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1 Introduction

At the Large Hadron Collider (LHC), Higgs bosons are frequently produced in weak boson
fusion (WBF). This process has a recognizable signature, characterized by two energetic low-
p⊥ jets in the opposite hemispheres. Higgs boson production in WBF has been measured by
CMS [2, 3] and ATLAS [4, 5] collaborations. The measured WBF cross section agrees with
the Standard Model prediction to within 20%. Further improvements in the experimental
exploration of Higgs boson production in weak boson fusion are expected during the Run III
and the high-luminosity phase of the LHC.

Theoretical understanding of Higgs boson production in WBF is very advanced. It is
based on the knowledge of next-to-leading order (NLO) [6, 7] and next-to-next-to-leading
order (NNLO) [8–11] QCD corections, as well as mixed QCD-EW [12] corrections to this
process. N3LO QCD corrections have also been computed [13]; they change the leading-order
cross section by just about one permille.

It is to be noted, however, that all these studies were performed in the so-called factor-
ization approximation where contributions due to gluon exchanges between two incoming
fermion lines are neglected. These effects, that we will refer to as non-factorizable corrections,
are color-suppressed and, for this reason, are expected to be smaller than the factorizable
ones [8, 9]. However, virtual non-factorizable corrections, which start contributing to the
WBF cross section at NNLO QCD, exhibit a peculiar enhancement by two powers of π.
This enhancement was first observed when the two-loop non-factorizable amplitude was
computed in the leading eikonal approximation [1]. To better understand these two-loop
effects and to establish the validity of the eikonal approximation for phenomenological
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analyses of Higgs boson production in weak boson fusion, it is essential to go beyond the
leading term in the eikonal expansion.

Since the calculation of exact non-factorizable contributions, which requires the two-
loop five-point amplitude with five independent kinematic variables and two masses, is
currently not possible, it is reasonable to explore the possibility to extend the eikonal
expansion beyond the forward limit. In this paper we make the first step in that direction
and compute the leading power correction to the eikonal limit of non-factorizable five-point
WBF amplitude.

The remainder of this paper is organized as follows. In the next section, we describe
kinematics of weak boson fusion and explain how we use it to set up an expansion around the
eikonal limit. In sections 3 and 4, we derive integral representations for one- and two-loop
amplitudes which contribute to non-factorizable corrections to WBF; these representations
retain the next-to-eikonal accuracy. In section 5, we explain how the infra-red finite, two-
loop non-factorizable correction can be derived from these integral representations. In
section 6 we analyze the numerical impact of the computed next-to-eikonal corrections
and show that they change the current estimate of the non-factorizable contribution to
the WBF cross section by about O(20) percent. We conclude in section 7. Discussion of
the analytic computation of one- and two-loop non-factorizable amplitudes is relegated
to appendix. The analytic results for the amplitudes can be found in the supplementary
material provided with this submission.

2 Kinematics of Higgs production in weak boson fusion

We begin with the discussion of the kinematics of Higgs production in the WBF process

q(p1) + q(p2) → q(p3) + q(p4) + H(pH) . (2.1)

We perform the Sudakov decomposition of the four-momenta of the outgoing quarks and
write

p3 = α3p1 + β3p2 + p3,⊥ ,

p4 = α4p1 + β4p2 + p4,⊥ .
(2.2)

Employing the on-shell conditions p2
3 = 0, p2

4 = 0, we find1

β3 =
p2

3,⊥
sα3

, α4 =
p2

4,⊥
sβ4

, (2.3)

where s = 2p1 · p2 is the partonic center-of-mass energy squared. The WBF events are
selected by requiring that two tagging jets with a relatively small transverse momentum are
present in opposite hemispheres; this ensures that α3 ∼ β4 ∼ 1 and that p2

3,⊥ ∼ p2
4,⊥ ≪ s.

We define two auxiliary vectors q1 and q2 which describe momentum transfers from the
quark lines to the Higgs boson. They read

q1 = p1 − p3 = δ3p1 − β3p2 − p3,⊥ ,

q2 = p2 − p4 = −α4p1 + δ4p2 − p4,⊥ ,
(2.4)

1Throughout the paper, the bold-faced notation is used for two-dimensional Euclidian vectors.

– 2 –



J
H
E
P
0
7
(
2
0
2
3
)
0
3
5

where δ3 = 1−α3 and δ4 = 1−β4. It follows from the momentum conservation condition that

pH = q1 + q2 . (2.5)

Upon squaring the two sides of this equation and some rearrangements, we find

δ3δ4s = m2
H +

p2
3,⊥
α3

+
p2

4,⊥
β4

+ 2p3,⊥ · p4,⊥ −
p2

3,⊥p2
4,⊥

α3β4s
. (2.6)

We can use eq. (2.6) to fully specify the relevant aspects of WBF kinematics around the
forward limit. Indeed, given the proximity of the Higgs boson mass and electroweak boson
masses, and the fact that the important contribution to WBF cross section comes from
kinematical configurations where the transverse momenta of tagging jets are comparable to
mH and mW,Z , the above equation implies

δ3δ4 ∼ m2
V

s
∼ m2

H

s
∼

p2
3,⊥
s

∼
p2

4,⊥
s

∼ λ ≪ 1 . (2.7)

Note that we introduced a parameter λ to indicate the smallness of various ratios in the
above equation. We consider central production of Higgs bosons so that neither forward
nor backward direction is preferred. Then δ3 ∼ δ4 and

δ3 ∼ δ4 ∼
√

λ ≫ λ . (2.8)

We note that, with the required accuracy, the two parameters δ3,4 can be written as
follows

δ3,4 =

√
p2

H,⊥ + m2
H

s
e±yH , (2.9)

where pH,⊥ is the transverse momentum and yH is the rapidity of the Higgs boson in the
partonic center-of-mass frame. We will use the above relations between kinematic parameters
to construct the expansion of one- and two-loop non-factorizable WBF amplitudes in the
following sections.

3 One-loop non-factorizable contributions to WBF

We consider the one-loop non-factorizable QCD corrections to Higgs boson production in
WBF. To avoid confusion, we note that they do not contribute to the WBF cross section
at NLO since their interference with the leading order amplitude vanishes because of color
conservation. Nevertheless, since the one-loop amplitude is needed for the construction of
the NNLO QCD corrections, we need to discuss it.

