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Abstract—University courses for System-on-Chip (SoC) design
mostly focus on particular aspects. Whereas this can provide
detailed understanding of these aspects, it neglects system in-
tegration specific topics such as crossing digital and analog
domains. In addition, many courses skip practical issues and
do not teach Electronic Design Automation (EDA) tools. This is
reasonable in the context of a specialized course, but omitting
these techniques often prevents students from making active use
of the learned knowledge in their own projects.

In the following, we present our technological platform to teach
SoC design in a holistic lab course: The course takes students
from writing the first line of Verilog code to advanced digital
and analog design. It introduces simulation of digital and analog
systems, debugging methods for software and hardware, CPU
bus architecture, custom peripherals and driver development.
This work is prototyped using Field Programmable Gate Arrays
(FPGAs) and later transferred to an ASIC target, covering
standard cell synthesis and analog layout. At the end of the
semester, students finalize the project with technical documen-
tation writing. The course is built on the design of an audio
peripheral, combining all topics in a single real-world system. It
enables students to apply theoretical aspects from various lectures
in the SoC curriculum in practice and equips them with the skills
needed to dive deeper into each of the involved topics on their
own.

Index Terms—FPGA, ASIC, SOC, Mixed Signal, Teaching

I. INTRODUCTION

SoC curricula like [1] cover various digital and analog
design courses, but often with little cross-course integration of
both. Furthermore, software development for SoCs is usually
excluded, or part of another isolated lecture. Lab courses like
[2] and [3] add hands-on experience, but don’t teach mixed-
signal issues or documentation. And whereas [4] integrates a
complex digital and analog design, each student only works
on a small part of the system individually. Without a course
integrating the lectures of the curriculum for each single
student, it is difficult for students to see cohesiveness and
practical application of the learned knowledge. This may
demotivate students and therefore reduce learning success. To
fill the gap, we conceive a lab course for our SoC teaching
curriculum which combines knowledge from major lectures
and applies it in a single application.

We integrate digital design and simulation as in [5], adding
analog aspects, driver development, debugging and documen-
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Fig. 1. Block design of the final audio player target application platform.
Students are focusing primarily on the audio peripheral marked in orange.

tation writing. To motivate using a real-world application,
we base the course on the design of an audio peripheral for
an existing SoC. Unlike existing courses, we introduce basic
concepts and focus primarily on a cohesive overview over the
whole problem space. In order not to overwhelm students,
we only quickly cover CPU architecture, unlike [6]. Using
a RISC-V Central Processing Unit (CPU) enables students
to make use of the vast landscape of RISC-V educational
materials [7], [8] to obtain further knowledge on their own.
We focus on Verilog as it’s less complex than Chisel [9] and
quicker to learn for students new to hardware description.
Understanding basic concepts in Verilog enables enhanced
understanding of Chisel afterwards. And whereas [10] stresses
importance of integration frameworks such as Chipyard [11],
we focus on development of peripherals from ground up.
With this course providing the groundwork and integration
knowledge, expanding on any of the covered topics will be
left for advanced courses or to students own exploration.

As previous work has identified the importance of remote
work [12], [13], we enable remote access. To cover physical
debugging, setting up of boards and probing signals, we
additionally require lab attendance in normal cases.

II. TARGET APPLICATION PLATFORM

Figure 1 shows the top-level block design of the lab course
platform. To keep the design easy to understand for students,
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Fig. 2. Sample solution implementation of the audio peripheral. Blocks the
students are either developing from scratch or extending are shown in orange.

it consists of only three blocks: A basic reset block, the main
CPU block and the audio peripheral. The reset block is used
to synchronize an external, asynchronous reset signal. The
CPU is an instance of the open-source NEORV32 SoC [14]. It
provides a CPU implementing the open RISC-V specification
[15] and various peripherals. The lab platform uses the General
Purpose Input / Output (GPIO) module to access LEDs,
buttons and general purpose IO, the JTAG module for software
debugging, the SPI module for SD card access, the I2C module
for the I2C display and the UART module for text output and
programming. It also makes use of the Execute in Place (XIP)
module to execute code directly from an externally connected
SPI flash.

