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Zusammenfassung

Solange Verkehrsteilnehmer ihre Manöverabsicht und ihre geplante Trajektorie
automatischen Fahrzeugen nicht mitteilen können, ist eine Verhaltensvorher-
sage für alle beteiligten Verkehrsteilnehmer erforderlich. Mit einer solchen
Vorhersage kann das Verhalten eines automatischen Fahrzeugs vorausschauend
generiert und damit komfortabler und energieeffizienter gemacht werden, was
den Verkehrsfluss verbessert.

Es wird ein künstliches neuronales Netz für Graphen (GNN) vorgestellt,
das verschiedene probabilistische Positionsvorhersagen für interagierende
Agenten zur Analyse bereitstellt. Das vorliegende Anwendungsbeispiel ist
die Verkehrssituationsanalyse für das automatische Fahren, für welches ein
diskretisierter Vorhersagezeitraum von einigen Sekunden als relevant ange-
sehen wird. Das GNN propagiert einen vollvernetzten, gerichteten Agen-
tengraphen probabilistisch durch einen dünnvernetzten, gerichteten Karten-
graphen. Merkmale des Agentengraphen, der aus Verkehrsteilnehmern und
deren Beziehungen besteht, sowie Merkmale des Kartengraphen, der aus
Fahrbahnstücken und deren geometrischer, sowie verkehrsregelbezogenen
Verbindungen besteht, können für die Vorhersage verwertet werden.

Das Modell prädiziert für jeden Agenten zu jedem Prädiktionszeitpunkt
eine diskrete Aufenthaltswahrscheinlichkeitsverteilung über alle Fahrbahn-
stücke des Kartengraphen. Eine solche Prädiktion ist in der wissenschaftlichen
Literatur zwar üblich, setzt aber für deren stochastische Interpretierbarkeit und
damit Anwendbarkeit statistische Unabhängigkeit des zukünftigen Verhaltens
der Verkehrsteilnehmer voraus. Da diese Annahme bei interagierenden Agen-
ten als unzulässig erachtet wird, prädiziert das Modell darüber hinaus für alle
Agentenpaare diskrete Verbundwahrscheinlichkeitsverteilungen. Aus diesen
können bedingte Prädiktionen gegeben möglicher zukünftiger Positionen einer
der beiden Agenten berechnet werden.

In der Evaluierung werden gängige Metriken für den vorliegenden Fall
angepasst und verschiedene Modellierungstiefen einander gegenübergestellt.
Sowohl die individuelle Prädiktion als auch die bedingte Prädiktion werden
erfolgreich auf Genauigkeit und statistischer Zuverlässigkeit untersucht.
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Abstract

As long as traffic participants (TPs) cannot share information about their ma-
neuver intention or their planned trajectory with automated vehicles (AVs),
behavior prediction for these TPs is required. Such a prediction enables the
proactive generation of AV behavior making driving more comfortable and
energy-efficient, besides improving traffic flow.

An artificial graph neural network (GNN) is presented which provides prob-
abilistic position predictions for interacting agents as basis for further analysis.
The present use case is analysis of traffic situation for automated driving. A dis-
cretized prediction period of several seconds is considered relevant. The GNN
probabilistically propagates a fully-connected, directed agent graph through
a sparsely-connected, directed map graph. Features of the agent graph, con-
sisting of agents and their relationships, as well as features of the map graph,
consisting of lane tiles and their geometric as well as traffic rule-related con-
nections, can be utilized for prediction generation.

The model predicts a discrete occupancy probability distribution over all lane
tiles of the map graph. While this type of prediction is common in scientific
publications, it assumes statistical independence of all agents’ future behavior
for its stochastic interpretability and thus applicability. Since this assumption
is considered invalid for interacting agents, the model further predicts discrete
joint probability distributions for pairs of agents. This allows conditional
predictions given possible future position of either of both agents.

In the evaluation, common metrics are adapted to the discrete output at hand
and different modeling depths are juxtaposed. Both individual prediction and
conditional prediction are successfully examined for accuracy and statistical
reliability.
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pCand Contains all lane tiles the front axle rectangle of an

agent 𝑎 has an intersection over union (IoU) with.
Identifies, that an agent can potentially be located
at precisely that lane tile of the map subgraph.

p𝑎
LTM Positional vector that contains the probabilities of
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𝑧 Time index.
A Adjacency matrix entry.
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I Entry of an exemplary matrix for general transitions

from one lane tile to the other.
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M Message Matrix.
N Refers to a node.
𝑶 Output states in tensor form.
P Entry of position matrix.
P Vector of matrix.
PCand Contains all lane tiles the front axle rectangle of an

agent has an IoU with. Identifies, that an agent can
potentially be located at precisely that lane tile of
the map subgraph.

PMap Contains probabilities if an agent is on a certain
lane tile at a certain time step in the future, before
allowing agent interaction.

𝑃 Probability that an agent is on a certain lane tile at
a certain time step in the future.
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Q Laplacian matrix.
R Transition matrix from one lane tile to the lane tile
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S Self message matrix.
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T Transformation matrix.
T𝑎,𝑙 Transformation matrix from agent 𝑎 to lane tile 𝑙.
V Matrix of eigen vectors.
W Weight matrix entry, further defined through upper

and/or lower indices. See Section 2.1.2.
W Weight matrix.
X Input feature matrix entry, further defined through

upper and/or lower indices. See Section 2.1.2.
X Input feature matrix.
Y Output feature matrix entry, further defined through

upper and/or lower indices. See Section 2.1.2.
Y Output feature matrix.
𝛼 Aggregator function.
𝜹 Learning error.
𝜹 (𝜆) Learning error of layer 𝜆.
𝜖 Eigen value.
𝜂 Learning rate.
𝜆 Layer index in an ANN.
𝜇 Mask.
𝜇C Conflict mask. 0 on its trace where agent 𝑎 equals
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𝜇Joint Joint probability loss mask.
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trainable weights.
𝜑A Network module.
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𝜑Joint Joint position probability generator, network mod-

ule.
𝜑Conf Conflict Identifier, network module.
𝜑LTM Lane Tile Matcher, network module.
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𝜑Mess Message Extractor, network module.
𝜑N Artificial neural network module, that processes on

node-level.
𝜑NEN Artificial neural network module, that processes on

a node-edge-node-level.
𝜑Notif Notification Extractor, network module.
𝜑S,t=1 First state generator, network module.
𝜑S,t>1 Other states generator, network module.
𝜑SelfMess Self-Message Extractor, network module.
𝜑TME Transition Motion Estimator, network module.
𝜑y Output module of a model.
𝜎 Activation function, non-linear if not stated other-

wise.
𝜏 Transition probability from one to another lane tile.
𝜏State,𝑡 Transition probability for latent states from one to

another lane tile.
𝜏State,𝑡 Preliminary transition probability for latent states

from one to another lane tile.
𝜏Pos,𝑡 Transition probability for positional prob. mass

from one to another lane tile.
𝜏Pos,𝑡 Preliminary transition probability for positional

prob. mass from one to another lane tile.
𝜉 Joint position probability in scalar form.
𝜓 The conditional probability that an agent is on a

certain lane tile at a certain time step given another
agent on another lane tile, in scalar form.

𝜔 Turning rate.
Γ Set of all lane tiles.
Θ Set of all time steps.
Λ Set of all agents.
𝚷 Crossing matrix indicating spatial overlaps of two

lane tiles.
Π Crossing matrix entry indicating spatial overlaps of

two lane tiles.
Υ Set of lane tiles of a trajectory.
ΦM A prediction for a measurand.
Ξ Joint position probability in tensor entry form.
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𝚵 Joint position probability in tensor form.
𝚵GT Joint position probability ground truth in tensor

form.
Ψ Contains conditional probabilities that an agent is

on a certain lane tile at a certain time step given
another agent on another lane tile, in tensor entry
form.

𝚿 Contains conditional probabilities that an agent is
on a certain lane tile at a certain time step given
another agent on another lane tile, in tensor form.

Ω An event. Accordingly, P (Ω) notes the probability
that the event is happening.

0 Null tensor of equvalent shape (usually a vector).
1 Tensor of equivalent shape filled with 1 (usually a

vector).
1 Unity matrix.
D Set of data pairs.
N Set of all natural numbers.
R Set of all real numbers.
T Set of transitions between one lane tile to another.
Z Set of all integers.
E Set of edges in a graph.
E𝑖 Set of edges connected to node 𝑖.
CJoint Cross entropy tensor for joint probability.
CPos Cross entropy scalar for positional probability.
G Graph, consisting of vertices and edges connecting

those vertices.
L Loss.
LPos Probabilistic position cross entropy loss.
LPos,Map Probabilistic position cross entropy loss of map-

based prediction.
LPos,Final Probabilistic position cross entropy loss of final

prediction.
LJoint Joint probabilistic position cross entropy loss.
LSum,End Sum of losses of final position and joint position.
LSum,All Sum of losses of map-based position, final position

and joint position.
M A measurand.
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N Set of neighboring nodes of a node 𝑖.
O Computational complexity.
P Probability for a given event.
T A planned trajectory.
V Set of vertices in a graph.
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1 Introduction

First, motivation for the presented research is described in Section 1.1. The
goal of this work is described by defining requirements on traffic prediction
Section 1.2, the contributions are summarized in Section 1.3 and prerequisites
for the proposed prediction approach are formulated in Section 1.4. Last, an
overview over chapters of this work is given in Section 1.5.

1.1 Motivation

Automated driving (AD) is expected to disrupt individual mobility and road
traffic. The hypothetical benefits both for the individual traffic participant
(TP) and society are manifold and are surveyed e.g. by Milakis et al. [76].
With advancing technology, advanced driver assistance systems (ADASs) and
automated vehicles (AVs) will slowly penetrate the market with the result of
challenging mixed human and robot traffic for years, maybe decades [81]. As
long as there is mixed human and automated traffic, an AV requires some form
of behavior prediction regarding other drivers’ intentions in order to plan a
trajectory for the AV, that allows it to fit in with human traffic1. The precise
requirements towards behavior prediction are still subject to discussion among
both planning and prediction researchers.

Automated systems consist of a complex sequence of functional modules.
The output of a certain module is determined by the input requirements of the
subsequent module. A module predicting TPs incorporates detections from
perception modules, i.e. detected, tracked, and classified digital twins of TPs,
that are called agents. Additionally, prediction requires a road topology and
traffic rules that apply to the AV and other TPs which are included in a locally
generated or globally available high definition (HD) map.

1 In a fully automated environment AVs can share their trajectories or directly optimize them
jointly.
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The output of a prediction module serves as input to the two downstream
stages of behavior generation and trajectory planning. In the former, high-
level behavior decisions are generated, e.g. let pedestrian cross the road, then
drive on or change lane to the left before truck passes. In the latter, an ego
trajectory is created that breaks down the high-level behavior decision to a
drivable trajectory. For generating reasonable behavior, estimations for future
actions of other TPs are necessary, ideally conditioned on the ego vehicle’s
own possible actions.

The gap between perception and planning modules is filled by an extensive
amount of prediction approaches for the field of traffic agent prediction in AD,
many of which have been developed in recent years2. Before proposing a new
solution, a collection of requirements for prediction in the context of automated
driving is presented.

1.2 Requirements for Prediction

The content of this thesis was developed in close collaboration with the motion
planning research team at Institut für Mess- und Regelungstechnik (MRT),
which imposed the following requirement upon this work.

Uncertainty Estimation

Measurements are only complete and useful if an expressive uncertainty is
added to the estimation [32]. The true value of the measurand M, the ground
truth (GT), is determined at time 𝑡0 of measuring and remains unknown.

For prediction, this is not the case. At 𝑡0, a prediction ΦM with prediction
horizon Δ𝑡ph is required referring to time 𝑡ph = 𝑡0 + Δ𝑡ph. The prediction of
a dynamic system is required Δ𝑡ph before the state of a dynamic system is
determined, and before a measurement can take place. During Δ𝑡ph, arbitrary
combinations of events or actions can happen that influence the system whose
process variable is to be predicted. The longer the desired prediction horizon
Δ𝑡ph is, the more a – non-converging – system can potentially change. At
𝑡ph, a measurement for M can be conducted with an uncertainty orders of
magnitudes lower – meaning much more accurate – than what is achievable
with a prediction ΦM at 𝑡0.

2 See Section 3.2.
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One could argue that for developing prediction methods in AD, datasets
are available for which GT was generated by recording traffic over time in
the real world. Nevertheless, during inference in the field, the predictor has
to generalize from those datasets in order to solve a prediction problem of
a non-deterministic sociotechnical system and is therefore not regarded as a
classical estimation problem. The generation of a meaningful uncertainty
while improving accuracy for a position prediction is therefore regarded as the
essential problem of prediction (see Section 2.4).

Multi-Modality

In order to increase accuracy while capture uncertainties, probability distribu-
tions with more than one local maximum need to be feasible. In traffic, there
are often mutual exclusive maneuver options that are likely for an agent in a
certain scenario. Consider e.g. a yielding scenario between two agents as in
Fig. 1.1.

Figure 1.1: Agent 𝑎 in a yielding scenario with agent 𝑏 and their maneuver options.
Since agent 𝑎 is on the priority road, it will most likely choose to drive on. Agent 𝑏 can
choose between accelerating and merging before agent 𝑎 passes, or brake and wait until
agent 𝑎 passed in order to merge behind it. If agent 𝑏 choses a maneuver in between, it
would risk a crash that agent 𝑎 can avoid by resigning from its preferred behavior choice.
Best viewed in color.
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While the likely option of agent 𝑎 on the priority road is driving on as
desired, the yielding agent 𝑏 can choose between two options: The first option
is accelerating in order to pass the conflict zone without inducing a risk for
agent 𝑎. The second option is to brake and continue merging after agent
𝑎. Of course, there are several reasonable trajectories that refer to each of
those maneuvers. However, in between those two modes there are options of
unlawfully cutting in agent 𝑏 can take. Any of those options either requires a
reaction of prioritized agent 𝑎 in order to avoid a crash or leads to an unsafe
situation3.

Consider a uni-modal Gaussian position prediction with a single local max-
imum that is supposed to be shaped to cover both possible scenarios of agent
𝑏. Its maximum must be located between the two individual maneuvers modes
(green and brown) and have a larger uncertainty, making the prediction mis-
leading and uninformative for planning. In conclusion, a multi-modal repre-
sentation for predictions is required.

Ability to Handle Different Traffic Scenes and Generalize Accordingly

In the great majority of traffic scenarios, vehicles follow lanes. Thus, an
important prediction prior is given by the HD map, more precisely by the road
markings and traffic rules it contains. A flexible approach is expected to handle
an arbitrary number of map segments forming an arbitrary road topology, as
well as an arbitrary number of interacting agents in the scene. For practical
application, the number of agents covered by the sensor range of the AV forms
the limit of what a model is required to robustly cover.

Also, an approach is expected to generalize from the limited set of available
training examples to unknown intersection topologies in the test set and the
real world.

Parameter Parsimony

Closely related to the ability to generalize is a parameter efficient model. If
few examples are available for training, artificial neural networks (ANNs)
with many parameters and especially convolutional neural networks (CNNs)
working with highly redundant grid data are prone to overfit. High-level

3 According to the definition of an unsafe situation in Shalev-Shwartz et al. [99].
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features lead to a more compact representation, which in turn reduces the
required number of trainable parameters in the model.

Computational Efficiency

For real time applications, computational efficiency needs to be considered
when developing ANNs. Especially for hyperparameter tuning, models could
theoretically be trained with infinitely many settings in order to fine-tune ar-
chitectures. Conducting an extensive parameter study requires access to huge
computational and therefore financial resources. By lowering the number of
hyperparameters, it becomes realistic to test a reasonable amount of combina-
tions in order to achieve satisfying results. In an automated mobile platform
the computational resources are strictly limited compared to offline training
clusters, especially since many modules of a software pipeline have to share
this already limited amount of computational power and storage.

The challenging task therefore is to develop a model that can be fine-tuned to
a reasonable state. Simultaneously, it shall be efficient enough for deployment
on the limited resources of a mobile platform with an inference time small
enough considering it being applicable in the AD processing pipeline.

Complete Input Information

There is no consensus in the research community regarding information nec-
essary to produce a useful prediction, besides having more input information
available leads to a more profound result than having less. Even though there
are recent approaches that do not use a map topology at all [16, 68], it is
assumed that prediction can greatly be improved with the use of maps.

Flexible Prediction Format

Most competing prediction approaches produce a position prediction in Carte-
sian coordinates that is independent of the map. While this is a useful format
for trajectory planning, probabilities for future maneuvers are required for
decision-making. A trivial solution for getting maneuver probabilities from
e.g. a Gaussian mixture is integrating the distribution over regions that belong
to a certain maneuver option. Such a region could be a parallel lane to identify
lane changes or an intersection branch so identify turns. However, integration
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might lead to degrading in probability calibration and therefore misleading
uncertainties.

The output of the prediction model therefore has to bridge the gap between
representing high-level behavior-classes for decision-making and representing
future position that can be used for trajectory optimization.

Figure 1.2: Agent 𝑏 in a merging scenario with agent 𝑎 and their two maneuver options:
accelerating, or braking. The realized trajectories of both agents are not statistically
independent. Each option of agent 𝑎 can be conditioned to the contrary option of agent
𝑏 and vice versa. In reality, the probability of a crash (both agents accelerate) should be
much smaller than 25% (product of probabilities of the two modes corresponding to the
acceleration maneuvers).

Conditional Prediction

Predictions are claimed to be usually multi-modal. Assume a merging situation
symmetric with respect to priority as illustrated in Fig. 1.2. The acceleration
maneuvers options – that are equally likely as the alternative braking maneuver
– of two agents 𝑎 and 𝑏 are roughly at the same position. The probability for
a crash is roughly 25% = 50% · 50% if statistical independence between
the bi-modal prediction for each agent is assumed. However, in a scenario
that requires interaction it must not be assumed that driving maneuvers are
statistically independent without further investigation. Instead, the accelerating
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maneuver of one agent likely corresponds to the braking maneuver of the other
agent and vice versa. Two or more such corresponding maneuvers form an
interaction mode. Predicting agent behavior conditioned on behavior others is
called conditional prediction4. A conditional prediction is assumed to provide a
strong advantage over predictions of statistically independent positions, since it
allows planners to analyze likely future maneuvers of other agents conditioned
on hypothetical future ego maneuvers.

1.3 Goal and Contributions

The goal of the presented approach is to implement a solution that fulfills the
requirements listed above.

The main contributions of this work w.r.t. existing approaches are as follows:

1. Explicit modeling of conflicts: Information flow is strictly modeled in
our network, so the network is trained to identify interpretable conflicts
for each pair of agents. It is trained to solve those conflicts afterwards
by exchanging interaction messages (see Section 5.2.3 and Section 5.2.5
for details). No other work was found that introduces interpretable con-
flicts with a comparable modeling depth (see related work of interaction
modeling in Section 3.2.2).

2. Traceable conditional predictions: Besides the common predictions
of statistically independent positions, the proposed model outputs con-
ditional predictions that allow easy analysis of future behavior options
for hypothetical future behavior of a selected vehicle, e.g. for the ego AV
(see Section 3.2.3 and Section 5.2.8 for details).

3. Architecture for predicting an agent graph on a topology graph:
A novel model architecture is presented that provides a solution for
all tasks between perception and behavior generation in an AV stack.
Furthermore, it is data and parameter efficient, real-time capable, and
designed for real world application in structured road traffic. Even
though it is designed for AD, it forms a general solution for probabilistic
position prediction of moving primitives on a static graph topology.

4 See Section 3.2.3 for conditional prediction approaches found in literature.
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1.4 Prerequisites

In order to generate the best possible prediction, the following input data is
a prerequisite of this work. For the presented approach to work as intended,
availability of a HD map is assumed. It can either be generated during (mapless)
driving or made accessible via a shared map regularly updated, e.g. by a fleet.
This HD map must contain lane geometry and traffic rules. Furthermore, TPs
whose behavior is to be predicted need to be detected, tracked, classified and
localized in 2D relative to the HD map. The more accurate those prerequisites
are fulfilled, the better the prediction will be.

1.5 Overview

In Chapter 2, fundamentals essential for understanding this work are briefly
introduced with focus on the application of TP behavior prediction. The rise
of graph neural networks (GNNs) in various research fields and recent contri-
butions in the field of TP prediction are delineated in Chapter 3. Chapter 4
introduces basic design concepts utilized for designing the proposed model
and gives an overview of the model’s interfaces. In Chapter 5, the modules
of the proposed approach and how they interact is described in detail. The
model is evaluated in Chapter 6 w.r.t. prediction accuracy, probabilistic reli-
ability, and functional claims formulated in the chapters before. The work is
concluded in Chapter 7 by estimating the degree of fulfillment of the afore-
mentioned requirements, limitations of the presented approach are discussed
and recommendations are given on how to further develop the model.
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The theoretical fundamentals essential for understanding this work and delib-
erations it contains are presented in this section. First, notation conventions
are described in Section 2.1. Graphs are introduced in Section 2.2, fundamen-
tals of artificial neural networks (ANNs) and design concepts of graph neural
networks (GNNs) are derived in Section 2.3. Last, fundamentals of forecasting
research is outlined in Section 2.4.

2.1 Notation

Since notation varies, the use of references and footnotes, the mathematical
notation as well as relevant technical terms are defined first.

2.1.1 References and Footnotes

Regarding references, the surname of the first author of a publication and
surnames of coauthors are mentioned if equal contribution with the first author
is claimed. If more than one work is referenced, or only exemplary work is
referenced, naming the authors is omitted for better readability.

Footnotes are used for cross-references, for further explanation of statements
the reader might not directly agree with, and for design recommendations for
practical application.

2.1.2 Mathematical Notation

In this work, tensors are used up to the 5th order. For better comprehension of
an efficient model implementation, several mathematical notations are used.
In the index notation – written in regular math mode x𝑖 –, the lower indices
denote the inner dimensions of this tensor. In this notation according to
Einstein summation, indices occurring more than once denote multiplying
and summing up, as if there was a sum symbol in front of the respective term
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summing up over those indices. The opposite is the symbolic notation – written
in bold math mode x –, where inner indices are not noted.

Also, element-wise notation is distinguished, where an individual element
of the tensor is processed – written in letters referring to the element’s or-
der x𝑎 –, and tensor notation, where all existing elements are concatenated
into one tensor – written in letters referring to the tensor’s order X = [x𝑎].
In the element-wise notation, upper indices denote the outer dimension, i.e.
processing x𝑎 is done for each agent 𝑎, so 𝑛A times, if 𝑛A is the number of
agents.

An agent feature tensor with feature size 𝑛F and number of agents 𝑛A can
be written in two ways X ≡ X𝑖,𝑎 ∈ R𝑛F×𝑛A , the feature element vector of an
individual agent can also be written in two ways x𝑎 ≡ x𝑎𝑖 ∈ R𝑛F . Switching
between Einstein notation and symbolic notation is marked with the equivalent
sign ≡. If not stated otherwise, the element-wise notation implicates “for all
𝑎”, ∀𝑎 ∈ {1, ..., 𝑛A}. The identical mathematical operation – multiplication
with weight matrix W ∈ R𝑛F,Y×𝑛F – can be written in tensor formulation as

Y 𝑗 ,𝑎 = 𝜎(W 𝑗 ,𝑖X𝑖,𝑎) ≡ Y = 𝜎(WX)
and in element-wise notation as

y𝑎𝑗 = 𝜎(W 𝑗 ,𝑖x
𝑎
𝑖 ) ≡ y𝑎 = 𝜎(Wx𝑎).

On the left side of both equations, Einstein summation was used, on the right
side, symbolic notation was used. In symbolic notation, the lower index is
used for naming variables. For example a matrix referring to an output may
be called YOutput ≡ Y𝑖, 𝑗 . This naming index is removed when switching to
Einstein notation, so Einstein notation is only used for better understanding of
mathematical operations for tensors of higher orders.

Speaking upper and lower indices are used, so 𝑎, 𝑏 refer to agent dimensions,
𝑙, 𝑘 refer to lane tile dimensions, 𝑡, 𝑧 refer to time step dimensions, and 𝑖, 𝑗 , 𝑚

refer to other – usually feature – dimensions. All kinds of index switching of
tensors are indicated with (·)T. The complete information on how indices have
been switched is represented through speaking indices.

Unlike in physics, the word tensor is used without implying properties like
rotation invariance for its features w.r.t. a coordinate frame, but it is used
generally for an ordered mathematical tabular object of arbitrary dimension.
By doing so, this work follows common nomenclature in computer science.
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2.1.3 Naming Convention

An agent aims to reach a certain destination by driving a certain route, e.g.
given from an automotive navigation system that is not lane precise. While
following the route, the path contains precise future positions without knowing
at which time the agent will pass a certain point. The path changes frequently
depending on the behavior of other agents, while the route only changes due
to large distortions like traffic jams. A trajectory connects path points with
time stamps. An intention is a maneuver each agent has to estimate for other
vehicles on a higher abstraction level compared to a trajectory. The feedback
loop between intention estimation and behavior generation is called interaction.
A behavior mode combines consistent intention options or maneuver options,
respectively, for the ego vehicle.

People or robots participating in real world traffic are called traffic partici-
pant while they are called agents for the scientific problems within automated
driving and its subfields.

Figure 2.1: An example to illustrate the naming convention. The ego vehicle can choose
between two trajectories blue and pink that both refer to a mode. The position predictions
of other agents that are interacting with the ego vehicle correspond to one of these modes.
High-level intentions can be assigned to position prediction modes. A route is the path
to a destination. A trajectory consists of future positions corresponding to time steps. A
path only consists of future positions.
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2.2 Graph Theory

Fundamentals regarding graph theory can be found for example in Brandes [12],
Tittmann [104] or Tutte [106].

An edge e𝑖, 𝑗 connects exactly two nodes n𝑖 and n 𝑗 . Edges can be directed
e𝑖, 𝑗 ≠ e 𝑗 ,𝑖 or undirected e𝑖, 𝑗 = e 𝑗 ,𝑖 . A graph is a pair G = (V , E) in which
V = {n𝑖}, |V | = 𝑛N denotes a set of 𝑛N node feature elements n𝑖 and E =

{e𝑖, 𝑗 }, |E | = 𝑛E, denotes a set of 𝑛E edge feature elements e𝑖, 𝑗 . For more
expressive identification, edges are referred to by the indices of the nodes they
connect. The word element refers to an arbitrary tuple of features that is usually
written in vector or matrix form in context of ANNs.

