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Abstract
This paper presents a perspective on Biosignal-Adaptive Systems (BAS) which automatically adapt to user needs by con-
tinuously interpreting their biosignals and by providing transparent feedback, thereby keeping the user in the loop. The 
major hallmark of the described BAS is the low latency with which biosignals are processed, interpreted, and applied to 
perform rapid system adaptation, providing the user in the loop with immediate feedback on the BAS’s understanding 
of his or her condition. In contrast to explicit user input or the interpretation of observable behavior, the rapid system 
adaptation relies on biosignals, which in context of a concrete application can be interpreted as implicit signals of user 
needs. Recently, great advances have been made in sensor integration into smart devices, making it possible to collect 
vasts amounts of multimodal biosignal data. Furthermore, powerful machine learning methods enable rapidly processing 
and learning from such data. We argue that the time has come to harness the full spectrum of low-latency processing of 
biosignals to understand user needs and to apply this information to deliver adaptive systems accordingly. However, this 
will just be the beginning: real-time signal processing in combination with ubiquitous devices that are always connected 
to huge processing and storage capacities allow systems to provide users (and bystanders) with instant and transparent 
feedback and adaptations for the recognized needs. In the future, such systems could run 24/7 to assist users @home, 
@work, and @play from the cradle to the grave. Thus, BAS must be human-centric to curate data, archive information, 
learn from experience, and adapt to individual users throughout their lifespan. In this position paper, we present the 
concept of BAS with its key building blocks, provide selected examples of BAS from our research, and articulate selected 
challenges for future research.

Article Highlights

•	 Biosignals are generated by the human body without 
any intervention duringphysical, mental and social 
activities

•	 BAS automatically adapt to user needs by continuously 
interpreting theirbiosignals in real-time

•	 Examples of BAS are presented that have demonstrated 
in field experimentsto improve engagement, attention 
awareness, and attention management
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Abbreviations
AI	� Artifical intelligence
BAS	� Biosignal-adapted system
EAD	� Ethical aligned design
ECG	� Electrocorticography
EDA	� Electrodermal activity
EEG	� Electroencephalography
EMG	� Electromyography
EOG	� Electrooculography
ESM	� Experience sampling method
HCI	� Human-computer interaction
IT	� Information technologies
ML	� Machine learning
VAF	� Visual attention feedback.

1  Introduction

Human behavior includes physical, mental, and social 
actions that emit a wide range of biosignals which can 
be captured by a variety of sensors. The processing and 
interpretation of such biosignals provides an inside per-
spective on human physical and mental activities, com-
plementing traditional approaches of observing human 
behavior or collecting explicit input in form of subjective 
data (e.g. through surveys). Biosignals represent a promis-
ing approach to better understand user needs, apply this 
information for rapid system adaptation, and provide users 
with instant and transparent feedback on the system’s 
understanding of their needs. As great strides have been 
made in integrating sensor technologies into ubiquitous 
devices and in machine learning methods for processing 
and learning from data, we argue that the time has come 
to harness the full spectrum of biosignals to understand 
user needs and to adapt systems accordingly.

Adaptive systems are studied in many research com-
munities. Many adaptive systems rely on data collected 
through observing human behavior or through explicit 
human input commands via human–machine interfaces. 
For example, navigation systems are based on GPS sensor 
data enabling location synchronization, or recommender 
systems leverage information about buying behavior 
and common interests of their users. These systems have 
advanced significantly, but they are all based on the avail-
ability of their users’ explicit input or their observable 
behavior. Complementary to this, biosignals offer the 
potential to adapt systems to the user’s biosignals, which 
in the context of a concrete application can be interpreted 
as implicit signals of the user needs. Thus, system adap-
tation to user needs can be performed even if the user 
does not provide explicit input or transmits observable 
behavioral data.