To write the non-factorizable amplitude in a convenient way, we assume that the
coupling of the vector boson V to the Higgs boson is given by igV V H gµν and that the
coupling of the massive vector boson to quarks is vector-like, −igW γµ. Since we work
with massless quarks, their helicities are conserved and we can reconstruct non-factorizable
contributions for V = Z and V = W from the results that are reported below.
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We write the one-loop non-factorizable amplitude as follows

M1 = g2
sg2

W gV V H T a
i3i1T a

i4i2 A1 , (3.1)

where T a
ij denote the generators of the SU(3) color group and A1 stands for the color-stripped

one-loop amplitude2

A1 =
∫ ddk1

(2π)d

1
d1d3d4

Jµν(k1,−k1 − q1) J̃µν(−k1, k1 − q2) . (3.2)

In eq. (3.2), we used the notation

d1 = k2
1 + i0, d3 = (k1 + q1)2 − m2

V + i0, d4 = (k1 − q2)2 − m2
V + i0 , (3.3)

to define propagators of virtual bosons. In addition, following the conventions in figure 1,
we introduced two quark currents

Jµν(k1,−k1 − q1) = ⟨3|
[

γν(p̂1 + k̂1)γµ

ρ1(k1)
+ γµ(p̂3 − k̂1)γν

ρ3(−k1)

]
|1] ,

J̃µν(−k1, k1 − q2) = ⟨4|
[

γν(p̂2 + k̂1)γµ

ρ2(k1)
+ γν(p̂4 − k̂1)γµ

ρ4(−k1)

]
|2] ,

(3.4)

where we assumed that the incoming fermions are left-handed. In writing eq. (3.4) we
employed the quantities ρi(k), i = 1, 2, 3, 4 to describe quark propagators; they read

ρi(k) = (pi + k)2 + i0 . (3.5)

We would like to construct an expansion of the amplitude in eq. (3.2) in powers of
λ. To understand how to do that, we introduce the Sudakov parametrization of the loop
momentum k1 and write

k1 = α1p1 + β1p2 + k1,⊥ . (3.6)

The integration measure in eq. (3.2) becomes

ddk1
(2π)d

= s

2
dα1
2π

dβ1
2π

dd−2k1,⊥
(2π)d−2 . (3.7)

The various propagators in eq. (3.2) are linear polynomials in α1 and β1. Hence,
integration over either one of these two variables can be easily performed using the residue
theorem. The resulting integrand is a product of (at most) quadratic polynomials in the
other variable so that the structure of singularities can be easily analyzed. Performing this
analysis and assuming that the transverse loop momentum can either be of the same order
as the transverse momenta of the outgoing jets or of the same order as the center-of-mass
energy, we come to the conclusion that the following loop-momenta regions,3 shown in
table 1, need to be considered. The first region is the so-called Glauber region; the second
one is “Glauber-soft”, the third one is soft, the fourth is collinear and the last one is hard.

2Throughout this paper, we use dimensional regularization, with the dimensionality of space-time
being d = 4 − 2ε.

3See refs. [14–16] for the discussion of the strategy of regions and its application to computing loop integrals.
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Region α1 β1 k1,⊥

a λ λ
√

λ

b λ
√

λ
√

λ

c
√

λ
√

λ
√

λ

d 1 λ
√

λ

e 1 1 1

Table 1. Kinematic regions relevant for one-loop non-factorizable contributions. Symmetric regions
are not shown.

k1

p1 p3

p2 p4

H

W/Z

W/Z

g

p1 p3

µ ν

k1 −k1 − q1

Figure 1. The one-loop amplitude, shown on the left, can be constructed by contracting the currents
for the upper and lower fermion lines. The current for the upper fermion line Jµν(k1,−k1 − q1) is
shown on the right.

Using the scaling of the loop-momentum components as indicated in table 1, we estimate
the contributions of the various regions to the one-loop amplitude. We find

M(a) ∼ λ−2 , M(b) ∼ λ−2 , M(c) ∼ λ−2 , M(d) ∼ λ−3/2 , M(e) ∼ 1 . (3.8)

We note that the leading order WBF amplitude scales as λ−2 and that, as follows from
eq. (3.8), the expansion of the one-loop amplitude proceeds in powers of

√
λ. To compute

O(
√

λ) correction to the virtual amplitude, we need to account for the contributions of
regions a), b) and c) to first subleading power and the contribution of region d) to leading
power in the expansion in λ.

We begin with the discussion of region a). Using momentum scaling in table 1, we
simplify the various propagators that appear in the integrand in eq. (3.4). To present the
result in a compact way, we introduce the following quantities

∆1 = −k2
1,⊥, ∆3,1 = −(k1,⊥ − p3,⊥)2 − m2

V , ∆4,1 = −(k1,⊥ + p4,⊥)2 − m2
V ,

Θ3,1 = −
(
k2

1,⊥ − 2k1,⊥ · p3,⊥
)

, Θ4,1 = −
(
k2

1,⊥ + 2k1,⊥ · p4,⊥
)

.
(3.9)

In region a), all inverse propagators scale as O(λ). To compute the first subleading correction
we need to keep all terms that scale as λ3/2 and neglect all terms that scale as λ2. We find

d1 ≈ ∆1 + i0, d3 ≈ sδ3(β1 − β3) + ∆3,1 + i0, d4 ≈ −sδ4(α1 + α4) + ∆4,1 + i0 ,

ρ1(k1) ≈ sβ1 +∆1 + i0 , ρ2(−k1) ≈ −sα1 +∆1 + i0 ,

ρ3(−k1) ≈ −sα3β1 +Θ3,1 + i0 , ρ4(k1) ≈ sβ4α1 +Θ4,1 + i0 .

(3.10)
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If we use the simplified propagators shown in eq. (3.10) to compute the amplitude A1, we
observe that integrations over α1 and β1 factorize. We then write

A(a)
1 = −s

2

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

Φµν Φ̃µν , (3.11)

where

Φµν =
σ∫

−σ

dβ1
2πi

∆3,1
sδ3(β1 − β3) + ∆3,1 + i0

× ⟨3|
[

γν(p̂1 + k̂1,⊥)γµ

sβ1 +∆1 + i0 + γµ(p̂3 − k̂1,⊥)γν

−sα3β1 +Θ3,1 + i0

]
|1] ,

(3.12)

Φ̃µν =
σ∫

−σ

dα1
2πi

∆4,1
−sδ4(α1 + α4) + ∆4,1 + i0

× ⟨4|
[

γν(p2 + k̂1,⊥)γµ

−sα1 +∆1 + i0 + γν(p4 − k̂1,⊥)γµ

sβ4α1 +Θ4,1 + i0

]
|2] .

(3.13)

In eq. (3.11) σ is a cut-off parameter that forces β1 and α1 to stay in the region α1 ∼ β1 ∼ λ.
It is convenient to choose σ such that

λ ≪ σ ≪
√

λ , (3.14)

since this choice will allow us to use the same cut-off σ to study the Glauber-soft region.
We note that we replaced k̂1 with k̂1,⊥ in the currents when writing eq. (3.11); this is

justified since α1 and β1 terms in the Sudakov expansion of k provide O(λ) and not O(
√

λ)
corrections in region a). Hence, if we aim at computing the non-factorizable amplitude with
O(

√
λ) relative accuracy, we can discard them. In fact, to compute the amplitude with

O(
√

λ) relative accuracy, terms with k̂1,⊥ in eq. (3.11) can be dropped altogether. Indeed,
since k1,⊥ ∼

√
λ, if we retain it in one of the terms that appear either in Φµν or in Φ̃µν , the

other current should be computed at leading λ-power. However, in this case

⟨4|γµp̂2,4γν |2] ≈ 4pµ
2 pν

2 , ⟨3|γµp̂3,1γν |1] ≈ 4pµ
1 pν

1 , (3.15)

and terms with k̂1,⊥ lead to the vanishing contributions

p̂i k̂1,⊥ p̂i = 0, i = 1, 2 , (3.16)

since p2
1,2 = 0 and p1,2 · k1,⊥ = 0.