In this work, two semantically different graphs – an agent graph and a map
graph – are introduced. All agents form a set of agent graph nodes Λ, all lane
tiles form a set of map graph nodes Γ. The agent graph is fully-connected the
number of agent edges 𝑛AE is equal to the squared number of agents 𝑛AE = 𝑛

2
A.

The directed map graph is sparse 𝑛LE ≪ 𝑛
2
L, so the number of lane segment

connections 𝑛LE is far smaller than the number of lane segments 𝑛2
L.

All nodes that are connected to node 𝑖 form a set N ⊆ V and are called
neighbors of node 𝑖. All edges that are connected to node 𝑖 form a set E𝑖 ⊆ E
and are called connections of node 𝑖. For directed graphs, the edges towards,
or away from, or both towards and away from node 𝑖 can be part of E𝑖 . This is
further specified in the respective context.

Connections within a graph can be expressed as an adjacency matrix A ∈
Z𝑛N×𝑛N where A𝑖, 𝑗 ≠ 0 represents an edge from node 𝑗 to 𝑖. In this work,
A ∈ {0, 1}𝑛L×𝑛L holds.

2.3 Artificial Neural Networks

Fundamentals of ANNs can be found for example in Bishop et al. [10], LeCun
et al. [56] or Hastie et al. [43].

2.3.1 Fundamentals

ANNs were created as a method to simulate neural processes similar to those
in the human brain [67,90]. The underlying idea is inspired the activation of a
brain cell resulting from activations of other brain cells with a linear mapping
of input activations x with weights w. A non-linear function𝜎 called activation
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function is applied to the resulting scalar and the output y is called activation
of the corresponding neuron and is calculated with

y = 𝜎(wTx). (2.1)

Fundamental properties of ANNs and how to optimize their weights by
introducing the multi-layer perceptron (MLP) as the “universal approximator”
[46] are briefly described. A MLP is the most generic type of ANN and is
able to approximate every Borel measurable function arbitrarily accurate, if the
number of hidden units is sufficiently large, as Hornik et al. [46] ascertained.

Multi-Layer Perceptron

If several neurons 𝑗 with outputs x(𝜆)
𝑗

are introduced, together, they build a
fully-connected layer because every input scalar x(𝜆−1)

𝑖
contributes to every

output activation x(𝜆)
𝑗

. This layer can be written in compact vector form as

x(𝜆) (x(𝜆−1) ) ≡ x(𝜆)
𝑗

= 𝜎(W 𝑗 ,𝑖x
(𝜆−1)
𝑖

) ≡ 𝜎(Wx(𝜆−1)︸    ︷︷    ︸
x̃(𝜆−1)

) (2.2)

where the output vector x(𝜆) is a function of the input vector x(𝜆−1) . The
matrix product of weights and input is cumulated to x̃(𝜆−1) and used later.
It is possible to stack several layers to form a model that approximates the
relationship of input and output data. A model consists of several modules and
modules combine multiple layers. However, none of those terms are strictly
defined. In this work, modules are logical units with a defined purpose.

A model formed from several fully-connected layers is called multi-layer
perceptron (MLP) [43, 79]. Input and output are indexed with 𝜆 ∈ [1, ..., 𝑛𝜆].
The result x(𝜆) of such a neural model or ANN that is supposed to solve a
certain task, can then be compared to a target vector t of same size, in this
example with

L =
1
2
(x(𝜆) (x(𝜆−1) ) − t)2 (2.3)

resulting in a scalar loss termL. Note that the layer’s output is always a function
of the layer’s input; for simplicity, only the last dependency is explicitly noted.
The goal of such a model is to minimize this loss given a data set {D}1:𝑛Data

of
pairs D = {x, t}. The adjustment of weights with the aim of minimizing the
loss is done with a local optimization algorithm called error backpropagation.
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Error Backpropagation

The weights of a model are adjusted in a data-driven optimization process,
often called training, with a weight difference ΔW in the direction of loss
decrease by

ΔW = −𝜂 𝜕L
𝜕W

. (2.4)

The scalar 𝜂 is called learning rate and is a hyperparameter for adjusting and
stabilizing the learning process. According to the chain rule of differentiation
first used for a neural network by Werbos [110] and for a deep neural network
by Rumelhart et al. [92], the derivative can be split in

𝜕L
𝜕W

=
𝜕L
𝜕x̃

𝜕x̃
𝜕W

(2.5)

where the first fraction is called error

𝜹 =
𝜕L
𝜕x̃

. (2.6)

For a fully-connected layer,

𝜕x̃(𝜆)

𝜕W(𝜆) =
𝜕W(𝜆)x(𝜆)

𝜕W(𝜆) = x(𝜆)T
(2.7)

holds and the error 𝜹 is

𝜹 (𝜆)
=

𝜕L
𝜕x̃(𝜆) =

𝜕L
𝜕x̃(𝜆+1)

𝜕x̃(𝜆+1)

𝜕x̃(𝜆) ≡ 𝜕L
𝜕x̃(𝜆+1)

𝑚

𝜕x̃(𝜆+1)
𝑚

𝜕x̃(𝜆)
𝑗

= 𝛿
(𝜆+1)
𝑚 W(𝜆+1)

𝑚𝑗

𝜕𝜎

(
x̃(𝜆)
𝑗

)
𝜕x̃(𝜆)

𝑗

= 𝛿
(𝜆+1)
𝑚 W(𝜆+1)

𝑚, 𝑗
𝜎
′
𝑗

(
x̃(𝜆)
𝑗

)
≡ 𝜎

′
(
x̃(𝜆)

)
⊙

(
W(𝜆+1)T

𝜹 (𝜆+1)
)
. (2.8)

Underlining an index – which is only used here – in the Einstein notation
means there is no sum over that index, only multiplication. Hence, 𝜹 (𝜆)

depends on the error of the consecutive layer 𝜹 (𝜆+1) . For the weights of the
last trainable layer before the loss function Eq. (2.3), the loss gradient can be
calculated with
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𝜕L
𝜕W

=
𝜕L
𝜕x(𝜆)

𝜕x(𝜆)

𝜕W
=

𝜕L
𝜕x(𝜆)

𝜕𝜎

(
Wx(𝜆−1)

)
𝜕W

=
𝜕L
𝜕x(𝜆)

𝜕𝜎

(
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⊙ 𝜎
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)
︸                          ︷︷                          ︸

𝜹 (𝑛𝜆 )

x(𝜆−1)T
(2.9)

In conclusion, the weights of a hidden layer are adjusted with

ΔW(𝜆)
= −𝜂

(
𝜎
′
(
x̃(𝜆)

)
⊙ W(𝜆+1)T

𝜹 (𝜆+1)
)

x(𝜆)T
. (2.10)

The result in Eq. (2.10) has the following implications:

• The weights of layer 𝜆 can be optimized if the error 𝜹 (𝜆+1) of the sub-
sequent layer is known. An optimization run is therefore conducted
starting from the last layer and ending at the first. Therefore, the process
is called error backpropagation.

• The inputs x and the derivatives 𝜎
′ (x̃) needed for optimization need

to be stored during inference for backpropagation, making training of
ANNs expensive w.r.t. memory.

• For MLPs, the matrix equation is comparably simple. However, matrix
form of input and output is not required for optimizing a model with
error backpropagation.

• There are mainly two requirements to make error backpropagation ap-
plicable. First, mathematical operations used to construct layers and
modules must be differentiable w.r.t. their input and their weights. That
also holds for activation functions 𝜎

1. Second, each of the follow-
ing conditions leads to vanishing weight change and therefore stop the
training process:

– Inputs x are zero. Usually, this is not a problem, since training data
is diverse and non-zero.

1 If an activation function is discontinuous at some point – e.g. the famous ReLU function [64]
–, desired derivatives can be set manually.
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– Weights W are zero. It can be avoided by initializing weights
randomly. Sometimes measures have to be taken to avoid zero
weights during training.

– Derivative of activation function 𝜎
′ is zero. This is avoided by

using activation functions with a gradient of 1 for large intervals2.
Also, initializing weights so that activations are in a region of large
gradients is a convenient counter measure.

– The error obtained from the subsequent layer 𝜹 (𝜆) is zero. This is
dependent on later layers w.r.t. the conditions listed above and can
therefore accumulate throughout backpropagation for −1 < 𝜹 (𝜆)

<

1. This is called the “vanishing gradient problem” and is subject
of analyses, especially for recurrent neural networks (RNNs) [44].

The downside of a MLP is the large number of weights per layer, making its
optimization costly and prone to overfitting for a small dataset.

Recurrent Neural Networks

Unlike MLPs, neurons of a recurrent neural networks (RNNs) have an internal
memory aside the current input which has shown to be useful especially for
sequential models3. In the simplest configuration, a neuron can access its
previous output

y𝑡+1 = 𝜑(x, y𝑡 ). (2.11)

However, this simple model has shown to be prone to the vanishing gradi-
ent problem which is why more sophisticated models have been promposed.
Prominent examples are the long short-term memory (LSTM)-cell [44] and
the gated recurrent unit (GRU)-cell [24].

2 Most popular activation functions fulfill 𝜎 (𝑥 ) = 1∀𝑥 > 0, see e.g. Kiliçarslan et al. [51] for a
good overview, or the comprehensive analysis by Lederer [57].

3 Some of the first applications of RNNs were developed by Servan-Schreiber et al. [98] and
Kamĳo et al. [49].
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The LSTM cell used in this work has the following form

i𝑡 = 𝜑i,SIG (x𝑡 , o𝑡−1, h𝑡−1)
f𝑡 = 𝜑f,SIG (x𝑡 , o𝑡−1, h𝑡−1)
g𝑡 = 𝜑g,SIG (x𝑡 , o𝑡−1, h𝑡−1)
h̃𝑡 = 𝜑IN (x𝑡 , o𝑡−1, h𝑡−1)
h𝑡 = 𝜎UPDATE,SIG (f𝑡 ⊙ h𝑡−1 + i𝑡 ⊙ h̃𝑡 )
o𝑡 = 𝜎OUT (h𝑡 ) ⊙ g𝑡 .

(2.12)

It consists of four MLPs producing activations for the input- i𝑡 , the forget-
f𝑡 , the output-gate g𝑡 and potential storing information h̃𝑡 . The gates’ final
activation functions are sigmoids SIG : R → [0, 1], indicated by the lower
index SIG. Each of those gates can learn to activate (open) or deactivate (close)
– including all states in between – information flow towards or from the states.
The LSTM cell produces a hidden cell state h𝑡 and an output state o𝑡 for each
inference step.

2.3.2 Graph Neural Networks

The history of GNN applications is described in Section 3.1 where some
milestone publications are listed. The last of those forms the basis of this
subsection, a tutorial article by Battaglia et al. [7]. It describes a framework
called “the graph network” and is claimed to be flexible enough to harmonize
at least seven existing GNN architectures. Since the concept of GNNs is not
well-defined, rules noted in this work may not apply for every single specialized
network that is called GNN by the respective authors. However, those rules
are assumed to hold for the majority of existing and near future architectures.

While the input and output size is fixed for common MLPs and convolutional
neural networks (CNNs), most recent GNNs are able to process an arbitrary
graph w.r.t. the number of nodes and the number of edges. Unlike RNNs
that can also handle sequences of arbitrary length, GNNs are order invariant
w.r.t. the graph entities f ∈ {n𝑖

, e𝑖, 𝑗 , g} with g being graph features. A GNN
includes several ANNs, that run on node, edge or graph feature level, or on
a combination of those, thus making the input feature size for each of those
ANNs static. Battaglia et al. propose to introduce processing functions 𝜑 and
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the input combinations they expect in order to describe an architecture. One
of the simplest processing functions is

y𝑖 = 𝜑N (n
𝑖) (2.13)

that processes every node. One of the most common processing functions for
feature combinations is

y𝑖, 𝑗 = 𝜑NEN (n
𝑖
, e𝑖, 𝑗 , n 𝑗 ) (2.14)

that individually processes every pair of nodes n𝑖
, n 𝑗 that is connected by an

edge e𝑖, 𝑗 .
Most of the modules of the model proposed in this work are processing

functions defined on a set of agent-node, agent-edge, map-node, map-edge
entities, or a combination of those. The focus of Section 5.2 where the proposed
model is described therefore is on understanding the operation level of the
described functions, and not on how precisely the trainable architecture of
each module is built. The architecture of modules and their hyperparameters
are described later in Appendix A.3.

The second function class Battaglia et al. [7] mention are aggregator func-
tions 𝛼 or simply aggregators. Within a GNN, the number of processed outputs
y varies depending on the current graph. Since the number of trainable weights
must not depend on the number of nodes or edges, there has to be a possibility
of reducing an arbitrary number of features to a feature entity of known size.
The output of such a function is expected to be invariant w.r.t. the order of the
input graph entities. Two of the most common aggregators are the sum over
neighboring (hidden)4 node features

y𝑖 =
∑︁

n 𝑗 ∈E𝑖

n 𝑗
, (2.15)

and the mean over all (hidden) node features

y =
1
𝑛N

𝑛N∑︁
𝑖=1

n𝑖
. (2.16)

4 It is more common to add up hidden node features than directly adding the input features of a
node.
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While the former is here formulated to keep information at the node level, the
latter reduces all (hidden) node features to a graph-level feature. Aggregators
consist of an arbitrary combination of order invariant and differentiable func-
tions and do not have trainable weights5. In this work, max-aggregators are
used in the Notification Extractor (Section 5.2.4) and the Self-Message Ex-
tractor (Section 5.2.6), sum-aggregators are used in the Message Aggregator
(Section 5.2.5), and weighted mean-aggregators are used for propagating states
in the Predictor (Section 5.2.7).

The last important design element are connection matrices such as the
adjacency matrix, Laplacian matrix or matrix of eigenvectors of the Laplacian
matrix. Those quantities can be used as separate inputs for the network. They
can be processed with e.g. positional one-hot vectors p ∈ {0, 1}𝑛N ,

∑
𝑗 p 𝑗 = 1

for node 𝑖. With the adjacency matrix A ∈ {0, 1}𝑛N×𝑛N , e.g. neighboring nodes
can be identified through a many-hot vector pE𝑖 ∈ {0, 1}𝑛N with

pE𝑖
= 𝜃 (Ap𝑖). (2.17)

This many-hot vector can then be used as a mask to identify only the node
features of the neighbors of node 𝑖.

In conclusion, GNNs allow to process non-equidistantly structured data of
arbitrary size in an order invariant manner. With those design patterns at hand,
the proposed model and its modules can be created.

2.4 Prediction Theory

One of the oldest scientific fields with application of prediction is meteorology.
Getting in touch with short-term – weather – forecasts cannot be avoided when
consuming daily news, and after decades of increasing significance, long-term
– climate – forecasts receive broad media attention as well.

Consequently, the earliest scientists active in the field of prediction as a de-
marcated subject within statistics used meteorological forecast as their primary
example of application.

In one of those early publications about prediction, Murphy and Winkler [78]
test subjective uncertainty of human forecasters for reliability with a dataset

5 Of course one can directly include an update function running on the aggregator’s output, but
that is considered a separate function and not part of the aggregator.
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collected after the event subject to prediction had occurred, by means of
which ground truth (GT) was created. In consequence, Dawid [29] states the
necessity of a prediction to be well-calibrated as a minimal desirable property.
After many earlier publications of his research group, Gneiting together with
Katzfuss [38] published summarizing work that can be seen as a general basis
for probabilistic forecasting and its evaluation. They conclude their work with
a set of universal rules for predictions:

• “Probabilistic forecasts aim to maximize their sharpness, subject to cal-
ibration. Calibration concerns the statistical compatibility between the
probabilistic forecasts and the realized observations; sharpness refers to
the concentration of the predictive distributions and thus is a property
exclusive to the forecasts.” [38]

• Specialized error functions which they call scoring rules assess both
calibration and sharpness.

Despite it being a separate field of research, scoring rules as introduced by
Gneiting and his group are not commonly used in automated driving. During
research regarding prediction and prediction metrics, the conclusion is drawn,
that there are significant flaws regarding evaluation of predictions [48, 111].
The requirements for a good prediction – denoted by Gneiting and his group,
and summarized above – are more expressive than the prediction metrics
commonly used for automated driving; a conclusion Zernetsch et al. [118,119]
share.

Consequently, metrics for evaluation are presented in Chapter 6 that pay
respect to this paradigm.
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This chapter focuses on explaining the design concepts of graph neural net-
works (GNNs) that demarcate them from other popular artificial neural net-
work (ANN) model classes by briefly tracing back to its origins in Section 3.1.
Afterwards, recent competing approaches for traffic participant (TP) prediction
are summarized with respect to key design features in Section 3.2.

3.1 Graph Neural Networks and their Evolution
in Applied Research

After the success of deep artificial neural networks (ANNs) for technical ap-
plication with high-dimensional structured data, the concept of graph neural
networks (GNNs) has recently regained attention. Like many terms used self-
evidently in the field of machine learning, the term GNN dates back over a
decade, when it was first used by Gori et al. [41]. Prior to this, recursive neural
networks encoding graph structures had been developed for directed acyclic
graphs, e.g. by Goller and Küchler [39], Starita et al. [102], or Gori et al. [40].
Bianchini et al. [8] propose a method for processing cyclic graphs recursively
with a stop condition. The architecture of Gori et al. [41] is the first to process
arbitrary graphs without simplification. Therefore, their work can be seen as
the foundation of today’s graph neural network architectures.

Their proposed architecture consists of two layer types, a neighborhood
processing layer 𝜑N and an output layer 𝜑y. First, 𝜑N defines an update
function for every node 𝑖’s state by

s𝑖𝑡+1 = 𝜑N (n
𝑖
, sE𝑖

𝑡 , nE𝑖 ) := 𝜎

( ∑︁
n 𝑗 ∈E𝑖

𝜑A (n
𝑖
, n 𝑗 )s 𝑗𝑡 + 𝜑b (n

𝑖)
)

(3.1)

which creates the next state s𝑖𝑡+1 for every node 𝑖 from given node features of
this node n𝑖 , the previous states sE𝑖

𝑡 of neighboring nodes, and the features nE𝑖

of neighboring nodes. It is proposed to be implemented as a sum over linear
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combinations of neighboring nodes though a pair-wise node processing layer
𝜑A and the neighbor’s state s 𝑗 biased with a multi-layer perceptron (MLP) 𝜑b
processing the features of the node of interest. Second, 𝜑y defined by

y𝑖𝑡+1 = 𝜑y (n
𝑖
, s𝑖𝑡+1) (3.2)

produces a node-wise output y𝑖𝑡+1 from the node’s features n𝑖 and the updated
state s𝑖𝑡+1 from Eq. (3.1). As indicated by 𝑡 and 𝑡 + 1, respectively, in the
formulas, the network’s inference consists of processing Eq. (3.1) and Eq. (3.2)
iteratively until the states of the nodes converge.

Finally, the quadratic error between the output features y𝑖 and a target feature
vector t𝑖 for each node 𝑖 is minimized. Gori et al. also propose to retrieve a
graph-wise output instead of the described node-wise output by defining the
output of a dedicated node as the output of the whole graph.

In this first simple GNN, several properties can be identified that still hold
for many GNNs including our proposed model:

• Unlike multi-layer perceptrons, graph neural networks operate on related
inputs and outputs of arbitrary size, e.g. on graphs or subgraphs with a
variable number of nodes and edges. Prediction of chemical properties
of molecules [37] is an example for processing individual, self-contained
graphs. For traffic prediction, however, intersections used for training are
subgraphs of the worldwide road network (see Section 3.2.1 for further
explanation).

• A GNN consists of several ANNs that operate on quantities called nodes
and edges of fixed size. The number of quantities, however, can be
variable. The dimensions of weight tensors may only depend on fixed
feature sizes, not on the number of nodes or edges.

• Functions are required that aggregate a feature sequence of variable
length to a feature of known size. This resulting feature must be invariant
regarding the order of the sequence. Such a function is called aggregator
(see Section 2.3.2). It is implemented in Gori et al. [41] as the sum over
all neighboring “contributions” in Eq. (3.1).

• Gori et al. mention the possibility to model directed graphs by adding
the edges’ direction 𝑑

𝑗 ∈ {0, 1}, 𝑗 ∈ E𝑖 to the neighbors’ node features.
Later Scarselli et al. [96] published a more general approach which takes
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into account edge labels e 𝑗 ,𝑖 as separate features changing Eq. (3.1) to
Eq. (3.3)

s𝑖𝑡+1 = 𝜑N (n
𝑖
, sE𝑖

𝑡 , nE𝑖 , eE𝑖 ) := 𝜎

( ∑︁
e 𝑗,𝑖∈E𝑖

∑︁
n 𝑗 ∈E𝑖

𝜑A (n
𝑖
, e 𝑗 ,𝑖

, n 𝑗 )s 𝑗𝑡 +𝜑b (n
𝑖)
)

(3.3)
with 𝜑A, eE𝑖 and e 𝑗 ,𝑖 , respectively, being the edge features from node 𝑖

to its neighbors n 𝑗 ∈ E𝑖 and edge feature size 𝑛F,E.

The Revival

The work of Scarelli et al. did not find the attention their ideas deserved. Their
numbers of citation took off after being mentioned within the recent revival
phase of GNNs.

The work of Bruna et al. [13] and Defferrard et al. [30] extends processing
graphs with neural networks to the spectral domain, making use of physics-
motivated properties of a graph1. A good overview on the family of spectral
graph neural networks can be found in Chen [23]. Despite strong efforts to
make the parameter complexity independent of the number of nodes in the
graph, Bruna et al. and Defferrard et al. restrict their problems to graphs of
fixed input size, ignoring a major advantage of GNNs.

Battaglia et al. [6] and Kipf et al. [54] revive the idea of a flexible graph size,
that is proposed in Scarelli et al. [96] and Micheli [75]. Battaglia et al. use a
graph approach to learn dynamics of a set of geometric primitives of arbitrary
size in the 2D space.

Kipf et al. present a layer model called graph convolutional network (GCN)
defined by

X(𝜆+1)
= 𝜎(D̃− 1

2 ÃD̃
1
2︸     ︷︷     ︸

Q

X(𝜆)W) (3.4)

with X(𝜆) ∈ R𝑛N×𝑛
(𝜆)
F , 𝑊 ∈ R𝑛

(𝜆)
F ×𝑛(𝜆+1)

F , 𝜆 being the layer index and 𝑛
(𝜆)
F the

corresponding number of hidden features. Here, Ã = 1+A and D̃𝑖,𝑖 =
∑

𝑗 Ã𝑖, 𝑗

are supposed to avoid close-to-zero eigenvalues compared to the strictly math-
ematically motivated form. Equation (3.4) allows information flow with the

1 See paragraph on spectral domain of graphs in Appendix A.2.
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same range as in Eq. (3.1), namely from one node to its neighbors per GCN
layer. The authors evaluate their model for classifying nodes in a sparsely
annotated graph. The annotated part of the graph can be seen as a subgraph.
Their method works well under the assumption that connected nodes in a graph
are likely to share the same label.

After Kipf et al. published their layer model, GNNs finally found a large
audience in the pattern recognition community. Their key contributions com-
pared to earlier work are the following:

• Equation (3.4) describes an extremely simple model whose weights are
shared across all nodes.

• The model is directly defined on matrix level without relying on a
domain-shift into the frequency domain as in Bruna et al. [13] and
Defferrard et al. [30].

• They use an efficient sparse matrix multiplication, so the computational
complexity shrinks from O(𝑛2

N) to O(𝑛E).
• They show their model’s data efficiency for large graphs by using – in

the most minimalist case – only one labeled node per class.
From here on, many publications introduced a variety of GNN layers and

modules for solving numerous practical and theoretical problems.
Up to this point, the term GNN was used for every node- and edge-based

differentiable model whose parameters are optimized with backpropagation.
Hence unlike the term convolutional neural network (CNN) that stands for
weight-sharing filters on large equidistant grid data, GNNs denote a large
variety of models for non-equidistant structured data.

Battaglia et al. [7] propose a unified framework for understanding, con-
structing, and describing recent and future GNN architectures. It formulates
a high-level framework that is flexible enough to describe about eight prior
GNN research articles of various fields, most of which are publications whose
authors contributed as coauthors to Battaglia et al. [7].

We see this publication as a fundamental work for GNNs design.

3.2 Competing Prediction Approaches

There are two earlier surveys on motion prediction by Lefèvre et al. [59] and
Sivaraman et al. [100], three recent surveys from Mozaffari et al. [77], Rudenko
et al. [91], and Huang et al. [47]. Besides, Varadarajan et al. [107] contains
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an excellent literature review comparable to survey papers. Since they already
form an overview more complete as could be achieved within a couple of
pages in this work, reference is made only to work closely related to specific
comparable features of our approach.

In Section 1.2, the main requirements a traffic prediction approach has to
fulfill are listed. From those, a subset of features is chosen that is seen as
fundamental for designing a good prediction approach. As design features for
comparison, map encoding and modeling, interaction modeling, and prediction
modeling with focus on conditional prediction are chosen. For each design
feature, competing approaches are briefly named and conclusion w.r.t. to the
proposed approach are drawn.

3.2.1 Map Modeling

As mentioned in Section 1.2, there is barely any doubt in the research commu-
nity that a map is highly beneficial for prediction. However, the methods of
including maps in models spead widely and are summarized below.

Grid Map. Many reseachers utilize rasterized (top-view) grid maps for each
map entity [9,18,21,27,28,28,34,45,52,58,66,82,83,94,101,103,115], close-
to-sensor occupancy grid maps [14,20,88,109], or both [19,63,84,89,93,117]
to represent environmental features. Li et al. [60] add a front camera image.

Khandelwal and Qi et al. [50] name disadvantages that match our concerns
regarding map rasterization: First, the number of network parameters explodes
when an early map encoder has to extract incorporated map information that
is usually sparse. This results in increased demand for training examples in
order to ensure generalization. Second, compared to maps represented as a
graph, rasterized data is highly ambiguous which leads to additional storage
consumption. Third, the output is not lane related, but needs to be matched
to individual driving options or maneuvers in a post-processing step. Fourth,
rasterization omits information of lane connectivity which forms an important
prediction prior as Zeng et al. [116] correctly state.

