The algorithm can also be slightly altered by only adding a shortcut if (u′, u, v, v′)
is the only remaining unranked shortest path from u′ to v′. However, preliminary
experiments showed that the version presented here yields better results.

An important difference to CH construction is that Algorithm 5.1 has to calculate
distances in the complete graph, whereas CH construction only has to query the
overlay graph. See Figure 5.2 for an example why using the overlay graph does not
suffice for EHs: If (b, d) is assigned rank 2, we need to check whether p = (a, b, d, c)
is a shortest path. If we use only the overlay graph for the distance calculation,
then we would falsely assume that p is a shortest path and add a shortcut.

5.4.1 Shortcut Selection

The choice of the shortcut that is added in the inner loop of Algorithm 5.1 can
make a significant impact on the total number of shortcuts added. For example, in
Figure 5.3, we could either add the shortcut (u, v′) or all of the shortcuts (u′i, v)
(assuming (u′i, u, v, v′) is a shortest path for all u′i). In contrast, in CHs there is no
choice of which shortcut to add. We minimize the number of shortcuts added using
a solution to a minimum bipartite vertex cover problem for every iteration of the
outer while-loop of Algorithm 5.1.

74

5.4 Edge Hierarchies

u′
1

u′
2

u′
n

u v v′

Figure 5.3: When ranking (u, v), we could either add all shortcuts (u′i, v) or
just (u, v′).

The problem (U ∪ V,E) is constructed as follows: Instead of directly adding one
of the two possible shortcuts, we add the vertices u′, v′ to U,V respectively (if they
have not been added before) and an edge between them.

After all shortcut candidates for an iteration of the outer loop have been added
to the bipartite graph, we compute a minimum Vertex Cover C. Note that this
can be done in polynomial time via maximum cardinality bipartite matching using
König’s Theorem. We then add the shortcuts (u′, v) for every u′ ∈ U ∩ C and
(u, v′) for every v′ ∈ V ∩ C. It is easy to verify that for every pair of candidate
shortcuts, one is added. Also, every set of shortcuts added implies a Vertex Cover
for the graph above, so finding a minimum Vertex Cover minimizes the number
of shortcuts added in every iteration of the construction algorithm, given the edge
that is assigned a rank.

To further minimize the number of shortcuts added, we always prefer edges
already present in the graph: if (u′, v) or (u, v′) is already in the graph (ranked or
unranked), we change its weight accordingly and reset its rank. The pair (u′, v′) is
then not added to the minimum Vertex Cover problem described above.

5.4.2 Edge Selection

In every iteration of Algorithm 5.1, we need to choose an edge to assign a rank to
next. Our heuristic to select these edges is guided by two goals: Adding a small
number of shortcut edges to the graph, and ranking edges uniformly throughout the
graph. Here, we present the version that produced the best results in our preliminary
experiments. Other versions that resemble the vertex selection strategies used for
CHs resulted in worse preprocessing and query times.

Our heuristic works in rounds: in the beginning of each round, a set of edges
to rank is selected and fixed. Then we assign ranks to all selected edges in any
order. Only when all edges selected are ranked, a new round is started and a new
set of edges is selected. Edges are selected by counting for each unranked edge e
the number of new shortcuts that would be added if e was ranked. This is done by

75

5 Route Planning in Road Networks

simulating an iteration of the outer while-loop of Algorithm 5.1 without actually
adding any shortcuts to the graph and resetting r(u, v) to ∞ afterwards. Then,
we select all edges that cause the minimum number of shortcuts among all their
incident edges.

5.4.3 Stalling

A technique that significantly reduces query times for CHs is called Stall on Demand.
The idea is to stall the search at vertices that do not lie on a shortest path from
s to t by checking whether a shorter path can be found via incoming (outgoing)
downward edges in the forward (backward) search. This can happen because CHs
only guarantee shortest up-down paths between any pairs of vertices. The same is
true for EHs. We present two stalling techniques that can be used with EHs.

Stall on Demand. In EHs, any edge can be a downward or an upward edge de-
pending on the rank of the edges leading to the source vertex of that edge.
Stall on Demand checks all incoming (outgoing) edges in the forward (back-
ward) search.

Stall in Advance. Stall on Demand may relax every edge twice: Once when settling
the source (target) vertex and once for stalling when settling the target
(source) vertex in the forward (backward) search. Stall in Advance relaxes
every edge at most once: when settling a vertex u, we not only relax all
outgoing (incoming) edges that are ranked higher than the path to u, but also
all edges (u, v) that are ranked lower. However, we do not update dist(v)
with the distance computed via the low ranked edges. Instead, we store it
in a separate stallDist(v) label. To check whether we can stall the search at
vertex v, we compare dist(v) with stallDist(v). If stallDist is smaller, we can
stall at v.

5.5 Experimental Evaluation

We implement EHs in C++ and compile with gcc 7.4.0 using full optimizations (-O3).
Our implementation of the construction algorithm is relatively straight forward
without much emphasis on optimizations. For queries, we use adjacency arrays for
incoming and outgoing edges and sort all edges incident to a vertex in descending
order of their rank. This way we can stop iterating over a vertex’s neighborhood once
we find an edge with a lower rank than allowed for the current path. Additionally,
we reorder the vertices in depth-first-search-preorder for better memory locality.
The EH construction algorithm uses CH queries to find the distance between two
vertices. The source code is available on GitHub2.

2https://github.com/Hespian/EdgeHierarchies

76

https://github.com/Hespian/EdgeHierarchies

5.5 Experimental Evaluation

For comparison with CHs, we use the implementation from RoutingKit3 [DSW16]
where queries use Stall on Demand.

The machine used for all experiments is equipped with 4 x Intel Xeon E5-4640
at 2.4 GHz and 512 GiB DDR3-PC1600 RAM but only a single core is utilized.

5.5.1 Data Sets

We evaluate EHs on two benchmark graphs from the DIMACS Challenge on Shortest
Paths [DGJ09]: The road network of Western Europe from PTV AG with 18 million
vertices and 42 million directed edges, and the TIGER/USA road network with 23
million vertices and 29 million undirected edges (resulting in 58 million directed
edges), as well as smaller subsets of the TIGER/USA graph. Both graphs are
available with edge weights corresponding to travel times or geographic distance.

In addition to these graphs, we also evaluate the performance on graphs that
model the cost for taking turns at a crossing. We follow the approach used in
[Del+15; Bas+16] to define simple turn costs that reportedly yield performance
characteristics similar to truly realistic values: For the travel time metric, we assign
costs of 100 seconds for U-turns (meaning an edge pair (u, v), (v, u)) and 0 for all
other turns. For the distance metric, all turns are free. We explicitly model turns
into our graphs. This can be done by splitting every vertex v into a number of
vertices equal to its degree and connecting each new vertex to one of v’s incident
edges. Then, edges between the new vertices are added: For each vertex incident
to one of v’s incoming edges, an edge is added to each of the vertices incident to
one of v’s outgoing edges. The weights of these new edges are set to the turn costs.
We use a more compact representation of the same concept: We only split a vertex
into a number of vertices equal to its outgoing degree and connect incoming edges
directly to these new vertices, adding the turn costs to the edge weights. Figure 5.4
shows an example for travel times. Table 5.1 lists all instances and their sizes used
in our evaluation.

The distance metric as well as adding turn information are cases in which CHs
were shown to perform significantly worse than with the travel time metric and
without turn information (e.g., [Del+15]).

Table 5.1: Instances used in our evaluation. With turns are original instances
with added turns.

Original With turns
Graph ∣V ∣ ∣E∣ ∣V ∣ ∣E∣

USA.BAY 321 270 794 830 794 830 2 279 208
USA.W 6262 104 15 119 284 15 119 284 41 815 474
USA.CTR 14 081 816 33 866 826 33 866 826 93 609 832
USA 23 947 347 57 708 624 57 708 624 159 734 066
EUROPE 18 010 173 42 188 664 42 188 664 113 953 602

3https://github.com/RoutingKit/RoutingKit

77

https://github.com/RoutingKit/RoutingKit

5 Route Planning in Road Networks

10 15

2530 25

25

110
10

115

30

20

60

15

20

60

Figure 5.4: Left: Original graph. Right: Graph with added turns. 100 seconds
are added to the edges corresponding to a U-turn.

5.5.2 Choosing the Right Stalling Technique

In this section we evaluate the stalling techniques explained in Section 5.4.3. To get
some insight in how stalling performs for other techniques, we compare to Stall on
Demand for CHs. Tables 5.2 and 5.3 compare the query times, number of vertices
settled and edges relaxed for different stalling techniques averaged over 100 000
random queries. The number of edges actually relaxed and the number of edges
“relaxed” to check whether the search can be stalled are shown separately. We
also count the number of vertices that are settled at their actual distance to the
source vertex (min. vertices). This gives an insight into how many vertices would
be settled with a perfect stalling technique. For the travel time metric, EHs with
both Stall on Demand and Stall in Advance perform more stall checks than CHs,
outweighing the savings in number of vertices settled and leading to longer query
times than without any stalling. For the distance metric, Stall on Demand reduces
the number of vertices settled for EHs to less than for CHs. The total of number
of edges touched is also smaller for EHs. However, running times are still faster
without stalling because fewer edges are relaxed (or considered for stalling) and
thus fewer distance labels are touched. Due to the additional distance label, Stall
in Advance significantly increases query times. The last column also shows that
stalling holds more potential for CHs than for EHs. However, we also see that EHs
already perform relatively well without stalling: CHs on the travel time metric
would have to settle more than twice as many vertices as EHs if no stalling was
used. Even when not counting the stall checks, CHs with Stall on Demand relax
more edges than EHs. For the distance metric, this is even more severe: Here, the
search space for CHs without Stall on Demand increases so much that query times
increase to over 3 ms. EHs already settle a reasonably small number of vertices
without stalling.

These experiments show that the increased number of edges touched outweighs
the decreased number of vertices settled. Thus, a stalling technique that only
touches some more edges might lead to improved running times if it successfully
stalls at enough vertices. Figure 5.5 shows the performance when only a fraction

78

5.5 Experimental Evaluation

Table 5.2: Query results for different stalling techniques for Edge Hierarchies
and Contraction Hierarchies on the EUROPE road network with the travel
time metric and turns.

Algo. Stalling time [µs] settled relaxed stall checks min. vertices

EH
- 199 906 1734 -

361S. on Demand 250 604 958 11920
S. in Advance 471 614 982 10563

CH
S. on Demand 130 533 1969 2888

253
- 338 1996 15500 -

Table 5.3: Query results for different stalling techniques for Edge Hierarchies
and Contraction Hierarchies on the EUROPE road network with the distance
metric and turns.

Algo. Stalling time [µs] settled relaxed stall checks min. vertices

EH
- 608 2573 5586 -

638S. on Demand 642 1368 2276 29192
S. in Advance 1387 1439 2442 26959

CH
S. on Demand 634 1943 16849 25007

704
- 3403 12320 300758 -

of the edges incident to a vertex are considered for Stall on Demand—going from
high ranked edges to low ranked edges (note that this can be done efficiently in our
implementation as edges are stored ordered by their rank). We are going to refer to
this as partial stalling from here on. We see a slight increase in running time due
to the associated calculations (see the data point for x = 0.0) but all configurations
shown benefit from partial stalling for some fraction of edges (10% for travel times
and 30% for distances).

5.5.3 Main Results

As EHs share similarities with CHs, both using similar query algorithms, we compare
the two with respect to their preprocessing and query times as well as the number of
vertices settled and edges relaxed during queries. Another interesting property is the
number of edges in the hierarchy. Note however, that CHs only store each edge once,
whereas EHs need to store each edge at both endpoints. Tables 5.4 and 5.5 show
these numbers averaged over 100 000 random queries. We execute queries without
Stall on Demand and with partial stalling in increments of 10%. The numbers
reported here are for the best query times among these stalling configurations as
indicated by the last column. In a real-world system the optimal configuration
could be found as a part of the preprocessing step. Checking whether the search
can be stalled at a vertex is essentially an edge relaxation (minus priority queue
operations), so we combine these numbers here. We can see that EHs suffer less
from adding turns to the graphs than CHs. While the number of shortcuts added is
comparable for EHs and CHs on the original graphs (with CHs even adding slightly

79

5 Route Planning in Road Networks

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges used

0.8

0.9

1.0

1.1

1.2

1.3
R
u
n
n
in
g
ti
m
e
re
l.
to

u
n
st
al
le
d
q
u
er
y

travel time

travel time + turns

distance

distance + turns

Figure 5.5: Running time of query with partial stalling relative to unstalled
query with different fractions of edges used for stalling. Times were measured
on the EUROPE road network.

fewer), CHs add substantially more when turns are added. This can also be seen
in the number of edges relaxed: The number of edges relaxed with and without
turns are very similar for EHs. For the distance metric, EHs perform even better
when adding turns than on the original inputs. With turns, EHs almost always
relax less than half as many edges as CHs. This shows that the intuition behind
EHs—ranking roads (edges) rather than junctions (vertices)—helps to better prune
roads that are irrelevant for the query. However, CHs usually settle between 2 and
3 times fewer vertices (except for the distance metric with turns where EHs often
settle fewer vertices than CHs). Overall this leads to longer query times for EHs in
most cases. For the distance metric with turns, query times for EHs are close to
CHs—for the EUROPE instance EHs even achieve faster queries. The preprocessing
step is much faster for CHs, partially due to our unoptimized implementation, but
the CH vertex ranking also only updates the neighbors of a vertex after it was
ranked. The edge ranking we use, on the other hand, simulates the ranking of
every edge for each round of edge selection. The CH implementation in RoutingKit
also limits the number of steps done for the witness search, giving additional speed
up. As EHs have to find witnesses and (depending on the edge ranking technique)
calculate importance values for every edge, compared to CHs having to do the same
for every vertex, longer preprocessing times are to be expected.

The random queries used for the experiments above are long-ranged on average.
However, real-world queries tend to be short-ranged. For this reason, Sanders
and Schultes [SS05] introduce an evaluation methodology using Dijkstra Ranks.
When running a Dijkstra query starting at some vertex in the graph, the ith vertex
removed from the priority queue is assigned Dijkstra Rank i. In other words, vertices
are ordered by their distance from the source vertex. Figures 5.6 and 5.7 show the
number of vertices settled, number of edges relaxed, and query times for vertices of

80

5.6 Future Work

Table 5.4: Running times and search space sizes of Edge Hierarchies and
Contraction Hierarchies on different graphs with the travel time metric.

Graph
Prepr. [s] ∣E∣ [M] Query [µs] settled relaxed stall.
EH CH EH CH EH CH EH CH EH CH %

O
ri
g
in
a
l USA.BAY 100 6 1.4 1.4 37 16 301 108 710 679 -

USA.W 1785 153 27.5 27.4 96 37 538 193 1299 1386 -
USA.CTR 4389 482 61.5 61.1 140 53 612 254 3132 2136 10

USA 7145 674 104.5 104.0 153 60 643 271 3320 2253 10
EUROPE 3171 453 70.3 70.3 138 75 607 356 2443 2967 10

W
it
h

tu
rn

s USA.BAY 634 156 4.0 6.0 79 67 511 362 929 3253 -
USA.W 9403 2730 69.9 105.1 165 124 748 564 1365 4810 -

USA.CTR 25084 7316 159.3 239.2 240 172 885 700 3126 6530 10
USA 45904 15462 270.3 404.3 250 186 900 737 3217 6792 10

EUROPE 17822 4743 194.0 249.1 191 130 726 533 2662 4857 10

Table 5.5: Running times and search space sizes of Edge Hierarchies and
Contraction Hierarchies on different graphs with the distance metric.

Graph
Prepr. [s] ∣E∣ [M] Query [µs] settled relaxed stall.
EH CH EH CH EH CH EH CH EH CH %

O
ri
g
in
a
l USA.BAY 166 9 1.5 1.5 73 30 560 180 1440 1686 -

USA.W 3435 243 28.6 28.5 254 96 1002 446 8183 6045 20
USA.CTR 13062 1157 65.7 65.5 526 216 1697 832 20041 15561 30

USA 21041 1537 110.8 110.7 573 235 1769 897 21461 16787 30
EUROPE 14487 2152 79.6 79.6 538 355 1756 1179 19793 27807 30

W
it
h

tu
rn

s USA.BAY 476 158 3.6 5.7 95 92 623 470 1149 4979 -
USA.W 8452 3338 64.9 102.3 278 250 1289 993 2564 13402 -

USA.CTR 30313 13629 148.5 235.7 556 537 1477 1743 15286 31629 40
USA 58025 30869 251.1 398.3 604 580 1605 1849 13712 33436 30

EUROPE 24757 13266 172.3 267.2 533 634 1543 1943 13355 41856 30

Dijkstra Ranks 26, . . . ,2⌊log ∣V ∣⌋ from 1 000 random starting vertices. This way, the
performance of algorithms can be observed for both short-ranged and long-ranged
queries (and everything in between). EHs use 10% and 30% partial stalling for
travel times and distances, respectively. The comparison between number of vertices
settled and query time shows that the algorithm that settles fewer vertices has the
faster query time and edge relaxations play a less important role. This is likely due
to vertex accesses causing more cache misses than accesses to the edges of a single
vertex. If one would improve the cache efficiency by better node orderings or other
improvements, it seems possible that the decreased number of relaxed edges in EH
queries can outweigh the increased number of settled vertices.

5.6 Future Work

For CHs there is a lot of experience with configuring the preprocessing phase.
The additional complications of EH preprocessing make it likely that much better
versions are possible also for EHs. Trying different ways of cleaning up the distance
labels for new queries might lead to some improvements as preliminary experiments
showed some effect here. Due to EHs being less cache-efficient than CHs right now,

81

5 Route Planning in Road Networks

26 29 212 215 218 221 224

Dijkstra Rank

0

500

1000

ve
rt
ic
es

se
tt
le
d

26 29 212 215 218 221 224

Dijkstra Rank

0

2500

5000

7500

ed
ge
s
re
la
xe
d

26 29 212 215 218 221 224

Dijkstra Rank

0

100

200

ti
m
e
[µ
s]

Edge Hierarchy Contraction Hierarchy

Figure 5.6: Number of vertices settled and edges relaxed, and query times for
different Dijkstra Ranks on EUROPE with the travel time metric and turns.

26 29 212 215 218 221 224

Dijkstra Rank

0

2000

ve
rt
ic
es

se
tt
le
d

26 29 212 215 218 221 224

Dijkstra Rank

0

50000

ed
ge
s
re
la
xe
d

26 29 212 215 218 221 224

Dijkstra Rank

0

500

1000

ti
m
e
[µ
s]

Edge Hierarchy Contraction Hierarchy

Figure 5.7: Number of vertices settled and edges relaxed, and query times for
different Dijkstra Ranks on EUROPE with the distance metric and turns.

82

5.6 Future Work

we expect them to profit more from such changes. On the application side, we can
look for networks with different characteristics where EHs might have advantages.
For road networks, we might harvest the advantage in the number of relaxed edges
by looking at generalizations of static shortest path search where edge relaxations
are expensive, e.g., time-dependent edge costs [Bat+13; KWZ16] or multicriteria
shortest paths. Since first publishing EHs, some first results already found them to
achieve competitive query times for stochastic route planning [RR21].

83

Part II

Data Recovery for Fault-Tolerant
MPI Applications

85

6
Chapter 6

Introduction

When scaling applications and algorithms to massive inputs, we often have to use
distributed systems like high performance computing (HPC) clusters; either to finish
the computation in a reasonable amount of time or to even fit the input and working
data into memory. With the increasing number of processors in HPC clusters, the
probability that some processors fail during a computation rises. Handling such
failures constitutes a major challenge for future exascale systems [SDM10]. For
example ORNL’s Jaguar Titan Cray XK7 system had on average 2.33 failures/day
between August 2008 and 2010 [Gam+14]. In upcoming systems, we expect a
hardware failure to occur every 30 to 60 minutes [Cap+14; DHR15; Sni+14]. In
the following two chapters we present techniques for recovering the data lost after
such a failure with the use of redundant data storage.

The first result shows a fault tolerance technique for general purpose parallel
processing frameworks, which in turn are used to implement parallel algorithms
using high-level abstractions. Our technique only has small overhead of about 4%
for most benchmark algorithms during fault-free execution. This is achieved by
exactly observing which part of the data is already available redundantly and only
doing additional work for the small remaining part.

The second result is a library for programs that are not expressed in these data
processing frameworks. Here, the application programmer has to explicitly specify
the parts of the data that have to be recovered after a failure, which we then
redundantly store using an engineered data distribution for fast recovery. Our
C++ library ReStore provides an interface to specify data to be redundantly stored
and efficiently retrieve it after a failure. ReStore is used to replace the previous
recovery method in a widely used bioinformatics application, where recovery times
are reduced by more than an order of magnitude.

References and Attribution. This introduction chapter as well as Chapter 8 are
based on the conference paper [Hüb+22]. The author of this thesis is one of the
main authors. Further information on contributions is provided in Chapter 8. Large
segments of Chapters 6 and 8 were copied verbatim from the conference paper or
the corresponding technical report [Hes+22].

87

6 Introduction

6.1 Preliminaries

In distributed memory parallel programs using the Message Passing Interface (MPI),
p processes (or processing elements (PEs)) run on multiple machines (or nodes)
and communicate via messages sent over the network. We consider two important
factors for evaluating the running time of such parallel algorithms: The bottleneck
number of messages sent and received, and the bottleneck communication volume.
The bottleneck number of messages sent and received describes the maximum
number of messages sent or received by a single PE. This influences performance, as
there is a startup overhead (latency) for establishing a connection associated with
each message. As a result, sending or receiving data from one PE to another in a
single message is usually faster than splitting that data into many parts and sending
each part to a different receiver. The bottleneck communication volume describes
the maximum amount of data sent or received by a single PE and represents a point
on the critical path of the application.

As faults, we consider the case that one or multiple PEs suddenly stop working
and do not contribute to the computation anymore (which we will refer to as failed).
Following a fault, the application has to redistribute the work formerly performed
by a failed PE using either the substitute or the shrink strategy [AHE18]. Under
the substitute strategy, a replacement PE takes over the work previously performed
by the failed PE. This circumvents the need for re-balancing the workload and
simplifies loading the required data. However, reserving idle processors for this
purpose constitutes a waste of resources. In the shrink strategy, the program’s load
balancer (re)distributes the work performed by the failed PE among the remaining
(or surviving) PEs. This strategy does therefore not require spare PEs but requires
reloading fractions of the data on many or even all PEs. While the number of
failures an algorithm can tolerate using the substitute strategy is limited to the
number of spare PEs, this limitation does not apply to the shrink strategy [AHE18].
Both chapters in this part will therefore focus on the shrink strategy.