The top-level design is kept generic to fit both the FPGA
prototype and the final Application Specific Integrated Circuit
(ASIC) target. It avoids introduction of target-specific sig-
nals and where vendor specific IP cores are required, they
are abstracted to a common interface for both FPGA and
ASIC. Due to the dominating amount of digital logic in the
project, we adopt a digital-on-top flow, although students are
introduced to the other integration possibilities as well. As
the digital-on-top flow also fits the FPGA prototyping method
best, the course can naturally proceed from FPGA prototyping
to ASIC implementation. We use Digilent ZedBoards for the
FPGA prototyping and the AMS AH18 technology for the
ASIC target. For the CPU, NEORV32’s main teaching benefits
include extensive documentation with both user documentation
and internal documentation, a simple, easy to understand
implementation, an uncomplicated build process using only
VHDL sources, a large ecosystem with ready to use drivers
and compilers, and a well-integrated software stack. A high
quality of implementation, documentation and reduced com-
plexity is needed to enable beginner students to understand
the system quickly. The NEORV32 ecosystem also provides a
ready to use FreeRTOS implementation [16], which is used for
a real SD card based audio player application. This application
is provided for demonstration purposes, but not worked on by
students in the lab.

Figure 2 shows the detailed implementation of the audio
peripheral, with students working on parts marked in orange.
The connection to the CPU is realized as a wishbone bus
responder, which is implemented in the Control module.
It implements the address space as shown in table I and

TABLE I
REGISTER SPACE FOR THE AUDIO PERIPHERAL

0x00 CTRL0 RW IP Core Control Register
31 – 4 3 2 1 0
Reserved I2S EN DAC EN MODE RST

I2S EN Set to 1 to enable I2S module.
DAC EN Set to 1 to enable DAC module.
MODE Set to 1 to select DAC output. 0 selects I2S output.
RST Set to 1 to keep peripheral in reset.

0x04 STAT0 R IP Core Status Register
31 – 3 2 1 0
Reserved FULL EMPTY LOW

FULL Reads 1 if FIFO is full.
EMPTY Reads 1 if FIFO is empty.
LOW Reads 1 if FIFO level is below threshold.

0x08 FIFO LOW RW FIFO Low Threshold Register

0x0c FIFO LEVEL R Current FIFO Level Register

0x10 AUDIO LEFT W Left Audio Sample Register
31 30 – 24 23 – 0
COMMIT Reserved DATA

COMMIT Set to 1 to commit left and right sample to FIFO.
DATA Audio data for left channel.

interacts with the corresponding control signals. This includes
read-only, write-only and read-write registers, teaching the
commonly used variations. The CTRL0 register includes a
software reset, enable signals for the peripherals and a mode
selector, realized using the multiplexer in fig. 2. When writing
this register, the values need to be passed to the peripherals.
In addition, it should be possible to read back the values
of the register. The STAT0 register on the other hand is
only readable and provides access to the FIFO status flags.
FIFO LOW realizes another read-write register which can be
used to specify the level below which the low condition of
the FIFO will be set. This condition is not only available
in the status register, but is also exposed as a port from the
audio peripheral. It is connected to the XIRQ module of the
NEORV32, providing an interrupt when the audio FIFO level
is below a configurable threshold. The current level can also
be read from the FIFO LEVEL register. AUDIO LEFT and
AUDIO RIGHT are symmetrical write-only registers to put
audio data into the FIFO. Applications are expected to write
both registers in arbitrary order and set the COMMIT bit with
the second write. The module internally buffers both 24 bit
samples and forwards them as one 48 bit value to the FIFO.

To develop the system piece by piece in various lab sessions,
students first start with a reduced top design, which does not
include the Control and CPU modules. Instead, it consists
of only the I2S module and a sine generator developed by
students and a pre-provided FIFO connecting both. These
modules teach students digital design aspects, including clock-
ing, implementing state machines and driving FPGA output
signals. Testbenches are provided to test the individual mod-
ules early on, but students also need to implement tests on
their own to combine both modules. When both modules are



Fig. 3. Photograph showing the top side of the extension PCB. The FMC
connector connecting to the base board is located on the bottom side.

implemented, students are taught how to prototype on FPGAs
and test the system on the ZedBoard. We then introduce
various debugging aids: Analyzing the generated I2S signal
using logic analyzers, capturing internal signals using the
Integrated Logic Analyzer (ILA) and observing the analog sine
wave generated by an external Digital to Analog Converter
(DAC) IC using oscilloscopes.

