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RKKY to Kondo crossover in helical edge of a topological insulator
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Two spatially separated magnetic impurities coupled to itinerant electrons give rise to a dynamically generated
exchange (RKKY) inter-impurity interaction that competes with the individual Kondo screening of the impuri-
ties. It has been recently shown by Yevtushenko and Yudson [Phys. Rev. Lett. 120, 147201 (2018)] that the
RKKY interaction and the RKKY vs Kondo competition become nontrivial on helical edges of two-dimensional
topological insulators where there is lock-in relation between the electron spin and its direction of motion. Kondo
screening always takes over and dominates at large inter-impurity distances and it can also dominate all the way
to short distances if the Kondo coupling is sufficiently large and anisotropic. In the present paper, we study the
Kondo-RKKY competition in detail on a qualitative and quantitative level. For this we employ the numerically
exact numerical renormalization group (NRG) for a broad parameter scan of two Kondo coupled impurities vs
magnetic anisotropy, impurity distance, and temperature, and comment on the role of finite bandwidth. We give
a pedagogical introduction on the the setup of the two-impurity setting within the NRG in the helical context.
Overall we establish a plain crossover from RKKY to Kondo with increasing impurity distance, which permits
an intuitive physical picture by simply comparing length scales set by the Kondo screening cloud vs the thermal
length scale vs the impurity distance.

DOI: 10.1103/PhysRevResearch.5.033016

I. INTRODUCTION

The Physics of magnetic impurities (MIs) coupled to
helical electrons on one-dimensional (1D) edges [1] of
two-dimensional (2D) time-reversal invariant topological in-
sulators (TIs) attracted the attention of researchers soon after
the experimental discovery of the TIs [2–5]. This interest
resulted from a search of possible backscattering mechanisms,
which could make the virtually protected helical conductance
sub-ballistic in relatively long samples [6–9]. Since the helical
electrons possess a lock-in relation between the spin projec-
tion on the quantization axis and the direction of propagation
(the so-called chirality), their backscattering is expected to
involve some nontrivial spin processes, e.g., the spin flip.
The MI can provide such an inelastic backscattering of the
individual helical electrons. However, the helical conductance
can be suppressed only if the spin conservation on the edge
is violated, see papers [10,11] and references therein. If the
edge is spin-conserving and the MI does not break the spin
U(1) symmetry, it backscatters the helical electrons but cannot
influence the dc conductance [12]. The anisotropic MI is able
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to suppress the helical conductance only if it breaks the spin
conservation and is not Kondo screened [13–15]. The latter
requires either the temperature being larger than the Kondo
temperature, T > TK, or a large value of the MI spin, S > 1/2.
This points out the importance of understanding the Kondo
effect in TIs, which is substantially different from that in usual
(non helical) 1D wires in the presence of the electron-electron
interaction or the magnetic anisotropy of the XXZ type [16].
Here as well as throughout this paper, TK ≡ T (1)

K represents
the Kondo scale of a single, possibly anisotropic spin-half
impurity coupled to a helical edge [16]. Its value is identical
to the plain non helical Kondo model given that that helicity
in the non interacting bath is irrelevant from the point of view
of a single impurity.

The Kondo effect can be suppressed by the indirect ex-
change MI interaction, the Ruderman–Kittel–Kasuya–Yosida
(RKKY) interaction [17], if the helical edge is coupled to a
dense array of the MIs. According to the simple picture of the
Doniach criterion [18], the “winner of the RKKY-Kondo com-
petition” can be found by comparing TK with the characteristic
RKKY energy scale ER. The latter means the energy gap,
which opens after the RKKY correlations lift a degeneracy
in the energy of the uncorrelated MIs. If T → 0 but ER �
TK, the RKKY correlations overwhelm the Kondo screen-
ing, which may lead to many nontrivial effects, including
Anderson localization of the helical electrons caused by the
random magnetic anisotropy [19,20], and magnetically cor-
related phases [21–24]. The RKKY-induced magnetic order
in helical 1D systems is nontrivial and qualitatively different
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from that in their non helical counterparts, cf. Refs. [25,26]
and references therein.

Since TK does not depend on the MI density while ER

typically decays with increasing inter-impurity distance x [cf.
Eq. (20)] one can surmise that there is a characteristic dis-
tance defined by the equality TK � ER(xc), which separates
the RKKY- and Kondo-dominated phases, x < xc and x >

xc, respectively. This conclusion is inspired by a misleading
analogy with the physics of non helical wires [27–31]. One
of us (in collaboration with V. I. Yudson [1]) has recently
considered two MIs coupled to the helical edge and shown
that, if either the electron-electron interaction or the magnetic
XXY anisotropy or both are strong, xc shrinks and the Kondo
effect overwhelms the RKKY interaction over all macro-
scopic inter-impurity distances. This unexpected conclusion
has been drawn based on phenomenological arguments and
on the analytical consideration of limiting cases. This the-
ory reveals many quantitative features but is far from being
complete. In particular, it cannot predict whether the above
mentioned phases with finite and vanishing xc are separated
by a crossover or by a phase transition and whether the MIs
remain somehow correlated even in the Kondo-dominated
phase.

In the present paper, we expand and complete the theory of
Ref. [1]. We present an analytical theory of the RKKY cor-
relation between the two MIs coupled to the helical electrons
but, as the main working tool, we have chosen the numerical
renormalization group (NRG; [32–34]). This powerful and
well-established method has allowed us to answer the afore-
mentioned open questions. In particular we will show that (1)
the different phases are separated by the crossover, and (2)
the MIs are uncorrelated, i.e., independently screened, in the
Kondo dominated phase.

The paper is organized as follows: We introduce the model
in Sec. II, followed by analytical considerations in Sec. III.
The remainder of the paper then is dedicated to a detailed
analysis and discussion of the model based on the NRG in
Sec. IV, concluded by summary and outlook. In Appendix A,
we give a detailed pedagogical derivation of how the helical
two-impurity system is setup and mapped into the standard
NRG machinery. In particular, this highlights the possibility
to map the system onto a Wilson ladder, with complex coeffi-
cients only within the coupling to the impurity. Furthermore,
we included in the Appendix a brief reminder on the poor-
man’s scaling of the anisotropic Kondo model, as well as a
plain second-order perturbative derivation of the RKKY ef-
fective Hamiltonian and RKKY energy that is complementary
to Sec. III.

II. THE MODEL

A. Hamiltonian of the helical edge

We study spins coupled to a helical edge mode in a 2D
topological insulator. This may be approached in various
ways. The edge mode can be simulated (i) by fully modeling
an underlying 2D lattice model in real space, such as the
Kane-Mele model with the Dresselhaus spin-orbit interaction
[35]. This naturally introduces a cutoff in terms of bandwidth
of the helical edge mode, which is located inside the gap of

FIG. 1. Helical edge mode of the one-dimensional edge in a 2D
topological insulator, e.g., as it occurs in the Kane-Mele model [35].
Focusing on low energies, the dispersion vs momentum k is given by
εkσ = σvk with spin σ ∈ {↑,↓} ≡ {+1, −1} indicated by the blue
(red) line, respectively, where v denotes Fermi velocity. We assume
a finite half-bandwidth D, throughout. This gives rise to an effective
Brillouin zone with a discrete lattice spacing a = πv/D [cf. Eq. (2)].

the continuum of extended bulk states. Together with interact-
ing correlated impurities, this may be simulated numerically,
for example, using the density matrix renormalization group
(DMRG, [36,37]). There the non interacting 2D lattice with-
out the impurities can be conveniently mapped to an effective
1D impurity setting via Lanczos tridiagonalization [38]. How-
ever, this approach bears significant overhead in terms of
the precise choice of the underlying 2D lattice model and
its parameters, the details of which are considered irrelevant
for the low-energy physics. Conversely, (ii) the model can be
considerably simplified by focusing on a single pure effective
1D helical edge described in energy-momentum space at low
energies as depicted in Fig. 1 and described by Eq. (1) be-
low. The latter representation of the ballistic non interacting
edge modes may be (iii) exactly transformed into a 1D real-
space lattice realization, which, however, involves long-range
hoppings [cf. Appendix A 2 and in particular Eq. (A12) for
more on this]. Working in energy-momentum space, instead,
is appealing from an analytical point of view [1], but is
also perfectly well suited for the numerical treatment via the
NRG. With the additional goal to scan many orders of energy
scales with Kondo physics in mind, the energy-momentum
representation is preferred over real-space lattice descriptions.
Therefore we follow approach (ii) throughout this paper.

The standard model Hamiltonian for a single helical edge
mode can be written in discrete form in momentum space as
follows [cf. Fig. 1]:

Ĥ0 =
∑
kσ

σ vk︸︷︷︸
≡εkσ

· ĉ†
kσ

ĉkσ
≡

∑
k

vk · ĉ†
kτzĉk , (1)

where ĉkσ are the annihilation operators of the helical
fermions with spin σ ∈ {↑,↓} ≡ {+1,−1}, and τα with α ∈
x, y, z the Pauli matrices. The fermions are described by a
linearized dispersion relation with the Fermi velocity v. Below
we consider a finite half-bandwidth D (UV cutoff) such that
εkσ ∈ [−D, D]. This is required in the numerical context yet
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and also for the sake of regularization. We assume that the TI
edge is oriented along the x axis, with xy being the TI plane,
and the z direction is the quantization axis for the spins of
the helical edge modes. This convention corresponds to the
experimentally relevant situation where the quantization axis
is often fixed being perpendicular to the TI plane [6–9].

The helical system in Eq. (1) respects time-reversal sym-
metry (TRS), in that εkσ = ε−k,−σ . The crossing of the spin
selective dispersions, i.e., the Dirac point in Fig. 1 is chosen
for simplicity at k0 = 0 without restricting the case. The pre-
cise choice of k0 is irrelevant for our purposes, as it can be
absorbed into the definition of the basis states, and hence can
be gauged away [39].

By assuming a finite half-bandwidth D and having transla-
tional invariance by working in momentum space, this directly
implies an effective Brillouin zone (BZ) with momentum
range |k| � kmax, see Fig. 1, with a discontinuous dispersion
across the BZ boundary. Conversely, this defines an effective
lattice constant, a = π/kmax, via the one-particle dispersion,
having |ε( π

a )| = D, i.e.,

a ≡ πv

D
. (2)

Below, we use the local density of states ρ0 = aρ1D as ex-
perienced by an impurity where ρ1D = 1/2πv is the constant
one-particle density of states of a 1D system with linear dis-
persion relation [40] (thus units are [ρ0] = 1/energy, whereas
[ρ1D] = 1/(energy × distance)). Using Eq. (2), the local den-
sity of states becomes ρ0 = 1

2D , which is consistent with
standard NRG conventions. For more on the effects of finite
bandwidth and an effective 1D lattice defined by Eq. (2), see
Appendix A 2 [cf. Eq. (A11)].

In numerical simulations, furthermore, adhering to stan-
dard NRG conventions, we choose the unit of energy D := 1.
By also setting the unit of distance a := 1, this fixes the
velocity to v = 1/π . We also set h̄ = kB = 1.

The last expression in Eq. (1) provides a more compact
notation using the spinor ĉk ≡ (ĉk↑; ĉk↓), where the semicolon
denotes a column vector. This explicitly shows that the SU(2)
spin symmetry is broken in the helical setting. It reduces to
the Abelian U(1) symmetry with preserved component of the
total spin Stot

z (this is in contrast to a chiral system where
both spins move in the same direction [40,41], which thus pre-
serves SU(2) spin symmetry). In the helical case, we thus only
explore the combination of Abelian symmetries U(1)charge⊗
U(1)spin (see Appendix A 5 for further comments on symme-
tries).

The Hamiltonian (1) can be written in real-space in the
standard continuous form

Ĥ0 = −iv
∫

dx �̂†(x)τz∂x�̂(x), (3)

where �̂ ≡ (�̂R; �̂L ) is the spinor constructed from the slow
helical fields of the right and left moving electrons �̂R,L. For
the free electrons in the helical edge mode, i.e., the bath to
which the spin impurities are coupled, spins up and down
and, respectively, chirality (the direction of propagation) of
the right/left movers can be denoted in more general fashion
by the index

σ ∈ {↑,↓} ≡ {R, L} ≡ {+1,−1}; (4)

in particular, �̂R,L ≡ �̂↑,↓. When used as variable in equa-
tions below, the particular meaning of this index is always
clear in context. The Hamiltonian Eq. (3) may be defined on a
finite-length system with periodic boundary conditions (BCs)
and hence discrete momenta, or in the thermodynamic limit
with a continuous energy-momentum space. It represents the
simplest effective model that describes a single helical edge,
for example, in HgTe/CdTe quantum-well heterostructures
that possess axial and inversion symmetry around the growth
axis.

B. Coupling between the helical fermions and MIs

Let us introduce two MI spins Ŝα
η separated at distance x

and located symmetrically around the origin at positions xη =
ηx
2 with

η ∈ {R,L} ≡ {+1,−1} (5)

for left and right impurity, respectively [to be differentiated
from right/left movers denoted by σ ∈ {R, L} in Eq. (4)]. By
working in energy-momentum space, the bath operators at the
location of the impurity are obtained via Fourier transform
[e.g., cf. Appendix A]. With this, one can focus both, analyt-
ically and numerically, on the two impurities being located
along a single edge without having to worry about periodic
boundary conditions. This is possible, when the actual (2D)
sample is always considered much larger than the impurity
distance x. Thus without restricting the case, one is free to
think of the two impurities as being symmetrically located at
±x/2 along a straight edge around some arbitrary but fixed
origin.

The exchange interaction between the helical electrons and
these two MIs is described by the Hamiltonian

Ĥint = 2πv
∑

η=R,L

[
j0(Ŝ+

η σ̂−
η + H.c.) + jzŜ

z
ησ̂

z
η

]
. (6)

Here j0 ≡ ρ0J and jz ≡ ρ0Jz are the constant dimensionless
exchange couplings, such that, for example, 2πv j0 = aJ with
J the coupling strength of the impurity in units of energy and
[aσ̂ α

η ] = 1 dimensionless as typically used within the NRG,
having

σ̂−
η ≡ [�̂† τ− �̂](xη ) = �

†
↓(xη )�↑(xη ),

σ̂ z
η ≡ [�̂† τ z �̂](xη ) = [�†

↑�↑ − �
†
↓�↓](xη ), (7)

S±
η = Sx

η ± Sy
η,

with τ± ≡ 1
2 (τ x ± iτ y). The exchange interaction (6) may be

anisotropic, having J 
= Jz, while it always conserves the z
projection of the total (electron and MIs) spin.

In the next section, we adhere to the standard notations of
the literature devoted to the analytical study of Kondo impu-
rities coupled to helical electrons, where the Kondo coupling
is measured in units of the Fermi velocity, J̃ = (2πv) j, and
similarly for J̃z.

III. ANALYTICAL THEORY OF THE RKKY REGIME

Let us briefly review the RKKY theory for the helical
edge mode coupled to two MIs [1] using field theoretical
machinery.
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A. Non Interacting fermions

To describe degrees of freedom of the MIs, one should ap-
proximately integrate out the helical fermionic edge modes. A
natural way to do this is to exploit the formalism of functional
integrals. As a result, one arrives at an effective action for the
impurity spins,

e−δSimp = 1

Z0

∫
D[�] e−[S0+Sint ]. (8)

Here S0 and Sint are the action of the free electron system,
i.e., the bath, and of the electron-impurity interaction (6),
respectively; Z0 is the statistical sum of the electron sys-
tem without spin impurities. The functional integration is
performed over fermionic (Grassmann) variables. The spin
degrees of freedom in the action are described by one of the
known approaches (e.g., coherent spin representation or a set
of Majorana Grassmann variables, etc., see [42]). A particular
choice of the spin variable is not important for our current
purposes.

