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Abstract

A squaregraph is a plane graph in which each internal

face is a 4‐cycle and each internal vertex has degree at

least 4. This paper proves that every squaregraph is

isomorphic to a subgraph of the semistrong product of

an outerplanar graph and a path. We generalise this

result for infinite squaregraphs, and show that this is

best possible in the sense that “outerplanar graph”
cannot be replaced by “forest”.
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1 | INTRODUCTION

A squaregraph is a plane graph1 in which each internal face is a 4‐cycle and each internal vertex
has degree at least 4. These graphs were introduced in 1973 by Soltan, Zambitskiĭ and Prisakaru
[25]. They have many interesting structural and metric properties. For example, Bandelt,
Chepoi and Eppstein [3] showed that squaregraphs are median graphs and are thus partial
cubes, and that every squaregraph can be isometrically embedded2 into the Cartesian
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product3 of five trees. See the survey by Bandelt and Chepoi [2] for background on metric graph
theory.

The primary contribution of this paper is the following product structure theorem for
squaregraphs, as illustrated in Figure 1. For graphs G and H , the semistrong product G H⋈ is
the graph with vertex‐set V G V H( ) × ( ) with an edge between two vertices v w( , ) and v w( ′, ′) if
v v= ′ and ww E H′ ( )∈ , or vv E G′ ( )∈ and ww E H′ ( )∈ ; see, for example, [18, 21]. Note that

G H G H G H× .⊆ ⋈ ⊆ ⊠

We write H G⫇ to mean that H is isomorphic to a subgraph of G.

Theorem 1. For every squaregraphG there is an outerplanar graph H and a path P such
that G H P⫇ ⋈ .

Note that since a path is bipartite, H P⋈ is also bipartite.
We in fact prove a more general sufficient condition for a plane graph to have such a

product structure which implies Theorem 1; see Theorem 5 in Section 2.
The second contribution of this paper is to show that Theorem 1 is best possible in the sense

that “outerplanar graph” cannot be replaced by “forest”. Moreover, this lower bound holds for
strong products. In fact, we prove that for every integer ℓ ℕ∈ there is a squaregraph G such

FIGURE 1 A squaregraph G (left) isomorphic to a subgraph of the semistrong product H P⋈ of an
outerplanar graph H and a path P (right). [Color figure can be viewed at wileyonlinelibrary.com]

3The following are the standard graph products. For graphs G and H , the Cartesian product G H□ is the graph with
vertex‐setV G V H( ) × ( ) with an edge between two vertices v w( , ) and v w( ′, ′) if v v= ′ and ww E H′ ( )∈ , or w w= ′ and
vv E G′ ( )∈ . The direct product G H× is the graph with vertex‐set V G V H( ) × ( ) with an edge between two vertices
v w( , ) and v w( ′, ′) if vv E G′ ( )∈ and ww E H′ ( )∈ . The strong product G H G H G H( ) ( × )⊠ ≔ □ ∪ .
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that for any graph H and path P, if G H P Kℓ⫇ ⊠ ⊠ then H contains a cycle (and is therefore
not a forest). This result actually follows from a stronger lower bound for bipartite graphs,
which has other interesting consequences; see Theorem 11 in Section 3. Also note that
Theorem 1 cannot be strengthened by replacing “outerplanar graph” by “graph with bounded
pathwidth”. Indeed, Bose, Dujmović, Javarsineh, Morin and Wood [8] showed that for every
k ℕ∈ there is a tree T (which is a squaregraph) such that for any graph H and path P, if
T H P⫇ ⊠ then H kpw( ) ⩾ .

In Theorem 1 it is natural to ask whether there is such an outerplanar graph H independent
of G. This leads to the study of infinite squaregraphs, previously investigated by Bandelt et al.
[3]. Our final contribution is an extension of Theorem 1 in which we show that every (possibly

infinite) squaregraph is isomorphic to a subgraph of O P⋈
→
, where O is the universal

outerplanar graph and P
→

is the 1‐way infinite path; see Section 4.
Before proving the above results, we provide further motivation by putting Theorem 1 in

context. The study of the product structure of graph classes emerged with the following seminal
result by Dujmović, Joret, Micek, Morin, Ueckerdt and Wood [15], now called the Planar Graph
Product Structure Theorem. This result describes planar graphs in terms of the strong product of
graphs with bounded treewidth4 and a path. A connected graph has treewidth at most 1 if and
only if it is a tree. Treewidth measures how similar a graph is to a tree and is an important
parameter in algorithmic and structural graph theory; see [19, 24]. Graphs with bounded
treewidth are considered to be a relatively simple class of graphs.