6.2 Experimental Environment

We ran all our experiments on the SuperMUC-NG super computer.1 Each node
consists of two Intel Skylake Xeon Platinum 8174 processors with 24 cores and 96
GB of memory each, connected via an OmniPath network with a bandwidth of 100
Gbit/s. The operating system is SUSE Linux Enterprise Server 15 SP1 running
Linux Kernel version 4.12.14-197.78. Unless otherwise stated, we communicate
using OpenMPI version 4.0.4. The recent MPI 4 standard includes mechanisms for
detecting failures and re-establishing a consistent environment after a failure. An
implementation called “ULFM” is available for OpenMPI [Bla+13]. We verify that
our implementations function properly if nodes actually fail and communication is
recovered with ULFM as part of our fully automated unit tests. The current version

1https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

88

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

6.3 Acknowledgements

of ULFM at the time of running our experiments, however, was not stable enough to
conduct reliable performance benchmark experiments. For example, processes may
be reported incorrectly as failed or recovery may result in two separate groups of
nodes that each assume that the other group has failed. We reported this behavior
on the ULFM mailing list and the authors of ULFM reproduced and confirmed
the bug.2 Additionally, most communication and fault tolerance mechanisms are
currently slow (see Hübner et al. [Hüb+21a] for details). We expect these issues
in ULFM to be fixed once more resources are allocated to implementing these
features. In our performance benchmarks, we thus use OpenMPI and simulate
failures by removing processes from the calculation using MPI Comm split and
replacing other required fault recovery steps by functionally similar ones (e.g.,
replacing MPIX Comm agree with MPI Barriers).

6.3 Acknowledgements

We gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.
gauss-centre.eu) for funding this project by providing computing time on the GCS
Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de).

2George Bosilca. Post pbSToy94RhI/xUrFBx 1DAAJ on the ULFM mailing list.

89

www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de

7
Chapter 7

Fault Tolerance for Distributed
Processing Frameworks

Abstract. Parallel processing frameworks like MapReduce, Spark, and
Thrill help programmers scale their data analysis tasks to large machines
connected by networks. They often also include functionality to recover
from failures of a part of the computational resources. However, this
usually comes with the drawback of high overheads during normal execu-
tion and/or long recovery times. We present a low-overhead technique
for enabling fault tolerance in such frameworks that enables fast recovery
after a failure. We experimentally evaluate a simplified variant of our
technique that shows that the overhead during fault-free execution is
below 4% for most benchmark algorithms.

References and Attribution. The author of this thesis made the main contribu-
tion to the general technique presented in this chapter. Detailed algorithms for
MapReduce and implementation techniques where developed with Lukas Hübner.
The implementation and experiments where done by Charel Mercatoris as part of
his master thesis [Mer21].

7.1 Introduction

Big Data processing frameworks like MapReduce [DG08], Spark [Zah+12], or
Thrill [Bin+16] enable programmers to easily write programs that are executed
in highly parallel environments without the need to implement parallelization
themselves. They achieve this by restricting the programmer to a small set of
operations which are parallelized by the framework developer. Conceptually the
parallelization is usually implemented by splitting up the computation into rounds
of communication between worker processes and local work in between these round.
These frameworks usually also include features for being able to recover from node
failures. However, they often come with drawbacks like having to use a distributed
filesystem [DG08] or having to redo large parts of the computation [Zah+12]. In this
chapter we present an approach to quickly recover from single node failures in the
Thrill and MapReduce frameworks. We achieve this by locally storing all messages
sent through the network on the sending and receiving side until the next round of
global communication plus an additional (hopefully small) communication overhead
for data that cannot be secured that way. We implement a simplified version of our
approach for the more restricted MapReduce framework. Our experiments show

91

7 Fault Tolerance for Distributed Processing Frameworks

that the additional overhead during normal execution is small (under 4% for most
benchmark algorithms) and enables reasonably fast recovery after a failure (about
30% of the running time of the original operation).

7.2 Related Work

Here we give an overview of Big Data processing frameworks and their fault
tolerance techniques.

MapReduce [DG08] was originally developed by Google and inspired more
complex tools like Spark and Thrill. Its most commonly used implementation is
Apache Hadoop [Apa] with its fault tolerant file system Hadoop Distributed File
System (HDFS) [Shv+10]. MapReduce processes data using only two functions:
Map and Reduce. Map locally applies a user-defined function to every input item
and outputs key-value-pairs. Reduce gathers all items grouped by their key and
applies a user-defined reduction function which takes all items with the same key as
input. Fault tolerance is achieved by storing the result of every Reduce operation
to a fault tolerant file system and a master process that reschedules failed tasks.
This has the benefit of only having to re-execute the last failed operation but comes
at the cost of frequent reads and writes to the fault tolerant file system which
forms a performance bottleneck. There are numerous extensions and alternative
implementations of MapReduce, but to the best of our knowledge they all either do
not support fault tolerance [PD11; Gao+17] or rely on a distributed fault tolerant
file system [Con+10; Eka+10; Guo+15].

The dominant way of theoretically analyzing algorithms in the MapReduce
framework is the MapReduce Class (MRC) complexity class and its corresponding
computational model [KSV10]. This is, however, rather coarse grained as it only
counts the number of MapReduce rounds required while constraining the user-
defined functions rather loosely in their time and space complexity. Sanders [San20]
gives a more detailed model for analyzing MapReduce algorithms using (among
others) the bulk-synchronous parallel (BSP) model [Val90; McC95]: Let m be
the total data volume, m̂ the maximum size of an object produced by a user-
defined function, and w and ŵ the total and maximum local work for evaluating
the user-defined functions, respectively. Then Sanders shows how to implement
MapReduce in the BSP model using O(ŵô(w

ŵ
, p)) local work and O(m̂ô(m

m̂
, p))

communication volume, where ô(b, p) is the expected maximum number of balls
in a bin when randomly assigning ⌈b⌉ balls to p bins. If w/ŵ and m/m̂ are in
Ω(p log p), this becomes O(w

p
) and O(m

p
), respectively. The same bounds can be

achieved without large fractions w/ŵ and m/m̂ when using more sophisticated load
balancing techniques.

Apache Spark [Zah+12] is a distributed processing framework with a rich set of
instructions like sorting or database-like joins. It runs in the Java virtual machine
and supports fault tolerance by tracking the lineage of their Resilient Distributed
Datasets (RDDs): If a PE fails, the parts of an RDD that were stored on that

92

7.3 A Simple Version for MapReduce

PE are lost. Spark then re-executes all previous operations leading to that RDD
but only on the data required to compute the lost data. This has the advantage
of having virtually no overhead during fault-free execution and works well if the
lost data is only dependent on a small (contiguous) fraction of preceding RDDs, as
for example in operations like mapping or filtering that require no communication.
However, if large parts of a preceding RDD A are required to recompute the lost
part of an RDD B, and A is no longer kept in memory, then Spark has to recompute
the entire RDD A in order to recover a small part of B.

7.2.1 Thrill

We now describe the C++ framework Thrill [Bin+16] which we will use as a basis
for our fault tolerance techniques. We also point out which parts of Thrill need
special attention for fault tolerance. While our discussion will focus on Thrill, our
techniques could similarly be applied to other frameworks. In fact, we begin by
describing a simplified version for MapReduce in Section 7.3.

Thrill’s Distributed Immutable Arrays (DIAs) are ordered sequences of data that
can be transformed by Thrill’s set of supported operations (like mapping, grouping,
or sorting) to form new DIAs. DIAs are similar to Sparks RDDs with the difference
that DIAs are always ordered, hence the name array in Thrill as opposed to set
in Spark. The main operations can be distinguished into two categories: Local
Operations (LOps) that require no communication between PEs and Distributed
Operations (DOps) that require communication. In addition, there are sources that
create a DIA from external sources, and actions that generate an output. Thrill
works in a bulk-synchronous manner: The computation is split up into local compu-
tation phases and communication phases. In the local computation phase, all LOps
between two DOps as well as the local parts of the surrounding DOps are evaluated
in parallel on all PEs. Thrill optimizes this by compiling all local computations into
one operation by heavy use of C++’s template meta-programming. Introducing
fault tolerance in between LOps would require some kind of remote backup of the
produced data resulting in large additional communication overhead. In addition, it
would most likely break Thrill’s optimized way of compiling all LOps into a single
binary code. We thus focus on the communication phase of DOps for fault toler-
ance: Here, communication is required and we insert fault tolerance mechanisms at
operations that induce large communication volumes. As communication is usually
the bottleneck in large distributed applications, loosing progress in the local parts
is acceptable as long as only little progress in communication-heavy parts is lost.

7.3 A Simple Version for MapReduce

In this section, we start with a simple version of our fault tolerance technique for
MapReduce [DG08]. In Section 7.4 we extend this to the more powerful Thrill
framework [Bin+16].

93

7 Fault Tolerance for Distributed Processing Frameworks

p0 p1 p2 p3

�

comm. phase

k f b h l d g c a e j i

a b c d e f g h i j k l

Figure 7.1: Data flow and stored messages for MapReduce. Colors indicate
destinations of data elements. Arrows indicate messages sent during the
communication phase of a Reduce operation. After failure of PE p2, we
can reconstruct the data held by p2 using the messages sent by other PEs.
Black arrows correspond to messages available on the sending PE. The red
self-message is the only message not available on another PE and has to be
additionally communicated for backup.

We now explain our technique to tolerate single PE failures. While this technique
cannot tolerate multiple failures at once, it can be extended to tolerate failures of
all machines powered by one power supply, an entire rack or any other predefined
(non-intersecting) grouping of the PEs (Section 7.5.1). The idea is to create recovery
points every time data is shuffled through the network in an all-to-all manner, which
happens in every Reduce step. These recovery points are build in a way that enable
fast recovery and balanced workloads after a failure.

In an all-to-all communication, we call the messages sent by a PE that are
received by that same PE self-messages. We use the communication phase of each
Reduce operation—which sends the majority of the data through the network—as
recovery point by sending the self-messages of each PE pi to a different PE pj
for backup. In the following we will use b(i) to denote the PE that we send pi’s
self-message to. This results in O(n

p2) additional bottleneck communication volume

if all messages have the same size because each PE holds data of size O(n
p
) which

is split up into p messages. Every PE then keeps all messages sent to other PEs
for backup in memory (or spills them to local disks if the volatile memory is too
small). Upon failure of PE pi, all other processors send the data that they originally
sent to pi to b(i), so that b(i) has all the data that pi received from the all-to-all
communication. PE b(i) can then recompute pi’s result by applying the reduce and
map functions locally. See Figure 7.1 for an illustration. Note that this only works
if the state of a processor is fully described by the data that is sent and global
data that is the same among all processors. For pure MapReduce, as described in
Section 7.2, this holds true.

94

7.3 A Simple Version for MapReduce

When only using one PE b(i) as backup for each PE pi, then b(i) hold twice as
much data as all the other PEs after pi failed which results in imbalances. Instead
of sending the self-message to only one other PE, we divide each self-message into
p − 1 parts. Each part is then sent to a different processor, so we can do the
recomputation in parallel on all remaining processors after a failure. This also helps
with load balancing of the next Map operation when continuing normal computation
on p − 1 processors.

Data destinations in the Reduce phase are usually implemented by hashing each
key and splitting up the range of hash values evenly between the PEs. During
recovery, the range of hash-values previously sent to F is split up evenly among the
surviving PEs and all messages sent to F (including the backed up self-message)
are redistributed according to this new distribution. The newly received items
are then merged into the existing data after applying the reduction function and
the following Map step. At this point, the system is in a state from which it can
continue normal operation on the remaining PEs.

Because only the messages of the last Reduce operation are required for recov-
ery, we can delete all previously stored messages after the next Reduce step is
successfully finished.

If the overhead for replicating the self-messages of every Reduce step is too
large, some of them can also be changed to non-recovery-points by storing just the
messages sent without backing up self-messages. Recovery then need to recompute
the data lost starting at the last recovery point. The last Reduce step that did
include a recovery point is recovered as before. Following Reduce steps without
a recovery point use that recovered data as during normal execution: On each
PE, the data previously sent to the failed PE F along with the recovered data is
used to re-execute the operations. During the communication phase we have to
discard any parts of the recovered data that lies outside of F ’s hash-range, i.e., not
send it to the destination PE as it was already sent before the failure. Figure 7.2
illustrates this change. In fact, this could be taken to the extreme by never backing
up self-messages. In that case, after a failure, the data originally obtained by F
from the data source (or a checkpoint created in between) would have to be re-read
(usually from a fault tolerant file system like HDFS) and all operations would have
to be re-executed on the lost data. This would cause virtually zero running time
overhead during fault-free execution but would substantially increase recovery times
and the memory overhead for storing all messages sent to other PEs. It would also
enable recovering from any number of simultaneous PE failures because all data of
all failed PEs can be recovered.

7.3.1 Analysis

We now analyze the running time of our technique following the BSP-based analysis
by Sanders [San20]. As Sanders considers all data produced by the Map step to
be communicated, sending the self-message to the other PEs does not change the
bottleneck communication volume asymptotically. So it stays at O(m̂ô(m

m̂
, p)),

95

7 Fault Tolerance for Distributed Processing Frameworks

p0 p1 p2 p3

�

(recovery point)

k f b h l d g c a e j i

d′ i′ a′ e′ c′ g′ b′ h′ k′ f ′ l′ j′

comm. phase 1

local work

comm. phase 2comm. phase 2

a b c d e f g h i j k l

a′ b′ c′ d′ e′ f ′ g′ h′ i′ j′ k′ l′

Figure 7.2: Messages lost when the communication phase of some Reduce
operations is not used as a recovery point, i.e., self-messages are not backed
up at other PEs. After failure of p2 we need the data from all red arrows
for recovery. Self-messages from communication phase 1 are backed up so we
can recompute data elements b′, h′, and k′ from the stored messages. These
recomputed data elements in combination with the stored messages from the
other PEs are used for recovery of communication phase 2. During recovery, we
do not re-send data elements b′ and k′ because they were not sent to p2 before.

where m is the total data volume, m̂ is the maximum size of an object produced
by a user-defined function, and ô(b, p) is the expected maximum number of balls
in a bin when randomly assigning ⌈b⌉ balls to p bins. One addition to note here is
that Sanders sends every item produced by a Reduce function to a random other
PE to ensure load balancing and randomization of the input to the next Map
step (actually, the first item produced by the Reduce for every key is kept on the
same PE but this does not change the asymptotic communication volume in the
analysis). Fault tolerance for this step can be implemented analogously to the
communication phase before applying the Reduce function and the same analysis of
the communication volume applies. Because during normal execution, the data is
only sent and received, but not processed further, local work stays unchanged at
O(ŵô(w

ŵ
, p)), where w and ŵ are the total and maximum local work for evaluating

the user-defined functions, respectively.
During recovery, the data previously held by the failed PE has to be re-processed.

This PE received p out of the p2 total messages sent during the last communication
phase. Just as in [San20], a balls-into-bins argument thus gives us that each of
these messages has size O(m̂ô(m

m̂
, p2)). As each PE holds one of these messages

96

7.4 The General Framework

as well as a part of the self-message of the failed PE, which is in total of the same
size, we have total bottleneck communication volume O(m̂ô(m

m̂
, p2)). The same

argument applies to the local work of the failed PE that has to be re-done by the
surviving PEs, giving us O(ŵô(w

ŵ
, p2)) local work.

In summary, the running time does not change asymptotically during normal
execution and recovery takes approximately the time of processing a fraction 1/p of
the data on p PEs.

7.4 The General Framework

We now explain how to extend the simple version of our technique to the more
powerful Thrill framework [Bin+16]. As explained in Section 7.2, we will focus on
DOps as LOps can be recomputed locally without any communication. Additionally,
in contrast to MapReduce, where we expect every Reduce step to send the majority
of the data through the network, Thrill has DOps that only need to communicate
small parts of a DIA. Introducing a recovery point at these DOps would increase
the communication volume substantially. We thus only introduce recovery points
on shuffling DOps, which do send the majority of a DIA to other PEs.

Because Thrill supports operations like sorting or applying functions to sliding
windows, DIAs are ordered, i.e., DIAs are ordered sequences where the item with
index i logically stands before the item with index i + 1. This is implemented by
having an order of the PEs and having the data ordered on each PE. For our fault
tolerance approach, we relax this requirement by allowing to divide the data further
into ordered blocks. Every PE holds some of these blocks, but not necessarily blocks
that are consecutive in their order. As handling multiple, possibly non-consecutive
blocks comes with a performance penalty due to additional bookkeeping as well
as communication overhead when requiring information from a neighboring DIA
entry, every PE initially holds one block. Upon failure, the data held by the failed
PE is split up into c blocks and ownership for each of these c blocks is assigned
to a new PE. This means that after a failure, some PEs hold two blocks: their
original block and a smaller block that holds a part of the data that was owned by
the failed PE. An extreme case would be to set c = p − 1 (and adjusting it to the
number of alive PEs minus one after every failure). However, this might lead to
increased communication for non-shuffling DOps.

As this approach causes some performance penalties after a failure has occurred
due to the data being split up into more than p blocks, we merge the blocks into
one block per PE on each shuffling operation during normal operation (i.e., while
not recovering from a failure). See Figure 7.3 for an illustration.

As for MapReduce, we discard the stored messages once they are no longer
needed. Whenever a shuffling operation β is performed, the data backed up from
the previous shuffling operation α can be discarded once the backup for β is complete.
At this point we can always recover to operation β so no backup-capability for α is
needed. An exception to this is when there are two DIAs B and C are derived from

97

7 Fault Tolerance for Distributed Processing Frameworks

0 2 31 4 5 6 7 8 9 10 11
b0 b1 b2 b3

0 21
b0

3 4 5
b1

76 8
b2.1

9 10 11
b3b2.1 b2.2

p0 p1 p2 p3

�
Shuffling DOp

DIA 1

DIA 2

0 21
b0

3 4 5
b1

76 8
b2.1

9 10 11
b3b2.0 b2.2

LOps . . .

DIA 3

Shuffling DOp

DIA 4 0 2 41 5 6 7 8 9 10 11
b0 b1 b2

3

Figure 7.3: Illustration of our fault tolerance technique with 4 PEs and c = 3.
Numbers indicate indexes within a DIA. DIAs are shown split up into blocks
bi distributed over the PEs pi. DIA 1 is transformed into DIA 2 by a shuffling
DOp. After completing that DOp, p2 fails. All data previously located on
p2 is split up into c = 3 parts and distributed over the surviving PEs. When
transforming DIA 2 into DIA 3 via LOps, these blocks are kept. During the
next shuffling DOp, that transforms DIA 3 into DIA 4, the blocks are merged
to obtain only one block per surviving PE.

DIA A

DIA B DIA C

2. shuffling DOp ú 3. any Op

DIA A′

1. shuffling DOp ú

(not yet executed)

ú

Figure 7.4: DIAs B and C are obtained from operations on DIA A. DIAs
A′,A, and B are already computed; DIA C has not been computed yet. In
order to quickly compute C when it is needed, the framework decides to keep
A in memory (shown by the floppy disk symbol). In order to enable having A
in memory after a failure, we keep the self-messages of the shuffling DOp that
created A from A′ until the next shuffling DOp after C is executed. As DIA B
has been obtained from A via a shuffling DOp, we also keep the self-messages
of this operation.

98

7.4 The General Framework

the same parent DIA A. Any framework supporting this needs some mechanism to
decide whether to keep A in memory after computing B but before C is computed.
So whenever A is kept in memory, we keep the backup data for the last shuffling
operation preceding A so that A can be recomputed after a failure. See Figure 7.4
for an example.

7.4.1 Details on Operations

We now show how every DOp of Thrill can be modified to support single PE failures
using our technique. Note that we only consider DOps because LOps only require
the data available locally and can thus easily be recomputed in parallel from the
data recovered from the previous DOp.

We briefly explain every DOp from the Thrill paper [Bin+16] and the key aspects
needed for fault tolerance. For this, we always assume that the operation used as a
recovery point has been successfully completed once. If not, we discard its output
and start recovery at the last recovery point that was fully completed. We can thus
assume that all data on surviving PEs is correct. We call the PE that failed F and
the c processors that hold the c new blocks after a failure p1, . . . , pc.

ReduceByKey and GroupByKey both take a key extraction function and a combi-
nation function as input. The key extraction function is applied to every DIA
entry to extract a key. Then all items with the same key are gathered and
combined using the combination function. Here, ReduceByKey and Group-
ByKey differ slightly: In the case of ReduceByKey, the combination function
is called a reduction function and specifies how to combine two items into one.
This is done locally until only one item per key remains. After that all items
with the same key are gathered on one PE and further reduced until only
one item per key remains globally. GroupByKey is similar to MapReduce’s
Reduce function. Here, the combination function is called a group function
and takes all items with the same key as input and produces one output, so
here no local reduction is applied. Instead, all items with the same key are
gathered on one PE and the group operation is run for each key. In addition,
there is also a ToIndex variant of both of these functions where instead of a
key extraction function, the user can specify the desired index in the output
DIA. Both are implemented by passing the extracted keys through a hash
function and splitting up the hash-range evenly between the PEs.

Because of the pseudo-random distribution of the data due to the hash-
function, Reduce and Group are shuffling, i.e., they sent the majority of the
data through the network. We utilize this for our fault tolerance approach by
storing all messages sent during the communication phase as well as backing
up self-messages at c different PEs. As mentioned above, we assume that the
operation successfully completed once before a fault, so when a PE F dies,
all others know F ’s hash-range which can then be further split up into c sub-
ranges to send to PEs p1 to pc. All messages previously sent to F , including

99

7 Fault Tolerance for Distributed Processing Frameworks

the c self-message parts, are then split up and sent to the corresponding new
PE. A further possible optimization is to already split up the c self-message
parts correctly during normal operation so they don’t need to be re-sent
during recovery. By keeping all DIA entries ordered by their keys hash-value,
this recovery does not change the logical order of the DIA.

We can also discard any blocks from previous recoveries here: When running a
Reduce or Group operation during normal operation (i.e., while not recovering
from a fault), we merge all blocks on each PE into one before executing the
actual operation.

Sort uses a distributed SampleSort implementation to sort a DIA according to
a user-defined comparison function. As this shuffles the data through the
network (at least for unsorted inputs), we store all messages sent and store the
c self-message parts at p1, . . . , pc. After a failure, all PEs participate in a new
sorting operation on the data originally sent to F (including the self-messages)
with a change in the algorithm to send the data only to the c backup-blocks
on p1, . . . , pc.

