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Abstract: AISI 1045 can be machined well in all machining operations, namely drilling, milling, turn-
ing, broaching and grinding. It has many applications, such as crankshafts, rollers, spindles, shafts,
and gears. Wiper geometry has a great influence on cutting forces (Fr, Ff, Fc and R), temperature,
material removal rate (MRR) and surface roughness (Ra). Wiper inserts are used to achieve good
surface quality and avoid the need to buy a grinding machine. In this paper, an optimization-based
investigation into previously reported results for Taguchi’s based L27 orthogonal array experimen-
tations was conducted to further examine effect of the edge geometry on the turning performance
of AISI 1045 steel in dry conditions. Three input parameters used in current research include the
cutting speed (Vc), feed (f ) and depth of cut (ap), while performance measures in this research were
Ra, Fr, Ff, Fc, R, temperature (temp) and MRR. The Vise Kriterijumska Optimizacija Kompromisno
Resenje (VIKOR) method was used to normalize and convert all the performance measures to a single
response known as the VIKOR-based performance index (Vi). The machine learning (ML) approach
was used for the prediction and optimization of the input variables. A correlation plot is developed
between the input variable and Vi using the ML approach. The optimized setting suggested by Vi-ML
is Vc: 160 m/min; ap: 1 mm and f : 0.135 mm/rev, and the corresponding value of Vi was 0.2883,
while the predicted values of Ra, Fr, Ff, Fc, R, temp and MRR were 2.111 µm, 43.85 N, 159.33 N,
288.13 N, 332,16 N, 554.4 ◦C and 21,600 mm3/min, respectively.

Keywords: cutting forces; machine learning; Ra; VIKOR; wiper insert

1. Introduction

The 1045 steel alloys are very common in the manufacturing sector and have many
applications, such as connecting rods, a crankshaft, gears, bolts, shafts, etc. The machining
techniques to process AISI 1045 steel alloys were fully developed, but to obtain higher
productivity and good surface quality, researchers are still working in this direction. The
research community is working on the development of advanced techniques in machining
and optimization by which better productivity and surface quality can be obtained.