Furthermore, in region a) we can expand the remnants of weak boson propagators that
appear in eq. (3.11). Keeping terms that provide O(

√
λ) corrections, we find

∆3,1
sδ3(β1 − β3) + ∆3,1 + i0 ≈ 1 + sδ3(β3 − β1)

∆3,1
+O(λ) ,

∆4,1
−sδ4(α1 + α4) + ∆4,1 + i0 ≈ 1 + sδ4(α4 + α1)

∆4,1
+O(λ) .

(3.17)
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Focusing on Φµν , we simplify the expression for the current, use eq. (3.17) and obtain4

Φµν = 2pµ
1 ⟨3|γν |1]

s
Φ , (3.18)

where

Φ =
σ∫

−σ

dβ1
2πi

(
1 + sδ3(β3 − β1)

∆3,1

)[
1

β1 + ∆1
s + i0

+ 1
−β1 + Θ3,1

sα3
+ i0

]
. (3.19)

To compute Φ, we use
σ∫

−σ

dβ1
2πi

1
±β1 − za + i0 = −1

2 +O(za/σ) , (3.20)

valid for za ∈ [−σ, σ]. Furthermore, we need∫ σ

−σ

dβ1
2πi

β1

( 1
β1 − za + i0 + 1

−β1 − zb + i0

)
= −1

2 (za − zb) +O(z2
a/σ, z2

b /σ) . (3.21)

Neglecting the σ-dependent terms that will cancel with the contribution from the Glauber-
soft region, we obtain

Φ = (−1)
[
1 + δ3

2∆3,1
(2sβ3 +∆1 −Θ3,1)

]
. (3.22)

A similar computation for Φ̃µν gives

Φ̃µν = 2pµ
2 ⟨4|γν |2]

s
Φ̃ , (3.23)

where
Φ̃ = (−1)

[
1 + δ4

2∆4,1
(2sβ4 +∆1 −Θ4,1)

]
. (3.24)

Combining these results for Φ and Φ̃ and neglecting all terms beyond desired O(
√

λ)
corrections, we obtain the following contribution to the one-loop amplitude from the
Glauber region

A(a)
1 = −⟨3|γµ|1]⟨4|γµ|2]

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

×
(
1 + δ3

2∆3,1
(2sβ3 +∆1 −Θ3,1) +

δ4
2∆4,1

(2sβ4 +∆1 −Θ4,1)
)

.

(3.25)

We then proceed with the discussion of the contribution of region b) with the mixed
scaling α1 ∼ λ and β1 ∼

√
λ. According to eq. (3.8), we require the contribution of this

region through first subleading terms. However, it is easy to see that, in actuality, the
4We note that we are allowed to discard p3,⊥ from the numerator in the expression for Φµν for the same

reason that k1,⊥ was discarded.
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contribution of region b) starts at O(λ−3/2) and, therefore, should be computed at leading
power only.

To understand why this is the case, we first discuss the currents Jµν and J̃µν and, in
particular, the numerators of the contributing terms. Since we work with O(

√
λ) accuracy,

in region b) we should replace k1 with k1 → β1p2 +k1,⊥ in both currents. Suppose we do this
replacement in Jµν . Since these terms already provide an O(

√
λ) correction, the current

J̃µν should be taken at leading power. Since at leading power J̃µν ∼ pµ
2 pν

2 , it is easy to
see that all contributions of vector k1 drop from the current Jµν once the Lorentz indices
are contracted.

However, if we account for k1 in the current J̃µν , the situation is different. In this
case, since i) k1 is independent of α1, ii) it appears with different signs in the two terms
in J̃µν , and iii) J̃µν is contracted with Jµν computed at leading power, the corresponding
contribution vanishes after integration over α1.

Having concluded that, similar to the Glauber region, we can drop k1 from the fermion
currents, we note that the current Jµν(k1,−q1 − k1) in region b) can be further simplified.
Indeed, using the fact that β1 ≫ ∆1/s,Θ3,1/s, we expand the current and obtain

Jµν(k1,−q1 − k1) ≈ pµ
1 pν

1

(
1

sβ1 +∆1 + i0 + α3
−sα3β1 +Θ3,1 + i0

)

≈ −pµ
1 pν

1
sβ2

1
(∆1 +Θ3,1) .

(3.26)

This equation implies that in region b) the current scales as O(1) and not as O(λ−1/2) as a
naive estimate suggests. This suppression occurs because of the cancellation between two
terms in brackets in eq. (3.26). This means that the contribution of the region b) starts
at λ−3/2, so that all ingredients needed to compute the amplitude in region b), except the
current Jµν(k1,−q1 − k1), are to be taken at leading power in λ.

Hence, we find

A(b)
1 = −⟨3|γµ|1]⟨4|γµ|2]

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

∆Φ Φ̃, (3.27)

where Φ̃ is still given by eq. (3.24) and

∆Φ =
(
−∆1

s
− Θ3,1

s

) ∞∫
−∞

dβ1
2πi

(θ(β1 − σ) + θ(−σ − β1))∆3,1
(sδ3β1 +∆3,1 + i0) β2

1
. (3.28)

Calculation of this integral is straightforward. We obtain5

∆Φ = δ3
2∆3,1

(∆1 +Θ3,1) . (3.29)

Performing a similar computation for a symmetric region β ∼ λ, α ∼
√

λ, we obtain

∆Φ̃ = δ4
2∆4,1

(∆1 +Θ4,1) . (3.30)

5We do not display contributions that scale as ∆3,1/σ since they cancel against the contribution of the
Glauber region.
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Combining the contributions of regions a) and b), we find

Aa&b
1 = −⟨3|γµ|1]⟨4|γµ|2]

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

×
(
1 + δ3

∆3,1
(sβ3 −Θ3,1) +

δ4
∆4,1

(sα4 −Θ4,1)
)

.

(3.31)

We turn our attention to region c) which corresponds to the soft scaling α1 ∼ β1 ∼
|k1,⊥| ∼

√
λ. According to eq. (3.8) we require the contribution of this region through

first subleading power. However, a more careful analysis shows that the contribution of
this region is suppressed stronger than originally expected. To see this we note that in
the soft region, to leading power, the currents vanish. For example, the expression for
Jµν(k1,−q1 − k1) reads

Jµν(k1,−q1 − k1) ≈ pµ
1 pν

1

( 1
sβ1 + i0 + α3

−sα3β1 + i0

)
= pµ

1 pν
1(−2iπ)δ(β1) → 0 , (3.32)

and we have set it to zero because poles of the fermion propagators have already been
accounted for when the Glauber region was analyzed. Hence, to obtain a non-vanishing
contribution from the soft region, subleading terms in both currents Jµν and J̃µν are needed.
The subleading contributions to the currents scale as O(1) and not as 1/

√
λ as a naive

estimate for the currents’ scaling would suggest. This implies that at variance with the
original estimate M(c) ∼ λ−2 in eq. (3.8), the contribution of the soft region is suppressed
by an additional power of λ. For this reason, the soft region is not needed for computing
the two-loop non-factorizable amplitude with O(

√
λ) accuracy.