This position paper introduces Biosignal-Adaptive Sys-
tems (BAS) which continuously record biosignals of users to 
learn their current needs, and adapt system components, 
models, and system output to it with the goal to improve 
performance during the interaction with the user. The 
paper first describes a taxonomy of biosignals suitable to 
identify user needs, introduces a key conceptualization of 
BAS, and finally illustrates examples of BAS ranging from 
biosignal-adaptive interaction systems that improve assis-
tance by identifying mental states such as attention and 
engagement to biosignal-adaptive enterprise systems that 
target increasing human worker productivity and well-
being. Finally, we articulate future research challenges for 
the successful deployment of BAS to business and society.

2 � Key concepts

2.1 � Biosignals

Biosignals are autonomous signals produced by the living 
organism, energetically measurable in physical quantities 
using sensors [1]. Biosignals are based on chemical and 
physical actions of the human body and serve to control, 
regulate and transfer information in the human organ-
ism. Thereby enabling orderly interaction in the overall 
human system. Depending on their origin, biosignals are 
measured in different quantities, i.e. in the form of electri-
cal quantities (potential, current, resistance), mechanical 
quantities (force, pressure, movement), acoustic quanti-
ties (speech, non-verbal articulations and body noises), 
thermal quantities (temperature, amount of heat), and 
chemical quantities (concentration, pH). Figure 1 depicts 
our biosignals taxonomy. It indicates that a biosignal is 
the result of a human activity captured by a particular 
sensor. Human behavior may encompass several activi-
ties, e.g. attention could show from brain activity, eye gaze 
and facial expression. In such a case, several sensors are 
applied to simultaneously capture multiple human activi-
ties. We refer to the result as multimodal biosignals.

Today, the daily life of many people is interwoven with 
the use of digital devices. Modern devices are already well 
equipped with a large variety of sensors, many of them are 
always on and always connected to the internet. Modern 
smartphones for example, hold (1) multiple microphones 
to capture acoustic biosignals in form of speech and non-
verbal articulation (laughing, breathing, snoring) from 
the user and bystanders; (2) multiple cameras to capture 
optical biosignals, such as the user’s face, facial expres-
sions, and eye gaze; (3) inertial sensors to measure kin-
ematic biosignals, such as acceleration and angular veloc-
ity of motion in 3D; (4) infrared sensors to measure body 
heat and to control other devices; and (5) laser sensors 



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:234  | https://doi.org/10.1007/s42452-023-05412-w	 Research Article

to measure distance, just to name a few. Furthermore, 
body-attached electrodes are used to measure electrical 
biosignals, some are known from medical examinations. 
Common examples of electrical biosignals are heart activ-
ity measured by electrocorticography (ECG), muscle activ-
ity recorded by electromyography (EMG), brain activity 
captured by electroencephalography (EEG), eye activity 
measured by electrooculography (EOG) and skin conduct-
ance measured by electrodermal activity (EDA). As a result 
of the widely integrated and available sensors, most BAS 
focus on acoustic, kinetic, optical, and electrical biosignals, 
while thermal and chemical biosignals are yet to be fully 
explored. Body temperature has been successfully used at 
airports since the SARS outbreak 2003 for fever screening 
and detection systems based on infrared cameras (optical 
biosignal) [2], but the differentiated adaptation of systems 
to thermal biosignals is less promising. Major reasons are 
that body temperature is subject to fluctuations due to 
changing environmental conditions and physical activity, 
and that the body temperature range offers little differen-
tiation potential for BAS.

In addition to already deployed sensors that accom-
pany and surround us in everyday life, a new generation 
of sensors is in the starting block that can be woven into 
clothing, printed on the skin, injected under the skin or 
implanted in the body.

Chemical biosignals are typically measured by taking 
blood samples, which prohibits their continuous appli-
cation in adaptive systems. However, lately non-invasive 
sensors are proposed, such as a glucose sensors which 
determine the blood sugar level based on the glucose 
concentration in the sweat at the surface of the skin [3]. 
Wearable sensor systems became available that allow for 
non-invasive 24/7 measurement, which is extremely useful 

for the growing number of diabetes mellitus patients. 
Once these sensors get connected to an insulin pump, it 
becomes a BAS based on chemical biosignals. Applications 
reach far beyond medical purposes, for example, lifestyle 
apps are possible that offer their users guidance in food 
choice decisions depending on their blood sugar level. 
Other chemical quantities like pH are also conceivable as 
soon as non-invasive sensors become available.