Nowadays, controlling surface quality along with productivity is the requirement
of most of these industries and is the most difficult challenge for researchers. In the
manufacturing process, the raw material was converted into the finished products so as to
be used for different applications. Therefore, an item with enhanced features and being
financially stable are important aspects to be taken into consideration [1,2]. Almost 95%
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of the energy during machining is transformed into heat due to the movement between
the workpiece and the tool to be machined [3,4]. The energy formed is waste, and surface
quality, along with tool, wear also suffers [5]. Although fast machining is preferable in
order to have excellent productivity, the cutting speed is restricted because of the relative
motion of the tool and the workpiece. Therefore, it is better to control the heat generated in
order to have a good quality product and also an improved tool life. Additionally, such
heat causes the microstructural distortion of the components [6]. The quality of these
components is also compromised due to the relative motion between the material and
the tool [7]. This issue can be solved by introducing the cutting fluids on the interface of
the tool and workpiece [3,8]. The prime utilization of such fluids is to overcome the heat
produced at the interface of the tool and workpiece [9]. Other than this, it also overcomes
the friction between the tool and material during the machining [10]. Additionally, cutting
fluids help to remove the metal chips during machining [11], and coolants make the tool–
work interface chips free and ensure smoothness over the workpiece [12]. These features
of coolants and lubricants enable their utilization in various procedures such as drilling,
grinding, turning, etc. [13]. The mechanism of deformation is greatly impacted by the
cooling technique that is applied [14]. Although coolants and lubricants have a number
of benefits, they also have certain outcomes as well [12]. During machining, the usage
of coolants and lubricants facilitates the colonization of fungi and bacteria [15]. Not only
this, coolants and lubricants are made up of cryogenic materials [16], which can cause an
allergy or cancer when it comes in contact with the skin of humans [17]. Additionally, they
enhanced the manufacturing expenses by 8% of the total expenses, which is important when
taken into consideration for a daily scenario [18]. Therefore, to overcome the drawbacks
of coolants and lubricants, various investigators have focused on finding alternatives to
coolants and lubricants while considering the advantages of the two. NDM (Near dry
machining) is a stride toward using fewer coolants and lubricants while machining [12].
The main purpose of NDM is to ensure green and sustainable manufacturing in the latest
environment [19–23]. NDM is exceptionally advantageous for greener and more sustainable
processes [24]. Taguchi defines the item’s nature as “the base loss is ensured whenever
the item [is] dispatched among the general public” [25]. The overall loss is considered a
combination of spending by the clients, disappointment, a guarantee of cost, loss because
of a network, the mismanagement of assets, and so on. One of the methodologies is
robust design in order to find the circumstances of the process and product, which can
ensure low expenses in production and good quality products. One such technique is
the Taguchi approach, which ensures the optimization of quality, cost and performance.
The most important tools for robust design are the signal-to-noise ratio and orthogonal
arrays. The former ensures good quality for the outcomes and later contains various control
factors. Taguchi’s technique completely supports the trials of the measurable plan. This
approach fulfills the advancement in the process and reduces the time needed for the
experimental examination [26–28]. Various practitioners and researchers have used the
DOE (design of experiments) and its upgradation to Taguchi’s method to make a strategy
for the experiments and also perform the optimization of the parameters for machining. In
Bajić et al. [29], a sequence of experimentation was carried out with DOE so as to examine
how surface roughness became impacted by the cutting parameters such as ap, f and Vc
in the operation of face milling. Yang and Chen [30] used the Taguchi method to plan the
process, which eventually ensured an exact technique that could productively differentiate
the perfect surface roughness. In Filho and Diniz [31], DOE was utilized in order to examine
the effect of surface finish, tool wear, the feed rate per tooth, and cutting velocity in contrast
with the processing activity. Tsao [32] projected another technique named Gray–Taguchi in
order to improvise the parameters for the aluminum combination, which demonstrated
good finishing over the surface. The literature states how various investigators have studied
machining in the field of the DOE and NDM application. However, some issues have arisen
while considering the NDM idea, which signifies that more research must be carried out so
as to find out a reasonable panacea.
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After the review of the literature, it was found that numerous research has been
conducted on the processing of steel by a carbide tool [33–35]. Another aspect of research
by investigators is using the one parameter at a time approach, the Taguchi method and the
Grey relational approach. However, a dearth of research has reported on the processing of
AISI 1045 steel using the wiper geometry tool insert [36]. However, few works of research
have been published on the implementation of the VIKOR-ML approach to investigate
performance measures while processing AISI 1045 steel using wiper tool inserts. The
planning of this experiment is conducted using the Taguchi-based L27 orthogonal array.
The Vc, f and ap were the input variables, while Ra, Fr, Ff, Fc, R, temp and MRR were the
performance measures. All the output variables were changed into a single performance
measure, termed the performance index, and this was investigated using VIKOR. Thus,
this is known as the VIKOR-based performance index (Vi). The machine learning approach
was used for the investigation and correlation of the Vi with the input variables.

2. Materials and Methods

This manuscript presents an extended investigation into the machining responses of
AISI 1045 steel under dry turning conditions, previously reported by Abbas et al. [35,36].
The material processed in the present work was AISI 1045 steel. This steel has applications
in different industries, requiring high strength and wear resistance. Table 1 provide the
composition (chemical) and mechanical characteristics of the material.

Table 1. Compositions (Chemical) and mechanical characteristics for AISI 1045 [35].