The contribution of the collinear region can be analyzed in the same way. Since, in this
case, the amplitude scales as Md ∼ λ−3/2, both currents need to be taken at leading power.
We find

Jµν(k1, k2) = ⟨3|
[

γν(p̂1 + β1p̂2)γµ

β1s + i0 + γµ(p̂1 − β1p̂2)γν

−β1s + i0

]
|1]

= ⟨3|γµp̂2γν + γν p̂2γµ|1] = 2⟨3|pµ
2 γν + pν

2γµ − gµν p̂2|1],

J̃µν(k1, k2) = ⟨4|
[
(1 + β1)

γν p̂2γµ

ρ2(k1)
+ (1− β1)

γν p̂2γµ

ρ4(−k1)

]
|2] .

(3.33)

It is clear that the contraction of the two currents in eq. (3.33) vanishes. Hence, we conclude
that collinear regions do not provide the O(

√
λ) corrections to the leading term in the

eikonal expansion. Since, obviously, the hard region is not relevant as well, we conclude
that, with O(

√
λ) accuracy, the one-loop non-factorizable contribution is given by the sum

of the Glauber and Glauber-soft contributions in eq. (3.31).
Having performed this analysis, we note that the final result for the two regions a)

and b) can be obtained by simply computing the functions Φ and Φ̃ from the following
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unexpanded expressions

Φ =
∫ dβ1

2πi

∆3,1
sδ3(β1 − β3) + ∆3,1 + i0

[
1

β1 + ∆1
s + i0

+ 1
−β1 + Θ3,1

sα3
+ i0

]
,

Φ̃ =
∫ dα1

2πi

∆4,1
−sδ4(α1 + α4) + ∆4,1 + i0

[
1

−α1 + ∆1
s + i0

+ 1
α1 + Θ4,1

sβ4
+ i0

]
.

(3.34)

It is straightforward to integrate over β1 and α1 in eq. (3.34). Indeed, focusing on the
function Φ, we note that, if we close the integration contour in the upper half plane, only
the residue at β1 = Θ3,1/(sα3) contributes. We then find

Φ = (−1) ∆3,1
∆3,1 + δ3(Θ3,1 − sβ3)

. (3.35)

Expanding this result in δ3, performing a similar computation for Φ̃, and keeping only the
relevant terms in the product of Φ and Φ̃, we obtain eq. (3.31).

Finally, it is convenient to write the one-loop non-factorizable amplitude by extracting
exact (i.e. not expanded in powers of λ) Born amplitude. The latter reads

M0 = ig2
W gV V H

⟨3|γµ|1]⟨4|γµ|2]
(q2

1 − m2
V )(q2

2 − m2
V )

. (3.36)

Using it, we write

M1 = i
g2

s

4π
T a

i3i1T a
i4i2 M0 C1. (3.37)

The function C1 reads

C1 = 2
∫ dd−2k1,⊥

(2π)1−2ϵ

(p2
3,⊥ + m2

V )(p2
4,⊥ + m2

V )
∆1∆3,1∆4,1

×
[
1− δ3

(
m2

V

p2
3,⊥ + m2

V

+ m2
V

∆3,1

)
− δ4

(
m2

V

p2
4,⊥ + m2

V

+ m2
V

∆4,1

)]
.

(3.38)

We note that the above expression includes both the leading and the first subleading terms
in the expansion of the one-loop amplitude in powers of

√
λ. The function C1 can be

computed analytically and expressed through logarithmic and dilogarithmic functions; the
corresponding discussion can be found in appendix.

4 Two-loop non-factorizable contributions to WBF

We continue with the computation of two-loop non-factorizable QCD corrections to Higgs
boson production in weak boson fusion. The two-loop non-factorizable amplitude is written
as

M2 = −ig4
sg2

W gV V H

(1
2{T a, T b}

)
i3i1

(1
2{T a, T b}

)
i4i2

A2 , (4.1)
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p1 p3

p2 p4

H

W/Z

W/Z

k2k1

p1 p3

µ ν α

k1 k2 −k12 − q1

Figure 2. The two-loop amplitude, shown on the left, is thought in terms of the currents that
make it up. On the right, we define the generalized upper current Jµνα(k1, k2,−k12 − q1) used in
the calculation of the two-loop amplitude.

where

A2 = 1
2!

∫ ddk1
(2π)d

ddk2
(2π)d

1
d1d2d3d4

Jµνα(k1, k2,−k12 − q1)J̃µνα(−k1,−k2, k12 − q2) . (4.2)

The overall factor 1/2! comes from the symmetrization of two identical gluons and

d1 = k2
1 + i0, d2 = k2

2 + i0, d3 = (k12+q1)2−m2
V + i0, d4 = (k12−q2)2−m2

V + i0 , (4.3)

are bosonic propagators.6 Similarly to the one-loop case, in eq. (4.2), we defined two quark
currents; the conventions are explained in figure 2. The currents read

Jµνα(k1, k2,−k12 − q1)

= ⟨3|
{

γα(p̂1 + k̂12)γν(p̂1 + k̂1)γµ

ρ1(k12)ρ1(k1)
+ γα(p̂1 + k̂12)γµ(p̂1 + k̂2)γν

ρ1(k12)ρ1(k2)

+ γν(p̂3 − k̂2)γα(p̂1 + k̂1)γµ

ρ3(−k2)ρ1(k1)
+ γµ(p̂3 − k̂1)γα(p̂1 + k̂2)γν

ρ3(−k1)ρ1(k2)

+ γν(p̂3 − k̂2)γµ(p̂3 − k̂12)γα

ρ3(−k2)ρ3(−k12)
+ γµ(p̂3 − k̂1)γν(p̂3 − k̂12)γα

ρ3(−k1)ρ3(−k12)

}
|1] ,

(4.4)

and

J̃µνα(−k1,−k2, k12 − q2)

= ⟨4|
{

γα(p̂2 − k̂12)γν(p̂2 − k̂1)γµ

ρ2(−k12)ρ2(−k1)
+ γα(p̂2 − k̂12)γµ(p̂2 − k̂2)γν

ρ2(−k12)ρ2(−k2)

+ γν(p̂4 + k̂2)γα(p̂2 − k̂1)γµ

ρ4(k2)ρ2(−k1)
+ γµ(p̂4 + k̂1)γα(p̂2 − k̂2)γν

ρ4(k1)ρ2(−k2)

+ γν(p̂4 + k̂2)γµ(p̂4 + k̂12)γα

ρ4(k2)ρ4(k12)
+ γµ(p̂4 + k̂1)γν(p̂4 + k̂12)γα

ρ4(k1)ρ4(k12)

}
|2] .