Theorem 2 (Dujmović et al. [15] and Ueckerdt et al. [27]). For every planar graphG there
is a graph H of treewidth at most 6 and a path P such that G H P⫇ ⊠ .

The original version of the Planar Graph Product Structure Theorem by Dujmović et al. [15]
had “treewidth at most 8” instead of “treewidth at most 6”. Ueckerdt et al. [27] proved
Theorem 2 with “treewidth at most 6”. Since outerplanar graphs have treewidth at most 2,
Theorem 1 is stronger than Theorem 2 in the case of squaregraphs. Theorem 1 is also stronger
than Theorem 2 in the sense that Theorem 1 uses ⋈ whereas Theorem 2 uses ⊠. That said, as
explained in Section 1.1, it is well known that in the case of bipartite planar graphsG, the proof
of Theorem 2 can be adapted to show that G H P⫇ ⋈ .

Product structure theorems are useful since they reduce problems on a complicated class of
graphs (such as planar graphs or squaregraphs) to a simpler class of graphs (bounded treewidth
graphs, such as outerplanar graphs). They have been the key tool to resolve several open
problems regarding queue layouts [15], nonrepetitive colourings [13], centred colourings [9],
clustered colourings [14], adjacency labellings [5, 16, 17], vertex rankings [7], twin‐width
[6] and infinite graphs [22]. Similar product structure theorems are known for other classes,
including graphs with bounded Euler genus [11, 15], apex‐minor‐free graphs [15], g d( , )‐map
graphs [12], g δ( , )‐string graphs [12], g k( , )‐planar graphs [12], powers of planar graphs [12, 20],
fan‐planar graphs [20] and k‐fan‐bundle planar graphs [20].

4A tree‐decomposition of a graph G is a collection B V G x V T( ( ) : ( ))x ⊆ ∈ of subsets of V G( ) (called bags) indexed by
the nodes of a tree T , such that (a) for every edge uv E G( )∈ , some bag Bx contains both u and v, and (b) for every
vertex v V G( )∈ , the set x V T v B{ ( ) : }x∈ ∈ induces a nonempty subtree ofT . The width of a tree‐decomposition is the
size of the largest bag minus 1. The treewidth of a graph G, denoted by Gtw( ), is the minimum width of a tree‐
decomposition of G. A path‐decomposition of a graph G is a tree‐decomposition B V G x V T( ( ) : ( ))x ⊆ ∈ where T is a
path. The pathwidth of a graph G, denoted by Gpw( ), is the minimum width of a path‐decomposition of G.

HICKINGBOTHAM ET AL. | 3
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1.1 | Preliminaries

We consider undirected simple graphs G with vertex‐set V G( ) and edge‐set E G( ). Unless
stated otherwise, graphs are finite. Undefined terms and notation can be found in Diestel's
textbook [10].

For m n, ℤ∈ with m n⩽ , let m n m m n[ , ] { , + 1, …, }≔ and n n[ ] [1, ]≔ .
Let Pn denote a path on n vertices. For graphsG and H , the complete joinG H+ is the graph

obtained by the disjoint union ofG and H by adding all edges betweenG and H . For a graphG
with A B V G, ( )⊆ , let G A B[ , ] be the subgraph of G with V G A B A B( [ , ]) ≔ ∪ and
E G A B uv E G u A v B( [ , ]) { ( ) : , }≔ ∈ ∈ ∈ .

A matching M in a graph G is a set of edges in G such that no two edges in M have a
common end vertex. A matching M saturates a set S V G( )⊆ if every vertex in S is incident to
some edge in M .

A model of H in G is a function μ with domain V H( ) such that: μ v( ) is a connected
subgraph of G; μ v μ w( ) ( ) =∩ ∅ for all distinct v w V H, ( )∈ ; and μ v( ) and μ w( ) are adjacent
for every edge vw E H( )∈ . If, for some s ℕ0∈ , there is a model μ of H in G such that
V μ v s( ( ))  ⩽ for each v V H( )∈ , then H is an s‐small minor of G.