Element S P Mn C Fe

Percentage % 0.04 0.03 0.65 0.45 Balance

Characteristics Value

Hardness, Vickers 170

Young’s Elasticity 200 GPa

Reduction in Area 40%

Tensile Strength, Yield 310 MPa

Tensile Strength, Ultimate 565 MPa

Elongation at Break (in 50 mm) 16%

The bars of AISI 1045 steel were received in hot-rolled and normalized conditions.
For microstructural testing, the steel bars were sawed into small samples using a coolant
in order to avoid excessive heating. For metallographic preparation, the steel samples
were ground using SiC sandpaper with different grit sizes, after which polishing was
performed using a polishing cloth and colloidal silica suspension. This was followed by
an etching process using 2% Nital solution for 10 s which was subsequently washed and
dried. This was followed by an etching process using a 2% Nital solution for 10–20 s which
was subsequently washed and dried. The microstructure was examined using the scanning
electron microscope, SEM (JEOL-6600, Tokyo, Japan). Figure 1a shows a secondary electron
image (SEI) on the etched surface. The microstructure was composed of fine grains of
proeutectoid α-ferrite (dark phase) and fine pearlite (lamellar structure of ferrite (dark
phase) and cementite, Fe3C, white phase). The microstructure represents a typical example
of normalized hypoeutectoid plain carbon steel.
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Figure 1. (a) Microstructure of AISI 1045 steel; Microscopic image of (b) Normal (c) Wiper geometry
Carbide Tool inserts [36].

The conventional lather of the Emco make (EMCOMAT-20D, Hallein-Taxach, Austria)
was used to machine the material [37]. This machine tool had the following specifications:
Electronic speed control: 40–3000 rpm, longitudinal feed: 0.045–0.787 mm/rev, drive motor:
5.3 kw and stepless speeds. The Sandvik make (Stockholm, Sweden) carbide tool insert
with wiper geometry (DCMX11 T304-WF 4315) was used to process AISI 1045 steel with a
length of 120 mm, diameter of 70 mm and cutting length of 30 mm for each pass was used
for the experimentation [35,36].

A total of 27 test runs were as follows: three levels of surface speed (Vc) 80, 120, and
160 m/min, three levels of depth of cut (ap): 0.5, 0.75, and 1.0 mm, three levels of the feed
rate (f ): 0.045, 0.09, and 0.135 mm/revolution [35,36]. Figure 2 depicts the microscopic
image of a normal tool insert (Figure 1b) and a wiper geometry tool insert (Figure 1c). The
Sandvik make of conventional (DCMT11T304-PF) and wiper geometry (DCMX11T304-WF)
tool inserts were used to machine AISI 1045 steel [36]. The rake angle for the conventional
and wiper geometry tool inserts was 6◦ and 18◦, respectively. However, both inserts had
the same cutting-edge angle (55◦), clearance angle (7◦) and nose radius (0.4 mm). In the
processing of the material during turning, the nose radius and feed rate played a pivotal
role. Conventional round-nose tool inserts limited productivity. The main reason for this
was the limitation of the upper feed value. The possible solution to this problem was to use
a large nose radius, which could enhance the forces value along with the chatter. This could
either improve productivity or surface quality but not both. With the introduction of wiper
geometry in tool inserts, the nose with a large radius of curvature increased productivity
with a high feed value. This would increase the surface quality. Feed force (Ff), cutting force
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(Fc) and Radial force (Fr) were observed using a Kistler make of dynamometer (Model 5070,
(Liechtenstein, Switzerland). The resulting force (R) could be calculated from the formula:

R =
√

F2
r + F2

f + F2
c

Fr, Ff, Fc and R were computed [38] in Newtons (N). The MRR could be computed
using Equation (1).

MRR = 1000 Vc f ap (1)

where,

Vc = Surface speed (m/min)
f = Feed rate (mm/rev)
ap = Depth of cut (mm)
MRR was measured in (mm3/min)
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Figure 2. Distribution of forces in turning operation [38].

As reported in [37], the average roughness values measured from the peak and valleys
are known as the arithmetic average of the surface roughness (Ra). The value of Ra was
measured using the Tesa (Rugosurf 90-G) make (Bugnon, Switzerland) surface roughness
tester [37]. The Ra value was measured perpendicular to the axis of cutting. The surface
was cleaned with acetone before it was measured, and an average of three readings were
selected in the present work for analysis purposes [39,40]. The process flow in the current
research is represented in Figure 3.
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Figure 3. Process flow in the current research.

