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Abstract: Vision-based identification of lane area and lane marking on the road is an indispensable
function for intelligent driving vehicles, especially for localization, mapping and planning tasks.
However, due to the increasing complexity of traffic scenes, such as occlusion and discontinuity, de-
tecting lanes and lane markings from an image captured by a monocular camera becomes persistently
challenging. The lanes and lane markings have a strong position correlation and are constrained by a
spatial geometry prior to the driving scene. Most existing studies only explore a single task, i.e., either
lane marking or lane detection, and do not consider the inherent connection or exploit the modeling
of this kind of relationship between both elements to improve the detection performance of both
tasks. In this paper, we establish a novel multi-task encoder–decoder framework for the simultaneous
detection of lanes and lane markings. This approach deploys a dual-branch architecture to extract
image information from different scales. By revealing the spatial constraints between lanes and lane
markings, we propose an interactive attention learning for their feature information, which involves
a Deformable Feature Fusion module for feature encoding, a Cross-Context module as information
decoder, a Cross-IoU loss and a Focal-style loss weighting for robust training. Without bells and
whistles, our method achieves state-of-the-art results on tasks of lane marking detection (with 32.53%
on IoU, 81.61% on accuracy) and lane segmentation (with 91.72% on mIoU) of the BDD100K dataset,
which showcases an improvement of 6.33% on IoU, 11.11% on accuracy in lane marking detection
and 0.22% on mIoU in lane detection compared to the previous methods.

Keywords: interactive attention learning; lane segmentation; lane marking detection

1. Introduction

Lanes and lane markings are essential road information for intelligent driving vehi-
cles. The lane marking detection aims to accurately locate road elements like lane lines,
crosswalks, and stop zones, while the lane detection focuses on segmenting lane-level areas
where vehicles can drive on the road. Due to the low cost and the high representability
of scene information, optical sensors and instruments, such as the on-board camera, are
widely adopted for road information perception. By applying lane and lane marking
detection approaches, visual features of road symbols, arrows, lane markings, pedestrian
crosswalks, and vehicle drivable areas, etc., are extracted from the image. These features
are indispensable for both high-level autonomous driving or for general ADAS-assisted
driving systems. They can be considered as elements in the high-definition map construc-
tion, or further converted into the information required by the planning and control system,
to assist the driving behavior of vehicles, especially in applications such as adaptive cruise
control (ACC), driving route navigation, lane keeping assistance (LKA), etc., thus ensuring
driving safety and reliability [1–3].

Generally, the detection of lanes and lane markings can be classified in two cate-
gories: the traditional paradigm [4,5], and the deep learning paradigm [6–8]. Traditional

Sensors 2023, 23, 6545. https://doi.org/10.3390/s23146545 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23146545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5085-7219
https://orcid.org/0000-0002-9828-5790
https://doi.org/10.3390/s23146545
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23146545?type=check_update&version=1


Sensors 2023, 23, 6545 2 of 17

methods rely on hand-crafted features and sophistically designed rules to manipulate the
information from color space or shape structure to detect lanes and lane markings. Due
to their poor feature representability, these methods are only limited scalable to varied
scenes. In recent years, the deep learning approaches in computer vision have achieved
remarkable progress, especially in object detection and semantic segmentation tasks. Since
the lanes and lane lines are normally made with inherent long and thin shapes and even
irregular ones, the difficulty lies in the exploration of effective representation learning of
their complex structures.

In current studies, the detection of lanes and lane markings are considered as two
individual tasks. The lane detection is typically interpreted as a pixel-wise semantic segmen-
tation problem while the lane marking can be predicted with various formulations such as
instance segmentation [9,10], point regression [11,12], curve parameter estimation [13–15],
etc. Although both tasks have witnessed persistent progress in recent years, especially on
public benchmarks [9,16,17], one fact that has been neglected is that the information of
lanes and lane markings on the road scene are complementary to each other. For instance,
on structured roads, the associated lane lines can be used to identify the lane boundaries
while in scenarios where lane lines or crosswalks are partially missing or broken (due to
occlusion), they can still be inferred by the width of the lane. Thus, the detection of lane and
lane marking are inherently correlated due to their spatial connectivity. In real driving sce-
narios, the detection robustness of a single task is poor, and it can be easily disturbed by the
disappearance of visual markings, e.g., due to occlusions. However, leveraging the spatial
connectivity between the lane and lane marking, the detection robustness can be improved
by modeling this internal connection, which has not been studied in existing methods.

