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Abstract In this work, two non-local approaches to
dynamic fracture are investigated: a novel peridynamic
formulation and a variational phase-field approach.
The chosen continuum-kinematics-based peridynamic
model extends the current peridynamic models by
introducing surface and volume-based interactions.
The phase-field fracture approach optimizes the body’s
potential energy and provides a reliable method for
predicting fracture in finite element computations.
Both methods are able to efficiently compute crack
propagation even when the cracks have arbitrary or
complex patterns. We discuss the relations of criti-
cal fracture parameters in the two methods and show
that our novel damage model for the continuum-
kinematics-based peridynamics effectively manages
fracture under dynamic loading conditions. Numeri-
cal examples demonstrate a good agreement between
both methods in terms of crack propagation, fracture
pattern, and in part, critical loading. We also show the
limitations of the methods and discuss possible reasons
for deviations.
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1 Introduction

In computational mechanics, predicting fracture prop-
agation and material degradation is still challenging.
Numerous computational techniques, including dam-
age models, discontinuous finite element discretiza-
tions (Xu and Needleman 1994; Ortiz and Pandolfi
1999; Dally et al. 2020), and phase-field fracture
simulations (Miehe andMauthe 2016;Wilson and Lan-
dis 2016; Bilgen and Weinberg 2021), have been used
to solve fracture problems. The classical continuum
mechanics assumption of a homogeneous bulk mate-
rial forms the basis for these methods.

For the dynamic fracture of brittle materials, several
studies have been published using phase-field models
for predicting fragmentation. Ren et al. proposed an
explicit phase-field model for dynamic brittle fracture
that uses sub-stepping to achieve fast convergence (Ren
et al. 2019). Geelen et al. expanded a cohesive frac-
ture phase-field/gradient-damagemodel to the dynamic
situation and showed that their model is a reliable
and efficient way to simulate the spread of cohesive
cracks (Geelen et al. 2019). Mandal et al. reviewed
variational phase-fieldmodels for dynamic fracture and
found that phase-field fracture simulation results are
encouraging and similar to othermethods (Mandal et al.
2020). Other researchers have proposed spatially adap-
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tive phase-field models and variational eigenerosion
approaches for inelastic materials (Phansalkar et al.
2022; Qinami et al. 2020).

Peridynamics is a non-local continuum mechanics
formulation that was introduced by Silling (Silling
2000; Silling and Askari 2005). The relative displace-
ments and forces between the continuum’s material
points are described by means of integro-differential
equations. The original bond-based peridynamicsmod-
els these interactions with one elastic stiffness param-
eter and, thus, implies a restriction on the Poisson
ratio. In order to account for materials with two vary-
ing elastic parameters, state-based formulations, such
as ordinary state-based peridynamics and non-ordinary
state-based peridynamics, were introduced (Silling and
Askari 2005; Silling et al. 2007). Javili et al. recently
proposed a novel peridynamic discretization called
continuum-kinematics-based peridynamics (CPD), cf.
(Javili et al. 2019, 2020, 2021), which uses an anal-
ogy to continuum mechanics to derive a non-ordinary
state-based peridynamic model.

The CPD starts from the non-local continuum for-
mulation where the interactions of material points
(within a certain neighborhood) provide the body’s
internal force density. In opposite to the classical peri-
dynamic formulations, the relations in sets of two, three
and four material points are now considered. Hereby
twopoints formabond, three an area, and four a volume
element. This discretization introduces two new mate-
rial parameters, both functions of the one original bond
constant, which can be used for elastic models known
from finite deformation continuum mechanics where
such parameters refer to length-, area-, and volume-
related invariants. Recently, correlations between the
material parameters of continuum-kinematics-based
peridynamics and isotropic linear elasticitywere devel-
oped for two- and three-dimensional problems (Ekiz
et al. 2021, 2022).