(4.5)

To integrate over the loop momenta k1,2, for each of them (and also for their linear
combinations) we need to consider regions shown in table 1. We write

ki = αip1 + βip2 + ki,⊥, i = 1, 2 . (4.6)
6We use k12 = k1 + k2.
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The leading contribution comes from the Glauber region where α1 ∼ β1 ∼ α2 ∼ β2 ∼ λ

and |k1,⊥| ∼ |k2,⊥| ∼
√

λ. Similar to the one-loop case, the leading correction arises from
the mixed region where some of the α- or β-components scale as

√
λ. Both in the Glauber

region and in the mixed region, the loop momenta in the numerators of both currents Jµνα

and J̃µνα can be discarded. The reason for this is the same as in the one-loop case and we
do not repeat this analysis here.

Building on the experience with the one-loop calculation reported in the previous
section, we can make the following observation. To obtain O(

√
λ) correction, we only need

to consider the cases where i) one or both β1,2 components of the loop momenta scale as√
λ and both α1,2 scale as λ, or ii) the other way around. If one of the two α’s and one of

the two β’s scale as
√

λ, then α12 and β12 also scale as
√

λ. As the result, both currents in
eq. (4.4) and eq. (4.5) are suppressed by O(

√
λ). Thus, the contribution of this region is

suppressed by O(λ) and can be discarded. We conclude that, if we want to construct an
integrand which is valid both in the Glauber region and in the mixed region, we need to
write an expression that incorporates

√
λ corrections to one of the currents and that the

other current should be taken at leading order.

These considerations also guide the expansion of the propagators in powers of λ to make
them valid in both the Glauber region and in the mixed region. To write the approximate
expressions, we define

∆i = −k2
i,⊥ , ∆3,i = −(ki,⊥ − p3,⊥)2 − m2

V , ∆4,i = −(ki,⊥ + p4,⊥)2 − m2
V ,

Θ3,i = −
(
k2

i,⊥ − 2ki,⊥ · p3,⊥
)

, Θ4,i = −
(
k2

i,⊥ + 2ki,⊥ · p4,⊥
)

,
(4.7)

for i ∈ {1, 2, 12}, where α12 = α1 + α2, β12 = β1 + β2 etc. and obtain

d1,2 ≈ ∆1,2 + i0 , d3 ≈ sδ3(β12 − β3) + ∆3,12 + i0 ,

d4 ≈ −sδ4(α12 + α4) + ∆4,12 + i0 ,

ρ1(ki) ≈ sβi +∆i + i0 , ρ3(ki) ≈ sα3β3 +Θ3,i + i0 , (4.8)
ρ2(ki) ≈ sαi +∆i + i0 , ρ4(ki) ≈ sβ4αi +Θ4,i + i0 .

We emphasize that the above expressions for propagators are valid both in the Glauber
region and in the mixed region. Because of that, we can use them to compute the two-loop
non-factorizable amplitude with O(

√
λ) accuracy in the same way as eq. (3.34) was used to

do that in the one-loop case.

Using the expanded propagators, we simplify the currents in eq. (4.5) and write the
amplitude as

Aa&b
2 = 1

2!⟨3|γ
α|1]⟨4|γα|2]

∫ dd−2k1,⊥
(2π)d−2

dd−2k2,⊥
(2π)d−2

1
∆1∆2∆3,12∆4,12

Φ Φ̃ , (4.9)
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where

Φ=
∫ dβ1

2πi

dβ2
2πi

∆3,12
sδ3(β12−β3)+∆3,12+i0

{
1(

β12+∆12
s +i0

)(
β1+∆1

s +i0
)

+ 1(
β12+∆12

s +i0
)(

β2+∆2
s +i0

)+ 1(
−β2+Θ3,2

sα3
+i0

)(
β1+∆1

s +i0
)

+ 1(
−β1+Θ3,1

sα3
+i0

)(
β2+∆2

s +i0
)+ 1(

−β2+Θ3,2
sα3

+i0
)(

−β12+Θ3,12
sα3

+i0
)

+ 1(
−β1+Θ3,1

sα3
+i0

)(
−β12+Θ3,12

sα3
+i0

)} ,

(4.10)

and

Φ̃=
∫ dα1

2πi

dα2
2πi

∆4,12
−sδ4(α4+α12)+∆4,12+i0

{
1(

−α12+∆12
s +i0

)(
−α1+∆1

s +i0
)

+ 1(
−α12+∆12

s +i0
)(

−α2+∆2
s +i0

)+ 1(
α2+Θ4,2

sβ4
+i0

)(
−α1+∆1

s +i0
)

+ 1(
α1+Θ4,1

sβ4
+i0

)(
−α2+∆2

s +i0
)+ 1(

α2+Θ4,2
sβ4

+i0
)(

α12+Θ4,12
sβ4

+i0
)

+ 1(
α1+Θ4,1

sβ4
+i0

)(
α12+Θ4,12

sβ4
+i0

)} .

(4.11)

To integrate over β1,2 and α1,2 it is useful to rearrange terms in the curly brackets in
eqs. (4.10), (4.11). Focusing on the integrand in eq. (4.10), we rewrite it as follows

{
. . .

}
→

∆1
s + ∆2

s − ∆12
s(

β12 + ∆12
s + i0

) (
β1 + ∆1

s + i0
) (

β2 + ∆2
s + i0

)
+

Θ3,1
α3s + Θ3,2

α3s − Θ3,12
α3s(

−β12 + Θ3,12
α3s + i0

) (
−β1 + Θ3,1

α3s + i0
) (

−β2 + Θ3,2
α3s + i0

)
+

 1
β1 + ∆1

s + i0
+ 1

−β1 + Θ3,1
sα3

+ i0

 1
β2 + ∆2

s + i0
+ 1

−β2 + Θ3,2
sα3

+ i0

 .

(4.12)

We use the above representation to compute the function Φ in eq. (4.10). We note that
the first term in eq. (4.12) can be discarded, because of the location of its poles. Indeed,

Φ1 =
∫ dβ1

2πi

dβ2
2πi

∆3,12
sδ3(β12 − β3) + ∆3,12 + i0

×
∆1
s + ∆2

s − ∆12
s(

β12 + ∆12
s + i0

) (
β1 + ∆1

s + i0
) (

β2 + ∆2
s + i0

) = 0 .
(4.13)
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To compute the contribution of the second term in eq. (4.12), we close the integration
contours in the lower half-planes for both integration variables. We obtain

Φ2 =
∫ dβ1

2πi

dβ2
2πi

∆3,12
sδ3(β12 − β3) + ∆3,12 + i0

×
Θ3,1
α3s + Θ3,2

α3s − Θ3,12
α3s(

−β12 + Θ3,12
α3s + i0

) (
−β1 +

Θ3,1
α3s + i0

) (
−β2 + Θ3,2

α3s + i0
)

= δ3(Θ3,1 +Θ3,2 −Θ3,12)
∆3,12

.

(4.14)

To compute the contribution of the third term in eq. (4.12), we close the integration contours
for both β1 and β2 in the upper half-planes. The result reads

Φ3 =
∫ dβ1

2πi

dβ2
2πi

∆3,12
sδ3(β12 − β3) + ∆3,12 + i0

×
 1

β1 + ∆1
s + i0

+ 1
−β1 + Θ3,1

sα3
+ i0

 1
β2 + ∆2

s + i0
+ 1

−β2 + Θ3,2
sα3

+ i0


= ∆3,12

sδ3
(

Θ3,1
s + Θ3,2

s − β3
)
+∆3,12

≈ 1− δ3(Θ3,1 +Θ3,2 − sβ3)
∆3,12

.