Again, as for Group and Reduce, we can merge all blocks back into one block
per PE before sorting.

Merge combines multiple sorted DIAs using a user-defined comparison function.
This is implemented by first determining global splitter points by sampling all
input DIAs on all PEs. After that, the DIA entries are sent to the target PE
which is determined by the previously obtained splitter points. Depending on
the distribution of the input DIAs, this is likely to only send small parts of
the data through the network, so replicating self-messages would be costly
here. Sent messages and the computed splitters still need to be stored for
re-execution on data recovered by a previous shuffling operation, though.
After a failure, a merge operation is executed on all messages sent to F as
well as the recovered data from all input DIAs. However, the splitters from
the previous execution are used to filter out any items outside of F ’s range
that may be part of the recovered data of the input DIAs.

If a lot of data is shuffled due to unfavorable input data distribution, we can
also back up self-messages in Merge and use it as a recovery point.

Concat takes multiple DIAs as input and concatenates them, preserving order. This
is implemented by summing up the number of items in each input DIA and
assigning an equal amount of items in the output DIA to each PE. As this will
(except for corner cases with very distorted data distributions) shuffle most
of the data through the network and many self-messages will even be empty,
we can afford to back up self-messages (and of course keep sent messages in
memory). Recovery after a failure then needs to assign the messages previously
sent to F among p1 to pc analogously to the failure-free case.

100

7.4 The General Framework

During normal execution we can also discard any additional blocks from
previous recoveries by only using one block per PE on the receiving side.

PrefixSum uses a user-defined associative function to compute a partial sum. This
is implemented by adding up the local items and computing a global partial
sum over these local sums. This is then used as initial value to compute
the partial sum of the local elements. As this does not communicate any
DIA items, we do not use it as a recovery point and only need to store the
right-most local value of each PE (or block if there was a previous failure).
During recovery, we only send the right-most value of PE F − 1 to p1 and use
it as initial value for a new PrefixSum-computation on p1, . . . , pc.

Zip combines multiple DIAs of equal size index-wise using a user-defined zip function.
The item with index i of each input DIA is passed to the zip function which
outputs the item at position i in the output DIA. This is implemented by using
a global partial sum to determine the amount of items on each PE in the output
DIA. The input DIAs are then redistributed according to this distribution.
For most data distributions this requires only little communication volume, so
we do not use Zip as a recovery point. Recovery is analogous to Merge: We
zip the data sent to F as well as the recovered part of the DIAs on p1, . . . , pc
while discarding any recovered data that is outside of F ’s bounds. For this,
p1, . . . pc need the indices of the data they hold which can be obtained from
the neighboring surviving PEs.

ZipWithIndex applies a user-defined function to each item of the input DIA together
with its index in the DIA. The only communication here is a partial sum of
the local sizes which is required to compute the global indices. Recovery is
similar to PartialSum: We compute a partial sum of the local sizes of the
recovered DIA parts with the index of the left neighbor item of the block
stored on p1 as starting value. We thus have to store the right-most index of
each block during normal execution.

Window and FlatWindow take a window size k and apply a user-defined function
on sliding windows of size k to the ordered elements of the DIA. Window
outputs a single item per window, and FlatWindow can output an arbitrary
number of items. This is implemented by sending the k − 1 right-most items
of each PE (or block) to the next PE (or block). If a PE (or block) holds less
than k − 1 items, it waits until it receives the remaining ones from its other
neighbor PE (or block). As this operation does usually not send the majority
of a DIA through the network, we do not create a recovery point here. We still
need to ensure that it can be re-executed on data recovered from a previous
shuffling operation, though. To ensure this, for each block, we store the k − 1
items sent to the right neighbor block. After a failure, the c recovered blocks
contain almost all data required to run a Window operation on the recovered
data. Only F ’s left neighbor needs to re-send the k − 1 missing items.

101

7 Fault Tolerance for Distributed Processing Frameworks

Backup can be introduced as a new operation to create a manual recovery point.
Functionally, this is just the identity function but recovery can return to
this operation instead of the last shuffling DOp preceding it. Internally this
could be implemented by each PE simply backing-up its part of the DIA on
c other PEs and sending any small additional blocks it holds from previous
recoveries to another PE for back up. Alternatively, we could use some
other checkpointing mechanism (for example using our tool ReStore presented
in Chapter 8). Recovery then simply continues with the backed-up data
on p1, . . . , pc.

Asymptotically, the running time of the shuffling operations does not change for
randomly distributed inputs because the self-messages are only a fraction of the size
of the already communicated volume (on average a fraction 1/p). During recovery,
the running time of the recovered shuffling DOp is roughly that of running the
operation on an input of size n/p on c PEs. If we assume the non-shuffling DOps to
have communication volume independent of the input size (which is always true for
PrefixSum, ZipWithIndex, and (Flat)Window for constant k; and true for evenly
distributed inputs in Zip and Merge), then after a failure these require local work
for an input of size n

p
+ n

pc
, and communication volume as well as communication

startup costs as if running on p + c PEs.

As for MapReduce in Section 7.3, all operations described here as recovery points
can also be changed to non-recovery-points by storing just the messages sent without
backing up self-messages. Recovery is then analogous to Merge and Zip where the
data previously sent to F along with the recovered DIA parts is used to re-execute
the operation on the recovered data. Like in Merge and Zip we have to discard any
parts of the recovered data that lies outside of F ’s output-range. This can reduce
communication overhead in cases where only a small part of the data is shuffled
through the networks, i.e., self-messages are large. For example, that could happen
when sorting an already (almost) sorted DIA.

7.5 Supporting Multiple Failures

The raw technique presented in Sections 7.3 and 7.4 can only support a single failure
between two shuffling DOps. For the case that more than one PE fails at a time,
our algorithm does not work. Consider two PEs pi, pj failing at the same time.
Even if pi is not used to backup any self-messages of blocks on pj (and vice-versa),
the messages sent from pi to pj are lost and cannot be recovered. However, we can
extend the technique to support failures of predefined groups of PEs like all CPUs
on the same power supply (Section 7.5.1) and multiple single failures in between
recovery points (Section 7.5.2).

102

7.6 Experiments

7.5.1 Supporting Failure of Predefined Sets of PEs

While supporting arbitrary combinations of PEs failing at once is not supported
by our technique, we can relatively easily extend it to support recovering from the
failure of predefined non-intersecting sets of PEs. These sets could, for example, be
all PEs located on the same multi-threaded CPU or those being powered by the same
power supply which are more likely to fail at once than unrelated PEs [Bau+11].
By logically treating them as one PE and treating all messages sent between them
as self-messages, the same technique described in Sections 7.3 and 7.4 still applies.

7.5.2 Supporting Multiple Single-PE Failures

We can extend our system to support another failure after a failure, if the system
had enough time to finish recovery from the first failure. To do this, every PE
also needs to store all incoming messages during DOps. After a fault of PE F ,
the messages received from F are sent to another PE which acts as F in case of
another failure. Every PE that sent part of its self-message to F also sends that
part to another PE for backup. Additionally, p1, . . . pc send the self-messages that
they backed up for F to another PE (without splitting them up further) that will
be the new backup PE for these blocks. During recovery, when the operations are
re-executed on the recovered data, every block also stores the messages that it
would have sent during normal execution. So if another failure happens (say, of PE
F ′) before the next shuffling DOp, these stored messages can be used to run the
recovery operations described in Section 7.4.1 on the c blocks recovered from F ’s
original self-messages as well as any blocks that F ′ held from previous failures.

7.6 Experiments

7.6.1 Experimental Setup

We implement a simpler version of our fault tolerance techniques for MapReduce
from Section 7.3 with support for multi-PE-failures as described in Section 7.5.1 in
a prototype MapReduce-Implementation based on the Message Passing Interface
(MPI). The implementation is configured to recover from the failure of an entire
compute node at once, i.e., all messages sent between processes on the same compute
node are treated as self-messages. In contrast to the theoretical description above,
we only send the self-messages of each PE to one other PE instead of splitting it up
among the other p − 1 PEs. This does not change the bottleneck communication
volume but leads to some imbalance during recovery. We also use the same hash
function for every Reduce step and do not distribute the outputs of the Reduce step
as used for the analysis. This can help utilize locality in benchmark algorithms but
can in turn lead to larger self-messages. A detailed description of the implementation
can be found in Charel Mercatoris’ master thesis [Mer21].

103

7 Fault Tolerance for Distributed Processing Frameworks

Experiments were run on the SuperMUC-NG cluster with OpenMPI as described
in Section 6.2. Our code is written in C++ and compiled using GCC 8.4.0 with
full optimizations (-O3).

In our failure simulation experiments we simulate the failure of 10% of the nodes
used, always failing one node (48 PEs) at a time. These failures are distributed
uniformly across the MapReduce iterations (consisting of one Map and one Reduce
step). Failures are simulated during the message exchange phase of the Reduce step
which is also the point where any failures would be noticed in a real failure setting.
We use the average running time over five repetitions of the same configuration
with different random seeds.

7.6.2 Experimental Results

We evaluate the overhead caused by our fault tolerance technique for four MapReduce
benchmark algorithms:

Word Count is a popular benchmark algorithm for MapReduce-implementations.
Its input is a text which is split up into words in the Map phase. In the Reduce
phase it gathers each occurrence of a word and counts the number of times it occurs
in the text. This is not an iterative algorithm, so there are no iterations to insert
faults into. It is still shown here due to its popularity. As an input we use 2 GB of
text per node generated by picking words uniformly at random from the 4436574
distinct words in Project Gutenberg [Gut].

R-Mat, or Recursive Matrix Model [CZF04], is a random graph generator. Given
a number of vertices and edges, R-MAT generates each edge based on a probability
distribution in the adjacency matrix. It is commonly used to generate graphs with
a community structure and is used in the Graph 500 benchmark [Mur+10]. We use
a MapReduce implementation of the R-Mat generator introduced by Plimpton and
Devine [PD11]. The input is a set of edges produced by the probability distribution
that may contain duplicate edges. The Map phase has no functional role here. In
the Reduce phase, we collect all edges with the same two endpoints and generate
new ones for every duplicate. This is repeated until all edges are unique. We
generate graphs with 218 vertices per node and an average degree of 30 using the
same randomization parameters used in the Graph 500 benchmark.

Connected Components are maximal connected subgraphs and a basic tool for
graph analysis and a building block of many graph algorithms. We implement an
algorithm by Kiveris et al. [Kiv+14] which consists of two phases that are repeated
until convergence. Both phases output edges in a specific vertex order (i.e., directing
the edge from vertex u to v or from v to u) during the Map phase and then group
edges by the first endpoint during the Reduce phase where they are redirected to
their connected components representative. This is repeated until convergence. We
compute connected components of random graphs [ER60] with 218 vertices per
compute node and an average degree of 0.25. This leads to graphs with many small
connected components [ER60].

104

7.6 Experiments

PageRank is a network analysis algorithm developed by Google [Pag+99] and is
also commonly used as a benchmark algorithm for parallel processing frameworks.
Each vertex of a graph starts with the same score with the sum of scores adding up
to 1. The algorithm then works in rounds where each vertex’s current score is split
up and transferred in equal parts to each neighbor. Additionally, each vertex gets
the same small amount of score every round. These two components are always
normalized to keep the global sum at 1. We implement this in MapReduce by
outputting for each neighbor of a vertex, the score transferred to that neighbor in
the Map phase. In the Reduce phase, the scores sent to each vertex are gathered,
summed and the constant score is added. In order to keep all required information
across rounds, we additionally emit the neighborhood of each vertex in the Map
phase. This neighborhood is then also output during the Reduce phase together
with the score. We run the PageRank algorithm for 100 iterations on random
graphs [ER60] with 218 vertices per node and an average degree of 38.

Figure 7.5 shows the overhead caused by our fault tolerance technique. “Fault
Tolerance Overhead” shows the overhead caused in a fault-free scenario, i.e., the
running time when enabling our fault tolerance technique (but without any failures
occurring) relative to the running time without fault tolerance enabled. “Recovery
Overhead” shows the time taken to recover from a failure relative to the time of a
single MapReduce round.

After an initial phase for low PE counts where a large fraction of the messages are
self-messages, the overhead for enabling fault tolerance reduces substantially. For
6,144 PEs enabling fault tolerance has an overhead of 2% for Word Count, 3% for
Page Rank, 4% for Connected Components and 29% for R-MAT. For all benchmarks
except for R-MAT this is already reasonably low but could be improved further by
not backing up self-messages in every round at the cost of a slower recovery. For
R-MAT the overhead of almost 30% would be deemed impractical. This is due to
the large fraction of self-messages: Because the same hash function is used in every
iteration, all non-duplicate edges are always (except in the first MapReduce round)
in the self-message. This can also be seen by the recovery taking about the same
amount of time as a regular (fault-free) round. Because the entire self-message is
stored on one compute node, and the self-messages contain the majority of the lost
data, this node forms a major bottleneck of the recovery. Recovery performance is
further reduced here due the communication phase dominating the running time of
the R-MAT recovery because the Map and Reduce phase essentially only forward
their inputs (at least for non-duplicate edges in the case of the Reduce phase). This
could be alleviated by implementing splitting up the self-message across multiple
PEs on different compute nodes leading to a lower bottleneck communication volume.
For the other benchmark algorithms recovery takes about 30% of the time of a
normal iteration. While this is already substantially faster than re-running the
entire round, as a traditional checkpoint-restart scheme would do, it is hindered
from better performance by a poorly scaling communication phase. Communication
is implemented using the MPI Alltoallv function which has been shown to have
poor scalability [Sch13; SU23; SS23]. Improving this would directly improve the

105

7 Fault Tolerance for Distributed Processing Frameworks

0.00

0.02

0.04

0.06

0.08

R
el
at
iv
e
O
ve
rh
ea
d

Word Count

0.00

0.25

0.50

0.75

1.00

1.25

R-Mat

0 2000 4000 6000

#PEs

0.0

0.1

0.2

0.3

R
el
at
iv
e
O
ve
rh
ea
d

Connected Components

0 2000 4000 6000

#PEs

0.0

0.1

0.2

0.3

Page Rank

Weak Scaling

Fault Tolerance Overhead Recovery Overhead

Figure 7.5: Overhead of fault tolerance and failure recovery overhead for
different MapReduce benchmark algorithms.

performance and scalability of recovery. Additionally, the node storing the self-
message holds on average twice the amount of data (and for these benchmark
problems usually even more) causing an imbalance in the amount of data sent per
PE during recovery. Splitting up self-messages as described in Sections 7.4 or 7.3
would distribute the load evenly.

7.7 Conclusion and Future Work

We present a framework for low-overhead fault tolerance and fast recovery in a
powerful general purpose distributed processing framework. We then adapted this
to the simpler MapReduce framework and showed that our techniques cause only
low overhead for most MapReduce benchmark algorithms in practice. In the future,
we would like to extend our implementation to enable a deeper experimental analysis
of our technique. Apart from the obvious long-term goal of implementing fault
tolerance for the full set of Thrill’s operations, there are other extensions to be

106

7.7 Conclusion and Future Work

implemented for more efficient fault tolerance in our MapReduce implementation
that we already cover in Section 7.3: Creating recovery points less frequently
could lower the overhead during fault-free execution, and splitting up self-messages
during normal execution would improve load balance during recovery. Many
MapReduce algorithms also use additional features often supported by MapReduce
implementations. For example, static data that does not change across MapReduce
rounds can speed up algorithms by not sending redundant data through the network.
This static data could be recovered after a failure using ReStore, the software
presented in Chapter 8. ReStore could also be used for the zero-overhead variant
briefly explained at the end of Section 7.3. Apart from improvements to the fault
tolerance of our implementation, the base MapReduce implementation itself could
be extended and improved by adding load balancing (for example the randomized
or work-stealing-based versions by Sanders [San20]), local aggregation for reduction
functions that allow it, improved all-to-all communication (for example using the
1-factor algorithm [ST02; Sch13] or grid-based approaches [SS23; SU23]), and a
hybrid parallelization for better utilization of the multi-core machines in modern
HPC clusters.

107

8
Chapter 8

Fast General Purpose Data
Recovery

Abstract. Fault tolerant distributed applications require mechanisms
to recover data lost via a process failure. On modern cluster systems it is
typically impractical to request replacement resources after such a failure.
Therefore, applications have to continue working with the remaining
resources. This requires redistributing the workload and that the non-
failed processes reload data. We present an algorithmic framework and
its C++ library implementation ReStore for MPI programs that enables
recovery of data after process failures. By storing all required data in
memory via appropriate data distribution and replication, recovery is
substantially faster than with standard checkpointing schemes that rely
on a parallel file system. As the application developer can specify which
data to load, we also support shrinking recovery instead of recovery using
spare compute nodes. We evaluate ReStore in both controlled, isolated
environments and real applications. Our experiments show loading times
of lost input data in the range of milliseconds on up to 24 576 processors
and a substantial speedup of the recovery time for the fault tolerant
version of a widely used bioinformatics application.

References and Attribution. The following chapter is based on the conference
paper [Hüb+22]. Together with Lukas Hübner, the author of this thesis is a
main author of this paper with editing done by Peter Sanders and Alexandros
Stamatakis. The design of the data distribution and algorithms was developed in
close collaboration with Lukas Hübner. The implementation was done by the author
of this thesis and Lukas Hübner where the author had a focus on the recovery after
a failure and Lukas Hübner had a focus on storing the data before a failure. The
experiments were done by Lukas Hübner. Large parts of this chapter were copied
verbatim from the conference paper or the corresponding technical report [Hes+22].

8.1 Introduction

To recover from a failure in a distributed application, an important step is to
restore the lost data that the failed processors were working on. To save the current
state of a program’s data, applications write checkpoints which can be reloaded
after a process failure. Checkpointing libraries usually write their checkpoints to
a parallel file system (PFS) [Aga+04; Bau+11; Sha+19; Nic+19], implying slow

109

8 Fast General Purpose Data Recovery

recovery due to low disk access speeds and because many processors simultaneously
access the same resources. Many checkpointing libraries also assume failures to
leave the machine in a state where the process can simply be started again, or
they assume that enough spare resources are kept idle to start a new process for
replacing the failed one [Aga+04; Bau+11; Sha+19; Nic+19; TH14; Moo+10;
BH14; Gam+14; Lu05; Bar+17]. Under this assumption, a re-spawned process
can simply read exactly the data of the failed process. In the case of the new
process being located on the same compute node as the failed one, the checkpoint
can even be read from a local disk. To the best of our knowledge there exists no
general purpose checkpointing solution that allows for in-memory recovery without
requiring spare resources.

Contribution and Structure.

We introduce ReStore, an in-memory checkpointing library that is optimized for
recovery speed (in contrast to checkpoint creation speed). This is especially impor-
tant for data which the program never or rarely changes but has to be redistributed
after every failure. We do not assume that spare resources are available. Instead,
ReStore enables recovery in an application that continues its execution only with
the processes that are still alive. While this approach requires a more involved
recovery mechanism and strategic data distribution, it saves resources because all
available processors can participate in the application’s useful computations from
the beginning. Keeping the checkpoints in-memory avoids the bottlenecks involved
in a PFS and allows high scalability.

The remainder of this paper is structured as follows: We provide an overview of
existing checkpointing libraries and other related work in Section 8.2. We explain
our general framework and data distribution in Section 8.3. In Section 8.4 and 8.5
we present the implementation of our open source C++ library and the experimental
results, respectively. We conclude in Section 8.6 and outline future work.

8.2 Related Work

Scientific applications are increasingly implemented to tolerate faults. Examples
include a numeric linear equation and partial equation solver [Ali+16], a plasma
simulation [Obe+17], a molecular dynamics simulations [Lag+16], a Fast Fourier
Transformation [EG03], and an algorithm for phylogenetic inference [Hüb+21a].
The three main techniques for implementing fault tolerant algorithms are Algorithm-
Based Fault Tolerance [VM97; Bos+08], restarting failed sub-jobs [Mem+16], and
checkpointing/restart [Koh+19; Hüb+21a]. Checkpointing/restart can be further
subdivided into coordinated and uncoordinated checkpointing. In coordinated
checkpointing, the program synchronizes before creating the checkpoint in a distrib-
uted manner. This ensures that there are no messages in-flight and the program’s
state is therefore well-defined. Gavaskar and Subbarao recommend coordinated

110

8.2 Related Work

checkpointing for the high-bandwidth, low-latency interconnections of modern
HPC systems [GS13]. Checkpointing libraries can save their checkpoint either
to a (possibly network attached) disk or to the compute node’s main memory
(“diskless”) [PLP98]. Checkpointing libraries which save their checkpoints to
disk include, for example, the algorithm presented by Agarwal et al. [Aga+04],
FTI [Bau+11], CRAFT [Sha+19], SCR [Moo+10], and VeloC [Nic+19]. As the
number of nodes per parallel program execution continues to grow, the conges-
tion on the PFS increases—resulting in a bottleneck and reduced checkpointing
performance [Gos+21; Hér+19]. Examples for in-memory checkpointing libraries
include ftRMA [BH14], Fenix [Gam+14], GPI CP [Bar+17], and the algorithm
described by Lu [Lu05] (Table 8.1). All of these employ the substitute strategy and
therefore rely on the availability of replacement nodes, if we want to continue the
computation in case of node failure. This implies that some nodes are allocated to
the job but not available for computation. Some algorithms additionally designate
some compute nodes as pure checkpointing nodes, which are neither participating
in the computation nor available as spares. Ashraf et al. [AHE18] describe an
implementation of a fault tolerance mechanism for a specific application which is
able to checkpoint to memory and recover in a shrinking setting. This is, however,
not a general-purpose checkpointing library but application-specific. Erasure codes
are often used to reduce the file-size or memory footprint of checkpoints [Lu05;
BH14; Bau+11].

Other areas where replication approaches similar to the one presented in this
chapter are used are distributed fault tolerant file systems like early versions of the
Hadoop Distributed File System [Shv+10] or distributed processing frameworks
like Apache Spark [Zah+12]. However, these target very different use cases and
sometimes only support very basic replication like storing each PEs data on a single
partner PE.

8.2.1 Reproducibility Study

In the following, we describe our attempts to replicate the results of competing
tools. We provide a visual summary of these in Table 8.1.