3. Results and Discussion

The experimental plan of all three input parameters and the corresponding values
of Ra, Fr, Ff, Fc, R, Temp and MRR are represented in Figure 4 [37]. The experiments
were conducted considering the concept of randomness, repeatability and blocking. It
was evident from the responses that out of seven, six (Ra, Fr, Ff, Fc, R, Temp) were of the
lower-the-better type, while one (MRR) was a larger-the-best type quality attribute. This
made the present problem a Multi-Criteria Decision Making (MCDM) problem [40,41].
Thus, to solve this, the MCDM approach of VIKOR-ML was adopted.
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Figure 4. Experimental results of 27 experimental tests for (a) Ra (b) Fr, Ff, Fc and R (c) Temp (d) MRR.

3.1. Statistical Analysis of Response Variables

Table 2 presents a statistical analysis of the response variables (namely Ra, Fr, Ff, Fc,
R, Temp and MRR). From the analysis of Ra, it is clear that f had the maximum influence
(56.84%) for investigating Ra, preceded by Vc (18.94%) and ap (14.47%). A high F-value
showed the larger contribution of the control factors. The p-values in the analysis were the
probability value, and for a good model, these were less than 0.05. The interaction of Vc
and ap; ap and f ; Vc and f presented p-values less than 0.05, which depicted the significant
influence of these interactions on the computation of Ra. The value of R2 predicted the
future outcomes of the present model. In the present work, the value of R2 was 99.09, and
Adjusted-was 97.05, which depicted a close agreement with each other.

Table 2. Statistical analysis and ANOVA for various responses.

Source DF
Ra Fr Ff Fc

pcp * F * p * pcp F p pcp F p pcp F p

Vc 2 18.9 83.39 0 20.4 55.96 0 15.3 97.48 0 18.38 107.7 0

ap 2 14.4 63.72 0 45.7 125.15 0 35.7 226.92 0 44.58 261.3 0

f 2 56.8 250.2 0 21 57.53 0 38.3 243.12 0 25.6 150.1 0

Vc * ap 4 3.33 7.32 0.009 8.09 11.08 0.002 5.94 18.84 0 6.88 20.17 0

Vc * f 4 2.8 6.16 0.014 1.2 1.63 0.257 1.62 5.14 0.024 1.14 3.33 0.069

ap * f 4 2.71 5.96 0.016 2.12 2.9 0.093 2.35 7.46 0.008 2.74 8.04 0.007

Residual Error 8 0.91 R2 =
99.09

R2 (adj)
= 97.05

1.46 R2 =
98.54

R2 (adj)
= 95.25

0.63 R2 =
99.37

R2 (adj)
= 99.95

0.68 R2 =
99.32

R2 (adj)
= 97.78Total 26 100 100 100 100

Source DF
R Temp MRR

pcp F p pcp F p pcp F p

Vc 2 17.9 133.9 0 53.2 42.85 0 21.4 324 0

ap 2 42.7 320.1 0 11.2 9.07 0.009 21.4 324 0

f 2 28.1 210.8 0 15.9 12.85 0.003 48.1 729 0

Vc * ap 4 6.75 25.25 0 11.7 4.71 0.03 1.58 12 0.002

Vc * f 4 1.2 4.51 0.034 2.81 1.13 0.407 3.56 27 0

ap * f 4 2.63 9.85 0.004 0.11 0.05 0.995 3.56 27 0

Residual Error 8 0.54 R2 =
99.47

R2 (adj)
= 98.26

4.96 R2 =
95.03

R2 (adj)
= 83.86

0.26 R2 =
99.74

R2 (adj)
= 99.14Total 26 100 100 100

* pcp: Percentage Contribution; * F: F-value; * p: p-value.
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The ANOVA of Fr showed that ap had a maximum contribution (45.7%), followed by
f (21%) and Vc (20.4%). The interaction between Vc and ap played a significant role due
to the p-value being less than 0.05. Similarly, CS, ap and f had p-values less than 0.05 in
the case of Fr. The summary of Ff depicted that all the input parameters and respective
interactions had a significant influence on the investigations of Ff.