The new continuum-based peridynamic approach
necessitates a new understanding of damage and frac-
ture. It is no longer sufficient to think of material
damage and brittle fracture as a bond-based event
because of the three different kinds of interactions
(Friebertshäuser et al. 2022, 2023). Thus, we extend
the force density of thematerial, by kinematic variables
that account for the loss of load-carrying capability. To
the authors’ knowledge, this is the first concept of dam-
age in the continuum-kinematics-based peridynamics
paradigm.

The structure of this paper is as follows. First, the
terminology and necessary theory is introduced for
continuum-kinematics-based peridynamics in Section
2, and dynamic phase-field fracture in Section 3. In
Section 4, we discuss the cohesive stress and the criti-
cal strain, which provide the crack growth and fracture
criteria for both methods. The relations found in Sec-
tion 4 are investigated in Section 5 with a detailed com-
parison of load-deflection curves obtained from both
methods. Then, numerical examples of brittle fracture
follow. Section 6 begins with the well-known dynamic
shear test, which is investigated with our novel dam-
agemodel of continuum-kinematics-based peridynam-
ics and compared to the correspondingphase-field solu-
tion. Following that, Section 7 presents the crack ini-
tiation caused by propagating and reflecting pressure
waves using the example of a curved bar.

2 Theory of continuum-kinematics-based
peridynamics

In peridynamics, a body is represented by a set of N
points in the Euclidean space R3, and the dynamics is
depicted by the movement of these points. The point
position in material configuration is described by X i

and in current configuration as

xi = X i + u(X i , t) ,

with thedisplacement vectoru(X i , t) and i = 1, . . . , N .
Points interact only with other points inside of their
specified neighborhood Hi

1, which is defined as the
set of points inside the spherical space with the radius
δ ∈ R

+, also called the horizon δ. Accordingly,

Hi
1 =

{
X j ∈ B0 | 0 <

∣∣∣X j − X i
∣∣∣ ≤ δ

}
∀ X i ∈ B0

includes all points X j inside the horizon of point X i in
the reference configuration of the body B0.

The equation of motion for a point i reads

� ü(X i , t) = bint0 (X i , t) + bext0 (X i , t)

∀ X i ∈ B0, t ≥ 0 (1)

with the density �, the point acceleration vector ü, and
the point force density vectors bint0 and bext0 , which
denote forces per unit undeformed volume. The exter-
nal force density bext0 results from the external forces
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that are acting on the body and the internal force density
bint0 from the interactions between the individual mate-
rial points. In the following, the notation ui = u(X i , t)
and bint, i0 = bint0 (X i , t)will be used for improved read-
ability.

For calculating the internal force density, different
peridynamic formulations are available, and each one
is based on the interactions between—typically two—
material points. For the CPD the three different inter-
actions, named as one-, two-, and three-neighbor inter-
actions, are considered (see Fig. 1). Correspondingly,
bint, i0 is the sum of the internal force densities of these
three interactions, thus

bint, i0 = bint, i1 + bint, i2 + bint, i3 . (2)

The one-neighbor interaction of point i and j , in
standard peridynamics also called the bond, is defined
in material and current configuration as

ΔX i j = X j − X i , Δxi j = x j − xi .

One-neighbor interactions can be interpreted as line
elements with the initial length Li j in material notation
and the deformed length li j in current configuration.
These so called relative length measures of the one-
neighbor interaction are defined as

Li j =
∣∣∣ΔX i j

∣∣∣ , li j =
∣∣∣Δxi j

∣∣∣ .