Polylines. A less ambiguous way of representing map information is the use
of map features as line string or polylines. Each polyline consists of a variable
number of points in an ordered list as e.g. Khandelwal and Qi et al. [50]
propose. A point feature includes at least the point’s coordinates but can also
contain further, e.g. semantic point features. Varadarajan et al. [107] propose
that at least start point, end point and semantic class are required. Gau, Sun et
al. [33], Gu et al. [42], and Zhao and Gao et al. [123] utilize vector sets with
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semantic information, the former has proposed this idea initially. A polyline in
this work is represented as several vectors – also with start point, end point, and
semantic information – sharing the same polyline ID. The main disadvantage
is that it requires a huge amount of training data in order to generalize2. Also,
they do not encode relations between individual polylines, thus the network
has to learn all relations within the map implicitly.

Large Lane Segments. Instead of basic geometrical primitives, a topo-
logical map can be utilized. Many popular automated driving (AD) datasets
[11, 15, 22, 55, 120] provide a semantic map with relational information as
proposed by Poggenhans et al. [85] with the Lanelet2 format.

Liang et al. [61] propose a lane graph representation similar to our own
proposal that was adopted by Zeng et al. [116] and Deo et al. [31]. They
define straight lane centerline segments as nodes. If a segment is accessible
directly from a neighboring segment, both are connected with an edge and
the edge belongs to one of four classes: predecessor, successor, left neighbor,
right neighbor. Positions of agents and lane segments are defined in Cartesian
coordinates. The matching of agent and lane segment is represented as a limited
neighborhood where an agent is only connected to lanes within a certain radius.
The edges encode two map features: the distance between neighboring lane
segments and the connection class from the list above.

Gilles et al. [35, 36] utilize lane segments long enough to contain a curve.
As in the approaches above, they utilize the relational information between
those lane segments. In [35], they predict a discrete rectangular occupancy
probability distribution for every lane segment and warp this individual fixed-
size occupancy grid to each lane segment. In [36], the encoded graph features
are subsequently decoded in a heat raster over the whole map.

Small Lane Segments. A compromise between using a Cartesian grid of
the whole environment and using lane segments is a 1D rasterization along the
centerline of a lane segment.

Ye et al. [114] compress the map by sampling points along the centerlines
and process their spatial relationship with a network originally designed for
point clouds.

2 Gau, Sun et al. [33] note a performance decrease when switching from their internal dataset at
Google to the publicly available Argoverse [22] dataset.
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Discussion

Using lane segments as they are extracted directly from an high definition (HD)
map has several advantages. It is computationally efficient and therefore
resource-efficient. Most importantly, actions that are given as trajectories
relative to a lane segment coordinate frame can often be associated with a high-
level maneuver. For grid-based output or coordinates in a global coordinate
frame, this association cannot be achieved immediately.

In this work, a compromise is applied between using lane segments as they
are in the original map and dividing the world in an equidistant grid. The map
graph is cut in small pieces called lane tiles. This way, finer nuances regarding
different maneuver options can easily be extracted even if lane segments are
comparably large (see Section 4.1).

3.2.2 Depth of Interaction Modeling

Varadarajan et al. [107] classified recent work regarding a set of reoccurring
network modules. An excerpt of that list is taken and extended with recent
articles in Table 3.1.

Table 3.1: Comparison of prediction model architectures. The upper part is an except from
Varadarajan et al. [107]. The lower part is an own completion. raster=information in grid map,
conv.=convolution, attn.=attention-based, Enc.=Encorder, Dec.=Decoder, transf.=transformer,
msg.=message.

Method Motion Enc. Interactions Decoder

CAM [82] LSTM attn. LSTM
CoverNet [83] raster conv lookup
DESIRE [58] GRU spatial pooling GRU
DKM [27] raster CNN CNN
IntentNet [19] raster CNN conv
LaneGCN [62] 1D conv GNN MLP
MANTRA [66] GRU – GRU
MFP [103] GRU RNN+attn. GRU
MTP [31] raster CNN conv
MultiPath [69] raster CNN MLP
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Multipath++ [107] LSTM+MCG LSTM + MCG MCG
PLOP [14] LSTM CNN MLP
PRANK [9] raster CNN lookup
PRECOG [89] GRU multi-agent sim. GRU
R2P2 [88] GRU – GRU
RoadRules [45] raster CNN LSTM
SpAGNN [17] raster GNN MLP
TNT [124] polyline maxpool, attn. MLP
Trajectron++ [94] LSTM RNNs+attn. GRU
VectorNet [33] polyline maxpool,attn. MLP
WIMP [50] LSTM GNN+attn. LSTM

AgentFormer [115] conv. AutoEnc. agent-aware attn. AutoDec.
DenseTNT [42] polylines maxpool,attn. MLP
DSDNet [117] raster msg.-passing MLP
GOHOME [35] GNN attn. MLP
ILVM [18] 3 SpAGNN 4

LaneRCNN [116] GNN CNN & msg.-passing MLP
LookOut [26] VectorNet msg.-passing SpAGNN & MLP
SceneTransf. [80] self-attn transf. cross-attn. MLP & self-attn.
THOMAS [36] GNN attn. MLP
TPCN [114] Voxel & Points CNN CNN

3 CNN & MLP & GRU & msg.-passing
4 MLP & SpAGNN & MLP
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3.2 Competing Prediction Approaches

Table 3.2: Comparison of interaction modeling depth divided into three groups with increasing
modeling effort from top to bottom.

Method Depth of Interaction modeling

VectorNet [33] GNN on vectorized input
TNT [124] same as [33]
DenseTNT [42] same as [33]
MTP [31] CNN on raster input
IntentNet [19] CNN on raster input
MultiPath [69] CNN on raster input
PRANK [9] CNN on raster input
CoverNet [83] CNN on raster input
LookOut [26] CNN on raster input
RoadRules [45] CNN on raster input
ILVM [18] CNN on raster input
Trajectron++ [94] attention between agents
SceneTransf. [80] factorized self-attention
PRECOG [89] state sharing
MFP [103] state sharing during RNN rollout
AgentFormer [115] agent-aware attention.
TPCN [114] PointNet++-based neighborhood processing [86]

WIMP [50] social graph attention
Multipath++ [107] agents can access neighbors’ states
SpAGNN [17] msg. passing from neighbors’ states
DESIRE [58] spatial pooling (comp. SocialLSTM [2])

DSDNet [117] energy weighted msg.-passing
GOHOME [35] self-attention among agents
THOMAS [36] self-attention among agents
CAM [82] different types of attention
LaneGCN [62] map-based graph attention
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LaneRCNN [116] map-based graph attention

Only few recent architectures do not explicit model interaction [14, 66, 88].
In many architectures, information can potentially flow from any source to any
target in the network. A good example is VectorNet [33], in which trajectory
tiles and map entities are both encoded as vectors, followed by a GNN that
runs on vector-level and has to learn all relations by itself. The user does not
have a chance to deeply analyze individual modules and test for their proper
functionality. This architecture is basically a black box from the user’s point
of view. It is refered to as low modeling depth.

In contrast, the term high modeling depth is introduced, for cases when
information is already directed by the explicit model design. As an example,
GOHOME [35] consists of individual modules designated for a certain task
through its location within the model’s information flow. As an example, an
Agent2Agent-module established self-attention among agents on the scene in
order to encode agent interactions5.

Based on publications that have already been analyzed by the authors and
our subjective assessment, recent work is sorted with respect to the modeling
depth used in the interaction module in Table 3.2, with the least modeling
depth at the top.

After sorting prediction approaches by interaction modeling depth, the re-
sulting list naturally divided itself in three groups: The authors of the upper
group do not explicitly model interaction. They create networks and rely on
the networks to learn all patterns required for prediction of TP that are present
in the given data.

The middle group executes interaction modeling to some extent. By design,
those architectures do not grant access to other agents’ states equally, but it is
at least weighted, e.g. by the social distance.

In the bottom group, many design features direct the flow of information,
especially regarding the agents’ neighborhood on the map graph.

Discussion

Several advantages in modularizing the network architecture and particularly
utilizing a high interaction modelling depth can be recognized:

5 Of course, for the reader of an article, assessing the modeling depth to some extent is subjective.
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3.2 Competing Prediction Approaches

• It is possible to strictly limit the information flow to make a module
solve a distinct task within the prediction pipeline due to lack of distract-
ing information. With that, an information processing pipeline can be
designed following the human way of predicting as archetype.

• Often, ANNs are compared to a “black box” whose behavior cannot be
properly analyzed6. A modularized architecture enables analysis of the
correct execution within a distinct module.

• Modularization usually results in less trainable parameters, lowering
data and computational requirements. Consequently, it leads to more
robust results given the same amount of data.

This work aims to utilize a large modelling depth that tries to replicate
the human way of predicting traffic scenarios (see Section 5.1). With this,
interfaces in the model are revealed that allow for functional analysis of the
model, if a dataset e.g. with labeled interaction classes or labeled conflict
classes was given.

3.2.3 Cooccurrence Modeling

The last chosen key design feature focuses on the model output. As explained
in Section 1.2, the assumption of predicted positions to be statistically inde-
pendent is strongly violated for many challenging scenarios with interaction.

Predicting Agents Independently. Most competing approaches produce
agent-centric predictions that cannot be related to each other, so it is unknown
which trajectory T 𝑎 of agent 𝑎 corresponds to trajectory T 𝑏 of agent 𝑏 [9,14,
17, 19, 21, 27, 28, 33–35,45, 58, 62, 66, 83, 94, 107, 114–116,124].

Despite producing agent-wise predictions, Khandelwal and Qi et al. [50]
highlight the necessity to reason about hypothetical scenarios and evaluate their
prediction model with artificially created agents and states that are inserted in
the ego vehicle’s desired path.

Ego Trajectory as Input. Salzmann, Ivanovic et al. [94] directly include
the ego vehicle’s planned trajectory into their model input. This way, a model
has the chance to generalize the behavior of other agents conditioned on the
ego vehicle’s path. Similarily, Tolstaya et al. [105] propose a model called

6 Explainable artificial intelligence (XAI) is a catchword that summarizes the research around
making results of ANNs interpretable [95].
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Conditional Behavior Prediction that considers a pair of two agents where
the trajectory of one of the agents, the robot, is fixed, and the corresponding
trajectory of the other vehicle is predicted.

Consistency in Behavior Modes. A recent development in traffic scene
prediction is to not only predict position distributions for individual agents,
but to predict a consistent evolution of the whole traffic scene, sometimes
called modes [18,82]. These describe all the distinct possible maneuvers of an
agent, that usually strongly rely on the maneuvers of others, see Fig. 1.1 for an
example of two merging agents.

Gilles et al. [36] propose a model that produces an occupancy heatmap for
each agent and samples a fixed number of possible trajectory end points. A
consecutive network then learns to produce consistent combinations of those
end points as possible future scene evolutions and assigns a probability to each
evolution.

Conditional Prediction. Rhinehart et al. [89] claim to have developed the
first conditional forecasting model for AD. They developed a single agent
generative model based on Rhinehart et al. [88] that predicts several agents’
behavior given their earlier trajectories and a grid map. They do so by pre-
dicting all agents’ behavior with a joint generative model, whose input is not
only the past trajectories and the grid map, but also a random state sample
from a constant Gaussian for each agent. By finding a certain set of states that
represent the robot’s desired future trajectory, the network can be fed again
with Gaussian noise for the other agents’ states while the robot’s trajectory is
given by the found states. The authors formulate an optimization problem that
leads to the robot’s states.

With a different method, Tang et al. [103] publish a generative model that
is also able to produce different trajectory “rollouts” even for multiple given
trajectories. By rolling out a joint recurrent neural network (RNN) whose
output state are the future positions at the next time step, the output of the
model is created. Since the output state is also fed back into the model, the state
can be set manually during rollout for as many agents as desired. Furthermore,
this method directly learns to assign class labels to the outcoming trajectories
without the need of providing ground truth.

Extending Casas, Culino, Suo et al. [18], Cui, Casas, Sadet et al. [26]
directly sample consistent behavior modes from their model similarly to Gilles
et al. [36], and additionally propose a planning method that is able to handle
their output.
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3.2 Competing Prediction Approaches

The approach of Ngiam, Caine et al. [80] expects an arbitrary set of con-
ditional trajectory waypoints and also output different modes with assigned
probabilities consistent with those given waypoints.

Discussion

The academic focus of prediction is clearly shifting from an individual field
of research with the objective of minimizing the average displacement error
between prediction and ground truth (GT), to prediction output that can be
put into perspective in the corresponding scenario regarding other agents’
reactions. The focus now is on general interpretability and more specifically
on usability for the successive planning module. While behavior modes are an
important element for interpretable prediction, not all agents of a traffic scene
are dependent on all other agents, therefore the number of required modes to
catch all major behavior combinations might be a limiting factor already for a
few agents.

In the proposed model, bivariate discrete position predictions are produces
that allow for pairwise and conditional analysis of corresponding behavior be-
tween two agents (see Section 4.3). With this pairwise output, the behavior of
more than two interacting agents can be analyzed regarding behavior consis-
tency. The absence of behavior consistency is an indicator for a not trustworthy
prediction and should result in conservative behavior generation.
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4 Design Patterns and Model
Interface

In this chapter, key design features of the proposed spatially discrete modeling
approach are explained, and the interfaces – input and output – of the proposed
model are defined and explained. The model itself is described in Chapter 5.
In total, 12 input and 3 output variables illustrated in Fig. 4.1 will be introduced
that are lucidly summarized in Appendix A.5.

Figure 4.1: Input and output overview of the proposed model. Each variable is explained
in the following.

Two Connected Graphs

One of the challenges the proposed approach tackles, is to combine two se-
mantically different graphs in a differentiable and therefore trainable way: The
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map subgraph1 is extracted from the high definition (HD) map consisting of
lane segments and their connections, and an interaction graph consisting of
agents and their relations that evolve to interactions within the model.

A core design feature of the proposed model is the discrete spatial sectioning
of the map graph in small lane tiles, so agents, time steps, and lane tiles can
be represented in tensor form. This implies that core design features can be
realized efficiently by tensor operations as explained later. The tensor indices
𝑎, 𝑏 ∈ [1, ..., 𝑛A] are used for agents, 𝑙, 𝑘 ∈ [1, ..., 𝑛L] are used for lane tiles,
and 𝑡, 𝑧 ∈ [1, ..., 𝑛T] are used for time steps. Unlike lanelets, lane tiles have a
minimum and maximum length. While lanelets can potentially have a length
of 10 cm, e.g. as an artifact of automated map generation, or 10 km, e.g. on a
highway, without violating model assumptions, the lane tiles have roughly the
spatial dimensions that one car occupies laterally and longitudinally. Those
bounds will be defined more precisely in Section 4.1. Agents are always bound
to lane tiles in the model, unlike many other publications, where both agents
and their prediction means are point masses in Cartesian coordinates. This
discrete model approach allows efficient conflict representation between agents
(see Section 4.1.1 and Section 4.1.4) and pairwise joint probability estimation
(see Section 4.3) explained in Section 5.2.3 and in Section 5.2.8 in detail.

4.1 The Map Graph & Positioning of Agents

A high definition (HD) map in the context of automated driving consists of road
entities such as road markings, traffic signs, traffic lights and the traffic rules
they imply, both for lane-bound vehicles and vulnerable road users (VRUs).
A map is the static model of an infrastructural environment. The environment
changes over time, so the map has to be adapted to those changes through
updates frequently. The map outdates e.g. by construction sites, police or fire
brigade changing traffic rules or the road course. Such an incident happens
either very slowly compared to overall traffic scene change, or it directly
results in complete closure of a lane, road, or intersection. Those changes
are considered as corner cases and their coverage is not the primary goal of

1 As explained in Section 2.2, the worldwide road network can be seen as one large graph. From
that graph only subgraphs can be used for training due to availability and performance reasons.
Nevertheless, the term “graph” is used for simplicity when mentioning the map subgraph utilized
in the model.
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Figure 4.2: Visualization of how the model perceives agents and the map: The map
graph is segmented into lane tiles. An agent’s position on the map graph is defined by a
probabilistic position vector over all lane tiles in the scene. In this image, the position
vector for each agent is a one-hot vector assigning the agent to exactly one lane tile. The
positional probability mass of agents can only be propagated along the map subgraph
(orange) and leave the scene where the map graph was cut: At entry lane tiles (green)
and exit lane tiles (red).

this work. However, most of them can be covered and solved by adjusting the
map graph accordingly. Conclusively, the map can be assumed static from the
viewpoint of a traffic participant at the time they pass through it and especially
for the time span of Δ𝑡ph without loss of generality.

In this work, availability of a lane-based topological map for automated
driving is assumed where the lane width corresponds approximately to the
lateral space a lane-bound vehicle covers, e.g. the framework Lanelet2 by
Poggenhans et al. [85]. This map can be either given as a static road map, or
a road topology generated while driving, e.g. [72–74]. In Lanelet2, a lanelet
is defined as a lane segment between a left and a right road boundary, often
directly given by a physical bound such as a curb stone or a road marking. Road
infrastructure, e.g. signs or stop lines, can have a certain relation to individual
lanelets, inducing traffic rules.
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For the current use case, lanelets are split longitudinally in segments in such
a way that one agent can roughly occupy one lane tile both longitudinally and
laterally. Due to the variety of map topologies, a fixed size is not considered
useful. This edit was done manually for ten intersections available in public
drone datasets that are used for training and testing (see Section 6.1), for real
world application it was automated. The resulting centerlines of lane tiles are
between 2 m and 8 m of length, the majority between 3 m to 4 m. The original
width is retained as provided by the map An example on how Lanelet2 maps
look like for real world road topologies compared to the lane tiles is illustrated
in Fig. 4.3.

4.1.1 Agent Positioning in the Map with a Position Vector

In order to establish a connection between agent and map graph, a probabilistic
position vector p𝑎,𝑡 ∈ [0, 1]𝑛L ,

∑
𝑙 p𝑎,𝑡

𝑙
= 1 is used to locate agent 𝑎 at a certain

time step 𝑡 in the map subgraph on lane tile 𝑙. Regarding input and ground truth,
a position vector entry p𝑎,𝑡

𝑙
is 1 if a vehicle is located in the corresponding lane

tile with absolute certainty 𝑙, and 0 if not. Since it is often ambiguous which
lane tile is currently occupied by a certain agent, it is explained in Section 4.1.2
how input positions and ground truth (GT) are identified. Regarding the input
of the proposed model, assuming perfect positioning of agents to lane tiles in
a preceded perception module is unnecessary. A module is proposed later that
assigns agents to lane tiles probabilistically which can be trained end-to-end
with the rest of the model. Entries of a position vector within the model
can be interpreted as a discrete occupancy probability distribution over lane
tiles making the model’s output representation a position vector with discrete
probabilistic character.

Positional Conflict Identification through Matrix Multiplication

Next, the position vector’s property to identify and represent conflicts is pre-
sented. Multiplying p𝑎,𝑡 with p𝑏,𝑡

𝑐
𝑎,𝑏,𝑡

= p𝑎,𝑡
𝑙

p𝑏,𝑡
𝑙

≡ p𝑎,𝑡Tp𝑏,𝑡 (4.1)

results in 𝑐
𝑎,𝑏,𝑡 ∈ [0, 1] where 𝑐

𝑎,𝑏,𝑡 denotes the probability of a position
conflict between agent 𝑎 and 𝑏 at the same time step 𝑡 assuming the predicted
positions of agent 𝑎 and 𝑏 are statistically independent. In real world traffic,
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4.1 The Map Graph & Positioning of Agents

(a) Lanelet2 maps. While the original map contains rich features that also include sidewalks, polyline
annotations and positions of road signs, only routing information, stop lines and priority signs are utilized
for the needs of the proposed lane tile map.

(b) Aerial image of the exemplary
intersection inD location1 by
Bock et al. [11].

(c) Geometric map features. Lane tile boundaries (right) are given with a
start and an end point (large squares). Lanelet boundaries (left) can
additionally have middle points (small squares) to form polylines.

(d) Left: Exemplary lanelets. Boundaries can be curved. Right: Exemplary lane tiles. Each lane tile is a
quadrilateral.

Figure 4.3: An exemplary original Lanelet2 map (left) compared to a map with lane tiles (right).
All common paths within an intersection are represented in the map. Source of aerial images:
Esri World Imagery.
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neither the actual behavior, nor position predictions of two agents with future
position conflicts are statistically independent2. As illustrated in Fig. 1.2,
overlapping positional predictions of different agents usually do not belong
to the same behavior mode. The potential probabilistic character of 𝑐

𝑎,𝑏,𝑡

therefore is only mentioned for completeness here but not further used or
assumed in this work. Note that perfect predictions that are represented by
one-hot position vectors with Eq. (4.1) rarely result in conflicts, since agents
usually do not occupy the same lane tile3. Thus, the uncertainty of predictions
would require a certain spread in order to identify conflicts at the same time
step 𝑡.

As a result, it is claimed that combining position predictions of different
agents at two different time steps 𝑡 and 𝑧 leads to a useful representation for
identifying and interpreting position conflicts and their temporal relation for a
pair of agents.

For this purpose, position vectors p𝑎,𝑡 of an agent 𝑎 can be concatenated
along the time dimension 𝑡 leading to P𝑎 ∈ [0, 1]𝑛T×𝑛L . Multiplying P𝑎 with
the position matrix of another agent 𝑏

C𝑎,𝑏
≻ ≡ C𝑎,𝑏

𝑡,𝑧 = P𝑎
𝑡,𝑙P

𝑏
𝑙,𝑧 ≡ P𝑎P𝑏T

(4.2)

results in conflict matrix C𝑎,𝑏
≻ ∈ [0, 1]𝑛T×𝑛T where C𝑎,𝑏

𝑡,𝑧 is the probability
for a position conflict of agent 𝑎 at time step 𝑡 with agent 𝑏 at time step 𝑧. This
conflict matrix only identifies conflicts that happen on the same lane tile, e.g.
because of merging or close following. This is indicated with the symbol ≻
which resembles two merging lanes. Another type of conflict can arise from
the spatial crossing of two different lane tiles and is introduced in Section 4.1.4.

The different deliberations introduced in Eq. (4.1) and Eq. (4.2) are related
through 𝑐

𝑎,𝑏,𝑡
= C𝑎,𝑏

𝑡,𝑡 , so the first contains the trace entries of the second
conflict object. The two different time indices indicate the hypothetical in-
formation incorporated in this tensor, unlike in Eq. (4.1), where behavior at
the same time step is compared. After introducing the highly related crossing
conflicts and the crossing matrix in Section 4.1.4, illustrative examples for
basic conflicts will be given.

2 Ideally, predictions are conditioned on (hypothetical) behavior. See Section 3.2.3 for details.
3 A line tile was defined to be roughly the region an agent longitudinally and laterally can occupy.
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Figure 4.4: Identifying the correct lane tile an agent is currently occupying: First, route
planning is conducted from the lane tile an agent 𝑎 has entered the scene to the lane tile
an agent leaves the scene. The resulting route lane tiles Υ

𝑎 form a track mask (light
green). Current GT (intense green) is the lane tile with the largest IoU with the front
axle rectangle (yellow) of an agent (orange). Only lane tiles that are part of the route are
considered.

4.1.2 Position Identification and Training Target

Vehicles that are given in Cartesian space must be matched to discrete lane tiles.
On the real world asphalted road surface, a vehicle can move independently of
lane markings, traffic rules and other agents. The map graph that is used in
this work is structured and can only be passed in certain directions, resulting
in potential modeling mistakes, if agents are not located on the correct part of
the map graph from the start. So for receiving accurate input positions and
receiving GT future positions, the correct lane tiles need to be found for each
agent at each time.

Generating Track Mask

The process of identifying GT lane tiles is illustrated in Fig. 4.4. First, the
light green track of occupied lane tiles Υ

𝑎 is identified with route planning
from a scene entry lane tile to a scene exit lane tile for each agent. Scene
entry and exit lane tiles are identified for each agent by use of nearest neighbor
assignment with the first and last position of an agent’s trajectory in the dataset.
This track is represented as a binary mask over all lane tiles. Only the lane

41



4 Design Patterns and Model Interface

tiles that are part of that track are considered as input position or future GT
position at a certain time step4. It is possible to construct examples in which
route planning fails to create a good track mask5. Such events have not been
specifically investigated, but it was not observed to be a frequent problem in
the great amount of manually inspected scenarios. Also, despite a smooth
training process being disturbed by such examples, the resulting predictions
during inference are still useful. Since agents frequently leave the scene within
the prediction horizon Δ𝑡ph, it is generally necessary to handle vanishing GT
position vectors p𝑎,𝑡

= 0 correctly for certain 𝑎 and 𝑡. The counter measures
taken to handle both regular and rare cases of vanishing GT are explained in
Section 5.4.1 and Section 5.4.2.

Assigning Agent to exactly one Lane Tile

If a track is identified for an agent, it is necessary to assign the correct lane tile
at each time step for which the agent was recorded. Unlike other researchers
and benchmarks, the center of a vehicle is chosen when reducing the bounding
box of a vehicle to a point mass. Instead, the approximated position of the
front axle center is used which is depicted yellow in Fig. 4.4, since it guides the
movement of the vehicle along a trajectory6. It is assumed to be located at 20%
length behind the front bound of the vehicle’s bounding box7, and laterally in
the middle. The lane tile with the largest intersection over union (IoU) with the
front axle rectangle located around the front axle center point with width 𝑤 and
length length

5 is chosen. By choosing a comparably short but wide bounding
box, matches are created even if an agent drives at the very edge of a lane
tile in order to pass a potentially blocked road. The front axle center point
might then already be located outside the lane tile. Position vectors p𝑎,𝑡 of

4 On roads with more than one lane in the same direction, all parallel lane tiles are part of that
track mask.

5 A U-turn is not covered that way since it is not considered for route planning. An agent going
through a roundabout with a turn of more than a whole circuit also drives on lane tiles not
included in the track mask since the track only contains the shortest path.

6 The foremost point of a long vehicle might already be located outside the asphalted road in tight
turns, being misleading for track identification. The front axle center point is guaranteed to be
located on the drivable road.