Let us start from the simplest case of the non interacting
fermions. The electron action S0 in the Matsubara representa-
tion reads

S0
(3)=

∫ β

0
dτ

∫
dx �̂†(τ, x) (∂τ − iτ zv∂x )︸ ︷︷ ︸

≡−Ĝ−1
0

�̂(τ, x) (9)

where

Ĝ−1
0 =

(
G−1

0R 0

0 G−1
0L

)
; G−1

0σ (τ, x) ≡ −∂τ + iσv∂x,

with σ = ±1 as in Eq. (4). The Matsubara Green’s func-
tions of the helical electrons in the momentum-frequency and
space-frequency representation are given by

G0σ (ωn, k) = 1

iωn − σvk
, (10)

G0σ (ωn, x) = −iσ
sgn(x)θ (σxωn)

v
e− |xωn |

v . (11)

The combined action reads

S0 + Sint =
∫ β

0
dτ

∫
dx �̂†

[ − Ĝ−1
0 + V̂

]
�̂, (12)

where

V̂ (x) =
∑

η

δ(x − xη )

(
J̃zSz

η J̃S−
η

J̃S+
η −J̃zSz

η

)
(13)

Calculating the Gaussian integral over the Grassmann vari-
ables, we obtain the contribution to the spin action,

e−δSimp = 1

Z0
det

( − Ĝ−1
0 + V̂

) = det(Î − Ĝ0V̂ )

= eTr ln(Î−Ĝ0V̂ ). (14)

This expression is formally exact and, being properly regular-
ized, describes all effects of the electron coupling to the spin
impurities. Following the standard RKKY scheme, let us now
focus on the weak-coupling regime by restricting ourselves to

terms up to second order in J in the action. This yields

δSimp = J2
∫ β

0
dτ1

∫ β

0
dτ2[S+

1 (τ1) G0R(X1;X2)

× S−
2 (τ2) G0L(X2;X1)

+ S−
1 (τ1) G0L(X1;X2) S+

2 (τ2) G0R(X2;X1)] (15)

where X j ≡ (τ j, x j ). As argued below, other second-order
combinations do not contribute. After Fourier transform to the
Matsubara frequencies, the first term in (15) takes the form

J̃2T
∑

n

S+
1 (�n) S−

2 (−�n)F (�n), (16a)

F (�n) = T
∑

m

G0R(−x, ωm) G0L(x, ωm+�n), (16b)

with x ≡ x2 − x1 > 0 being the inter-impurity distance. The
most interesting is the low-temperature regime, x � LT ≡
v/T , where the summation over frequencies in (18) can be
replaced by the integration over dω

2πT , resulting in

F (�n) = − 1

4πvx
e−|�n| x

v . (16c)

Expressions similar to Eqs. (16) are governed also by the
second term in (15). Combining all terms together, we obtain

δSimp = − J̃2T

4πvx

∑
�n

e−|�n| x
v [ S+

1 (�n)S−
2 (−�n)

+ S−
1 (�n)S+

2 (−�n)]. (17)

We are interested in slow motion of the MI spins with char-
acteristic frequencies being much smaller than the inverse
time-of-flight of the electron between the MIs, |�n| x

v
� 1.

In this case, e− x|�n |
v � 1 and, returning back to the imaginary

time, we arrive at the expression

δSimp = − J̃2

4πvx

∫ β

0
dτ HR(τ ), (18)

HR(τ ) ≡ S+
1 (τ )S−

2 (τ ) + S−
1 (τ )S+

2 (τ ). (19)

This is the action of a system described by an effective RKKY-
like Hamiltonian of the MI spins,

HR = −ER(S+
1 S−

2 + S−
1 S+

2 ) (20a)

with the RKKY energy scale

ER ≡ J̃2

4πvx
= πv j2

0

x
(2)≡ j2

0

x/a
D � 0. (20b)

This anisotropic spin coupling is ferromagnetic for all dis-
tances. Note that the RKKY coupling in a normal metal also
starts out with a ferromagnetic sign at short distances [43].
The first two expressions in Eq. (20b) are valid in the wide-
band limit. In the presence of a finite but large bandwidth, this
RKKY scale can also be rewritten as in the last expression
where the RKKY coupling in units of the bandwidth (D) is
simply given by the dimensionless j2

0 [Eq. (6)] divided by
the distance of the impurities in units of the lattice spacing
[Eq. (2)]. The wide-band limit in the analytical approach
therefore implies two assumptions: based on the second-order
approach used to derive Eq. (20b), this implies (i) j0 ≡ ρ0J �
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FIG. 2. Eigenstates and eigenlevels of the RKKY Hamiltonian
(20). Red lines and arrows show various decay channels of the singlet
state (dashed lines) and up/down states (solid lines). These include
spin flips (outer paths) or phase flip (center path), as probed by the
transverse 〈S+

L‖S−
R〉ω etc., and the longitudinal 〈Sz

L‖Sz
R〉ω dynami-

cal spin correlation function, respectively, and reflect backward and
forward scattering in the helical context.

1, i.e., J � D. Yet via Eq. (2) [see also Eq. (D7)], the wide-
band limit also implies (ii) x � a.

The ground state of this MI spin Hamiltonian is the triplet
state with Sz=0 (cf. Fig. 2),

|t〉 = 1√
2

(|↑↓〉 + |↓↑〉)imp. (Et = −ER) (21)

Hence despite the ferromagnetic coupling in Eq. (20a), the
spins are antialigned. Yet by not being in a singlet state, they
are still also exposed to Kondo screening.

The forward-scattering (∼Jz) parts of the electron–MI cou-
pling do not give a contribution ∼Sz

1Sz
2 to the second-order ef-

fective spin action. This is because the contribution of the Sz
1Sz

2
term to Eqs. (15)–(16b) contains the product of two Green’s
functions of the same chirality, Gσ (x, iωn)Gσ (−x, iωn), which
vanishes in Eq. (16b) due to Eq. (11). Cross scattering of
the type SzS± is also absent in the effective second-order
spin action in Eq. (18) because, in equilibrium, the elec-
trons of different chiralities are not correlated. Namely, the
averaging of the corresponding combinations of fermion op-
erators contain three operators of the same chirality, e.g.,
〈�†

R(X1)�L(X1)�†
R(X2)�R(X2)〉, which vanishes due to the

property 〈�L(X1)�†
R(X2)〉 = 0.

In addition to the ground state |t〉, the effective spin Hamil-
tonian (20) possesses three other eigenstates with higher
energies (cf. Fig. 2): the remaining triplet states denoted as
the degenerate doublet (“up” and “down”) states,

|u〉 = |↑↑〉, |d〉 = |↓↓〉 (Eu/d = 0) (22)

and the singlet state,

|s〉 = 1√
2

(|↑↓〉 − |↓↑〉). (Es = ER) (23)

The excitation energies of the doublet and the singlet relative
to the ground state are ER and 2ER, respectively (cf. Fig. 2).

There is an important physical difference between the
ground and all excited states of the effective spin Hamilto-
nian. The first one is stable and corresponds to the ground

state of the total many-particle (electrons + spins) system
projected onto the spin sector. To be specific, in the wide-band
limit D → ∞ (i.e., j0 → 0) and zero temperature, the pair
of impurities live in an exact noncorrelated product ground
state with the helical edge channel, i.e., |g〉 ≡ |t〉 ⊗ |0〉edge. In
contrast, the excited states of the spins remain connected to
the many-electron “reservoir” and as such cannot be simply
written like product states for true eigenstates of the entire
system. Instead, they represent resonant states, in the sense
that they give rise to (narrow) resonances in the dynamical
spin response functions.

By using Fermi’s golden rule, one can estimate decay rates
of the excited spin states. The decay rate of the states |u〉 and
|d〉 is ∝ J̃2

0 ER while the state |s〉 has the parametrically smaller
decay rate J̃2

z J̃4
0 ER (see [44] for more details).

B. Taking into account non perturbative effects of electron
interactions or finite Jz

Non Perturbative effects of the electron interactions and
of a finite Jz on the indirect exchange interaction of two
MIs attached to the helical edge can be described by using
the bosonized theory. The standard free (without impurities)
action reads as

Sb = 1

2πKu

∫
dτ dx

(
∂2
τ φ + u2∂2

x φ
)
. (24)

The single bosonic field φ describes both the spin and chiral
degrees of freedom [16,21]. K and u are the Luttinger pa-
rameter and speed of the helical plasmons, respectively. K
incorporates effects of the electron interaction. The boson-
spin exchange interaction is described by actions

Sfs = i
J̃z

πuK

∫
dτ dx

∑
j=1,2

δ(x − x j ) Sz
j ∂τφ ; (25)

Sbs = J̃

2πξ

∫
dτ dx

∑
j=1,2

δ(x − x j )

× [S+
j e−2iφ + c.c.]. (26)

Here, subscripts fs and bs stand for forward-/backward scat-
tering, and ξ is the lattice constant, which is usually needed to
make the bosonized theory regular.

By using the Emery-Kivelson gauge transformation [45],
one can completely reduce the effect of Jz to changing the
dimension of the backscattering, which can be described by
the effective dependence of K on Jz,

Keff = K

(
1 − ρ1DJ̃z

2K

)2

. (27)

Below, we assume that J̃z is included in K .
The bosonic theory is not quadratic and a functional inte-

gral over the bosonic fields∫
D{φ}e−(Sb+Sbs ) (28)

cannot be calculated exactly, even formally. However, the
effective action of the indirect spin interaction can be obtained
for small J by calculating the integral over φ as the first
cumulant. This is similar to the renormalization group (RG)
treatment of the sine-Gordon theory [40]: one Taylor expands
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the exponential in Eq. (28) in Sbs up to the second order,
calculates the integral over φ and re-exponentiates the answer:∫

D{φ}e−(Sb+Sbs ) � 1 + 1

2
〈SbsSbs〉Sb

� exp

(
1

2
〈SbsSbs〉Sb

)
(29)

where 〈A〉Sb ≡ ∫
D{φ} Ae−Sb . Using the well-known expres-

sion for the bosonic correlation function

�(τ ) =
(

πξ

βu

)2K
1(

sin2(πτT )+sinh2
(

R
LT

))K ,

β ≡ 1

T
, LT = βu

π
;

we arrive at the perturbative (in J) expression for the effective
spin action

S = − J̃2

(2πξ )2

∑
j, j′

∫
dτ1,2 S+

j (τ1)�(τ1 − τ2)S−
j′ (τ2). (30)

This theory is non local in time and, thus, takes into account
retardation effects, which are beyond the Hamiltonian formu-
lation of the RKKY theory. The action can be reduced to a
local one if ξ � |x1 − x2| � LT and 1/2 < K � 1. In this
case, Eq. (30) reduces to

SR = −ER

∫
dτHR(τ ), (31)

ER ≡ 2J̃2

(2πξ )2

∫
dτ�(τ ). (32)

These expressions were analyzed in Ref. [1]. They coincide
with answers derived in the previous section for the non inter-
acting case, K = 1.

The application of the bosonized theory has several advan-
tages. Firstly, it takes into account non perturbative effects of
the electron interaction and of Jz. Besides, it is straightforward
to go beyond the quadratic approximation in J and derive
renormalization of this Kondo coupling constant [16,21].

IV. NRG ANALYSIS OF THE 2HKM

We proceed by presenting the NRG results for the 2HKM
in this section, before we explain in detail how we setup the
two-impurity helical setup within the NRG framework in the
subsequent Appendix A. An exhaustive NRG parameter scan
for the 2HKM at J = 0.1 is shown in Fig. 3. All panels have
the anisotropy parameter Jz/J on their vertical axis whereas
the horizontal axis shows energy in various forms: tempera-
ture [first column, i.e., Figs. 3(:,1)], NRG energy scale [second
column Figs. 3(:,2)], or frequency [remainder of columns,
Figs. 3(:,3–5)]. Throughout, energy is decreasing towards the
right, as motivated by the NRG approach (second column),
where large energy scales come first, followed by a zoom into
exponentially small energy scales towards the right. Each row
labeled by a letter shows data for a fixed impurity distance x
as indicated in the left panel. This distance is always chosen
integer, i.e., on the grid (A11), and increases exponentially
towards lower panels, with the value specified in the left
panels.

The inverse time to travel in between the impurities natu-
rally gives rise to its own energy scale

Ex ≡ v

x
, (33)

which may be interpreted as the “Thouless energy” of a quan-
tum dot confined by the magnetic impurities. This energy
scale in itself is independent of any impurity properties other
than their distance [see also Eq. (A9)]. Now, since the impu-
rity distance explicitly enters the construction of the Wilson
ladder (A34), there is always a clear qualitative change in the
NRG finite size spectra (also known as energy flow diagram)
at the energy scale Ex, as visualized in a condensed graphic
way in Fig. 3(:,2), i.e., the second column. There one observes
a distinct change (whitish to gray transition) right at Ex (verti-
cal dotted line). This “curtain” is opened, i.e., moves towards
the right as the impurity distance is increased from the top
to the bottom panels. As such this “unveils” the underlying
Kondo physics. At largest distance shown in the bottom row of
panels, Fig. 3(h,:), ER has already dropped below the smallest
TK reached at Jz = 0 [brown marker at TK(J, 0) � 4×10−8].
Hence in this case the impurities are fully Kondo screened
individually, and RKKY physics plays no role any longer, and
hence is absent for all Jz � 0.

At larger energies above the coherence scale, E � Ex, i.e.,
to the left of the vertical dotted black line, the system is
described by effectively independent impurities. Since infor-
mation cannot travel faster than v between the impurities,
the impurities do not yet “see” each other at energy scales
E > Ex. In this sense, the finite size spectra in the NRG look
identical in Fig. 3(:,2) for large energies E � Ex, i.e., to the
left of vertical dotted line across all panels in Figs. 3(:,2).

For low energies, Fig. 3 shows that the smallest energy
scale from the point of the impurity is max(ER, TK ). Therefore
ER serves as a low-energy cutoff. For example, the energy
flow diagram is converged below ER [uniform gray area to the
right of ER (blue vertical marker) in Figs. 3(:,2)]. On explicit
physical grounds this is replicated in terms of static inter-
impurity correlations for T < Ex in Figs. 3(:,1), or by having
no particular structure in the spectral density for |ω| < ER

in the right panels. For this reason the brown line, which
depicts the Kondo scale, is only shown above ER and hence
terminated at the blue vertical marker line. For Jz above this
crossing point, Kondo screening sets in and eventually fully
dominates. This is seen in the brightening of the dark red
inter-impurity spin correlations in Fig. 3(:,1) towards white
(no correlations) when increasing Jz (vertical direction).

The bare RKKY regime concerns the energy window E ∈
[ER, Ex]. With ρ0 = 1/2D [Eq. (2)], the dimensionless Kondo
coupling in Fig. 3 is small, having j0 ≡ ρ0J = 0.05 � 1, and
thus Ex

ER
= 1

π j2
0

= 127.3. Therefore the bare RKKY regime
spans about two orders of magnitude in energy scale. It com-
petes with Kondo physics for the case TK(J, Jz ) < Ex, i.e.,
when the Kondo scale is small enough that the screening
clouds of the two impurities overlap. We refer to this intersect
as the intermediate energy regime.

This intermediate regime becomes visible as the lighter-
blue shaded area in Fig. 3(a–f,2) in between the two vertical
makers below the brown solid line, which represents the
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FIG. 3. NRG analysis of the 2HKM for J = 0.1 (i.e., j0 = 0.05). Each row corresponds to a different integer impurity distance x as
indicated with the left panel, which increases exponentially from top to bottom. The vertical axis is the same for all panels, namely Jz/J ≡ jz/ j0,
whereas the horizontal axis represents energy in various forms. Here we adopt the NRG energy scale point of view, throughout, which starts
at large energies at the left and then proceeds towards exponentially smaller energy scales towards the right. Rows (columns) are labeled by
letters (numbers), respectively, e.g., having (a1) for the upper left panel. The vertical black dotted [solid blue] marker replicated in all panels
indicate the coherence scale Ex (38) [RKKY scale ER (20)], respectively, as labeled in panel (a1), having Ex/ER = 1/π j2

0 = 127.3, throughout.
Similarly, the brown solid curved line shows the analytical single-impurity Kondo temperature TK(J, Jz) (Appendix B) for reference. This
curve TK is visually cutoff at ER, because TK is irrelevant at lower temperatures. The brown marker in panel (h2) shows the finite intercept
TK(J = 0.1, Jz ) = 4.31×10−8 at Jz = 0. Each column shows the quantity indicated above the top panel: Panels (:,1) [first column] show the
static (equal-time) inter-impurity correlations 〈SL

z SR
z 〉 vs temperature and Jz. Panels (:,2) [second column] gives a visual impression of the

changes along the NRG energy flow diagram vs energy scale ωn ∼ �−n/2 (for precise prefactors, see [46]). This encodes cumulative effective
thermal weights in three arbitrary but fixed low-energy symmetry sectors into red-green-blue (RGB) colors for all odd Wilson shells n (to avoid
even/odd effects) based on an effective inverse temperature βn ≡ 4ωn. The symmetry sectors chosen for this were q ≡ (Q; Stot

z ) ∈ (0; 0, 1,−1)
with Q the total charge relative to half-filling. The remainder of the columns shows dynamical spin-spin correlation functions 〈Ŝη‖Ŝη′†〉ω

as indicated at the top of each column at zero temperature (T = 1.8 × 10−11). The solid-dotted lines shows the respective derived inverse
static susceptibility T ηη′

S = 1/4χ
ηη′
S [cf. Eq. (34)]. Blue (red) indicates positive (negative) value, respectively. The number at the top right of

each panel indicates the maximum absolute value the spectral data A of the broadened NRG spectral data, and hence gives an impression of
numerical range. Blue (red) shading in all panels except for the second column indicates positive (negative) values, respectively. The dashed
lines in (a,c;3) and (a,c;5) represent exponential fits as indicated with (a5) of the maximum of the spectral data for J/Jz � 0.5. NRG parameters
(e.g., see [46] for detailed definitions): � = 4, truncation energy Etrunc = 8; z averaged over nz = 4, with log-Gauss broadening σ = 0.3 of the
spectral data after z averaging.
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single-impurity Kondo scale TK. The latter scale TK is cutoff
at ER, also visually so by terminating its line towards the right
at the blue vertical marker. Hence the intermediate regime is
present (i) if there is a brown line segment in between the two
vertical markers (black dashed and blue), in which case (ii)
the intermediate regime occurs below it. For example, with no
brown line segment in the bare RKKY regime in the lowest
two rows in Fig. 3, TK > Ex dominates the low-energy regime
throughout, and the system consists of two individually Kondo
screened impurities. However, once TK < Ex, the buildup of
the Kondo screening cloud is affected by the presence of
the other impurity. This leads to characteristic changes in the
NRG energy flow diagrams, as seen in Fig. 3(:,2).