Inspired by this fact, this work proposes a novel multi-task encoder–decoder architec-
ture for simultaneous detection of lane and lane marking based on the spatial relationship
between them. Specifically, this architecture interprets both tasks as semantic segmenta-
tion problems and adopts multi-scale inputs. In the encoding stage, it employs a feature
interactive attention structure, namely the Deformable Feature Fusion (DFF) module, to
calculate a relative offset between feature encodings of lane and lane marking, supporting
a deformable convolution operation for interaction. The decoding for lanes and lane mark-
ings is conducted separately, and a Cross-Context module is used to transfer the decoding
information between them. To further exploit their spatial relationship, we add a Cross
Intersection-over-Union (CIoU) loss at the output of the lane and lane marking decoders.
Thus, the interactive learning has been leveraged at the encoding stage, the decoding stage,
and the outputs. Furthermore, we deploy a Focal-style loss weighting to adaptively set
loss weights at different pixel locations to alleviate the data imbalance problem in lane
and lane marking segmentation. The whole framework is shown in Figure 1. By testing
on the BDD100K dataset, our method manifests a state-of-the-art performance on the lane
detection (with 32.53% lane IoU, 81.61% lane accuracy) and the drivable area segmentation
(with 91.72% drivable mIoU) tasks.

The main contributions of the proposed work are summarized as follows:

• We propose a novel multi-task encoder–decoder architecture. It is the first to intro-
duce the concept of interactive attention learning into the joint detection of lane and
lane marking.

• We propose the DFF module in calculating discriminative encoding features, and em-
ploy the Cross-Context module to transfer information between prediction heads, thus
shifting the focus of learning on the spatial correlation between lane and lane marking.

• We propose an enhanced loss function with a CIoU loss to emphasize the lane and lane
marking interaction and an adaptive pixel-level loss weighting to alleviate data imbalance.
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Figure 1. Overview of the proposed interactive attention learning model on detection of lanes and
lane markings. Our model is decomposed into two branches, each consisting of a backbone, a neck
and a prediction head with information interactively learned by the DFF, Cross-Context and CIoU
loss module.

2. Related Works

In this section, we give a brief review about related works in terms of the task setup
and architecture design of our work, i.e., the lane marking detection approaches, the lane
detection approaches, and multi-task approaches.

2.1. Lane Marking Detection

As aforementioned, traditional lane marking detection approaches generally rely
on sophisticated model design and hand-crafted features, involving color conversion [4],
combination of Kalman and particle filter [18], bar filter [19] and Hough transform [5].
These approaches directly output lane segments, which are further post-processed to
remove false positives and grouped to form the lane markings. Aly [20] proposed a
robust real-time lane marking detection method, which first generated a top view image
by projection transform and then extracted lane markings using a bar filter and a simple
Hough transform. Assidiq et al. [21] detected edges with the Canny operator and extracted
line features through the Hough transform. The lane marking was obtained by line fitting
to selected pixels. However, limited by the poor feature representation, traditional methods
show inrobustness in complex scenarios, such as with broken lane markings or occlusion
by vehicles and pedestrians.

In recent years, the deep learning technique has significantly boosted the lane mark-
ing detection performance. According to the modeling strategy, such approaches can be
classified into four categories: segmentation-based, anchor-based, row-wise detection, and
parametric prediction methods. The segmentation-based methods commonly adopt the
semantic segmentation or instance segmentation to make pixel-wise predictions [6,9,10].
Supervised by a sufficient amount of labeled data, these approaches show advantages in
detecting various kinds of lane markings. The aerial LaneNet [22] proposed a fully convolu-
tional neural network in a symmetrical structure, which is enhanced by wavelet transform
for lane marking segmentation in aerial imagery. Guan et al. [23] incorporated the attention
mechanism into FPN networks to extract better road marking segmentation results from
high resolution UAV images. The anchor-based methods leverage the anchor concept from
traditional object detection, but differ from them by taking into account the shape char-
acteristics of lane markings. For instance, the PointLaneNet [7] and CurveLane-NAS [24]
define anchors with vertical lines, while the Line-CNN [11] and LaneATT [12] adopt the
Line Proposal Unit, which resembles the Region Proposal network (RPN) of the Faster-
RCNN [25]. The row-wise detection approaches make full use of the prior shape of lane
markings as well as their spatial distribution characteristics. They divide the image into grids
and make row-wise predictions to locate the lane markings [26–28]. In contrast, the parametric
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prediction methods define lane markings (especially lane lines) as curve functions with a
set of parameters, such as polynomials [13,14], and Bézier curves [15]. Their interpretations
are significantly different from the above-mentioned methods and the corresponding curve
parameters are difficult to learn. In addition, to solve the problem of difficult scenes for
lane marking detection such as occlusion and low-visibility, Wang et al. [29] proposed a
dynamic data augmentation framework based on imitating real scenes.