It is assumed, that all one-neighbor interactions of
point i contribute equally. Therefore, an effective one-
neighbor volume is defined as

V i
1 = V i

H
Ni
1

,

with Ni
1 being the number of one-neighbor interactions

for point i and the neighborhood volume

V i
H =

⎧
⎨
⎩

β i 4
3 π δ3 (3D problems)

β i π δ2 (2D problems)
β i 2 δ (1D problems)

(3)

with the factor β i ∈ [0, 1] that takes the fullness of the
neighborhood into account. As an example, it applies
β i = 1 if the neighborhood of point i is completely

inside the body B0. On the other hand, if the neigh-
borhood of point i is partially outside the body B0, the
factorβ i < 1works as a correction factor to the volume
V i
H.
The force density due to one-neighbor interactions

is defined as

bint, i1 = C1

∫

Hi
1

(
1

Li j
− 1

li j

)
Δxi j dV i

1 , (4)

with the one-neighbor interaction constant C1. The
constant C1 can be interpreted as a resistance against
the length change of one-neighbor interactions and is
defined asC1 = 24μ

πδ3
for 2D problems (Ekiz et al. 2021)

and as C1 = 30μ

π δ4
for 3D problems (Ekiz et al. 2022).

They depend on the first and second Lamé parameters

λ = E ν

(1 + ν)(1 − 2ν)
and μ = E

2(1 + ν)
. (5)

Two-neighbor interactions are area elements, respec-
tively triangles, spanned by the points X i , X j and
Xk . They are constructed by two corresponding one-
neighbor interactions ΔX i j and ΔX ik of point i . One
important condition is that the distance between the
points X j and Xk needs to be bounded by the horizon
δ. Therefore, the set of all corresponding point-sets for
two-neighbor interactions of point i is defined as

Hi
2 =

{(
X j , Xk) ∈ Hi

1 × Hi
1 | 0 <

∣∣∣X j − Xk
∣∣∣ ≤ δ

}

∀ X i ∈ B0 .

The deformation of two-neighbor interactions is
mainly described by the relative area measure, in mate-
rial and current notation defined as

Ai jk = ΔX i j × ΔX ik , ai jk = Δxi j × Δxik ,

and as scalar quantities the areas

Ai jk =
∣∣∣Ai jk

∣∣∣ , ai jk =
∣∣∣ai jk

∣∣∣ .

The force density due to two-neighbor interactions is
defined as

bint, i2 = 2C2

∫

Hi
2

Δxik ×
(

1

Ai jk
− 1

ai jk

)
ai jk dV i

2 , (6)
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Fig. 1 Illustration of one-,
two-, and three-neighbor
interactions of point X i

with the effective two-neighbor volume

V i
2 =

(
V i
H

)2
Ni
2

.

The number of two-neighbor interactions of point i is
Ni
2. The two-neighbor interaction constant C2 can be

interpreted as a resistance against the area change and
is defined as C2 = 27

8πδ6
(λ−μ) for 2D problems (Ekiz

et al. 2021) and as C2 = 0 for 3D problems (Ekiz et al.
2022).

Three-neighbor interactions are volume elements,
precisely tetrahedrons, spanned by the points X i , X j ,
Xk and X l . They are constructed by the three corre-
sponding one-neighbor interactions ΔX i j , ΔX ik and
ΔX il of point i . For a valid three-neighbor interaction,
the conditions

0 <

∣∣∣X j − Xk
∣∣∣ ≤ δ , 0 <

∣∣∣X j − X l
∣∣∣ ≤ δ ,

0 <

∣∣∣Xk − X l
∣∣∣ ≤ δ ,

must bemet. Consequently, the set of all corresponding
point-sets for three-neighbor interactions of point i is
defined as

Hi
3 =

{(
X j , Xk, X l) ∈ Hi

1 × Hi
1 × Hi

1 |
0 <

∣∣∣X j − Xk
∣∣∣ ≤ δ , 0 <

∣∣∣X j − X l
∣∣∣ ≤ δ ,

0 <

∣∣∣Xk − X l
∣∣∣ ≤ δ

}
∀ X i ∈ B0 .

The deformation of three-neighbor interactions is
mainly described by the relative volume measure, in
material and current notation defined as

V i jkl = Ai jk · ΔX il , vi jkl = ai jk · Δxil .