A. Spin-spin correlation functions and low-energy scales

Data for dynamical spin-spin correlation function A(ω) [as
defined in Eq. (A53) in Appendix A 4] is shown as color-plots
in the right panels of Fig. 3. The frequency of the maximum
for fixed parameters sets the relevant low-energy scale for
the spins. It is well traced by the inverse static susceptibility
(solid-dotted lines)

ω∗ ∼= T ηη′
S ≡ 1

4χ
ηη′
S

(34)

as derived from the dynamical susceptibility

χ
ηη′
S ≡ χ

ηη′
0;S ≡ lim

ω→0
〈Ŝη‖Ŝη′† 〉ω ∈ R, (35)

with S ∈ {Sz, S±}, and the normalization convention for S± ≡
1√
2
(Sx ± iSy) chosen such that |S±|2 = |Sz|2 have the same

Frobenius norm.
In case that η = η′, i.e., inter-impurity correlations, only

a single label may be shown, e.g., T (η)
S ≡ T ηη

S or χ
(η)
S = χ

ηη
S

(the η label may be skipped altogether then, since the impu-
rities are considered identical, hence by symmetry, e.g., χS ≡
χL

S = χR
S ). Strictly speaking, the interpretation as an energy

scale is only justified for “diagonal” correlations, (here intra-
impurity η = η′), as this guarantees positive spectral data and
hence a respective positive energy scale. But it is useful to
also include η 
= η′ here for the sake of the argument and
presentation. We will also refer to χ

ηη′
S± , which involves a spin-

flip, as the transverse susceptibility, and χ
ηη′
Sz

, which involves
a phase flip, as the longitudinal susceptibility. The choice of
the prefactor (1/4) is motivated by the standard definition of
the Kondo temperature in the plain single-impurity Kondo
model, T NRG

K ≡ 1
4χ0

[33,47]. For isolated RKKY impurities
with the energy spectrum as in Fig. 2, the spectral functions
have δ peaks at energies ω = ±ER for the transverse, and
±2ER for the longitudinal correlation function, thus result-
ing in T ηη′;0

S± ≡ ER/2 and T ηη′;0
Sz

≡ sgn(ηη′)ER, respectively
[note the normalization convention of the spin operators as
indicated with Eq. (35)]. Up to a sign, these are indepen-
dent of the choice of η and η′, i.e., they become the same
for inter- and intra-impurity susceptibilities. The latter is a
direct consequence of the RKKY low-energy regime where
the pair of impurities, even though spatially separated, act like
a nearly-decoupled microscopic unit governed by the RKKY
Hamiltonian. In the following we will thus scale energies
in the numerical data by the smaller energy scale (where

subscript S denotes “spin”),

TS ≡ T ηη
S± ∼ ER/2. (36)

We prefer TS over ER, since ER only represents a lowest-order
estimate, whereas TS includes the full many-body aspects of
the problem and is thus also self-contained and thus consistent
within the NRG.

The energy scales T ηη′
S in Eq. (34) capture the low-energy

scale of the impurity spins, as seen, e.g., in the lowest pan-
els Figs. 3(f–h,3), [with the impurity operators S as well as
their location η and η′ specified at the top of each of the
right columns Figs. 3(:,3–5)]. There the inverse susceptibility
TS± from the intra-impurity spin-spin correlation (solid-dotted
line) [Figs. 3(:,3)] follows closely the analytical Kondo scale
TK(J, Jz ) (brown line) up to a constant prefactor of order one.
This generally holds for ω > Ex, i.e., to the left of the black
dashed line in Figs. 3(:,3).

The two rightmost columns of Fig. 3, in contrast, show
inter-impurity correlations. These can only be due to RKKY
interactions, and hence diminish with increasing impurity dis-
tance. Once this distance exceeds the size scale of the Kondo
screening cloud, i.e., TK > Ex, the inter-impurity susceptibil-
ity becomes much smaller than the on-site susceptibility, such
that its inverse is orders of magnitude larger in energy [e.g.,
compare solid-dotted line in Figs. 3(gh;4,5) to TK (brown
line)]. Its physical interpretation is that inter-impurity corre-
lations start to play a role relative to Kondo correlations only
once the latter are sufficiently suppressed, e.g., by a large
temperature scale T � T LR

S± � TK.
In the intermediate regime, where the low-energy physics

is cutoff by RKKY, the inter- and intra-spin correlations start
to look identical when applying the same operators [e.g.,
compare Fig. 3(a,3) to Fig. 3(a,4)]. This holds quantitatively
as also seen by the overall scale (see maximum spectral
weight A indicated with the panels). This can be under-
stood based on the RKKY impurity state |t〉 in Eq. (21) that
(nearly) decouples as a product state from the bath channel [cf.
Appendix A 7], thus having

〈Ŝη
+Ŝη′

−〉 � 〈t |Ŝη
+Ŝη′

− |t〉 = 1
2 , (37)

which holds for both, η = η′ (intra-impurity) as well as η 
=
η′ (inter-impurity), while bearing in mind that the equal-time
correlator above is identical to the integrated spectral data over
frequency [cf. sum rules].

The longitudinal inter-impurity correlations are shown in
the last column of Fig. 3. Deep in the RKKY, the dominant
spectral weight of this nondiagonal dynamical correlation
functions is expected to be negative,〈

ŜL
z ŜR

z

〉 (21)� 〈t |ŜL
z ŜR

z |t〉 = − 1
4 , (38)

and half the absolute value, in agreement with the red shading
(which indicates negative) and overall scale of the spectral
data, e.g., in Fig. 3(a5) [see a detailed analysis of the ef-
fects of finite bandwidth on the precise value of the l.h.s. in
Eq. (38) in Appendix A 7, and in particular Fig. 11 therein].
Via spectral sum rule, the frequency integrated data yields
the data in Fig. 3(:,1) at given temperature (in the present
case, at the lowest temperature shown). Consistently, this ap-
pears in a deep red in the RKKY state, indicating that the
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spin-orientations of the two impurities are antiferromagneti-
cally (AF) correlated.

However, when crossing over into the Kondo regime,
the weakened inter-impurity longitudinal correlations can
even change sign and turn ferromagnetic (FM) [e.g., blue
solid-dotted lines in Figs. 3(:,5) in the inverse susceptibility;
this necessarily has to originate from corresponding positive
spectral data, but its weight is too small, though, so it is not
visible in shading in the spectral data as shown]. The weak
ferromagnetic correlation can also be partly seen in the static
equal-time spin correlation [e.g., the very faint blue hue in
the intermediate regime just left of the red area in Fig. 3(b,1)
or 3(e,1), and hence at significantly elevated temperatures].
The sign change towards weak ferromagnetic correlation ob-
served in the longitudinal data is not systematic, though. For
example, not all inverse susceptibilities in Figs. 3(:,5) show
a sign change. Furthermore, deep in the Kondo regime, the
system can feature weak ferromagnetic (FM) inter-impurity
spin correlations and together with a sign change depend-
ing on the frequency [e.g., faint red and blue shadings in
Figs. 3(g–h,5) just above Jz = 0 vs ω, which is partly also
visibly replicated vs temperature, e.g., in Figs. 3(g,1)]. For en-
ergies below Ex this should be well resolved by NRG, and not
related to coherence affects averaged out by NRG above Ex

due to coarse graining [cf. discussion following Eq. (A9)]. The
appearance of weak AF as well as FM correlations across the
impurities may be related to the fact, that for finite Jz and finite
bandwidth, subleading terms can generate an effective small
longitudinal inter-impurity interaction JzŜL

z ŜR
z , which due to

its oscillatory behavior vs distance may be ferromagnetic as
well as antiferromagnetic [cf. Appendix A 7, and also the dis-
cussion around Eq. (D11)]. Consequently then, z averaging of
the spectral data may lead to apparent non systematic behavior
in the longitudinal correlations as a numerical artifact. In the
present case, however, we do not dwell on this any longer as
this concerns subleading effects.

B. RKKY scale in spectral data

The inverse transverse susceptibility deep in the RKKY
regime resembles a straight line on a semilog plot [Fig. 3(a,3–
4)]. This also reflects the behavior of the maximum in the
actual spectral data. Generally, from its very definition via
the Kramers-Kronig integral relations, the inverse susceptibil-
ity is also sensitive to the precise line shape of the spectral
data. Yet by having the maxima and inverse susceptibil-
ity run in parallel for small J/Jz, this suggests similar line
shapes. Tracking and fitting the peak maxima in the spec-
tral data by the exponential fit specified with Fig. 3(a5) for
J/Jz � 0.5, we obtain ω∗ � 2.78×10−4 e0.82Jz (blue dashed
line). It is lower-bound at Jz = 0 by the analytically obtained
RKKY scale ER [Eq. (20); blue vertical marker in Fig. 3],
having ER = (ρ0J )2/x = 2.50×10−4 for x = 10 [Fig. 3(a,:)].
The difference of about 10% is due to finite bandwidth [cf.
Appendix A 7].

As seen from the fits in Fig. 3(a;3,5) the low-energy
scale in the intermediate regime diminishes exponentially
with decreasing Jz, as in TS ∼ ω∗ � aebJz with b > 0. This is
qualitatively similar to the one-impurity Kondo temperature in
the anisotropic one-impurity case (cf. Appendix B) yet with

different renormalized coefficients. For one, this shows that
the RG/poor-man’s scaling for a single impurity needs to be
stopped at the RKKY scale. Moreover, the relative slope in the
exponents of the low-energy scale as seen in the semilog plots
in Figs. 3(:,4) changes in the intermediate regime with increas-
ing impurity distance. The slope 1/b of the peak vs ω∗ is larger
than for TK (brown line) in Fig. 3(a;3,4), about comparable
in Fig. 3(e,4), and smaller in Fig. 3(f–h;4) where RKKY is
absent. This clearly underlines the continuous crossover from
RKKY to Kondo.

A similar exponential fit on the maximum of the spectral
data was also obtained for the longitudinal spin correlations
in Fig. 3(a5). The peak in the spectral data occurs at a larger
a′ = 5.86×10−4 at Jz = 0 when compared to the correspond-
ing fit in Fig. 3(a3). The slopes b are comparable, though (b′ =
0.80 vs b = 0.82). Therefore the maximum in the longitudinal
spectral data 〈ŜL

z ‖ŜR
z 〉ω is systematically shifted at small Jz

by a factor of 5.86/2.78 = 2.11 towards larger energies as
compared to the maximum in the spectral data that requires
a spin-flip, 〈ŜL

+‖ŜR
− 〉ω. Thus in the RKKY regime at x = 10

[Figs. 3(a,:)],

ωmax
SL

z SR
z

� 2
(
ωmax

SL+ SR−
� ER

)
, (39)

and consistent with the explicit analytical expression for ER in
Eq. (20) This is in agreement with the effective two-impurity
level spectrum in Fig. 2, where with reference to the Lehmann
representation for spectral data in Eq. (A53), one needs to pay
an energy ER for a spin-flip, whereas one needs to pay an
energy 2ER for a sign-flip (triplet |t〉 to singlet |s〉 transition).
The deviation of about 5% from the expected factor of 2 in the
fitted values is within the spectral resolution of NRG, and thus
likely due to z averaging and broadening of the spectral data.

The parameter scans in Fig. 3 give important hints: they
show that ER (blue vertical marker in Fig. 3), as obtained from
a second-order perturbative approach [cf. Eq. (20b)], does
not always describe the RKKY low-energy scale correctly,
as it can get renormalized by the presence of single-impurity
Kondo correlations. While for x = 10 this well coincides with
the Jz = 0 low-energy scale [e.g., compare to solid lines with
symbols in Fig. 3(a,4)], when increasing the distance, the
peak in the NRG data shifts towards the left of the vertical
blue marker, i.e., towards values that are larger than ER. That
is, the fit value for a shown with Fig. 3(a;3,5) effectively
increases relative to ER when exponentially increasing the
distance x (no additional fits shown, though, as this is a
qualitative argument). Thus even if at Jz = 0 the one-impurity
Kondo scale may still be many orders of magnitude smaller
than ER, the value of ER already gets weakly affected (likely
acquires logarithmic corrections) due to the underlying Kondo
correlations, even if TK � ER. If at the same time it also
holds ER � D = 1, then integrating out the helical edge mode
starting from the initial band edge D towards zero energy,
e.g., in a poor-man’s scaling sense, this can be expected to
introduce an RG flow also for ER. This suggests that for a
consistent interpretation of the NRG data with analytics, the
NRG data should be scaled by T (η)

Sz
[cf. Eq. (34)], rather than

the lowest-order analytical estimate ER in Eq. (20b).
Moreover, the peaks seen in the spectral data are rather

narrow, i.e., within the resolution limit of the presented NRG
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FIG. 4. NRG spectral data of the 2HKM for J = 0.1, Jz = 0,
x = 10 for the dynamical correlations functions as partly indicated
with the left axis [transverse in the upper panels, longitudinal in the
lower panels; intra-impurity for the left panels, whereas in the right
panels also includes the inter-impurity correlation for comparison;
note the sign in the legend with panel (d)]. Left panels: Individual
spectral data for z shifted logarithmic discretization (nz = 8 curves
with z ∈ [0, 1[, having � = 4, broadening σ = 0.1), and the cor-
responding z averaged data in the right panel. The horizontal and
vertical axis are globally scaled by the z averaged low-energy scale
TSz = 1.4×10−4 = 0.556 ER only, so with spectral sum rules in mind,
the data shown is of order one.

data. Based on the chosen NRG parameters � = 4 with nz =
4, z shifts (e.g., see Appendix A 3, or also [46] for more de-
tailed definitions), we expect a best possible relative spectral
resolution δω/ω > �1/2nz − 1 = 0.19, hence the value used
for the broadening of σ = 0.3 on the discrete NRG raw data.
Based on perturbative approach, however, one may suspect
significantly narrower features as shown in Fig. 3. With this
in mind, the spectral features seen in data in Fig. 3 are likely
overbroadened.

C. More detailed spectral analysis (line shapes)

The RKKY “resonances” in the spectral data are expected
to be potentially very narrow. As it turns out though, while
sharp peaks (near delta spikes) can be found in the bare
discrete spectral NRG data, the precise location in frequency
of these peaks is sensitive on the z shift in the logarithmic
discretization of the NRG setup (e.g., see Appendix A 3 or
also [46] for detailed definitions). Specifically, as the z shifts
can shift energies by a factor of

√
� in the discrete setup,

in the present case, also the respective “response” of the
system in terms of the precise location of a narrow spectral
resonance for the 2HKM model can also vary within a factor
of

√
�. Therefore blind z averaging of the NRG data leads to

artificial broadening and somewhat irregular z averaged data,
as demonstrated in Fig. 4 or Fig. 6 for two different impurity
distances, x = 10 and x = 1000, respectively. Instead, when
scaling the spectral data for each individual z shift by its re-
spective TSα

(z) and averaging that resulting data, peak shapes
are significantly improved, and in particular also narrower
(e.g., compare Fig. 4 with 5, or Fig. 6 with 7).

For the analysis here, the rather large � = 4 is useful to
emphasize how discretization manifests itself in the spectral

FIG. 5. Exactly the same bare data as in Fig. 4, except that
for each z shift the frequency scale is first scaled by T ηη′

Sα
/T ηη′

Sα
(z)

(with T ηη′
Sα

≡ 〈T ηη′
Sα

(z)〉z the z averaged value, and α ∈ {z,±} chosen,
respectively, for each curve), and then combined as in Fig. 4. The z
shift specific TSz (z) is also determined within the NRG in the same
calculation as part of the post analysis [cf. Eq. (34)]. Overall, this
procedure leads to a significantly improved quality of peak shape
that is significantly narrower, as compared to the spurious spread of
spectral peaks in the right panels in Fig. 4.

data, which is more subtle here, as it also leads to shifts.
A major motivation for the larger � = 4 is, of course, that
this also results in faster NRG calculation or, conversely, in
better converged NRG spectral data. By careful z averaging,
we can obtain good spectral resolution for � = 4, neverthe-
less. However, given that RKKY peaks can be expected to
become much narrower in terms of width vs location, this
ultimately will be also challenging for smaller � in any case.
Overall, the present analysis in terms of � = 4 already clearly
supports narrow features. More importantly, the location of
the peaks, and hence the corresponding energy scale, can be
considered reliable and significantly more accurate than the
width, given also that these are directly related to inverse static
susceptibilities.