2.2. Lane Detection

The task of lane detection is also known as the drivable area detection, which is mainly
classified as a segmentation task at present. As a result of the great successes of the deep
learning, many methods based on semantic segmentation and instance segmentation can
be transferred to the drivable area detection. The FCN [30] is the first work to introduce
the fully convolutional network to semantic segmentation, which makes CNN-based
methods widely applicable for lane detection. The UNet [31] further constructs an encoder–
decoder framework to extract lane semantic information from high-dimensional features.
The DeepLabV3 [32] combines the atrous convolutions [33] with different artous rates to
fuse the feature pyramid, namely ASPP, obtaining different receptive fields on feature
maps. The PSPNet [34] proposes the pyramid pooling module for feature extraction of
various scales, which enhances the accuracy of the model. It is also worth noting that both
DeepLabV3 and PSPNet leverage the fusion of multi-scale feature information to improve
the segmentation performance. He et al. [35] embedded the Swin transformer into the
classical network (UNet) to improve the semantic segmentation performance for remote
sensing images. Xie et al. [36] presented a segmentation method for RGB-D data and
adopted the motion detection to improve the inference accuracy. Meyer et al. [37] expanded
the Cityscapes dataset [38] by lane-level annotations and presented a novel lane detection
pipeline, which used the stereo system to convert the front-view segmentation results
into a form of 3D point cloud and projected it to the top-view. Sun et al. [39] proposed to
leverage crowd-sourced GPS data to extract roads from an aerial image, which achieved
improved road segmentation compared to previous works. Fontanelli et al. [40] performed
lane detection in the front-view image and projected it to the top-view for the construction
of the path, which is used to plan the future motion of the robot.

2.3. Multi-Task Approaches

Although previous studies have achieved excellent performance in a single detection
or segmentation task, the multi-task architecture to process perception information is more
friendly to practical applications. The goal of multi-task approaches is to establish a trade-
off between the detection performance and the computational complexity by utilizing the
shared feature information and model structure.

The MultiNet [41] first introduces a multi-task architecture into the autonomous driv-
ing perception task. The architecture adopts a shared backbone and three decoders to
perform tasks of road segmentation, vehicle detection, and scene classification simultane-
ously. The DLT-Net [42] inherits the encoder–decoder architecture with a shared backbone
and multi-task decoders. It transmits the information from the drivable area decoder,
namely the context tensor, to both the lane marking decoder and the traffic object de-
coder, thus sharing the decoder information to a certain extent. The RBNet [43] proposes a
multi-task neural network model for unified detection of road and road boundary, which
combined the input image, road and road boundary as three nodes into a Bayesian network.
Zhang et al. [44] considered the geometric constraint between the road and its boundaries
and constructed interlinked sub-networks for overall performance improvement of both
detection tasks. The RoadNet [45] develops a multi-task convolutional neural network to
simultaneously make predictions of road boundaries, surfaces, and centerline based on
the high-resolution images from remote sensing. The HYDRO-3D [46] incorporates object
detection features with historical object tracking information to improve the performance
of both tasks, which achieves robust object detection. Xia et al. [47] proposes a platform for
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automated driving system data acquisition and analysis, which presents a holistic pipeline
for data processing based on connected automated vehicles. However, the exploration
on the interaction between lane and lane marking information is still insufficient in the
above-mentioned studies.

3. Methodology

Here, we present the proposed lane and lane marking detection architecture in detail,
including a configured encoder, a DFF module, a decoder with a Cross-Context module,
and loss functions with adaptive weights. Our code is publicly available at https://github.
com/HerrYu123/IALaneNet, accessed on 1 December 2022.

3.1. Architecture Overview

The overall architecture as presented in Figure 1 is divided into two branches for
lane and lane marking detection, respectively. Both branches have a similar structure,
consisting of a scaled input image, a backbone, a contextual neck, and a decoder. The two
branches are connected by three interaction modules, i.e., the DFF module for the encoder,
the Cross-Context module for the decoder, and the Cross-IoU loss for the lane and lane
marking outputs.

We employ a modified variant of the ConvNeXt [48] as our backbone, which generates
lane and lane marking feature maps with an output stride of 8. The feature maps are
processed by the neck network, i.e., the REcurrent Feature-Shift Aggregator (RESA) [10],
which adopts 1 × 9 convolution kernels for the spatial feature aggregation in which the
sliced feature map is shifted in horizontal and vertical directions. The aggregated feature
maps from both branches are fused in the DFF module. The lane and lane marking
segmentation are predicted by their output heads. In an effort to refine the results, we
leverage a Cross-Context module, which consists of deformable convolutions to transfer
complementary information between two prediction heads. The Cross-IoU loss is further
used to enhance the interaction of segmentation results. Our entire network is end-to-end
differentiable and both tasks can be jointly learned.