The ftRMA [BH14] tool has not been maintained since 2014 and relies on the
Cray-only foMPI library which has also not been further maintained since 2014. The
authors confirmed (pers. comm. 30. June 2022) that the current code exclusively
works on Cray systems and is no longer being actively maintained. Although
the authors suggested that ftRMA could—in principle—be ported to a non-Cray
system, taking into account the unmaintained code base comprising 513 calls to
foMPI functions, this would incur a prohibitive programming effort with uncertain
outcomes. Further, as ULFM currently provides “little support for fault tolerance”
with respect to RMA calls [Bou19], deploying ftRMA would be bound to fail using
a current fault tolerant MPI implementation.

With respect to the Fenix tool, there has only been a single commit to its
repository in 2022. In addition, the author’s automated testing on GitHub failed for

111

8 Fast General Purpose Data Recovery

Table 8.1: Comparison of checkpointing libraries. See Section 8.2 for details.
1The program needs to allocate spare nodes, which participate in the com-
putation only in case of a failure. 2The program needs to allocate spare
nodes and nodes used purely for checkpointing. 3The maintenance state is
unclear (Section 8.2.1).

ftRMA Fenix SCR Lu GPI CP ReStore

[BH14] [Gam+14] [Moo+10] [Lu05] [Bar+17] this paper

Features

in-memory ✓ ✓ ✗ ✓ ✓ ✓

substituting rec. ✓ ✓ ✓ ✓ ✓ ✓

shrinking rec. ✗ ✗ ✗ ✗ ✗ ✓

all nodes computing ✗2 (✓)1 (✓)1 ✗2 (✓)1 ✓

framework MPI RDMA MPI MPI MPI PGAS/GPI MPI

Reproducibility

source-code avail. ✓ ✓ ✓ ✗ ✓ ✓

maintained (2022) ✗ ?3 ✓ ✗ ✗ ✓

other issues Cray-only author-provided requires libiverbs,

examples segfault GPI-2, password-

less ssh-login on

all compute nodes

this commit. We thus denote Fenix’s maintenance status as being “unclear” ? in
Table 8.1. The author-provided Fenix examples [Gam+14] fail with a segmentation
fault. As Fenix does currently not support restoring the data that was checkpointed
on a different rank, setting up an experimental comparison is challenging. The
authors did not respond to our e-mail requesting assistance.

SCR [Moo+10] has frequent commits to its github repository. Hence, we consider
that it is still being maintained. SCR supports caching checkpoints on a RAM-disk.
These checkpoints, however, have to be transferred to the parallel file system such
as to become available upon rank failure. We therefore do not consider SCR to be
an in-memory checkpointing library in the context of node failures.

The source code of Lu [Lu05] is not available, and the author can not be contacted,
as they did not provide a contact e-mail address on their publications.

The git repository of GPI CP [Bar+17] has only a single commit from seven
years ago; we thus also consider that it is no longer being maintained. As we do not
have access to an HPC system where GPI-2 (a library for the Partitioned Global
Address Space (PGAS) programming model) is supported, and its dependency
libiverbs has to be installed by a system administrator, we are unable to compare
GPI CP against ReStore.

8.3 In-Memory Replica for Fast Recovery

ReStore allows application developers to store redundant copies of their data in-
memory. In case of a failure, the surviving PEs can invoke a recovery routine to
load all or parts of the data lost during the failure.

112

8.3 In-Memory Replica for Fast Recovery

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

PE 0 PE 1 PE 2 PE 3

1 2 3 4 5 6 78 9 10 11 12 13 14 15 0

copy 1

copy 2

Figure 8.1: Example showing the data distribution of the copies stored with
ReStore for p = 4 PEs, n = 16 data blocks, and r = 2 copies.

The remainder of this section is structured as follows: In Section 8.3.1 we intro-
duce our general framework for maintaining redundant copies of the user-supplied
data in memory as well as the algorithm used for recovery. Section 8.3.2 expands
on the distribution of copies by adding random permutations that accelerate the
recovery algorithm. We analyze the memory usage of our proposed data distribution
in Section 8.3.3 and the probability of irrecoverable data loss in Section 8.3.4. In
Section 8.3.5 we describe a yet unimplemented approach to restore the level of
redundancy after a failure.

8.3.1 General Framework

The main idea of ReStore is to store r copies of the data on different nodes. By
storing them such that it is unlikely for all copies of one data element to fail at once,
there will most likely (Section 8.3.4 and Section 8.5.2.a)) be copies left to recover
from. The application programmer can store data into ReStore using the submit
function and retrieve data from ReStore using the load function. To make the data
addressable, we divide it into blocks where each block has a unique identifier.

Let n be the number of data blocks. In its most basic form (Figure 8.1) we store
the block with ID x on PEs L(x, k) = ⌊xp

n
⌋ + k ⋅ p

r
mod p, for k ∈ [0, r). Under this

distribution, we expect the copies of a block to not be stored on the same physical
node/case/rack in most cluster setups. This decreases the probability of loosing all
copies of a block, as failures of PEs in the same node/case/rack are more likely to
occur than a simultaneous failure of unrelated PEs [Bau+11]. In Section 8.3.2 we
explore a change to this basic distribution scheme that allows for faster recovery.

During recovery, when PE i requests to load block j, we choose one of the
surviving PEs that hold block j at random to serve the request. If a PE requests
multiple successive blocks which are stored on the same set of PEs, we choose
one PE to serve all of them. This strategy minimizes the bottleneck number of
messages received. Next, we distribute the requested data using a custom sparse
all-to-all communication.

8.3.2 Breaking Up Access Patterns for Faster Recovery

The goal of distributing data copies as described in Section 8.3.1 is primarily to
preserve the ability to recover from a fault. In the following, we explore how to

113

8 Fast General Purpose Data Recovery

7 12 13 4 5 0 1 14 15 2 3 10 11 8 96

PE 0 PE 1 PE 2 PE 3

copy 1
copy 2 14 15 2 3 10 11 8 9 7 12 13 4 5 0 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150application data

submit

PE 0 failedload

requested data

R
eS
to
re

E 0 1 2 3

Figure 8.2: Example showing the submit and load operations as well as the
data distribution of the copies with a random permutation for p = 4 PEs, n = 16
data blocks, r = 2 copies, and spr = 2 blocks per permutation range. The
first row shows the data submitted by the application. As an example, the
orange and green arrows show the data ReStore sends from PE 1 to the target
PEs which hold copies of the received data. After PE 0 fails, the application
requests the data shown in the last row (dark red in all occurrences) which is
served by ReStore as shown with the black arrows.

adapt the data distribution such that it accelerates data recovery while preserving
the level of failure resilience.

Assume a failed PE i which worked on data blocks [in
p
, (i + 1)n

p
), where n is

the total number of data blocks submitted to ReStore. If the application were to
redistribute the lost data evenly to all surviving PEs, we would ideally want a dedi-
cated sending PE for each receiver.This would result in a bottleneck communication
volume of n

p2 and a bottleneck number of messages received of 1. With the data
distribution from Section 8.3.1, only the surviving subset of the r ≪ p PEs that
hold copies of these blocks act as sources, resulting in a bottleneck communication
volume of n

pr
. We can alleviate this issue by evenly distributing the copies of

data blocks [in
p
, (i + 1)n

p
) among multiple PEs by randomly permuting the block

identifiers. For a random permutation π and k ∈ [0, r), the block x is stored on PEs

L(x, k) = ⌊π(x) ⋅ p
n

⌋ + k ⋅ p
r

mod p

If the user requests blocks [in
p
, (i + 1)n

p
), more PEs have parts of the data and

can send them to the requesting PE. This approach, however, can lead to a large
bottleneck number of messages being sent and received: If a PE requests n

p2 data

blocks, these blocks can reside on up to min(n
p2 , p) different PEs. To mitigate

this, we group the data into permutation ranges of size spr. We then apply a
random permutation to these permutation ranges instead of individual data blocks

(Figure 8.2). If by a fault on PE i, data blocks [in
p
, (i + 1)n

p
) need to be redistributed,

these correspond to permutation ranges [i⋅n/p
spr

, (i+1)⋅n/p
spr

). If we request the data to

114

8.3 In-Memory Replica for Fast Recovery

be evenly distributed among the p − 1 surviving PEs such that PE j receives blocks

[in
p
+ j n

p⋅(p−1) , i
n
p
+ (j + 1) n

p⋅(p−1)), only
n/(p⋅(p−1))

spr
PEs send to every receiving PE.

The best choice of spr and whether to use permutations at all depends on the
data distribution, the expected amount of data lost by a fault, and the application’s
recovery strategy, but also on the frequency of checkpoint creation since submitting
data with permutations enabled results in a more dense communication pattern.
Section 8.5.2.a) shows how we experimentally chose a good value for spr .

Note that with this data distribution, we always have sets of n
sprp

permutation

ranges that are stored together for all r copies (e.g., blocks 6, 7, 12, 13 in Figure 8.2
are always stored together—once on PE 0 and once on PE 2). This means that for
all copies of any permutation range whose first copy is stored on PE i to become
lost, exactly the set of r PEs i + k ⋅ p

r
, k ∈ [0, r) has to fail. One could also opt

for a different approach—for example, using a distinct permutation for each copy.
In this case, no sets of permutation ranges will always be stored together. So in
order for any permutation range whose first copy resides on PE i to be lost, it is
sufficient if any of the n

sprp
sets of PEs of size r fail that hold the copies of one of

the permutation ranges. In Section 8.3.4 we analyze the probability of irrecoverable
data loss under our proposed data distribution.

8.3.3 Memory Usage

Other fault tolerance libraries [Lu05; BH14; Bau+11] often use erasure coding—for
example the Reed-Solomon code [RS60]—to reduce their memory footprint. This
works for example by not storing the replicas A′ and B′ of two blocks A and
B but rather the XOR of these blocks A ⊕ B. We decide against using erasure
coding as a means to reduce the memory footprint of our checkpoints, as this
would incur additional messages upon checkpoint creation and recovery as well
as a substantial computational overhead [CD96]. We therefore trade reduced
communication overhead for increased memory consumption.

As in Section 8.3.1, let n be the number of data blocks, r be the number of
replicas and p be the number of processes. On each PE ReStore requires main
memory to store rn

p
data blocks for the replicated storage. The memory requirement

is doubled during submission as we require additional space for the send and receive
buffers. During recovery, an additional copy of all data being sent and received is
stored on each PE. We verified these measures empirically (data not shown). A
plethora of applications exist for which the amount of memory for the input data
and the data that need to be checkpointed fit in memory r times. Examples include
RAxML-NG [Koz+19; Hüb+21a], k-means, and page-rank.1 For example, RAxML-
NG is memory bandwidth bound [Koz18]. Hence, using additional cores with their
associated larger cache memory capacity can even yield super-linear speedups due
to increased cache-efficiency. Such applications can therefore substantially benefit

1We implemented fault tolerant version for all three of these using ReStore and show running
times for RAxML-NG and k-means in Section 8.5.3.

115

8 Fast General Purpose Data Recovery

from reduced communication and computational overhead to create and restore a
checkpoint without erasure codes.

8.3.4 Probability of Irrecoverable Data Loss.

Let r be the replication level and p be the number of PEs. In this analysis, we
assume that r∣p (r divides p). This constitutes a reasonable assumption for current
two socket systems that exhibit an even number of cores per socket and r = 4. If r∣p,
the PEs are divided into g = p

r
groups, with all PEs in a respective group storing

the same data. Thus, if and only if all r PEs in a specific group fail, we will not be
able to recover a part of the data. We denote such an event as Irrecoverable Data
Loss (IDL). Let f be the number of failed PEs. There is exactly one possibility to
draw r out of r PEs belonging to a single group. The number of possibilities to
draw the remaining f − r failed PEs among the remaining PEs such that they do
not belong to the given group is (p−r

f−r). The overall number of possibilities to draw

f PEs from the p PEs that are still alive at program start is (p
f
). The probability

that, given f failures, all processes of a given group fail is thus 1 ⋅ (p−r
f−r)/(

p
f
). When

generalizing this equation to the probability of all processors of at least one group
failing, we have to apply the inclusion-exclusion principle to avoid counting the
same combination multiple times. We thus obtain the following equation for the
probability of an IDL at failure f or any failure before:

P ≤IDL(f) =
g

∑
j=1
(−1)j+1(g

j
)
(p−jr
f−jr)
(p
f
)

The probability of an IDL at exactly failure f is thus:

P =IDL(f) = P ≤IDL(f) − P
≤
IDL(f − 1)

The expected number of failures until an IDL occurs is:

E[Failures until IDL] =
p

∑
f=r

P =IDL(f) ⋅ f

For small f , the approximate probability of all PEs of any group failing is given
by P approx.

IDL (f) = g ⋅ (f/p)r. Setting P approx.
ID = 1 and solving for the fraction of PEs

that fail f/p yields f/p = (r/p)(1/r) ∈ O(p−1/r) for a fixed r.
In Section 8.5.2.a) we simulate node failures using the actual data distribution

to verify these formulas.

8.3.5 Recovering Lost Replicas After a Node Failure

To further increase the resilience of our framework, we introduce an approach to
restore replicas that were lost upon a failure while keeping all other replicas in place.

116

8.4 Implementation

That is, we do not need to redistribute any replicas that reside on surviving nodes.
As in the previous sections, let n be the number of data blocks, r be the number of
replicas per block, and p be the number of nodes.

We draw a different random permutation ρx of [0, p − 1] (or long, non-repeating
random sequences of nodes) for each block x and place the replicas of x on the
first r alive nodes of that permutation. When a node dies, we copy all replicas
that this node held to the next node in each replicas permutation. We can refine
this approach to attain a perfectly balanced initial data distribution and reduce
the probability of an IDL (Section 8.3.2): We initially place the first r replicas
(L(x, 0), L(x, 1), . . . , L(x, r−1)) deterministically as described in Section 8.3.1. That
is, the data distribution is given by

L(x, k) =
⎧⎪⎪⎨⎪⎪⎩

as described in Section 8.3.1, if k < r
ρx(k), else

Following this data distribution, we can compute the ranks on which we store a
given block in O(r + f) time and O(1) space where r is the number of replicas per
block and f is the number of node failures. In order to keep recovery fast, we can
apply this technique on a permutation-range-level rather than on individual blocks
as explained in Section 8.3.2.

8.4 Implementation

We implement ReStore as a C++ library2 using the User Level Failure Mitigation
(ULFM) proposal implementation [Bla+13]. Application programmers submit their
data to ReStore by writing their serialized data blocks to a memory location supplied
by the library or using ReStore’s interface for already serialized data. After a failure,
they can request data blocks by passing a list of ranges of block identifiers to ReStore.
This can be done in two ways: Either by providing the full list of requested block
IDs on all PEs or by providing exactly those ID ranges each individual PE needs
on exactly that PE. By using the first approach, no communication is required to
determine which PE serves which request. When using the second approach, the
receiving PE will determine which PE should send each requested data block. Then,
a sparse all-to-all communication is performed to issue the requests to the sending
PEs. Preliminary experiments showed that the latter method performs substantially
better because the full list of requests usually scales with the number of PEs in
the application, slowing down the first approach. Thus, for all experiments in
Section 8.5, we employ the second approach. As ReStore’s implementation currently
focuses on fast recovery, it provides only an interface for submitting data once and
thus is currently not suitable for repeatedly checkpointing changing data. This
is sufficient for many fault tolerant applications—two of which are demonstrated
in Section 8.5.3.

2https://github.com/ReStoreCpp/ReStore

117

https://github.com/ReStoreCpp/ReStore

8 Fast General Purpose Data Recovery

8.5 Experimental Evaluation

In this section we present the results of our experimental evaluation. We present the
experimental environment in Section 8.5.1. In Section 8.5.2 we evaluate ReStore’s
fault resilience and performance in isolation. In Section 8.5.3 we show how ReStore
performs when used in two fault tolerant applications: A simple k-means algorithm
and a complex bioinformatics application used by thousands of researchers. Finally,
in Section 8.5.4 we compare ReStore to reading from a parallel file system (PFS)—
which represents a lower bound for checkpointing libraries using the PFS as storage—
as well as the reported running times by other checkpointing libraries.

8.5.1 Environment and Experimental Setup

We run our experiments on the SuperMUC-NG cluster using OpenMPI as described
in Section 6.2. We compile our benchmark applications using gcc version 10.2.0 with
full optimizations enabled (-O3) and all assertions disabled. As ReStore currently
only supports submitting data once, all experiments shown in this section submit
only their input data. This is a restriction in the API, not the underlying algorithm,
and will be removed in future work.

All plots show results for 10 repetitions per experiment. Plots depict the mean
with error bars for the 10th and 90th percentile.

8.5.2 Isolated Evaluation

In this section we explore ReStore in isolation. We first choose the number of
redundant copies (Section 8.3.1). Next, we analyze ReStore’s performance and
experimentally optimize the size of permutation ranges (Section 8.3.2).

8.5.2.a) Number of Redundant Copies.

Figure 8.3 shows the result of a simulation of our data distribution: We continue
simulating the failure of random PEs until at least for one data block no copies
remain on the surviving PEs. We can see that even for 225 PEs, more than 1%
of all PEs have to fail until we can no longer recover all data when using r = 4
redundant copies. Even in the event of an irrecoverable data loss, the program will
not crash, but will have to merely reload the input data from disk. For applications
running on fewer PEs, an even smaller number r of redundant copies is sufficient to
yield data loss unlikely. For all further experiments we therefore set the number of
redundant copies to r ∶= 4. We compare the values obtained by applying the formula
in Section 8.3.4 with the values obtained by simulation in Figure 8.4 showing that
our theoretical formula matches the simulation very closely.

118

8.5 Experimental Evaluation

Figure 8.3: Percentage of failed PEs until all redundant copies of one data
block are lost. Simulation of the data distribution described in Section 8.3.1.
We continue simulating the failure of random PEs until there is at least one
data block with no remaining copies on the surviving PEs.

8.5.2.b) Performance.

For all experiments in this section we use data blocks of size 64B and 16MiB
of data per PE. We show results for three different operations: In the submit

operation we pass 16MiB on all PEs to ReStore’s submit function. In load 1%
data we load the data submitted by 1% of the PEs with contiguous data block IDs
evenly across all PEs. So for n total data blocks, we pick a random starting PE
i and request data blocks i ⋅ n/p to (i + 0.01 ⋅ p) ⋅ n/p. This simulates the requests
expected if 1% of PEs fail at once. In load all data we load all data stored in
ReStore evenly distributed across all PEs in a way that no PE loads the same data
it originally submitted.

By decreasing the size of permutation ranges (Section 8.3.2) we can control
how many PEs can participate in sending requested data: When using smaller
permutation ranges, more PEs are able to serve parts of the requested data to the
requesting PEs. Small permutation ranges, on the other hand, lead to fragmentation
of the data and therefore induce many small messages. In Figure 8.5 we show the
number of bytes per permutation range on the x-axis and the running times of
submit and load 1% data on the y-axis for different numbers of PEs. We do not
show results for load all data because permutations even have a negative effect

119

8 Fast General Purpose Data Recovery

Figure 8.4: Percentage of failed PEs until all redundant copies of one data block
are lost. Comparison of the probability given by the equations in Section 8.3.4
and the simulated values from Figure 8.3.

on performance here (Figure 8.6). We therefore recommend turning them off when
using a recovery mechanism which loads all data stored in ReStore. We observe that
for few bytes per permutation range, both submit and load 1% data are slower
by up to an order of magnitude than the fastest configuration because of a high
bottleneck number of messages. Approaching 16MiB of data per permutation range,
fewer PEs can participate in sending data. Between these two extremes, there is
a range of permutation range sizes which yield fast running times. For all further
experiments, we thus fix the amount of data per permutation range to 256KiB
(0.65ms to 2.27ms for load 1% data on 48 to 6 144 PEs). For 16MiB of data per
PE, every PE receives approximately 164KiB in load 1% data which results in
an average of two PEs requesting the same permutation range and therefore induces
a sparse communication pattern. On the sending side, this implies that the data
submitted by a single PE is distributed among 64 permutations ranges. With r = 4
redundant copies this results in up to 64 ⋅ 4 = 256 PEs that participate in serving
this part of the data.

As expected, enabling random permutations speeds up load 1% data and slows
down load all data, especially for runs on many PEs (Figure 8.6). This is because
in load all data, even without permutations, every PE sends some part of the
data. By enabling permutations, the data requested by a PE is distributed among

120

8.5 Experimental Evaluation

Figure 8.5: Influence of the number of bytes per permutation range on the
running time of submitting to and loading from ReStore.

more sending PEs, resulting in a denser communication pattern. We can tolerate
an increase in running time of submit as it is called only once in the case of only
submitting input data. In contrast, a load is issued after every failure.

8.5.3 Applications

To demonstrate realistic use cases of ReStore we use it to restore lost data in two
different real-world applications. Figure 8.7 shows running times for a small example
application that computes a k-means clustering [Mac67].3 Each PE holds 65536
points in a 32-dimensional space as input with 8 byte double precision floating point
values per dimension resulting in 16MiB of input data. All PEs start with the
same 20 random starting centers. Iteratively, each PE assigns the nearest center to
each of its local points and all PEs collaboratively calculate new centers positions

3We ran these experiments with IntelMPI, because its Group *-functions—which we use to
determine which PEs failed—perform better than OpenMPI’s.

121

8 Fast General Purpose Data Recovery

Figure 8.6: Weak scaling experiment (16MiB per PE) of our three benchmark
operations with and without ID randomization. We copy all data over the
network—i.e., no rank holds a copy of its requested data in its local part of
the ReStore storage.

using an all-reduce-operation over k elements. If a PE fails, the remaining PEs
divide the failed PE’s data points evenly among them using ReStore and continue
with the calculation. We perform 500 iterations of the algorithm and simulate an
expected failure of 1% of all nodes distributed uniformly at random during these
iterations. This is done by determining a suitable probability for each PE to fail
in each iteration of the algorithm.4 We find that ReStore accounts for only 1.6%
(median) of the overall running time on up to 24 576 PEs with up to 262 PEs failing.
Note that the overall running time increases by more than ReStore’s overhead
for large PE counts mainly due to MPI operations used to restore a functioning
communicator after a PE failure as well as the reduced number of PEs participating
in the computation after a failure.

Next, we demonstrate ReStore’s performance for the fault tolerant version of the
highly complex and widely used phylogenetic tree inference software RAxML-NG

4Using a discrete exponential decay with 1% of failed PEs after 500 iterations.