Once this standalone system is correctly implemented,
students will proceed to package the I2S module into a
reusable wishbone peripheral. They will derive the register
space according to given specifications, then implement the
wishbone protocol and Control module. They will learn how
to design a register space and how address spaces are used in
SoCs.

III. PERIPHERAL EXTENSION PCB
To enable students to test their I2S module in a real system,

the ADAU1761 chip on the ZedBoard could be used. This
approach has two drawbacks: The I2S signals are not readily
available on the board for easy debugging. Furthermore, the
ADAU1761 is a complex audio codec, needing to be config-
ured via SPI. This introduces possible sources of error, which
can trip up beginner students and move away the focus from
the system integration aspect of the lab. We therefore designed
the custom extension board shown in fig. 3, interfacing to
the FMC connector on the ZedBoard. Its main components
are shown in fig. 4 and are built around the CS4344 DAC
[17], which as opposed to the ADAU1761 does not require
initialization. All signals used on the extension board are
routed to a debug connector (DBG) in addition, providing easy
debugging access for oscilloscope, logic analyzer or JTAG
testing.

The board furthermore provides various convenience periph-
erals, enabling full use of the developed SoC as an audio
player: An I2C OLED display, a directional switch located
next to it for navigation and an SD card slot for data storage.
A voltage regulation subsystem ensures that all peripherals can
either be powered from a 12 V supply provided via the FMC
connector, or from externally supplied 5 V. The board is ready
to be used with non-FPGA carrier boards, in which case it can
also provide the generated voltages on the FMC connector.
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Fig. 4. Major components on the FMC extension board. Parts shown in red
are connectors, the blue part is the DAC used to test the students’ I2S modules.

SPI flash provides a convenient way to permanently store the
SoC firmware. It is programmed using NEORV32’s default
bootloader via a UART interface. This interface is connected
to a USB to UART bridge, providing simple access to firmware
programming from the lab PCs.

In addition, the board provides a local clock oscillator
as main clock reference for the FPGA. We chose a clock
frequency of 98.304 MHz, which can be divided evenly to the
required I2S clocks. We thus avoid the need to use a Phase
Locked Loop (PLL) IP core for clock generation and enable
the design to operate in a single clock domain. Providing all
required peripherals and voltages, the board can also be used
with the taped out ASIC. This way, the ASIC can be tested in
the identical environment as the FPGA, avoiding errors caused
by mismatches in different board designs.

IV. SOFTWARE AND DRIVER DESIGN

In order to conveniently use the audio peripheral in software,
a device driver is needed. As the main focus of the lab
is mixed-signal SoC, drivers are kept simple using a bare-
metal system and plain C. They are developed following the
NEORV32 Software Development Kit (SDK) as a reference.

The basic driver consists of C-header file with definitions
for registers from table I, and a C-source file with the imple-
mentations of access functions. Its Application Programming
Interface (API) includes an initialization function, setters and
getters for registers and an audio data transmit function.
Blocking and non-blocking mode are supported, where the
non-blocking mode is implemented using the dedicated in-
terrupt channel and a callback function. This function is
called whenever the FIFO LEVEL register value reaches the
threshold, defined by the FIFO LOW register. It is used to
push further data into the FIFO of the audio peripheral.

Students implement their own device driver by first studying
the contents of the NEORV32 SDK: linker file, startup code,
common headers and existing peripherals. They will first im-
plement the less complex blocking API and will further learn
to describe their peripheral using System View Description
(SVD) [18]. Although initially developed for the ARM-based
SoCs, this format has been adopted by various vendors and
the open source community for other architectures. In the



Clock Divider

Thermometer
Encoder

Current
Sources

Buffer
Amp

clk

rst

clk

rst

data

255

read

line

Fig. 5. Sample solution for the DAC block. Digital blocks the students are
developing are shown in orange, analog blocks they are designing in green.

NEORV32 SDK, it is used to provide information about
peripheral registers for debug software. Students will add the
description of their peripheral, learning to use it with Joint
Test Action Group (JTAG)-based debugging. The software part
further teaches how to check the registers in a debugger and
how to implement a non-blocking driver.