3.2. Encoder
3.2.1. Input

As aforementioned, the multi-scale feature information plays an crucial role for the
segmentation task. Thus, the encoder of our network takes two scales of an image as inputs,
i.e., the 0.5× scale and 1× scale. Each branch is made up of a backbone network and a neck
network, where only the backbone network is weight-shared. This is different from other
popular multi-task methods [41,42,49], which only use one scale image and one shared
backbone. Considering that lane markings are relatively smaller than lane areas and thus
require representation with higher resolution, we empirically set the branch with a 0.5×
scale of input image for lane inference and the other for lane marking inference, which
enables the branches to extract features in appropriate scales for both tasks.

3.2.2. Backbone

The ConvNeXt [48] is used as the backbone of our architecture due to its outstanding
performance in object detection tasks. However, the 1/32 downsampling layer in the naive
ConvNeXt discards too much spatial information. As depicted in Figure 2, we simply
replace the ordinary convolution in the downsampling layer of the third stage with atrous
convolution and substitute the layers in the fourth stage for a dilated block to configure the
backbone with an output stride of 8, which enables the following modules to extract scene
features from a higher spatial resolution.

https://github.com/HerrYu123/IALaneNet
https://github.com/HerrYu123/IALaneNet
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Figure 2. The structure of the backbone, which is configured based on the first three stages of the
ConvNeXt [48] and one additional dilated block. Only the ConvNeXt-tiny is illustrated here.

3.2.3. Neck

The neck is used to extract contextual information from the feature maps, which are
generated by the backbone. Here, we simply adopt the REcurrent Feature-Shift Aggregator
modules for the neck network, as they are more efficient in gathering spatial information
horizontally and vertically compared to other mainstream methods.

3.3. Deformable Feature Fusion Module

Since the lane markings are typically in very thin and complex shapes, the learning of
their accurate localization becomes more challenging. To address the above problem, here
we propose the Deformable Feature Fusion Module, dubbed as DFF, illustrated in Figure 3.
Such a module fuses features from the lane branch to assist the spatial information learning
of lane markings, which is motivated by their strong spatial correlations. Specifically, the
0.5× scale lane feature map is fed into a 1 × 1 convolution operation and then recovered to
the normal scale by a 2× bilinear interpolation upsampling. It is further concatenated with
the 1× scale lane marking feature map. The interaction between the lane and lane marking
is interpreted in a deformable convolution form, where the concatenated feature map will
be leveraged to learn the offsets of the convolution. Thus, the spatial information from both
encoders can be interactively learned by this module.
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Figure 3. Architecture of the Deformable Feature Fusion Module.

To ensure the spatial information correctly embedded into the input feature map
of the DFF module, we simply add an auxiliary semantic segmentation branch to the
output of each neck during the training process. These auxiliary segmentation branches are
supervised by groundtruth labels of the lane and lane marking. This supervision can also
be considered as a generalized form of residual learning. By setting up such supervision
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for shallow layers, the model could learn the basic semantic features in advance while the
subsequent heads could focus on the learning of high-level information.

3.4. Decoder

As mentioned above, we cast the lane and lane marking detection as semantic segmen-
tation tasks performed in two separate heads. However, we empirically found that the lane
and lane marking have distinct characteristics. First, compared to the lane area, the slender
lane marking is much more complicated to segment and thus it requires a higher processing
complexity. Second, we noticed that the lane features are more suitable to decode from
the shallower layers of the model than the lane marking features. Hence, the setup of the
decoder is as follows.

3.4.1. Lane Marking Prediction Head

Taking into account the slender characteristic of the lane markings, we adopt the Bilat-
eral Up-Sampling Decoder (BUSD) [10] for decoding the lane marking features. The BUSD
is able to combine the coarse grained feature and fine detailed feature in upsampling stage,
which are extracted by direct bilinear interpolation and transpose convolution, respectively.

3.4.2. Lane Prediction Head

Since the semantic area of the lane is larger and easier to detect compared to that of
lane marking, we use a 1× 1 output convolution and three standard semantic upsample
modules, each consisting of a 3× 3 convolution, a batch norm, and a ReLU function.

3.4.3. Cross-Context Module

This Cross-Context mainly focuses on the pixel information located adjacent to the
lane and lane marking, which is motivated by the their tight spatial connectivity. Since no
attention is needed for the global features, we choose a convolution block to directly aggre-
gate the information of local pixels. Taking into account the shape characteristics of lane
and lane marking, the deformable CNNs [50] are leveraged in the Cross-Context module
to implicitly establish a feature mapping for transferring the complementary information
between two prediction heads, so that the decoding outputs can be reciprocally refined.

