KIT | KIT-Bibliothek | Impressum | Datenschutz

Inkjet‐Printed Tungsten Oxide Memristor Displaying Non‐Volatile Memory and Neuromorphic Properties

Hu, Hongrong 1; Scholz, Alexander ORCID iD icon 1; Dolle, Christian 2; Zintler, Alexander 2; Quintilla, Aina 3; Liu, Yan 1; Tang, Yushu ORCID iD icon 1,4; Breitung, Ben ORCID iD icon 1; Marques, Gabriel Cadilha 1; Eggeler, Yolita M. M. ORCID iD icon 2; Aghassi-Hagmann, Jasmin ORCID iD icon 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT)
3 Center for Functional Nanostructures (CFN), Karlsruher Institut für Technologie (KIT)
4 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

Printed electronics including large-area sensing, wearables, and bioelectronic systems are often limited to simple circuits and hence it remains a major challenge to efficiently store data and perform computational tasks. Memristors can be considered as ideal candidates for both purposes. Herein, an inkjet-printed memristor is demonstrated, which can serve as a digital information storage device, or as an artificial synapse for neuromorphic circuits. This is achieved by suitable manipulation of the ion species in the active layer of the device. For digital-type memristor operation resistive switching is dominated by cation movement after an initial electroforming step. It allows the device to be utilized as non-volatile digital memristor, which offers high endurance over 12 672 switching cycles and high uniformity at low operating voltages. To use the device as an electroforming-free, interface-based, analog-type memristor, anion migration is exploited which leads to volatile resistive switching. An important figure of merits such as short-term plasticity with close to biological synapse timescales is demonstrated, for facilitation (10–177 ms), augmentation (10s), and potentiation (35 s). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000161334
Veröffentlicht am 11.08.2023
Originalveröffentlichung
DOI: 10.1002/adfm.202302290
Scopus
Zitationen: 3
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Center for Functional Nanostructures (CFN)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Laboratorium für Elektronenmikroskopie (LEM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1616-301X, 1057-9257, 1099-0712, 1616-3028
KITopen-ID: 1000161334
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Seiten Art.Nr.: 2302290
Vorab online veröffentlicht am 07.07.2023
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page