The feed value had a maximum influence (38.3%), followed by ap (35.7%) and Vc
(15.3%). The statistical summary of Fc represented that ap (44.57%) had a maximum in-
fluence on the investigation of Fc while turning AISI 1045 steel using wiper tool inserts,
followed by f (25.60%) and Vc (18.37%). The summary suggested that the Vc, ap, f, interac-
tion plots of Vc and f, ap and f played an influential effect on the Fc, as evident from the
p-values. Similar trends were depicted from the F-values. The value of R2 (99.32%) was
in close agreement with the adjusted R2 (97.78%). R2 presented the future outcomes from
the model due to significant and non-significant terms; however, adjusted-R2 provided
the predictions of future outcomes due to significant terms only. The statistical summary
of the reaction ®showed that ap (42.7%) had a maximum influence on the computation
of a response during the turning of AISI 1045 steel using wiper tool inserts, followed by f
(28.10%) and Vc (17.9%). The summary suggests that Vc, ap, f, the interaction plots of Vc
and f, ap and f, Vc and ap played an influential effect on R, as evident from the p-values.

It was evident from the ANOVA that Vc (53.2%) had a maximum influence that
was preceded by f (15.9%) and ap (11.2%) for the calculation of temperature during the
processing of AISI 1045 steel by wiper geometry. The interaction of CS and ap also played a
significant role in the temperature, with a p-value of 0.03, which was less than 0.05. The
analysis of MRR revealed that p-values for all the parameters and interactions were less
than 0.05. Therefore, every parameter and interaction played an important role in the
calculation of MRR. From the pcp values it is clear that f had the maximum contribution
(48.18%) for the investigation of MRR, preceded by Vc (21.41%) and ap (21.41%). The values
of R2 and adjusted R2 for all the responses (namely Ra, Fr, Ff, Fc, R, Temp and MRR) had
close compliance with each other.

3.2. Variation in Response Variables with Respect to Machining Variables

The variation in the performance measures with respect to the input process variable
is discussed in this section.

It is evident from Figure 5a that with the amplification in the Vc value, the value of
the force (Fr, Ff, Fc and R) decreased. This was due to the fact that with the increase in the
Vc value from 80 m/min to 160 m/min, the thermal softening of AISI 1045 steel increased
due to the value of the force, which decreased gradually. The main fact of this decrement
in the Fc with the increase in Vc was the reduction in shear strength as the temperature
increased with speed [42]. Another reason for the decrease in Fc might be the tool–chip
interface contact area. The contact area was controlled up to a certain length; thus, real
contact became smaller than natural contact, and hence Fc was found to be decreased [43].
Figure 5b depicts the variation in the force with respect to ap, which clarifies that, with the
amplification in ap values, the value of the force was also amplified. This was due to the
fact that, with a high value of ap, more material had to be removed in a single cut at the
same Vc and f. Therefore, the chances of build-up edges were increased, with the need for
large forces to overcome them. Figure 5c represents the variation in the forces with respect
to the feed value, and it is clear from Figure 5c that with the increase in the feed value, the
value of the force was found to be increased. The probable reason for these enhancements
might be that with the increase in the feed value, more material was removed per unit of
time. When f increased, the relative motion between the workpiece and the tool became
faster, leading to higher friction forces. These increased the feed forces and put additional
stress on the cutting tool, machine components, and fixtures.

Figure 5d depicts the variation in Ra with the input parameters while machining AISI
1045 steel. The value of Ra was enhanced from 0.5218 µm to 1.048 µm with the increase in
the Vc value from 80 to 160 m/min. The value of Ra increased from 0.5218 µm to 0.7663 µm