As illustrated in Figure 4, feature maps are first fed into the lane and lane marking
prediction heads. The predicted segmentation maps are processed by the Cross-Context
module and added to the input feature maps of each branch, respectively. The summed
feature maps then pass the lane and lane marking decoder for the second time to obtain
the final segmentation results. Thus, the Cross-Context module is able to draw the sup-
plementary information from one decoder to another. Specifically, one Cross-Context
module consists of three Cross-Context blocks for lane prediction head to lane marking
prediction head, and another three for lane marking prediction head to lane prediction head.
The Cross-Context block is made up of deformable convolution, batch normalization and
max pooling. The Cross-Context module is expected to enhance the detection performance
for both lane and lane marking with such a feature interaction of decoding information.
Since the forward computation is performed twice in the decoders, it can be considered as
a coarse-to-fine optimization.

3.5. Loss Function
3.5.1. Segmentation Dice Loss

As a general consensus, the Dice loss [51] comes from the Dice coefficient and is pro-
posed in the segmentation for alleviating the data imbalance problem by adjusting the train-
ing gradient distributions of positive and negative samples. Given semantic groundtruth
labels [y1

i , y2
i , . . . , yC

i ] of C classes and the predicted probabilities [p1
i , p2

i , . . . , pC
i ] for the i-th

pixel, the Dice loss can be formulated as

Li = 1− 1
C

C

∑
k=1

2 ∑N
i yk

i pk
i

∑N
i (yk

i + pk
i + ε)

, (1)
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where N represents the number of pixels, ε is a small positive number to avoid zero division,
and the numerical range is set as yk

i ∈ {0, 1} and pk
i ∈ [0, 1]. Here, the Dice loss is used for

the prediction heads of lane and lane marking segmentation branches.
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Figure 4. Architecture of the Cross-Context Module for decoding.

3.5.2. Focal-Style Loss Weighting

To further alleviate the data imbalance problem in both lane marking and lane seg-
mentation, with the inspiration of the focal loss [52], we propose a weighting process for
both the lane and lane marking segmentation loss. The intuition of this loss weighting is to
dynamically adjust weights for pixel-wise segmentation results so that hard pixels can be
emphasized by assigning them larger back-propagated gradients during training. Reusing
the semantic labels and predicted probabilities defined in Equation (1), the weight for the
i-th pixel is defined as

Wi = 1 +
α

C

C

∑
k=1

(yk
i (1− pk

i )
γ + (1− yk

i )(pk
i )

γ), (2)

where α and γ are hyperparameters.

3.5.3. Cross-IoU Loss

The Intersection over Union (IoU) [53] metric is commonly utilized to evaluate the
pixel-level prediction performance in terms of tasks of object detection and segmentation,
defined as

IoU =
TP

FP + TP + FN
, (3)

where TP, FP, and FN denote the true positive, the false positive, and the false negative
pixel counts, respectively. Considering the fact that the lane and lane marking are closely
connected but do not overlap with each other, we also employ the IoU loss to suppress
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the overlapping between them and thus obtain the Cross-IoU Loss, dubbed as CIoU and
computed by

LCIoU =
Rl ∩ R̂m

Rl ∪ R̂m

+
Rm ∩ R̂l

Rm ∪ R̂l
,

(4)

where Rl and Rm denote the pixel area of predicted lane and lane marking, respectively.
The superscript ˆ refers to the corresponding groundtruth.

3.5.4. Total Learning Loss

To train the proposed multi-task architecture, the total learning loss is defined as

Lt =wm

N

∑
i

Wi,mLi,m + wl

N

∑
i

Wi,l Li,l

+ wCIoU LCIoU + waux,l Laux,l + waux,mLaux,m,

(5)

where Laux,l and Laux,m denote the auxiliary losses (in the Cross Entropy form) for the lane
and lane marking segmentation branches, respectively. Li,l and Li,m denote the pixel-wise
Dice loss for the outputs of the lane and lane marking prediction heads, and Wi,l and Wi,m
are the proposed Focal-style loss weightings. Other trade-off factors wl , wm, wCIoU , waux,l
and waus,m are hyperparameters.

4. Experiments and Evaluation
4.1. Implementation Details
4.1.1. Datasets

To train and validate our proposed architecture, it requires annotations for both lane
markings and drivable lane areas in the same dataset. Among the public benchmarks, the
Berkeley DeepDrive (BDD100K) dataset [16] is the only one that can provide such kinds
of annotations, which are also with a high variety in traffic scenes including illumination
change and complex weathers. Thus, we choose it for our experiments as it supports the
multi-task learning of our approach. The BDD100K consists of 100 K images in a size of
1280 × 720 pixels, in which 70 K images are used as a training set, 10 K images are used as
a validation set, and 20 K images are used as a test set. Since the test labels are not publicly
accessible and the evaluation of lane and lane marking detection is also unavailable on the
server, we opt to evaluate the proposed method on the validation set.