The force density due to three-neighbor interactions is
defined as

bint, i3 = 3C3

∫

Hi
3

(
Δxik × Δxil

) (
1∣∣V i jkl

∣∣ − 1∣∣vi jkl ∣∣
)

vi jkl dV i
3 , (7)

with the effective three-neighbor volume

V i
3 =

(
V i
H

)3
Ni
3

.

The number of three-neighbor interactions of point i is
Ni
3. The three-neighbor interaction constant

C3 = 32

π4 δ12
(λ − μ) (8)

can be interpreted as a resistance against the volume
change (Ekiz et al. 2022). The three types of interaction
correspond to the invariants of a general deformation.

With the kinematics at handwe solve the equation of
motion 1. Because all of our simulations take place over
small time spans, we employ a Velocity-Verlet explicit
time integration algorithm, cf. (Littlewood 2015).

In CPD, damage is modeled by the failure of the cor-
responding one-, two- and three-neighbor interactions.
The failure quantity for one-neighbor interactions with
a strain-based damage model reads

di j1 =
{
0 if εi j > εc
1 else

(9)

with the one-neighbor interaction stretch

εi j = li j − Li j

Li j
, (10)

and the critical bond strain of fracture εc > 0. This
critical strain depends on the material’s critical energy
release rate Gc (Griffith energy) and is related to the
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horizon δ of the interacting material points. The point-
wise damage quantity Di incorporates thewhole neigh-
borhood, and is defined as

Di = 1 −
∫
Hi

1
di j1 dV i

1∫
Hi

1
dV i

1

. (11)

These equations cannot directly be used to model dam-
age within the continuum-kinematics-based frame-
work, because they do not take two- or three-neighbor
interactions into consideration. Applying this damage
model alone will not lead to crack paths but to unclear
failure zones, because two- or three-neighbor interac-
tions are still active and lead to forces between failed
points.

To address this problem, failure quantities for two-
and three-neighbor interactions, di jk2 and di jkl3 , are
introduced. Here we propose that two- and three-
neighbor interactions fail, if one ormore corresponding
one-neighbor interactions fail. Therefore, the failure
quantity for two-neighbor interactions can be defined
as

di jk2 =
{
0 if di j1 = 0 or dik1 = 0 ,

1 else ,
(12)

and for three-neighbor interactions as

di jkl3 =
{
0 if di j1 = 0 or dik1 = 0 or dil1 = 0 ,

1 else .
(13)

With these failure quantities, we re-define the internal
force density for one-neighbor interactions (4) as

bint, i1 = C1

∫

Hi
1

di j1

(
1

Li j
− 1

li j

)
Δxi j dV i

1 , (14)

for two-neighbor interactions (6) as

bint, i2 = 2C2

∫

Hi
2

di jk2 Δxik ×
(

1

Ai jk
− 1

ai jk

)
ai jk dV i

2 ,

(15)

and for three-neighbor interactions (7) as

bint, i3 = 3C3

∫

Hi
3

di jkl3

(
Δxik × Δxil

)(
1∣∣V i jkl

∣∣ − 1∣∣vi jkl ∣∣
)

vi jkl dV i
3 . (16)

In such a manner, the failed point interactions do not
contribute to the internal material response and their
damaging effect is considered.

3 Theory of phase-field fracture

For the phase-field approach to fracture we rely on
the classical theory of continuum mechanics, i.e., we
consider a solid with domain Ω ⊂ R

d and boundary
∂Ω ≡ Γ deforming under the action of external forces
with density bext0 . The internal force density follows
from the local stresses σ (X, t) as bint0 = div σ .

Hence, the solid’s total energy is composed of its
kinetic energy, the potential energy with the material’s
free Helmholtz energy density Ψ e, and the surface
energy contributions from evolving crack boundaries
with Griffith energy of fracture Gc,

E =
∫

Ω\Γc(t)

(
1

2
�|v|2 + Ψ e

)
dV +

∫

Γc(t)
Gc dA .