The data in the right panels of Fig. 5 gives a good impres-
sion for the spectral data in the RKKY regime. As compared
to Eq. (36) with TS = 0.50 ER, the actual data in Figs. 4 and 5
gives TS = 0.556 ER, which is reasonably close. Furthermore,

FIG. 6. Same analysis as in Fig. 6 except for an increased im-
purity distance x = 1000, leading to the reduced value for TSz =
3.0×10−6 = 1.19 ER. The broadening was also increase to σ = 0.15.
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FIG. 7. Exactly the same bare data as in Fig. 6, except that for
each z shift the frequency scale is first scaled by T ηη′

Sα
/T ηη′

Sα
(z) (similar

to Fig. 5).

the peak location in the spectral data is expected at ω∗ = ER �
2TS for the transverse spectral data, and at ω∗ = 2ER � 4TS in
the longitudinal data, again consistent with the data in Fig. 5.
The peak width in the longitudinal data related to a phase flip
when transitioning to the singlet state [cf. Fig. 2] is found
to be comparable as in the transverse data [44]. However,
this width is limited by the broadening σ as seen with the
individual data in the left panels. While some structure can be
observed with Fig. 5(a) resolved by the spread with z shifts,
the data in Fig. 5(b) is more smooth this way, just showing
the broadening σ = 0.10 used. This suggests that the data in
(b) is still likely overbroadened by given σ = 0.10. Finally,
as already argued with Fig. 3, the inter- and intra-impurity
correlations are identical to each other deep in the RKKY
regime. Here this is seen by having the dashed lines in the
right panels of Fig. 5 on top of the solid lines [note the sign
change, though, as indicated with legend in Fig. 5(d)], which
again is rooted in the triplet ground state in Eq. (21).

Repeating the same analysis for the increased impurity
distance x = 1 → 1000, the data in Fig. 7 starts to show a
qualitative change in the spectral line shape. While having
increased the broadening to σ = 0.15, as reflected by the
individual peaks in the left panels, the overall lineshape in
Fig. 7(d) is still largely comparable. The inter- and intra-
impurity correlations do lie nearly exactly on top of each
other, thus also suggesting a clear RKKY low-energy state
still. In particular, peak position are still at the expected
ω∗ = 2TSz or 4TSz for the transverse or longitudinal data. The
numerical value for TSz , however, further deviates from the
plain second-order perturbative RKKY scale, having TSz =
3.0×10−6 = 1.19 ER, which by now is clearly unequal from
the naive expected value of 0.5 ER (see also Fig. 8 for a more
detailed analysis in this regard). Yet, when scaling the data
consistently fully within the NRG framework, the schematic
picture in Fig. 2 still works well when substituting ER →
2 T NRG

S .
To conclude this section, we reemphasize that the NRG

approach correctly describes the position of the peaks in the
response functions as well as the integrated spectral weight,
but yields resolution-limited information about the peak width
and thus its overall shape. The latter unavoidably results from
the coarse-graining in energy space intrinsic to the NRG
approach.
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FIG. 8. Low-energy scales vs distance from inverse static sus-
ceptibilities [cf. Eq. (34)] as indicated in the legend of panel (a) for
Jz = 0, throughout. Left panels (J = 0.05) [right panels (J = 0.10)]
have temperature T < 10−10 [the Kondo temperature TK ∼ 4×10−8]
as low-energy cutoff, respectively. The blue vertical markers translate
the low-energy scale to distance, i.e., x0 ≡ j2

0/max(T, TK ), which
also corresponds to the crossing point of ER (black dashed) with
max(T, TK ) (horizontal marker). The lower panels redraw the data in
the upper panels, but vertically scaled by TS. The shading indicates
the standard deviation of the color matched energy scale due to z
shifts in the NRG discretization.

D. RKKY vs Kondo Energy scales

An analysis of the low-energy scales vs impurity distance
is shown in Fig. 8. The longitudinal inter-impurity suscep-
tibilities are negative due to the antiferromagnetic RKKY
correlations; note the sign with T LR

Sz
in the legend. In the

crossover region when leaving the RKKY regime, this can
become positive, though [cf. legend with Fig. 8(c)]. As seen
in all panels, the energy scale TS “drifts” away from the
bare RKKY scale ER (black dashed line) already many or-
ders above the Kondo scale TK (indicated or specified with
the upper panels). If the distance exceeds the temperature
length scale v/T (left panels) or the inverse Kondo scale
(right panels), the impurities effectively become independent
of each other, such that RKKY is cutoff by max(T, TK ). In
Fig. 8, the end of the RKKY regime is seen where inter-
impurity correlations start to deviate significantly from their
intra-impurity counter part (e.g., compare blue vs yellow in
the lower panels). By approaching the wide-band limit (or
equivalently, by reducing J , as in right vs left panels in Fig. 8),
one can observe in the lower panels that TSz � 2(TS± ≡ TS)
is obeyed over a wide distance (energy) window. Also de-
viations from the relative factor of 2 diminish towards the
wide-band limit. The shading in the lower panels of Fig. 8
indicates variations (i.e., the standard deviation) due to by
z shifts in the logarithmic discretization. These also become
smaller towards the wide-band limit [e.g., compare Fig. 8(d)
with 8(b)].
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V. SUMMARY AND OUTLOOK

We presented a broad parameter scan of the two-impurity
helical Kondo model (2HKM) vs impurity distance, coupling
anisotropy, temperature, and finite bandwidth within the NRG
framework. We emphasize that this setup substantially differs
from a chiral edge mode, where both spins propagate in the
same direction (for a recent NRG study on the latter, see
e.g., Lotem et al. [41]; the chiral model is different from
the helical edge mode discussed here, both in the setup as
well as in the physics). With the NRG being non perturbative
in character, our presented results are reliable quantitatively
in the full parameter regime, with the only real constraint
being energy resolution in spectral data. We have established
a plain crossover from RKKY to Kondo with increasing im-
purity distance or, conversely, increasing Kondo coupling or
its anisotropy. The Kondo screening of the impurities in-
dividually by the helical edge mode is tuned continuously
into an effective mutual “RKKY” screening of the impurities
themselves. In this sense, the Kondo renormalization flow is
cutoff by the RKKY energy ER once it exceeds the Kondo
scale. The RKKY occurs in the energy window determined
by the inverse time scale required for the impurity to travel in
between the impurities (Thouless energy Ex), and the actual
RKKY energy ER � Ex. If the Kondo scale falls within this
window one comes across a continuous crossover.

The low-energy effective RKKY Hamiltonian gives rise to
narrow resonances with the helical edge. While the presented
NRG analysis, the location and overall spectral weight is
reliable, the spectral width, however, is likely (much) below
the energy resolution of our NRG data deep within the RKKY
far from any Kondo screening. Hence the precise linewidth,
e.g., in the dynamical spin-spin correlation data for the fully
interacting model is left for future analytical and numerical
studies.
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APPENDIX A: NRG SETUP FOR HELICAL BATH MODE

The NRG coarse-grains in energy space from the point
of view of the impurities. As such, akin to the analytical
treatment, the NRG approach is also perfectly well suited
to directly tackle a single helical edge mode in energy-
momentum space. The helical energy dispersion was intro-
duced in Sec. II A as εkσ = σvk ≡ σεk with k ∈ 1

v
[−D, D] ≡

[−π
a , π

a ]. The helical modes propagate in opposite velocities
for different σ . With focus on the low-energy regime, they
are assumed to have simple linear dispersion | d

dk εkσ | = v

over the entire bandwidth. By working in momentum space,
translational invariance is implied, such that the one-particle
bath states are described by simple plain waves. Therefore
assuming for simplicity N spin-dependent one-particle modes
k over the entire bandwidth, ĉkσ (x) = 1√

N
eikx ĉkσ such that for

the one-particle state

〈0|ĉk (x) ĉ†
k (0)|0〉 ≡ 〈x|k〉 = 1√

N
eikx (A1)

acquires a positive phase factor according to standard conven-
tions, when it travels from the left to the right (k, x > 0).

1. Hybridization function

The helical 1D edge mode above is assumed to constitute
a fermionic macroscopic bath that interacts equally with two
impurities d̂ησ symmetrically located at positions xη = η

2 x
with η = ±1 [Eq. (5)]. The NRG approach first focuses on
Anderson-type impurities with explicit hybridization of the
impurities with the bath. The switch to Kondo-type impurities
can be taken as a subsequent step, e.g., via Schrieffer-Wolff
transformation. Thus the starting point is the hybridization
Hamiltonian,

Ĥhyb =
∑
ησk

( Vk√
N

d̂†
ησ ĉkσ eikx η

2 + H.c.
)

≡
√

2D�
π

∑
ησ

(d̂†
ησ f̃0ησ + H.c.). (A2)

This defines the bath states f̃0ησ≡√
π

2D�

∑
k

Vk√
N

eikx η

2 ĉkσ that
the impurities couple to, which permits the interpretation that
these are the bath states at the respective location of the
impurities. The states f̃0ησ are normalized, but not necessarily
orthogonal yet, hence the tilde (cf. Appendix A 2).

In Eq. (A2), an electron with spin σ can hop on and off the
corresponding helical branch, with the spin σ preserved in the
process. The hopping amplitude Vk is assumed independent
and thus symmetric in the spin and impurity indices. For
simplicity, the bath is also assumed featureless, characterized
by two parameters only: a hybridization strength � and a finite
half-bandwidth D. In the continuum limit, the hybridization
function for each impurity individually is given by �(ε) =
πρε|Vε|2 ≡ � ϑ (D − |ε|) (also known as the default NRG
box distribution), with ρε = ρ0 ϑ (D − |ε|) the one-particle
density of states, assuming constant ρ0 = 1

2D without restrict-
ing case. The hybridization is cutoff sharply in energy, as
depicted in Fig. 1. The integrated (norm-squared) hybridiza-
tion strength is

∑
k |Vk|2 ∼= ∫

ρε|Vε|2 = 2D �/π , which
yields the split-off normalization factor in the second line
in Eq. (A2).

From the perspective of the impurities, the full hybridiza-
tion function becomes a 2 × 2 matrix

�
[σ ]
ηη′ (ω) ≡ 2D�

π
〈 f̃0ησ‖ f̃ †

0η′σ 〉ω

= 1

N

∑
k

Vk V ∗
k

ω+−εk
eiσ

εk
v

η−η′
2 x (A3)
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with η ∈ {R,L} indexing the impurities [Eq. (5)]. This in-
cludes a non zero off-diagonal hybridization for η 
= η′. In the
wide-band limit D → ∞, the hybridization becomes

�(ω) ≡ −i�

(
1 2eiωτ ϑ (τ )

2e−iωτ ϑ (−τ ) 1

)
(A4a)

where τ ≡ σx
v

is the time required for a particle to travel from
one impurity to the other, since for example from Eq. (A3) for
a particle to travel from L → R (thus with x 
= 0, also τ 
= 0),

�12(ω) ≡ �+−(ω) ≡ �

π

∫ D

−D
dε e+iετ

ω+−ε

D→∞−→ −2i� eiωτϑ (τ ). (A4b)

This gives a non zero contribution only for τ > 0. As-
suming v, x > 0, for example, this requires σ > 0. Indeed, in
given helical setting, a spin-up electron travels to the right,
that is the particle needs to be created at the left impurity
(η′ = −1), which then can propagate to the right impurity
(η = +1). For spin down, the situation is vice versa.

We emphasize that the spectral representation �(ω) of the
hybridization function cannot be simply written as −Im�(ω)
in the present case because the matrix elements in Eq. (A3) are
complex. Instead, the imaginary part needs to be taken from
the propagator only, i.e., with − Im 1

ω+−ε
= πδ(ω − ε) (see

Appendix A 4 for more details),

�
[σ ]
ηη′ (ω) ≡ 1

N

∑
k

Vk V ∗
k πδ(ω − εk ) ei η−η′

2 τε

∼= �

∫ D

−D
dε δ(ω − ε) ei η−η′

2 τε

= �ϑ (D − |ω|) ei η−η′
2 τω, (A5)

where the spectral function �ηη′ (ω) ≡ [�(ω)]ηη′ needs to be
differentiated from the constant �. Correspondingly, in matrix
notation,

�(ω) = � ϑ (D − |ω|)
(

1 eiωτ

e−iωτ 1

)
, (A6)

which is non zero now for both off-diagonal entries η 
= η′ for
either spin σ . Only by taking the spectral data as above, this
can be simply completed to the full hybridization function us-
ing Kramers-Kronig transform on the complex spectral data,
i.e., by folding the above possibly complex spectral function
with 1/(ω+ − ε).

Within the wide-band limit and in the absence of inter-
actions, the Green’s function for the impurities with on-site
energies εdη becomes, e.g., in the spin-up channel (σ = +1,
and hence τ > 0),

G↑(ω) = [ω+ − εd − �]−1

(A4a)=
(

ω − εd+ + i� 2i�eiωτ

0 ω+ − εd− + i�

)−1

= 1

(ω − εd+ + i�)(ω − εd− + i�)

×
(

ω+ − εd− + i� −2i�eiωτ

0 ω+ − εd+ + i�

)
. (A7)

At particle-hole symmetry with εdη = 0 on obtains for ω = 0,

−� Im G↑(0) =
(

1 −2
0 1

)
= π� A↑(0), (A8)

where the diagonal entries reflect half-filling based on the
Friedel sum rule. Due to the helicity, the diagonal terms in
Eq. (A7) are just the Green’s function of decoupled impurities,
Gηη(ω) = 1

ω−εdη+i� . The non zero off-diagonal term maintains
the same matrix position as in �(ω) in Eq. (A4a), consistent
with the directedness of propagation. Similar to Eq. (A4a), the
off-diagonal term also shows oscillatory behavior in energy
with period

δω = 2π

|τ | = 2πv

x
≡ 2πEx. (A9)

This period is fixed by the energy scale Ex = v/x [Eq. (38)]
set by the inverse time τ required for an electron to travel
from one impurity to the other. In particular, the period δω

is independent of the energy scale ω in G(ω). Given that the
NRG discretizes logarithmically in energy space, assuming
Ex � D = 1, there is no way these oscillations can be re-
solved to orders of magnitude higher in energy all the way up
to D. On the other hand, on physical grounds at high energies,
e.g., at temperatures T > Ex, the impurities effectively no
longer see each other. In this sense it appears reasonable to
expect for most physical quantities such as spin-spin inter-
actions that do not explicitly resolve one-particle phases of
propagation. In the presence of relaxation processes due to
interactions, these rapid oscillations likely average out at large
frequencies even for small temperature, and thus become less
important in detail. Yet, this needs to be verified in practice on
a case-by-case basis by tracking the stability of the data with
respect to the level of course graining.

2. Normalization of bath states and effects of finite bandwidth

For either spin, the hybridization term Eq. (A2) in the
Hamiltonian defines two bath states f̃0ησ with η ∈ {R,L}.
These are normalized, but not strictly orthogonal, hence the
tildes with the f operators in Eq. (A2) as a reminder. These
bath states at the location of the two impurities have finite
overlap that can be determined from the fermionic anticom-
mutator relation,

S[σ ]
ηη′ ≡ 〈0̃η|0̃η′ 〉

≡ 〈0| f̃0ησ f̃ †
0η′σ |0〉 = { f̃0ησ , f̃ †

0η′σ } (A10a)

= 1

2D

∫ D

−D
dε eiσ η−η′

2v
εx =

{
1 η = η′
sin(πx/a)

πx/a η 
= η′ ,

with |0〉 the vacuum state, and a ≡ πv
D as in Eq. (2), and

therefore πx
a = Dx

v
= |τD|. Rewritten in matrix notation

S0 = 1 + sin(πx/a)
πx/a︸ ︷︷ ︸
≡r0

τx, (A10b)

it can be diagonalized, with eigenvalue matrix

s0 ≡ 1 + r0τz, (A10c)

with eigenvalues sorted as s0η = 1 + ηr0, with η ∈ {+1,−1},
i.e., with the larger eigenvalue s0+ � 1 coming first. The
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off-diagonal term in Eq. (A10b), r0 ≡ a δa(x), represents a δ

function of width a. In this sense, the UV cut off D again
directly gives rise to the lattice constant already introduced
with Eq. (2). It has unit of length and resembles the resolution
in real space based on the given one-particle density of states
encoded into the box distribution. By having a finite band-
width, this translates into a cutoff in spatial resolution, which
in the present case naturally gives rise to a well-defined lattice
spacing. The overlap in Eq. (A10) between the two bath states
becomes exactly zero for

x ∈ {xn ≡ na | n ∈ Z} (A11)

when n 
= 0, which naturally suggests a discrete grid with
lattice spacing a. As pointed out with Eq. (2), choosing D = 1
and a = 1 then fixes the velocity to v = 1/π . For n = 0, i.e.,
x → 0, the off-diagonal overlap in Eq. (A10a) becomes 1, and
thus identical to the diagonal case η = η′. In this case the two
locations η and η′ approach the same “site” and thus become
identical.