7 Smart EQ fortwo: 15.7% [70] Audi A1 (GB): 19.6% [3], Audi A3 (8Y): 20.2% [5], Audi A6
(C8): 18.6% [4], Mercedes-Benz S-Class (V223): 17.2% [71], VW Multivan (T7): 18.4% to
19.1% [108], MAN Lion’s City 12: 22.8% [65]
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all agents 𝑎 can be concatenated to position matrices at a certain time step 𝑡

to [p𝑎,𝑡 ] = P𝑡 ∈ R𝑛L×𝑛A . And those matrices can be concatenated to position
tensors [P𝑡 ] = 𝑷 ∈ R𝑛T×𝑛L×𝑛A . 𝑷GT ≡ 𝑃𝑡 ,𝑙,𝑎 equals 1 for lane tile 𝑙 with
maximal IoU with front axle rectangle of agent 𝑎 at time step 𝑡 and lane tile
𝑙 ∈ Υ

𝑎.

Mask and Features for Lane Tile Matching

Next, the position candidates matrix PCand ∈ {0, 1}𝑛L×𝑛A is introduced. An
entry is 1, if the front axle rectangle (yellow) of agent 𝑎 has a non-zero IoU
with lane tile 𝑙, see Fig. 4.5. It is used as a mask to erase unlikely position
matches of the Lane Tile Matcher introduced in Section 5.2.1.

With a local 2D coordinate frame for each agent front axle point and for
each lane tile centerline start and end point, transformation matrices

T𝑎,𝑙
=

©«
cos(𝜗𝑎→𝑙) − sin(𝜗𝑎→𝑙) 𝑥

𝑎,𝑙

sin(𝜗𝑎→𝑙) cos(𝜗𝑎→𝑙) 𝑦
𝑎,𝑙

0 0 1

ª®®¬ , (4.3)

can be calculated. Transformation feature vectors

t̃𝑎,𝑙 := [cos(𝜗𝑎→𝑙), sin(𝜗𝑎→𝑙), 𝑥𝑎,𝑙Start, 𝑦
𝑎,𝑙

Start, 𝑥
𝑎,𝑙

End, 𝑦
𝑎,𝑙

End] (4.4)

that contain the information from Eq. (4.3)8 can be extracted and are used
as a further input feature for the model. With the transformation information
and the position candidates mask, it is assumed that agents can be matched to
lane tiles they are currently located on.

4.1.3 Modeling Movement Options along the Map
Subgraph with Transition Matrices

In order to allow movement of agents with a position given by position vectors
within the map subgraph, transition matrices are introduced. Each transition
matrix I ∈ T ⊂ {0, 1}𝑛L×𝑛L represents a transition class leading from one
lane tile to another. A transition class is the high-level movement option

8 Transformations to centerline start and end point have the same rotation, but different transla-
tional components.
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(a) Crossing lane tiles and their relative coordinate
transforms.

(b) Opposite lane tiles and their relative coordinate
transform.

(c) Ego lane tiles and their relative coordinate
transforms.

(d) All lane tiles of a scene and overlapping areas
with front axle rectangle.

Figure 4.5: Position candidates matrix is created by checking the overlap between the
front axle rectangle of an agent and the area of the lane tile. Each lane tile with an overlap
is considered as positional candidate. For better clarity, the ego lane tiles (blue), the
opposite lane tiles (green) and the crossing lane tiles (red) are illustrated separately. The
agent’s coordinate frame is shown in brown, the lane tile end point coordinate frames
are shown in green and the transform between those are indicated by dashed green lines.
The overlapping regions are highlighted separately in the pink excerpt. For clarity, the
lane tile start point coordinate frames are not visualized.

leading from one lane tile to another with the same behavior. E.g. the entries
I𝑘,𝑙 of the transition class “lane change to the left” connects lane tile 𝑘 that
is reachable through a lane change to the left starting from lane tile 𝑙. The
resulting transition matrices are sparse. The transition classes between two
lane tiles can be directly extracted from the map. The transition class from 𝑙
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to 𝑘 is never the same as from 𝑘 to 𝑙. Lane tiles are connected with transition
matrices, if they lead into the same direction9.

Entry A𝑘,𝑙 of matrix A ∈ T denotes whether lane tile 𝑘 is directly consecutive
to lane tile 𝑙, meaning that an agent follows its current lane. The symbol A refers
to the adjacency matrix used in graph theory, but unlike the original definition
of adjacency matrices, each transition class has its own transition matrix in the
proposed approach. Each lane tile can have several directly consecutive lane
tiles creating motion options towards different directions. However, most have
exactly one.

The purpose of a transition matrix I is to propagate positions through the
directed road graph via the corresponding transition class by multiplying it
with a position vector p𝑎,𝑡 , e.g. the output

p𝑎,𝑡+1
= Ip𝑎,𝑡 (4.5)

is a position vector after one discrete motion step through a certain transition
class I. In case of I := A, each occupancy probability would be transferred one
lane tile forward in driving direction in the graph. Probability mass transitions
are later10 normalized over all transition options for each lane tile, so prob.
mass11 cannot leak the scene.

Besides driving to the consecutive lane tile, agents have the option to stay
on their current lane tile. Therefore, the identity matrix 1 denotes connections
of lane tiles with themselves. Each lane tile 𝑙 can have up to one connected
lane tile on the right and on the left that are reachable via lane change. Those
lane changes are represented by transition matrices, to the right by R and to
the left by L. For many road topologies, R = LT holds. However, there are
map elements that allow lane change in one direction only, e.g. lane change
from but not onto an acceleration lane when entering a highway. Note that all
turns are included in transition class A, so R and L only contain lane changes
of parallel lanes in the same direction.

9 However, the approach would allow to introduce a U-turn transition class whose matrix connects
all pairs of lane tiles that share their left lane boundary (in right-hand traffic (RHT), in left-hand
traffic (LHT) vice versa). Also, the approach is not strictly limited to automated driving (AD):
Generally, it is the developer’s task to introduce a meaningful set of transition classes and
corresponding transition matrices T for each specific occupancy prediction problem on graphs.

10 See Section 5.2.2 for details.
11 Since the term probability mass is used a lot, the abbreviation prob. mass is utilized.
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An agent on lane tile 𝑙 can reach lane tile 𝑘 through exactly one transition
class12. In order to represent different velocities, especially if lane tiles are
chosen to be smaller than the distance traveled with average speed Δ𝑡, combi-
nations of the presented transition matrices are useful. In the present case of
traffic scene prediction, the matrix products LA,RA and AA are introduced as
separate transition options. Driving in reverse can be represented with AT, so in
total eight transition classes are used in this work: A,1,R,L,AA,RA,LA,AT.

Similar to the beginning of this subsection, I is utilized subsequently as a
placeholder for any of the eight previously introduced options. If I is used in
a formula, in practice the formula is evaluated with all transition matrices.

4.1.4 Crossing Matrix for Spatial Overlap of Different Lane
Tiles

Since Eq. (4.2) only produces conflicts for agents driving on the exact same
lanelet, another matrix is required in order to complete the modeling of poten-
tial conflicts. Crossing matrix 𝚷 ∈ {0, 1}𝑛L×𝑛L contains overlapping lane tiles
where Π𝑘,𝑙 denotes the IoU of lane tile 𝑙 and 𝑘 and therefore is symmetrical13.
Multiplying the position matrix twice with the crossing matrix

C𝑎,𝑏
× ≡ C𝑎,𝑏

𝑡,𝑧 = P𝑎
𝑡,𝑘Π𝑘,𝑙P

𝑏
𝑙,𝑧 ≡ P𝑎T𝚷P𝑏 (4.6)

results in a crossing conflict matrix C𝑎,𝑏
× ∈ R𝑛T×𝑛T between agent 𝑎 and

agent 𝑏.
Similar to the transition matrices in Section 4.1.3, more than one kind of

crossing conflict can be introduced. It might be beneficial to handle crossing
conflicts between cars separately from conflicts between cars and pedestrians.
Since VRUs are not subject of this work, only one crossing conflict matrix is
used.

12 Note that most lane tile pairs are not directly connected at all. Many can be reached with
sequences of transitions and some are not reachable at all.

13 The trace entries are Π𝑙,𝑙 = 1∀𝑙, so crossing conflicts would include merging conflicts (Sec-
tion 4.1.1). In order to make distinction between crossing conflicts and merging conflicts sim-
pler during training, the crossing matrix is chosen to be traceless.
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4.1.5 Spatial Conflicts

Two types of conflicts have been introduced, merge conflicts in Eq. (4.2) where
agents reach the same lane tile and cross conflicts in Eq. (4.6) where agents
reach two overlapping lane tiles. A conflict C ∈ {C≻ ,C×} can be visualized
as a gray scale image. In Fig. 4.6, C is visualized for some conflict primitives.
They illustrate the interpretability of the proposed conflict representation.

4.1.6 Node and Edge Features of the Map Subgraph

Feature matrices of lane tiles (nodes) [f𝑙] = FL ∈ R𝑛L×𝑛F,L and lane tile
connections (edges) [f𝑙R ,𝑙S ] = 𝑭LE ∈ R𝑛L×𝑛L×𝑛F,LE are given with feature sizes
𝑛F,L for lane tiles and 𝑛F,LE for lane tile connections.

Useful geometric features for lane tiles are shown written in red monospace
font in Fig. 4.7. An additional non-geometric lane tile feature is the speed
limit.

Useful geometric features for lane tile connections are written in green
monospace font. Besides geometric features, a flag for identifying self-
connection, a priority indicator and a stop line flag are used. The priority
indicator has three states: +2 if there is a stop line between two lane tiles, +1
if there is a yield sign between two lane tiles, and 0 if there is no sign related
to priority. The stop line flag is +1 if a stop line needs to be passed in order
to reach the subsequent lane tile, and 0 if not. The advantage of using two
separate indications here is that a priority to the right situation can be derived
from the lack of priority signs and the existence of stop lines. All input features
regarding nodes and edges of the map graph are listed in Appendix A.4.

One of the problems mentioned later is low diversity of map topologies
identified as suitable for this work. If there were more maps available and
the problem of overfitting to unique features was decreased, introducing more
input features would be useful. For example, feature flags for lanes can be
introduced: −2 if the agent is currently on a road where it can only turn left,
+2 if the agent is currently on a road, where it can only turn right, ±1 if also
driving straight on is possible, and 0 if only driving straight on is allowed. With
such a feature, model requirements regarding exploring the map and storing
information during the map-based prediction phase are relaxed.

Another useful feature is the lane marking between parallel lanes. This
feature is set to 0 if there is no lane marking that has to be crossed when
using the corresponding connection. It is 1 if the lane marking is dashed,
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(a) Conflict when following on the same lane. Left: slow speed, small initial distance. Middle:
increased speed, small initial distance. Right: increased speed, initial distance increased. The
temporal distance between two agents results in a shift of the conflict activations. The sharpness
of the conflict activation region corresponds to the sharpness of the individual predictions.

(b) Conflict when two agents merge into the same lane. Left: slow speed, same distance to merge
point. Middle: increased speed, same distance to merge point. The distribution fades out because
the mode of both agents leaks out of the simulated scene. Right: slow speed, unequal distance
to merge point. Merging looks like temporally dilated following, because there is a temporal
distance from both agents to the conflict region.

(c) Conflict when two agents drive on two crossing roads. Left: slow speed, same distance to crossing
point. Middle: increased speed, same distance to crossing point. Right: slow speed, unequal
distance to crossing point. The conflict activation climaxes for a certain temporal combination
𝑡 , 𝑧 and fades afterwards.

Figure 4.6: Visualization of different basis conflicts C ≡ C𝑡,𝑧 ∈ R𝑛T×𝑛T between a pair
of agents. The two time dimensions 𝑡 , 𝑧 start from the top left corner in each image.
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4.2 The Interaction Graph

Figure 4.7: Features of lane tiles and lane tile connections. In greek letters, helper
variables are visualized, in monospace font, the derived input features are noted. Those
features are used not only for consecutive lane tile connections as one might assume
from this schematic image but for connections in all transition classes.

which in Germany indicates that overtaking is allowed. It is 2 if it is solid,
which indicates that overtaking is currently not allowed. Which this feature,
the opposite lane can even be included in the map graph. Additionally, another
lane feature flag can indicate whether the current lane tile is driven in the
correct direction or in the wrong direction, e.g. during overtaking.

Furthermore, traffic light states can be added as connection features. How-
ever, intersections controlled by traffic lights are excluded in this work, because
there is no corresponding dataset and because interaction is reduced to a min-
imum there.

4.2 The Interaction Graph

Agents can move in the scene obeying the map graph topology, its geometric
properties and its traffic rules that contain information on who has to yield to
whom in case of a conflict. Signs can be introduced through lane tile connection
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Figure 4.8: Agent node and agent edge features that are used for training and evaluation.

features, speed limits through lane tile features, and common general rules
such as priority to the right or 4-way-stop behavior14 shall be learnable by the
model through behavior in the data and the geometric relations between agents
at intersections that lack priority signs. Agents interpret those rules while
considering other agents in the scene.

In the presented approach, agents are individual entities in the scene that
get propagated through the map graph in order to minimize a positional clas-
sification loss at different prediction horizons. As described in Section 4.1.1,
position vectors connect both graphs by defining the position of an agent on a
certain lanelet.

Feature matrices of agents (nodes) [f𝑎] = FA ∈ R𝑛A×𝑛F,A and agent relations
(edges) [f𝑎,𝑏] = 𝑭AE ∈ R𝑛A×𝑛A×𝑛F,AE are given with feature sizes 𝑛F,A for
agents and 𝑛F,AE for agent edges.

Useful geometric agent and agent edge features are described in Fig. 4.8.
Additionally, the agent’s class is indicated by an integer (truck/bus: −1,
car/motorcycle: 0, bicycle: +1).

14 Not used in this work, since the work is focused on European traffic.
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4.3 Output Definition

Valuable further features that are not part of today’s datasets is information
about the indicator (indicating left: -1, indicator off: 0, indicating right: +1),
the current stearing angle which is particularly interesting for agents standing at
an intersection and a boolean flag about whether two agents are able to see each
other. All features of agent graph nodes and edges are listed in Appendix A.4.

4.3 Output Definition

The network outputs discrete probabilistic position predictions over all lane
tiles for each agent at each future time step 𝑷 ∈ [0, 1]𝑛T×𝑛L×𝑛A at two different
stages within the model. The first prediction is done without allowing commu-
nication and interaction between agents, which is called map-based prediction
𝑷Map. The second and final prediction is done with allowing communica-
tion and interaction between agents, which is called final prediction 𝑷Final.
𝑷Map, 𝑷Final ∈ [0, 1]𝑛T×𝑛L×𝑛A holds. In contrast to most other approaches, the
optimization task is formulated as a classification problem over the existing
lane tiles for each agent at each future time step. For each agent 𝑎 at each
future time step 𝑡, a future position estimate is given by p𝑎,𝑡 ∈ R𝑛L that fulfills∑𝑛L

𝑙=1 p𝑙 = 1, p𝑙 ≥ 0∀𝑙15.
With 𝑷 ≡ 𝑃𝑡 ,𝑙,𝑎, an estimate is given about how likely it is that agent 𝑎

will be on lane tile 𝑙 at time step 𝑡. In probability theory, this is called an
event Ω. Either this event actually happens, or it does not. The probability
of the event Ω𝑡 ,𝑙,𝑎 is estimated. Thus, the estimate that this event happens is
𝑃𝑡 ,𝑙,𝑎 = P (Ω𝑡 ,𝑙,𝑎).

Furthermore, the network outputs the conditional probabilistic position es-
timate for agent 𝑎 and lane tile 𝑙 at time step 𝑡 given that agent 𝑏 will be on
lane tile 𝑘 at the same time step 𝑡 as a tensor 𝚿 ∈ [0, 1]𝑛T×𝑛L×𝑛A×𝑛L×𝑛A where
𝚿 fulfills

𝑛L∑︁
𝑘=1

𝑛L∑︁
𝑙=1

Ψ𝑡 ,𝑙,𝑎,𝑘,𝑏 = 1∀((𝑎, 𝑏, 𝑡) ∧ (𝑎 ≠ 𝑏)), (4.7)

which can be described as

Ψ𝑡 ,𝑙,𝑎,𝑘,𝑏 = P (Ω𝑡 ,𝑙,𝑎 | Ω𝑡 ,𝑘,𝑏). (4.8)

15 A scene leaks prob. mass at the exits. Still the distribution is of probabilistic character.
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Directly learnable is the joint probability

Ξ𝑡 ,𝑙,𝑎,𝑘,𝑏 = P (Ω𝑡 ,𝑙,𝑎 ∧Ω𝑡 ,𝑘,𝑏) (4.9)

and the conditional probabilityP (Ω𝑡 ,𝑙,𝑎 |Ω𝑡 ,𝑘,𝑏) can be derived for a desired
agent and lane tile specific condition P (Ω𝑡 ,𝑘,𝑏) with

P (Ω𝑡 ,𝑙,𝑎 | Ω𝑡 ,𝑘,𝑏) =
P (Ω𝑡 ,𝑙,𝑎 ∧Ω𝑡 ,𝑘,𝑏)

P (Ω𝑡 ,𝑘,𝑏)
. (4.10)

Since the result is a probability distribution over lane tiles 𝑙, instead of
dividing by P (Ω𝑡 ,𝑘,𝑏), the 𝑙-dimension is normalized for a given agent 𝑏. The
corresponding formulas leading to this conditional prediction can be found in
Section 5.2.8.
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5 Spatially Discrete Scene
Prediction

The architecture of the proposed graph neural network (GNN) and its modules
are explained in this chapter. Section 5.1 describes the model architecture
briefly with analogy to the human driver. Section 5.2 describes the model
in detail. In Section 5.3, the output of the proposed model is described and
recommendations on how to post-process it are given. Section 5.4 the loss
functions, their adaptations and different training strategies are discussed.

5.1 Model Overview

The proposed architecture consists of separate modules, each with a distinct
task. Those tasks follow the human analogy of predicting other traffic partici-
pants (TPs):

1. Assigning agents to lane tiles: As explained in Section 4.1.2, it might
be ambiguous which lane a TP is currently following in a structured
road topology, given only a snapshot of the agent’s state. Therefore, the
Lane Tile Matcher (Section 5.2.1) is trained to assign agents to the lane
tiles they currently drive on as a discrete probability distribution over
all lane tiles that overlap with the front axle rectangle of the agent. The
following modules can only propagate the positional prob. mass of the
agents according to these matches.
An experienced driver can accomplish that assignment without much
reasoning based on the past observed states of another TP. Also, this
experienced driver can directly identify other drivers for whom lane
matching is not possible because their states completely contradicts the
experience: for wrong-way drivers.

2. Hypothetical prediction for exploration of the map: If a single TP was
alone in the world, its speed profile would be well-defined by personal
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5 Spatially Discrete Scene Prediction

perception of safety, resource consumption and comfort requirements.
So in multi-agent traffic, the main reason for speed adaptations is to
resolve spatial conflicts with other TPs. Those conflicts can be solved
according to priority indication, e.g. through traffic lights and signs, or
spatial conflicts need to be resolved with cooperative behavior, especially
in merging scenarios or in a hose1. In order to estimate future motion
properly for all TPs in a complex traffic scene, position conflicts need
to be identified first. In the Map-based Predictor (Section 5.2.7),
each agent can explore the map graph along the possible drivable paths,
storing information e.g. about the traversed route or the agent’s current
state. As the name implies, the Map-based Predictor can only make use
of map features and features of the agent that is to be predicted.
For the analogy with human drivers, this corresponds to a foresighted
driving style: Humans need to layout their own desired paths only given
road topology and traffic rules.

3. Identifying positional conflicts: If the map-based predictions of two
TPs occupy the same space at the same time, there is a potential conflict.
The more potential conflicts for each pair exist, the more likely the
necessity of a conflict solution through interaction becomes. By giving
each conflict a numerical form, the Conflict Identifier (Section 5.2.3)
can learn to identify recurring temporal conflict patterns that may be
generalizable for various road topologies.
A human driver foresees overlapping of the own desired trajectory with a
potential trajectory of another TP at certain future time points requiring
behavior adaptations in order to avoid risky situations.

4. Sending gathered information to oneself and others: After storing
information about the passed route and identifying conflicts, the Noti-
fication Generator (Section 5.2.4) extracts data relevant for others and
the Message Generator (Section 5.2.5) can produce an individual in-
teraction message for each agent. Also, an agent can send information
gathered during map-based prediction through the Self-Message Gen-
erator (Section 5.2.6) to itself. This information can contain upcoming

1 In reality, those are not strict contradictions, but cooperative interaction frequently takes place
in intersections with clear prioritization, too.
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route options or traffic signs indicating traffic rules the agent needs to
obey.
A human driver draws conclusions from the foreseen conflicts and the
applying traffic rules. The driver then has the chance to adapt the initial
motion intention accordingly.

5. Final prediction with interaction: Lastly, each agent is predicted along
the map graph in the Predictor (Section 5.2.2) once more including
interaction information the agent received from itself and from other
agents.
A human driver decides on a trajectory that both fits to the driver’s
estimated intention of others and the path leading to its own destination
that each driver knows for him- or herself.
Unlike for a human driver, the desired path of each agent is not utilized
in the present approach. This introduces a large uncertainty about the
evolvement of a scene and separates the research field of prediction from
the research field of multi-agent planning.

6. Conditional prediction: Besides predicting distributions for statisti-
cally independent positions, the Cooccurrence Estimator (Section 5.2.8)
predicts bivariate joint distributions for each pair of agents. With the
definition of conditional probability, those joint distributions allow ana-
lyzing the traffic scene evolvement conditioned on hypothetical behavior
of both the ego vehicle and other agents.
A human driver would choose a (re)action and move forward faster if
the driver did not have to consider several motion options of others but
instead knew about their future paths. Therefore, humans intuitively
condition their behavior on actions of others in order to avoid unlawful
and risky situations.
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Figure 5.1: Schematic overview of the proposed model architecture as described briefly in Sec-
tion 5.1. Each pictogram represents a module described in the corresponding subsection of
Section 5.2. An overview with formulas instead of pictograms can be found in Fig. 5.10. Ar-
rows with one head represent information flow, arrows with two heads represent correspondences,
vertical bars represent latent variables such as states, notifications and messages.

5.2 Model

The model and its modules are described in detail, leading from the schematic
overview in Section 5.1 to the condensed overview with formulas in Fig. 5.10.

5.2.1 Lane Tile Matcher

In Section 4.1.2, difficulty of assessing which route on the map graph an agent
is currently choosing was discussed, and on which lane tile it is driving, respec-
tively. Therefore, assigning agents to lane tiles is regarded as a preconnected
technical task that requires a separate module estimating the assignments.

0.6
0.3

0.1

Figure 5.2: The Lane Tile Matcher as-
signs agents’ initial positional probabil-
ities to lane tiles.

The Lane Tile Matcher is fed with dynamic
information of the agent f̃𝑎 = [𝜔, 𝑣, ¤𝑣] and
its transformations to the lane tiles’ center-
line start and end point. After creating a local
2D coordinate frame both for each agent and
for each lane tile entry, a transformation ma-
trix Eq. (4.3) can be calculated for each pair
of agent and lane tile. A multi-layer percep-
tron (MLP) 𝜑LTM creates a matching proba-
bility for all lane tiles [p𝑎

LTM] ∈ [0, 1]𝑛L×𝑛A

p𝑎𝑙 = 𝜑LTM

(
f̃𝑎, t̃𝑎,𝑙

)
,

p̃𝑎
LTM = [p𝑎𝑙 ]𝑙 ,

p𝑎
LTM = norm

𝑙

(
p𝑎

Cand ⊙ p̃𝑎
LTM

)
, (5.1)

where t̃𝑎,𝑙 contains the non-redundant transformation features from Eq. (4.4)2.
The output of the MLP is multiplied with a mask of position candidates

2 An illustration of the matching task is given in Fig. 4.5.
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p𝑎
Cand ∈ [0, 1]𝑛L that is 1 if agent 𝑎 and lane tile 𝑙 have a non-vanishing

intersection over union (IoU) and 0 if not. The remaining activations are
positive and normalized, so the result satisfies probabilistic requirements and
can be interpreted accordingly.
In Section 5.4.3, several variants of the proposed model and variants of pro-
posed training procedures are explained. The Lane Tile Matcher is an optional
module. Alternatively to including it in the proposed model, agent-to-lane tile
matching can be done with an external preprocessing algorithm whose prob-
abilistic result p𝑎 can be fed into the proposed model as an input. Therefore,
the Lane Tile Matcher can be regarded as a proposal to solve agent-to-lane tile
matching which is directly integrable into the model, is trainable in an end-
to-end fashion and lowers the prerequisite w.r.t. the input of the model, since
agent-to-lane matching is not required from preceded perception modules.

5.2.2 Predictor

The Predictor is a module that is trained to produce a position probability
tensor 𝑷 ∈ R𝑛T×𝑛L×𝑛A where entry 𝑃𝑡 ,𝑙,𝑎 denotes the probability of agent
𝑎 occupying lane tile 𝑙 at time step 𝑡. Due to the discrete character of the
presented method, the forward propagation is divided in 𝑛T motion steps of
duration Δ𝑡 = 𝑡ph/𝑛T. Two Predictors are used in the proposed model. First,
the Map-based Predictor is used. It produces a position estimate solely based
on map features and on individual agent features. Agents cannot communicate
and therefore not interact with each other. With this map-based position
prediction, potential conflicts are identified. Based on those conflicts, agents
can then interact to solve them. Second, the Final Predictor is used. It is
built up the same way as the Map-based Predictor, utilizes the messages sent
between agents as a separate input and has individual weights.
Both Predictors contain two logical submodules – State Estimator and Tran-
sition Predictor – implemented by three artificial neural networks (ANNs):
Initial State Estimator, Recurrent State Estimator, and Transition Predictor.
Their tasks and their relations are explained in the following.

Initial State Estimator

Latent states h𝑎,𝑙
𝑡 , o𝑎,𝑙𝑡 are estimated for each combination of agent 𝑎 and lane

tile 𝑙. In the MLP 𝜑S,t=1, those are estimated utilizing agent features and lane
tile features
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h𝑎,𝑙
𝑡 , o𝑎,𝑙𝑡 = 𝜑S,t=1 (f

𝑎
, f𝑙 , t̃𝑎,𝑙). (5.2)

Figure 5.3: The Initial State Estima-
tor creates states given agent and lane
tile features, the Recurrent State Esti-
mator later creates states given earlier
states and lane tile features.