(17)

A phase field z(X, t) with z ∈ [0, 1] is introduced
to characterize the state of the material; hereby indi-
cates z = 0 the solid and z = 1 the broken state. For
approximation, the discontinuous set of evolving crack
boundaries Γc(t) is replaced by a continuous surface-
density function γ (z) and an approximation of the form∫
Γc(t)

dA ≈ ∫
Ω

γ dV . With the ansatz

γ = 1

2lc
z2 + lc

2
|∇z|2 ,

this gives for the solid’s energy the objective

E =
∫

Ω

(
1

2
�|v|2 + Ψ e + Gc

2lc
z2 + Gclc

2
|∇z|2

)
dV

→ stationary. (18)

By definition, γ (z,∇z) which is only different from
zero along cracks, introduces a length scale parameter
lc > 0 in the model.

Assuming a linear relation between the stresses σ

and the strains ε(u) = sym(∇u), the material’s energy
density is defined as

Ψ e(ε) = 1

2
ε : C�(z) : ε . (19)
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Fig. 2 Phase-field crack at x = 0 approximated with a continuous phase field z ∈ [0, 1] and non-local material degradation function
g(z)

Here C
�(z) denotes an adapted material tensor of the

form

C
�(z) = g(z)

[
λI ⊗ I + 2μ sym I

]

with g(z) = (1 − z)2 , (20)

where the bracketed term is Hooke’s tensor with I and
I denoting the second- and four-rank identity tensors,
respectively. Function g(z) is a degradation function
accounting for the loss of stiffness in the crack, see
Fig. 2. The corresponding degraded stresses are

σ = C
�(z)ε . (21)

The asymmetry of fracture, i.e., the fact, that only
tensile stress states contribute to crack propagation,
requires a split of the elastic energy into a tensile and a
compressive parts, Ψ e(ε, z) = g(z)Ψ e+ + Ψ e−. Here
this split is based on the spectral decomposition of the
strain tensor if necessary, cf. (Bilgen et al. 2018; Bilgen
and Weinberg 2019).

A straightforward finite element approximation of
(18) results in a discretized version of the second-order
Eq. 1. It can be solved for u(X, t)with aNewmark-time
stepping algorithm. Alternatively, we employ here an
approach that has already proven successful in calcu-
lating conservation laws. For the computation of wave
propagation, the elastic equation of motion is trans-
formed into a coupled system of first-order hyperbolic

system,

�v̇ = div σ , σ̇ = C
�(z)ε(v) in Ω (22)

suitably discretized, and combined with the phase-field
evolution to calculate the crack initiation and propaga-
tion. In Weinberg andWieners (2022), the evolution of
the phase field is determined by

τr ż =
{
Yel(σ ) + M

(
z − l2cΔz

)
z ≥ 0

0 z = 1

with retardation time τr > 0, scaling parameterM > 0,
and the crack driving force Yel(σ ) as a stress-based
criterion. The forceYel is active if the largest eigenvalue
of stress tensor σ , i.e. the maximum principal stress σI,
exceeds the maximum cohesive stress σc > 0. This
yields

Yel(σ ) = max
{ σI

σc
− 1, 0

}
. (23)

For the algorithmic details of phase-field fracture we
refer to Bilgen et al. (2018) for the second-order system
and to Weinberg and Wieners (2022) for the first-order
system.
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4 Maximum cohesive stress and critical strain

Now we study the relation of the maximum stress
before decohesion σc in the phase-field fracture model
and the corresponding critical strain εc in the peridy-
namic fracturemodel for a one-dimensional crack solu-
tion, i.e., Ω ⊂ R. We assume a static situation and
derive σc for a linear-elastic material and a quadratic
degradation function g(z) = (1 − z)2. The body’s
energy (18) is approximated by

E =
∫

Ω

(
g(z)Ψ e

0 − Gc
2lc

z2
)

dV , Ψ e
0 = 1

2
Eε2

(24)