4.1.2. Metric

As mentioned above, we define both lane and lane marking detection as semantic
segmentation tasks. Following the common protocol [38], we evaluate the accuracy of
segmented drivable area and background using the mean IoU (mIoU) metric for lane detec-
tion while the lane marking segmentation is only evaluated by the IoU metric, to exclude
the influence of background pixels, which occupy over 90% of the image. Specifically,
given the predicted mask Mp,i and the groundtruth mask Mg,i of image i, the true positives
count TP, true negative count TN, false negative count FN and false positive count FP are
computed as

TP = ∑
i
||Mp,i ·Mg,i||0, (6)

TN = ∑
i
||(1−Mp,i) · (1−Mg,i)||0, (7)

FN = ∑
i
||(1−Mp,i) ·Mg,i||0, (8)
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FP = ∑
i
||Mp,i · (1−Mg,i)||0. (9)

The IoU metric can thus be calculated by referring to Equation (3). Additionally, we
also evaluate the lane marking segmentation by the Pixel Accuracy (PA) metric, which can
be calculated as

PA =
TP + TN

TP + TN + FP + FN
. (10)

4.1.3. Training

For a fair comparison, the images of the BDD100K dataset are resized into a resolution
of 640 × 384 pixels as the input of our architecture, which is the same size as used in other
state-of-the-art approaches. In the experiment, the data augmentation tricks including the
random rotation, random cutout, photometric distortions, and random horizontal flip are
also adopted in the training. We use the Adam optimizer with a learning rate initialized to
2× 10−4 and a weight decay set to 1× 10−5. Other parameters follow the default settings.
For the total loss, we set the weights wl , wm, wiou, waux,l and waux,m to 1.0, 0.1, 0.1, 0.01 and
0.01, respectively. The hyperparameters of Focal-style loss weighting are empirically set
to α = 0.5 and γ = 1. The model is trained with a batch-size of 8 in 150 epochs. All the
experiments are carried out on a computer platform with a CPU of 2.5 GHz and a GPU
of NVIDIA RTX 3090. Furthermore, for comparison with state-of-the-art methods, the
ConvNeXt-Small [48] is chosen as our backbone.

Here, we evaluate our proposed architecture on the lane and lane marking detection
by comparing it with other state-of-the-art approaches. For evaluation on the lane marking
detection, we choose the ENet [54], SCNN [9], and ENet-SAD [6] as comparison sets. For
comparison on the lane segmentation, we choose the ERFNet [55], MultiNet [41], DLT-
Net [42], and PSPNet [34]. Additionally, we compare our architecture with the efficient
feature aggregator RESA [10] and recently proposed multi-task approach YOLOP [49] in
both evaluations (also visualized in Figure 5). Note that the RESA is originally designed for
lane marking segmentation while we add an additional output head so that it is capable to
segment the lane area.

4.2. Comparison with State-of-the-Arts
4.2.1. Lane Marking Detection

The lane marking labels in the BDD100K dataset are annotated with sets of points,
which is troublesome to directly use them. Thus, we follow the work [49] to substitute the
two-line annotation with one center line and dilate the line width in the training to 8 pixels
and keep it in the test as 2 pixels. The lane marking detection results are listed in Table 1.

Table 1. Comparison results on lane marking detection.

Network Accuracy (%) ↑ IoU (%) ↑ Speed (fps) ↑
ENet [54] 34.12 14.64 100
SCNN [9] 35.79 15.84 19.8

ENet-SAD [6] 36.56 16.02 50.6
RESA [10] 61.26 16.71 47.4

YOLOP [49] 70.50 26.20 41
Ours 81.61 32.53 26

As depicted in the table, our method outperforms ENet, SCNN, ENet-SAD, RESA,
YOLOP by 47.49%, 45.82%, 45.05%, 20.25%, 11.11% in terms of accuracy and 17.89%,
16.69%, 16.51%, 15.82%, 6.33% in terms of IoU. The ENet adopts an early downsampling
strategy for the encoding features to obtain a very fast processing of 100 frames per second
(fps), yet leading to decreased detection accuracy. Based the shape characteristics of lane
marking, the SCNN replaces the ordinary layer-by-layer convolutions with the slice-by-slice
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convolutions to pass information between rows and columns, resulting in a slow forward
computation. The ENet-SAD introduces the paradigm of knowledge distillation on the basis
of ENet, through which the intermediate encoding features are enhanced. However, limited
to the architecture of ENet, the accuracy of ENet-SAD is not much improved. The RESA
adopts an operation named Recurrent Feature-Shift to pass information between rows
and columns, which is more accurate and efficient compared to slice-by-slice convolutions
in SCNN. The YOLOP sets up multi-task prediction heads based on the pretraining of
YOLOv5, which achieves better detection accuracy and real-time performance. However,
it does not consider the geometric constraints between lane and lane markings and thus
its prediction is still less optimal. Examples of the lane marking detection are visualized
in Figure 5a. Note that we only visualize the results of those approaches whose codes
are publicly available. As shown in Figure 5b, the RESA achieves a poor performance in
the night driving scenario due to the limited visual information. Despite integrated with
multi-tasks, there are still many discontinuities in the lane marking detection results of
YOLOP, implying an insufficient learning about the interactive information between tasks.
In comparison, our method predicts the lane markings more accurately.