This new level of sensor integration holds both enor-
mous potential for BAS but also challenges and risks with 
regard to privacy, data protection, transparency, and user 
empowerment. These issues will be discussed in the final 
section of this paper.

2.2 � Adaptive systems

In biology, adaptation is described as the process of 
change by which an organism or species becomes better 
suited to its environment. The ability to adapt is crucial for 
the survival of living beings. The concept of adaptation has 
also been transferred and successfully applied to informa-
tion technologies (IT). The design of adaptive systems is 
investigated in many different research communities in 
computer science, e.g. for hypertext/hypermedia systems 
[4], for speech communication systems to adapt to speak-
ers [5], domains [6], and languages [7], human-computer 
interaction (HCI) [8–10], robotics [11], ubiquitous comput-
ing [12], software engineering [13, 14], systems for clini-
cal support [15], for nursing care [16], and for everyday 
assistance at home [17], to name a few. In particular, the 
field of artificial intelligence (AI) has coined the notion of 
intelligent agents that perceive their environment through 
sensors and act upon that environment through actuators 
[18]. Intelligent agents are characterized by the ability to 

Fig. 1   Taxonomy of Biosignals resulting from Human Activities captured by Sensors (see [1])
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learn and act autonomously. Thus, we argue that an intel-
ligent agent represents one form of an adaptive system. 
In the past, intelligent agents were mainly based on pre-
defined prior knowledge (e.g. in the form of lookup tables 
or condition-action rules). With the availability of grow-
ing amounts of contextual data and recent advances in 
machine learning, it has become possible to design intelli-
gent agents that are able to gain experience over time and 
extend prior knowledge based on collecting and process-
ing context information perceived through sensors. Today, 
contemporary adaptive system leverage context to auto-
matically perform system-driven adaptations with varying 
degrees of intelligence. They range from the simple appli-
cation of predefined knowledge (e.g. in the form of rules) 
to the ability to learn continuously in order to expand the 
predefined knowledge. Context in that sense is any infor-
mation that can be used to characterize the situation of 
an entity, where an entity can be a person, place, or object 
that is considered relevant to the interaction between a 
user and an adaptive system [19]. As mentioned above, 
biosignals capture user context by providing an inside per-
spective on human physical, mental, and social activities.

2.3 � Building blocks of biosignal‑adaptive systems

Biosignal-adaptive systems (BAS) are able to react to 
changing user needs in varying tasks and environments. 
Conceptually, BAS build on control theory [20]. User needs 
and changes thereof are predicted by continuously meas-
uring, processing, and interpreting the biosignals emitted 
by the user. The predicted result is provided to the techni-
cal system, which is equipped with the ability to adapt its 
behavior to the user needs, for example through audible 
or visual output to the graphical user interface, or through 
changes in reaction time or through changes in solution 
strategies. Similar models have been proposed in the field 
of self-adaptive software, e.g. the MAPE-K model [14], the 
observer and controller model [21], or the sense-plan-act 
model [13].

In contrast to these models, our proposed BAS concep-
tualization combines several features in an innovative way, 
which discriminates it from existing solutions: Firstly, our 
BAS closes the human–machine interaction loop by giving 
the user continuous and timely feedback about its interpre-
tation of the user needs based on instant processing of 
multimodal biosignals. According to our concept of trans-
parent BAS, the user receives this feedback in the form of 
the interpreted needs, the system adjustments made and 
the resulting biosignal response. Thereby secondly, BAS 
focus on the human as the system under control and obser-
vation, where biosignals are transformed into a control 
input for providing real-time adaptation following a con-
tinuous loop approach. This way the user who implicitly 