In a plane graph G, a vertex is outer if it is on the outerface of G and is inner otherwise. Let
IG denote the set of inner vertices in G.

LetG be a graph. A partition ofG is a set  of sets of vertices inG such that each vertex ofG
is in exactly one element of  . Each element of  is called a part. The quotient of  (with
respect toG) is the graph, denoted byG∕ , with vertex‐set  where distinct parts A B, ∈  are
adjacent in G∕ if and only if some vertex in A is adjacent in G to some vertex in B. An
H ‐partition of G is a partition A x V H= ( : ( ))x ∈ where H G≅ ∕ . For an H ‐partition
A x V H( : ( ))x ∈ of G, for each subgraph J G⊆ the quotient H̃ of the partition
A V J x V H A V J( ( ) : ( ), ( ) )x x∩ ∈ ∩ ≠ ∅ is called the subquotient for J . Note that H̃ is a
subgraph of H .

A layering of a graph G is an ordered partition L Lℒ ( , , …)0 1≔ of V G( ) such that for every
edge vw E G( )∈ , if v Li∈ and w Lj∈ , then i j− 1  ⩽ . ℒ is a BFS‐layering (of G) if L r= { }0 for
some root vertex r V G( )∈ and L v V G v r i= { ( ) : dist ( , ) = }i G∈ for all i 1⩾ . A path P is vertical
(with respect to ℒ) if V P L( ) 1i ∩ ⩽ for all i 0⩾ .

A layered partition ( , ℒ) of a graphG consists of a partition  and a layering ℒ ofG. If  is
an H ‐partition, then ( , ℒ) is a layered H ‐partition. If A x V H= ( : ( ))x ∈ , then the width of
( , ℒ) is A L x V H Lmax{ : ( ), ℒ}x ∩ ∈ ∈ . Layered partitions of width at most 1 are thin.
Layered partitions were introduced by Dujmović et al. [15] who observed the following
connection to strong products (which follows directly from the definitions).

Observation 3 (Dujmović et al. [15]). For all graphs G and H G H P K, ℓ⫇ ⊠ ⊠ for some
path P if and only if G has a layered H ‐partition ( , ℒ) with width at most ℓ.

We have the following analogous observation for ⋈ (which also follows directly from the
definitions).

Observation 4. For all graphs G and H G H K P, ( )ℓ⫇ ⊠ ⋈ for some path P if and only
if G has a layered H ‐partition ( , ℒ) with width at most ℓ, such that each L ℒ∈ is an
independent set in G.

4 | HICKINGBOTHAM ET AL.
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In Observation 4 we may use G H K P( )ℓ⫇ ⊠ ⋈ instead of G H K Pℓ⫇ ⊠ ⊠ when each
L ℒ∈ is an independent set, since no edges in G correspond to edges in H K Pℓ⊠ ⊠ of the
form v x w v y w( , , )( ′, , ) where vv E H x y V K′ ( ), , ( )ℓ∈ ∈ and w V P( )∈ .

As mentioned in Section 1, it is well known that in the case of bipartite planar graphsG, the
proof of Theorem 2 can be adapted to show that G H P⫇ ⋈ for some graph H of treewidth at
most 6 and for some path P. To see this, we may assume that G is edge‐maximal bipartite
planar. Thus G is connected, and each face is a 4‐cycle. Let L Lℒ = ( , , …)0 1 be a BFS‐layering of
G. So each Li is an independent set. Each face can be written as a b c d( , , , ) where a Li∈ and
b d L, i+1∈ and c L Li i+2∈ ∪ , for some i 0⩾ . Let G′ be the planar triangulation obtained from
G by adding the edge bd across each such face. Thus L L( , , …)0 1 is a layering of G′. The proof of
Theorem 2 shows that G′ has a partition  such that Gtw( ) 6∕ ⩽ and ( , ℒ) is a thin layered
partition. By construction, ( , ℒ) is a layered partition of G. By Observation 4, G H P⫇ ⋈ .

A red‐blue colouring of a bipartite graph G is a proper vertex 2‐colouring of G with colours
“red” and “blue”.