122

8.5 Experimental Evaluation

● ● ● ●
● ● ●

● ●

●

● ● ● ● ● ● ●
● ●

●

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ●

● ●

●

● ● ● ● ● ● ●

●

●

●

●

●

Figure 8.7: Running time of the k-means clustering algorithm with and without
failures on 16MiB of data per PE. k-means loop: time spent for the core
clustering algorithm. Restore overhead: time spent in ReStore’s functions.
Overall running time also includes additional work required for attaining fault
tolerance, such as a load balancer to determine how to redistribute data and
MPI functions for identifying the failed PEs.

by Kozlov et al. [Koz+19]—called FT-RAxML-NG [Hüb+21a]5—using the same
empirical datasets as in [Hüb+21a] (Figure 8.8 (a)). Additionally, we use a 19.1GiB
synthetic dataset [AKS14] for scaling experiments (Figure 8.8 (b)). FT-RAxML-NG
redistributes its input data among all surviving PEs. We therefore deactivate
permutation ranges for this application. We compare ReStore’s performance against
FT-RAxML-NG’s currently implemented recovery mechanism: Loading the data
from the PFS using RAxML-NG’s dedicated binary file format (RBA) which enables
rapidly reading only the required subset of the input matrix. We distinguish
between the input files being uncached by the file system (in the first read) and
being cached by previous reads. Both, submitting data to ReStore and loading

5https://github.com/lukashuebner/ft-raxml-ng/tree/restore-paper

123

https://github.com/lukashuebner/ft-raxml-ng/tree/restore-paper

8 Fast General Purpose Data Recovery

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●
●

●

●
●●

●
●●

●
●●

●●
●
●●●●

●

●●

●
●●●●●
●

●●●

●●●●●●●●●
●

●●●●●●●●●●

●

●

●

●

●
●

●●●

●●●

●●

●

●

●●
●
●

●●

●

●●
●●●
●
●
●●

●●●●●●●●●●

●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●
●●

●●●

●
●

●

●

●
●

(a) Real world datasets

●●
●

●

●●
●

●

●●
●

●

●
●

●

●

●●

●

●

●●

●

●
●●

●

●
●●

●

●
●●
●

●

●●
●

●

●

●

●

●
●●

●

●
●
●

●

●●
●

●

●
●
●

●

●
●●

●

●●
●

●

●
●
●

●

●
●●

●

●●
●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●●

●

●

● ●

● ●

(b) 19.1GiB synthetic dataset

Figure 8.8: Performance of data loading after a fault in FT-RAxML-NG. In
subplot (a), labels on the x-axis show the name of the data set, the number of
PEs used for that data set, and the corresponding amount of input data per PE.

data after a failure, is faster than the original method of loading the data from
files—often by more than an order of magnitude. On the synthetic data set, for low
PE counts, submitting to ReStore is slower than reloading from a file. However,
this is negligible because an actual phylogenetic inference on this dataset requires
terabytes of memory for likelihood calculations and would therefore never run on
this few nodes. We also want to emphasize that submitting to ReStore has to
be done only once in FT-RAxML-NG, while loading has to be conducted after
every failure.

124

8.5 Experimental Evaluation

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Figure 8.9: Loading performance of ReStore vs. loading from files on the clusters
parallel file system, representing the approach of most checkpointing libraries.

8.5.4 Comparison with Other Approaches

We now evaluate ReStore’s performance in comparison to other checkpointing
approaches. As shown in Section 8.2, most checkpointing libraries store checkpoints
on the PFS. Most on-disk and all in-memory checkpointing libraries support only
substituting recovery, i.e., no shrinking recovery, yielding a comparison with ReStore
challenging. Additionally, as detailed in Section 8.2.1, to the best of our knowledge,
there exists no in-memory checkpointing library which is still maintained and
working to compare ReStore to.

8.5.4.a) Comparing to Disk-Based Approaches

We compare ReStore against loading a copy of the data stored on the PFS (Fig-
ure 8.9). We create this file such that reading is a single consecutive read and
therefore as fast as possible. We show running times for reading a separate file
for each reading PE using C++’s ifstream and reading a single file for all PEs
with MPI File read at all (MPI I/O in the plot). This is a lower bound for all
checkpointing libraries that have to read their data from disk. ReStore outperforms
disk access (ifstream) on 24 576 PEs by a factor of 206 (1% of data; median) and
55 (all data) respectively.

125

8 Fast General Purpose Data Recovery

8.5.4.b) Comparing to Reported Measurements

Gamell et al. [Gam+14] measure approximately 115ms to write a checkpoint with
14.8MB per rank on 1000 ranks using Fenix. Fenix implements a replication level
of r = 1. This means, that there exists a single copy of the data in addition to the
data the ranks are actively working on. According to our definition (Section 8.3.4),
a single rank failure will cause irrecoverable data loss. This works in practice, as
long as the data which resided on the failed rank(s) does not need to be restored.
To serialize and store 16MiB per rank on 1536 ranks (32 nodes) with a replication
level of r = 1 and using consecutive IDs, ReStore needs (126 ± 3)ms (µ ± σ, 10
repeats). Gamell et al. [Gam+14] expect Fenix’s recovery time to be the same as its
checkpointing time but do not provide experimental results for that claim. ReStore
restores the data of a single rank to another single rank in our experiments in
(21±2)ms. ReStore additionally offers to restore the data of a single rank scattered
to all surviving ranks. This operation requires (20 ± 5)ms in our experiments. In
the case that one expects more than one recovery per checkpoint ReStore offers
ID permutations to speed up recovery at the cost of slower checkpoint creation
(Section 8.3.2). This would for example be the case for static input data, of which
multiple ranks need different but small fractions after getting assigned new work
following a rank failure. With ID permutations enabled, saving the data to ReStore
takes (215 ± 9)ms in our experiments. Restoring the data takes (15 ± 3)ms if
restoring all the data to a single rank and (0.9 ± 0.2)ms if restoring the data
scattered across the surviving ranks. As the latter evenly distributes the data
across the surviving ranks, we expect it to become the more common scenario when
working in a shrinking setting.

Bartsch et al. [Bar+17] report GPI CP to require approximately 1 s to initialize,
200ms to create a checkpoint and 15ms to restore data from a checkpoint.

Fenix’s performance was measured on a Cray XK7 system with 16 cores per
node and a 160GBs−1 network [Cra13]. GPI CP’s performance was measured on
an unnamed system with 16 cores per node and a QDR Infiniband network. We
measured ReStore’s performance on the SuperMUC-NG, which has 48 cores per
node and an OmniPath interconnection with 100Gbit s−1 (Section 8.5.1). We choose
our experiments such that data is always copied between different nodes and never
between two processes running on the same node. Thus, all 48 processes on a single
node have to share the same interconnect. Considering that we evaluate ReStore
on a slower network than Fenix, we expect an even more favourable comparison
when having access to a similar HPC system.

Lu [Lu05] reports checkpoint creation times of 8 s to 20 s for 157MB to 182MB
on 448 ranks. They report restoration times of 20 s to 48 s. Thus, assuming linear
scaling, we expect checkpoint creation times of approximately 1 s and restoration
times of approximately 2 s for 16MiB of data. Lu’s algorithm is thus an order of
magnitude slower than ReStore and Fenix. We assume this is due to the fact, that
Lu’s algorithm uses erasure codes (Section 8.3.3).

126

8.6 Conclusion and Future Work

To summarize, ReStore can be configured to create and restore from checkpoints
in the same manner and approximately the same time as existing checkpointing
solutions. ReStore additionally has functionality to (a) increase the replication level
(b) restore the data in a scattered manner to multiple ranks instead of to one rank
and (c) enable ID permutations to decrease time to restore the data by an order of
magnitude while doubling the time taken to create a checkpoint. The latter option
is for example useful when creating a replicated storage for the input data of a
program, which has to be partially reload after a failure.

8.6 Conclusion and Future Work

We show that by using a suitable data distribution strategy, recovery of lost data
after a failure is possible in tens to hundreds of milliseconds, depending on the
amount of data loaded. We achieve this by using a distribution scheme for redundant
copies that ensures a low probability of data loss and a rapid recovery of the data.
We also provide the—to the best of our knowledge—first in-memory checkpointing
library which supports shrinking recovery, that is ReStore is able to restore the data
of the failed PEs scattered to multiple or all surviving ranks instead of to a single
respawned or spare PE. This alleviates the need for the application to allocate
spare nodes which participate in the computation only in case of a node failure,
thus increasing computation efficiency. We supply an analysis of the probability of
irrecovable data loss and propose a data distribution to easily restore lost replicas
after a failure. Experimental and theoretical evaluation of the proposed data
redistribution after a node failure constitutes part of future work. This further
decreases the probability to lose all copies of any data. With our C++ library, we
were able to improve recovery performance of FT-RAxML-NG [Koz+19; Hüb+21a]
by up to two orders of magnitude. By using the proposal implementation of the
fault tolerance mechanisms included in the recent MPI 4.0 standard, our library
can be used by applications on HPC systems once the new standard is implemented.
We also plan on evaluating ReStore for checkpointing of dynamic program state
and extend its API for different data formats (e.g., 2D data).

127

Appendix

Publications and Supervised Theses

In Conference Proceedings

Demian Hespe, Lukas Hübner, Lorenz Hübschle-Schneider, Peter Sanders, and
Dominik Schreiber. “Scalable Discrete Algorithms for Big Data Applications”.
In: High Performance Computing in Science and Engineering’21: Transactions of
the High Performance Computing Center, Stuttgart (HLRS) 2021. Springer, 2023,
pages 439–449. doi: 10.1007/978-3-031-17937-2_27

Lukas Hübner, Demian Hespe, Peter Sanders, and Alexandros Stamatakis. “ReStore:
In-Memory REplicated STORagE for Rapid Recovery in Fault-Tolerant Algorithms”.
In: 2022 IEEE/ACM 12th Workshop on Fault Tolerance for HPC at eXtreme Scale
(FTXS). 2022, pages 24–35. doi: 10.1109/FTXS56515.2022.00008

Demian Hespe, Sebastian Lamm, and Christian Schorr. “Targeted Branching for
the Maximum Independent Set Problem”. In: 19th International Symposium on
Experimental Algorithms, SEA 2021, June 7-9, 2021, Nice, France. 2021, 17:1–17:21.
doi: 10.4230/LIPIcs.SEA.2021.17

Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. “WeGo-
tYouCovered: The Winning Solver from the PACE 2019 Challenge, Vertex Cover
Track”. In: Proceedings of the SIAM Workshop on Combinatorial Scientific Com-
puting, CSC 2020, Seattle, USA, February 11-13, 2020. 2020, pages 1–11. doi:
10.1137/1.9781611976229.1

Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian
Schulz, and Darren Strash. “Engineering Kernelization for Maximum Cut”. In:
Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX
2020, Salt Lake City, UT, USA, January 5-6, 2020. 2020, pages 27–41. doi:
10.1137/1.9781611976007.3

Demian Hespe and Peter Sanders. “More Hierarchy in Route Planning Using Edge
Hierarchies”. In: 19th Symposium on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems, ATMOS 2019, September 12-13, 2019,
Munich, Germany. 2019, 10:1–10:14. doi: 10.4230/OASIcs.ATMOS.2019.10

Demian Hespe, Christian Schulz, and Darren Strash. “Scalable Kernelization for
Maximum Independent Sets”. In: Proceedings of the Twentieth Workshop on
Algorithm Engineering and Experiments, ALENEX 2018, New Orleans, LA, USA,
January 7-8, 2018. 2018, pages 223–237. doi: 10.1137/1.9781611975055.19

131

https://doi.org/10.1007/978-3-031-17937-2_27
https://doi.org/10.1109/FTXS56515.2022.00008
https://doi.org/10.4230/LIPIcs.SEA.2021.17
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.4230/OASIcs.ATMOS.2019.10
https://doi.org/10.1137/1.9781611975055.19

Publications and Supervised Theses

Journal Articles

Lukas Hübner, Alexey M. Kozlov, Demian Hespe, Peter Sanders, and Alexandros
Stamatakis. “Exploring Parallel MPI Fault Tolerance Mechanisms for Phylogenetic
Inference with RAxML-NG”. in: Bioinformatics 37.22 (2021), pages 4056–4063.
doi: 10.1093/bioinformatics/btab399

Demian Hespe, Christian Schulz, and Darren Strash. “Scalable Kernelization for
Maximum Independent Sets”. In: ACM Journal of Experimental Algorithmics 24.1
(2019), 1.16:1–1.16:22. doi: 10.1145/3355502

Technical Reports

Demian Hespe, Lukas Hübner, Peter Sanders, and Alexandros Stamatakis. “ReStore:
In-Memory REplicated STORagE for Rapid Recovery in Fault-Tolerant Algorithms”.
In: CoRR abs/2203.01107 (2022). arXiv: 2203.01107

Demian Hespe, Sebastian Lamm, and Christian Schorr. “Targeted Branching for
the Maximum Independent Set Problem”. In: CoRR abs/2102.01540 (2021). arXiv:
2102.01540

Lukas Hübner, Alexey M. Kozlov, Demian Hespe, Peter Sanders, and Alexandros
Stamatakis. “Exploring Parallel Mpi Fault Tolerance Mechanisms for Phylogenetic
Inference with RAxML-NG”. in: bioRxiv (2021). doi: 10.1101/2021.01.15.

426773

Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. “WeGotY-
ouCovered: The Winning Solver from the PACE 2019 Implementation Challenge,
Vertex Cover Track”. In: CoRR abs/1908.06795 (2019). arXiv: 1908.06795

Demian Hespe and Peter Sanders. “More Hierarchy in Route Planning Using Edge
Hierarchies”. In: CoRR abs/1907.03535 (2019). arXiv: 1907.03535

Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian
Schulz, and Darren Strash. “Engineering Kernelization for Maximum Cut”. In:
CoRR abs/1905.10902 (2019). arXiv: 1905.10902

Demian Hespe, Christian Schulz, and Darren Strash. “Scalable Kernelization for
Maximum Independent Sets”. In: CoRR abs/1708.06151 (2019). arXiv: 1708.

06151

Demian Hespe, Martin Weidner, Jonathan Dees, and Peter Sanders. “Fast OLAP
Query Execution in Main Memory on Large Data in a Cluster”. In: CoRR
abs/1709.05183 (2017). arXiv: 1709.05183

132

https://doi.org/10.1093/bioinformatics/btab399
https://doi.org/10.1145/3355502
https://arxiv.org/abs/2203.01107
https://arxiv.org/abs/2102.01540
https://doi.org/10.1101/2021.01.15.426773
https://doi.org/10.1101/2021.01.15.426773
https://arxiv.org/abs/1908.06795
https://arxiv.org/abs/1907.03535
https://arxiv.org/abs/1905.10902
https://arxiv.org/abs/1708.06151
https://arxiv.org/abs/1708.06151
https://arxiv.org/abs/1709.05183

Publications and Supervised Theses

Theses

Demian Hespe. “Scalable Kernelization for the Maximum Independent Set Problem”.
Master’s thesis. Karlsruhe Institute of Technology, 2017

Demian Hespe. “Communication Efficient Algorithms for Distributed Olap Query
Execution”. Bachelor’s thesis. Karlsruhe Institute of Technology, 2014

Supervised Theses

Charel Mercatoris. “Scalable Decentralized Fault-Tolerant MapReduce for Iterative
Algorithms”. Master’s thesis. Karlsruhe Institute of Technology, 2021

Christian Schorr. “Improved Branching Strategies for Maximum Independent Sets”.
Bachelor’s thesis. Karlsruhe Institute of Technology, 2020

Lukas Hübner. “Load-Balance and Fault-Tolerance for Massively Parallel Phyloge-
netic Inference”. Master’s thesis. Karlsruhe Institute of Technology, 2020

Damir Ferizovic. “A Practical Analysis of Kernelization Techniques for the Maxi-
mum Cut Problem”. Master’s Thesis. Karlsruhe Institute of Technology, 2019

Tom George. “Distributed Kernelization for Independent Sets”. Bachelor’s Thesis.
Karlsruhe Institute of Technology, 2018

133

Bibliography

[Abr+11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F.
Werneck. “A Hub-Based Labeling Algorithm for Shortest Paths in
Road Networks”. In: 10th Symposium on Experimental Algorithms
(SEA). 2011, pages 230–241. doi: 10.1007/978-3-642-20662-7_20.

[see page 72]

[Abu+07] Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and
W. Henry Suters. “Crown Structures for Vertex Cover Kernelization”.
In: Theory of Computing Systems 41.3 (2007), pages 411–430. doi:
10.1007/s00224-007-1328-0. [see pages 12, 17, 52]

[AC20] Maram Alsahafy and Lijun Chang. “Computing Maximum Independent
Sets Over Large Sparse Graphs”. In: International Conference on
Web Information Systems Engineering. Springer. 2020, pages 711–727.

[see pages 28, 30]

[Aga+04] Saurabh Agarwal, Rahul Garg, Meeta Sharma Gupta, and José E.
Moreira. “Adaptive Incremental Checkpointing for Massively Parallel
Systems”. In: Proceedings of the 18th Annual International Conference
on Supercomputing, ICS 2004, Saint Malo, France, June 26 - July 01,
2004. 2004, pages 277–286. doi: 10.1145/1006209.1006248.

[see pages 109–111]

[AHE18] Rizwan A. Ashraf, Saurabh Hukerikar, and Christian Engelmann.
“Shrink or Substitute: Handling Process Failures in HPC Systems Using
In-Situ Recovery”. In: 26th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, PDP 2018, Cam-
bridge, United Kingdom, March 21-23, 2018. 2018, pages 178–185. doi:
10.1109/PDP2018.2018.00032. [see pages 88, 111]

[AI16] Takuya Akiba and Yoichi Iwata. “Branch-And-Reduce Exponen-
tial/FPT Algorithms in Practice: A Case Study of Vertex Cover”. In:
Theoretical Computer Science 609 (2016), pages 211–225. doi: 10.
1016/j.tcs.2015.09.023. [see pages 9, 12–14, 16–19, 28–30, 34–37]

[AKS14] Andre J. Aberer, Kassian Kobert, and Alexandros Stamatakis.
“ExaBayes: Massively Parallel Bayesian Tree Inference for the Whole-
Genome Era”. In: Molecular Biology and Evolution 31.10 (2014),
pages 2553–2556: Oxford University Press. doi: 10.1093/molbev/
msu236. [see page 123]

135

https://doi.org/10.1007/978-3-642-20662-7_20
https://doi.org/10.1007/s00224-007-1328-0
https://doi.org/10.1145/1006209.1006248
https://doi.org/10.1109/PDP2018.2018.00032
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1093/molbev/msu236
https://doi.org/10.1093/molbev/msu236

Bibliography

[Ali+16] Md. Mohsin Ali, Peter E. Strazdins, Brendan Harding, and Markus
Hegland. “Complex Scientific Applications Made Fault-Tolerant with
the Sparse Grid Combination Technique”. In: International Journal of
High Performance Computing Applications 30.3 (2016), pages 335–359.
doi: 10.1177/1094342015628056. [see page 110]

[ALS13] Julian Arz, Dennis Luxen, and Peter Sanders. “Transit Node Routing
Reconsidered”. In: 12th International Symposium on Experimental
Algorithms (SEA). 2013, pages 55–66. [see page 72]

[AO09] Emely Arráiz and Oswaldo Olivo. “Competitive Simulated Annealing
and Tabu Search Algorithms for the Max-Cut Problem”. In: Pro-
ceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation. 2009, pages 1797–1798. doi: 10.1145/1569901.1570167.

[see page 52]

[Apa] Apache. Apache Hadoop. online. url: https://hadoop.apache.org.
[see page 92]

[ARW12] Diogo V. Andrade, Mauricio G.C. Resende, and Renato F. Werneck.
“Fast Local Search for the Maximum Independent Set Problem”. In:
Journal of Heuristics 18.4 (2012), pages 525–547: Springer. doi: 10.
1007/s10732-012-9196-4. [see pages 16, 18]

[Bar+17] Valeria Bartsch, Rui Machado, Dirk Merten, Mirko Rahn, and Franz-
Josef Pfreundt. “GASPI/GPI In-Memory Checkpointing Library”. In:
Euro-Par 2017: Parallel Processing: 23rd International Conference on
Parallel and Distributed Computing, Santiago de Compostela, Spain,
August 28 - September 1, 2017, Proceedings. 2017, pages 497–508. doi:
10.1007/978-3-319-64203-1_36. [see pages 110–112, 126]

[Bar+88] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard
Reinelt. “An Application of Combinatorial Optimization to Statistical
Physics and Circuit Layout Design”. In: Operations Research 36.3
(1988), pages 493–513. doi: 10.1287/opre.36.3.493.

[see pages 51, 52]

[Bar82] Francisco Barahona. “On the Computational Complexity of Ising Spin
Glass Models”. In: Journal of Physics A: Mathematical and General
15.10 (1982), page 3241: IOP Publishing. doi: 10.1088/0305-4470/
15/10/028. [see pages 51, 52]

[Bar96] Francisco Barahona. “Network Design Using Cut Inequalities”. In:
SIAM Journal on Optimization 6.3 (1996), pages 823–837: SIAM. doi:
10.1137/S1052623494279134. [see pages 51, 52]

[Bas+07] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. “Fast
Routing in Road Networks with Transit Nodes”. In: Science 316.5824
(2007), page 566 . [see page 72]

136

https://doi.org/10.1177/1094342015628056
https://doi.org/10.1145/1569901.1570167
https://hadoop.apache.org
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/978-3-319-64203-1_36
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1088/0305-4470/15/10/028
https://doi.org/10.1137/S1052623494279134

Bibliography

[Bas+16] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and
Renato F Werneck. “Route Planning in Transportation Networks”. In:
Algorithm Engineering. Springer, 2016, pages 19–80.

[see pages 1, 7, 69, 72, 77]

[Bat+13] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian
Vetter. “Minimum Time-Dependent Travel Times with Contraction
Hierarchies”. In: ACM Journal of Experimental Algorithmics 18 (2013).
doi: 10.1145/2444016.2444020. [see page 83]

[Bat+14] M. Batsyn, B. Goldengorin, E. Maslov, and P. Pardalos. “Improvements
to MCS Algorithm for the Maximum Clique Problem”. English. In:
Journal of Combinatorial Optimization 27.2 (2014), pages 397–416:
Springer US. doi: 10.1007/s10878-012-9592-6. [see pages 11, 18]

[Bau+10] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner. “Combining Hierarchical
and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm”. In:
ACM Journal of Experimental Algorithmics 15 (2010). doi: 10.1145/
1671970.1671976. [see page 72]

[Bau+11] Leonardo Arturo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch,
Franck Cappello, Naoya Maruyama, and Satoshi Matsuoka. “FTI:
High Performance Fault Tolerance Interface for Hybrid Systems”. In:
Conference on High Performance Computing Networking, Storage and
Analysis, SC 2011, Seattle, WA, USA, November 12-18, 2011. 2011,
32:1–32:32. doi: 10.1145/2063384.2063427.