(a)

(b)

Figure 5. Visualized lane and lane marking detection by compared methods. “GT” is short for the
groundtruth. (a) Lane marking detection results; (b) lane detection results.
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4.2.2. Lane Detection

For utility and briefness, the lane segmentation labels {direct, alternative} in the
BDD100K dataset are merged into the label {lane}. Here, the lane area segmentation
task is simplified to distinguish between the lane areas and the background areas in the
image, resulting in two class labels. The lane detection results of compared approaches are
listed in Table 2. From the reported results, we can observe that our method outperforms
the ERFNet, MultiNet, DLT-Net, PSPNet, RESA and YOLOP by 23.02%, 20.12%, 19.62%,
2.12%, 2.42% and 0.22% in terms of mIoU. The ERFNet runs faster than the MultiNet,
DLT-Net and PSPNet due to its residual connections and factorized convolutions for
semantic segmentation. But it has only a simple encoder and a decoder, yielding an
ordinary detection performance. The MultiNet handles the tasks of vehicle detection,
scene classification, and lane detection at the same time and outperforms ERFNet by 2.9%.
The DLT-Net adopts context tensors to share the information between subtask decoders,
which results in an improved lane detection accuracy than MultiNet. The PSPNet consists of
one encoder, one decoder, and one Pyramid Pooling module which incorporates multi-scale
information and improves the lane detection performance. The RESA also achieves good
results on the lane detection task by aggregating spatial information of intermediate features.
Due to the advantages of the multi-task form and the pretrained backbone of YOLOv5,
the YOLOP surpasses previous methods on the lane detection task. Several lane detection
results are visualized in Figure 5a. Interestingly, although our method has a similar mIoU
to YOLOP in the lane detection task, the visualization shows that our proposed method
performs a more accurate and robust detection in several driving scenarios.

Table 2. Comparison results on lane detection.

Network mIoU (%) ↑ Speed (fps) ↑

ERFNet [55] 68.7 22.8
MultiNet [41] 71.6 8.6
DLT-Net [42] 72.1 9.3
PSPNet [34] 89.6 11.1
RESA [10] 89.3 47.4

YOLOP [49] 91.5 41
Ours 91.72 26

Moreover, the processing efficiency of our architecture is 26 fps, which is still appro-
priate for real-time applications.

4.3. Exploration on Interaction Learning Modules

Here, we explore the effectiveness of interaction-learning-related modules utilized in
our architecture such as the DFF module, the Cross-Context module and the Focal-style
loss weighting. For a qualitative impression, we also adopt the Grad-CAM [56] tool to
visualize features extracted from the intermediate layer of those modules.

4.3.1. DFF Module

In an effort to verify the DFF module, we choose the network layer before the DFF and
the intermediate convolution layer that generates the offsets for the deformable convolution
to output the Grad-CAM activation map. The visualized activation maps “before” and
“within” the DFF module are shown in Figure 6. Obviously, the model pays homogeneous
attention to each pixel in the image before applying the DFF module, while with the DFF
processing, the model focuses mainly on the features located on the lane markings. This
fact verifies the capability of the DFF module in guiding the model learning discriminative
features with the interaction information.
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Figure 6. Activation map visualization for the DFF module at the layer before (top) and at the
intermediate convolution layer within this module (bottom).

4.3.2. Cross-Context Module

For the lane and lane marking prediction heads, we select the input layer of decoder
and the output layer of Cross-Context module, respectively, to output the Grad-CAM
activation map, as visualized in Figure 7a–d. It is worth noting that Figure 7c just depicts
the feature map to be added to the input of lane marking prediction head while Figure 7d
shows the feature map added to the other one. Thus, it is obviously that the Cross-Context
Module can enhance the input features of both lane and lane marking prediction heads by
reciprocal information transferring.

(a) (b)

(c) (d)

Figure 7. Activation map visualization for the Cross-Context module: (a) at the input layer of the
lane marking prediction head; (b) at the input layer of the lane prediction head; (c) at the output layer
of the Cross-Context module, which is added to the lane marking prediction head; (d) at the output
layer of the Cross-Context module, which is added to the lane prediction head.