Machines 2023, 11, 719 9 of 17

after varying the Vc value from 80 m/min to 120 m/min. The value of Ra was further
enhanced from 0.7663 µm to 1.048 µm with an increase in Vc from 120 to 160 m/min. The
main reason for this increment was the material characteristics, which were reactive with
the carbide tool inserts [44]. During the machining process, the material was removed
in the form of chips. These chips were stuck with the cutting tool and made the surface
quality poor. With the increase in Vc, more chips were exposed to the surface, and surface
roughness increased. It was found that the value of Ra ameliorated from 0.525 µm to
0.964 µm with an increase in the ap value from 0.5 mm to 1 mm. The main reason for the
increase in the Ra value with ap was the increase in the depth of the tool. Due to this, more
material was plowed from the workpiece in the form of craters that increased the Ra. It was
found that the value of Ra increased from 0.3773 µm to 0.7017 µm with the amplification
in the f value from 0.045 mm/rev to 0.09 mm/rev. Further, an increase in the f value
from 0.09 mm/rev to 0.135 mm/rev, and the value of Ra was enhanced from 0.701 µm to
1.277 µm. This enhancement in roughness value was due to more material being extracted
from the workpiece with each revolution. Thus, large craters were removed, which made
the surface poorer.
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Figure 5e presents the variation in temperature with the change in machining variables.
It is clear from Figure that with the increase in Vc, f and ap, the temperature also increased.
Machining takes place due to plastic deformation, and during deformation, most of the
energy is converted into heat. With the increase in ap and Vc, larger amounts of heat were
generated, which increased the temperature. The increase in the feed value increased
the friction between the tool and chip and increased the cutting temperature. Figure 5f
depicts the variation in MRR with the input parameters. Figure 5a shows that with the
increase in Vc from 80 m/min to 160 m/min, the MRR increased from 5400 mm3/min
to 10,800 mm3/min. The increase in MRR was due to more material coming into contact
with the tool at the same time as an increase in Vc. The value of MRR increased from
5400 mm3/min to 8100 mm3/min with the amelioration of ap from 0.5 mm to 0.75 mm. A
further increase in the ap value took place from 0.75 mm to 1 mm, and MRR was observed
to increase from 8100 mm3/min to 10,800 mm3/min. The increase in MRR was due to
an increase in more material depth with the increase in the ap value. With the increase
in the f value, the chip load per revolution was enhanced, and MRR was found to be
increased. Due to the increase in the chip load per revolution, the MRR value increased
from 4050 mm3/min to 12,150 mm3/min with the increase in f from 0.045 mm/rev to
0.135 mm/rev.

4. Implementation of VIKOR-ML Approach
4.1. VIKOR Approach

The VIKOR method is a statistical method that can solve the problems associated
with multiple responses having conflicting natures (like the combination of the smaller
the better and higher the best type quality attributes for a single problem). A Serbian
researcher Sarafim Opricoveic developed this method in 1979 to solve MCDM problems,
and in 1980, the researcher applied it for the first time. In 1990, it was named VIKOR,
which is extracted from a Serbian word [45], which means Multi-Criteria Optimization and
Compromised Solutions. This method was effectively used to find out the best solution
where the process involved either two or more than two response variables. In the present
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research, seven output responses (i.e., Ra, Ff, Fr, Fc, R, Temp and MRR) were involved, in
which two responses (Ra, Ff, Fr, Fc, R and Temp) were of the lower the better type while
MRR had a higher the better type quality attribute, which made it a combination of both
types of responses (those are conflicting in nature) [46].

Few responses have values in thousands, while others have values in hundreds or
in decimals. Thus, it became essential to normalize all the responses and categorize all
the response variables between zero and one. The standard process was adopted for the
normalization [47]. The decision matrix was formed according to Equation (2).

H =


H11 H12 . . H1n
H21 H22 . . H2n

. . . . .

. . . . .
Hm1 Hm2 . . Hmn

 (2)

Here, n are the responses and i = 1, 2, . . . . . . , m are the input variables.
Once the decision matrix was formed, the normalization of the data was processed as

per Equation (2). The response variables had different units and different orders; thus, after
the normalization all the responses were transformed into a dimensionless number between
0 and 1. The normalized values of all the performance measures were evaluated and are
depicted in Table 3. All the normalized values were summed up, and the performance
index was calculated and described here as the VIKOR index (Vi). A large value of Vi
depicted the best optimal setting for the compromised results, where all three-response
variables could be compromised.

Hij =
Hij√

∑n
i=1 H2

ij

(3)

Table 3. Weighted normalization of responses and the calculation of Vi.