[see pages 103, 109–111, 113, 115]

[Ben+11] Thierry Benoist, Bertrand Estellon, Frédéric Gardi, Romain Megel, and
Karim Nouioua. “Localsolver 1.x: A Black-Box Local-Search Solver for 0-
1 Programming”. In: 4OR. A Quarterly Journal of Operations Research
9.3 (2011), page 299: Springer. [used in this work: Localsolver 8.0].
doi: 10.1007/s10288-011-0165-9. url: https://www.localsolver.
com/. [see pages 52, 62]

[BH13] Una Benlic and Jin-Kao Hao. “Breakout Local Search for the Max-Cut
Problem”. In: Engineering Applications of Artificial Intelligence 26.3
(2013), pages 1162–1173. doi: 10.1016/j.engappai.2012.09.001.

[see page 52]

[BH14] Maciej Besta and Torsten Hoefler. “Fault Tolerance for Remote Memory
Access Programming Models”. In: The 23rd International Symposium
on High-Performance Parallel and Distributed Computing, HPDC’14,
Vancouver, BC, Canada - June 23 - 27, 2014. 2014, pages 37–48. doi:
10.1145/2600212.2600224. [see pages 110–112, 115]

137

https://doi.org/10.1145/2444016.2444020
https://doi.org/10.1007/s10878-012-9592-6
https://doi.org/10.1145/1671970.1671976
https://doi.org/10.1145/1671970.1671976
https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1007/s10288-011-0165-9
https://www.localsolver.com/
https://www.localsolver.com/
https://doi.org/10.1016/j.engappai.2012.09.001
https://doi.org/10.1145/2600212.2600224

Bibliography

[Bin+16] Timo Bingmann, Michael Axtmann, Emanuel Jöbstl, Sebastian Lamm,
Huyen Chau Nguyen, Alexander Noe, Sebastian Schlag, Matthias
Stumpp, Tobias Sturm, and Peter Sanders. “Thrill: High-Performance
Algorithmic Distributed Batch Data Processing with C++”. In: 2016
IEEE International Conference on Big Data (IEEE BigData 2016),
Washington DC, USA, December 5–8, 2016. 2016, pages 172–183. doi:
10.1109/BigData.2016.7840603. [see pages 3, 91, 93, 97, 99]

[Bla+13] Wesley Bland, Aurélien Bouteiller, Thomas Hérault, George Bosilca,
and Jack J. Dongarra. “Post-Failure Recovery of MPI Communication
Capability: Design and Rationale”. In: International Journal of High
Performance Computing Applications 27.3 (2013), pages 244–254. doi:
10.1177/1094342013488238. [see pages 88, 117]

[Bos+08] George Bosilca, Remi Delmas, Jack J. Dongarra, and Julien Langou. “Al-
gorithmic Based Fault Tolerance Applied to High Performance Comput-
ing”. In: CoRR abs/0806.3121 (2008). arXiv: 0806.3121. [see page 110]

[Bou+12] Nicolas Bourgeois, Bruno Escoffier, Vangelis Th. Paschos, and Johan
M. M. van Rooij. “Fast Algorithms for Max Independent Set”. In:
Algorithmica 62.1-2 (2012), pages 382–415. doi: 10.1007/s00453-010-
9460-7. [see page 29]

[Bou19] Aurelien Bouteiller. ULFM 4.0.2u1 Release Notes. online. Nov. 2019.
url: https://fault-tolerance.org/2019/11/18/ulfm-4-0-2u1/.

[see page 111]

[BT07] Sergiy Butenko and Svyatoslav Trukhanov. “Using Critical Sets to
Solve the Maximum Independent Set Problem”. In: Operations Research
Letters 35.4 (2007), pages 519–524. doi: 10.1016/j.orl.2006.07.004.

[see page 12]

[But+02] S. Butenko, P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk. “Find-
ing Maximum Independent Sets in Graphs Arising from Coding Theory”.
In: Proc. 2002 ACM Symposium on Applied Computing (SAC’02). 2002,
pages 542–546. doi: 10.1145/508791.508897. [see page 12]

[But+09] Sergiy Butenko, Panos Pardalos, Ivan Sergienko, Vladimir Shylo, and
Petro Stetsyuk. “Estimating the Size of Correcting Codes Using Ex-
tremal Graph Problems”. In: Optimization. Volume 32. Springer Op-
timization and Its Applications. Springer, 2009, pages 227–243. doi:
10.1007/978-0-387-98096-6_12. [see page 12]

[BW06] Sergiy Butenko and Wilbert E. Wilhelm. “Clique-Detection Models in
Computational Biochemistry and Genomics”. In: European Journal of
Operational Research 173.1 (2006), pages 1–17. doi: 10.1016/j.ejor.
2005.05.026. [see page 9]

138

https://doi.org/10.1109/BigData.2016.7840603
https://doi.org/10.1177/1094342013488238
https://arxiv.org/abs/0806.3121
https://doi.org/10.1007/s00453-010-9460-7
https://doi.org/10.1007/s00453-010-9460-7
https://fault-tolerance.org/2019/11/18/ulfm-4-0-2u1/
https://doi.org/10.1016/j.orl.2006.07.004
https://doi.org/10.1145/508791.508897
https://doi.org/10.1007/978-0-387-98096-6_12
https://doi.org/10.1016/j.ejor.2005.05.026
https://doi.org/10.1016/j.ejor.2005.05.026

Bibliography

[Cap+14] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer,
and Marc Snir. “Toward Exascale Resilience: 2014 Update”. In: Su-
percomputing Frontiers and Innovations 1.1 (2014), pages 5–28. doi:
10.14529/jsfi140101. [see pages 1, 87]

[CD96] Tzi-cker Chiueh and Peitao Deng. “Evaluation of Checkpoint Mecha-
nisms for Massively Parallel Machines”. In: Digest of Papers: FTCS-26,
The Twenty-Sixth Annual International Symposium on Fault-Tolerant
Computing, Sendai, Japan, June 25-27, 1996. 1996, pages 370–379. doi:
10.1109/FTCS.1996.534622. [see page 115]

[CFJ05] Benny Chor, Mike Fellows, and David Juedes. “Linear Kernels in Linear
Time, or How to Save K Colors in o(n2) Steps”. In: Graph-Theoretic
Concepts in Computer Science. Edited by Juraj Hromkovič, Manfred
Nagl, and Bernhard Westfechtel. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pages 257–269. doi: 10.1007/978-3-540-30559-
0_22. [see page 11]

[Cha19] Lijun Chang. “Efficient Maximum Clique Computation Over Large
Sparse Graphs”. In: Proc. 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2019, pages 529–538. doi:
10.1145/3292500.3330986. [see page 12]

[Che+08] Tammy M. K. Cheng, Yu-En Lu, Michele Vendruscolo, Pietro Liò,
and Tom L. Blundell. “Prediction by Graph Theoretic Measures of
Structural Effects in Proteins Arising from Non-Synonymous Single Nu-
cleotide Polymorphisms”. In: PLoS Computational Biology 4.7 (2008).
doi: 10.1371/journal.pcbi.1000135. [see page 9]

[Chi+07] Charles Chiang, Andrew B Kahng, Subarnarekha Sinha, Xu Xu, and
Alexander Z Zelikovsky. “Fast and Efficient Bright-Field AAPSM Con-
flict Detection and Correction”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 26.1 (2007), pages 115–
126. doi: 10.1109/TCAD.2006.882642. [see pages 51, 52]

[CJM15] Robert Crowston, Mark Jones, and Matthias Mnich. “Max-Cut Pa-
rameterized above the Edwards-Erdős Bound”. In: Algorithmica 72.3
(2015), pages 734–757. doi: 10.1007/s00453-014-9870-z.

[see pages 52, 54, 55]

[CKJ01] Jianer Chen, Iyad A. Kanj, and Weijia Jia. “Vertex Cover: Further
Observations and Further Improvements”. In: Journal of Algorithms
41.2 (2001), pages 280–301. doi: 10.1006/jagm.2001.1186.

[see pages 11, 17]

[CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. “Improved Upper Bounds
for Vertex Cover”. In: Theoretical Computer Science 411.40 (2010),
pages 3736–3756. doi: 10.1016/j.tcs.2010.06.026.

[see pages 9, 11, 29]

139

https://doi.org/10.14529/jsfi140101
https://doi.org/10.1109/FTCS.1996.534622
https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1145/3292500.3330986
https://doi.org/10.1371/journal.pcbi.1000135
https://doi.org/10.1109/TCAD.2006.882642
https://doi.org/10.1007/s00453-014-9870-z
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1016/j.tcs.2010.06.026

Bibliography

[CLZ17] Lijun Chang, Wei Li, and Wenjie Zhang. “Computing A Near-Maximum
Independent Set in Linear Time by Reducing-Peeling”. In: Proceedings
of the 2017 ACM International Conference on Management of Data.
2017, pages 1181–1196. doi: 10.1145/3035918.3035939.

[see pages 12, 18, 27]

[Con+10] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy, and Russell Sears. “MapReduce Online”. In: Pro-
ceedings of the 7th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2010, April 28-30, 2010, San Jose, CA,
USA. 2010, pages 313–328. url: http://www.usenix.org/events/
nsdi10/tech/full%5C_papers/condie.pdf. [see page 92]

[CP90] Randy Carraghan and Panos M. Pardalos. “An Exact Algorithm for the
Maximum Clique Problem”. In: Operations Research Letters 9.6 (1990),
pages 375–382: Elsevier Science Publishers B. V. doi: 10.1016/0167-
6377(90)90057-C. [see page 29]

[Cra13] Cray. Cray Xk7 Specifications. online. Jan. 2013. url: https : / /

web.archive.org/web/20130106091417/http://www.cray.com/

Products/Computing/XK7/Specifications.aspx. [see page 126]

[Cro+13] Robert Crowston, Gregory Gutin, Mark Jones, and Gabriele Muciaccia.
“Maximum Balanced Subgraph Problem Parameterized above Lower
Bound”. In: Theoretical Computer Science 513 (2013), pages 53–64.
doi: 10.1016/j.tcs.2013.10.026. [see pages 52, 54, 55, 57, 59, 60]

[CZF04] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. “R-MAT:
A Recursive Model for Graph Mining”. In: Proceedings of the Fourth
SIAM International Conference on Data Mining, Lake Buena Vista,
Florida, USA, April 22-24, 2004. 2004, pages 442–446. doi: 10.1137/
1.9781611972740.43. [see page 104]

[Dah+16] Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz,
Darren Strash, and Renato F. Werneck. “Accelerating Local Search for
the Maximum Independent Set Problem”. In: Proc. 15th International
Symposium on Experimental Algorithms (SEA 2016). Volume 9685.
LNCS. Springer, 2016, pages 118–133. doi: 10.1007/978-3-319-
38851-9_9. [see pages 18, 27]

[De 59] Rene De La Briandais. “File Searching Using Variable Length Keys”.
In: Papers presented at the the March 3-5, 1959, western joint com-
puter conference. ACM. 1959, pages 295–298. doi: 10.1145/1457838.
1457895. [see page 58]

[Del+15] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F.
Werneck. “Customizable Route Planning in Road Networks”. In: Trans-
portation Science 51.2 (2015), pages 566–591: INFORMS .

[see pages 70, 77]

140

https://doi.org/10.1145/3035918.3035939
http://www.usenix.org/events/nsdi10/tech/full%5C_papers/condie.pdf
http://www.usenix.org/events/nsdi10/tech/full%5C_papers/condie.pdf
https://doi.org/10.1016/0167-6377(90)90057-C
https://doi.org/10.1016/0167-6377(90)90057-C
https://web.archive.org/web/20130106091417/http://www.cray.com/Products/Computing/XK7/Specifications.aspx
https://web.archive.org/web/20130106091417/http://www.cray.com/Products/Computing/XK7/Specifications.aspx
https://web.archive.org/web/20130106091417/http://www.cray.com/Products/Computing/XK7/Specifications.aspx
https://doi.org/10.1016/j.tcs.2013.10.026
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1007/978-3-319-38851-9_9
https://doi.org/10.1007/978-3-319-38851-9_9
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895

Bibliography

[DFH19a] M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher. Pace2019:
Track 1 - Vertex Cover Instances. Zenodo, July 2019. doi: 10.5281/
zenodo.3368306. [see page 19]

[DFH19b] M. Ayaz Dzulfikar, Johannes K. Fichte, and Markus Hecher. “The
PACE 2019 Parameterized Algorithms and Computational Experiments
Challenge: The Fourth Iteration (Invited Paper)”. In: 14th International
Symposium on Parameterized and Exact Computation (IPEC 2019).
2019, 25:1–25:23. doi: 10.4230/LIPIcs.IPEC.2019.25. url: https://
drops.dagstuhl.de/opus/volltexte/2019/11486. [see pages 38, 39]

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”. In: Communications of the ACM 51.1
(2008), pages 107–113. doi: 10.1145/1327452.1327492.

[see pages 3, 91–93]

[DGJ09] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson. The
Shortest Path Problem: Ninth Dimacs Implementation Challenge. Vol-
ume 74. American Mathematical Soc., 2009. [see pages 1, 38, 39, 77]

[DGS18] Iain Dunning, Swati Gupta, and John Silberholz. “What Works Best
When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO”.
In: INFORMS Journal on Computing 30.3 (2018), pages 608–624. doi:
10.1287/ijoc.2017.0798. [see pages 1, 62, 63, 66]

[DHR15] Jack Dongarra, Thomas Herault, and Yves Robert1. Fault-Tolerance
Techniques for High-Performance Computing. Computer Communica-
tions and Networks 1. Springer, Cham, 2015. isbn: 978-3-319-20943-2.
doi: 10.1007/978-3-319-20943-2_1. [see pages 1, 87]

[Dij59] Edsger W Dijkstra. “A Note on Two Problems in Connexion with
Graphs”. In: Numerische Mathematik 1.1 (1959), pages 269–271:
Springer . [see pages 1, 7, 71]

[DM02] Elizabeth D Dolan and Jorge J Moré. “Benchmarking Optimization
Software with Performance Profiles”. In: Mathematical Programming
91.2 (2002), pages 201–213: Springer . [see page 38]

[dSHK13] Samuel de Sousa, Yll Haxhimusa, and Walter G Kropatsch. “Estimation
of Distribution Algorithm for the Max-Cut Problem”. In: International
Workshop on Graph-Based Representations in Pattern Recognition.
Volume 7877. LNCS. Springer, 2013, pages 244–253. doi: 10.1007/978-
3-642-38221-5_26. [see pages 51, 52, 66]

[DSW16] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. “Customizable
Contraction Hierarchies”. In: ACM Journal of Experimental Algorith-
mics 21 (2016), pages 1–5: ACM . [see pages 70, 71, 77]

141

https://doi.org/10.5281/zenodo.3368306
https://doi.org/10.5281/zenodo.3368306
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://drops.dagstuhl.de/opus/volltexte/2019/11486
https://drops.dagstuhl.de/opus/volltexte/2019/11486
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1287/ijoc.2017.0798
https://doi.org/10.1007/978-3-319-20943-2_1
https://doi.org/10.1007/978-3-642-38221-5_26
https://doi.org/10.1007/978-3-642-38221-5_26

Bibliography

[Edw73] Christopher S Edwards. “Some Extremal Properties of Bipartite Sub-
graphs”. In: Canadian Journal of Mathematics. Journal Canadien de
Mathematiques 25.3 (1973), pages 475–485: Cambridge University Press.
doi: 10.4153/CJM-1973-048-x. [see pages 52, 54]

[Edw75] Christopher S Edwards. “An Improved Lower Bound for the Number of
Edges in a Largest Bipartite Subgraph”. In: Proc. Second Czechoslovak
Symposium on Graph Theory, Prague. 1975, pages 167–181.

[see pages 52, 54]

[EG03] Christian Engelmann and Al Geist. “A Diskless Checkpointing Al-
gorithm for Super-Scale Architectures Applied to the Fast Fourier
Transform”. In: 1st International Workshop on Challenges of Large Ap-
plications in Distributed Environments, CLADE@HPDC 2003, Seattle,
WA, USA, June 21, 2003. 2003, page 47. doi: 10.1109/CLADE.2003.
1209999. [see page 110]

[Eka+10] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-
Hee Bae, Judy Qiu, and Geoffrey C. Fox. “Twister: A Runtime for
Iterative MapReduce”. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, HPDC 2010,
Chicago, Illinois, USA, June 21-25, 2010. 2010, pages 810–818. doi:
10.1145/1851476.1851593. [see page 92]

[EM18] Michael Etscheid and Matthias Mnich. “Linear Kernels and Linear-
Time Algorithms for Finding Large Cuts”. In: Algorithmica 80.9 (2018),
pages 2574–2615. doi: 10.1007/s00453-017-0388-z.

[see pages 52, 54, 55, 62]

[ER60] Paul Erdős and Alfréd Rényi. “On the Evolution of Random Graphs”.
In: Publications of the Mathematical Institute of the Hungarian Academy
of Sciences 5.1 (1960), pages 17–60 . [see pages 104, 105]

[Far+17] Luerbio Faria, Sulamita Klein, Ignasi Sau, and Rubens Sucupira. “Im-
proved Kernels for Signed Max Cut Parameterized above Lower Bound
on (r, l)-Graphs”. In: Discrete Mathematics & Theoretical Computer
Science 19.1 (2017). doi: 10.23638/DMTCS-19-1-14. [see pages 54, 55]

[Fel+18] Michael R. Fellows, Lars Jaffke, Aliz Izabella Király, Frances A. Rosa-
mond, and Mathias Weller. “What Is Known about Vertex Cover
Kernelization?” In: Adventures Between Lower Bounds and Higher
Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His
60th Birthday. Edited by Hans-Joachim Böckenhauer, Dennis Komm,
and Walter Unger. Springer, 2018, pages 330–356. doi: 10.1007/978-
3-319-98355-4_19. [see page 11]

[Fer+19] Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich,
Christian Schulz, and Darren Strash. “Engineering Kernelization for
Maximum Cut”. In: CoRR abs/1905.10902 (2019). arXiv: 1905.10902.

[see pages 7, 51, 132]

142

https://doi.org/10.4153/CJM-1973-048-x
https://doi.org/10.1109/CLADE.2003.1209999
https://doi.org/10.1109/CLADE.2003.1209999
https://doi.org/10.1145/1851476.1851593
https://doi.org/10.1007/s00453-017-0388-z
https://doi.org/10.23638/DMTCS-19-1-14
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1007/978-3-319-98355-4_19
https://arxiv.org/abs/1905.10902

Bibliography

[Fer+20] Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich,
Christian Schulz, and Darren Strash. “Engineering Kernelization for
Maximum Cut”. In: Proceedings of the Symposium on Algorithm Engi-
neering and Experiments, ALENEX 2020, Salt Lake City, UT, USA,
January 5-6, 2020. 2020, pages 27–41. doi: 10.1137/1.9781611976007.
3. [see pages 7, 51, 131]

[Fer19] Damir Ferizovic. “A Practical Analysis of Kernelization Techniques for
the Maximum Cut Problem”. Master’s Thesis. Karlsruhe Institute of
Technology, 2019. [see pages 55, 133]

[FGK09] Fedor V Fomin, Fabrizio Grandoni, and Dieter Kratsch. “A Measure &
Conquer Approach for the Analysis of Exact Algorithms”. In: Journal of
the ACM 56.5 (2009), page 25: ACM. doi: 10.1145/1552285.1552286.

[see pages 11, 17, 28]

[FK10] F.V. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer,
2010. doi: 10.1007/978-3-642-16533-7. [see page 11]

[Fre60] Edward Fredkin. “Trie Memory”. In: Communications of the ACM 3.9
(1960), pages 490–499. doi: 10.1145/367390.367400. [see page 58]

[Fun+19] Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck,
Peter Sanders, Christian Schulz, Darren Strash, and Moritz von Looz.
“Communication-Free Massively Distributed Graph Generation”. In:
Journal of Parallel and Distributed Computing 131 (2019), pages 200–
217. doi: 10.1016/j.jpdc.2019.03.011. [see page 62]

[Gam+14] Marc Gamell, Daniel S. Katz, Hemanth Kolla, Jacqueline Chen, Scott
Klasky, and Manish Parashar. “Exploring Automatic, Online Failure
Recovery for Scientific Applications at Extreme Scales”. In: Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2014, New Orleans, LA, USA, Novem-
ber 16-21, 2014. 2014, pages 895–906. doi: 10.1109/SC.2014.78.

[see pages 1, 87, 110–112, 126]

[Gao+17] Tao Gao, Yanfei Guo, Boyu Zhang, Pietro Cicotti, Yutong Lu, Pavan
Balaji, and Michela Taufer. “Mimir: Memory-Efficient and Scalable
MapReduce for Large Supercomputing Systems”. In: 2017 IEEE Inter-
national Parallel and Distributed Processing Symposium, IPDPS 2017,
Orlando, FL, USA, May 29 - June 2, 2017. 2017, pages 1098–1108.
doi: 10.1109/IPDPS.2017.31. [see page 92]

[Gao+18] Jian Gao, Jiejiang Chen, Minghao Yin, Rong Chen, and Yiyuan Wang.
“An Exact Algorithm for Maximum k-Plexes in Massive Graphs”. In:
Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.
2018, pages 1449–1455. doi: 10.24963/ijcai.2018/201. [see page 28]

143

https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1145/367390.367400
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1109/SC.2014.78
https://doi.org/10.1109/IPDPS.2017.31
https://doi.org/10.24963/ijcai.2018/201

Bibliography

[Gar+14] Frédéric Gardi, Thierry Benoist, Julien Darlay, Bertrand Estellon,
and Romain Megel. Mathematical Programming Solver Based on Local
Search. FOCUS Series in Computer Engineering. ISTE Wiley, 2014,
page 112. doi: 10.1002/9781118966464. [see page 52]

[Gei+08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
“Contraction Hierarchies: Faster and Simpler Hierarchical Routing in
Road Networks”. In: 7th Workshop on Experimental Algorithms (WEA).
2008, pages 319–333. [see pages 70, 71]

[Gei+12] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian
Vetter. “Exact Routing in Large Road Networks Using Contraction
Hierarchies”. In: Transportation Science 46.3 (2012), pages 388–404:
INFORMS . [see pages 69–71]

[Geo18] Tom George. “Distributed Kernelization for Independent Sets”. Bache-
lor’s Thesis. Karlsruhe Institute of Technology, 2018. [see page 133]

[Geo73] Alan George. “Nested Dissection of a Regular Finite Element Mesh”.
In: SIAM Journal on Numerical Analysis 10.2 (1973), pages 345–363:
SIAM . [see page 32]

[GJS74] M. R. Garey, D. S. Johnson, and L. Stockmeyer. “Some Simplified
NP-Complete Problems”. In: Proceedings of the 6th ACM Symposium
on Theory of Computing. 1974, pages 47–63. [see page 9]

[GKW06] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. “Reach
for A*: Efficient Point-To-Point Shortest Path Algorithms”. In: 8th
Workshop on Algorithm Engineering and Experiments (ALENEX). 2006.