As an aside, we note that the argument here, namely, that
a finite bandwidth naturally gives rise to a discrete lattice
spacing, can also be straightforwardly carried over to a plain
spinless tight binding chain, with the minor difference that
there due to the structured density of states, the Fermi ve-
locity v differs from the value above by a factor of order 1.
Furthermore, the Fourier transform of any quadratic Hamilto-
nian in momentum space yields its full (long-range) hopping
structure in real space. Although a purely 1D lattice model
is unable to describe the topologically nontrivial phase of the
2D topological insulator, the one-particle dispersion may nev-
ertheless also be Fourier transformed for the isolated single
helical edge as in Eq. (1). By starting from momentum space,
however, in the present case this would mandate periodic (or
infinite) BCs with spin-dependent complex hopping coeffi-
cients tnσ ≡ σ tn, where with εkσ ≡ σεk ,

tn = 1

N

∑
k

εkeikxn
N→∞� a

∫ π/a

−π/a

dk

2π
vk eikx

= − iav

2π

d

dx

∫ π/a

−π/a
dk eikx = − iav

π

d

dx

sin πx/a

x

= −iv
(−1)n

xn
(A12)

for a chain of N sites, with distance x = xn = na > 0, having
t0 = 0. These hopping amplitudes are long range, decaying
like 1/x, and by construction break inversion symmetry, tn =
t∗
−n 
= t−n. The long-range hoppings cannot be eliminated by

permitting deviations from the linear dispersion close to the
band edge. For example, the altered dispersion ε̃k = 2v

a sin ka
2 ,

which still obeys ε̃k � εk = vk for small k, also results in
long-range hopping. This is due to the fact that the one-
particle dispersion is discontinuous across the boundary of the
Brillouin zone. Given this complications for numerical lattice
simulations, the starting point in energy-momentum space in
Eq. (1) is more natural and convenient. Nevertheless, from the
above it is clear that the notion of lattice spacing and Brillouin
zone are perfectly valid also for a single helical edge mode
even if the one-particle dispersion is discontinuous across the
boundary of the Brillouin zone.

The analytic structure of the overlap in Eq. (A10) is closely
related to static fermionic correlations versus distance. For
example, consider a filled helical Fermi sea for energies ε ∈
[−D, 0]. Then at zero temperature with τ = σx

v
[Eq. (A4a)],

〈ĉ†
x0

ĉx0+x〉 = 1

2D

∫ 0

−D
dε eiτε = e−i Dτ

2
sin( Dτ

2 )
Dτ

≡ e−iσk f x sin(k f x)

2k f x
, (A13)

the integral only includes the filled Fermi sea [whereas
Eq. (A10a) integrated over the entire “Brillouin zone”]. By
comparison with the corresponding Fermionic correlations for
plain 1D tight-binding chain, this suggests the Fermi wave
vector k f as half the extent of the filled Fermi sea in momen-
tum space, i.e., given half-filling,

k f ≡ D

2v

(A10b)= π
2a . (A14)

The leading phase factor in Eq. (A13) has subtle consequences
when computing charge correlations, and results in features
that qualitatively differ from a plain tight binding chain.

Assuming a continuous, i.e., nondiscretized 1D edge mode
in terms of lattice sites spaced by a, then based on Eq. (A10),
the overlap diminishes to zero for x � a. In particular, this
includes the wide-band limit where a → 0. However, for the
sake of orthogonality of the fermionic states, the vanishing of
the overlap at finite bandwidth can be simply guaranteed by
adhering to the discrete grid in Eq. (A11) with lattice spacing
a in complete analogy to a tight-binding chain. Hence, in
order to avoid complications based on non orthogonal f̃0ησ

states, henceforth distances will be chosen on the grid (A11),
i.e., with a := 1 having x ∈ Z. With this f̃0ησ → f̂0ησ become
well-defined orthonormalized local bath modes at the location
of the impurities, denoted by using hats now instead of tildes.

While finite bandwidth is physically meaningful when hav-
ing particular 2D lattice models in mind, for a helical edge
mode this cutoff is peculiar in that the helical branches merge
with a continuum of bulk states. Therefore a sharp ultraviolet
cutoff for an isolated 1D helical edge mode can have poten-
tially artificial consequences. Lack of orthogonality of local
bath modes discussed with Eq. (A10b) above is one example.
The latter complication can be simply eliminated, although,
by adhering to the effective discrete lattice in Eq. (A11). On a
related footing, the hybridization function in Eq. (A4a), which
is closely related to the dynamical one-particle propagation in
between the impurities, reflects the directedness of motion via
the step functions θ (τ ). This step function, however, is strict
for infinite bandwidth only. For finite bandwidth it also con-
tains, in particular, a non zero oscillatory tail for τ < 0. That
is, for |ω| � D and τ < 0, rather than strictly being zero, the
amplitude for this enhanced backscattering probability decays
like 1

D ei (ω±D)τ ∼ 1
D eiωτ [see also Eq. (A6)] where the oscil-

latory behavior with phase Dτ = πx
a is similar to Eq. (A10b),

thus having eiτD = ±1 on the grid Eq. (A11). However, this
backscattering probability decays with increasing bandwidth
D, which eventually enforces strict directionality. Yet for the
above reasons finite bandwidth can generate a weak sublead-

033016-14



RKKY TO KONDO CROSSOVER IN HELICAL EDGE OF A … PHYSICAL REVIEW RESEARCH 5, 033016 (2023)

ing contribution JzS
z
LSz

R to the RKKY Hamiltonian (20) in the
helical system [cf. Appendix D].

3. Coarse graining

For the sake of a numerical treatment, the continuum of the
bath needs to be discretized. Here we use the NRG, which, by
construction, always discretizes in energy-momentum space.
This allows us to target a single edge mode with plain linear
dispersion. To be specific, the NRG coarse-grains on a loga-
rithmic grid D/�−(n+z) in energy space with � > 1 (typically
� � 2) a dimensionless discretization parameter, n ∈ N, and
z ∈ [0, 1[ a plain “z shift” of the logarithmic discretization
[49,50].

Consider therefore some arbitrary but fixed energy inter-
val Il ≡ [εl , εl+1] of width �εl ≡ εl+1−εl > 0 and average
energy ε̄l ≡ 1

2 (εl + εl+1) within the continuum of the band-
width. Here l > 0 will refer to energy intervals at positive
energies, with energy increasing with increasing l (this is
contrary to the NRG, hence l ∼ N − n with N the number
of levels with εl > 0). Since the helical mode in Fig. 1 is
symmetric around ε = 0, the coarse graining for positive and
negative energies is also chosen symmetrically around ε = 0,
having ε−l = −εl such that l < 0 corresponds to negative
energies. The index l = 0 is generally considered excluded
here, as it is typically used to refer to the entire bandwidth,
e.g., as with r0 in Eq. (A10b). Having ε−l = −εl , the index l
thus resembles momentum, in that the simultaneous inversion
of momentum and energy for a given spin flavor leaves the
Hamiltonian of the edge mode invariant.

The energy ε̄l is differentiated here from εl (note the differ-
ent font) with the latter eventually used for the effective level
position for the full interval l , typically having εl � ε̄l similar
but not exactly the same [50]. When coarse graining the bath,
the integral for the hybridization is split up into intervals,

Ĥhyb
(A2)=

∑
ησ

(
d̂†

ησ

∑
l

∫ εl+1

εl

√
�
π

dε ĉεσ ei σ
v
ε

ηx
2︸ ︷︷ ︸

≡
√

��εl
π

c̃lησ ≡ ∑
η′ Tl,ηη′ ĉlση′

+ H.c.

)
,

(A15)

with {ĉεσ , ĉ†
εσ }=δσσ ′ δ(ε−ε′), such that [ĉεσ ] = energy−1/2.

The coarse-grained discrete and thus dimensionless bath
modes c̃lησ are normalized and orthogonal with respect to
spin σ , but not yet with respect to the impurity location η, as
emphasized by using tildes. The states c̃lησ for each individual
interval need to be orthonormalized in any case even if the
distance x is chosen on the grid in Eq. (A11). This orthonor-
malization has to occur prior to the subsequent mapping of
the so-called star geometry in Eq. (A15) between the impu-
rity and the bath states to an effective one-dimensional (1D)
chain geometry, as the latter requires properly orthonormal-
ized Fermionic levels.

Orthonormalization of the pair of bath states within each
interval l for given spin can be achieved starting from their
overlap, which is again simply related to the fermionic anti-
commutator similar to Eq. (A10),

{c̃lση, c̃†
l ′σ ′η′ } = δll ′δσσ ′ Slσ

ηη′ (A16)

with the Hermitian dimensionless 2 × 2 overlap matrix S in-
dexed by η ∈ {R,L} [Eq. (5)],

Slσ
ηη′ ≡ 1

�εl

∫
Il

dε ei (η−η′ )σx
2v

ε ⇒ Slσ =
(

1 Slσ
+−

Slσ∗
+− 1

)
(A17a)

having Sl↑ = (Sl↓)∗, where with τ ≡ σx
v


= 0 [Eq. (A4a)],

Slσ
+− = 1

�εl

∫
Il

dε eiτε = eiτ ε̄l sin(
τ�εl

2 )
τ�εl

2

≡ rl ei2ϕl . (A17b)

Here rl ∈ [0, 1] represents the absolute value, and 2ϕl the
complex phase (including the possible minus sign from the
sine factor). When the interval width is sufficiently narrow,
|τ�εl | � 1, then rl → 1 and one can resolve the phase in a
single mode for given distance, having x�kl = |τ�εl | � 1.
This applies to the continuum limit, or also for NRG dis-
cretization intervals at very low energies. In the latter case it
also holds |τ ε̄l | � 1, such that

Slσ
+− → 1 ⇒ (rl , ϕl ) → (1, 0). (A18)

In this case, the overlap matrix singles out at the symmetric
state as the one with the dominant eigenvalue. The impurities
effectively couple symmetrically to a single bath state in inter-
val l only, where the phase information can no longer resolve
the distance between the impurities.

As our model Hamiltonian conserves spin, the discretiza-
tion and subsequent mapping of the bath can proceed for each
spin individually. By time reversal symmetry, the inversion
and simultaneous spin flip leaves the Hamiltonian invariant.
Therefore the resulting structure of the bath will be exactly the
same for the opposite spin, except that impurities are coupled
in reverse order, i.e., taking L ↔ R [e.g., x → −x with the
overlap matrix in Eq. (A17a)]. Therefore, in what follows,
the coarse-graining of the bath proceeds for spin-up only,
skipping the spin index for readability, while occasionally
indicating it in brackets as a reminder. Similarly, the interval
index l will be lowered, denoting Sl ≡ S(↑)

l ≡ Sl↑.
By construction, the overlap matrix Sl is Hermitian and

positive, with eigendecomposition

Sl = Ulsl U †
l , slη ≡ 1 + ηrl ∈ [0, 2] (η ∈ {+,−}) (A19)

and slη its eigenvalues. In matrix notation sl = 1 + rl τz with
rl as in Eq. (A17). By convention, the index order in the
symmetric/antisymmetric space is η ∈ {+1,−1} ≡ {+,−} ≡
{1, 2}, with the dominating symmetric eigenstate (η = +1)
always listed first (which is in contrast to the impurity loca-
tion, where the first index entry η = −1 ≡ L refers to the left
impurity).

Orthogonality is ensured by taking symmetric and antisym-
metric combinations up to phase factors (skipping subscripts
l for readability),

Sl
(A17)=

(
1 rei2ϕ

re−i2ϕ 1

)

=
(

eiϕ 0
0 e−iϕ

)
︸ ︷︷ ︸

≡�l

(
1 r
r 1

)
︸ ︷︷ ︸
=UH sl U (†)

H

(
e−iϕ 0

0 eiϕ

)
(A20)

such that Ul = �lUH with UH ≡ 1√
2
[1 1; 1 –1] the

Hadamard matrix that switches to symmetric/antisymmetric
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combinations. Diagonalizing Sl thus leads to the fully or-
thonormal bath modes (with hat now),

ĉlη =
∑
η′′

Pl,ηη′′

⎛
⎝ 1√

slη

∑
η′

U ∗
l,η′η′′ c̃lη′

⎞
⎠, (A21)

where an additional unitary Pl was left-multiplied as an arbi-
trary rotation or phases to obtain the final bath modes ĉlη. It
obviously leaves the fermionic levels orthonormal, i.e., canon-
ical. Equation (A21) can be written more compactly using
spinor notation in η ∈ {+,−} (all for spin-up here),

ĉl ≡
(

ĉl+
ĉl−

)
, c̃l ≡

(
c̃l+
c̃l−

)
⇒ c̃l = Ul

√
sl P†

l︸ ︷︷ ︸
(A15)≡

√
π

��εl
Tl

ĉl , (A22)

thus having

Tl =
√

��εl
π

Ul
√

slP
†
l . (A23)

The overlap of the c̃ states in Eq. (A22) is consistent with
Eq. (A16), since {c̃lη, c̃†

l ′η′ } = π
��εl

(Tl T †
l )ηη′ with (all for spin

up here)

π

��εl
Tl T †

l = Ul slU
†
l = Sl (A24)

Consequently, also the overlap of the bath states at the loca-

tion of the impurity, f̃0 ≡ ∑
l

√
�εl
2D c̃lησ remains precisely the

same in the discrete setting as compared to the continuum in
Eq. (A10a),

{ f̃0+, f̃ †
0−} = π

2D�

∑
l

(Tl T †
l )+− =

∑
l

�εl

2D
Sl

+−

(A17)= 1

2D

∫ D

−D
dε eiτε (A10)= sin(πx/a)

x/a
. (A25)

a. Bath representation in real numbers

For Pl in Eq. (A22), in principle, one could have cho-
sen Pl = Ul . This then approximately returns to the original
left/right association of levels with respect to the impu-
rities. However, it turns out more beneficial to choose Pl

differently and in particular, independently of the interval
index l . Based on the hybridization term, the rotation to
symmetric/antisymmetric states may be temporarily also car-
ried over to the impurity levels themselves. Consider the
contribution to the hybridization in Eq. (A15) from a particu-
lar energy interval l written in spinor notation

d̂† · Tl ĉl = ( U0 d̂︸︷︷︸
( ≡ f̂−1 )

)† · (U0Tl )︸ ︷︷ ︸
≡Tl

ĉl , (A26)

where U0 ∼ UH [Eq. (A20)] to be determined, and
where f̂−1 now refers to the impurity states in the
symmetric/antisymmetric basis. Then with

Tl = U0Tl
(A22)=

√
��εl

π
U0 Ul︸︷︷︸

(A20)= �lUH

√
sl P†

l

and by choosing Pl diagonal (i.e., just complex phases) it
commutes with the diagonal matrix

√
sl ,

Tl =
√

��εl

π
U0 �l U (†)

H P†
l︸ ︷︷ ︸

!=U †
0

√
sl , (A27)

which suggests the choice U0 := PlUH as indicated. Now by
also fixing Pl ,

Pl := diag([1,−i]) ≡ P0 = const, (A28)

this separates real and imaginary part in the phases �l such
that U0�lU

†
0 becomes purely real, since with U0 = P0UH ,

U0τxU
†
0 = τz,

U0τyU
†
0 = −τx, (A29)

U0τzU
†
0 = −τy,

and therefore

U0�l︸︷︷︸
=cos ϕ+iτz sin ϕ

U† = cos ϕ − iτy sin ϕ

=
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)
≡ R(ϕl ), (A30)

which represents a plain rotation by an angle ϕ. In summary,
with Rl ≡ R(ϕl )

Tl =
√

��εl

π
Rl

√
sl ∈ R2×2, (A31)

with the coupling term in the hybridization now represented
by purely real coefficients. Since slη = 1 + ηrl depends on the
particular discretization interval l , sl is generally not propor-
tional to the identity matrix. The full hybridization becomes
(so far all for the spin-up sector),

Ĥ (↑)
hyb = (U0d̂ )† ·

∑
l

Tl ĉl︸ ︷︷ ︸
≡ β0 f̂0

+ H.c. (A32)

b. Block tridiagonalization

Equation (A32) is now the starting point for the Lanczos
block tridiagonalization of the bath, given the initial pair of
orthonormal states f̂0 for the zeroth site with real coefficients
in the symmetric/antisymmetric basis ĉl of the bath. The bath
itself is represented in diagonal form just by the energies of
ĉl , and hence is clearly also real. The resulting Wilson chain
then consists of two intercoupled chains,

Ĥ (↑)
bath =

∞∑
n=0

f̂ †
n · αn f̂n + ( f̂ †

n · βn+1 f̂n+1 + H.c.), (A33)

with αn, βn ∈ R2×2 and β0 reserved for the coupling to
f̂−1 ≡ U0d̂ , i.e., the impurities. By choosing the symmet-
ric / antisymmetric basis above, incidentally, it turns out on
numerical grounds, that within numerical double-precision
accuracy, there are no Creutz-couplings [51], i.e., in between
f̂nη and f̂n+1,−η. That is, βn turns out diagonal in η, and
the Wilson chain becomes a pure ladder (to be referred to
as Wilson ladder [52]). Similarly, with the bath setup being
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symmetric in energy and thus at half-filling, there are also no
on-site energies along the Wilson sites. All αn are thus purely
off-diagonal, and encode the rung couplings of the Wilson
ladder. In summary, the block entries αn and βn in Eq. (A33)
have the structure,

αn = anτx

βn = bn

(
1 + δn

2
τz

)
. (A34)

As argued with Eq. (A18), the coupling to the impurities
is dominated at low energies by the symmetric channel.
Therefore the coupling strengths along the symmetric and
antisymmetric channel can differ, as quantified by the relative
difference δn. This splitting scales like δn ∝ 1/x � 1, and
therefore is small for early Wilson shells close to the impurity
for large impurity distance x � 1. The case n = 0 is special,
as it refers to the coupling of the impurities to the f̂0 states.
In the spirit of symmetrically coupled Anderson impurities
where there is actual hybridization of the impurities with the
helical bath, it holds that δ0 = 0 if x = xn is chosen on the
discrete lattice Eq. (A11). In this case, the f̃0 states themselves
are orthogonal already, and so there are strictly no impurity
cross coupling due to non orthogonality of the f̃0 states.