2 | SUFFICIENT CONDITIONS

In this section we prove Theorem 1. We first prove the following, more general sufficient condition
for a plane graph to be isomorphic to a subgraph of the strong or semistrong product of an
outerplanar graph and a path. Afterwards, we show that this more general result implies Theorem 1.

Theorem 5. Let G be a plane graph with inner vertices IG. If G has a layering
L Lℒ = ( , , …)0 1 such that G L L[ , ]i i−1 has a matching saturating L Ii G−1 ∩ for each i 1⩾ ,

then G H P⫇ ⊠ for some outerplanar graph H and path P. Moreover, if V L( )i is an
independent set for all L ℒi ∈ , then G H P⫇ ⋈ .

Proof. By Observations 3 and 4, it suffices to show thatG has a thin layered H ‐partition
 (with respect toℒ) for some outerplanar graph H . For each i n[ ]∈ , let Ei be a matching
in G L L[ , ]i i−1 that saturates L Ii G−1 ∩ . For vertices u Li−1∈ and v Li∈ and an edge
uv Ei∈ , we say that u is the parent of v and v is the child of u. Observe that each vertex
u L Ii G−1∈ ∩ has exactly one child and each vertex v Li∈ has at most one parent. Let J
be the subgraph of G where V J V G( ) = ( ) and E J E( ) = i n i[ ] ∈ .

Let X be a connected component of J . Choose the maximum j n[0, ]∈ such that there
exists some vertex v V X L( ) j∈ ∩ . Vertex v must be outer because each vertex in L Ij G∩

is adjacent in J to some vertex in Lj+1. As illustrated in Figure 2, since each vertex in X

has at most one child and at most one parent, X is a vertical path with respect to ℒ.
Let  be the partition of G determined by the connected components of J . Let H G= ∕

be the quotient of  . Since each part in  is a vertical path with respect to ℒ, it follows that
( , ℒ) is a thin layered H ‐partition. It remains to show that H is outerplanar. Since each part
in  is connected, H is a minor of G and is therefore planar. Since each part of  contains a
vertex on the outerface, contracting each part of into a single vertex gives a plane embedding
of H with each vertex on the outerface; see Figure 2. Therefore H is outerplanar. □

We now work towards showing that squaregraphs satisfy the conditions for Theorem 5.
A plane graphG is leveled if the edges are straight line‐segments and vertices are placed on a

sequence of horizontal lines, L L( , , …)0 1 , called levels, such that each edge joins two vertices in

HICKINGBOTHAM ET AL. | 5
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consecutive levels. If, in addition, we allow straight‐line edges between consecutive vertices on
the same level, thenG is weakly leveled. Observe that the levels in a weakly leveled plane graph
G define a layering of G. Leveled plane graphs were first introduced by Sugiyama, Tagawa and
Toda [26], and have since been well studied [4].

For a weakly leveled plane graphG with levels L L( , , …)0 1 and a vertex v Li∈ , the up‐degree
of v is N v L( )G i−1 ∩ and the down‐degree of v is N v L( )G i+1 ∩ . We now give a more natural
condition that forces our desired matching between two consecutive levels.

Lemma 6. Let G be a weakly leveled plane graph with inner vertices IG. If each vertex in
IG has down‐degree at least 2, then G H P⫇ ⊠ for some outerplanar graph H and path P.
Moreover, if G is a leveled plane graph, then G H P⫇ ⋈ .

Proof. Let L L( , , …)0 1 be the levels of G. Observe that if G is a leveled plane graph, then
V L( )i is an independent set for all i 0⩾ . For each i n[ ]∈ , let Ei be the set of edges in
G L L[ , ]i i−1 between each vertex v L Ii G−1∈ ∩ and its leftmost neighbour in Li; see Figure 2.
For the sake of contradiction, suppose there exists a vertex u L Li i−1∈ ∪ that is incident to
two edges in Ei. By construction, each vertex in L Ii G−1 ∩ is incident to at most one edge in
Ei so u Li∈ . Let x and y be the neighbours of u in Li−1, where x is to the left of y. Since x
has down‐degree at least 2, x is adjacent to a vertex v that is to the right of u. However, this
contradictsG being weakly leveled plane since uy and vx cross; see Figure 3. Therefore, Ei is
a matching that saturates L Ii G−1 ∩ . The claim therefore follows by Theorem 5. □

We are ready to prove Theorem 1 which we restate here for convenience.