produces these biosignals can change the behaviour and 
outcome of the technical system without explicit com-
mand and control. Thirdly, since BAS performs in real-time 
without perceivable latency between the biosignals input 
and the system’s feedback, the user and the technical 
system form something like an oscillating circuit: not only 
does the system adapt to the user, but the user also tunes 
to the system by moderating their biosignals. This opens 
avenues for radically new methods and applications of co-
adapting interfaces. First examples come from the field of 
biosignal-based spoken communication [22], in which we 
use speech-related biosignals beyond acoustics, stemming 
from articulatory muscle activity, neural pathways, and the 
brain itself, to convert them directly into audible speech 
that is played to users with low latency, such that they can 
listen to themselves thinking [23].

Building on existing work in the fields of physiological 
computing with the concept of the biocybernetic loop [24] 
and human-computer interaction [9, 10] we argue that 
such a BAS should consist of four interconnected build-
ing blocks as depicted in Fig. 2.

The BAS-process gets initiated (see Fig. 2 clockwise at 
block labeled Human), when a user engages in physical, 
mental or social activities with or through a technical sys-
tem. Consequently, s/he emits multi-dimensional biosig-
nals, which are measured by a sensor-equipped Biosig‑
nals Recording device. In case multimodal biosignals are 
captured, the signals will have to be time-synchronized 
between devices prior to signal transmission. The subse-
quent Processing and Classification component pro-
cesses the received signal by performing artifact removal, 
normalization, and extracting features relevant for the 
classification or recognition task. If multimodal biosignals 
were measured, fusion strategies are applied to best com-
plement information. We refer to classification if a single 
sample is classified into one-out-of-n classes, while recog-
nition finds the most likely class label sequence for time 
series signals. Here, the system interprets for example user 
traits (e.g. identity, age, personality) and user states (e.g. 
emotion, engagement, attention, work load). The result 
is transmitted continuously to the Adaptation compo-
nent which decides if the technical system should adapt 
at the given moment in time. If so, the adaptation process 
is performed according to the implemented adaptation 
strategy. Such a strategy could consist of a simple set of if-
then-else rules or any complex behavior modeling. Adap-
tation can either be done only once or after batches of 
signals, or continuously to adapt dynamically to changes. 
Furthermore, adaptation might apply supervised learning 
strategies which require some grounding by supervision 
or interaction with users. Alternatively, an unsupervised 
learning mode is applied, for which the predicted class 
labels are treated as ground truth. The resulting adapted 
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technical system provides an output via the graphical 
user interface to the user, who reacts by generating new 
biosignals, thereby closing the human-system interaction 
loop. Since the biosignal generation is an implicit process, 
the user influences the system behavior without having to 
perform explicit directed actions or system inputs.

3 � Examples of biosignal‑adaptive systems

We present several examples of BAS to illustrate which 
biosignals are useful for adapting systems to user needs. 
The examples showcase which biosignals are captured, 
processed and interpreted and how the system com-
ponents and thus the system behavior is adapted and 
feedback is given to the user in real-time. The first class 
of systems concerns Biosignal-Adaptive Interaction Systems 
for Assistance and Activation. One application describes 
SmartHelm, an attention-sensitive smart helmet for driver 
assistance. The other application features I-CARE, an acti-
vation system for people with dementia that selects activa-
tion content based on the engagement of its users. The 
second class of systems demonstrates the potential in the 
context of designing adaptive workplaces under consid-
eration of productivity and well-being of human workers. 
Biosignal-Adaptive enterprise systems process biosignals of 
human workers and adapt the workplace accordingly. Two 
applications of such systems focusing on the user states 
of attention and flow demonstrate the potentials of pro-
cessing biosignals and provide corresponding workplace 
adaptations in real-time.

3.1 � Biosignal‑adaptive interaction systems 
for assistance and activation

Two applications, one for user assistance (SmartHelm) and 
one for user activation (I-CARE) are presented which meas-
ure multiple modalities (e.g. speech, facial expressions, 
eye gaze, brain activity) and fuse the resulting biosignals 
to reliably discriminate user states such as attention, dis-
traction, work load, stress, and engagement. The proto-
typical systems feature low-latency signal processing and 
fast machine learning methods to provide immediate 
feedback and adapted system response to its users. The 
applications were evaluated and validated in field studies.