The fact that the block tridiagonalization can proceed in
real arithmetic has several advantages, in practice. The switch
to the symmetric/antisymmetric basis prevents certain numer-
ical errors from piling up during the block tridiagonalization
that are related to slowly drifting complex phases. Also by
dealing with real arithmetic, phase conventions on basis states
only refer to signs. The pair of states within every tridiago-
nalization step represent symmetric/antisymmetric states, and
hence are already orthogonal, by construction, so there is no
immediate explicit need for a Schmid decomposition within
the pair of states f̂n.

The total combined hybridization strength of the two im-
purities for given spin(-up) is [cf. Eq. (A15)]∑

l

tr(Tl T †
l )

(A23)= 2D�

π

∑
l

�εl

2D
tr(Sl )︸ ︷︷ ︸

=2

= 2 × 2D�

π
(A35)

where the prefactor of 2 derives from the two impu-
rity channels. This total combined hybridization strength
is the same, on average, for the impurities f̂−1 in

the symmetric/antisymmetric basis since
∑

l tr(Tl T
†

l )
(A26)=∑

l tr(Tl T †
l ). In the symmetric basis, however, the contribu-

tion of the individual channels can differ from each other, as
reflected also in δ0 
= 0 if x 
= xn in Eq. (A34). With

Tl T †
l

(A31)= ��εl

π
RlslR

†
l

(A26)= U0Tl T †
l U †

0 = ��εl

π
U0SlU

†
0

(A17)= ��εl

π
U0[1 + rl (τx cos 2ϕl − τy sin 2ϕl ]U

†
0

(A30)= ��εl

π
[1 + rl (τz cos 2ϕl + τx sin 2ϕl ], (A36)

the diagonal elements for channel η are given by

π

2D�

∑
l

(Tl T †
l )ηη

(A31)=
∑

l

�εl

2D
(1 + ηrl cos 2ϕl )

(A17)= 1 + η

2D

∑
l

�εl Re (Sl,+−)

(A10c)= 1 + ηr0 = s0η, (A37)

noting that r0 in Eq. (A10b) has precisely the same struc-
ture as rl in Eq. (A17), it just considers the full bandwidth
instead of the interval �εl , i.e., �εl → 2D. The expressions
in Eq. (A37) also describe the normalization of the states f̂0

that initialize the block tridiagonalization,

f̂0 =
√

π

2D�
1
s0

∑
l

Tl ĉl
(A26)= 1√

s0
U0︸ ︷︷ ︸

≡Ũ0

∑
l

√
�εl

2D
c̃l︸ ︷︷ ︸

= f̃0

, (A38)

thus obtaining f̃0 = U †
0
√

s0 f̂0 ≡ Ũ −1
0 f̂0. In the absence of the

impurities, these levels are exactly half-filled in the ground
state (and also at finite temperature), since with r−l = rl and
ϕ−l = −ϕl ,

〈 f̂ †
0η f̂0η〉 = π

2D�
1

s0η

∑
l<0︸︷︷︸

→ 1
2

∑
l

(Tl T †
l )ηη = 1

2 . (A39)

For the off-diagonal expectation value one obtains

〈 f̂ †
0+ f̂0−〉 = 1√

s0+s0−

∑
l<0

π
2D�

(Tl T †
l )−+︸ ︷︷ ︸

= �εl
2D Im (rl ei 2ϕl )

(A14)= −1√
1 − r2

0

sin2(k f x)

2k f x
(A40)

since

∑
l<0

�εl

2D
rl ei2ϕl

(A17)= 1

2D

∫ 0

−D
dε eiτε = sin τD

2

τD
e−i τD

2 .

By construction, Eq. (A40) is real, and due to the heli-
cal nature, it is antisymmetric under inversion x → −x. Yet
since with Eq. (A10b) limx→0 r0 = 1, Eq. (A40) becomes
discontinuous across x = 0. When x 
= 0 is taken on the grid
(A11), r0 = 0, and therefore the prefactor becomes 1. By
construction, the local bath levels are clearly also half-filled,
〈 f̃ †

0η f̃0η〉= 1
2 for η ∈ {R,L}, but with the complex off-diagonal

expectation value

〈 f̃ †
0L f̃0R〉 (A13)= e−iσk f x sin(k f x)

2k f x
. (A41)

This is identical with a plain tight-binding chain up to the
phase factor, which gives rise to the somewhat different ex-
pression in Eq. (A40).

c. Finalizing the Wilson setup

Once the block tridiagonalization is performed, one can ro-
tate the symmetric/antisymmetric impurity space f̂−1 ≡ U0d̂
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in Eq. (A26) back to the local representation, for convenience,

H (↑)
hyb

(A32)= f̂ †
−1,σ · β0 f̂0 + H.c. = d̂†

σ · U †
0 β0 f̂0σ︸ ︷︷ ︸

!=
√

2D�
π

f̃0

+ H.c.

(A42)

The last representation must reflect the original local f̃0 states
as this was the very starting point, namely that these couple
symmetrically and diagonally with the respective impurity
only. Thus by identifying

β0
(A34)≡ b0

(
1 + δ0

2
τz

)
(A38)=

√
2D�

π

√
s0︸︷︷︸

(A10c)� 1+ 1
2 r0τz

(A43)

this shows b0 �
√

2D�
π

and δ0 � r0 for small r0, e.g., large
distance x, or in particular r0 = 0 if the impurity distance is
chosen on the grid (A11). Therefore, in the case of β0 this
permits an analytic identification of the structure observed nu-
merically for βn in Eq. (A34). The hybridization in Eq. (A42)
thus becomes

H (↑)
hyb =

√
2D�

π
d†

σ U †
0

√
s0 f̂0︸ ︷︷ ︸

= f̃0

+ H.c.. (A44)

consistent with Eq. (A38). Similarly, the overlap of the states
f̃0η agrees with Eqs. (A10), since by denoting Ũ −†

0 ≡ (Ũ −1
0 )†,

with { f̃0η, f̃ †
0η′ } (A38)= (Ũ −1

0 Ũ −†
0 )ηη′ and given that P0 in U0 com-

mutes with s0,

Ũ −1
0 Ũ −†

0 = U (†)
H s0︸︷︷︸

= 1+r0τz

UH =
(

1 r0

r0 1

)
(A10)≡ S0, (A45)

Ũ −†
0 Ũ −1

0 = s0. (A46)

Overall, the back transformation towards d̂ and f̃0 alters the
initial couplings of the Wilson ladder as follows:

β0 → b0 ≡ U †
0 β0 Ũ0 = U †

0

√
2D�

π
s0 Ũ0 =

√
2D�

π
1

(A47a)

β1 → b1 ≡ Ũ †
0 β1 = U †

0

1√
s0

β1 (A47b)

α0 → a0 ≡ Ũ †
0 α0 Ũ0

(A34)= U †
0

1√
s
(a0τx ) 1√

s︸ ︷︷ ︸
= a0√

1−r2
0

τx

U0 = −a0√
1−r2

0

τy .

(A47c)

This back transformation generates (i) the only complex
entries in the Wilson ladder setup and (ii) also introduces
Creutz couplings in b1 via U0, which thus render the Wilson
setup nonbipartite. Both are important on physical grounds.
The latter prevents the model from having an SU(2) particle-
hole symmetry, which is absent in a helical system. Rather,
it is reduced to a discrete Z2 particle-hole symmetry [cf.
Appendix A 5]. This is specific to the effective model of
the helical edge used here, although, stressing that such a
particle-hole symmetry is absent in 2D time-reversal invariant
topological insulators [53]. The complex phases with a0 and
b1 close to the impurity are important and hence cannot be

gauged away, since, e.g., within a fixed spin flavor, the helical
Hamiltonian is not time-reversal invariant [if derived from a
real-space lattice the Hamiltonian necessarily would have to
include complex spin-orbit coupling terms; in the diagonal
eigenbasis, as in Eq. (1), any quadratic Hamiltonian becomes
real of course].

The coupling a0 is fully determined by 〈0| f̂0+Ĥbath f̂ †
0−|0〉

with |0〉 the vacuum state, and hence can be expressed
analytically,

a0
(A38)= 1√

s0+s0−
π

2D�

∑
l

εl (Tl T †
l )+−︸ ︷︷ ︸

(A36)= ��εl
π

rl sin 2ϕl

= 1√
1−r2

0

Im 1
2D

∑
l

�εl rl e2iϕl︸ ︷︷ ︸
(A17)= ∫ εl+1

εl
dε eiτε

εl � − 1√
1−r2

0

dr0
dτ

.

(A48)

The precise value for a0 is thus sensitive on the discretization,
as seen with the second line. In the continuum limit, εl → ε

may be pulled inside the integral, which yields the last expres-
sion having used εeiτε = (−i d

dτ
)eiτε. While r0 = 0 on the grid

(A11), the derivative is generally non zero with alternating
signs and decaying like 1/τ ∼ 1/x. Therefore a0 is non zero
for any x = xn. That is, the two impurities weakly see each
other right away upon a single application of Ĥbath. On intu-
itive grounds, one can compare this to a tight-binding chain
with long-range hoppings that decay like 1/x [cf. Eq. (A12)],
which also gives rise to a similar behavior.

d. Decoupling of antisymmetric sector at low energies

The antisymmetric sector gets suppressed once energies
are much below ε � Ex ≡ v

x [Eq. (A9)], or more precisely
in the limit |τ�εl � 1|, This occurs in practice at very low
energies in the NRG context. With rl → 1−, while sl+ ap-
proaches the finite value of 2−, the smaller eigenvalue sl− →
0+ approaches zero as 1 − 1−, which is numerically ill condi-
tioned. Hence form a numerical perspective, it is computed via
an expansion around small ξ ≡ τ�εl/2 = x�kl/2, i.e., from
Eq. (A17b),

sl− = 1 − rl = 1 − sin ξ

ξ
= 1

3!
ξ 2 + O(ξ 3). (A49)

When setting sl− strictly to zero below some threshold
sl− < 10−16, the block tridiagionalization eventually switches
over to a hopping amplitude that decays twice as fast, be-
cause the antisymmetric levels that actually couple have been
exhausted. On the other hand, keeping the asymptotic depen-
dence in Eq. (A49) down to the lowest energies considered,
the hopping amplitudes along the Wilson ladder always decay
like ωn ∼ �−n/2. That is, the antisymmetric channel remains
in the system, throughout. The reason for this is that the
decoupling occurs smoothly. So once the energy scale (or
more precisely, the energy resolution) drops below v/x, the
antisymmetric channel does not decouple in an instant, and
so it stays in the system, as schematically depicted in Fig. 9.
At energies much below v/x, however, one can show in
practice that the Wilson chain, indeed, switches over to two
fully decoupled chains [cf. Fig. 10(b)]. While the symmet-
ric sector, which remains coupled to the impurities, shows a
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FIG. 9. Schematic representation of the two-impurity Wilson
setup of the bath giving rise to two intercoupled chains (for a quan-
titative example, see Fig. 10). The system moves to small energies
towards the right with the Wilson shells n having energy εn ∼ �−n/2.
At high energies ε � Ex ≡ v

x [Eq. (A9)] one may think of the bath
states coupled to their respective impurity. Therefore, the physics
represents two independent copies of one-impurity problems down
to energies Ex . Around the energy scale of Ex the impurities start to
coherently interact with each other (if the impurities are, for example,
already Kondo screened above the energy Ex , then the two impurities
remain decoupled down to zero energy). The two-impurity physics
takes place at energies ε � Ex where the relevant description of the
bath effectively changes from the local (R,L) to the symmetrized
(+, −) representation. The antisymmetric channel (η = −) starts to
smoothly decouple, but stays in the system as a passive spectating
bath space. The symmetric channel (η = +) is the one that remains
fully coupled to the impurities. While the representation of the bath
in the main text is always in the symmetric/antisymmetric config-
uration [cf. Eq. (A42), except for a final rotation of f̂0 back to the
local representation]. If the same unitary mixing of modes were to be
applied for subsequent Wilson shells still, the property of having two
independent copies of bath modes remains intact down to Ex .

FIG. 10. Typical Wilson ladder for the two-impurity helical sys-
tem as described by Eq. (A33) for an impurity distance x = 106.
The labels on top indicate the Wilson shell n (based on � = 2).
The widths of the bonds are proportional to the hopping ampli-
tudes rescaled by �−n/2. They are all real-valued, where black (red)
color shows positive (negative) hopping amplitudes, respectively.
Around the energy 1/x (shell n ∼ 40), the structure of the Wilson
ladder changes, as qualitatively already argued in Fig. 9. The upper
leg corresponds to the symmetric (η = +), and the lower leg to
the antisymmetric channel (η = −). The rescaled Creutz couplings
have amplitudes below double precision accuracy, hence are absent.
(b) Same as in (a), except that starting from the position “block-
trafo” towards the right a nearest-rung shell-mixing numerically
determined block transformation was performed on top of (a). This
shows that at low energies the system can be exponentially decoupled
towards later shells into two independent channels.

smooth decay of the hopping amplitudes, in the antisymmetric
channel the hopping amplitudes along its corresponding leg
in the Wilson ladder becomes increasingly alternating (lower
legs in Fig. 10): namely the paired up antisymmetric levels at
energies ±ε̄l . They form strong bonds along the Wilson chain
at zero energy, where bonding and antibonding states reveal
the original ±ε̄l states in the star geometry.

Since the impurity distance directly enters the coarse grain-
ing in the NRG, there will always be a qualitative change
in the NRG energy flow diagram around the energy scale
v/x [cf. Figs. 9 and 10]. But this change in the representa-
tion of the bath can become irrelevant for static or dynamic
properties from the perspective of the impurity. In this sense,
the “apparent” energy scale strongly visible in the standard
NRG energy flow diagrams at the energy scale v/x may be
irrelevant for the impurity. Nevertheless, this may leave minor
artificial features (wiggles) in the temperature or frequency
dependence of physical properties around the energy scale of
v/x. This effect is expected to be more pronounced for coarser
discretization (larger �), but to diminish for smaller �.

e. Block tridiagonal structure for opposite spin

Switching the spin has the same effect as changing the sign
of energy or spatial inversion [cf. discussion after Eq. (A18)].
This is also explicitly reflected in the the variable τ ≡ σx

v

[Eq. (A4a)] that appears in much of the above treatment.
Therefore, by construction of the starting vectors for the block
tridiagonalization of the spin-up channel above, from the point
of view of the impurity, spin-down couples to an identical
Wilson ladder of its own, except that the local f̃0 modes couple
to the impurity levels in reverse order. In this sense, the back
transformation to the local representation of the impurity in
Eqs. (A47) is useful as a prior step. Then the Pauli matrix σx

below accounts for the reversed order,

β
↓
0 → b

↓
0 ≡ σxb

↑
0 =

√
2D�

π
σx, (A50)

while everything else remains the same for spin down as for
spin up. The effect of the cross terms on the impurity spectral
function, for example, are therefore,

〈d̂↑η‖d̂↑,−η〉ω = 〈d̂↓,−η‖d̂↓η〉ω. (A51)

This makes intuitive sense, since motion in between the two
impurities occurs in opposite directions for different spins.

4. Dynamical correlation functions

Within the NRG approach, correlation functions are com-
puted by evaluating the Lehmann representation [33,49],
which can be carried out exactly at arbitrary temperature T
within the full density matrix approach (fdm-NRG [34]). To
be specific, a retarded dynamical correlation function

GR
BC (t ) = −iϑ (t ) 〈B̂(t )Ĉ†〉T (A52)

for two local impurity operators B̂ and Ĉ, with ϑ (t ) the Heav-
iside step function, B̂(t ) = eiĤt B̂e−iĤt , and 〈. . .〉T the thermal
average, is computed via its spectral Lehmann representation

ABC (ω) =
∑

ab

ρaBabC
∗
ab δ(ω − Eab) ∈ C (A53)
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with a and b complete sets of many-body eigenstates,
having Ĥ |a〉 = Ea|a〉 with Eab ≡ Eb−Ea, thermal weights
ρa= 1

Z e−βEa , β ≡ 1
T , and Z ≡ ∑

a e−βEa the partition func-
tion. The iterative diagonalization within the NRG approach
explicitly generates the full many-body state space Ĥ |a〉 �
Ea|a〉 above. In practice, this yields a tractable symmetry-
respecting, eigenstate decomposition of the entire impurity
Hamiltonian on the Wilson chain [54], which while approx-
imate, is well controlled and complete.