(neglection the regularization term |∇z|2) and its vari-
ation δE = 0 gives

(1 − z)Eε2 − Gc
lc
z = 0 . (25)

With a straightforward calculation we obtain the
expression

1 − z =
(
Eε2lc
Gc + 1

)−1

(26)

which is now inserted in the degradedHooke’s law (21)
such that

σ(ε) =
(
Eε2lc
Gc + 1

)−2

Eε (27)

holds true. Based on this equation, the stress maximum
is calculated. Minimization with respect to the strain ε

results in

dσ

dε
= E − 3E2 lcGc

ε2

(
Eε2lcGc

+ 1
)3

!= 0 �⇒ εc =
√

Gc
3lcE

(28)

and provides an expression for the critical strain εc ≡
εPFc in phase-field fracture. Inserting it in (27) leads to
the degraded stress

σ(εPFc ) = g(z)σ PF
c = 9

16

√
EGc
3lc

. (29)

Themaximumcohesive stressσc of phase-field fracture
is simply obtained from (28) using Hooke’s law

σ PF
c =

√
EGc
3lc

(30)

which in turn determines the critical phase-field value
to be zc = 1

4 . Both, the maximum cohesive stress σc
and the critical strain depend on the non-local length
scale parameter lc.

In peridynamics the damagemodel relies on the fail-
ure of neighboring bonds once a critical strain εc ≡ εPDc
is reached. The dissipated energy of fracture corre-
sponds to the sum of work necessary to separate all
bonds between one material point on the left hand side
of the new crack surface to all points on the right hand
side of the crack surfaces, within its horizon δ. If this
work is referred to the crack surface, then the Griffith
energy Gc is obtained. Following the procedure out-
lined in Madenci and Oterkus (2014), we compute the
Griffith energy for the one-dimensional case

Gc = 1

2
cε2c

2Aδ3

3
(31)

where A is the cross-sectional area and C1 = 2E/Aδ2

is the bond parameter of equation 4. Inserting it and
solving for the critical strain gives

εc =
√

3Gc
2Eδ

(32)

and, with Hooke’s law, the corresponding maximum
cohesive stress reads

σc =
√
3EGc
2δ

. (33)

This result shows that for an equal cohesive stress state
we can relate the non-local parameter of phase-field
fracture and peridynamics as

δ = 4.5 lc . (34)

5 Comparison of load-deflection curves

To investigate the relationship in equation (34), load–
displacement curves of a simplemode-I tension test are
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compared. Additionally, we evaluate the convergence
of CPD and compare it to the solution obtained from
the standard phase-field model.

The geometrical setup consists of a simple 1 × 1 ×
0.1mm block (l = 1mm) that contains an initial crack
with length 1

2 l from the left boundary to the center
(see Fig. 3). The block is fixed vertically at the lower
boundary and loaded at the top edgewith the prescribed
displacement ū. The mesh used for the phase-field sim-
ulations consists of 137057 tetrahedral elements with
an element edge length of 0.0333mm at the top and
the bottom and a refined edge length of 0.01mm in the
middle of the model where the crack occurs. For the
peridynamics simulations, multiple point clouds with
a different number of uniformly distributed points are
considered (see Table 1).

All simulations consider a critical energy release rate
of Gc = 2.7Nmm−1 so that, theoretically, the crack
propagation should start at the same critical loading.
The phase-field results are obtained with the standard
phase-field model with lc = 0.015mm and all peri-
dynamics simulations with the horizon δ = 4.5lc =
0.0675mm, to consider the relation in equation (34).
The results of the quasi-static peridynamics simula-
tions are obtainedwith the adaptive dynamic relaxation
method by Kilic and Madenci (2010).