Theorem 1. For every squaregraphG there is an outerplanar graph H and a path P such
that G H P⫇ ⋈ .

FIGURE 2 (Left) A squaregraph with a BFS‐layering and a partition  into vertical paths (thick orange). The
vertical paths are constructed from matchings between consecutive layers, where the leftmost vertex in Li is
chosen for each inner vertex in Li−1. (Right) The lower endpoint of each path is on the outerface, so when each
path is contracted we obtain an outerplanar graph. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Contradiction in the proof of Lemma 6.

6 | HICKINGBOTHAM ET AL.
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Proof. We may assume that G is connected (since if each component of G has the
desired product structure, then so does G). Bannister et al. [4] showed that G is
isomorphic to a leveled plane graph with levels given by a BFS‐layering ofG rooted at any
vertex r on the outerface. Without loss of generality, assume G is leveled plane with
corresponding levels L L( , , …)0 1 . Below we show that every inner vertex in G has up‐
degree at most 2. Since each inner vertex has degree at least 4, each inner vertex has
down‐degree at least 2. The result thus follows from Lemma 6.

For the sake of contradiction, suppose there exists an inner vertex with up‐degree at least
3. Let i n[ ]∈ be minimum such that there is a vertex v L Ii G∈ ∩ with up‐degree at least 3.
Let u u u, ,1 2 3 be neighbours of v in Li−1 ordered left to right. Since the levels are defined by a
BFS‐layering, there is a u r( , )1 ‐path and a u r( , )3 ‐path that does not contain u2; see Figure 4.
Hence, u2 is an inner vertex of G and thus has degree at least 4. However, by planarity, v is
the only neighbour of u2 in Li. Since u2 has no neighbours in Li−1 (asG is leveled plane), u2
has three neighbours in Li−2, which contradicts the minimality of i, as required. □

We now give an application of Theorem 1. A colouring ϕ of a graph G is nonrepetitive if for
every path v v, …, h1 2 in G, there exists i h[ ]∈ such that ϕ v ϕ v( ) ( )i i h+≠ . The nonrepetitive
chromatic number, π G( ), is the minimum number of colours in a nonrepetitive colouring of G.
Nonrepetitive colourings were introduced by Alon, Grytczuk, Hałuszczak and Riordan [1] and
have since been widely studied; see the survey [28].

Kündgen and Pelsmajer [23] showed that π G( ) 4 Gtw( )⩽ for every graph G. Building upon
this result, Dujmović et al. [13] proved the following:

Lemma 7 (Dujmović et al. [13]). For any graph H and path P, if G H P⫇ ⊠ then
π G( ) 4 Htw( )+1⩽ .

Using (a variation of) Theorem 2 and Lemma 7, Dujmović et al. [13] resolved a long‐
standing conjecture of Alon, Grytczuk, Hałuszczak and Riordan [1] by showing that planar
graphsG have bounded nonrepetitive chromatic number; in particular, π G( ) 768⩽ . WhenG is
a squaregraph, Theorem 1 and Lemma 7 imply that π G( ) 4 = 643⩽ .

3 | TIGHTNESS

In this section, we show that Theorem 1 is tight by proving a lower bound for the product
structure of bipartite graphs.

FIGURE 4 Vertex v Li∈ with three neighbours u u u, ,1 2 3 in the preceding layer Li−1. Since u2 is an inner
vertex, it has degree at least 4.

HICKINGBOTHAM ET AL. | 7
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The row treewidth of a graph G is the minimum integer k such that G H P⫇ ⊠ for some
graph H with treewidth k and path P [8]. Theorem 2 says that every planar graph has row
treewidth at most 6. Dujmović et al. [15] showed that the maximum row treewidth of planar
graphs is at least 3. They in fact proved the following stronger result.

Theorem 8 (Dujmović et al. [15]). For all k, ℓ ℕ∈ with k 2⩾ there is a graph G with
pathwidth k such that for any graph H and path P, if G H P Kℓ⫇ ⊠ ⊠ then K Hk+1 ⫇

and thus H has treewidth at least k. Moreover, if k = 2 then G is outerplanar, and if k = 3

then G is planar.