Standard fermionic and bosonic correlation functions have
an (anti)commutator in their Green’s function,

〈B̂‖Ĉ†〉t ≡ GR
BC (t ) = −iϑ (t )〈[B̂(t ), Ĉ†]s〉T

≡ GBC (t ) + sGC†B† (−t ), (A54)

with the commutator (s= − 1) for bosonic correlations such
as spin-spin correlation functions, or the anticommutator
(s= + 1) for fermionic correlation functions such as the
fermionic local density of states. Equivalently, in frequency
space GR

BC (ω) = GBC (ω) + sGC†B† (−ω), where by construc-
tion at zero temperature ABC (ω < 0) = 0 since Eab � 0
in Eq. (A53), such that the two contributions in the
(anti)commutator to the full correlation function are separated
in frequency space, since they exclusively contribute to posi-
tive or negative frequencies only.

The important point with Eq. (A53), as already also pointed
out with the hybridization function in Appendix A 1, is that for
off-diagonal correlations B̂ 
= Ĉ, the spectral data cannot only
be negative, but fully complex, i.e., ABC (ω) ∈ C, if the matrix
elements themselves are complex. In this sense, one cannot
simply write the spectral data A(ω) as − 1

π
Im G(ω). Instead,

by only taking − 1
π

Im (. . .) of the propagator 1
ω+−Eab

, the full
Green’s function in frequency space can be simply obtained
by standard means, i.e., via Kramers-Kronig transformation,
or by folding with the propagator,

GBC (ω) =
∫

dω′ ABC (ω′)
1

ω+ − ω′ . (A ∈ C). (A55)

By construction, with Eq. (A53) one still also has full access
to the well-known simple spectral sum rules,∫

dωABC (ω) =
∑

ab

ρaBabC
∗
ab = 〈BC†〉T ∈ C, (A56)

which may be complex for B 
= C† in the present heli-
cal setting. This is relevant, for example, when computing
the one-particle correlation function across the impurity
〈d̂σL‖d̂†

σR〉ω [e.g., see Eqs. (A6) or (A7) for the non inter-
acting case].

5. Symmetries

The global symmetries of the effective 1D model of the
helical edge in Sec. II also manifest themselves in the structure
of correlation functions. Aside from the symmetry U(1)charge⊗
U(1)spin already discussed when introducing the helical model
system in Sec. II and also explicitly exploited in our numer-
ical simulations, the isolated helical edge can support further
symmetries that are actually absent in the original full-fledged
2D topological system. The original topological aspect is re-
flected here in the fact that the isolated helical edge exists as

a valid physical model in the first place. With this in mind,
the isolated helical edge with two Kondo impurities (2HKM)
located symmetrically around the origin also preserves

(i) Z2 time reversal symmetry (ZTRS
2 ): momentum to-

gether with spin reversal is preserved by the helical edge. The
local impurity-bath Kondo interaction is also spin-reversal
symmetric, with the impurities themselves located symmet-
rically around the origin [cf. Eq. (5)]. Therefore k → −k
together with the reversal of the impurities, η → −η, leaves
the local impurity-bath interaction invariant. Now the com-
bined operation k → −k and η → −η is equivalent to spatial
inversion. Hence, for our model setup with an isolated helical
edge, TRS can be translated into spatial inversion with simul-
taneous global spin reversal.

(ii) Z2 particle-hole symmetry (Zp/h
2 ): the helical channel

in Fig. 1 was chosen such that for every level at εkσ > 0
there is a level at ε−kσ < 0, having εkσ = −ε−kσ . By hav-
ing half-filling, this converts a particle to a hole or vice
versa. Furthermore, by construction, the Kondo interaction of
the impurities with the helical channel are also particle-hole
symmetric.

The Hamiltonian in Sec. II has two impurities located
symmetrically around the origin [cf. Eq. (5)]. From an An-
derson impurity point of view with explicit hybridization as
in Eq. (A2), this is the only point where complex numbers
enter the total Hamiltonian. From a numerical perspective,
the Fermionic operators ĉkσ and d̂ησ can be encoded by real
matrix elements, such that the only complex entry is the phase
eikx η

2 . This also holds when switching from Anderson-type
hybridization to Kondo spin interactions when represented
in terms of Ŝη

± or Ŝη
z , as their matrix elements are also real.

With this perspective, it holds that complex conjugation of
the Hamiltonian, Ĥ → Ĥ∗, is equivalent to reversing the lo-
cations of the impurities d̂ησ → d̂−η,σ . Denoting the latter by
RI , with RI H |a〉 = H∗RI |a〉 it holds that if |a〉 is an eigenstate
of H to eigenvalue Ea, then so is |a′〉 ≡ [RI |a〉]∗. Hence, with
K denoting complex conjugation, RI ≡ RI K is an anti-unitary
symmetry of the system, with |a′〉 = RI |a〉 also an eigenstate
of the Hamiltonian with the same eigenenergy.

As a consequence of the above symmetries, for ex-
ample, the spectral data of spin-spin correlations as in
Eq. (A56) is real, after all. Based on the Lehmann repre-
sentation in Eq. (A53), one encounters the matrix elements
〈a|(d̂†

σ d̂σ ′ )η|b〉〈b|(d̂†
σ ′ d̂σ )η′ |a〉. For the case that η = η′, i.e.,

intra-impurity spin correlations, this product of matrix ele-
ments can be combined into |〈a|..|b〉|2, which is real. For the
case of inter-impurity spin correlations, η = −η′, taking the
complex conjugate and inserting R

†
IRI twice,

〈a|(d̂†
σ d̂σ ′ )η|b〉∗ = 〈b|(d̂†

σ ′ d̂σ )η|a〉
= 〈b|(R†

I︸ ︷︷ ︸
≡〈b′|

RI )(d̂†
σ ′ d̂σ )η(R†

I︸ ︷︷ ︸
=(d̂†

σ ′ d̂σ )η′

RI )|a〉︸ ︷︷ ︸
≡|a′〉

= 〈b′|(d̂†
σ ′ d̂σ )η′ |a′〉. (A57)

Now since a and b can be chosen to also be simultaneous
eigenstates of RI , i.e., having a = a′ and b = b′ with the
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same eigenvalue with respect to RI , the Lehmann sum of
the spin-spin spectral functions, while having complex matrix
elements, yields a purely real result. In practice, a and b are
not eigenstates of RI . Yet, by explicitly resorting to complete
many-body basis sets within the NRG [54] evaluated within
fmd-NRG [34], the spectral data has an imaginary contri-
bution with relative strength comparable to numerical noise
based on double precision accuracy, and hence can be ignored.

6. From Anderson to (anisotropic) Kondo type model

The entire discussion above assumed Anderson type im-
purities that hybridize with the helical edge mode. Now if
the local Coulomb interaction U with each impurity is large,
charge fluctuations get frozen out. Therefore in the low-energy
regime, charge fluctuations can be integrated out locally with
each impurity via Schrieffer Wolff transformation. Assuming
half-filling of each impurity with a single magnetic spin-half
moment, second-order perturbation theory based on Eq. (A2)
yields the Kondo-type interaction

ĤK ∼
∑

η∈L,R

1
−U

(
Ĥη

hyb

)†
Ĥη

hyb, (A58)

which is diagonal in η. When projecting the into the low-
energy Kondo regime of the Anderson model by scaling up
local interactions, this leaves the representation of the bath
untouched. Therefore, from the NRG point of view the bath
remains completely unaffected by whether one resorts to
an Anderson-type or low-energy Kondo-type impurity setup.
Based on the coarse-grained version in Eq. (A32) then

ĤK ∼ 2J
∑

η∈L,R

Ŝη · Ŝ0η, (A59)

with J the Kondo coupling, Ŝη ≡ Ŝdη the spin operator of im-
purity η, and Ŝ0η ≡ ∑

σσ ′
τσσ ′

2 f̃ †
0ησ f̃0ησ ′ the spin operator with

respect to the bath site at the location of impurity η. Therefore
a single impurity interacting with in a helical edge mode
is identical to a regular one-impurity Anderson or Kondo
model without a helical character. The dynamically generated

low-energy Kondo scale TK
∼= √

ρ0Je− 1
ρ0J [47] for the one-

impurity problem with ρ0 the one-particle density of states
around the Fermi level, however, also represents a relevant
energy scale for the two-impurity problem. Assuming the
impurity distance on the grid (A11), the local bath operators
f̃0ησ are already properly orthonormalized, such that there are
no issues with crosstalk between the impurities.

For spin-independent hybridization between the Ander-
son impurities and the bath, the resulting Kondo coupling in
Eq. (A59) is SU(2) spin symmetric. While bearing in mind
that the helical bath mode itself already has the SU(2) symme-
try broken, the spin symmetry can also be broken at the level
of the Kondo Hamiltonian, giving rise to anisotropic local
spin-spin interactions. Assuming a single preferred direction
(z) with Jx = Jy ≡ J 
= Jz, Jz > J (Jz < J) describes an easy-
axis (easy-plane) regime, respectively. The global U(1) spin
symmetry thus remains preserved.

FIG. 11. Static 〈Sz
LSz

R〉 impurity correlations for TK � ER ∼ J2

x
obtained by NRG towards the wide-band limit D � J (= Jx = Jy )
for Jz = 0. (a) Deviations of the computed 〈Sz

LSz
R〉 from the expected

RKKY value of −1/4 on a loglog plot. Data is shown for various
impurity distances x, with the polynomial fit obtained for x = 10
showing approximate quadratic behavior (red dashed line). (b) Com-
parison of energy scales for the same parameter range as in (a) where
the temperature T ∼ 10−9 used in NRG simulations in (a) is indi-
cated by the horizontal gray line. The data for the Kondo scale TK was
obtained via poor-man’s scaling [cf. Appendix B]. Red line shows a
simple estimate for the RKKY energy at x = 10, demonstrating that
(a) is deeply in the RKKY regime, i.e., ER � TK, T .

7. Effects of finite bandwidth with Kondo interaction

When starting from the Anderson model, one may scale
the local Coulomb interactions properly to infinity in relation
to other parameters, with the result that also in the numerical
setting, one effectively arrives at the Kondo model [55]. For
the Anderson model the effective bandwidth relevant for the
impurities is cut off by U if U < D. However, by taking
U � D when transitioning towards the Kondo model, band-
width keeps playing a considerable role, and the universal
wide-band limit is approached rather slowly.

Here for the anisotropic 2HKM in the present case, if
the Kondo scale TK(J, Jz ) � ER � D = 1 for each impurity
individually is just several orders of magnitude smaller than
all other energy scales, effects of finite bandwidth are still
considerable. In order to reach the wide-band scaling limit
(here J � 0.02), the single-impurity Kondo scale is already
many many orders of magnitude lower than the band width
D = 1 (TK � 10−40), as demonstrated in Fig. 11, and also
consistent with the literature on the single-impurity case [55].
In the present case, we see that similar arguments also carry
over to the RKKY regime, even if Kondo physics is irrelevant
(in the sense that it sets in at much smaller energy scales, even
much smaller than any temperature of practical interest).

In the RKKY regime and in the wide-band limit, the im-
purities are expected to be well decoupled from the bath and
described by HR= − ER(S+

L S−
R + H.c.) [cf. Appendix D] with

the dynamically generated effective direct RKKY impurity
coupling ER. The impurities are thus expected in the Stot

z =0
triplet state |0〉 ≡ 1√

2
|↑↓+↓↑〉, which yields the low-energy

static spin correlation 〈Sz
LSz

R〉 = −1/4. In practice, however,
one sees substantial deviations from this expectation value up
to nearly 20% for J = 0.1 in the NRG data even using Jz = 0
as shown in Fig. 11(a). Hence these deviations must derive
from higher-order processes that go beyond second-order per-
turbation theory (PT) [see Appendix D]. The coupling to the
bath remains finite in the low-energy regime, thus inducing
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fluctuations in the impurity spin configuration. These devia-
tions can be reduced systematically by lowering the Kondo
coupling J , e.g., having a deviation already below 1% for
J � 0.02. As shown in Fig. 11(a) the static expectation value
〈Sz

LSz
R〉 approaches −1/4 in a polynomial fashion as J is low-

ered, down to the smallest J considered. Therefore, indeed,
the deviations seen in Fig. 11(a) are clearly due to finite
bandwidth. This demonstrates that finite bandwidth does play
an observable role in the Kondo setting [55] when comparing
numerical to analytical results if the latter strictly assumed
the wide-band limit. If one considers the wide-band scaling
limit reached within deviations in observables of about 10−3,
this suggests approximately J � 0.02 in Fig. 11(a). On the
single impurity level, this already corresponds to astronomi-
cally small Kondo scales TK � 10−40 in Fig. 11(b) consistent
with earlier NRG studies [55]. From a physics point of view,
however, we do not expect that the observed minor variations
change the overall physical picture in any significant qualita-
tive manner.

APPENDIX B: POOR-MANS SCALING FOR ANISOTROPIC
KONDO

The poor-man’s scaling equation for the renormalization
group (RG) flow of the anisotropic Kondo model are given by
[47,56,57]

∂

∂ ln D
(ρ0Jx ) = −(ρ0Jy)(ρ0Jz ), (B1)

and similarly for the other components using cyclic permu-
tations of (x, y, z). In particular, with x ≡ ρ0Jx = ρ0Jy and
z ≡ ρ0Jz,

∂

∂ ln D
x = −xz,

∂

∂ ln D
z = −x2. (B2)

It follows from the above that

−dz

x2
= d ln D = −dx

xz
⇒ z dz = x dx

⇒ z2 = x2 ± a2 (B3)

where ±a2 with a � 0 is some constant of integration. If the
starting point has |z0| > |x0| (easy axis), then the positive sign
is chosen for a2, whereas the regime |z0| < |x0| (easy plane)
has the negative sign. The contours described by Eq. (B3)
exactly reflect the RG paths of the anisotropic Kondo (parabo-
las or hyperbolas separated by |x0| = |z0|, as shown by the
gray lines in Fig. 12). It simply also follows from Eq. (B2)
that for x → 0, (x, z) stops flowing. The model is physically
equivalent for x0 → −x0 (vertical flip in Fig. 12) as this can
be absorbed into a gauge transformation of the spin basis.

For z0 > 0 and |x0| > |z0|, the anisotropic Kondo model
flows to the isotropic strong coupling regime. That is integrat-
ing out the bath starting from large D needs to be stopped at
some D∗ > 0 where x and z diverge, which thus defines the
dynamically generated low-energy Kondo scale TK := D∗.

In the easy-axis Kondo regime (Jz > |Jx|), with z � a, the
RG differential equations diverge at

ln
D∗

D0
= 1

2a
ln

z0 − a

z0 + a
, a =

√
z2

0 − x2
0 . (B4)

FIG. 12. Kondo scale of the anisotropic Kondo model from poor-
man’s scaling [Eqs. (B4) and (B5)]. Jx < 0 is physically equivalent
to Jx > 0, such that the lower half of the panel is a mirror image of
the upper half. The thick black horizontal line (Jz < 0 for Jx = 0)
represents a stable line of fixed points without a Kondo scale. The
entire white region below the diagonal lines to the left flows towards
it. The black dotted horizontal line (Jz > 0 for Jx = 0) represents a
line of unstable fixed points that flow to strong coupling for any small
but finite Jx (strictly at Jx = 0 one has TK = 0, represented by white
color). The gray lines represent RG flow contours as in Eq. (B3).
The Kondo temperature is defined by the starting point (x0, z0) on
such a contour. The Kondo scale increases monotonically from left
to right, and also with increasing |Jx|. The green contours show
lines of constant TK (J, Jz ) − (ρ0J )2 � 0. The thick green contour
to the right describes TK (J, Jz ) = (ρ0J )2 = ER(x = 1), which repre-
sents the largest RKKY energy possible by putting two impurities
right next to each other, with the closest distance being one “lattice
spacing” [cf. Eq. (20b)].

The Kondo scale vanishes to exponentially small energy
scales for Jx → 0, i.e., a → z−

0 .
In the easy-plane regime (|Jx| > |Jz|), with |x| � a, the RG

differential equations diverge at

ln
D∗

D0
= 1

a

(
tan−1 z0

a
− π

2

)
, a =

√
x2

0 − z2
0. (B5)

Both Kondo scales, Eq. (B4) and Eq. (B5) connect smoothly
across Jx = Jz > 0, where

ln
D∗

D0
= − 1

z0
(a → 0) (B6)

thus having T isotropic
K � D0 e− 1

ρ0J . Here the Kondo scale re-
mains finite if Jz → 0,

ln
D∗

D0
= − π

2x0
(a → x0) (B7)

thus having T Jz=0
K � D0 e−π/2ρ0Jx .