3.1.1 � Attention‑aware driver assistance: smartHelm

SmartHelm1 is an attention-sensitive smart helmet that 
integrates none-invasive brain and eye activity detec-
tion with hands-free augmented reality components in 
a speech-enabled outdoor assistance system [26]. It is 
designed for cargo bikers, who are closing the last mile 
in city logistics by delivering goods from a transportation 
hub to the final destination. Since cargo bikers typically 
navigate busy city roads to deliver goods under time pres-
sure, their job requires full attention and constant adapta-
tion to a wide variety of situations and distractions. They 
can therefore use any technical support that keeps them 
on track, reduces their stress level, and increases their 
safety on the road.

Fig. 2   Building blocks of a 
Biosignal-Adaptive System 
(BAS), clockwise: Human user 
emits biosignals, that are cap-
tured by a Biosignal record‑
ing device equipped with 
sensors, then processed and 
classified into user states or 
traits, which feed the adapta‑
tion to tune the system behav-
ior to the user needs. Human 
user reacts to the adapted 
system by emitting biosignals, 
thereby closing the human-
system interaction loop

1  SmartHelm (https://​smart-​helm.​com/) is a collaborative project 
(Universities of Bremen and Oldenburg, city of Oldenburg, CitiPost, 
Rytle, TeamViewer, and Uvex) funded by the German Federal Min-
istry of Transport and Digital Infrastructure as part of the research 
initiative mFUND (19F2105F).

https://smart-helm.com/
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SmartHelm continuously tracks the activity of the eyes 
and brain of the bikers to interpret attention and distrac-
tion in the driving context. The interpreted user states are 
then applied to adapt eye- and hands-free assistance ser-
vices such as navigation, task planning and communica-
tion to the biker’s needs, e.g. relevant task information is 
presented in a context-sensitive and least disruptive man-
ner [26]. Figure 3 shows the helmet prototype (top right) 
and look-through (top left). The bottom panel displays 
derived information to the expert during development, i.e. 
center: annotations of objects in the path, bottom right: 
the EEG and eye-tracking biosignals of the biker, both used 
to train the AI system, bottom left: a heat-map with the 
biker’s GPS-trace along with the automatically identified 
attention level. The critical task of SmartHelm is to find the 
sweet spot to provide useful and timely assistance without 
overloading the cyclist.

3.1.2 � Engagement‑aware activation systems: I‑Care

I-CARE is a hand-held activation system that allows profes-
sional and informal caregivers to cognitively and socially 
activate people with dementia in joint activation sessions 
without special training or expertise. It is suitable for acti-
vation in ad-hoc group sessions (see left-hand side of 
Fig. 4) and in individual tandem sessions (see right-hand 
side of Fig. 4). I-CARE consists of an easy-to-use tablet 
application that presents activation content and a server-
based backend system that securely manages the con-
tents and events of activation sessions.

After requesting permission, I-CARE uses the micro-
phone and camera of the tablet to record acoustic and 
optical biosignals. It also stores keyboard interactions 
and integrates an E4 wristband to measure electrical 
biosignals, such as ECG and EDA. I-CARE uses these 

Fig. 3   Through the eyes of SmartHelm (top left and bottom panel), 
automatically annotated objects (colored bounding boxes), time-
synchronized brain activity and gaze tracking of the biker (bottom 
right), map with GPS position and biker’s attention profile (bottom 

left). Colors in the map indicate the current position (blue) and 
level of distractions while driving, i.e. no (green), medium (yellow), 
and high (red) level, see [25] for more details; © 2022 SmartHelm
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multimodal biosignals of explicit and implicit user inter-
action to estimate which content is successful in acti-
vating individual users. Over the course of use, I-CARE’s 
recommendation system learns about the individual 
needs and resources of its users and automatically per-
sonalizes the activation content. In particular, it identi-
fies the engagement of individual users to presenting 
them with content that they find interesting – thereby 
keeping users on track to increase activation time and 
intensity, which correlates with outcome. In addition, 
information about past sessions can be retrieved such 
that the activation items seamlessly build on previous 
sessions while eligible stakeholders are informed about 
the current state of care and daily form of their prote-
gees [27].