[see page 72]

[Gos+21] Mikaila J. Gossman, Bogdan Nicolae, Jon C. Calhoun, Franck Cap-
pello, and Melissa C. Smith. “Towards Aggregated Asynchronous
Checkpointing”. In: CoRR abs/2112.02289 (2021). arXiv: 2112.02289.

[see page 111]

[Got+19] Lars Gottesbüren, Michael Hamann, Tim Niklas Uhl, and Dorothea
Wagner. “Faster and Better Nested Dissection Orders for Customiz-
able Contraction Hierarchies”. In: Algorithms 12.9 (2019), page 196:
Multidisciplinary Digital Publishing Institute . [see page 38]

[GS13] Sunil P. Gavaskar and Ch D. V. Subbarao. “A Survey of Distributed
Fault Tolerance Strategies”. In: International Journal of Advanced
Research in Computer and Communication Engineering 2.11 (Nov.
2013) . [see page 111]

[GT88] Andrew V Goldberg and Robert E Tarjan. “A New Approach to the
Maximum-Flow Problem”. In: Journal of the ACM (JACM) 35.4 (1988),
pages 921–940: ACM New York, NY, USA . [see page 31]

144

https://doi.org/10.1002/9781118966464
https://arxiv.org/abs/2112.02289

Bibliography

[Guo+15] Yanfei Guo, Wesley Bland, Pavan Balaji, and Xiaobo Zhou. “Fault
Tolerant MapReduce-Mpi for HPC Clusters”. In: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2015, Austin, TX, USA, November 15-20,
2015. 2015, 34:1–34:12. doi: 10.1145/2807591.2807617. [see page 92]

[Gut] Project Gutenberg. Project Gutenberg Is a Library of Over 60,000
Free Ebooks. online. [Online; accessed 8-August-2021]. url: https:
//www.gutenberg.org/. [see page 104]

[Gut04] Ronald J. Gutman. “Reach-Based Routing: A New Approach to Short-
est Path Algorithms Optimized for Road Networks”. In: 6th Work-
shop on Algorithm Engineering and Experiments (ALENEX). 2004,
pages 100–111. [see page 70]

[Har59] Frank Harary. “On the Measurement of Structural Balance”. In: Behav-
ioral Sciences 4.4 (1959), pages 316–323. doi: 10.1002/bs.3830040405.

[see pages 51, 52]

[Hér+19] Thomas Hérault, Yves Robert, Aurélien Bouteiller, Dorian C. Arnold,
Kurt B. Ferreira, George Bosilca, and Jack J. Dongarra. “Checkpoint-
ing Strategies for Shared High-Performance Computing Platforms”.
In: International Journal of Networking and Computing 9.1 (2019),
pages 28–52. url: http://www.ijnc.org/index.php/ijnc/article/
view/195. [see page 111]

[Hes+17] Demian Hespe, Martin Weidner, Jonathan Dees, and Peter Sanders.
“Fast OLAP Query Execution in Main Memory on Large Data in a
Cluster”. In: CoRR abs/1709.05183 (2017). arXiv: 1709.05183.

[see page 132]

[Hes+19a] Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash.
WeGotYouCovered. May 2019. doi: 10.5281/zenodo.2816116.

[see page 20]

[Hes+19b] Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash.
“WeGotYouCovered: The Winning Solver from the PACE 2019 Imple-
mentation Challenge, Vertex Cover Track”. In: CoRR abs/1908.06795
(2019). arXiv: 1908.06795. [see pages 7, 9, 16, 132]

[Hes+20] Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash.
“WeGotYouCovered: The Winning Solver from the PACE 2019 Chal-
lenge, Vertex Cover Track”. In: Proceedings of the SIAM Workshop on
Combinatorial Scientific Computing, CSC 2020, Seattle, USA, Febru-
ary 11-13, 2020. 2020, pages 1–11. doi: 10.1137/1.9781611976229.1.

[see pages 7, 9, 16, 131]

145

https://doi.org/10.1145/2807591.2807617
https://www.gutenberg.org/
https://www.gutenberg.org/
https://doi.org/10.1002/bs.3830040405
http://www.ijnc.org/index.php/ijnc/article/view/195
http://www.ijnc.org/index.php/ijnc/article/view/195
https://arxiv.org/abs/1709.05183
https://doi.org/10.5281/zenodo.2816116
https://arxiv.org/abs/1908.06795
https://doi.org/10.1137/1.9781611976229.1

Bibliography

[Hes+22] Demian Hespe, Lukas Hübner, Peter Sanders, and Alexandros Sta-
matakis. “ReStore: In-Memory REplicated STORagE for Rapid Recov-
ery in Fault-Tolerant Algorithms”. In: CoRR abs/2203.01107 (2022).
arXiv: 2203.01107. [see pages 87, 109, 132]

[Hes+23] Demian Hespe, Lukas Hübner, Lorenz Hübschle-Schneider, Peter San-
ders, and Dominik Schreiber. “Scalable Discrete Algorithms for Big
Data Applications”. In: High Performance Computing in Science and
Engineering’21: Transactions of the High Performance Computing
Center, Stuttgart (HLRS) 2021. Springer, 2023, pages 439–449. doi:
10.1007/978-3-031-17937-2_27. [see page 131]

[Hes14] Demian Hespe. “Communication Efficient Algorithms for Distributed
Olap Query Execution”. Bachelor’s thesis. Karlsruhe Institute of Tech-
nology, 2014. [see page 133]

[Hes17] Demian Hespe. “Scalable Kernelization for the Maximum Independent
Set Problem”. Master’s thesis. Karlsruhe Institute of Technology, 2017.

[see page 133]

[HK73] John E Hopcroft and Richard M Karp. “An Nˆ5/2 Algorithm for Maxi-
mum Matchings in Bipartite Graphs”. In: SIAM Journal on Computing
2.4 (1973), pages 225–231: SIAM . [see page 31]

[HLS21a] Demian Hespe, Sebastian Lamm, and Christian Schorr. “Targeted
Branching for the Maximum Independent Set Problem”. In: 19th In-
ternational Symposium on Experimental Algorithms, SEA 2021, June
7-9, 2021, Nice, France. 2021, 17:1–17:21. doi: 10.4230/LIPIcs.SEA.
2021.17. [see pages 7, 9, 27, 131]

[HLS21b] Demian Hespe, Sebastian Lamm, and Christian Schorr. “Targeted
Branching for the Maximum Independent Set Problem”. In: CoRR
abs/2102.01540 (2021). arXiv: 2102.01540. [see pages 7, 9, 27, 132]

[HLW02] Frank Harary, Meng-Hiot Lim, and Donald C Wunsch. “Signed Graphs
for Portfolio Analysis in Risk Management”. In: IMA J. Mgmt. Math.
13.3 (2002), pages 201–210: Oxford University Press. doi: 10.1093/
imaman/13.3.201. [see pages 51, 52]

[HS19a] Demian Hespe and Peter Sanders. “More Hierarchy in Route Plan-
ning Using Edge Hierarchies”. In: 19th Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems,
ATMOS 2019, September 12-13, 2019, Munich, Germany. 2019, 10:1–
10:14. doi: 10.4230/OASIcs.ATMOS.2019.10. [see pages 7, 69, 131]

[HS19b] Demian Hespe and Peter Sanders. “More Hierarchy in Route Planning
Using Edge Hierarchies”. In: CoRR abs/1907.03535 (2019). arXiv:
1907.03535. [see pages 7, 69, 132]

146

https://arxiv.org/abs/2203.01107
https://doi.org/10.1007/978-3-031-17937-2_27
https://doi.org/10.4230/LIPIcs.SEA.2021.17
https://doi.org/10.4230/LIPIcs.SEA.2021.17
https://arxiv.org/abs/2102.01540
https://doi.org/10.1093/imaman/13.3.201
https://doi.org/10.1093/imaman/13.3.201
https://doi.org/10.4230/OASIcs.ATMOS.2019.10
https://arxiv.org/abs/1907.03535

Bibliography

[HSS18] Demian Hespe, Christian Schulz, and Darren Strash. “Scalable Kernel-
ization for Maximum Independent Sets”. In: Proceedings of the Twen-
tieth Workshop on Algorithm Engineering and Experiments, ALENEX
2018, New Orleans, LA, USA, January 7-8, 2018. 2018, pages 223–237.
doi: 10.1137/1.9781611975055.19. [see pages 12, 52, 131]

[HSS19a] Demian Hespe, Christian Schulz, and Darren Strash. “Scalable Kernel-
ization for Maximum Independent Sets”. In: ACM Journal of Experi-
mental Algorithmics 24.1 (2019), 1.16:1–1.16:22. doi: 10.1145/3355502.

[see pages 28, 132]

[HSS19b] Demian Hespe, Christian Schulz, and Darren Strash. “Scalable Ker-
nelization for Maximum Independent Sets”. In: CoRR abs/1708.06151
(2019). arXiv: 1708.06151. [see page 132]

[HT73] John Hopcroft and Robert Tarjan. “Algorithm 447: Efficient Algorithms
for Graph Manipulation”. In: Communications of the ACM 16.6 (1973),
pages 372–378: ACM New York, NY, USA . [see page 30]

[Hüb+21a] Lukas Hübner, Alexey M. Kozlov, Demian Hespe, Peter Sanders, and
Alexandros Stamatakis. “Exploring Parallel MPI Fault Tolerance Mech-
anisms for Phylogenetic Inference with RAxML-NG”. In: Bioinformat-
ics 37.22 (2021), pages 4056–4063. doi: 10.1093/bioinformatics/
btab399. [see pages 89, 110, 115, 123, 127, 132]

[Hüb+21b] Lukas Hübner, Alexey M. Kozlov, Demian Hespe, Peter Sanders, and
Alexandros Stamatakis. “Exploring Parallel Mpi Fault Tolerance Mecha-
nisms for Phylogenetic Inference with RAxML-NG”. In: bioRxiv (2021).
doi: 10.1101/2021.01.15.426773. [see page 132]

[Hüb+22] Lukas Hübner, Demian Hespe, Peter Sanders, and Alexandros Sta-
matakis. “ReStore: In-Memory REplicated STORagE for Rapid Recov-
ery in Fault-Tolerant Algorithms”. In: 2022 IEEE/ACM 12th Workshop
on Fault Tolerance for HPC at eXtreme Scale (FTXS). 2022, pages 24–
35. doi: 10.1109/FTXS56515.2022.00008. [see pages 87, 109, 131]

[Hüb20] Lukas Hübner. “Load-Balance and Fault-Tolerance for Massively Par-
allel Phylogenetic Inference”. Master’s thesis. Karlsruhe Institute of
Technology, 2020. [see page 133]

[IOY14] Y. Iwata, K. Oka, and Y. Yoshida. “Linear-Time FPT Algorithms Via
Network Flow”. In: Proc. 25th ACM-SIAM Symposium on Discrete
Algorithms. 2014, pages 1749–1761. doi: 10.1137/1.9781611973402.
127. [see pages 12, 14, 17]

[Ish+91] Kunihiro Ishikawa, Michima Ogawa, Shigetoshi Azuma, and Tooru Ito.
“Map Navigation Software of the Electro-Multivision of The’91 Toyota
Soarer”. In: Vehicle Navigation and Information Systems Conference.
IEEE. 1991, pages 463–473. [see page 70]

147

https://doi.org/10.1137/1.9781611975055.19
https://doi.org/10.1145/3355502
https://arxiv.org/abs/1708.06151
https://doi.org/10.1093/bioinformatics/btab399
https://doi.org/10.1093/bioinformatics/btab399
https://doi.org/10.1101/2021.01.15.426773
https://doi.org/10.1109/FTXS56515.2022.00008
https://doi.org/10.1137/1.9781611973402.127
https://doi.org/10.1137/1.9781611973402.127

Bibliography

[Joh93] David S Johnson. “Cliques, Coloring, and Satisfiability: Second Dimacs
Implementation Challenge”. In: DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science 26 (1993), pages 11–13 .

[see pages 38, 39]

[JSQ02] George R. Jagadeesh, Thambipillai Srikanthan, and K. H. Quek.
“Heuristic Techniques for Accelerating Hierarchical Routing on Road
Networks”. In: IEEE Transactions on Intelligent Transportation
Systems 3.4 (2002), pages 301–309: IEEE . [see page 70]

[Kar72] Richard M Karp. “Reducibility among Combinatorial Problems”. In:
Complexity of Computer Computations. The IBM Research Symposia
Series. Springer, 1972, pages 85–103. doi: 10.1007/978-1-4684-2001-
2_9. [see page 51]

[Kie+10] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. “Dis-
tributed Time-Dependent Contraction Hierarchies”. In: Experimen-
tal Algorithms, 9th International Symposium. 2010, pages 83–93. doi:
10.1007/978-3-642-13193-6_8. [see page 9]

[Kiv+14] Raimondas Kiveris, Silvio Lattanzi, Vahab S. Mirrokni, Vibhor Rastogi,
and Sergei Vassilvitskii. “Connected Components in MapReduce and
Beyond”. In: Proceedings of the ACM Symposium on Cloud Computing,
Seattle, WA, USA, November 3-5, 2014. 2014, 18:1–18:13. doi: 10.
1145/2670979.2670997. [see page 104]

[KLR09] Joachim Kneis, Alexander Langer, and Peter Rossmanith. “A Fine-
grained Analysis of a Simple Independent Set Algorithm”. In: Proc.
29th International Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2009). 2009, pages 287–
298. doi: 10.4230/LIPIcs.FSTTCS.2009.2326. [see page 11]

[Koc+13] Gary A. Kochenberger, Jin-Kao Hao, Zhipeng Lü, Haibo Wang, and
Fred Glover. “Solving Large Scale Max Cut Problems Via Tabu Search”.
In: Journal of Heuristics 19.4 (Aug. 2013), pages 565–571. doi: 10.
1007/s10732-011-9189-8. [see page 52]

[Koh+19] Nils Kohl, Johannes Hötzer, Florian Schornbaum, Martin Bauer, Chris-
tian Godenschwager, Harald Köstler, Britta Nestler, and Ulrich Rüde.
“A Scalable and Extensible Checkpointing Scheme for Massively Paral-
lel Simulations”. In: International Journal of High Performance Com-
puting Applications 33.4 (2019). doi: 10.1177/1094342018767736.

[see page 110]

[Koz+19] Alexey M. Kozlov, Diego Darriba, Tomás Flouri, Benoit Morel,
and Alexandros Stamatakis. “RAxML-NG: A Fast, Scalable and
User-Friendly Tool for Maximum Likelihood Phylogenetic Infer-
ence”. In: Bioinformatics 35.21 (2019), pages 4453–4455. doi:
10.1093/bioinformatics/btz305. [see pages 115, 123, 127]

148

https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-642-13193-6_8
https://doi.org/10.1145/2670979.2670997
https://doi.org/10.1145/2670979.2670997
https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2326
https://doi.org/10.1007/s10732-011-9189-8
https://doi.org/10.1007/s10732-011-9189-8
https://doi.org/10.1177/1094342018767736
https://doi.org/10.1093/bioinformatics/btz305

Bibliography

[Koz18] Alexey Kozlov. “Models, Optimizations, and Tools Forlarge-Scale Phy-
logenetic Inference,handling Sequence Uncertainty,and Taxonomic Vali-
dation”. PhD thesis. Karlsruher Institut für Technologie (KIT), Jan.
2018. [see page 115]

[KSV10] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. “A Model
of Computation for MapReduce”. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010,
Austin, Texas, USA, January 17-19, 2010. 2010, pages 938–948. doi:
10.1137/1.9781611973075.76. [see page 92]

[KWZ16] Spyros C. Kontogiannis, Dorothea Wagner, and Christos D. Zaroliagis.
“Hierarchical Time-Dependent Oracles”. In: 27th International Sym-
posium on Algorithms and Computation (ISAAC). 2016, 47:1–47:13.

[see page 83]

[Lag+16] Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz,
Bronis R. de Supinski, Kathryn Mohror, and Howard Pritchard. “Eval-
uating and Extending User-Level Fault Tolerance in MPI Applications”.
In: International Journal of High Performance Computing Applica-
tions 30.3 (2016), pages 305–319. doi: 10.1177/1094342015623623.

[see page 110]

[Lam+17] Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and
Renato F. Werneck. “Finding Near-Optimal Independent Sets at Scale”.
In: Journal of Heuristics 23.4 (Aug. 2017), pages 207–229. doi: 10.
1007/s10732-017-9337-x. [see page 52]

[Lar07] Craig E Larson. “A note on critical independence reductions”. In:
Bulletin of the Institute of Combinatorics and its Applications 5 (2007),
pages 34–46 . [see page 12]

[Lei23] Leibnitz Computing Centre of the Bavarian Academy of Sciences and
Humanities. Supermuc-Ng. online. [Online; accessed 10-May-2023]. 2023.
url: https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.

[see page 1]

[LFX13] Chu-Min Li, Zhiwen Fang, and Ke Xu. “Combining MaxSAT Reasoning
and Incremental Upper Bound for the Maximum Clique Problem”. In:
Proceedings of 25th International Conference on Tools with Artificial
Intelligence (ICTAI). Nov. 2013, pages 939–946. doi: 10.1109/ICTAI.
2013.143. [see pages 11, 29]

[LJM17] Chu-Min Li, Hua Jiang, and Felip Manyà. “On Minimization of the
Number of Branches in Branch-And-Bound Algorithms for the Maxi-
mum Clique Problem”. In: Computers & Operations Research 84 (2017),
pages 1–15. doi: 10.1016/j.cor.2017.02.017.

[see pages 11, 16, 18–20, 29]

149

https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1177/1094342015623623
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.1007/s10732-017-9337-x
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://doi.org/10.1109/ICTAI.2013.143
https://doi.org/10.1109/ICTAI.2013.143
https://doi.org/10.1016/j.cor.2017.02.017

Bibliography

[LJX15] Chu-Min Li, Hua Jiang, and Ruchu Xu. “Incremental MaxSAT Rea-
soning to Reduce Branches in a Branch-And-Bound Algorithm for
MaxClique”. In: Learning and Intelligent Optimization - 9th Interna-
tional Conference. 2015, pages 268–274. doi: 10.1007/978-3-319-
19084-6_26. [see page 29]

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Net-
work Dataset Collection. http://snap.stanford.edu/data. June
2014. [see pages 1, 38, 39]

[LQ10] Chu Min Li and Zhe Quan. “An Efficient Branch-And-Bound Algorithm
Based on MaxSAT for the Maximum Clique Problem”. In: Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence. 2010.
url: http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/
view/1611. [see pages 21, 29]

[Lu05] Charng-Da Lu. “Scalable Diskless Checkpointing for Large Parallel
Systems”. PhD thesis. University of Illinois at Urbana-Champaign,
2005. [see pages 110–112, 115, 126]

[Mac67] James MacQueen. “Some Methods for Classification and Analysis
of Multivariate Observations”. In: Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability. Oakland, CA,
USA. 1967, pages 281–297. [see page 121]

[McC95] William F. McColl. “Scalable Computing”. In: Computer Science Today:
Recent Trends and Developments. Volume 1000. Lecture Notes in Com-
puter Science. Springer, 1995, pages 46–61. doi: 10.1007/BFb0015236.

[see page 92]

[Mem+16] Bunjamin Memishi, Shadi Ibrahim, Maŕıa S. Pérez, and Gabriel Antoniu.
“Fault Tolerance in MapReduce: A Survey”. In: Resource Management
for Big Data Platforms - Algorithms, Modelling, and High-Performance
Computing Techniques. Edited by Florin Pop, Joanna Kolodziej, and
Beniamino Di Martino. Computer Communications and Networks.
Springer, 2016, pages 205–240. doi: 10.1007/978-3-319-44881-7_11.

[see page 110]

[Mer21] Charel Mercatoris. “Scalable Decentralized Fault-Tolerant MapReduce
for Iterative Algorithms”. Master’s thesis. Karlsruhe Institute of Tech-
nology, 2021. [see pages 91, 103, 133]

[Möh+05] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and
Thomas Willhalm. “Partitioning Graphs to Speed up Dijkstra’s Algo-
rithm”. In: 4th Workshop on Efficient and Experimental Algorithms
(WEA). 2005, pages 189–202. [see page 72]

150

https://doi.org/10.1007/978-3-319-19084-6_26
https://doi.org/10.1007/978-3-319-19084-6_26
http://snap.stanford.edu/data
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1611
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1611
https://doi.org/10.1007/BFb0015236
https://doi.org/10.1007/978-3-319-44881-7_11

Bibliography

[Moo+10] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R.
de Supinski. “Design, Modeling, and Evaluation of a Scalable Multi-
Level Checkpointing System”. In: Conference on High Performance
Computing Networking, Storage and Analysis, SC 2010, New Orleans,
LA, USA, November 13-19, 2010. 2010, pages 1–11. doi: 10.1109/SC.
2010.18. [see pages 110–112]

[MSM09] Jens Maue, Peter Sanders, and Domagoj Matijevic. “Goal Directed
Shortest Path Queries Using
Precomputed Cluster Distances”. In: ACM Journal of Experimental
Algorithmics 14 (2009) . [see page 72]

[MSZ18] Jayakrishnan Madathil, Saket Saurabh, and Meirav Zehavi. “Max-Cut
Above Spanning Tree Is Fixed-Parameter Tractable”. In: Computer
Science - Theory and Applications - 13th International Computer Sci-
ence Symposium in Russia, CSR 2018, Moscow, Russia, June 6-10,
2018, Proceedings. 2018, pages 244–256. [see pages 54, 55]

[Mur+10] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A
Ang. “Introducing the Graph 500”. In: Cray Users Group (CUG) 19
(2010), pages 45–74 . [see page 104]

[Nic+19] Bogdan Nicolae, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror,
and Franck Cappello. “VeloC: Towards High Performance Adaptive
Asynchronous Checkpointing at Large Scale”. In: 2019 IEEE Interna-
tional Parallel and Distributed Processing Symposium, IPDPS 2019,
Rio de Janeiro, Brazil, May 20-24, 2019. 2019, pages 911–920. doi:
10.1109/IPDPS.2019.00099. [see pages 109–111]

[NT75] G.L. Nemhauser and Jr. Trotter L.E. “Vertex Packings: Structural
Properties and Algorithms”. In: Mathematical Programming 8.1 (1975),
pages 232–248: Springer-Verlag. doi: 10.1007/BF01580444.