For Jz < −|Jx| the system flows to the ferromagnetic
regime with Jx → 0 without any Kondo physics. That is D
can be integrated out all the way to zero, which thus implies
D∗ = TK = 0.
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APPENDIX C: BASIC COMPARISON KONDO VS RKKY
ENERGY

The single-impurity Kondo scale from the previous sec-
tion may be compared to the RKKY energy ER [cf. Eq. (20b)].
The latter decays with distance, hence is largest for short
distances, with the shortest possible distance given by one
“lattice spacing” [cf. Eq. (2)], hence ER � (ρ0J )2 in the
adopted units [Sec. II A]. With this in mind, Fig. 12 also
includes contours of constant TK (J, Jz ) − (ρ0J )2 � 0 (green
lines), with the thick line representing TK (J, Jz ) = (ρ0J )2.
Therefore the parameter regime to the right of the thick green
contour always has TK > ER for any x � 1, meaning that
in this regime Kondo is always dominant over RKKY. This
regime has been predicted in Ref. [1]. In particular, this in-
cludes the isotropic Kondo for J � 0.25, corresponding to a
dimensionless coupling j0 ≡ ρ0J = 0.125. While still clearly
below 1, this is on the upper end of what may be considered
acceptable on physical grounds for the Kondo model: Note
that the poor-man’s scaling approach for the Kondo model
only includes second-order virtual processes by integrating
out the bath, which assumes (and thus is justified only if)
J2

D � D, i.e., j0 � 0.5. Conversely, note that coming from
an Anderson model, one has jeff

0 � 4�
πU with hybridization

strength � and on-site interaction U . So in order for the Kondo
model to be justified in the first place, the on-site interaction
U needs to be large enough so that charge fluctuations can be
integrated out via virtual second-order processes (cotunnel-
ing) in order to obtain a pure effective spin Hamiltonian. This
clearly requires U � �, and thus also j0 � 1 on physical
grounds.

Conversely, to the left of the thick green line in Fig. 12,
RKKY can dominate in the low-energy regime if a pair of
impurities is just brought close enough to each other. In par-
ticular, RKKY also occurs within the entire white region to
the left where TK = 0. With ER > TK = 0 then, the impurity
distance x can be taken to infinity while still seeing RKKY
in the low-energy regime (note that since RKKY is second
order, with ER ∝ J2/x, the sign of the Kondo couplings is
irrelevant).

APPENDIX D: SECOND-ORDER PERTURBATION
PROCESSES ENTERING RKKY

Complimentary to the field theoretic approach in the main
text, the RKKY processes can also be analyzed from the point
of view second-order PT. Ultimately, this generates the same
effective Hamiltonian as in the field theoretic approach, but
purely within the Hamiltonian setting, e.g., via the Feshbach
formalism [58,59].

Let the full Hamiltonian of two Kondo-coupled impu-
rity spins η ∈ {R,L} ≡ {+1,−1} at location ηx

2 , i.e., at
mutual distance x, interacting with a one-dimensional he-
lical bath encoded by the Fermionic operators ĉkσ be
given by

Ĥ =
∑
ηa

2Ja
(
Ŝa

η

)† · ŝa
η +

∑
kσ

εkσ ĉ†
kσ

ĉkσ (D1a)

with a ∈ x, y, z, and bath spins (with τa the Pauli matrices),

ŝa
η ≡ 1

2
σ̂ a

η = 1

N

∑
kσ,k′σ ′

(
ĉ†

kσ
1
2τσσ ′

a ĉk′σ ′

)
ei (k′−k) ηx

2 , (D1b)

assuming a total of N levels k for each spin. Furthermore,
the energies of the bath εkσ = σvk are constrained to within
a finite half-bandwidth |εkσ | � D. Taking J ≡ Jx = Jy and
σ̂±

η ≡ ŝ±
η ≡ ŝx

η ± i ŝy
η, the Kondo interaction can be written

from the point of view of the helical Fermions as

2Ja
(
Ŝa

η

)† · ŝa
η ≡ J (Ŝ+

η σ̂−
η + H.c.) + Jz Ŝz

ησ̂
z
η

≡ J

N

∑
kσ,k′σ ′

(ĉ†
kσ

T̂ η

σσ ′ ĉk′σ ′ )ei (k′−k) ηx
2

with the matrix notation in σ∈{↑,↓}≡{1, 2} for the operators
of each impurity [see also Eq. (13)],

T̂ η =
(

�Ŝz
η Ŝ−

η

Ŝ+
η −�Ŝz

η

)
≡ Ŝ−

η ⊗τ+ + Ŝ+
η ⊗τ− + �Ŝz

η⊗τz,

with anisotropy �≡ Jz

J and τ± = 1
2 (τx ± iτy). The isotropic

case �=1 just reduces to T̂ η = Ŝ†
η · τ .

The effective Hamiltonian in between the impurities, i.e.,
their direct interaction, is generated via second-order PT in
the Kondo setting fourth order in the hybridization for an
Anderson model). Then with the shortcuts 1 ≡ (k1σ1), etc.,
a typical second-order process is given by

δĤ (x) ∼ P0
(
ĉ†

1T̂ η
σ1σ2

ĉ2 ei (k2−k1 ) ηx
2
) (J/N )2

i0+ − (ε3 − ε4)

× (
ĉ†

3T̂ η′
σ3σ4

ĉ4 ei (k4−k3 ) η′x
2
)

P0 (D2)

with degrees of freedom such as impurity location
η∈{L, R}≡{−1, 1}, or spin σ or momenta k to be summed
over eventually. P0 is a projector into the target low-energy
regime of the bath without acting at the impurities. This is in
the spirit of generating the low-energy effective Hamiltonian
such as the Feshbach-Fano partitioning [58,59]. There, by
construction, one needs to start out of the low-energy regime,
say by considering some infrared cutoff energy D∗ � D. In
the low-energy regime described by P0 then, all bath levels
with energy εkσ < −D∗ are strictly occupied and all energy
levels εkσ > +D∗ are strictly empty. Now in Eq. (D2), the
perturbation T̂ on the right-hand side generates a particle-hole
(p/h) pair with particle energy ε3 > 0 and hole energy ε4 < 0.
Therefore, as long as either ε3 > +D∗ or ε4 < −D∗ (or both),
this represents state space outside the low-energy regime P0.

If D∗ � D, the overwhelming number of processes will
involve both, particle and hole at energy cost above D∗. There
in order to return to the low-energy regime, exactly the same
p/h pair must be destroyed again. This constrains the second
processes above to δ14δ23, with the shortcut notation δi j ≡
δkik j δσiσ j . Actually, the processes δ14δ23 can be included all the
way down to zero energy, i.e., there is a priori no need for
an infrared energy cutoff D∗, so one can assume D∗ → 0+ as
long as the sum is well defined (which it turns out it is). With
the bath projected via P onto the exactly filled helical Fermi
sea, this generates the effective, purely local inter-impurity
Hamiltonian

033016-23



FERRER, YEVTUSHENKO, AND WEICHSELBAUM PHYSICAL REVIEW RESEARCH 5, 033016 (2023)

Ĥ eff
imp(x) =

∑
ηη′

ε1<0∑
k1σ1

ε2>0∑
k2σ2

(
T̂ η

σ1σ2
ei (k2−k1 )xη

) (J/N )2

i0+−(ε2−ε1 )

(
T̂ η′

σ2σ1
ei (k1−k2 )xη′ )

= −(ρ0J )2
∑
ηη′
σ1σ2

T̂ η
σ1σ2

T̂ η′
σ2σ1

∫ 0

−D
dε1

∫ D

0
dε2

e
i (σ2ε2−σ1ε1 ) 1

v (xη−x
η′ )

−i0++(ε2−ε1 )︸ ︷︷ ︸
≡Iηη′

σ1σ2

(D3)

having taken the continuum limit i ≡ (kiσi ) → (εiσi ), with
ρ0 the constant one-particle density of states of the helical
edge for a given spin at the Fermi level as in Eq. (2). The
phase factor in the second line rewritten in terms of energies
is already also specific to the helical edge. As an aside, we
note that the energy denominator of Iηη′

σ1σ2
can be rewritten into

an integral over imaginary frequencies,∫
dω

2π i

1

iω − ε1

1

iω − ε2
= θ (−ε1ε2)

|ε2 − ε1| , (D4)

which resembles a Matsubara summation at zero temperature.
Via contour integral, the result is non zero only if ε1 and ε2

have opposite sign as encoded into the Heaviside step function
on the right-hand side. This already reflects the particle-hole
nature of the excitations in Eq. (D3) where ε1 < 0 and ε2 > 0.
The case with opposite signs is included in Eq. (D3) via
the overall sum. Assuming η 
=η′, then the case η ↔ η′ gives
the additional contribution above, while also exchanging the
labels 1 ↔ 2, such that the sign in the phase factor is properly
restored, while also having [T̂ η, T̂ η′

]=0 for η 
=η′. Hence by
summing over all second-order processes, one can connect
the second-order perturbative approach here to the double-
propagator structure in Eq. (15) in the main text obtained
from the field-theoretic approach. Collecting phase factors in
k1 and k2, the latter thus permits the interpretation that any
second-order process in the effective impurity Hamiltonian
requires the free propagator of two particles shuttling back
and forth in between the impurities (one particle needs to
propagate the distance +x, and another the distance −x). Here
in the helical setting, however, the directions that particles
can move are constrained depending on their spin. This man-
ifests itself in the overall structure of the resulting RKKY
Hamiltonian [1].

The integral Iηη′
σ1σ2

in Eq. (D3) is generally well defined
when both, ε1 and ε2 approach zero energy, irrespective of
the phase factor since

∣∣Iηη′
σ1σ2

∣∣ � ∫ 0

−D
dε1

∫ D

0
dε2

∣∣∣∣ 1

−i0+ + (ε2 − ε1)

∣∣∣∣ = 2D ln 2.

(D5)

The imaginary part form i0+ does not contribute, as by the
integral limits, it can only contribute at ε = ε′ = 0, where by
the double integral the integrated weight vanishes.

When η = η′, the complex phases drop out, and with S2
η ∝

11 the integral in Eq. (D3) just generates a plain irrelevant
shift in the global energy reference as estimated above (the
generation of the single impurity Kondo couplings needs to
consider finite D∗ and relax the condition δ14δ23 above). Hence
the following discussion focusses on η 
=η′, i.e., η′= − η, in

which case the phase factors in the enumerator are nontrivial
and reflect the underlying helical physics. In contrast to the
energy denominator, however, the phase factors carry mo-
menta as arguments. Converting these into energies, in the
helical setting with εkσ = σvk, this involves signs depend-
ing on the spin as already indicated with the integral Iηη′

σ1σ2

in Eq. (D3).
Contributions that involve a spin flip (σ2= − σ1), will have

opposite relative sign of ε1 vs ε2 in the phase factor in
Eq. (D3) as compared to the energy denominator, whereas
in the absence of a spin flip the relative sign is the same. To
evaluate this integral including the phases, it is therefore con-
venient to change variables to symmetric and antisymmetric
combinations (

ε′
ε

)
≡

(
1 1

−1 1

)
︸ ︷︷ ︸

≡U

(
ε1

ε2

)
. (D6)

With ε1 < 0 and ε2 > 0, by construction, 0 � ε � 2D and
ε′ ∈ [−ε, ε]. The integral will converge with large D, such
that the upper integral limit can be taken more loosely by
deforming the integration area to ε � D̃ = 3D

2 , with the upper
integral limit D̃ assumed large, and eventually taken to infinity
if well defined. With this one obtains for the case including a
spin flip, with τ̃ ≡ σ2

v
(xη − xη′ ), and thus τ ≡ |τ̃ | = x

v
having

η 
= η′, with x = |xη − xη′ |,

Iη 
=η′
σ1 
=σ2

= −
∫ 0

−D
dε1

∫ D

0
dε2

ei τ̃ (ε2+ε1 )

i0+−(ε2−ε1 )

� − 1
det U︸︷︷︸
= 1

2

∫ D̃

0
dε

∫ ε

−ε

dε′ ei τ̃ ε′

i0+−ε︸ ︷︷ ︸
= 1

i τ̃
2i sin τ̃ ε
i0+−ε

= 1
τ̃

∫ D̃

0
dε sin τ̃ ε

ε︸ ︷︷ ︸
� sgnτ̃

2 π

� π
2τ

= πv
2x (D7)

where the contribution from the imaginary part i0+ in the
denominator vanishes, as this gives

∫
dε δ(ε) sin τε → 0.

The remaining integral is well defined and converges for
|τD| = xD

v
� 1 to π/2 as indicated. Combining all σ1 = −σ2

terms adds Hermitian conjugate, whereas summing over η =
−η′ just duplicates entries. Thus the RKKY Hamiltonian
for the helical setting generated by second-order processes
becomes

ĤR(x) = − ( ρ0J︸︷︷︸
≡ j0

)2 πv
x︸︷︷︸

=πEx︸ ︷︷ ︸
=ER

(Ŝ+
L Ŝ−

R + Ŝ−
L Ŝ+

R) (D8)
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with the dimensionless Kondo coupling strength j0. Overall,
this generated direct impurity interaction is ferromagnetic and
nonoscillatory with a plain decay with inverse distance x,
having the RKKY energy scale,

ER = π j2
0 Ex, (D9)

as already encountered in Eq. (20) in the main text. The
RKKY Hamiltonian is independent of the bandwidth D, and
aside from the dimensionless Kondo coupling strength j0,
only references the coherence scale Ex ≡ 1

τ
with τ = x/v the

time required for a helical particle to travel from one impurity
to the other. With the lattice spacing in Eq. (2), nevertheless,
this energy scale may be rewritten as Ex = D/π

x/a . That is when
measuring distance on the grid (A11), by definition, this in-
volves a finite bandwidth, such that the bandwidth does appear
in the definition of Ex. In the continuum wide-band limit,
however, the natural way to think about the coherence scale
is Ex = 1/τ without any reference to bandwidth.

In the absence of a spin flip, i.e., σ1 = σ2 the integral can
be similarly evaluated,

Iη 
=η′
σ1=σ2

= −
∫ 0

−D
dε1

∫ D

0
dε2

ei τ̃ (ε2−ε1 )

i0+−(ε2−ε1 )

� − 1
det U︸︷︷︸
=1/2

∫ D̄

0
dε

∫ ε

−ε

dε′

︸ ︷︷ ︸
=2ε

ei τ̃ ε

i0+−ε
=

∫ D̄

0
dε ei τ̃ ε,

(D10)

with some simple averaged upper bound D̄ ∼ 3D
2 , assuming

that the integral is well defined in the wide-band limit. Again
the contribution from the imaginary part i0+ in the denomina-
tor vanishes, since

∫
dε δ(ε) εei τ̃ ε → 0, as already expected

from Eq. (D5). By summing over spin or location, with
τ̃ ∝ ησ2, only the real part remains,

∑
ησ1

Iη=−η′
σ1=σ2

� 4
τ

sin τ D̄,
which seems to suggest 1/x behavior similar in magnitude to
Eq. (D8). In the present case, however, the integral remains
sensitive on the bandwidth D. Therefore the assumption for
introducing D̄ above does not hold, and the integral needs
to be evaluated more carefully. The exact representation of
the integral in the first line of Eq. (D10) yields with z̃ ≡ τ̃ ε,

λ̃ ≡ τ̃D, and λ ≡ |λ̃| = τD,∑
ησ1

Iη 
=η′
σ1=σ2

= 4 Re

(∫ D

0
dε ei τ̃ ε +

∫ 2D

D
dε 2D−ε

ε
ei τ̃ ε

)

= (1 − ei τ̃D) 4
τ

sin τD︸ ︷︷ ︸
→ 0

+8DRe
∫ 2λ̃

λ̃

dz̃
z̃ ei z̃

︸ ︷︷ ︸
=Ci(λ)−Ci(2λ)

(D11)

with Ci() the cosine integra function. The first term vanishes
on the grid (A11) having |λ| = τD = πx/a a multiple of π .
As apparent from the oscillating averaging structure in the
second term, it also vanishes for large λ. In the asymptotic
form for large λ, the leading term of the cosine integral
Ci(λ) ∼ sin λ

λ
again drops out on the grid (A11). Therefore

the subleading term Ci(λ) ∼ cos λ
λ2 becomes the dominant one

for large λ. But with DCi(λ) ∼ D
λ2 ∼ 1

Dx2 , this does not just
decay faster over distance as compared to RKKY for a normal
1D metallic mode, but is also suppressed in the wide-band
limit. Therefore as expected the ZZ contribution to the RKKY
Hamiltonian properly vanishes for D → ∞ even for finite Jz.
At finite bandwidth, however, there is a finite return probabil-
ity, resulting in a small but finite Sz

LSz
R interaction strength

across the impurities. This may be considered acceptable on
physical grounds, bearing in mind that for a true 2D model
the spin-dependent directedness of motion only concerns the
edge but not the bulk states gapped out to energies > D.

Finally, we point out that above integrals also appear in the
theory of a normal metallic edge when one assumes the same
linear dispersion and finite bandwidth as for the helical system
here. However, by having additional branches of the oppo-
site helicity in the dispersion for back propagation, the same
integrals appear and are summed over all spin interactions
XX, YY, and ZZ. This way the RKKY interaction becomes
isotropic for a normal metallic edge. The above argument
that the leading oscillatory term vanishes is particular to the
one-particle dispersion chosen here, and would also apply to
the normal metallic edge with the dispersion indicated. This
differs crucially from a system of free particles in a Fermi
sea with a quadratic dispersion and a finite Fermi energy.
In this case, the analytic structure of the respective integrals
is different. As a consequence, this permits the leading 2k f

oscillatory term ∝ 1/x to be present in a normal metallic 1D
mode [43].
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