The output state o𝑎,𝑙𝑡 is only utilized within
the corresponding predictor it belongs to.
The hidden state h𝑎,𝑙

𝑡 collects information
that is important for later modules.
The described states can contain latent infor-
mation about the particular agent-lane tile
combination, or on the other hand lane tile
or agent features which the module has iden-
tified to be useful for further propagation.
These states can also contain information on
hypothetical previous or future motion inten-
tions. As for all latent variables, to allow for
precise interpretation of a state, their mean-
ing needs to be investigated separately.

Transition Motion Estimator

A consecutive MLP 𝜑TME derives future
transition motion probabilities given the output state o and edge features of the
map graph

𝜏
𝑙R ,𝑎,𝑙S
State,𝑡 , 𝜏

𝑙R ,𝑎,𝑙S
Pos,𝑡 = 𝜇

𝑙R ,𝑙S
TME · 𝜑TME (o

𝑎,𝑙S
𝑡 , f𝑙R ,𝑙S )

𝜏
𝑙R ,𝑎,𝑙S
Pos,𝑡 = norm

𝑙R
(𝜏𝑙R ,𝑎,𝑙SPos,𝑡 )

𝜏
𝑙R ,𝑎,𝑙S
State,𝑡 = norm

𝑙R
(𝜏𝑙R ,𝑎,𝑙SState,𝑡 ). (5.3)

Generally, an agent 𝑎 can be predicted from a sending lane tile 𝑙S onto a
receiving lane tile 𝑙R via a certain transition motion type I. The transition
motion type is determined by the index pair (𝑙R, 𝑙S), since two lane tiles are
connected by exactly one edge and its corresponding motion type3. All prob.

3 Since distinguishing between sender and receiver lane tile is important in the context of this
subsection, 𝑙, 𝑘 are exchanged here with speaking variables.
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mass must be propagated from the sender lane tile 𝑙S to one of its receiver lane
tiles 𝑙R. Therefore, prob. mass is normalized over the receiving lane tiles 𝑙R,
resulting in transition probabilities that can be interpreted as the probability of
agents 𝑎 leaving lane tile 𝑙S towards lane tile 𝑙R choosing the corresponding
transition motion type I:

𝜏
𝑙R ,𝑎,𝑙S
Pos,𝑡 = P (Ω𝑡+1,𝑙R ,𝑎 | Ω𝑡 ,𝑙S ,𝑎

= 1). (5.4)

Figure 5.4: The Transition Motion Es-
timator predicts lane tile wise transi-
tion probabilities for both states and
positional prob. mass given the out-
put states. Transferred states and prob.
mass leading to the same lane tile are
then added in a weighted sum.

Two transition probabilities are distin-
guished. 𝜏

𝑙R ,𝑎,𝑙S
State,𝑡 is used for propagating

latent states, 𝜏
𝑙R ,𝑎,𝑙S
Pos,𝑡 is used to propagate

the positional prob. mass. Decoupling the
propagation of latent states and position has
shown to be useful. While the positions are
optimized for estimating ground truth (GT)
future positions, the states h, o are reused to
gather information during map graph explo-
ration. The information in h is later shared
between agents in order to improve the pre-
diction and can therefore contain informa-
tion gathered independently of the prelimi-
nary positions of an agent.
Now the initial occupancy probabilities – ei-
ther given as input p𝑎

0 := p𝑎 or generated by
the Lane Tile Matcher p𝑎

0 := p𝑎
LTM – are mul-

tiplied with the transition probability 𝜏𝑙R ,𝑎,𝑙SPos,𝑡 .
Finally, summing up positional prob. mass
transferred to the same lane tile 𝑙R over all
sender lane tiles 𝑙S contributing to 𝑙R leads
to

p𝑎
𝑡 ≡ p𝑎𝑙R =

∑︁
𝑙S

𝜏
𝑙R ,𝑎,𝑙S
Pos,𝑡 · p𝑎𝑙S︸︷︷︸

≡p𝑎
𝑡−1

. (5.5)

Also, latent states need to be propagated with the generated motion transitions.
To do so, the motion transition probabilities 𝜏𝑙R ,𝑎,𝑙SState,𝑡 serve as weights to transfer
shares of o𝑎,𝑙S

𝑡−1 to õ𝑎,𝑙R𝑡 according to
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õ𝑎,𝑙R𝑡 =

∑
𝑙S
𝜏
𝑙R ,𝑎,𝑙S
State,𝑡 · o𝑎,𝑙S

𝑡−1∑
𝑙S
𝜏
𝑙R ,𝑎,𝑙S
State,𝑡 ·

. (5.6)

h𝑎,𝑙

𝑡−1 is transferred accordingly. This allows the module to infer states and
gather information for agent 𝑎 on lane tile 𝑙R independently of the probability
for this agent being on said lane tile. With that, each new state is a weighted
sum of other recent states’ contributions and is therefore expected to contain
reproducible information that can be further analyzed.
Next, it is described how a full prediction step is processed and how latent
states and prob. mass can iteratively be propagated through the map graph.

Recurrent State Estimation and Transition Prediction

For motion steps beyond the first, the last states o𝑎,𝑙
𝑡−1, h

𝑎,𝑙

𝑡−1 are utilized as
input features instead of the agents’ features for state estimation by 𝜑S,t>1.
A long short-term memory (LSTM)-cell called the Recurrent State Estimator
𝜑S,t>1 can modify and propagate diverse states that all represent different
combinations of motions options leading to a motion state.
Unlike the states of agents, map features are static, so they can be reused as
input

h𝑎,𝑙
𝑡 , o𝑎,𝑙𝑡 = 𝜑S,t>1 (h̃

𝑎,𝑙
𝑡 , õ𝑎,𝑙𝑡 , f𝑙). (5.7)

Equation (5.3) to Eq. (5.7) can now be applied iteratively in order to obtain
position matrices for all future time steps 𝑡.
After 𝑛T time steps, all position vectors p𝑎,𝑙 can be concatenated resulting in
the map-based position probability tensor 𝑷Map := [p𝑎,𝑙] ∈ [0, 1]𝑛T×𝑛L×𝑛A de-
scribed at the beginning of this module. Entry 𝑃

𝑡 ,𝑙,𝑎 represents the occupancy
probability of agent 𝑎 on lane tile 𝑙 at time step 𝑡 ∈ [Δ𝑡, 2Δ𝑡, ...,Δ𝑡ph], where
Δ𝑡ph denotes the maximum prediction horizon.
The same can be done with the hidden states 𝑯 := [h𝑎,𝑙

𝑡 ] ∈ R𝑛T×𝑛L×𝑛A×𝑛F,S

and with the output states 𝑶 := [o𝑎,𝑙𝑡 ] ∈ R𝑛T×𝑛L×𝑛A×𝑛F,S .
The results of the Map-based Predictor can be interpreted in many ways. In
general, the interpretation is dependent on whether 𝑷Map was used as a separate
term for optimization, or only the final prediction 𝑷Final was used. If 𝑷Map is
used for optimization, the distribution might be sharper. However, the states,
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5 Spatially Discrete Scene Prediction

especially the output state 𝑶, is then primarily used for predicting positions
as precisely as possible. The hidden state 𝑯, that is used in later modules, is
depending on the output state as can be seen in the equation of the utilized
LSTM-cell Eq. (2.12). It has to be evaluated experimentally whether those two
states can diverge enough, so each serves its individual purpose sufficiently.

5.2.3 Conflict Identifier

Position conflicts and therefore potential collisions happen between agents 𝑎

and 𝑏 that have a non-vanishing probability of occupying the same area at the
same point in time 𝑡. A measure for intensity and kind of position conflict
between two agents can be obtained if multiplying the occupancy probabilities
for two agents on the same lane tiles 𝑙 at the same time step.
By multiplying the map-based position matrices P𝑎

Map of two non-identical
agents 𝑎, 𝑏 along their lane tile dimension for all time step combinations 𝑡, 𝑧
according to

C𝑎,𝑏
≻ ≡ C𝑎,𝑏

𝑡,𝑧 = P𝑎
𝑡,𝑙P

𝑏
𝑙,𝑧 ≡ P𝑎

MapP𝑏
Map

T
(5.8)

a conflict matrix C𝑎,𝑏
≻ ∈ [0, 1]𝑛T×𝑛T is obtained. Each en-

try can be interpreted as the probability of agent 𝑎 being on
the same lane tile at time step 𝑡 as agent 𝑏 at time step 𝑧.

Figure 5.5: Merging and crossing con-
flicts are identified and classified in the
Conflict Identifier.

This has the following implications. First,
conflicts are only identified if these two
agents are predicted to occupy the same lane
tile. Therefore, this conflict matrix only
identifies conflicts emerging from a merge
conflict, a car-following situation, or a mix-
ture of both, indicated visually by the index
≻ that visually resembles two merging lanes.
Lane tiles that overlap but are not identical
lead to spatial conflicts that are not observ-
able in C≻ . Those conflicts will be handled separately. Second, even if the
map-based prediction is as precise as the GT, there will still be non-vanishing
conflicts, since predictions are cross-compared over all combinations of 𝑡 and
𝑧 for each pair of agents. If only positional conflicts at the same time step 𝑡

were considered P𝑎
𝑡,𝑙P

𝑏
𝑙,𝑡 ∈ R, conflicts would be less intense when predictions

are more accurate.
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The conflict calculation is implemented as

𝑪𝑎,𝑏
≻ ≡ 𝐶

𝑎,𝑏
𝑡,𝑧 = 𝜇

𝑎,𝑏

C P𝑎
𝑡,𝑙P

𝑏
𝑙,𝑧 ≡ 𝜇

𝑎,𝑏

C PMapPT
Map. (5.9)

The mask 𝜇C is 1, if 𝑎 ≠ 𝑏 and 0 otherwise. This way, irrelevant conflicts of
an agent with itself are removed.
Often however, agents are not in conflict with each other because they po-
tentially reach the same lane tile. From a graph perspective, they can reach
two different lane tiles that occupy the same spatial area in the real world.
Therefore, a second kind of conflict, namely crossing conflicts, are introduced.
They are calculated by multiplying P𝑎

Map with the crossing matrix 𝚷 from both
sides along the lane tile axes

C𝑎,𝑏
× ≡ C𝑎,𝑏

𝑡,𝑧 = 𝜇
𝑎,𝑏

C P𝑎
𝑡,𝑙Π𝑙,𝑘P𝑏

𝑘,𝑡 ≡ P𝑎
Map𝚷P𝑏

Map
T

(5.10)

and receive the crossing conflict matrix [C𝑎,𝑏
× ] =: 𝑪× ∈ [0, 1]𝑛T×𝑛A×𝑛A×𝑛T

where an entry denotes at which motion steps 𝑡, 𝑧 two agents 𝑎 and 𝑏 will have
a conflict because they occupy lane tiles that overlap. As for 𝑪≻ , conflicts of
an agent with itself are erased with a mask.
For each agent combination 𝑎, 𝑏 a conflict activation map is given by
[C𝑎,𝑏

× ,C𝑎,𝑏
≻ ] =: C𝑎,𝑏 ∈ [0, 1]𝑛T×𝑛T×2. Those conflict activation maps can be

interpreted visually as illustrated for all conflict primitives in Fig. 4.64. With
that, an interpretable and simple pairwise conflict representation is found.
A trainable module is introduced that can learn to interpret these maps and
produce a useful conflict activation vector c𝑎,𝑏 ∈ R𝑛F,Conf with

c𝑎,𝑏 = 𝜑Conf (C
𝑎,𝑏). (5.11)

Since C𝑎,𝑏 can be interpreted as an image with two channels – one for merging
conflicts, one for crossing conflicts – with height and width being the time
dimensions 𝑡 and 𝑧, the natural choice for designing 𝜑Conf is a simple feature
extraction convolutional neural network (CNN). The conflict activation map
is symmetric w.r.t. a simultaneous switch of agent and time axes

𝐶
𝑎,𝑏
𝑡,𝑧 = 𝐶

𝑏,𝑎
𝑧,𝑡 ≠ 𝐶

𝑏,𝑎
𝑡,𝑧 . (5.12)

4 Since the third dimension of the conflict activation map is small and fixed, it is renounced to
use a tilted bold symbol.
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5 Spatially Discrete Scene Prediction

Thus, in general, the conflict features are asymmetric c𝑎,𝑏 ≠ c𝑏,𝑎. This prop-
erty is crucial, since conflicts in traffic are rarely symmetric with respect to
geometry of the scene, time and priority. With the corresponding asymme-
try, the module gains the possibility to learn to solve each conflict from the
perspective of each individual agent.

5.2.4 Notification Extractor

Now that conflicts have been identified, information exchange between
agents needs to be implemented in order to allow agents to solve their
conflicts in the final prediction step. The hidden states 𝑯 of the Map-
based Predictor were already introduced in Section 5.2.2 and the model
is trained to fill those states with information relevant in later modules5.

Figure 5.6: For each agent, the Notifica-
tion Extractor produces notifications
that contains information important for
other agents.

The Notification Extractor utilizes the states
to extract information each agent has col-
lected during information propagation on the
map graph. With the hidden states of each
agent 𝑎, a notification is created with infor-
mation that might be important for agent 𝑏
that potentially has a conflict with agent 𝑎.
This is implemented by an MLP 𝜑Notif

u𝑎
= max

𝑡 ,𝑙
(𝜑Notif (𝑯

𝑎
,P𝑎

Map)) (5.13)

that processes all hidden states and the cor-
responding occupancy probability [𝑯, 𝑷Map] ∈ R

𝑛A×𝑛L×𝑛T×𝑛F,S+1 in case it is
necessary to weight the relevance of the respective state. Each agent therefore
produces a notification u𝑎 ∈ R𝑛F,Notif with information relevant to others from
all information collected over the whole prediction horizon. Since the goal is
to condense all information in a single agent-specific vector, max-pooling is
used over lane tile and time dimension. Note that those notifications are not
addressed to specific agents, but only created from specific agents. Addressing
notifications target-specific is executed in the next module.

5 Unlike the output states 𝑶, that are directly used within the Predictor and are not further used.
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5.2.5 Message Aggregator

Agent communication is based on the previously extracted conflict features
and the created notifications. Communication in the proposed model is a
synonym for interaction between agents. The temporal information relevant
for further description of the conflicts between agents was already done in the
Conflict Identifier and is compressed into a directed conflict vector c𝑎,𝑏. The
notification u𝑏 contains information an agent 𝑏 considers relevant for others,
most likely information that helps others to resolve their conflict with agent 𝑏 in
order to allow a better final prediction. The directed edge feature vector between
two agents f𝑎,𝑏 contains information that can be extracted from the traffic
scenario beforehand and does not need to be learned separately by the model.

Figure 5.7: For each agent, the Message
Aggregator combines received notifi-
cations, conflict messages and agent
edge information to a message that
helps the agent produce a better final
prediction.

The Message Aggregator then interprets con-
flict c𝑎,𝑏, information necessary to solve it
u𝑏, and geometric relational features f𝑎,𝑏 for
each agent pair 𝑎, 𝑏 and aggregates them over
all sender agents 𝑏 according to

m𝑎
=

∑︁
𝑏

𝜇
𝑎,𝑏

C 𝜑Mess (c
𝑎,𝑏

, u𝑏
, f𝑎,𝑏) (5.14)

Note that the module processes the inputs
individually for agent pairs before aggregat-
ing. By doing so, the module can interpret
the relevance of the given notification – or
information agent 𝑏 considered useful for
everyone to solve its conflicts – for the in-
dividual conflict between 𝑎 and 𝑏.
For case 𝑎 = 𝑏, a mask is used to permit an agent sending a notification to
itself, so 𝜇

𝑎,𝑏

C = 1 if 𝑎 ≠ 𝑏, and 0 otherwise. We now have an additional agent
feature matrix M = [m𝑎] ∈ R𝑛A×𝑛F,Mess that represents information received
from other agents and can therefore be interpreted as interaction messages.
Of course each agent needs the possibility to send itself information about its
future path. This kind of ego communication is modeled in the next module.
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5 Spatially Discrete Scene Prediction

5.2.6 Self-Message Extractor

As described before in Section 5.2.5, up to now an
agent cannot send information gathered during map explo-
ration in the Map-based Predictor as a notification to itself.

Figure 5.8: Just like the Notification Ex-
tractor provides important information
for other agents, the Self-Message Ex-
tractor provides information important
for the respective agent itself.

This issue is solved in the Self-Message Ex-
tractor. Here, information about the scene
collected in the Map-based Predictor the
agent identified as being helpful for itself for
improving the final prediction is created the
same way as in the Notification Generation

S = max
𝑡 ,𝑙

(𝜑SelfMess (𝑯, 𝑷Map)) (5.15)

with S ∈ R𝑛A×𝑛F,SelfMess .

5.2.7 Final Prediction Estimation

In the final module, prediction is done iter-
atively just like in the Map-based Predictor,
but instead of using only agent input features, interaction messages from the
Message Aggregator and self-messages from the Self-Message Extractor are
utilized. The messages of the Message Aggregator implicitly contain informa-
tion gathered from the agent edge features. So instead of inputting matrix FA,
the following matrices are concatenated [FA, S,M] ∈ R𝑛A×𝑛F,A+𝑛F,SelfMess+𝑛F,Mess .
The final position prediction tensor is called 𝑷Final ∈ R

𝑛T×𝑛L×𝑛A .

5.2.8 Cooccurrence Estimator

With 𝑃𝑡 ,𝑙,𝑎 ≡ 𝑷Final, an estimate is given on how likely
it is that agent 𝑎 will be on lane tile 𝑙 at time step 𝑡.
Let such an event be called Ω𝑡 ,𝑙,𝑎, then 𝑃𝑡 ,𝑙,𝑎 = P (Ω𝑡 ,𝑙,𝑎).
However, what is even more important for analyzing different behavior op-
tions between a pair of agents is the conditional probability 𝜓

𝑡 ,𝑙,𝑎,𝑘,𝑏 :=
P (Ω𝑡 ,𝑙,𝑎 | Ω𝑡 ,𝑘,𝑏) between two agents at the same future time step 𝑡. In
this work, the term cooccurrence is used for the set of conditional probabilities
between two agents 𝑎, 𝑏 for each time step 𝑡 and all lane tiles 𝑙, 𝑘 that are of
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5.2 Model

interest. The term is a neologism between the prefix co (latin: together/with)
and the word occurrence and names dependent or independent behavior of the
two respective agents relatively to each other.

Figure 5.9: The Cooccurrence Esti-
mator generates prediction associa-
tions by estimating joint distributions
for pairs of agents. From those, con-
ditional predictions given hypothetical
actions can be derived.

The Cooccurrence Estimator receives the
hidden states h𝑙,𝑎

𝑡 produced from the Final
Predictor just like the Notification Genera-
tor and the Self-Message Generator receive
them from the Map-based Predictor. In
case of the Cooccurrence Estimator, both
states h𝑙,𝑎

𝑡 and h𝑏,𝑘
𝑡 are required in order

to correctly conceive the intentions of both
agents and how they are related. The con-
ditional probability cannot be derived from
GT since only one condition holds when the
tracks of the agents have been recorded. So
instead, the joint probabilities 𝜉

𝑡 ,𝑙,𝑎,𝑘,𝑏 :=
P (Ω𝑡 ,𝑙,𝑎 ∧Ω𝑡 ,𝑘,𝑏) are predicted

𝜉
𝑡 ,𝑙,𝑎,𝑘,𝑏

= 𝜑Joint (h
𝑙,𝑎
𝑡 , h𝑘,𝑏

𝑡 ). (5.16)

with the result being concatenated to �̃� = [𝜉𝑡 ,𝑙,𝑎,𝑘,𝑏] ∈ R𝑛T×𝑛L×𝑛A×𝑛L×𝑛A .
Formally, an output modeling a joint probability fullfils two requirements: It
is commutative w.r.t. its individual events6 and has the form of a probability
distribution. With

𝜉
𝑡 ,𝑙,𝑎,𝑘,𝑏

= norm
𝑙,𝑘

(Ξ̃𝑡 ,𝑘,𝑏,𝑙,𝑎 + Ξ̃𝑡 ,𝑙,𝑎,𝑘,𝑏) (5.17)

𝑎, 𝑙 and 𝑏, 𝑘 are permutable and the sum over positional outputs along the
two lane tile dimensions 𝑙 and 𝑘 equals one, as is expected for an output
with probabilistic character. Again, the result can be concatenated to 𝚵 =

[𝜉𝑡 ,𝑙,𝑎,𝑘,𝑏] ∈ [0, 1]𝑛T×𝑛L×𝑛A×𝑛L×𝑛A .
The Cooccurrence Estimator can be seen as a separate head of the network.
As for the Lane Tile Matcher, a major contribution is seen and benefit in
adding the Cooccurrence Estimator. However, the model does not require
the production of a good position prediction. Therefore, the Cooccurrence

6 P (Ω𝑡,𝑙,𝑎 ∧Ω𝑡,𝑘,𝑏 ) = P (Ω𝑡,𝑘,𝑏 ∧Ω𝑡,𝑙,𝑎 )
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5 Spatially Discrete Scene Prediction

Estimator is another optional module. The memory consumption is highlighted
here, since the number of tensor entries is 2𝑛F,S𝑛

2
L𝑛

2
A𝑛T, so it is a matter of

resources whether it shall be added or not.
Considering the latest shift of research focus towards conditional prediction
within the community (see Section 3.2.3), instead of using the joint position
probability, the conditional position probability of an agent’s future behavior
given another agent’s potential behavior might be more beneficial for applica-
tion. An overview of the outputs of the model and recommendations about
useful postprocessing is given in the following.

5.3 Network Output

Every tensor produced within the modularized model can be seen as an output
that can be analyzed during inference in order to check whether they are as
meaningful as described during the design process above. However, without
putting further effort into output analysis, three directly interpretable outputs
can be identified, because they are subject to optimization:

• The positional classification output without interaction is called 𝑷Map ∈
[0, 1]𝑛T×𝑛L×𝑛A and is produced by the Map-based Predictor in Sec-
tion 5.2.2. It contains the probability of an agent 𝑎 being on a certain
lane tile 𝑙 at time step 𝑡.

• The positional classification output with interaction is called 𝑷Final ∈
[0, 1]𝑛T×𝑛L×𝑛A . It also contains the probability of an agent 𝑎 being
on a certain lane tile 𝑙 at time step 𝑡. The difference is about which
information flow is allowed up to that point in the model where those
outputs are created and therefore which information is available in order
to produce both position estimates.

• The joint positional classification output 𝚵 ∈ [0, 1]𝑛T×𝑛L×𝑛A×𝑛L×𝑛A con-
tains the joint probability of agent 𝑎 being on lane tile 𝑙 and agent 𝑏
being on lane tile 𝑘 at the same time step 𝑡.

With 𝑷Final, it is straight forward to extract the probability for a certain agent
choosing a certain maneuver at a certain future time step: The prob. mass of
lane tiles representing said maneuver can be summed up. For example, the
prob. mass before or beyond a stop line represent the “stop” or the “drive on”
maneuvers, respectively. The same can be done for lane changes and different
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route options. All examples only require a correspondence between lane tiles
and maneuver they represent w.r.t. a certain agent.
Since most other approaches directly predict parametric distributions in Carte-
sian coordinates, a method for obtaining these from the proposed discrete
output shall be proposed. A more sophisticated post-processing option is to
fit a parametric distribution – e.g. a univariate Gaussian distribution in Frenet-
coordinates for a certain mode – to the discrete distribution that 𝑷Final contains.
With that, precise longitudinal position estimates can be derived and used for
trajectory optimization if required.
To account for cooccurrence, the joint position probabilities 𝚵 shall be post-
processed. Using the definition of the conditional probability follows

�̃�
𝑡 ,𝑙,𝑎,𝑘,𝑏

= P (Ω𝑡 ,𝑙,𝑎 | Ω𝑡 ,𝑘,𝑏) =
P (Ω𝑡 ,𝑘,𝑏 ∧Ω𝑡 ,𝑙,𝑎)

P (Ω𝑡 ,𝑘,𝑏)
=
Ξ𝑡 ,𝑙,𝑎,𝑘,𝑏

𝑃𝑡 ,𝑘,𝑏

. (5.18)

The choice of indices of the condition 𝑡, 𝑘, 𝑏 shall clarify that the latter index
pair in 𝜓

𝑡 ,𝑙,𝑎,𝑘,𝑏 refers to the condition.
In practice, normalization over the first lane tile dimension 𝑙 is done with

𝜓
𝑡 ,𝑙,𝑎,𝑘,𝑏

= norm
𝑙

(
Ξ𝑡 ,𝑙,𝑎,𝑘,𝑏

)
(5.19)

and all conditional probabilities 𝜓
𝑡 ,𝑙,𝑎,𝑘,𝑏 can be concatenated to 𝚿 =

[𝜓𝑡 ,𝑙,𝑎,𝑘,𝑏] ∈ [0, 1]𝑛T×𝑛L×𝑛A×𝑛L×𝑛A and seen as a separate model output, since
it can be derived from 𝚵 without further knowledge.

5.4 Training

Since many outputs exist, there are many ways of training the proposed model.
In Section 5.4.3, their theoretic differences are explained in detail. Before, the
loss functions used are described.