[see pages 11, 13, 17]

[Obe+17] Michael Obersteiner, Alfredo Parra-Hinojosa, Mario Heene, Hans-
Joachim Bungartz, and Dirk Pflüger. “A Highly Scalable, Algorithm-
Based Fault-Tolerant Solver for Gyrokinetic Plasma Simulations”. In:
Proceedings of the 8th Workshop on Latest Advances in Scalable Algo-
rithms for Large-Scale Systems, ScalA@SC 2017, Denver, CO, USA,
November 13, 2017. 2017, 2:1–2:8. doi: 10.1145/3148226.3148229.

[see page 110]

[Pag+99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The Pagerank Citation Ranking: Bringing Order to the Web. Technical
report. Stanford InfoLab, 1999. [see page 105]

[PD11] Steven J. Plimpton and Karen D. Devine. “MapReduce in MPI for
Large-Scale Graph Algorithms”. In: Parallel Computing. Systems &
Applications 37.9 (2011), pages 610–632. doi: 10.1016/j.parco.2011.
02.004. [see pages 92, 104]

151

https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/SC.2010.18
https://doi.org/10.1109/IPDPS.2019.00099
https://doi.org/10.1007/BF01580444
https://doi.org/10.1145/3148226.3148229
https://doi.org/10.1016/j.parco.2011.02.004
https://doi.org/10.1016/j.parco.2011.02.004

Bibliography

[PLP98] James S. Plank, Kai Li, and Michael A. Puening. “Diskless Checkpoint-
ing”. In: IEEE Transactions on Parallel and Distributed Systems 9.10
(1998), pages 972–986. doi: 10.1109/71.730527. [see page 111]

[Pri05] Elena Prieto. “The Method of Extremal Structure on the k-Maximum
Cut Problem”. In: Theory of Computing 2005, Eleventh CATS 2005,
Computing: The Australasian Theory Symposium, Newcastle, NSW,
Australia, January/February 2005. 2005, pages 119–126. [see page 54]

[PT19] Patrick Prosser and James Trimble. Peaty: an Exact Solver for the
Vertex Cover Problem. May 2019. doi: 10.5281/zenodo.3082356.

[see page 21]

[Put+15] Deepak Puthal, Surya Nepal, Cécile Paris, Rajiv Ranjan, and Jinjun
Chen. “Efficient Algorithms for Social Network Coverage and Reach”.
In: IEEE International Congress on Big Data. 2015, pages 467–474.
doi: 10.1109/BigDataCongress.2015.75. [see page 9]

[PvdG21] Rick Plachetta and Alexander van der Grinten. “SAT-And-Reduce
for Vertex Cover: Accelerating Branch-And-Reduce by SAT Solving”.
In: 2021 Proceedings of the Workshop on Algorithm Engineering and
Experiments (ALENEX). SIAM. 2021, pages 169–180. [see page 28]

[RA15] Ryan A Rossi and Nesreen K Ahmed. “The Network Data Repository
with Interactive Graph Analytics and Visualization”. In: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA. 2015, pages 4292–4293. url: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553/

9856. [see pages 1, 38, 39, 63, 66]

[RR21] Payas Rajan and Chinya V. Ravishankar. “Tiering in Contraction
and Edge Hierarchies for Stochastic Route Planning”. In: 29th Inter-
national Conference on Advances in Geographic Information Systems
(SIGSPATIAL). 2021, pages 616–625. doi: 10.1145/3474717.3484267.

[see page 83]

[RRW10] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. “Solving Max-
Cut to Optimality by Intersecting Semidefinite and Polyhedral Relax-
ations”. In: Mathematical Programming 121.2 (2010), page 307. doi:
10.1007/s10107-008-0235-8. [see pages 52, 62]

[RS60] I. S. Reed and G. Solomon. “Polynomial Codes Over Certain Finite
Fields”. In: Journal of the Society for Industrial and Applied Mathe-
matics 8.2 (June 1960), pages 300–304: Society for Industrial & Applied
Mathematics (SIAM). doi: 10.1137/0108018. [see page 115]

[San+08] Pedro V. Sander, Diego Nehab, Eden Chlamtac, and Hugues Hoppe.
“Efficient Traversal of Mesh Edges Using Adjacency Primitives”. In:
ACM Transactions on Graphics 27.5 (2008), page 144. doi: 10.1145/
1409060.1409097. [see page 9]

152

https://doi.org/10.1109/71.730527
https://doi.org/10.5281/zenodo.3082356
https://doi.org/10.1109/BigDataCongress.2015.75
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553/9856
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553/9856
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9553/9856
https://doi.org/10.1145/3474717.3484267
https://doi.org/10.1007/s10107-008-0235-8
https://doi.org/10.1137/0108018
https://doi.org/10.1145/1409060.1409097
https://doi.org/10.1145/1409060.1409097

Bibliography

[San20] Peter Sanders. “Connecting MapReduce Computations to Realistic
Machine Models”. In: 2020 IEEE International Conference on Big
Data (Big Data). IEEE. 2020, pages 84–93. [see pages 92, 95, 96, 107]

[Sch13] Sebastian Schlag. “Distributed Duplicate Removal”. Master’s thesis.
Karlsruhe Institute of Technology, 2013. [see pages 105, 107]

[Sch20] Christian Schorr. “Improved Branching Strategies for Maximum In-
dependent Sets”. Bachelor’s thesis. Karlsruhe Institute of Technology,
2020. [see page 133]

[SDM10] John Shalf, Sudip S. Dosanjh, and John Morrison. “Exascale Com-
puting Technology Challenges”. In: High Performance Computing for
Computational Science - VECPAR 2010 - 9th International conference,
Berkeley, CA, USA, June 22-25, 2010, Revised Selected Papers. 2010,
pages 1–25. doi: 10.1007/978-3-642-19328-6_1. [see pages 1, 87]

[Seg+13] Pablo San Segundo, Fernando Mat́ıa, Diego Rodŕıguez-Losada, and
Miguel Hernando. “An Improved Bit Parallel Exact Maximum Clique
Algorithm”. English. In: Optimization Letters 7.3 (2013), pages 467–479:
Springer-Verlag. doi: 10.1007/s11590-011-0431-y. [see page 11]

[Sha+19] Faisal Shahzad, Jonas Thies, Moritz Kreutzer, Thomas Zeiser,
Georg Hager, and Gerhard Wellein. “CRAFT: A Library for Easier
Application-Level Checkpoint/restart and Automatic Fault Tolerance”.
In: IEEE Transactions on Parallel and Distributed Systems 30.3 (2019),
pages 501–514. doi: 10.1109/TPDS.2018.2866794. [see pages 109–111]

[Shv+10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. “The Hadoop Distributed File System”. In: 2010 IEEE
26th symposium on mass storage systems and technologies (MSST).
Ieee. 2010, pages 1–10. [see pages 92, 111]

[SLP16] Pablo San Segundo, Alvaro Lopez, and Panos M. Pardalos. “A New Ex-
act Maximum Clique Algorithm for Large and Massive Sparse Graphs”.
In: Computers & Operations Research 66 (2016), pages 81–94. doi:
10.1016/j.cor.2015.07.013. [see page 12]

[Sni+14] Marc Snir, Robert W. Wisniewski, Jacob A. Abraham, Sarita V. Adve,
Saurabh Bagchi, Pavan Balaji, James F. Belak, Pradip Bose, Franck
Cappello, Bill Carlson, Andrew A. Chien, Paul Coteus, Nathan De-
Bardeleben, Pedro C. Diniz, Christian Engelmann, Mattan Erez, Saverio
Fazzari, Al Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoor-
thy, Sven Leyffer, Dean Liberty, Subhasish Mitra, Todd S. Munson,
Rob Schreiber, Jon Stearley, and Eric Van Hensbergen. “Addressing
Failures in Exascale Computing”. In: International Journal of High
Performance Computing Applications 28.2 (2014), pages 129–173. doi:
10.1177/1094342014522573. [see pages 1, 87]

153

https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/s11590-011-0431-y
https://doi.org/10.1109/TPDS.2018.2866794
https://doi.org/10.1016/j.cor.2015.07.013
https://doi.org/10.1177/1094342014522573

Bibliography

[SRJ11] Pablo San Segundo, Diego Rodŕıguez-Losada, and Agust́ın Jiménez.
“An Exact Bit-Parallel Algorithm for the Maximum Clique Problem”.
In: Computers & Operations Research and their Application to Problems
of World Concern 38.2 (2011), pages 571–581. doi: 10.1016/j.cor.
2010.07.019. [see page 11]

[SS05] Peter Sanders and Dominik Schultes. “Highway Hierarchies Hasten
Exact Shortest Path Queries”. In: 13th Annual European Symposium
on Algorithms (ESA). Springer. 2005, pages 568–579. [see pages 70, 80]

[SS07] Dominik Schultes and Peter Sanders. “Dynamic Highway-Node Rout-
ing”. In: 6th Workshop on Experimental Algorithms (WEA). 2007,
pages 66–79. [see page 70]

[SS13] Peter Sanders and Christian Schulz. “Think Locally, Act Globally:
Highly Balanced Graph Partitioning”. In: Experimental Algorithms,
12th International Symposium, SEA 2013, Rome, Italy, June 5-7, 2013.
Proceedings. 2013, pages 164–175. [see page 38]

[SS16] Peter Sanders and Christian Schulz. “Scalable Generation of Scale-Free
Graphs”. In: Information Processing Letters 116.7 (2016), pages 489–
491. doi: 10.1016/j.ipl.2016.02.004. [see page 62]

[SS23] Peter Sanders and Matthias Schimek. “Engineering Massively Parallel
MST Algorithms”. In: CoRR abs/2302.12199 (2023). doi: 10.48550/
arXiv.2302.12199. arXiv: 2302.12199. [see pages 105, 107]

[ST02] Peter Sanders and Jesper Larsson Träff. “The Hierarchical Factor
Algorithm for All-To-All Communication (Research Note)”. In: Euro-
Par 2002, Parallel Processing, 8th International Euro-Par Conference
Paderborn, Germany, August 27-30, 2002, Proceedings. 2002, pages 799–
804. doi: 10.1007/3-540-45706-2_112. [see page 107]

[ST14] Pablo San Segundo and Cristóbal Tapia. “Relaxed Approximate Color-
ing in Exact Maximum Clique Search”. In: Computers & Operations
Research and their Application to Problems of World Concern 44 (2014),
pages 185–192. doi: 10.1016/j.cor.2013.10.018. [see page 29]

[Ste23] Steinbuch Centre for Computing. Horeka. online. [Online; accessed 10-
May-2023]. 2023. url: https://www.scc.kit.edu/dienste/horeka.
php. [see page 1]

[Str16] Darren Strash. “On the Power of Simple Reductions for the Maximum
Independent Set Problem”. In: Proc. 22nd International Computing
and Combinatorics Conference (COCOON 2016). Volume 9797. LNCS.
Springer, 2016, pages 345–356. doi: 10.1007/978-3-319-42634-1_28.

[see pages 12, 18]

154

https://doi.org/10.1016/j.cor.2010.07.019
https://doi.org/10.1016/j.cor.2010.07.019
https://doi.org/10.1016/j.ipl.2016.02.004
https://doi.org/10.48550/arXiv.2302.12199
https://doi.org/10.48550/arXiv.2302.12199
https://arxiv.org/abs/2302.12199
https://doi.org/10.1007/3-540-45706-2_112
https://doi.org/10.1016/j.cor.2013.10.018
https://www.scc.kit.edu/dienste/horeka.php
https://www.scc.kit.edu/dienste/horeka.php
https://doi.org/10.1007/978-3-319-42634-1_28

Bibliography

[SU23] Peter Sanders and Tim Niklas Uhl. “Engineering a Distributed-Memory
Triangle Counting Algorithm”. In: CoRR abs/2302.11443 (2023). doi:
10.48550/arXiv.2302.11443. arXiv: 2302.11443.

[see pages 105, 107]

[SWZ02] Frank Schulz, Dorothea Wagner, and Christos D. Zaroliagis. “Using
Multi-Level Graphs for Timetable Information”. In: 4th Workshop on
Algorithm Engineering and Experiments (ALENEX). 2002, pages 43–59.

[see page 70]

[SZ18] Sándor Szabó and Bogdán Zaválnij. “A Different Approach to Maximum
Clique Search”. In: 2018 20th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC). Sept.
2018, pages 310–316. doi: 10.1109/SYNASC.2018.00055. [see page 22]

[TH14] Keita Teranishi and Michael A. Heroux. “Toward Local Failure Local
Recovery Resilience Model Using MPI-ULFM”. In: 21st European MPI
Users’ Group Meeting, EuroMPI/ASIA ’14, Kyoto, Japan - September
09 - 12, 2014. 2014, page 51. doi: 10.1145/2642769.2642774.

[see page 110]

[Tom+10] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi,
and Mitsuo Wakatsuki. “A Simple and Faster Branch-And-Bound
Algorithm for Finding a Maximum Clique”. English. In: Algorithms
and Computation (WALCOM’10). Edited by Md. Saidur Rahman and
Satoshi Fujita. Volume 5942. LNCS. Springer Berlin Heidelberg, 2010,
pages 191–203. doi: 10.1007/978-3-642-11440-3_18. [see page 11]

[Tom+13] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, and Mitsuo Wakatsuki.
“A Simple and Faster Branch-And-Bound Algorithm for Finding a
Maximum Clique with Computational Experiments”. In: IEICE Trans-
actions on Information and Systems 96-D.6 (2013), pages 1286–1298.
doi: 10.1587/transinf.E96.D.1286. [see page 29]

[TT77] Robert Endre Tarjan and Anthony E. Trojanowski. “Finding a Maxi-
mum Independent Set”. In: SIAM Journal on Computing 6.3 (1977),
pages 537–546. doi: 10.1137/0206038. [see page 11]

[Uga+11] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow.
“The Anatomy of the Facebook Social Graph”. In: CoRR abs/1111.4503
(2011). arXiv: 1111.4503. [see pages 1, 7]

[Val90] Leslie G. Valiant. “A Bridging Model for Parallel Computation”. In:
Communications of the ACM 33.8 (1990), pages 103–111. doi: 10.
1145/79173.79181. [see page 92]

[VBB15] Anurag Verma, Austin Buchanan, and Sergiy Butenko. “Solving
the Maximum Clique and Vertex Coloring Problems on Very Large
Sparse Networks”. In: INFORMS Journal on Computing 27.1 (2015),
pages 164–177. doi: 10.1287/ijoc.2014.0618. [see page 12]

155

https://doi.org/10.48550/arXiv.2302.11443
https://arxiv.org/abs/2302.11443
https://doi.org/10.1109/SYNASC.2018.00055
https://doi.org/10.1145/2642769.2642774
https://doi.org/10.1007/978-3-642-11440-3_18
https://doi.org/10.1587/transinf.E96.D.1286
https://doi.org/10.1137/0206038
https://arxiv.org/abs/1111.4503
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/79173.79181
https://doi.org/10.1287/ijoc.2014.0618

Bibliography

[VM97] M. Vijay and R. Mittal. “Algorithm-Based Fault Tolerance: A Review”.
In: Microprocess. Microsystems 21.3 (1997), pages 151–161. doi: 10.
1016/S0141-9331(97)00029-X. [see page 110]

[VT93] Nguyen Van Ngoc and Zsolt Tuza. “Linear-Time Approximation Al-
gorithms for the Max Cut Problem”. In: Combinatorics, Probability
Comput. 2.2 (1993), pages 201–210: Cambridge University Press. doi:
10.1017/S0963548300000596. [see page 54]

[Wan+13] Yang Wang, Zhipeng Lü, Fred Glover, and Jin-Kao Hao. “Probabilistic
GRASP-Tabu Search Algorithms for the UBQP Problem”. In: Com-
puters & Operations Research 40.12 (2013), pages 3100–3107. doi:
10.1016/j.cor.2011.12.006. [see page 52]

[WH15] Qinghua Wu and Jin-Kao Hao. “A Review on Algorithms for Maximum
Clique Problems”. In: European Journal of Operational Research 242.3
(2015), pages 693–709. doi: 10.1016/j.ejor.2014.09.064.

[see page 12]

[Wie18] Angelika Wiegele. BiqMac Library. [Online; accessed 2-September-2018].
2018. url: http://biqmac.aau.at/biqmaclib.html. [see page 63]

[XGA13] Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. “Scalable Maximum
Clique Computation Using MapReduce”. In: Proc. IEEE 29th Interna-
tional Conference on Data Engineering (ICDE’13). Apr. 2013, pages 74–
85. doi: 10.1109/ICDE.2013.6544815. [see page 12]

[Xin+13] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion
Stoica. “Graphx: A Resilient Distributed Graph System on Spark”. In:
First International Workshop on Graph Data Management Experiences
and Systems, GRADES 2013, co-located with SIGMOD/PODS 2013,
New York, NY, USA, June 24, 2013. 2013, page 2. doi: 10.1145/
2484425.2484427. [see page 3]

[XN13] Mingyu Xiao and Hiroshi Nagamochi. “Confining Sets and Avoiding
Bottleneck Cases: A Simple Maximum Independent Set Algorithm
in Degree-3 Graphs”. In: Theoretical Computer Science 469 (2013),
pages 92–104. doi: 10.1016/j.tcs.2012.09.022.

[see pages 11, 14, 17, 33–36]

[XN17] Mingyu Xiao and Hiroshi Nagamochi. “Exact Algorithms for Maxi-
mum Independent Set”. In: Information and Computation 255 (2017),
pages 126–146. doi: 10.1016/j.ic.2017.06.001. [see pages 9, 11, 28]

[Zah+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. “Resilient Distributed Datasets: A Fault-Tolerant Abstrac-
tion for In-Memory Cluster Computing”. In: Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2012, San Jose, CA, USA, April 25-27, 2012. 2012, pages 15–28.

156

https://doi.org/10.1016/S0141-9331(97)00029-X
https://doi.org/10.1016/S0141-9331(97)00029-X
https://doi.org/10.1017/S0963548300000596
https://doi.org/10.1016/j.cor.2011.12.006
https://doi.org/10.1016/j.ejor.2014.09.064
http://biqmac.aau.at/biqmaclib.html
https://doi.org/10.1109/ICDE.2013.6544815
https://doi.org/10.1145/2484425.2484427
https://doi.org/10.1145/2484425.2484427
https://doi.org/10.1016/j.tcs.2012.09.022
https://doi.org/10.1016/j.ic.2017.06.001

Bibliography

url: https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/zaharia. [see pages 3, 91, 92, 111]

[Zav19] Bogdan Zavalnij. Zbogdan/pace-2019 A. May 2019. doi: 10.5281/
zenodo.3228802. [see page 21]

157

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://doi.org/10.5281/zenodo.3228802
https://doi.org/10.5281/zenodo.3228802

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	1 Introduction and Overview
	1.1 Contributions

	I Hierarchical Graph Algorithms
	2 Introduction
	2.1 Preliminaries

	3 Maximum Independent Sets
	3.1 Introduction
	3.2 Preliminaries
	3.3 Related Work
	3.3.1 Reduction Rules

	3.4 WeGotYouCovered: The Winning PACE 2019 Solver
	3.4.1 Introduction
	3.4.2 Techniques
	3.4.3 Putting it all Together
	3.4.4 Experimental Results
	3.4.5 Conclusion

	3.5 Targeted Branching
	3.5.1 Introduction
	3.5.2 Related Work
	3.5.3 Decomposition Branching
	3.5.4 Reduction Branching
	3.5.5 Experimental Evaluation
	3.5.6 Conclusion and Future Work
	3.5.7 Detailed Experimental Results

	4 Maximum Cuts
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Related Work

	4.3 New Data Reduction Rules
	4.4 Implementation
	4.4.1 Kernelization Framework
	4.4.2 Timestamping

	4.5 Experimental Evaluation
	4.5.1 Methodology and Setup
	4.5.2 Performance of Individual Rules
	4.5.3 Exactly Computing a Maximum Cut
	4.5.4 Analysis on Large Instances

	4.6 Conclusions

	5 Route Planning in Road Networks
	5.1 Introduction
	5.2 Preliminaries
	5.3 More Related Work
	5.4 Edge Hierarchies
	5.4.1 Shortcut Selection
	5.4.2 Edge Selection
	5.4.3 Stalling

	5.5 Experimental Evaluation
	5.5.1 Data Sets
	5.5.2 Choosing the Right Stalling Technique
	5.5.3 Main Results

	5.6 Future Work

	II Data Recovery for Fault-Tolerant MPI Applications
	6 Introduction
	6.1 Preliminaries
	6.2 Experimental Environment
	6.3 Acknowledgements

	7 Fault Tolerance for Distributed Processing Frameworks
	7.1 Introduction
	7.2 Related Work
	7.2.1 Thrill

	7.3 A Simple Version for MapReduce
	7.3.1 Analysis

	7.4 The General Framework
	7.4.1 Details on Operations

	7.5 Supporting Multiple Failures
	7.5.1 Supporting Failure of Predefined Sets of PEs
	7.5.2 Supporting Multiple Single-PE Failures

	7.6 Experiments
	7.6.1 Experimental Setup
	7.6.2 Experimental Results

	7.7 Conclusion and Future Work

	8 Fast General Purpose Data Recovery
	8.1 Introduction
	8.2 Related Work
	8.2.1 Reproducibility Study

	8.3 In-Memory Replica for Fast Recovery
	8.3.1 General Framework
	8.3.2 Breaking Up Access Patterns for Faster Recovery
	8.3.3 Memory Usage
	8.3.4 Probability of Irrecoverable Data Loss.
	8.3.5 Recovering Lost Replicas After a Node Failure

	8.4 Implementation
	8.5 Experimental Evaluation
	8.5.1 Environment and Experimental Setup
	8.5.2 Isolated Evaluation
	8.5.3 Applications
	8.5.4 Comparison with Other Approaches

	8.6 Conclusion and Future Work

	Appendix
	Publications and Supervised Theses
	Bibliography