(4.15)

Adding up Φ1,2,3, we find the following expression for the function Φ which provides the
combined contribution of both the Glauber region and the mixed region

Φ =
3∑

i=1
Φi = 1− δ3(Θ3,12 − sβ3)

∆3,12
. (4.16)

The calculation for Φ̃ proceeds in an identical way. We obtain

Φ̃ = 1− δ3(Θ4,12 − sα4)
∆4,12

. (4.17)

Finally, putting everything together and retaining terms that provide O(
√

λ) corrections,
we find the following result for the two-loop non-factorizable amplitude

Aa&b
2 = − 1

2!⟨3|γ
α|1]⟨4|γα|2]

∫ dd−2k1,⊥
(2π)d−2

dd−2k2,⊥
(2π)d−2

1
∆1∆2∆3,12∆4,12

×
[
1 + δ3

∆3,12
(sβ3 −Θ3,12) +

δ4
∆4,12

(sα4 −Θ4,12)
]

.

(4.18)

It remains to analyze the contributions of the other regions to the two-loop non-
factorizable amplitude. This analysis proceeds along the lines of the discussion of the
one-loop case. It relies on the fact that for soft and collinear gluons, fermion currents
simplify dramatically. Consider, for example, the case where k1 is Glauber and k2 is soft.
Naively, this region would contribute at O(λ−2) so that we need to account for subleading
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contributions from this region. In practice, the contribution is O(λ) suppressed compared
to a naive estimate.

Indeed, if k1 is soft and k2 is Glauber, then k12 is also soft. To understand how the
currents simplify in this case, consider eq. (4.12). Since β12 ∼ β1 ∼

√
λ ≫ λ, the leading

contribution in the last line of eq. (4.12) vanishes; we then find that the current in eq. (4.12)
scales as λ−1, at variance with the naive scaling λ−3/2. We note that we ignore the pole at
β1,2 = 0 for the same reason as in the one-loop case, see eq. (3.32). Since both currents
exhibit this behavior, we conclude that the contribution of this region to the amplitude
scales as O(λ−1) and not as O(λ−2) as naively expected. For this reason, it is not relevant
for the calculation of the two-loop amplitude with the O(

√
λ) accuracy.

Similar to the one-loop case, we write the two-loop amplitude as

M2 = −1
2

g4
s

(4π)2

(1
2{T a, T b}

)
i3i1

(1
2{T a, T b}

)
i4i2

M0 C2, (4.19)

where M0 is defined in eq. (3.36) and the function C2 reads

C2 = 4
∫ dd−2k1,⊥

(2π)1−2ϵ

dd−2k2,⊥
π(2π)1−2ϵ

(p2
3,⊥ + m2

V )(p2
4,⊥ + m2

V )
∆1∆2∆3,12∆4,12

×
[
1− δ3

(
m2

V

p2
3,⊥ + m2

V

+ m2
V

∆3,12

)
− δ4

(
m2

V

p2
4,⊥ + m2

V

+ m2
V

∆4,12

)]
.

(4.20)

This function looks analogous to the one-loop function C1, cf. eq. (3.38). It is relatively
straightforward to compute C2 analytically; the corresponding discussion can be found
in appendix.

5 Infrared pole cancellation and the finite remainder function

To compute the double-virtual non-factorizable contribution to the differential WBF cross
section, we square the one-loop amplitude in eq. (3.37) and calculate the interference of
the two-loop amplitude in eq. (4.19) with the Born amplitude. Summing over spins and
colours, we find

dσ̂NNLO
nf = N2

c − 1
4N2

c

α2
s Cnf dσ̂LO, (5.1)

where αs = g2
s/4π is the strong coupling constant,7 dσ̂LO is the exact Born differential

cross section for Higgs boson production in WBF and Cnf characterizes the non-factorizable
corrections. The function Cnf reads

Cnf = C2
1 − C2 , (5.2)

and all terms that are suppressed stronger than O(
√

λ) are supposed to be discarded when
computing it.

7Strictly speaking, this is the bare coupling constant. However, as we will explain shortly, the function Cnf

is ε-finite. Because of this, the difference between bare and renormalized coupling constants can be ignored.
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We note that functions C1 and C2 are infra-red divergent; these divergences arise when
the loop momenta ki,⊥, i = 1, 2, vanish. Computing these functions and expanding in ϵ, we
find

C1 = −1
ϵ
+ C1,0 + ϵ C1,1 +O(ϵ2) ,

C2 = 1
ϵ2 − 2

ϵ
C1,0 + C2,0 +O(ϵ1) .

(5.3)

Using these results in eq. (5.2), we obtain

Cnf = C2
1,0 − 2 C1,1 − C2,0 , (5.4)

which is infra-red finite and can be computed for ε = 0. The fact that the double-virtual
contribution to non-factorizable corrections in WBF is finite through O(

√
λ) is in accord

with Catani’s formula for infra-red divergences of generic two-loop amplitudes applied to the
WBF process [17]. Analytic results for the function Cnf can be found in the supplementary
material provided with this submission.

6 Numerical results and phenomenology

It is instructive to study the results of the calculation in several ways. First, we compare the
analytic results for the function Cnf at leading order in the λ-expansion, which is recovered
from our results by setting δ3, δ4 to zero, against numerical results8 reported in ref. [1] and
find good agreement. Second, to explore the accuracy of our result in a realistic setting,
we compare the one-loop amplitude including leading and first sub-leading terms in the
λ-expansion, with the exact one-loop non-factorizable amplitude A1. To this end, we
generate events that pass the WBF cuts [19], use them to evaluate both amplitudes, and
compute the following quantity

Xδ = A1 −Aa&b
1

Aa&b
1 −A(0)

1
. (6.1)

In eq. (6.1), A1 is the exact amplitude, A(0)
1 is the leading eikonal amplitude

A(0)
1 = −⟨3|γµ|1]⟨4|γµ|2]

∫ dd−2k1,⊥
(2π)d−2

1
∆1∆3,1∆4,1

, (6.2)

and Aa&b
1 is given in eq. (3.31). We expect that in WBF kinematics Xδ ∼ O(

√
λ) and we

would like to check if this is indeed the case.
WBF events are required to contain at least two jets with transverse momenta pj,⊥ >

25GeV and rapidities |yj | < 4.5. The two jets must have well-separated rapidities, |yj1 −
yj2 | > 4.5, and their invariant mass should be larger than 600GeV. In addition, the two
leading jets must be in the opposite hemispheres in the laboratory frame; this is enforced by
requiring that the product of their rapidities in the laboratory frame is negative, yj1yj2 < 0.

8We note that very recently an analytic result for Cnf at leading order in the λ-expansion was computed [18].
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Figure 3. In the left pane, typical δ3 and δ4 values for events allowed by the WBF cuts are shown.
In the right pane, Xδ distribution is presented. See text for details.