5.4.1 Position Loss Function

The positional GT is given by 𝑷GT ∈ {0, 1}𝑛T×𝑛L×𝑛A and the prediction is
𝑷 ∈ {𝑷Map, 𝑷Final}. The task is formulated as a classification problem: Each
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Figure 5.10: Overview of the proposed model and the 12 ANNs it consists of.
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agent 𝑎 is located at exactly one7 lane tile 𝑙 at a certain point in time 𝑡. The
model assigns occupancy probabilities as a discrete distribution over all lane
tiles for each agent and time step. The classification problem is therefore solved
along the lane tile axis with GT being a one-hot vector p𝑡 ,𝑎

GT . Since prob. mass
can leak at the map subgraph entries and exits, leaked prob. mass 1 − ||p𝑡 ,𝑎 | |1
needs to be punished separately as long as GT is still within the scene. If
leaks were not punished, the model might learn to propagate prob. mass out
of the map graph as fast as possible. The resulting cross entropy loss for each
positional vector is

C𝑡 ,𝑎

Pos = −||p𝑡 ,𝑎

GT log(p𝑡 ,𝑎) + (1 − p𝑡 ,𝑎

GT ) log(1 − p𝑡 ,𝑎) | |1 − log(1 − ||p𝑡 ,𝑎 | |1),
(5.20)

so for the lane tile axis, the sum of cost terms together with a term for the
leaked prob. mass is used.
Using binary cross entropy is the standard choice for classification problems
in machine learning. For the present use case, a disadvantage requires consid-
eration. Binary cross entropy decreases the more prob. mass is assigned to the
GT class and increases the more prob. mass is assigned to a non-GT class. In
the present example, a cost measure considering the graph distance of non-GT
lane tiles w.r.t. the GT lane tile was useful. This way, prob. mass on a lane tile
close to the GT lane tile increases cost less than prob. mass on a distant non-GT
lane tile. However, a satisfying alternative was not found in literature. Since
the proposed model is not optimized to assign but rather to transfer prob. mass
onto a GT lane tile, the distance to the GT lane tile is implicitly considered in
the training process. However, an explicit modeling alternative was preferred
here.
For optimization, the remaining time and agent axes need to be reduced to a
scalar loss. The Adam optimizer [53] introduces a momentum over consecutive
training steps. In order so receive gradients in a comparable scale for which
such a moving average is beneficial, it is required to average over the agent axis.
This way, the model weights are adjusted in a comparable scale, regardless of
whether there are 20 agents in the scene or just two. Since the number of time
steps is constant, it does not make a change regarding the comparability of

7 If an agent leaves a scene within the prediction horizons or initial lane tile matching did not
succeed for some reason, the case p𝑡,𝑎

GT = 0 needs to be handled.

71



5 Spatially Discrete Scene Prediction

scale of gradients whether the time step axis is averaged or summed. It was
decided to average. Accordingly, the dimension is reduced with

LPos =
1

𝑛T𝑛A

∑︁
𝑎∈Λ

∑︁
𝑡∈Θ

C𝑡 ,𝑎

Pos (5.21)

to obtain a scalar position loss LPos.

Resolving Practical Problems during Optimization

Within the prediction horizon Δ𝑡ph, new agents might enter the scene agents.
Those are not considered in the problem formulation, even though they might
have an influence on the behavior of the considered agents during Δ𝑡ph. Some
agents might leave the scene within the period Δ𝑡ph. Also, lane tile matching
during GT creation might fail for various reasons8, so a GT label might be
missing for certain prediction time steps. In both cases, there is no lane tile 𝑙

marked as true for the respective agent 𝑎 at the respective point in time 𝑡. When
averaging over the time axis, loss and therefore gradients are overestimated, if
GT is missing for easier small prediction horizons, and underestimated, if GT
is missing for difficult large prediction horizons. In order to avoid unstable
convergence, counter measures are taken.
A mask 𝜇

𝑎,𝑡

Pos is introduced with

𝜇
𝑎,𝑡

Pos =

{
1, p𝑎,𝑡

GT∃𝑙 : p𝑎,𝑡
𝑙

= 1
0, else

. (5.22)

With the weighted average for each time step the reduced loss is

LPos =
1
𝑛T

∑︁
𝑡∈Θ

∑
𝑎∈Λ C𝑎,𝑡

Pos · 𝜇
𝑎,𝑡

Pos∑
𝑎∈Λ 𝜇

𝑎,𝑡

Pos
, (5.23)

which requires for each time step 𝑡 at least one agent 𝑎 to have a valid ground
truth to avoid division by zero.

8 See Section 4.1.2 for explanation on how GT is obtained.
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5.4 Training

5.4.2 Joint Position Loss Function

The joint positional GT can be constructed with P (𝑷GT ⊙ 𝑷GT) ≡ P (𝑃𝑡 ,𝑙,𝑎 ∧
𝑃𝑡 ,𝑘,𝑏) = Ξ𝑡 ,𝑙,𝑎,𝑘,𝑏 ≡ 𝚵GT ∈ {0, 1}𝑛T×𝑛L×𝑛A×𝑛L×𝑛A and the prediction is given
by P (𝑃𝑡 ,𝑙,𝑎 ∧ 𝑃𝑡 ,𝑘,𝑏) = Ξ𝑡 ,𝑙,𝑎,𝑘,𝑏 ≡ 𝚵 ∈ [0, 1]𝑛T×𝑛L×𝑛A×𝑛L×𝑛A . This task is
formulated as another classification problem: If agent 𝑎 is on lane tile 𝑙 at time
step 𝑡 and agent 𝑏 is on lane tile 𝑘 at the same time step, then GT equals one,
and zero otherwise. The cross entropy is therefore formulated as

CJoint = −
∑︁
𝑙∈Γ

∑︁
𝑘∈Γ

𝚵GT log(𝚵) + (1 − 𝚵GT) log(1 − 𝚵) (5.24)

with CJoint ∈ R
𝑛T×𝑛A×𝑛A and reduced to

LJoint =
1

𝑛T𝑛
2
A

∑︁
𝑎∈Λ

∑︁
𝑏∈Λ

∑︁
𝑡∈Θ

CJoint. (5.25)

There is no leak in prob. mass this time, since the predicted joint probability
distribution was normalized in Section 5.2.8 instead of propagating prob. mass
through transition predictions as in the Predictor.
Still, a mask 𝜇

𝑎,𝑏,𝑡

Joint is necessary to ignore loss for agent pairs where at least
one of the agents does not have a valid GT.

𝜇
𝑡 ,𝑎,𝑏

Joint =

{
1, p𝑎,𝑡

GT∃𝑙 : p𝑎,𝑡
𝑙

= 1 ∧ p𝑏,𝑡

GT∃𝑘 : p𝑏,𝑡
𝑘

= 1
0, else.

(5.26)

In order to get gradients in a reproducible scale, the weighted average loss for
each time step is

LJoint =
1
𝑛T

∑︁
𝑡∈Θ

∑
𝑎∈Λ

∑
𝑏∈Λ CJoint · 𝜇

𝑡 ,𝑎,𝑏

Joint∑
𝑎∈Λ

∑
𝑏∈Λ 𝜇

𝑡 ,𝑎,𝑏

Joint

, (5.27)

which requires at least one agent combination (𝑎, 𝑏) having a valid ground
truth at each 𝑡.

5.4.3 Training Strategies

As mentioned in Appendix A.5, there are three main output tensors 𝑷Map, 𝑷Final
and 𝚵 with their corresponding losses LPos,Map,LPos,Final and LJoint. Each loss
can be minimized separately.
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5 Spatially Discrete Scene Prediction

If LPos,Map is minimized, only the weights of the Lane Tile Matcher and the
Map-based Predictor are adjusted, since they are the only information connec-
tion between input and LPos,Map. If LPos,Final is minimized, all weights but
the weights within the Cooccurrence Estimator are adjusted. Only if LJoint is
minimized, all weights of the model are optimized. However, due to the infor-
mation control between some modules, the gradient flow is highly biased and
restricted. For example, if the final loss is minimized, there is no reason why the
Map-based Predictor is supposed to produce the best possible non-interactive
prediction. The Map-based Transition Estimator still receives gradients due to
the connection via the Conflict Identifier, but those are comparably small and
lead to slow overall training. On the other hand, there is no reason to strive
for a good map-based position prediction as long as the Map-based Predictor
generates a prediction that is beneficial in order to minimize the final prediction
loss.
Therefore, the first training strategy decision is pre-training the Map-based
Predictor separately by minimizing the map-based loss for a couple of steps or
training in an end-to-end fashion by only minimizing the final loss.
For the Cooccurrence Predictor, the main strategic question that arises is
whether to include it at all. Since it is a separate head of the network and is
not required for the position prediction, it is recommended to only use it, if
its output can be further processed by later elements in the software pipeline
of the automated vehicle. While a major benefit is seen and contribution in
the Cooccurrence Predictor compared to related work, a major disadvantage
is the large memory consumption of this module and the increase of runtime.
The network’s overall graphical processing unit (GPU) memory consumption
roughly doubles when the Cooccurrence Predictor is added. Another question
regarding the training of the Cooccurrence Predictor is whether to optimize all
weights of the whole network, or just the one from the Cooccurrence Predictor
itself in a late state after the weights of the other modules are frozen. Earlier
publications suggest multi-task learning to be beneficial for the tasks-individual
performance of a network, if those tasks are semantically related [97,121,122].
This holds for the present use case. Therefore, it seems reasonable to directly
minimize the sum of the final losses

LSum,End = LPos,Final + LJoint
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5.4 Training

or directly the sum of all three losses
LSum,All = LPos,Map + LPos,Final + LJoint.

If 𝑷Map is not optimized directly, the map-based position prediction will not
be precise. Its hidden states will be optimized through gradients coming from
the Notification Generator and the Self-Messages Generator, the map-based
position prediction is only optimized through the Conflict Identifier.
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6 Evaluation

The used data is described in short in Section 6.1 and in detail in Appendix A.1.
The visualization for inspecting and assessing representative examples qual-
itatively is given in Section 6.3. Then, the Lane Tile Matcher (Section 6.4),
the prediction of statistically independent positions (Section 6.5) and the con-
ditional prediction (Section 6.6) are evaluated. Hyperparameters used for
evaluation are listed in Appendix A.3.

6.1 Datasets

The presented approach works best if the following requirements regarding the
data are fulfilled:

1. Our approach was designed to specifically tackle prediction problems
our institute’s experimental vehicles face in daily traffic in Karlsruhe,
Germany. In Germany, traffic is strongly rule-based and vehicles usually
do not share a lane laterally. Therefore, the data should only originate
from regions where drivers usually do not share a lane laterally and obey
traffic rules to a large extent. From the European perspective, India is
a standard example for traffic that is detached from map-derived traffic
rules, US traffic also fulfills some criteria, which make only particular
scenarios useable for our approach.

2. The approach works on a static number of lane tiles and traffic partic-
ipants (TPs). This is a problem both for map-centric datasets, where
intersections are statically recorded, and agent-centric datasets, where
agents driving in the same direction as the ego vehicle are recorded for
a long time, while oncoming traffic is tracked only for a short period.

3. A structured map is needed, that contains both the road topology and
traffic rules. Ideally the same – namely Lanelet2 – format is used.

For training and evaluation, intersections from INTERACTION dataset [120],
rounD [55] and inD [11] are used that fulfill those requirements. The 12
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utilized intersections are illustrated in Fig. 6.1. None of the intersections are
signalized. Regarding detailed descriptions of the intersection topologies, their
surroundings and their traffic rules, we refer to Appendix A.1.
For every single evaluation method, the models are trained with eleven datasets
and evaluate on the twelfth. All results illustrated in this work are therefore
from evaluation intersections the model has not been trained on.
This is particularly challenging for inD location2, since it is the only intersec-
tion with priority to the right in the available datasets. Also, asymmetric merg-
ing in interaction CHN_Merging_lower only occurs here. All other topologies
– roundabouts (four), symmetric merging (two1), priority roads with traffic
signs (three2), straight multilane road (three3) – occur several times. There-
fore, the models are expected to generalize properly for those intersection
types, but may struggle with the former topologies. Of course, this problem is
expected to vanish if more diverse data is available.

6.2 Runtime

In Fig. 6.2, the runtime is visualized for a model with and a model without
Cooccurrence Estimator. The experiments were conducted on a NVIDIA
RTX A6000 with TensorFlow version 2.5 and CUDA 11.0 without putting any
additional effort into optimizing the model. For correctly assessing the result,
the numbers of lane tiles in the used datasets shall be given in Table 6.1. It is
assumed that the runtime is not an application critical factor, if focus is put on
relevant agents and relevant map areas around the ego vehicle.

6.3 Visualization

For qualitative evaluation, a visualization is used that is explained in the fol-
lowing. In order to assess the prediction quality, videos were created that
loop over the prediction horizon of each agent one after another, so in total,
each video has 𝑛T · 𝑛A frames. From those videos, representative frames were
extracted and used throughout this work.

1 Interaction DEU_Merging & CHN_Merging_upper.
2 inD location 1, 3 & 4.
3 inD location 4, interaction CHN_Merging_mid & CHN_Merging_lower.
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6.3 Visualization

(a) rounD location1:
Roundabout with four
branches

(b) rounD location2:
Roundabout with four
branches

(c) inD location1: priority
to the right

(d) inD location2: priority
road with two branches

(e) inD location3: priority
road with one branch

(f) inD location4: two
lane priority road with
one branch

(g) interaction
DEU_Merging:
two lane merging

(h) interaction
DEU_Roundabout:
Roundabout with
three branches

(i) interaction
USA_Roundabout:
Roundabout with four
branches

(j) interaction
CHN_Merging_upper:
symmetric merging

(k) interaction
CHN_Merging_mid:
two lane road

(l) interaction
CHN_Merging_lower:
asymmetric merging
on two lane road

Figure 6.1: Arial images of the used intersections from rounD, inD and INTERACTION dataset.
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(a) Runtime without Cooccurrence Estimator.
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(b) Runtime with Cooccurrence Estimator.

Figure 6.2: Runtime depending on number of lane tiles and number of agents in the
scene.
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6.3 Visualization

Table 6.1: Number of lane tiles in the corresponding scene.

Scene name # of lane tiles in scene

inD location1 144
inD location2 97
inD location3 84
inD location4 158
rounD location1 120
rounD location2 141
interaction DEU_Merging 51
interaction DEU_Roundabout 77
interaction USA_Roundabout 110
interaction CHN_Merging_upper 39
interaction CHN_Merging_mid 46
CHN_Merging_lower 62

In Fig. 6.3, a simple example scene is given. The scene shows a roundabout in
which two agents, one blue and the other red, are approaching two consecutive
entries of a roundabout. The road topology is indicated by gray lines. An
individual color gets sampled for each agent at each input time step. So in two
different input time steps, an agent changes its color. In this example at the
current time step, car #30 is red and car #29 is blue. On each agent’s input
state, its ID as given in the dataset and its momentary final prediction loss is
printed. The current prediction horizon is stated in the caption in seconds.
The input state of each agent is visualized with a bounding box as given in
the dataset with the agent’s color. The GT state of each agent at the current
prediction horizon is visualized with a transparent bounding box whose edges
match the color of the corresponding input bounding box. In this example,
#29 took the first exit of the roundabout and #30 entered the roundabout.
Static agents and vulnerable road users (VRUs) that are not predicted are gray,
predictions of agents that entered the scene after the current input time step
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29: 0.89

30: 2.48

Figure 6.3: 2.4 s: This is the visualization used for qualitative evaluation. Two agents
with individual colors and their actual future states are shown with bounding boxes. For
each agent, its ID and its loss for the current prediction time step is written above its
input state. The prediction of only one car is shown by coloring the lane tiles in the
agent’s color. The shade of the lane tiles indicates the prob. mass assigned to them. With
colored lines, the conditional prediction of an agent given the currently marked ground
truth (GT) lane tile is visualized.

are transparent bounding boxes with gray edges (on the right in the example
image).
The occupancy prediction of the currently predicted agent #30 is visualized by
coloring the lane tiles it was predicted on in the agent’s color. If fewer than
1% of prob. mass is assigned to a lane tile, it is not visualized. The shade of
each lane tile indicates the prob. mass on said lane tile. For visualization, we
normalize the coloring of lane tiles, so the coloring of consecutive prediction
time frames cannot be compared. Note that the color is not normalized by the
size of the area a lane tile covers, which can lead to an optical bias regarding
the actual prob. mass. A bright red edge surrounds the current GT lane tile for
the currently predicted agent.
The conditional prediction is visualized with additional colored lines between
lane tiles, making some frames visually overcharged. The colored lines connect
the conditioned lane tile with the corresponding second agent’s predicted lane
tile. Again, the shade of the line indicates the prob. mass assigned to the
corresponding lane tile. Since only actually occurring events can be properly
evaluated, the conditional prediction is conditioned on the red GT lane tile of
the currently predicted agent.
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6.4 Lane Tile Matcher

In Fig. 6.3, the blue lines indicate the position prediction of #29 given that
#30 is on the GT lane tile. So since #30 already entered the roundabout, the
corresponding conditional prediction of #29 points towards the first exit. Vice
versa it is expected that the conditional prediction for #29, given #30 stops at
the stop line before the roundabout, points towards the circuit.
It is claimed that the sum of examples shown in this work represents the
overall prediction quality. Subjective impressions on the overall quality was
gathered during many hours of manual example inspection while developing
the presented approach.
Except for the boxplots of the Lane Tile Matcher (Fig. 6.4), outliers are not
visualized. Due to the number of GT points, the number of outliers is often
huge and does only create optical load.

6.4 Lane Tile Matcher

The Lane Tile Matcher is evaluated for all sequences4, time steps and agents
of an intersection, in which there is a geometric overlap between the front axle
rectangle of the agent and at least two lane tiles of which at least one is not
part of the agent’s track Υ

𝑎. This means only occasions in which the module
can potentially fail at fulfilling its task are evaluated.
We then sum up the prob. mass assigned to lane tiles which are part of the
agent’s track

p𝑎
LTM,Eval =

∑︁
𝑙∈Υ𝑎

p𝑎
LTM. (6.1)

Ideally, p𝑎
LTM,Eval = 1 holds, in the worst case, it is 0.

In Fig. 6.4, boxplots over all occasions are illustrated for all available locations.
Qualitative examples are shown in Fig. 6.5 and Fig. 6.6. Descriptions of those
examples can be found directly in the figures’ captions.
For roundabouts (rounD location 1&2, interaction USA_Roundabout &
DEU_Roundabout), the task of lane tile matching is particularly easy. The
circuit and its branches are usually structurally separated, so it rarely occurs
that there are geometric intersections of the front axle rectangle to a lane tile

4 For each intersection, there are several recordings available, each of which probably correspond
to one flight with a drone.
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Figure 6.4: Results of Lane Tile Matcher. Share of prob. mass for each agent with
geometric overlap of its front axle rectangle with at least two lane tiles of which at least
one lane tile has to be outside the agent’s track.

that is not in the agent’s track. This only happens at roundabout entries or exits
where lane tiles intersect each other (case A). The second option for wrong
matches is when entry and exit of the same branch are brought together, usually
right after a traffic island where pedestrians can cross (case B). For case A, lane
tile matching is rather simple for the network because agents either turn right
in order to get into the roundabout, or they turn left because they are already
within the roundabout and follow its circuit. Also, the orientation of an agent
usually fits to the orientation of the lane tiles. For case B, lane tile matching
also is simple since potential lane tiles that are not part of the agent’s track are
located on the opposite side of the road. Again, the orientation of the agent
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(a) rounD location1: Motorcyclist #23 is correctly matched to the circuit lane tile. No prob. mass is
propagated towards the closest exit.
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(b) rounD location2: Car #9 is correctly matched to the exiting lane tile. Around 10% of prob. mass was
matched to the circuit lane tile.
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20: 0.03

22: 0.32

(c) inD location3: Car #20 is correctly matched to the priority lane tile. Around 20% of prob. mass was
matched to the merging lane.

Figure 6.5: Lane Tile Matcher, representative examples 1. Left column: 0.3 s. Right column:
1.2 s.
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(a) inD location3: Car #46 is correctly matched to the turning lane despite its front axle rectangle is

overlapping with several lane tiles of the opposite road and the lane coming from the branch.
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(b) inD location3: Car #22 is correctly matched to the turning lane.
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(c) inD location2: Car #21 is correctly matched to the lane turning to the left (to the right from the reader’s
view). Its front axle rectangle overlaps with many lane tiles coming from and leading towards different
directions. It also overlaps with lane tiles that belong to the two alternatives of the vehicle’s branch: lane
tiles that lead to straight and to the right (to the left from the reader’s view).

Figure 6.6: Lane Tile Matcher, representative examples 2. Left column: 0.3 s. Right column:
1.2 s.
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6.5 Prediction

w.r.t. the lane tile is a strong prior for this task. In conclusion, the good results
for roundabouts are expectable and do not indicate a mistake in the evaluation.
For symmetric merging scenarios (interaction DEU_Merging,
CHN_Merging_upper), lane tile matching is difficult, not because the
topology is particularly challenging, but because it is hard to tell at which
point an agent has actually merged or changed the lane. The road consists
of two merging lane tiles that overlap for a long time, even though the TPs
already act like the merging has been accomplished and keep driving just as
on a one way road. Also, errors during track identification are likely in this
scenario. The comparably poor results shall therefore not be overrated, the
task of assigning agents and lane tiles is simply not well-defined here.
Similar problems occur for multi-lane roads (interaction CHN_Merging_mid)
and asymmetric merging scenarios (interaction CHN_Merging_lower). Au-
tomated track identification is not straight forward in these cases, especially
when lane changes are conducted that usually require the length of several lane
tiles.
In conclusion, the merging scenarios are added for completeness, but it is not
recommended to overinterpret their results for lane tile matching.
For urban intersections apart from roundabouts (inD location 1-4), lane tile
matching is most important and most challenging. Here, many lane tiles that
lead to different directions can intersect. The Lane Tile Matcher produces
particularly satisfying results. Since wrongful matching directly results in
poor prediction results, the prediction result for intersections of the inD dataset
also validated the Lane Tile Matcher’s performance.

6.5 Prediction

The statistically independent final predictions generated by the Final Predictor
are evaluated next. Metrics for sharpness and calibration are presented, applied,
and exemplary results are illustrated.

87



6 Evaluation

6.5.1 Metrics

As elaborated in Section 2.4, sharpness and calibration5 of predictions need
to be evaluated. Calibration concerns the statistical compatibility between
probabilistic forecasts and GT. Sharpness refers to minimizing the uncertainty
of a prediction while calibration is maintained [38].
Popular datasets used for benchmarking6 expect multiple Cartesian trajectories
for a duration of 4 sec (INTERPRET) and 6 sec (NuScenes and Argoverse).
The number of trajectories is limited to 6 (Argoverse, INTERPRET) and 25
(NuScenes7). All metrics used in popular benchmarks examine sharpness only.

Popular Sharpness Metrics

Through the mentioned datasets, the following prediction metrics have become
popular8:

• average displacement error (ADE): The Euclidean distance between
every point of a trajectory and the GT trajectory. The average over the
prediction horizon duration is calculated.

• final displacement error (FDE): The Euclidean distance between the end
point of a trajectory and the end point of the GT trajectory.

• Miss Rate: The total share of GT trajectory end points that are not within
a 2 m Euclidean distance of at least one of the predicted trajectory end
points.

Those metrics can be applied in several ways.
• Minimum: The metrics are evaluated for the trajectory with the smallest

error (minADE, minFDE).
• Probabilistic: The metrics are evaluated weighted with the probability

that is assigned to the best trajectory proposal (p-minADE, p-minFDE).
• Best/Top 𝑖: The metrics are evaluated for the top 𝑖 trajectories (mi-

nADE_Top5, minADE_Top10, MissRate_Top5).

5 Gneiting et al. [38] call it “calibration”, Murphy et al. [78] and Zernetsch et al. [119] call it
“reliability”, but all refer to statistical compatibility of prediction and observations.

6 NuScenes [15], INTERACTION/INTERPRET [120], Argoverse [22].
7 However, for distance evaluation, only the top 5 or 10 trajectories are used.
8 There are differences in how the metrics are evaluated precisely, but since it is not possible to

apply them directly, a coarse overview should do.
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Adopted Sharpness Metrics

The proposed model neither predicts trajectories nor does it predict in Cartesian
space. Therefore, the following metrics for sharpness evaluation are used:

• Displacement measure: The share of prob. mass on the GT lane tile
with lane tile distances 𝑑 ∈ {0, 1, 2}. For 𝑑 = 0, only the prob. mass
on the GT lane tile is used, for 𝑑 = 1, the prob. mass on the directly
connected lane tiles is added, for 𝑑 = 2, the prob. mass on the connected
lane tiles after next are added. So beside visualizing the prob. mass on
GT lane tiles, the prob. mass on lane tiles directly connected to the GT
lane tile is summed up - including the GT lane tile. This is called the
GT1 lane tiles, since all lane tiles are included with a distance of up to
one edge on the map graph. Similarly, the GT2 prob. mass of all lane
tiles with a distance of up to two edges to the GT lane tile on the map
graph is defined.

• Miss Rate: If GT is not on one of 𝑖 lane tiles with the most prob. mass,
it counts as a miss.

Method to Validate Reliability

A method seen as highly valuable and which does not require binning was
proposed by Zernetsch et al. [119], but it is not applicable to our discrete –
“binned” – distribution p𝑎,𝑡 . Instead, a method initially proposed by Murphy
et al. [78] is used:
Lane tiles on which 10% of positional prob. mass was predicted are expected
to match the GT lane tile in 10% of the cases if the sample size is large enough.
We therefore create nine intervals

V𝑖 : ]𝑖 · 0.1 − 0.05, 𝑖 · 0.1 + 0.05[ ∀ 𝑖 ∈ {1, 2, ..., 9} (6.2)

and count the number 𝑛𝑖GT of lane tiles 𝑙 with p𝑎,𝑡

Final · p𝑎,𝑡

GT ∈ V𝑖 with GT being
on 𝑙 and the number 𝑛𝑖not GT of lane tiles with p𝑎,𝑡

𝑙
∈ V𝑖 without GT being on 𝑙.