Theorem 1 says that squaregraphs have row treewidth at most 2. We show that this bound is
tight by proving Theorem 11 which is an analogous result to Theorem 8 for bipartite graphs. As
an introduction to the key ideas in the proof of Theorem 11, we first establish Proposition 10
which is a slight generalisation of Theorem 8. We need the following lemma for finding long
paths in quotient graphs.

Lemma 9. For every a n, ℕ∈ , there exists a sufficiently large n′ ℕ∈ such that for every
graphG that contains an n′‐vertex path and for every H ‐partition A x V H( : ( ))x ∈ ofG where
A ax  ⩽ for all x V H( )∈ , for each w V H( )∈ the graph H w− contains a path on n vertices.

Proof. Letm be sufficiently large compared to n and let n a am a′ ( + 1) +≔ . SupposeG
has a path on n′ vertices. Let G G A′ = − w. Since V P A a P( ) ,w ∩ ⩽ is split into at most
a + 1 disjoint subpaths inG′. Thus, there is a path Pmax inG′ with at least am vertices. Let
H̃ be the subquotient of H with respect to Pmax. Observe that H̃ is connected and that
V H am a m( ˜ ) =  ⩾ ∕ . Moreover, H H w˜ −⊆ since A V P( ) =w max∩ ∅. Now H̃ has
maximum degree at most a2 since every vertex in Pmax has degree at most 2. Thus, since
m is sufficiently large, H̃ contains a path on at least n vertices, as required. □

The following result generalises Theorem 8 (which is the n = 2 case).

Proposition 10. For all k n, ℓ, ℕ∈ there exists a graph G with pathwidth at most k + 1

such that for any graph H and path P, if G H P Kℓ⫇ ⊠ ⊠ then P K H+n k ⫇ .

Proof. We proceed by induction on k 1⩾ . Let n′ be sufficiently large compared to n. Let
G(1) be the graph obtained from a path on n′ vertices plus a dominant vertex v. Observe
that G(1) has radius 1 and pathwidth at most 2. Suppose G H P K(1)

ℓ⫇ ⊠ ⊠ for some
graph H and path P. By Observation 3, there is a layered H ‐partition A x V H( : ( ))x ∈ of
G of width at most ℓ. Let w V H( )∈ be such that v Aw∈ . Since G(1) has radius 1, every
layering ofG(1) consists of at most three layers so A 3ℓx  ⩽ for all x V H( )∈ . By Lemma 9
and since n′ is sufficiently large, H w− contains a path on n vertices. As v is dominant in
G w,(1) is also dominant in H . Thus P K H+n 1 ⫇ .

Now suppose k > 1 and letG k( −1) be a graph that satisfies the induction hypothesis for
k − 1. LetG k( ) be obtained by taking 3ℓ disjoint copies ofG k( −1) plus a dominant vertex v.
Then G k( ) has pathwidth at most k + 1. As in the base case, let A x V H( : ( ))x ∈ be a
layered H ‐partition ofG k( ) of width ℓ. Let w V H( )∈ be such that v Aw∈ . SinceG k( ) has
radius 1, it follows that A v− { } 3ℓ − 1w  ⩽ . Thus, there is a copy of G k( −1) that contains
no vertices from Aw. Now consider the subquotient H̃ of H with respect to this copy of

8 | HICKINGBOTHAM ET AL.
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G k( −1) . By induction, P K H+ ˜
n k−1 ⫇ . Since v is dominant inG w,k( ) is dominant in H and

thus P K H+n k ⫇ , as required. □

Note that in Proposition 10, the graph G(1) is outerplanar and the graph G(2) is planar for
every n ℕ∈ .

We now prove our main lower bound which is a bipartite version of Proposition 10.

Theorem 11. For all i j k n, , , ℓ, ℕ∈ where i j k+ = , there exists a bipartite graph G i j( , )

with pathwidth at most k + 1 such that for any graph H and path P, if
G H P Ki j( , )

ℓ⫇ ⊠ ⊠ then P K+n i j, is a 2‐small minor of H . Moreover, G(1,0) is an
outerplanar squaregraph and G(1,1) is a bipartite planar graph.