4.3.3. Focal-Style Loss Weighting

The weight map generated by the Focal-style loss weighting is shown in Figure 8.
From the visualization, we can confirm that the weight map sets larger weights on the lane
markings and lane boundaries. Under this circumstance, the model pays more attention
to the corresponding pixels during training, which helps the inference of lane and lane
markings and improves the detection accuracy, thus verifying the effectiveness of Focal-
style loss weighting.
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Figure 8. Visualization of the Focal-style loss weighting in heatmap for lane marking detection (top)
and lane area segmentation (bottom). The brighter the color of heat map is, the greater the loss
weight will be, and vice versa.

For the quantitative evaluation of all interaction learning modules, we provide an
ablation study. For the baseline, we design a model with a single-branch backbone (i.e., 1×
scale of input image), a single neck, and two separate task heads. For training efficiency, we
adopt the ResNet-18 as backbone. Subsequently, we gradually integrate the encoder with
multi-scale inputs, the DFF Module, the Cross-Context module in the decoder, the Cross-
IoU loss, and the Focal-style loss weighting into the baseline. We report the performance of
above integrated versions in Table 3. As can be seen, the detection accuracy of both lane and
lane marking gradually increases with more modules integrated. The performance gain
brought by the Cross-Context module, the CIoU loss and the Focal-style loss weighting are
relative large, which is over 4% on the lane marking IoU metric and over 2% on the lane
mIoU metric, further demonstrating the great advantages by interaction learning.

Table 3. Performance exploration of proposed modules on the BDD100K dataset. The baseline is the
model with a single-scale input encoder and two separate task decoders.

Baseline Multi-Scale DFF Cross-Context CIoU Focal-Style Lane Marking
IoU (%) ↑

Lane mIoU
(%) ↑

X 19.14 87.40
X X 21.49 (+2.35) 87.47 (+0.07)
X X X 21.83 (+2.69) 88.85 (+1.45)
X X X X 23.2 (+4.06) 89.47 (+2.07)
X X X X X 23.49 (+4.35) 89.54 (+2.14)
X X X X X X 23.96 (+4.82) 90.07 (+2.67)

4.4. Further Exploration on Architecture Design

In an effort to further explore the impact of different backbone paradigms on the
detection performance of our architecture, we select a group of backbone networks for
comparison. Concretely, we set up the ResNet18, ResNet34, ConvNeXt-tiny, and ConvNeXt-
small as the backbone and other modules remain unchanged. It is worth noting that
the 1/32 downsampling layers in the naive ResNet and ConvNeXt discard too much
information, which degrades the performance of following modules. Thus, for the ResNet,
we replace the ordinary convolution in the downsampling layer of the C4 and C5 stage
with the atrous convolution, which can expand the receptive field of the network while
maintaining a higher spatial resolution. The ConvNeXt can thus be configured referring
to Section 3.2.2. The results are listed in Table 4. As to be seen, since the ConvNeXt has a
well-designed architecture with more network parameters, its accuracy on both lane and
lane marking detection increases compared to the ResNet while the ResNet shows a lower
computation amount and a faster real-time performance due to its fewer parameters.
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Table 4. Comparison of model performance with different backbone paradigms on the
BDD100K dataset.

Backbone Lane Marking IoU (%) ↑ Lane mIoU (%) ↑ Params (M) ↓ FLOPs (G) ↓ Speed (fps) ↑
ResNet-18 30.39 90.54 17.05 89.83 58
ResNet-34 30.46 90.61 27.16 139.46 40

ConvNeXt-tiny 31.48 91.29 18.35 96.52 39
ConvNeXt-small 32.53 91.72 39.97 200.07 26

5. Conclusions

In this paper, we put forward a novel multi-task framework for vision-based lane
and lane marking detection on the road by introducing the interaction learning of their
tight spatial correlation, which is persistently neglected in existing researches. The efficient
learning of the interaction between the lane and lane marking information is achieved by
three novel modules, i.e., the Deformable Feature Fusion Module for feature encoding, the
Cross-Context Module for information decoding, the Cross-IoU loss and the Focal-style loss
weighting for robust training. The effectiveness of each module has been validated based
on throughout analysis of comprehensive experiments on the challenging BDD100K dataset.
Therefore, the neglected spatial correlation between lane and lane marking in previous
works has been proven essential to the improvement of detection robustness. Our proposed
architecture also surpasses state-of-the-art approaches on both lane and lane detection
tasks at a processing speed of 26 fps, which is promising for applications with real-time
requirements. In the future work, we will introduce the interactive attention learning
into the transformer architecture and further reduce the computation cost of attention
estimation. We will also extend our method to various weather conditions and validate
it with more new datasets, since the number of public datasets currently supporting both
lane and lane marking detection tasks is still limited. Moreover, we will investigate the
joint learning of both dynamic elements (e.g., vehicles, pedestrians) and static elements
(e.g., lanes, lane markings) to improve the detection accuracy.
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