3.2 � Biosignal‑adaptive enterprise systems

Biosignal-adaptive enterprise systems define a class 
of information systems in organizations where adap-
tive digital workplaces for human workers are provided 
based on monitoring, analyzing, and responding to 
biosignals in real-time. In the following we present two 
biosignal-adaptive enterprise systems for the digital 
workplace with a specific focus on the two psychologi-
cal user states of i) attention and ii) flow. Specifically, in 
i) we capture eye gaze using eye-tracking technology to 
recognize visual attention of human workers when work-
ing with information dashboards for decision-making. 
In ii) we monitor heart activity with surface electrodes 
to capture electrical biosignals (specifically ECG signals) 
and on this basis recognize flow states. Building on the 
discovered flow states, we provide flow-adaptive notifi-
cations at the digital workplace for human workers.

3.2.1 � Attentive information dashboards

Information dashboards are a critical capability in con-
temporary business intelligence and analytics systems 
supporting decision-making in organizations. Despite 
their strong potential to support better decision-making, 
the massive amount of information they provide chal-
lenges users performing data exploration tasks.

Accordingly, information dashboard users face diffi-
culties in managing their limited attentional resources 
when processing the presented information on dash-
boards. Attentive information dashboards leverage eye-
tracking in real-time and provide individualized visual 
attention feedback (VAF) to human workers. Specifically, 
we measure fixation duration and the number of fixa-
tions on predefined areas of interest of the dashboard. 
The underlying idea is that providing quantified informa-
tion about human worker’s visual attention will improve 
attentional resource allocation as well as resource man-
agement of human workers.

Figure 5 depicts the basic idea of attentive informa-
tion dashboards at the workplace. Specifically, we use 
the Tobii EyeTracker 4C to collect eye gaze and present 
attention feedback as an overlay to the information 
dashboard. Our research has demonstrated the positive 
effects of attentive information dashboards on user’s 
attentional resource allocation and resource manage-
ment [28]. Attention-aware adaptive systems at the 
workplace are not only relevant for processing huge 
amounts of information on information dashboards. In 
a related research project, we have shown their poten-
tial for improving attention management in virtual team 
meetings [29].

Fig. 4   I-CARE: Ad-hoc Activation group (left) and individual Tandem session (right) (Source: © AWO Karlsruhe gGmbH, see also [27])
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3.2.2 � Flow‑adaptive notification management systems

Flow refers to the holistic sensation that people feel when 
they act with total involvement. Promoting flow in the 
context of work is desirable, because it leads to increased 
workers’ well-being and performance [30].

However, with the increasing number of interruptions 
at the workplace, it is becoming more difficult to achieve 
the desirable flow state. Therefore, as part of the research 
project Kern funded by the German Ministry of Work and 
Social Affairs (BMAS)2 we first targeted to discover flow 

states automatically in real-time using biosignals and 
supervised machine learning. Subsequently, we designed 
different form of adaptations which should intelligently 
protect human workers from notifications when being in 
flow states.

Figure 6 depicts the workplace as well as two partic-
ipants of the field study carried out as part of the Kern 
project. We designed and deployed a flow-adaptive noti-
fication management system using the Polar H10 device 

Fig. 5   Attentive Information Dashboards: On the basis of an eye-tracking device, we collect and analyze visual attention during information 
processing and provide feedback

Fig. 6   Flow-Adaptive Notification Management: We developed and 
deployed this system as part of field study at Workwise GmbH in 
Karlsruhe. Over a periode of 2 weeks the participants shared biosig-

nals based on the Polar H10 device. This data was processed in real-
time to classify flow states and adaptation the notification manage-
ment of the collaboration tool Slack accordingly