V. MIXED-SIGNAL ASIC DESIGN

Figure 5 depicts the system level overview of the DAC
in detail. All digital signals are synchronous to the main
clock and the analog output of the thermometer-coded DAC
is amplified and made available to the physical interface. The
clock divider module serves a special purpose in the ASIC
design: A strobe signal is utilized to enable the clock input
of the thermometer encoder, defining the sampling frequency
of the DAC while avoiding explicit handling of clock domain
crossings as in [19]. The thermometer encoder module features
an 8-bit parallel bus to the FIFO module, so only most
significant output bits are read. The strobe output is used as
data read signal for the FIFO, propagating the used sampling
rate up the signal chain. The thermometer encoder switches
255 current sources on or off, and their currents are summed
and passed to a set of amplifiers. Those convert the current to
a voltage, then buffer it to ensure low output impedance.

During the lab, students design and verify the functionality
of the thermometer encoder module. The synthesis process is
performed in Cadence Genus, the implementation in Cadence
Innovus. Special emphasis is put on the differences between
behavioral simulation, simulation after synthesis and simula-
tion after implementation. In addition, the concepts of setup
and hold times are explained as well as the role of clock skew
in ASIC design. For the analog components, theoretic aspects
such as MOSFET basics, different amplifier base structures
and differences between single ended and differential ampli-
fiers are reiterated. Students use Cadence Virtuoso to design a
schematic for a differential amplifier, simulate it and perform a
stability analysis. They then proceed to integrate the amplifier
with a provided DAC cell and the digital thermometer encoder.
After performing automatic placement and automatic routing
as well as manual placement and manual routing, students
use Design Rule Check (DRC) and Layout Versus Schematic
(LVS) checks to validate their design.

VI. DOCUMENTATION AND DIDACTICS

The lab uses modern tools to relieve students from dealing
with tool setup. We use a Linux network boot system, ensuring
identical setups on all available lab PCs. Students data is
shared across all PCs and the Linux setup ensures that students

can’t mess up the installation in any way. All required software
is preinstalled. For the most-commonly used tools in the lab
such as Vivado, Git and Cadence tools, we provide hands-on
tutorials showing real workflows. Students can work in the lab
outside of course sessions and in addition we provide remote
desktop access to a centralized server with identical setup.

To improve the learning experience of students, we make
use of various modern didactic approaches: The lab itself is
designed around a set of defined learning objectives, which are
communicated to the students early on in the first lab session.
The course sessions then adhere to constructive alignment
[20], focusing on the defined learning objectives. The grading
technique is based on the objectives as well, basing the grade
on a learning portfolio [21], [22]: A folder of documents
managed by students collecting all the important lab resources.
To make portfolios comparable, we specify the contents:
Work sheet solutions for theoretical aspects, which have to be
prepared ahead of the labs, protocols for the labs themselves
and a final summary. The final summary for the lab project
must be given as a datasheet documenting the audio peripheral
and driver, teaching proper documentation techniques. Each
student’s learning outcomes are assessed using this portfolio
and individual short oral exams during the semester and after
the course.

VII. CONCLUSION

We have shown how our SoC lab course teaches students
to develop digital systems in Verilog, simulate and prototype
them on FPGAs and debug them using ILA, logic analyzer
and oscilloscopes. They learn to integrate their own audio
peripheral within an existing SoC, design, implement and
document the register set for the peripheral and how to
connect it to the wishbone bus. In developing software drivers
for the peripheral and relating address spaces in hardware
and software, they also learn how to access peripherals in
embedded C code in general. Students further work on a DAC
and amplifier system to directly provide analog outputs for
audio. They learn to design schematics, to simulate and to
layout. The course then concludes with integration of analog
and digital designs. This integrated approach teaches students
the basics of every aspect, connecting topics from various
lectures in the curriculum. It provides a bridge between those
lectures and shows how the lecture knowledge can be applied
in practice. On a scale of 1 (best) to 5, course evaluation
by students in the winter term 2023 shows improvements
in enjoyment of course attendance (1.57), importance of the
experiments for further studies (1.21) and the quality of the
experimental setup (1.77). The course changes described here
therefore seem to better motivate students as intended.

In the future, we hope to improve the analog design and
mixed-signal integration aspects and tape out our reference
design. Additionally, we’d like to introduce some simple
hardware/software co-design considerations, for example us-
ing NEORV32’s extensions capabilities to implement special
instructions.
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