Proof. Let P a a= ( , …, )n n1 be a path on n vertices. Let B b b= { , …, }i1 and C c c= { , …, }j1

be the bipartition ofV K( )i j, . We proceed by induction on k with the following hypothesis:
for every i j k n, , , ℓ, ℕ∈ where i j k+ = , there exists a red‐blue coloured connected
bipartite graph G, such that for any graph H , if A x V H( : ( ))x ∈ is a layered H ‐partition
of G of width at most ℓ, then H contains a model μ of P K+n i j, such that for each
u V P K( + )n i j,∈ we have V μ u( ( )) 2  ⩽ and Aa V μ u a( ( )) ∈ contains:

1. a red vertex when u B∈ ;
2. a blue vertex when u C∈ ; and
3. a red and a blue vertex when u V P( )n∈ .

The claimed theorem follows by Observation 3.
For k = 1we may assume that i = 1 and j = 0. Let n′ be sufficiently large and letG(1,0)

be the bipartite graph obtained from a red‐blue coloured path P u u= ( , …, )G n1 ′ on n′

vertices plus a red vertex v adjacent to all the blue vertices in V P( )G . Observe that G(1,0)

has radius 2 and pathwidth at most 2. Let A x V H( : ( ))x ∈ be a layered H ‐partition of
G(1,0) of width ℓ. Let w V H( )∈ be such that v Aw∈ . Then Aw contains a red vertex.
SinceG(1,0) has radius 2, every layering ofG(1,0) has at most five layers, so A 5ℓx  ⩽ for all
x V H( )∈ . By Lemma 9 and since n′ is sufficiently large, H w− contains a path
P a a= ( ′, …, ′ )H n1 2 on n2 vertices. Now for every edge a a E P′ ′ ( )i i H+1 ∈ , there exists

j n[ ′ − 1]∈ such that u u A A,j j a a+1 ′ ′
i i+1

∈ ∪ . As such, A Aa a′ ′
i i+1
∪ contains a red and a

blue vertex. For all i n[ ]∈ , let μ a H a a( ) = [{ ′ , ′ }]i i i2 −1 2 and μ b w( ) = { }1 . Then μ is a model

of P K+n 1,0 in H which satisfies the induction hypothesis.
Now suppose k > 1 and that there is a red‐blue coloured connected bipartite graphG i j( −1, )

such that for any graphH , if A x V H( : ( ))x ∈ is a layeredH ‐partition ofG of width at most ℓ,
thenH contains a model μ̃ of P K+n i j−1, where V μ u( ˜( )) 2  ⩽ for allu V P K( + )n i j−1,∈ and

Aa V μ u a( ( )) ∈ contains a red vertex when u B∈ ; a blue vertex when u C∈ ; and a red and a

blue vertex when u V P( )n∈ . Let G i j( , ) be obtained by taking 5ℓ copies of G i j( −1, ) plus a red
vertex v that is adjacent to all the blue vertices. ThenG i j( , ) has radius 2 and pathwidth at most
k + 1. As in the base case, let A x V H( : ( ))x ∈ be a layered H ‐partition of G i j( , ) of width ℓ.
Let w V H( )∈ be such that v Aw∈ . Then Aw contains a red vertex. SinceG i j( , ) has radius 2,
A v− { } 5ℓ − 1w  ⩽ . Thus, there is a copy ofG i j( −1, ) that contains no vertices from Aw. Now
consider the subquotient H̃ of H with respect to this copy ofG i j( −1, ) . By induction, H̃ contains
a model μ̃ which satisfies the induction hypothesis. Let μ b w( ) = { }i and μ v μ v( ) = ˜( ) for all

HICKINGBOTHAM ET AL. | 9
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v V P K( + )n i j−1,∈ . Since v is adjacent to all the blue vertices inG w, is adjacent to a vertex in
Aa V μ u a( ( )) ∈ whenever u V P C( )n∈ ∪ . Thus μ is a model of P K+n i j, in H which satisfies

the induction hypothesis, as required.
As illustrated in Figure 5, G(1,0) is an outerplanar squaregraph and G(1,1) is a bipartite

planar graph. □

We now highlight several consequences of Theorem 11. First, since the graph G(1,0) is an
outerplanar squaregraph and P K+2 1,0 is a 3‐cycle, we have the following:

Corollary 12. For every ℓ ℕ∈ , there exists a squaregraph G such that for any graph H

and path P, if G H P Kℓ⫇ ⊠ ⊠ then H contains a cycle of length at most 6.