Finally, we require that the absolute value of Higgs boson rapidity in the partonic center-
of-mass frame is less than one, |yH | < 1.0. We impose this cut to remove events with too
large δ3 ∼ eyH and δ4 ∼ e−yH , see eq. (2.6). We note that the cut on the Higgs rapidity
removes just about 5% of the events that pass standard WBF cuts.

In the left pane in figure 3, we show typical values of δ3 and δ4 for selected events.
The distribution peaks at δ3 ∼ δ4 ∼

√
λ ∼ 0.1 which is sufficiently small to justify the

expansion in powers of
√

λ. In the right pane in figure 3, we show the distribution of
Xδ defined in eq. (6.1) for selected events. We see that, on average, the next-to-eikonal
corrections reproduce the evaluation of the exact one-loop amplitude subject to WBF cuts.
The Xδ-distribution peaks at around 0.1 which confirms our expectation that Xδ ∼

√
λ.

However, the distribution is fairly broad, which means that neglected terms amount to
about 30% of the next-to-eikonal contribution. This is consistent with magnitude of terms
that we neglected by truncating the λ-expansion at O(

√
λ) accuracy.

We are now in position to investigate the impact of next-to-eikonal corrections on the
WBF cross section. The cross section reads

dσ =
∑
i,j

∫
dx1 dx2 fi(x1, µF ) dσ̂NNLO

nf (x1, x2, µR) fj(x2, µF ) , (6.3)

where fi,j are parton distribution functions and dσ̂NNLO
nf (x1, x2, µR) is the partonic WBF

cross section that includes non-factorizable corrections computed through next-to-eikonal
approximation. We employ NNPDF31_nnlo_as_0118 parton distribution functions [20] and
use dynamical renormalization and factorization scales9

µF = µR = mH

2

[
1 +

4p2
H,⊥

m2
H

]1/4

. (6.4)

9It is not clear that this popular choice of the renormalization and factorization scales [10] is the optimal
choice for non-factorizable contributions. Further studies of this question are quite desirable.
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Figure 4. Eikonal and next-to-eikonal contributions to the transverse momentum and rapidity
distributions of the leading jet. In the upper pane, leading eikonal contribution is plotted with a
red, dashed line and the next-to-eikonal one with a green, solid line. In the lower pane, we show the
ratio of next-to-eikonal corrections ∆a&b = dσV V − dσ

(0)
V V to eikonal contributions dσ

(0)
V V . We note

that in the upper left pane, absolute values are shown. See text for further details.

We set the mass of the W boson to mW = 80.398 GeV, the mass of the Z boson to
mZ = 91.1876 GeV, and the mass of the Higgs boson to mH = 125 GeV. The Fermi
constant is taken to be GF = 1.16637× 10−5 GeV−2.

For 13 TeV proton-proton collisions, we find that the non-factorizable, double-virtual
contribution to Higgs boson production in WBF evaluates to

σV V = (−3.1 + 0.53) fb , (6.5)

where we display contributions of leading and next-to-leading terms in the λ-expansion. We
emphasise that the next-to-eikonal correction is calculated by excluding kinematic configu-
rations where |yH | > 1 in the partonic center-of-mass frame, in addition to conventional
WBF cuts that we listed earlier. It follows from eq. (6.5) that the correction to the leading
eikonal approximation amounts to O(17%).10

We now turn to the discussion of kinematic distributions. In figure 4, we display
non-factorizable corrections to transverse momentum and rapidity distributions of the
leading jet. The comparison of leading and next-to-leading eikonal contributions in lower
panes shows that next-to-leading eikonal corrections range from ten to fifty percent. They
appear to modify the leading order eikonal contribution by O(50%) for higher values of
pj1,⊥. This enhancement is partially related to the fact that the leading eikonal contribution
changes sign at around pj1,⊥ ∼ 2mW , which is the reason for rapidly changing ratio of
eikonal factors shown in the lower pane.

The non-factorizable contributions to Higgs boson transverse momentum and rapidity
distributions are shown in figure 5. The relation between eikonal and next-to-eikonal
contributions are similar to what was observed for the fiducial cross section as well as p⊥
and rapidity distributions of the leading jet.

10If we do not restrict yH integration range, σV V in eq. (6.5) changes to σV V = (−3.1 + 1.0) fb.
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Figure 5. Eikonal and next-to-eikonal contributions to the transverse momentum and rapidity
distributions of the Higgs boson. In the upper pane, leading eikonal contribution is plotted with a
red, dashed line and the next-to-eikonal one with a green, solid line. In the lower pane, we show the
ratio of next-to-eikonal corrections ∆a&b = dσV V − dσ

(0)
V V to eikonal contributions dσ

(0)
V V .

7 Conclusion

We computed the two-loop virtual non-factorizable QCD corrections to Higgs boson pro-
duction in weak boson fusion through next-to-leading order in the eikonal expansion. We
found that such an expansion proceeds in powers of pH,⊥/

√
s ∼ mH/

√
s and explained how

to simplify the integrand of the two-loop amplitude to calculate both the leading and the
next-to-leading terms in such an expansion.

We observed that combining individual diagrams before integrating over loop momenta
leads to significant simplifications in the calculation. This happens because contributions
of some of the virtual-momenta regions, that are relevant for computing next-to-eikonal
corrections in individual Feynman diagrams, receive additional suppression in the full
amplitude and start contributing only at next-to-next-to-leading power.

We have derived compact integral representations for the double-virtual non-factorizable
amplitude at both leading and next-to-leading power in the eikonal expansion. We have also
explained how to compute the two-loop amplitude analytically and provided the analytic
results in the supplementary material.

The numerical impact of next-to-eikonal corrections is significant although, given the
overal smallness of non-factorizable contributions, they do not change the original conclusions
of refs. [1, 21]. Nevertheless, we find that, typically, the next-to-eikonal corrections change
the estimate of the non-factorizable contributions based on the leading term in the eikonal
expansion by O(20) percent.

As a final comment, we note that other sources of non-factorizable contributions to
WBF cross sections, including double-real emission and the real-virtual corrections, were
recently studied in ref. [22]. It was found that, thanks to the WBF cuts, all the contributions
beyond the double-virtual ones are tiny and cannot impact the phenomenological studies
of Higgs production in WBF in any way. The results reported in this reference allow
us to estimate the contribution of the non-factorizable double-virtual corrections to the
WBF cross section with a precision that is likely better than O(10) percent. Since the
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non-factorizable contribution itself is just O(1) percent of the total WBF cross section, the
remaining uncertainties stemming from the imprecise knowledge of the two-loop virtual
amplitude are irrelevant. We conclude that the current understanding of non-factorizable
effects is sufficient for phenomenological studies of Higgs production in weak boson fusion
envisaged for the Run III and the high-luminosity phase of the LHC.
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A Calculation of two-dimensional master integrals

The goal of this appendix is to explain how the d = 2 Feynman integrals that contribute to
the coefficients C1,2 can be computed. We begin with the discussion of the two-loop case.
Two-loop d = 2 integrals that are required for computing C2 belong to the following integral
family

j[a1, a2, a3, a4] =
(m2

V )2ϵ

πd−2Γ(1 + ϵ)2

∫ dkd−2
1,⊥ dkd−2

2,⊥
∆a1

1 ∆a2
2 ∆a3

3,12∆
a4
4,12

. (A.1)

These integrals depend on the transverse momenta of the outgoing jets and of the Higgs
boson, as well as on the mass of the vector boson V . For later convenience, we introduce
three dimensionless variables as

x =
p2

3,⊥
m2

V

, y =
p2

4,⊥
m2

V

, z =
p2

H,⊥
m2

V

. (A.2)

It is straighforward to write down integration-by-parts (IBP) identities [24, 25] for the
integral family j[a1, a2, a4, a4]. Performing the IBP reduction with LiteRed [26, 27], we
find that there are six master integrals. They are

f1 = j[2, 1, 2, 0], f2 = j[2, 2, 1, 0], f3 = j[2, 1, 0, 2],
f4 = j[2, 2, 0, 1], f5 = j[2, 1, 1, 1], f6 = j[2, 1, 2, 1].