In Fig. 4, the load-deflection curve of the phase-
field simulation is compared to CPD simulations. The
material is modeled with Young’s modulus E =
210 000MPa, Poisson ratio ν = 0.25, and density
� = 8000 kg/m3. These parameters result in C1 ≈
3.86 × 1010 Nmm−6 and C2 = C3 = 0, therefore
only one-neighbor interactions contribute to the peridy-
namics solution. The simulations differ slightly, but the
higher the number of points, the lower the slope of the
load–displacement curve. The curve of the finest dis-
cretization with 100×100×10 points deviates the most
from the phase-field curve. The critical load fromwhich
the crack grows is only for the two coarsest discretiza-
tions similar to the phase-field solution and slightly
lower for the simulations with finer point clouds. How-
ever, the slopes of the peridynamics load-deflection
curves are lower than the phase-field solution and get
flatter with more points and a finer discretization.

One possible reason for these differences is the
occurrence of the surface effect since no complete point
families do appear because the horizon for all simula-
tions is fixed to δ = 0.0675mm and the model has a
thickness of 0.1mm. In CPD, the influence of incom-

plete point families at the model’s edges is consid-
ered by the factor β in equation (3). The volume of
the points in the initial configuration, e.g., a converted
finite element mesh, does not contribute to the calcu-
lation. Instead, as seen in equation (10), the effective
one-, two- and three-neighbor volumes V i

1 , V
i
2 , and V i

3
are a mean value resulting from the number of points
and interactions in the neighborhood.

However, the influence of β could not be enough to
compensate for the surface effect as a whole. There-
fore, additional simulations of bond-based peridynam-
ics (BB) without any correction factors are conducted.
Because of ν = 0.25 and C2 = C3 = 0, the only
difference between the CPD and BB calculation is
the previously described correction with the neighbor-
hood volume. As seen in Fig. 5, similar results appear
when comparing the BB and CPD calculations for both
the maximum load values and the slopes of the load–
displacement curves.

Since the surface effect will strongly influence the
bond-based calculations, it can be assumed, based on
the similarities, that it also contributes to the CPD sim-
ulations. The extent to which this is now included in
other calculation examples still needs further investiga-
tion. It can also be stated that the relationship described
in equation (34) cannot be directly proven with the
demonstrated numerical calculations.

6 Kalthoff-Winkler experiment

The dynamic shear test, commonly called Kalthoff-
Winkler experiment, is a established benchmark prob-
lem of fracture mechanics and has been investigated
by a series of authors (Kalthoff and Winkler 1988;
Kalthoff 2000; Lee and Freund 1988; Batra and Jaber
2001; Silling 2002; Bilgen 2019; Ren et al. 2019). In
the following, we will elaborate on how the new dam-
age model of CPD performs regarding the Kalthoff-
Winkler experiment.

The setup of the Kalthoff-Winkler experiment con-
sists of a rectangular plate of size 100×200×9mm. A
cylindrical section with diameter Ø50mm is separated
by two 50mm notches in the middle of the plate, see
Fig. 6. This cylindrical section is impacted by a pro-
jectile. The impact of this projectile is modeled with
a velocity boundary condition v(t) on the first 5 point
layers on the cylindrical section. For the velocity, it
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Fig. 3 Geometrical setup
and discretizations

Table 1 Peridynamics discretizations with total number of one- and three-neighbor interactions and the ratio of horizon and point
spacing

Number of points
∑

i N
i
1 δ/�x

40×40×4 367896 2.7

50×50×5 1512716 3.375

60×60×6 3982968 4.05

70×70×7 11149624 4.725

80×80×8 24959592 5.4

90×90×9 47851632 6.075

100×100×10 92613696 6.75

Fig. 4 Load-deflection
curves for CPD and
phase-field simulations of a
mode-I tension test with
E = 210000MPa and
ν = 0.25

applies

v(t) =
{

v0 t if t ≤ t0
v0 if t > t0

(35)

with v0 = 33m/s and t0 = 1μs. On the side of the
sample opposite to the impact, a no-failure-zone for
the first three layers of points is applied.