Thus Theorem 1 is best possible in the sense that “outerplanar graph” cannot be replaced by
“forest”.

Second, since the graph G(1,1) is a bipartite planar graph and P K K+2 1,1 4≅ which has
treewidth 3, we have the following:

Corollary 13. For every ℓ ℕ∈ , there exists a bipartite planar graph G such that for any
graph H and path P, if G H P Kℓ⫇ ⊠ ⊠ then H contains a 2‐small minor of K4 and thus

Htw( ) 3⩾ .

Therefore, the maximum row treewidth of bipartite planar graphs is at least 3. We conclude
this section with the following open problem: what is the maximum row treewidth of bipartite
planar graphs? As in the case of (non‐bipartite) planar graphs, the answer is in {3, 4, 5, 6}.

4 | INFINITE SQUAREGRAPHS

In this section by “graph” we mean a graph G with V G( ) finite or countably infinite. Huynh
et al. [22] showed how Theorem 2 can be used to construct a graph that contains every planar
graph as a subgraph and has several interesting properties. Here we adapt their methods to
construct an analogous graph that contains every squaregraph as a subgraph.

FIGURE 5 The graphsG(1,0) andG(1,1) from Theorem 11. [Color figure can be viewed at wileyonlinelibrary.com]

10 | HICKINGBOTHAM ET AL.
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Bandelt et al. [3] gave several equivalent definitions of an infinite squaregraph. The
following definition suits our purposes. Let G be a locally finite5 graph. For every vertex v of G
and every r ℕ∈ the subgraphG w V G v w r[{ ( ) : dist ( , ) }]G∈ ⩽ is called a ball. SinceG is locally
finite, every ball is finite. An infinite graphG is a squaregraph if it is locally finite and every ball
in G is a squaregraph. Let P

→
be the 1‐way infinite path, which has vertex‐set ℕ0 and edge‐set

i i i{{ , + 1} : ℕ }0∈ . It is well known that there is a universal outerplanar graph O. This means
that O is outerplanar and every outerplanar graph is isomorphic to a subgraph of O. See
Theorem 4.14 in [22] for an explicit definition of O.

Theorem 14. Every squaregraph is isomorphic to a subgraph of O P⋈
→
.

Theorem 14 follows from Theorem 1 and the next lemma, which is an adaptation of
Lemma 5.3 in [22].

Lemma 15. Let H be a graph. Let G be a locally finite graph such that B H P⫇ ⋈
→

for

every ball B in G. Then G H P⫇ ⋈
→
.

Proof Sketch. Fix v V G( )∈ . For n ℕ0∈ , let V w V G v w n{ ( ) : dist ( , ) = }n G≔ ∈ and

G G V V V[ ]n n0 1≔ ∪ ∪ ⋯∪ . So Gn is a finite ball in G. By assumption, G H Pn ⫇ ⋈
→
. Let

Xn be the set of all thin layered H ‐partitions ( , ℒ) ofGn, such that L is an independent
set inGn for each L ℒ∈ . By Observation 4, Xn ≠ ∅. SinceGn is finite and connected, Xn
is finite. For each n ℕ∈ and for each X( , ℒ) n∈ , if Y V Y Y V′ { : , }n n≔ ⧹ ∈ ⧹ ≠ ∅ 

and L V L Y Vℒ′ { : ℒ, }n n≔ ⧹ ∈ ⧹ ≠ ∅ then X( ′, ℒ′) n−1∈ (since Gn−1 is connected). By
Kőnig's lemma, there is an infinite sequence ( , ℒ ), ( , ℒ ), ( , ℒ ), …0 0 1 1 2 2   where

= ′n n−1  and ℒ = ℒ′n n−1 for each n ℕ∈ . By construction, n−1 is a “subpartition”
of n and ℒn−1 is a “subpartition” of ℒn. Let n nℕ0

≔ ∈  and ℒ ℒn nℕ0
≔ ∈ . Then

( , ℒ) is a thin layered H ‐partition of G; see [22] for details. By Observation 4,

G H P⫇ ⋈
→
. □
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5A graph G is locally finite if every vertex of G has finite degree.
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