(A.3)

The master integrals are displayed in figure 6. Although we need these integrals at
d = 2, we find it more convenient to study them first in four dimensions. In particular,
at d = 4, we easily obtain the canonical basis [28] using the Magnus series expansion
method [29]. We then transform the integrals to d = 2 using the dimensional recurrence
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Figure 6. Two-dimensional two-loop master integrals. The thick and thin internal lines represent
massive and massless propagators, respectively. Red lines have mass mV . The black thick lines
correspond to external “massive” legs. A dot on the internal line means raising the power of
corresponding propagator by one.

relations [30]. In four dimensions, the canonical basis reads

g1 = xϵ2m2
V f1,

g2 = 2ϵ2m2
V f1 + (x + 1)ϵ2m2

V f2,

g3 = yϵ2m2
V f3,

g4 = 2ϵ2m2
V f3 + (y + 1)ϵ2m2

V f4,

g5 = 2ϵ3m2
V r2f5, (A.4)

g6 = ϵ2r1m2
V

4[2(y − x) + z(1 + y)]

{
4m2

V [(x − y)2 − (x + 1)(y + 1)z]f6

− 6ϵ[(x − y)(y − 1) + z(1 + y)]f5 + (y + 1)2(f4 + 2f3)

− (x + 1)(y + 1)(f2 + 2f1)
}

,

where r1,2 represent two square roots,

r1 =
√

z(z + 4), r2 =
√
(x + y − z)2 − 4xy. (A.5)

Note that all the g’s are normalized to be dimensionless and can be regarded as functions of
x, y and z only. The canonical basis vector g⃗ = (g1, g2, g3, g4, g5, g6)T satisfies a differential
equation in the dlog form,

dg⃗(x, y, z; ϵ) = ϵ(dA) g⃗(x, y, z; ϵ), (A.6)
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where the matrix A reads

l1 − 2l2 −l2 0 0 0 0
4 (l1 − l2) −2l2 0 0 0 0

0 0 l3 − 2l4 −l4 0 0
0 0 4 (l3 − l4) −2l4 0 0

2l10 − l12 + l14
l14−l12

2 2l11 + l12 − l14
l12−l14

2
l5−3l7+4l9

2 −2 (l12 + l14)
−l8+l12−2l13+l14

4
2l8+l12−2l13+l14

8
−l8−l12+2l13−l14

4
2l8−l12+2l13−l14

8 − l12+l14
8

l5−2l6−l7
2


, (A.7)

and the 14 logarithms that constitute A are

l1 = log(x), l2 = log(x + 1), l3 = log(y),
l4 = log(y + 1), l5 = log(z), l6 = log(z + 4),

l7 = log
[
(x − y)2 − (x + 1)(y + 1)z

]
, l8 = log

(
z + 2− r1
z + 2 + r1

)
, l9 = log (r2) ,

l10 = log
(

x − y + z − r2
x − y + z + r2

)
, l11 = log

(−x + y + z − r2
−x + y + z + r2

)
, (A.8)

l12 = log
(

r1 − r2 + x − y

r1 + r2 + x − y

)
, l13 = log

(
r1 − r2 + x − y

r1 + r2 − x + y

)
,

l14 = log
(

r1 − r2 − x + y

r1 + r2 − x + y

)
.

Eq. (A.6) can be recursively solved order-by-order in ϵ and the solutions are expressed
in terms of Chen’s iterated integrals [31] with some boundary constants that cannot be
determined from the differential equations alone. For the integrals g1,..,6 these constants can
be computed with a relative ease since all canonical integrals, except g2 and g4, vanish when
x = y = z = 0. The non-vanishing integrals g2 and g4 at this kinematic point evaluate to

g2,4(0, 0, 0) = −πϵ csc(πϵ)Γ(1 + 2ϵ)
Γ(1 + ϵ)2 = −1− π2

3 ϵ2 +O
(
ϵ3
)

. (A.9)

Furthermore, under the change of variables

x = zuv, y = z(1− u)(1− v), z = (1− w)2

w
, (A.10)

the square roots r1,2 are rationalized simultaneously and we find

r1 = (1− w)(1 + w)
w

, r2 = (1− w)2(u − v)
w

. (A.11)

As the result, the solutions of the system eq. (A.6) can be expressed in terms of multiple
polylogarithms. In fact, since we need g⃗ only through O(ϵ2), relevant expressions for
integrals involve logarithms and dilogarithms of u, v, w. To express them in terms of x, y, z,
we use the following formulas

u, v = x − y + z ± r2
2z

, w = 2 + z − r1
2 . (A.12)
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Finally, to compute the one-loop amplitude, we need to study the following integral
family

j[a1, a2, a3] =
(m2

V )ϵ

π(d−2)/2Γ(1 + ϵ)

∫ dkd−2
1,⊥

∆a1
1 ∆a2

3,1∆
a3
4,1

. (A.13)

The analysis is identical to the two-loop case and we will not repeat it here. We only
mention that the canonical basis at d = 2 reads

g1 = ϵj[0, 0, 1],
g2 = ϵj[0, 1, 1]m2

V r1,

g3 = ϵj[1, 0, 1]m2
V (1 + y) ,

g4 = ϵj[1, 1, 0]m2
V (1 + x) ,

g5 = ϵm2
V

2r2

{
2j[1, 1, 1]m2

V

[
(x − y)2 − (1 + x)(1 + y)z

]
(A.14)

+ j[1, 1, 0] [(−x + y − z) + x (x − y − z)]
− j[1, 0, 1] [(−x + y + z) + y (x − y + z)]

+ j[0, 1, 1] (2− x − y + z) z
}

.

The canonical basis satisfies a differential equation in the dlog form, similar to eq. (A.6).
The corresponding matrix A reads

0 0 0 0 0
l8 −l6 0 0 0
−l3 0 l3 − 2l4 0 0
−l1 0 0 l1 − 2l2 0

l10+l11
2

l12+l14
2

−l11−l12+l14
2

−l10+l12−l14
2 2l9 − l7

 , (A.15)

where the logarithms, li, are given in eq. (A.8). To compute the boundary constants, we
use the fact that the basis is finite at x = y = z = 0 and g1 = −1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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