Ideally, we expect
𝑛
𝑖
GT

𝑛
𝑖
GT + 𝑛

𝑖
not GT

=
𝑖

10
(6.3)

to hold for all 𝑖.
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6.5.2 Quantitative Evaluation of Sharpness

The share of prob. mass on the GT𝑖 ∀ 𝑖 ∈ {0, 1, 2} lane tiles is visualized
for representative locations for rounD in Fig. 6.7, for inD in Fig. 6.8 and for
INTERACTION dataset in Fig. 6.9. Due to the dataset size, the large number
of outliers below and above the box plots’ antennas are not shown.
At first glance, there are some similarities between Fig. 6.7, Fig. 6.8 and
Fig. 6.9. For GT0, the median starts for small prediction horizons around 1
and ends for large prediction horizons between 0.1 and 0.3. In between, there
seems to be a logistic transition.
Already for GT1, when taking into account prob. mass on lane tiles directly
connected to the GT lane tile, the median gets close to 1 for progressing
prediction horizons around 3.0 s. The median for the final prediction horizon
of 4.5 s exceeds 0.4 for all scenarios.
If the prob. mass on the lane tiles after next connected to GT are also considered
(GT2), the median exceeds 0.6 for all scenarios and even exceeds 0.8 for non-
roundabouts.
Some phenomena that catch attention are the following.
For GT1 on interaction DEU_Merging, the confidence interval first shortens
until Δ𝑡ph = 1.8 s and then lengthens again. This might be related to lane tile
matching fails, which have already been described in Section 6.4. GT gen-
eration was identified as particularly difficult when two lanes overlap directly
before merging. Shortly after, the lanes have merged which directly leads
to improved prediction result by map design, since there is no alternative for
agents other than being in one of the merged lane tiles. So it is expected that
this particular phenomenon does not indicate an unknown evaluation artifact
but rather an artifact in map or loss function design. Both are side effects of
treating a distance problem as a classification task over lane tiles. Later in the
qualitative example in Fig. 6.20 it is clearly noticeable that the model does not
have a particular problem with prediction during merging scenarios.
The second phenomenon corresponds to the prediction quality decline for
roundabouts. Compared to the intersections in inD, agents in roundabouts are
predicted less accurately than agents on other intersection types. This most
likely stems from the location of the intersections. Roundabouts generally
connect three or four branches with roughly the same amount of traffic in each
branch. From a road planner standpoint, signed intersections are a better fit in
case there are two branches with more traffic than the other branches. The road
with higher traffic volume is labeled as priority road and all other branches have
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to yield. This also holds for the signed intersections in inD, so the model most
likely learns to predict towards those branches instead of predicting someone
to turn into a side branch. Especially in inD location1, one side branch leads
to a dead end, the other leads to a 30 kph-zone. For inD location3 & 4, there
is only one side branch and one priority road. For rounD location2 & 3 and
interaction DEU_Roundabout, all branches subjectively have roughly the same
amount of traffic.
The miss rates for the five lane tiles with highest prob. mass for each location
and prediction horizon can be found in Table 6.2. As already mentioned, inD
location2 is particularly difficult, since there are many VRUs that affect the
predicted vehicles but are not included in the proposed model. Also, it is the
only scene with priority to the right, so the model could not properly anticipate
how TPs behave there.
Beside the rather high miss rate for inD location2, the results seem acceptable,
especially since the miss rate is extremely low until 3.0 s and only increases
significantly for the last 1.5 s.
In Fig. 6.10, Fig. 6.11 and Fig. 6.12, qualitative examples for the final predic-
tion under assumption of statistical independence are illustrated. The chosen
scenes contain interaction, since simple non-interactive behavior was observed
to be predicted quite well during development. A description of all qualita-
tive examples is directly in the figures’ captions. This way, the reader can
compare his or her own interpretation of the illustrated scene with the given
interpretation without jumping between pages.
Figure 6.10 shows a yield scenario, where agent #42 drives straight on the
priority road, agent # 40 yields before turning from the priority road, and agent
# 34 enters the intersection last. The left column shows the three agents for a
prediction horizon of 1.8 s, the right column shows the scene for a prediction
horizon of 3.3 s. The timing of the scene’s evolution was not on point. Both
agent #40 and #34 are predicted to accelerate faster than they actually did.
However, qualitatively, the order of driving maneuvers is predicted accurately.
As can be seen for agent #42 in this example, predicting constant velocity
driving is can be done accurately by the model.
Figure 6.11 shows a roundabout, where agent #23 is about to leave the round-
about, while agent #24 and agent #26 are about to enter it at two consecutive
entries around agent #23. The left column shows the scene at a prediction
horizon of 2.4 s, the right column shows a prediction horizon of 3.9 s. The
uncertainty on the scene’s evolution therefore stem from the different maneuver
options regarding entering and leaving the roundabout. Here, the shortcom-
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Figure 6.7: Box plots of prediction prob. mass on GT𝑖 for both locations of rounD.
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Figure 6.8: Box plots of prediction prob. mass on GT𝑖 for location 3 & 4 of inD.
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Figure 6.9: Box plots of prediction prob. mass on GT𝑖 for DEU_Roundabout and DEU_Merging
of the INTERACTION dataset.
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ings of assuming statistical independence of future positions are highlighted:
Correspondences of maneuver options have to be guessed by the viewer, if
behavior options cannot be conditioned on each other by the model itself.
Also, bad predictions happen occasionally as can be seen for agent #26 who is
predicted to stay within the circuit but actually took the first exit after entering.
Figure 6.12 shows a different roundabout that is entered by agent #17 and
successively by agent #8, one entry before agent #18 plans to enter it. The
left column shows the scene at a prediction horizon of 3.6 s, the right column
shows a prediction horizon of 4.5 s. Again, uncertainty stems from different
maneuver options induced by position conflicts. All agents have basically two
maneuver options, but correspondences have to be guessed without
All examples show the properties of the generated statistically independent
predictions. First, the predictions look reasonable and correspond to the view-
ers expectations. Second, the mode of each maneuver option can be seen quite
clearly. Third, the longitudinal uncertainty seems high compared to qualitative
examples of state-of-the-art approaches in literature that have been optimized to
achieve good positional results in popular benchmarks that assess predictions
generated under the implicit assumption of statistical independent of future
positions. Forth, correspondences of prediction modes can be guessed by the
viewer, but not extracted in an automated way.

6.5.3 Quantitative Evaluation of Calibration

Figure 6.13 shows nine prob. mass intervals on the abscissa. For each interval,
the + marks the ratio of lane tiles with GT being on this lane tile relative to
the total number of lane tiles with prob. mass in the corresponding interval.
Ideally, lane tiles with 5% to 15% prob. mass are expected to match with GT
in around 5% to 15% of cases. Also, lane tiles with 85% to 95% prob. mass
are expected to match with GT in around 85% to 95% of cases, and so on. The
+ marks should therefore be close to the symmetry axis 𝑓 (𝑥) = 𝑥 visualized in
green.
As can be inspected, reliability holds particularly well for most scenarios. For
rounD location1 and inD location1, predictions are overconfident: For lane
tiles with high prob. mass, GT hits those lane tiles less frequent than expected
from the assigned prob. mass. For rounD location1, this might result from
the limited data that is available compared to other locations. inD location2
is the only intersection with priority to the right in the datasets. The model
evaluated on inD location2 has not seen scenarios with priority to the right
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(a) inD location3: The mud green car #42 on the priority road passes the intersection. It represents many of
those vehicles in the datasets that simply drive straight on with constant velocity and are well captured by
the model.
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(b) inD location3: Then, the turquoise car #40 turns to the left...
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(c) inD location3: ...slightly before car #34 on the yielding branch turns onto the priority road. Still, there is a
large share of prob. mass behind the stop line. A major issue is the limited visible range of the scenes. The
model might have learned to always keep a bit of pro. mass behind the stop line since it can never be ruled
out that a fast car is coming from invisible area of the priority road.

Figure 6.10: Final prediction, examples 1, inD location3. The priority main road has a branch
towards the top of the picture. #42 passes. Afterwards, #40 turns left. Last, car #34 turns left.
Despite not catching the time of the left turns precisely, qualitatively, the scene evolvement was
correctly estimated. Left columns: 1.8 s. Right column: 3.3 s.
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(a) Motorcyclist #23 is correctly predicted towards the closest exit of the roundabout. The prediction certainty
might have been derived from the turning rate, that is already close to zero, since the motorcyclist’s
heading directly point towards the exit.
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(b) Bus #26 enters the roundabout, but it is unclear whether it will take the first exit or stay within the circuit.
The model incorrectly predicted the bus to stay within the roundabout with high certitude which might be a
wrongful conclusion from a small turn rate, since it had to stop and yield to the motorcyclist #23 before. Is
cannot be derived from the illustrated pictures that motorcyclist #23 was within the circuit before #26 could
enter. This is additional information given for interpretation.
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(c) Car #24 yields to the bus at first. Later, it is predicted to enter the roundabout with 30% to 50% and to
yield with the 50% to 70%. The entering mode might correspond to passing the roundabout before bus
#26 passed #24’s entry. Otherwise, it is difficult to interpret why the bus was predicted to drive within the
circuit with nearly 100% and #24 still enters.

Figure 6.11: Final prediction, examples 2, rounD location1. Left columns: 2.4 s. Right column:
3.9 s.
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(a) Motorcyclist #8 is predicted to directly enter the roundabout. Later, both circuiting option and exiting
option are predicted with about 50% probability. Its velocity was slightly underestimated, since the
prediction mode is about 3 m behind it. Thus, the motorcyclist is not predicted to have passed the entry
branch of #18, yet, if #8 stayed within the circuit.
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(b) Car #17 is predicted with around 50% each to leave or stay within the roundabout. Its velocity was also
slightly underestimated, since the mode of the circuiting option is about 2 m behind the actual position of
the car. Also, the longitudinal uncertainty is quite high for both options.
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(c) Car #18 is predicted to stop before entering the roundabout, and to slowly enter the roundabout after #17
has passed. There is still more than 50% of prob. mass behind the stop line, since motorcyclist #8 was not
predicted to have passed yet, if it had stayed within the circuit.

Figure 6.12: Final prediction, examples 3, rounD location2. The left column shows 3.6 s, the
right shows 4.5 s. The example shows how important a conditional prediction is, even if there are
only few agents in the scene with only two reasonable intention options each.
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during training. Therefore, it is surprising that there is no stronger decrease in
reliability, be it overconfidence or underconfidence.
In interaction CHN_Merging_lower, the network shows to be slightly under-
confident in the middle intervals. This most likely also originates from it being
the only scenario with an acceleration lane leading to asymmetric merging.
In total, the result shows that our model generalized properly w.r.t. to reliability.
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(b) rounD location2
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(c) inD location1
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(d) inD location2
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(e) inD location3
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(f) inD location4
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(g) interaction
DEU_Merging
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Figure 6.13: Evaluation of statistical reliability. Each + is a point ( 𝑖
10 , 𝑛

𝑖
GT/(𝑛

𝑖
GT + 𝑛𝑖not GT ) ) with

its x value being the expected share of GT lane tiles to all lane tiles in the respective probability
interval and its y value being the actual share.

6.5.4 Comparison with Baseline Methods

For comparison, several baseline models are created and tested, so the numbers
from the quantitative evaluation can be put into perspective more easily. All
baseline models are simplified versions of the proposed approach to illustrate
the benefits of each design feature.
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6.5 Prediction

As first baseline BL1, a naive version of the Map-based Predictor is used
with minimal inputs. For the agent graph, only the velocity of each agent
and the distances between them are given. For the map graph, only lane tile
centerline length and the transformation information for the connecting edges
are given. The naive model consists of single layer linear mappings only.
Since the focus shall be on actual prediction and not lane matching, the Lane
Tile Matcher is used with the complete input and the two hidden layers with
non-linear activation functions. Also, only a single hidden layer is used. The
two multi-layer perceptrons (MLPs) of the original Initial State Estimator and
the Transition Motion Estimator are exchanged with a single linear mapping
that generates states and motion transition probabilities. The same holds for
the long short-term memory (LSTM) that implements the Recurrent State
Estimator and MLP implementing the Transition Motion Estimator. Again,
only a single layer linear mapping is used. In conclusion, the recurrent part
generating most of the predictions can be seen as a discrete filter optimized for
the present problem of prediction.
The second baseline BL2 has the same structure as BL1 but uses all available
input features for both the agent graph and the map graph.
The third baseline BL3 is the Map-Based Predictor of the original model that
differs from the final prediction only by not explicitly allowing interaction.
All baselines are trained the same way as the proposed model, particularly
including the adaptations of the loss function.

In Fig. 6.14, the results of the baselines and the proposed approach on rounD
location1 are shown. Noticeable improvements stem from the following design
changes. The naive linear model with minimal input features and without
interaction (BL1) clearly performs poorly over the whole prediction (a). A
huge improvement stems from adding all available input features (BL2), even
though the model is still linear (b). BL2 already has the chance to implicitly
learn interaction from the data by learning to stop at stop lines or yield signs,
even though it cannot perceive whether other agents are about to cross on the
priority lane or the circuit of a roundabout.
Surprisingly, the map-based prediction (c) is nearly as good as the final pre-
diction (d). For GT0, differences are quite difficult to notice. Differences in
the median, the confidence interval or the antennas often seem smaller than
0.1 For GT1 and GT2, the visual appearances of the plots diverge. This clearly
indicates an advantage of the model.
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However, the question rises why the map-based prediction seems nearly as
good as the final prediction, even though agents are not aware of each other.
Several explanations come to mind.
First, the map-based prediction was claimed to represent trajectories that would
be driven if no interaction is necessary. This suggests that the prediction has
to be adopted to the route topology and requirements of comfort only. This
is clearly not the case, since both the map-based prediction and the final
prediction are optimized to the same data that stems from real world scenarios
with interaction. So it is rather the best possible prediction without letting
agents know about each other’s existence in the scene. Just as BL2, the map-
based prediction can benefit from all map features suggesting where best to
stop proactively.
Second, real world TPs adopt their driving behavior proactively if curves or
yield situations occur. This way, their comfort requirements regarding longi-
tudinal and lateral dynamics can be satisfied better and energy consumption as
well as material wear decreases. So there may already be hints in the velocity
and acceleration agent input on how the real world TP drove proactively in
order to avoid a harsh braking maneuver.
Third, and related to the aforementioned reason, conflicts occur comparably
rarely, so a large share of driving consists of agents driving on the same lane
they were driving on beforehand. Even though particularly difficult scenarios
have been selected from the available datasets, a significant share of driving
occurs on intersection branches, that do not require many speed adaptations.
Last, multi-modality of individual predictions cannot be rewarded mutually. As
mentioned many times, predicting agents individually is assessed quantitatively
by comparison with GT. In this case, a bimodal prediction for two agents
without joint assessment might numerically lead to the same result as a bimodal
prediction of a single agent that does not know whether there is another agent
in the scene it has to interact with, or not. The map-based model could learn
to always produce bimodal prediction at stop lines or yield signs, so the final
prediction with interaction only has a numerical benefit if there is no other
vehicle coming and the prediction is uni-modal.
Changing the optimization strategy leads to the result in Fig. 6.15. In (f), the
loss of the final prediction used for optimization leading to results of the map-
based prediction in (e). As expected, the prediction quality of the map-based
prediction clearly declines compared to (c) in Fig. 6.14. The final prediction (f),
however, improves a bit compared to optimizing both map-based and final loss
(g). The conditional prediction (h) given the GT of the corresponding second
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6.6 Conditional Prediction

agent outperforms all prediction training strategies for statistically independent
positions which is clearly visible for GT1 and GT2.

6.6 Conditional Prediction

For quantitative evaluation of sharpness and reliability of the conditional pre-
diction, the same metrics as introduced in Section 6.5.1 and Section 6.5.3
are used. Quantitatively, only the predictions P (Ω𝑡 ,𝑙,𝑎 | Ω𝑡 ,𝑘,𝑏) conditioned
on events Ω𝑡 ,𝑘,𝑏 that actually happened during recording can be evaluated.
Therefore, all results for the conditional predictions are evaluated twice for
each agent pair conditioned on the GT of the respective other agent, if GT
exists for both agents at the same prediction horizon. Again, all results are
created by removing the evaluation map from the training set, so the model has
not seen the corresponding map before.
All data points from the respective map are used, in which a GT lane tile exists
for both the predicted and the conditioned agent.

6.6.1 Quantitative Evaluation of Sharpness

In Fig. 6.16 and Fig. 6.17, sharpness is evaluated with the displacement measure
GT𝑖 that was defined in Section 6.5.1 for four representative locations.
If the boxplots of the predictions with implicit assumption of statistical inde-
pendence regarding future positions from Fig. 6.7 and Fig. 6.9 are compared
with the boxplots of conditional predictions of the same locations, as expected,
an increase of sharpness can be observed for the conditional predictions. Since
correspondences of pairwise behavior is evaluated, a decrease of sharpness
had been counter-intuitive. If the sharpness had been quantitatively the same,
the reader could have interpreted it as a validation for the assumption of sta-
tistical independence. The increase of sharpness is expected to be even more
intense, if only agent pairs that require interaction would have been regarded.
Instead, many agent pairs do not interfere with each other9, e.g. in sparse or
slowly evolving scenes. Fore those scenes, statistical independence of future
positions can be a valid assumption and barely any numerical advantage of the
conditional prediction can be observed. The clear advantage of the conditional

9 Here, both causal interaction – like priority and yielding behavior – and numerical correlation
that can also stem from indirect interaction that involves more than two agents is referred.
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prediction even though most of the agent pairs do not have causal nor numerical
interaction is therefore seen as a validation for the superiority of conditional
predictions in general, and pairwise bivariate predictions specifically.
A sharpness comparison between the conditional prediction and the prediction
under assumption of statistical independence for various training strategies can
be found in Fig. 6.15 for rounD location1.
Exemplary results for the conditional prediction are visualized and described
in Fig. 6.18, Fig. 6.19 and Fig. 6.20. A detailed description of all qualita-
tive examples is directly in the figures’ captions. This way, the reader can
compare his or her own interpretation of the illustrated scenes with the given
interpretation without jumping between pages.
The first two image pairs (a) and (b) in Figure 6.18 show a roundabout into
which two vehicles enter at two consecutive entries. Agent #12 stays within
the circuit, so agent #3 has to yield. While the prediction under assumption
of statistical independence diverges for agent #12 between circuit and leaving
at first exit, the conditional prediction given #12 stays within the roundabout
clearly point towards the stop line and indicates that #3 will not enter the
roundabout. Shortly before in (c), a third agent #7 leaves the roundabout at the
exit of the former of both branches, so agent #12 can directly enter. This also
was correctly predicted with the conditional prediction.
The first image pair (a) of Figure 6.19 shows a yield scenario, where an agent
#46 turns to the left and has to yield to an oncoming vehicle #49. The intention
prediction of the yielding vehicle #46 is ambiguous at first. A second later
shown in image pairs (b) and (c), the prediction for the same yielding vehicle
#46 has improved significantly, and the maneuver ambiguity has gone. This
example suggests preferring conservative behavior options such as waiting in
case of ambiguities.
Fig. 6.20 shows two dense merging scenarios. In the first shown in image
pairs (a) and (b), vehicles #15, #16 and #17 enter the scene slightly shifted
making a merging prediction particularly easy. In the second scenario shown
in image pairs (c), (d) and (e), two vehicles #21 and #22 enter the scene right
next to each other leading to a scene that is perceived as uncomfortable und
difficult by many human drivers. The prediction matches the real evolution of
the scene most likely due to different initial velocities of the two agents: The
faster vehicle #22 is predicted to merge in front of the slower vehicle #21.
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Figure 6.16: Accuracy results for conditional prediction given GT of the other agent, respectively.
Left: inD location2. Right: rounD location1
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Figure 6.17: Accuracy results for conditional prediction given GT of the other agent, respectively.
Left: interaction DEU_Merging. Right: interaction DEU_Roundabout.
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(a) The purple car #12 is entering the roundabout and is predicted with around 50% each to stay within the
circuit or leave at the first exit. The most likely position prediction for the gray car #3 conditioned on car
#12 staying within the circuit is located at the entry’s stop line: It is indicated by the gray line starting from
the red GT lane tile of #12 pointing towards the roundabout entry.
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(b) Vice versa, the conditional prediction for the purple car #12 given that gray car #3 slows down at the stop
line. Left, 2.1 s: At first, the conditional prob. mass indicated by the purple lines is more or less equally
distributed between the two options for #12, namely leaving at the first exit or staying within the circuit.
Right, 3.3 s: Since #3 had to brake in order to stay behind the stop line and let #12 pass, the purple lines
now only point to the circuit of the roundabout, connecting the two corresponding behavior modes of #3
and #12. Note that the conditional prediction is normalized over all lane tiles in the scene, so the purple
lines cannot be explained by leaking prob. mass of #12 at the scene’s exit.
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(c) In contrast, the dark brown agent #7 leaves the roundabout and the green agent #12 can directly enter.
While the conditional prediction for #7 given the entering of #12 fits well (left, 3.9 s), the conditional
prediction for #12 given #7 leaves the roundabout seems undecided (right, 3.9 s). This could result from
the asymmetric dependency: #12 depends on car #7, since it would have to yield, but also from any car
driving behind car #7. Car #7 can move independently of #12, since it has priority, and independently of a
potentially following car. Since conflicts are created and solved pairwise, and conditional prediction is also
produced pairwise, the connection to a potential third car might be missing for #12 given only #7 that can
move independently.

Figure 6.18: Conditional prediction, representative examples 1: interaction DEU_Roundabout. A
crowded scene at a roundabout is shown for different agents of interest and different prediction
horizons.
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(a) Left: 1.8 s. Right: 4.2 s. For the purple car #46, both lane tile matching and position prediction for the
acceleration maneuver after the blue car #49 has passed are unsatisfying.
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(b) Right: 3.6 s. Left: 4.5 s. A second after, lane tile matching and prediction are accurate again even though
green car #49 has still not passed yet. In all four images above, however, the conditional prediction is
highly accurate, both for #49 and car #48 passing below, since the lines with the corresponding colors point
clearly towards to actual future positions of these agents.
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(c) Right: 1.5 s. Left: 3.6 s. Also, the conditional prediction for the blue car #46 and the orange car #48 given
the green car #49’s GT position fits well to the map graph. However, it may occur that the map graph does
not combine the whole road surface that belongs to a certain route option. For the left turn option that #46
chooses, the road was already annotated as being extremely wide. Still, #46 chose a path that leaves the
annotated route, which can lead to misleading GT lane tiles.

Figure 6.19: Conditional prediction, representative examples 2: inD location4. A sparse scene on
a four lane road. The conditional prediction is accurate, even if the position prediction is
inaccurate or misleading.
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(a) Left: 0.3 s. Right: 1.2 s. A merging situation, where the purple car #15 merges before and the green car
#17 merges behind the brown car #16.
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(b) Left: 2.1 s. Right: 3.3 s. The conditional predictions illustrated with purple and green lines clearly and
correctly indicate the order of merging for both short und long prediction horizons
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(c) 0.3 s: Some seconds later, the pink agent #22 and the dark green agent #21 enter the scene directly next to
each other. Already for very short prediction horizons...
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(d) 0.6 s: ...the model correctly anticipates their merging order..
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(e) 0.9 s: ...which probably was derived from the speed difference between both cars: The pink agent has
traveled a longer distance during the first second and therefore is predicted to merge in front of #21.

Figure 6.20: Conditional prediction, representative examples 3: interaction DEU_Merging. Two
lanes merge into one shortly after an intersection with dense two lane traffic. (a) and (b) show
four different prediction horizons for a first merging scenes. (c), (d) and (e) show two agents #21
and #22 at three different prediction horizons of a second merging scene. In all shown examples,
the conditional prediction indicated through colored lines qualitatively matches the actually
driven merging order.

111



6 Evaluation

6.6.2 Quantitative Evaluation of Reliability

In Fig. 6.21, the reliability plots for four representative locations are shown.
Again, points + above the symmetry axis can be interpreted as underconfi-
dence for the corresponding interval because the observed GT lane tiles occur
more often than expected from the prob. mass assigned to them. Similarly,
points below represent overconfidence of the model relatively to the prob. mass
assigned to the GT lane tiles.
For interaction DEU_Roundabout, slight overconfidence for large occupancy
probabilities can be noticed. Compared to the predictions of statistically
independent positions in Fig. 6.13, the reliability generally decreases, since
the mean absolute difference between the expected share and the actual share
increases. Since there is no clear under or overconfidence over several interval
bins, it is assumed that reliability was improved if more diverse data was
available for training. For application, the increase of statistical reliability has
to be considered, but since the uncertainty influences onto prediction results
are manifold, the result is regarded as a proof of concept.

6.6.3 Discussion

A unique dataset was created from subsets of three publicly available drone
datasets. It only contains data that suits the design requirements formulated
together with the planner team at Institut für Mess- und Regelungstechnik
(MRT): Since we drive in Germany only, the network should not be confused
by different traffic rules of different countries. Second, the road should be tight
enough to only one vehicle laterally fits onto it. Third, TPs should obey to
traffic rules, so unstructured traffic shall be excluded.
This unique dataset makes it particularly difficult to compare the presented
results with state-of-the-art solutions. Also, while most other researchers focus
on trajectory and position prediction due to the input requirements of popular
benchmarks, the proposed model outputs rather intentions than positions. An
additional sampling problem would need to be solved in order to participate in
benchmarks and make the proposed approach comparable.
Instead, popular metrics have been adopted to the discrete problem formulation.
Also, different design stages and results of different training strategies have
been juxtaposed in order to highlight their advantages.
However, it is recommended to focus particularly on two significant results
rarely found in literature at all.
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(b) interaction DEU_Merging
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Figure 6.21: Probabilistic reliability plots of conditional prediction given GT of the other agent.

First, the probabilistic reliability was verified for both the predictions under
assumption of statistically independent future positions and for the conditional
prediction. These results clearly indicate that it is valid to post-process the
predicted intentions in a probabilistic way without fearing to systematically
over- or underestimate probabilities. These results have been achieved without
a consecutive statistical calibration step likely due to the following design
decisions: The logarithmic score used in cross-entropy has been identified by
Gneiting et al. [38] as a scoring rule that optimizes sharpness of distributions
while preserving statistical calibration. Also, effort has been put into keeping
the loss in the same scale regardless of the number of agents and the number of
lane tiles in a scene. Last, propagating probability mass though the map graph
instead of designing a network that can arbitrarily shift and position probability
mass on the map graph resulted in smooth probabilistic transition.
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Second, the many qualitative examples presented in this chapter highlight im-
portant takeaways for prediction. Assuming statistical independence of future
positions of agents that require interaction in order to solve positional con-
flicts is highly questionable, if not clearly wrong. In many examples, it is
hard to interpret whether the statistically independent prediction is reasonable
considering the (many) different behavior evolutions of a scene. The shown
conditional predictions clearly indicate an advantage of predicting pairwise
bivariate distributions over predicting univariate discrete distributions for each
agent. It is therefore recommended studying the qualitative examples thor-
oughly.
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7 Conclusion

An artificial graph neural network (GNN) is presented which predicts a graph
of interacting agents probabilistically on a map graph. All entities of both
graphs can have their individual input variables. Besides the commonly used
individual prediction for each traffic participant, the model predicts joint dis-
tributions for all pairs of agents. From these, conditional predictions for one
agent given the hypothetical future position of another agent can be computed
in order to analyze possible future interplay between two agents.
The model consists of several modules. The tasks of modules within the
GNN are based on task components a human driver must also handle when
predicting the behavior of other TPs. These tasks are determined by strict
modeling of the information flow within the model: First, the agents’ future
positions are predicted exclusively based on the map. In this step, each agent
can collect information about the map. From the map-based prediction, future
position conflicts are identified for each pair of agents. Next, information is
exchanged between agents to help resolve the positional conflicts. Finally,
agents’ positions are predicted individually and in pairs based on the map
and the exchanged information. The results were successfully analyzed for
prediction accuracy at different design stages and for statistical reliability.
Regarding the requirements listed in Section 1.2 at the beginning of this work,
the following conclusions w.r.t. to our model can be drawn.