Test No. W Normalized
MRR

W Normalized
Ra Normalized Fc Normalized Fr Normalized Ff Normalized R Normalized

Temp Pi

1 0.0052 0.0059 0.0097 0.0069 0.0120 0.0103 0.0236 0.0735

2 0.0103 0.0097 0.0122 0.0113 0.0152 0.0129 0.0250 0.0967

3 0.0155 0.0198 0.0205 0.0186 0.0240 0.0213 0.0253 0.1450

4 0.0077 0.0073 0.0332 0.0342 0.0302 0.0325 0.0257 0.1709

5 0.0155 0.0122 0.0368 0.0395 0.0335 0.0361 0.0259 0.1996

6 0.0232 0.0279 0.0476 0.0503 0.0456 0.0472 0.0269 0.2687

7 0.0103 0.0085 0.0308 0.0318 0.0300 0.0306 0.0264 0.1685

8 0.0206 0.0146 0.0370 0.0383 0.0324 0.0360 0.0266 0.2055

9 0.0310 0.0304 0.0504 0.0513 0.0495 0.0502 0.0267 0.2896

10 0.0077 0.0072 0.0096 0.0057 0.0123 0.0103 0.0260 0.0789

11 0.0155 0.0129 0.0121 0.0099 0.0140 0.0126 0.0266 0.1035

12 0.0232 0.0270 0.0231 0.0249 0.0258 0.0238 0.0270 0.1747

13 0.0116 0.0104 0.0217 0.0191 0.0192 0.0211 0.0260 0.1290

14 0.0232 0.0264 0.0270 0.0286 0.0284 0.0274 0.0274 0.1884

15 0.0348 0.0405 0.0329 0.0300 0.0368 0.0338 0.0272 0.2362

16 0.0155 0.0132 0.0172 0.0193 0.0176 0.0173 0.0259 0.1260

17 0.0310 0.0246 0.0223 0.0250 0.0222 0.0223 0.0260 0.1734

18 0.0464 0.0434 0.0423 0.0396 0.0392 0.0415 0.0268 0.2792

19 0.0103 0.0083 0.0088 0.0080 0.0113 0.0094 0.0269 0.0831

20 0.0206 0.0149 0.0110 0.0090 0.0146 0.0119 0.0272 0.1094

21 0.0310 0.0319 0.0143 0.0113 0.0195 0.0156 0.0287 0.1523

22 0.0155 0.0138 0.0181 0.0159 0.0199 0.0185 0.0273 0.1290



Machines 2023, 11, 719 13 of 17

Table 3. Cont.

Test No. W Normalized
MRR

W Normalized
Ra Normalized Fc Normalized Fr Normalized Ff Normalized R Normalized

Temp Pi

23 0.0310 0.0361 0.0189 0.0212 0.0216 0.0196 0.0277 0.1761

24 0.0464 0.0517 0.0264 0.0223 0.0277 0.0266 0.0288 0.2300

25 0.0206 0.0240 0.0178 0.0146 0.0168 0.0175 0.0276 0.1391

26 0.0413 0.0319 0.0223 0.0220 0.0223 0.0223 0.0300 0.1922

27 0.0619 0.0613 0.0334 0.0337 0.0335 0.0334 0.0312 0.2883

Table 3 presents the Vi values and the maximum value of Vi (0.2883) was found
corresponding to experimental run number 27. Corresponding to experiment number 27
the values of Ra, Fr, Ff, Fc, R, temp and MRR were 2.111 µm, 43.85 N, 159.33 N, 288.13 N,
332,16 N, 554.4 ◦C and 21,600 mm3/min, respectively.

4.2. Machine Learning Approach

The optimization was conducted using the empirical modeling and machine learning
approach. The objectives in the present work were larger the better the type (MRR) and
lower the better (Ra, Fr, Ff, Fc, R and temp) [48,49]. ‘Vi’ is the objective function in the
current work. Vi was the combined effect of Ra, Fr, Ff, Fc, R, temp and MRR; therefore,
it became larger the better type of quality characteristic. The larger the value of Vi, the
better the compromised result of Ra, Fr, Ff, Fc, R, temp and MRR corresponding to the
parametric setting. To optimize the value of Vi, the machine learning approach was
implemented. In this approach, the first step included the extraction of data in the Excel
format and then provided the local namespace. In the second step, Pandas and NumPy
were used for the analysis of data. The prerequisite for Pandas was already explained
in the previous research [49–52], which included the data frame and series. Further, the
correlation was investigated between the input variables (Vc, f and ap) and the collective
output parameter (Vi).