2  Kern - AI-based Competence Assistants (https://​kern-​kas.​org/) 
is a collaborative research project (Karlsruhe Institute of Technol- ogy, SAP SE, Workwise GmbH, TÜV Rheinland B. Braun Melsungen 

GmbH)

Footnote 2 (continued)

https://kern-kas.org/


Vol.:(0123456789)

SN Applied Sciences           (2023) 5:234  | https://doi.org/10.1007/s42452-023-05412-w	 Research Article

for collecting ECG signals as depicted on the right bottom 
of Fig. 6. The device was connected via Bluetooth to the 
corresponding computer. We provided a notification man-
agement plugin to the operating system that allowed par-
ticipants to manually activate/deactivate the connection. 
Specifically, we leverage cardiac features collected in the 
form of ECG signals to train a flow state classifier [31]. We 
train this classifier using labeled data collected through 
an experience sampling method (ESM) procedure in a 
first step. In a second step, the flow-adaptive notification 
system leverages this classifier. Specifically, we implement 
the flow-adaptive notification system as a plugin for the 
collaboration tool Slack. More detailed information about 
the study and the evaluation results are provided in [32].

4 � Future research challenges

In this position paper we have introduced the concept of 
BAS and its major building blocks. Furthermore, we have 
described several BAS applications from our own research. 
In the following, we describe the lessons learned from 
implementing BAS in terms of recording and annotating 
data, from using it to model human activities for the pur-
pose of both analysis and synthesis, and from adapting 
and evaluating systems, taking into account the work of 
others. Subsequently, we articulate two major challenges 
for the successful delivery of BAS to business and society.

4.1 � Implementation challenges

The implementation of BAS comes with numerous chal-
lenges. In the following we focus on four major areas that 
we were also confronted with: (1) data collection and 
annotation, (2) models of BAS-relevant human activities, 
(3) BAS design space for adaptation strategies, and (4) BAS 
evaluation.

First, even as sensors quickly improve, collecting 
high-quality sensor data in the field remains a major 
challenge. Typical challenges are (i) ethical considera-
tions, which we have dedicated a separate subsection 
to (see 4.3 below), (ii) artifacts ranging from technical 
(e.g. sensors, connectors, network communication) and 
environmental (e.g. signal interference, ambient noise) 
to biological (e.g. sweat, eye-blinks) factors, which result 
in noisy data [33], (iii) the need of sensor calibration (e.g. 
eye trackers), and (iv) the need of baseline data (e.g. 
data for resting state in ECG, and for data normaliza-
tion). Furthermore, annotations of recorded data are an 
integral part of machine learning and AI applications. 
Data annotation is one of the most time-consuming 
and labor intensive part, it requires talented and moti-
vated annotators, clear annotation guidelines including 

semantic methodologies, ontologies, and - particularly 
for synchronous recordings of multimodal biosignals, 
it relies on suitable reliable tools [34]. If self-reported 
data for example about cognitive user states needs to 
be collected, e.g., by using the experience sampling 
method [35], the corresponding BAS studies become 
very lengthy and exhausting for the participants.

Second, the development of BAS-relevant human 
activity models encompass a range of intricate tasks, 
such as the extraction and selection of good features [36], 
the choice of appropriate ML [37] or Deep Learning [38] 
approaches together with the definition of suitable error 
functions, strategies for parameter optimization, and 
proper evaluation metrics, just to name a few. Develop-
ment of models also includes considerations of (i) robust-
ness and generalizability with respect to data variability 
within and across users, tasks, and context [39], (ii) trans-
ferability and scalability of models, i.e. a model can han-
dle unseen user states and traits even when only few or 
zero data samples are available [40] and a model can cope 
with any amount of data in a cost-effective way, and (iii) 
accountability and bias-awareness [41].