7.1 Degree of Requirement Fulfillment

Uncertainty Estimation

The proposed model probabilistically allocates agents to lane tiles and then
propagates them probabilistically through the map graph (see evaluation
Fig. 6.4). Probability mass leaking from the scene is separately penalized
in the loss term (see Eq. (5.20)). Missing ground truth (GT) occasions – e.g.
when an agent has left the scene – are compensated in order to smoothen
the resulting gradients (see Eq. (5.23) and Eq. (5.27)). Unlike many com-
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peting approaches that use a fixed number of parameterized distributions –
e.g. a Gaussian mixture –, the proposed model outputs a discrete probability
distribution over all lane tiles that was validated for reliability (see Fig. 6.13).
Additionally, discrete joint distributions of pairs of agents are predicted and
their derived conditional distributions are validated w.r.t. statistical reliability
(see Section 6.6.2).

Multi-Modality

The proposed model allows positional prob. mass to flow along the map graph
(see Section 5.2.2). There are three modeling assumptions that restrict a
complete arbitrary flow of prob. mass limiting the model’s ability to generate
an arbitrary number of modes.
First, it is assumed that a discrete distribution over all lane tiles in the map graph
can approximate the agent’s position sufficiently. Sub-lane-tile accuracy can
only be derived by fitting a parametric distribution e.g. in Frenet coordinates
in a post-processing step.
Second, discrete model transition options between those lane tiles are intro-
duced, restricting prob. mass from flowing in unlikely directions and from
leaving the map graph elsewhere than at entry and exit lane tiles. This has ad-
vantages regarding temporal association of modes for reconstructing coherent
trajectories. The disadvantage is that agents cannot be predicted outside the
map graph or other than the predefined motion transition options. Overtaking
on the opposite lane for example is currently not included, even though it
regularly occurs on country roads.
Third, prob. mass leaked from a scene cannot return into the scene.
Other than that, the distribution can evolve freely which allows important
prob. mass splits, namely at points where the road forks, and at stop lines,
where prob. mass might divide into a mode corresponding to a decelerating
behavior option and a mode corresponding to an accelerating behavior option.
In particular, prob. mass can flow independently of the hidden states of an
agent (see Eq. (5.3)).
The joint distribution is generated through agents’ states on lane tiles whose
evolvement is also restricted by transition options (see Section 5.2.8).
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Ability to Handle Different Traffic Scenes and Generalize Accordingly

The proposed model consists of an agent graph whose nodes move along a map
graph (see Chapter 4). The model can be seen as two constantly interacting
GNNs, making it invariant w.r.t. the number and the order of agents and lane
tiles. The model consists of several modules that strictly limit the information
flow at inference, allowing it to generalize from a limited set of data – especially
w.r.t. the number of maps – as was validated throughout Chapter 6 by defering
particular maps during training.
Since only 12 maps have been identified as suitable and some represent unique
scenarios, the limited data is regarded as the main bottleneck at this point.
Also, there are challenging scenarios that are not covered by the available data.
Examples are multi-lane roundabouts and a narrowing (road bottleneck).
Given those limitations, the presented results especially of the general statistical
reliability and the accuracy of the Lane Tile Matcher (see Section 6.4) and the
Cooccurrence Estimator (see Section 6.6.1) are regarded as strong evidence
for the model’s robustness achieved through a parameter-efficient, modularized
design.

Parameter Parsimony

In order to fulfill the former requirement of generalization, the model was
designed slenderly. Finally, fewer than 27,000 trainable parameters are used,
limiting the number of parameters to about a third of VectorNet by Geo et
al. [33] who already highlighted the parameter parsimony of their model.
Since an extensive hyperparameter optimization was renounced, the number
of parameters is expected to be reduced further without application-relevant
decrease of performance.

Computational Efficiency

The proposed method utilizes matrices that depend quadratically on the number
of agents and quadratically on the number of lane tiles making its complexity
with respect to number of computations and memoryO(𝑛2

L ·𝑛
2
A). In most cases,

the number of directly relevant agents and the number of directly relevant lane
tiles are strongly limited – not only contextual, but also w.r.t. sensor range and
occlusions (see Section 6.2).
Therefore, an issue regarding applicability is not seen here.
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Complete Input Information

Environmental information is given to the proposed model through several
tensors (for an overview, see Appendix A.5). Most importantly, agents have
individual features, their pair-wise relationship can be represented through
individual features, lane tiles have own features, and their connections as well.
Traffic rules and traffic entities can therefore be given in various ways. It is
possible to introduce a priority feature for an agent, e.g. for emergency vehicles.
It is possible to introduce a priority feature through the (directed) edges between
two agents in case a former module in the automated driving (AD) stack derived
priority relations from the map. It is possible to implicitly indicate traffic rules
through map entity features representing the location of a road sign.
Besides traffic rules w.r.t. vulnerable road users (VRUs) that are not regarded in
this work, traffic rules that are not representable in the proposed model do not
come to mind. Four way stop behavior is learnable from intersection examples
with stop lines and stop signs just like priority to the right for German traffic
where four way stops do not exist.
Past trajectories that many competing approaches utilize could be given as
agent features, even though they were not used this way throughout this work.

Flexible Prediction Format

The output distributions are strictly map-referenced. Therefore, they can be
analyzed for high-level behavior options or behavior modes. Since the output
distribution was checked for reliability (see Section 6.5.3), probabilistic reli-
ability of behavior options is ensured. For example, the prob. mass within a
certain branch can be summed up in order to obtain the probability of an agent
taking said branch at a certain future time step.
Also, trajectory information can be reconstructed since prob. mass is strictly
limited to flow through predefined motion transition options. This way it is
ensured, that modes between two consecutive future time steps can be associ-
ated. For example, a Gaussian in Frenet coordinates can be fit to each positional
mode of an agent. Over the prediction horizon, modes can split. Through near-
est neighbor association between two consecutive time steps, corresponding
modes representing a trajectory can be extracted, and a smoothed trajectory can
be optimized to those modes over time. This way, trajectories can be extracted
for planning through optimization, just as many other approaches directly offer
them.
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Conditional Prediction

Besides predicting position distributions individually for each agent under the
questionable assumption of statistical independence, joint distributions are
predicted for pairs of agents (see Section 5.2.8). By deriving the conditional
distribution for an agent of interest given a hypothetical position of another
vehicle, e.g. the ego vehicle, this joint distribution can be analyzed for hypo-
thetical future evolvements of the traffic scene.
While some competing approaches predict consistent modes for all agents
in a traffic scene, the presented work is one among the first that specifically
allows analysis for arbitrarily hypothetical behavior between agents. Also, the
proposal of predicting joint distributions for pairs of agents is a simple solution
that can be integrated into many other approaches.

7.1.1 Limitations

The presented approach specifically excludes unstructured road topologies and
road traffic where road markings are either not given, not obeyed, or sparse
enough to not give a strong path prior. East Asian urban traffic is a famous
example for unstructured traffic, but also roads wide enough for more than one
traffic participant (TP) in one direction, as they occur frequently in the US, are
not an advantageous use case for the proposed method.
Since agents are predicted on the map graph only, the model is restricted to lane-
bound vehicles, including motorcycles, cars, trucks and busses. Pedestrians
and cyclists can be included by adding sidewalks to the map graph.
The goal of every TP remains unknown for prediction, whereas each TP predicts
others from an ego-centric viewpoint. This means every driver knows where
he or she is heading to. Not utilizing the knowledge about desired destinations
introduces large uncertainty about the evolvement of a scene and separates
the research field of agent prediction from the research field of multi-agent
planning. The present prediction approach is designed as a prediction method
for traffic scene evolvement without centering prediction around an ego vehicle.
An ego trajectory is not utilized.
Within the prediction horizon Δ𝑡ph, new agents might enter the scene. These
are not considered in the problem formulation and lead to prediction errors
especially for shortly mapped access routes of intersections, where agents
directly participate in conflicts after entering the mapped scene as for example
at location1 from inD.
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7.2 Future Directions

As for most scientific problems, new challenges arise with the solution of
another. Therefore, future directions shall be outlined as inspiration for other
researchers.
One well-known problem refers to holistic prediction metrics. While agreeing
with assessments from [38,111,119] stating that both sharpness and statistical
reliability need to be assessed quantitatively and equally, existing prediction
metrics might not be sufficient to tell apart good and bad prediction approaches.
Many TPs drive proactively and can already be predicted quite well with a phys-
ical or map-based model along a lane for a couple of seconds. Therefore, a
sharpness metric needs to be weighted with the intensity of an upcoming posi-
tion conflict. Such a conflict identifies situations where interaction is required
in order to solve the conflict. Unlike many vehicle-following scenarios, that
are neither interesting nor critical for anyone, but occur most of the time in all
datasets.
Another research topic is about what prediction assessment and quality is
necessary for the automated vehicle (AV) to drive “well” or “safely” or “as good
as a responsible human”. The next recommended step if research regarding
prediction was continued, is to adapt a vehicle’s planning module, so it is able
to make use of the output of the proposed model. Maybe the question is not
how to measure and assess prediction quality and define a threshold, so an AV
is expected to be able to drive with it. Maybe a prediction model is “sufficient”
if an AV using the model can drive comfortably, safely and not overcautiously
with the model’s output.

Besides these general concerns regarding the field of prediction for AD, the
following should be tackled in the future regarding the proposed model.
Cutting lanelets into smaller lane tiles and utilizing matrix operations was
an important step for identifying an efficient conflict representation. This
makes the output distribution flexible compared to Gaussian mixtures that are
often used, and to predict joint distributions for pairs of agents. However, the
representation is a compromise between rasterized input and directly using
lanelets from a given map. There surely is a possibility of using raw lanelet
maps, probably with lanelet-wise coordinate frames, and introducing as well
as solving pair-wise conflicts similarly as proposed for a map discretized in
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lane tiles. Also, joint distributions can be predicted for pairs of agents located
on lanelets instead of lane tiles.
Finding a loss function that weights cost based on graph distance to GT is
required, both for lane tile maps or lanelet maps.
Next, having more data was beneficial in several regards. First, more trajecto-
ries per scenario are beneficial. Second, more scenarios are required for better
generalization. Last, limited sight was observed to be a frequent problem for
some intersections with shortly mapped road branches, as described before. In
practice, modeling occlusions properly might be the key for avoiding prediction
artifacts due to limited view.
In Section 5.1, the model design is described as strictly aligned with how
humans predict other TPs. One feature that is not utilized in the model is
knowledge about what each agent is actually planing to do. In the presented
model, agents are predicted from the viewpoint of a sovereign viewer that does
not know – neither a priori, nor a posteriori – what agents plan to do. However,
during driving, each TP knows quite precisely his or her destination. Such
knowledge of course can only be introduced during training since it will not be
available at inference. One possibility might be to only train with the losses on
the lane tiles of the track each TP did actually drive. Only the behavior on the
desired path helps to understand the concrete longitudinal motion of the TP,
since the track was already specified by the destination of the TP and known
to the TP when entering an intersection. For a multi-lane road this assumption
might not hold, since lane changes are often the result of spontaneous behavior
decisions. But for many other cases, the destination and the path of a TP does
not change within the current scenario.

7.2.1 Towards a Holistic Prediction Framework

Generally, different classes of TPs do not necessarily need to be predicted with
a prediction framework that models interaction between all agents at all times
explicitly. For short prediction horizons of up to 1.5 s, predicting a physical
model might be enough to directly avoid crashes in the last moment. Physical
models vary according to the transportation system. While for pedestrians a
2D constant velocity Kalman filter (KF) might be useful, lane bound vehicles
such as cars might be best predicted with a constant acceleration, constant turn
rate model. For physically more challenging vehicle models such as bicycles,
motorbikes and electric scooters, specific models for state estimation can be
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7 Conclusion

used as proposed by Wirth et al. [112]. This two-wheeler state then allows for
model-based prediction as presented by Wirth et al. [113].
For long-term prediction of several seconds, probabilistic models are required.
In the case of pedestrian movement, single agent predictions might already be
good enough as presented by Rehder et al. [87] and Lorenzo et al. [1].
Prediction of lane bound vehicles in the long-term is recommended to be done
with a conditional behavior prediction approach as proposed in the presented
work that explicitly incorporates interaction.
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A.1 Datasets

The presented approach works best if a couple of requirements regarding the
training dataset are fulfilled. They are listed in Section 6.1.
Some intersections from INTERACTION dataset [120], rounD [55] and inD
[11] fulfill those requirements. The chosen intersections are described in detail
in the following. Besides knowing the map topology for visual inspection of
prediction examples, it is important to know about the surrounding of the
corresponding intersection. For getting an overview, aerial images of the
intersections are shown in Fig. 6.1. All datasets provide the necessary static
and dynamic features that directly give or at least can easily be transformed to
the inputs features listed in Section 4.2 and Section 4.1.6.

A.1.1 inD

From inD, all intersections (location 1-4) are used.
Location 1 with geographic coordinates N50.7820°, E6.0712° is an urban
intersection of two tertiary roads, priority road Süsterfeldstraße and Kühlwet-
terstraße, on which traffic has to yield. One branch of Kühlwetterstraße (south)
is a dead end with barely any traffic. All branches have a speed limit of
50 km/h. Traffic is not too intense, pedestrians and cyclists rarely occur.
Location 2 with geographic coordinates N50.7684°, E6.1022° is an ur-
ban intersection of Bismarckstraße with its two branches Schlossstraße and
Rehmannstraße. Priority is giving to the right. The speed limit is 30 km/h.
On the eastern branch of Bismarckstraße, there is a zebra crossing which is
strongly used by pedestrians. Cyclists also occur often. Visibility between
the intersection’s branches is strongly reduced by buildings close to the inter-
section and many parked cars. Due to the strong vulnerable road user (VRU)
traffic that is not covered by the presented approach, results on this scenario
have to be assessed with care.
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Location 3 with geographic coordinates N50.7786°, E6.1654° is an urban in-
tersection where Heckstraße joins Von-Coels-Straße, and the latter has priority.
The speed limit is 50 km/h for all branches. On the south branch of Von-Coals-
Straße and at Heckstraße, there are pedestrian crossing paths that are not zebra
crossings, but they are rarely used.
Location 4 with geographic coordinates N50.7852°, E6.1311° is an intersection
where Neuköllner Straße, that comes from an industrial zone, joins Charlot-
tenburger Allee, which is connecting the motorway Berlinger Ring with a
residential area. The speed limit is 50 km/h for both roads despite the Char-
lottenburger Allee is a non-urban four lane road where many vehicles exceed
the speed limit. Charlottenburger Allee is the priority road. Directly at the
intersection there are two bus stops that frequently interfere with the traffic
flow.

A.1.2 rounD

Location 1 with geographic coordinates N50.7906°, E6.0600° is an urban
roundabout with four branches: the urban roads Süsterfeldstr (south) and
Kackertstraße, the rural road Süsterfeldstraße (west) and to the north it is
connected to the motorway Toledoring/Pariser Ring. Priority is given as
usual for roundabouts in Germany: whoever wants to enter the roundabout
has to yield. Speed limit is 50 km/h to all direction. In the north branch
leading to the motorway, the speed increases so traffic is accelerating and
decelerating, respectively. VRU traffic is possible but negligible. Bus traffic
occurs frequently.
Location 2 with geographic coordinates N50.8739°, E6.1067° is a roundabout
connecting the urban main road Geilenkirchener Straße with the side roads
Thiergartenstraße and Ritzerfelder Straße. On the main road, 50 km/h are
allowed, on the side roads, the speed limit is 30 km/h. VRU traffic is possible
but exists only occasionally. Right in front of the roundabout to the southwest,
there is a bus stop that interferes with traffic flow at times.

A.1.3 INTERACTION

Unlike the other datasets, INTERACTION is anonymized in the sense that it
does not contain geo-referenced coordinates. The location names of INTER-
ACTION are cryptic but contain at least letters for the country and a semantic
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description of the scene. The meaning of the remaining letters is unknown, so
they are omitted.
Location DEU_Roundabout is a roundabout in an industrial district. All of
its branches have a speedlimit of 50 km/h. Both VRU and bus traffic happen
occasionally. Bus stops are nearby, but interferes less frequent with normal
traffic compared to the other locations. The right branch leads to a motorway,
the left branch leads to the town center, and the lower branch leads to an
industrial area and is therefore used a bit less frequent.
Location DEU_Merging is a standalone merging scenario with a speed limit
of 50 km/h. Quite often, traffic slows down after merging due to the upcoming
signalized intersection. There is a separate bike lane that does not interfere
with road traffic. The merging scenario is subsequent after a large urban
intersection, so vehicles often take a slow turn into the merging area.
Location CHN_Merging is a highway scenario with a merging scenario at the
top and the bottom. Traffic is usually dense and slow, also, lane bounds are
strictly obeyed, so it is considered suitable for the present use case even though
it was recorded in China. The scenario is split into three separate scenarios.
The _lower merging scenario with traffic flowing to the right is separated. It
contains an asymmetric merging situation from an acceleration lane onto the
two lane motorway. The _upper scenario is a symmetrical merging of two
lanes flowing to the left. It is spatially independent of the _middle scenario,
where two lanes are going to the left.
The speed limit is given with 80 km/h.
Location USA_Roundabout is a wide roundabout where lane bounds are also
usually respected. Despite being crossed by several broad crosswalks, those
are barely used. Also, inner traffic has priority, so it aligns with the other
roundabouts. The speed limit is given with 25 mph ≈ 40 km/h.

A.2 The Graph Spectral Domain

The following specification is necessary for comprehension of Section 3.1.
The degree matrix D ∈ N𝑛N×𝑛N is a diagonal matrix whose trace sums up
the connection of the corresponding node 𝑖 with D𝑖,𝑖 = |E𝑖 |. For directed
graphs, in- and out-degree matrices are distinguished. The Laplacian matrix
Q = D − A is the difference between degree and adjacency matrix. In- and
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out-degree Laplacians can be distinguished as well. For the Laplacian matrix,
an eigendecomposition

𝜖
𝑚
= v𝑚TQv𝑚 (A.1)

can be conducted where v𝑚 is an eigenvector corresponding to eigenvalue 𝜖𝑚.
The index of eigenvalues 𝑚 orders the eigenvalues by absolute value, starting
with the largest. With the matrix of ordered eigenvectors V = [v𝑚] ∈ R𝑛N×𝑛N

a signal x can be transformed into the spectral domain with

xspectral = VTx. (A.2)

The Fourier transformation of graphs is valuable for conducting the operation
of discrete convolution which has shown to be useful for many deep learn-
ing applications. Convolution defined in the spatial or temporal domain is
equivalent to multiplication in the respective Fourier domain.
Now, the equivalent operation shall be derived for graphs. In graphs, the node
feature vector n is the signal and the convolution takes place with a weight
vector w of the same size. Both node feature and weight can be transformed to
the Fourier domain, multiplied with each other and transformed back into the
spatial domain according to

ñ = V(VTn ⊙ VTw). (A.3)

A.3 Hyperparameters

The hyperparameter used for evaluation have shown to be reasonable during
the development of the model. Thus, it is expected that intense and structured
hyperparameter tuning can still improve the model’s performance.
In Table A.1, the hidden feature sizes are listed. The Conflict Identifier consists
processes inputs C ∈ R2×𝑛T×𝑛T of two convolutional layers and one fully-
connected layer. The first conv. layer has 20 filter masks of size [2× 6× 6] and
a stride of 3, the second conv. layer has 15 filter masks of size [2×2]. The fully-
connected layer maps each 3× 3-sized feature to a 1× 1-vector element of size
15. In Table A.2, hyperparameters not directly related to module architectures
are listed.
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Table A.1: Hyperparameters of the Proposed Modules

Module Layer type and hidden features

Lane Tile Matcher MLP [24, 15]
State Estimator MLP [20, 20]
Motion Transition Estimator MLP [24, 12]
Conflict Identifier CNN [2 × 6 × 6, 20], [2 × 2, 15], [3 × 3, 15]
Notification Extractor MLP [22, 12]
Message Aggregator MLP [22, 22]
Self-Notification Extractor MLP [20, 12]
Cooccurrence Estimator MLP [12, 12]
Δ𝑡ph 4.5 s
𝑛T 15

Table A.2: Non-Module related Hyperparameters

Name Value

Activation function ELU [25]
Optimizer Adam [53] (standard settings)
Weight for l2-regularization 10−7

Training steps (each step is one scene) 150, 000
Weight initialization Gaussian with 𝜇 = 0, 𝜎 = 0.02
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Table A.3: Overview of all agent features and agent edge features. They all are scalars.

Feature name Meaning

v Speed
a Acceleration
w Width
l Length
omega_dot Yaw rate
sin_omega Sine of agent orientation
cos_omega Cosine of agent orientation

distance Euclidean distance between two agents
sin_alpha Sine of yaw angle between two agents from the view point of

first agent
cos_alpha Cosine of yaw angle between two agents from the view point

of first agent
sin_beta Sine of angle between longitudinal axes
cos_beta Cosine of angle between longitudinal axes

A.4 Input Features

In Fig. 4.7, input features used for lane tiles and lane tile connections are listed.
Experiments have been conducted with additional features that have not been
used for evaluation. Those are written in blue. The same holds for input
features for agents and agent edges that are listed in Fig. 4.8.
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Table A.4: Overview of all lane tile features and lane tile connection features. They all are scalars.
See visual explanation in Fig. 4.7.

Feature name Meaning

l_centerline Length of lane tile centerline
w_begin Width of lane tile beginning
w_end Width of lane tile end
area Area of lane tile
sin_phi Sine of lane tile orientation
cos_phi Cosine of lane tile orientation
v_max Speed limit

l_be Distance between beginning of first and end of second lane
tile

sin_omega Sine of connection line between beginning of first
and ending of second lane tile

cos_omega Cosine of connection line between beginning of first
and ending of second lane tile

angle_be Relative angle between centerlines
T_sin Sine component of 2D transformation matrix

between beginning of first and beginning of second lane tile
pose

T_cos Cosine component of 2D transformation matrix between
beginning of first and beginning of second lane tile pose

T_x Longitudinal component of 2D transformation matrix be-
tween
beginning of first and beginning of second lane tile pose

T_y Lateral component of 2D transformation matrix between
beginning of first and beginning of second lane tile pose

stop_line 1, if agents have to pass a stop line to get from one lane tile
to the next, else 0

yield_sign 1, if agents have to pass a yield sign; 2, if agents have to
pass a stop sign to get from one lane tile to the next
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A.5 Input and Output Summary

Compact lists of variable names, their meaning and their shapes in Table A.5
for the inputs and in Table A.6 for the outputs are given below. A detailed
explanation is given throughout Chapter 4.

Table A.5: Summary of all input tensors used for inference.

Feature Meaning Shape

P Matrix of positions (optional, option 1) {0, 1}𝑛L×𝑛A

PCand Matrix of position candidates (optional, option 2) {0, 1}𝑛L×𝑛A

FA Matrix of agent features R𝑛A×𝑛F,A

𝑭AE Tensor of agent edge features R𝑛A×𝑛A×𝑛F,AE

FL Matrix of lane tile features R𝑛L×𝑛F,L

𝑭LE Tensor of lane tile connection features R𝑛L×𝑛L×𝑛F,LE

[t̃𝑎,𝑙] Agent-lane-tile 2D transf. info (optional, option 2) R𝑛A×𝑛L×4

A Matrix of consecutive lane tile connections {0, 1}𝑛L×𝑛L

R Matrix of right lane tile connections {0, 1}𝑛L×𝑛L

L Matrix of left lane tile connections {0, 1}𝑛L×𝑛L

𝚷 Matrix of overlapping lane tiles (crossing matrix) {0, 1}𝑛L×𝑛L

𝑛A Variable number of agents in the scene N

𝑛L Variable number of lane tiles in the scene N

Table A.6: Summary of all output tensors received after inference.

Feature Meaning Shape

𝑷Map Position prediction tensor without interaction [0, 1]𝑛T×𝑛L×𝑛A

𝑷Final Position prediction tensor with interaction [0, 1]𝑛T×𝑛L×𝑛A

𝚵 Joint position prediction tensor with interac-
tion

[0, 1]𝑛T×𝑛L×𝑛A×𝑛L×𝑛A
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A.6 Further Examples
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(a) 2.1 s: While the prediction of car #30 fits quite well...
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(b) 3.3 s: ...the prediction for car #31 does not fit for horizons larger than 3.3 s.
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(c) 4.5 s: However, the conditional prediction fits well for both cars and all prediction horizons.

Figure A.1: Conditional prediction, representative examples 4: rounD location1.
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11: 5.89
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(a) 2.1 s: Both the conditional prediction for car #10 and for car #9 fit well.
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(b) 3.3 s: Also, the prediction seems reasonable...
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(c) 4.5 s: ...over the whole prediction horizon.

Figure A.2: Conditional prediction, representative examples 5: rounD location2.
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(a) 2.1 s: Both prediction for car #40 and for car #39 seam reasonable.
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(b) 3.3 s: Note that this scenario is the only one with a U-turn, so the model overestimates the probability for
such a sharp curves.
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(c) 4.5 s: However, one might have expected at least a bit of prob. mass directly at the stop line.

Figure A.3: Conditional prediction, representative examples 5: rounD location2. A simple
example of to agents driving straight on. Since both agents drive independently, the conditional
predictions are not that expressive. Also note that the bright green agent on the opposite road has
already left the scene, so the conditional prediction for it was most likely normalized over very
small number, leading to a bad conditional prediction for it.
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