This correlation was set up by the visualization and evaluation of datasets. The data
in Vi Table (Table 3) were divided into two portions: one portion was used for the training
purpose (80% data), and the other portion was used for testing (20% data). Figure 6 shows
the correlation mapping of the process parameters with respect to Vi. It is clear from
Figure 6 that there was a correlation between Vi and Vc and Vi and ap, Vi and f. From the
color mapping, the darkest color was observed in the case of Vi and f, while it faded away
in the case of Vi and ap. The values of correlation between the process parameters and
Vi can be observed in Figure 7. The maximum value of the correlation was 0.697 (in the
case of Vi and f ). Further, its value decreased to 0.609 (Vi and ap) and −0.086 (Vi and Vc).
Therefore, the correlation mapping and correlation plot verified the results.
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5. Conclusions

In the current work, a previously reported experimental investigation into the machin-
ing responses of AISI 1045 steel using wiper geometry tool inserts on a tuning operation
was further extended. The performance of the process was evaluated in terms of Ra, Fr,
Ff, Fc, R, temperature and MRR while varying Vc, ap and f. The collective output of the
process was investigated using the integrated VIKOR Machine Learning Approach. The
outcomes from the present work are as follows:

1. Feed (f ) had the maximum influence (56.84%) on Ra while turning AISI 1045 steel,
followed by Vc (18.94%) and ap (14.47%). The interactions of Vc and ap, Vc and f and
ap and f had a significant influence on the investigation of Ra due to a p-value less
than 0.05.

2. For the investigation of Fr, ap had the maximum influence (45.7%), followed by f (21%)
and Vc (20.4%). However, in the investigation of Ff, f played a pivotal role (38.3%),
preceded by ap (35.7%) and Vc (15.3%). In the calculation of Fc, the ap contribution
was 44.57%, followed by f (25.60%) and Vc (18.37%). Due to a p-value less than 0.05 for
the interactions of Vc and ap and f and ap, a major contribution to the calculation of
Fc was observed during the turning of AISI 1045 steel by the carbide tool (wiper edge
geometry). However, in the investigation of Ff, f played a pivotal role. As ‘R’ was the
combination of all the forces; thus, all the input parameters and their interactions had
an influential effect on the investigation of the reaction (R).

3. For the investigation of MRR, f had the major role (48.18%), followed by ap and Vc
with 21.41% each. All the interactions (Vc and ap; Vc and f; ap and f ) also had a major
contribution to MRR. The values of R2 and Adj-R2 for all the performance measures
were greater than 95%, which signified the outperformance of the present work for
future outcomes.

4. The VIKOR-based performance index (Vi) suggests the best optimal setting, which
was Vc: 160 m/min; ap: 1 mm; f : 0.135 mm/rev. Corresponding to this optimal setting,
the Vi value was maximum (0.2883). The value of performance measured Ra, Fr, Ff, Fc,
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R, temperature and MRR, which were 2.111 µm, 43.85 N, 159.33 N, 288.13 N, 332,16 N,
554.4 ◦C and 21,600 mm3/min, respectively, corresponding to this setting.

5. The ML approach investigated the correlation between the input process variables
and Vi, by which a strong correlation could be observed between Vi and f (0.697),
followed by Vi and ap (0.609) and Vi and Vc (−0.086). The proposed approach of
Vi-ML could be effectively used for the investigation of parametric optimization and
correlation mapping.

In the near future, the proposed approach could be used for the investigation of other
responses like other roughness parameters, surface integrity, etc. The other processes, like
milling, drilling, welding and other non-traditional processes, could be analyzed using the
Vi-ML approach.
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