Third, we were challenged by making informed deci-
sions regarding the BAS design space for adaptation strat-
egies. Existing literature has shown that the design space 
for adaptive systems is huge [42]. With regards to possible 
adaptations it ranges from the modification of content, 
the interaction, the task scheduling and allocation. Fur-
thermore, different types of triggers, e.g. spatio-temporal, 
environment, task, human or system states should be con-
sidered. It is impossible to systematically “test” all possible 
design configurations.

Fourth, evaluation of adaptive systems in general is 
known to be a non-trivial task. Therefore, existing litera-
ture has proposed a modular approach [43] that includes 
technical performance as well as empirical evaluation 
building blocks. The specific characteristics of BAS as a 
specific class of adaptive systems make their evaluation 
even more challenging. For example, for implementing 
the flow-adaptive notification management system we 
first had to collect data, build a flow classifier and evaluate 
its technical performance. The flow-adaptive notification 
system made use of the classifier as a technical building 
block. From an evaluation point of view, we evaluated the 
entire system with real users in the field. It is challenging 
to clearly separate the dependencies between the percep-
tion of the quality of the flow classifier and the evaluation 
of the overall system from the user’s point of view. Further-
more, the effects of the BAS on its users heavily depend on 
the individuals and their context. For example, some users 
already proactively managed their notification setups with 
regards to en-/disablement. They have therefore not ben-
efited from the BAS.
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4.2 � Advancing AI methods for BAS

AI methods, specifically supervised machine learning 
techniques have greatly advanced. However, AI methods 
are not yet ready to fulfill all requirements for building 
BAS. Thus, in the future AI methods and tools need to be 
advanced to continuously process and interpret biosig-
nals, to iteratively train and update models, to dynamically 
adapt to changing tasks and environments, to learn which 
information to keep and what to forget, and to discover 
how to transfer acquired knowledge to unseen domains, 
unknown users, or new architectures and platforms. We 
believe that BAS, as a challenging area of interdisciplinary 
research at the intersection of AI/ML, sensors, and adap-
tive systems design, provide both the push and the pull to 
further develop the respective fields.

4.3 � Ethical considerations of BAS

Major initiatives have been initiated in recent years focus-
ing on ethical considerations with regards to AI-based 
systems such as BAS. One example is the “Ethical Aligned 
Design (EAD)” initiative, in which several hundreds of pro-
fessionals including engineers, scientists, ethicists, sociolo-
gists, and economists from six continents have formulated 
societal and policy guidelines in order for intelligent sys-
tems to remain human-centric, serving humanity’s values 
and ethical principles [44]. They should prioritize and have 
as their goal the explicit honoring of our inalienable funda-
mental rights and dignity as well as the increase of human 
flourishing and environmental sustainability. It begins with 
conscious contemplation, where ethical considerations 
help us define how we wish to live. EAD defines 8 general 
principles to be followed by AI system creators, namely 
human rights, well-being, data agency, effectiveness, 
transparency, accountability, awareness, and competence. 
It also provides clear guidelines, methods, and metrics on 
how to bring these general principles to practice ([45]).

During the design, implementation, and use of the 
BAS described above, the authors and their teams adhere 
to these principles and guidelines. We strive to sensitize 
our students to the ethical considerations related to AI 
systems in general and BAS in particular by discussing 
them in teaching and training as well as enforcing their 
reflection in an early stage of each research project. How-
ever, we believe that future research is required in better 
understanding how to break-down the generic principles 
to the specific context of BAS. Furthermore, a deeper 
understanding of design trade-offs considering ethical 
principles is required. For example, BAS may positively 
impact well-being of individuals (e.g. increase flow), but 
at the same time come with new challenges with regards 
to data security and privacy.

5 � Conclusion

In this position statement paper we presented our per-
spective on BAS, an increasingly important class of AI sys-
tems that are able to automatically adapt to user needs by 
continuously interpreting their biosignals. We described 
selected key concepts and building blocks of BAS as well 
as showcased selected BAS examples. In order to fully 
leverage the potential of BAS future research is required. 
Specifically, we highlight advancing AI methods for BAS 
and contextualizing ethical principles for BAS as well as 
achieving a deeper understanding of design trade-offs.
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