The material is modeled with Young’s modulus of
E = 190000MPa, Poisson ratio of ν = 0.3 and a
density of � = 8000 kg/m3. The peridynamic body
is discretized by 88 × 177 × 8 material points with a
point spacing of �x = 1.125mm and a horizon of
δ = 3.015�x . This results in a total of 12635484
one-neighbor and 19481512560 three-neighbor inter-
actions. The simulation was performed on the OMNI-
Cluster of University of Siegen (2023) on one node
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Fig. 5 Load-deflection
curves for bond-based
peridynamics and
phase-field simulations of a
mode-I tension test with
E = 210000MPa and
ν = 0.25

Fig. 6 Setup and 3D CPD
results of the
Kalthoff-Winkler
experiment

using ∼ 1TB RAM on multiple threads for ∼ 8 h. For
a simple comparison, a phase-field approximation of
the Kalthoff-Winkler experiment in a two-dimensional
setup with 256×256 B-spline elements is used with
a length-scale parameter of lc = 7.8e − 4m and the
same material parameters as for the peridynamics sim-
ulation. For additional resources on similar 3D phase-
field simulations, see Ren et al. (2019).

In Fig. 7, both simulations are displayed for differ-
ent states of crack propagation progress. The time tc is
defined as the time the crack needs to fully propagate to
the end of the plate. Note, that the value of tc is differ-
ent for both methods and only chosen to qualitatively
compare the results.

The characteristic∼ 70◦ crack angle of theKalthoff-
Winkler experiment can be found with the phase-field
simulation. The peridynamics solution deviates slightly
from the expectations with an angle of 64◦. However,
the computed crack path agrees well with the phase-
field solution and known experimental results. A pos-
sible explanation for the slight difference in the starting
angle of the crack could be a surface effect due to the

large horizon size relative to the thickness of the sample
used, cf. Le and Bobaru (2018).

7 Curved bar under pressure

In the following section, crack initiation induced by
propagating and superposing waves is investigated in
two- and three-dimensional discretizations. For this
purpose, a model of a curved bar is subjected to pres-
sure waves, which are supposed to superimpose inside
the material and eventually lead to crack initiation.
Both setups use the material parameters of steel. The
material points are spatially distributed along the curve
f (x) = cos(π

2 x) (see Weinberg and Wieners 2022;
Friebertshäuser et al. 2022 for more details on the dis-
cretizations and the material properties).

On each side of the curved bar, a pressure impulse

p(t) =
{

−4 · p0
t12

· (
t − t1

2

)2 + p0 t ≤ t1

0 t > t1
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Fig. 7 Different time steps
of the Kalthoff-Winkler
experiment

Fig. 8 Damage in the 2D
curved bar of a) CPD and b)
phase-field simulation

Fig. 9 Damage Di in the
3D curved bar after 0.5ms
(top) and 1.4ms (bottom)

with the pressure peak p0 and the impulse dura-
tion t1 is applied for one layer of material points in
the left and right boundary. The pressure is applied
symmetrically via the external body force density
bext, i0 = p(t)/Δx nl/r with the normal vector nl/r
for the left and right side of the bar. For the two-
dimensional setup, a pressure impulse with the peak
p0 = 4 × 105Nm−1 and for the three-dimensional
setup, p0 = 1 × 106Nm−2 is used. For both setup’s,
the pulse has the duration t1 = 300μs. Remark that for
2D, the body force density bext0 has the unit [Nm−2].

In Fig. 8, the damage Di of the two-dimensional
setup is shown and comparedwith results obtainedwith
a corresponding phase-field calculation (see Weinberg
and Wieners 2022). The pressure waves travel through
the bar until they get reflected at the free ends, turning
them into tensilewaves. The peak of these tensilewaves
then triggers the development of a crack in the middle
of the bar, see Fig. 10. Again further cracks develop
when the waves continue to propagate and reflect in
the model, and a further peak in tension emerges. The
two-dimensional model accurately captures this pat-
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Fig. 10 Visualization of the elastic wave interplay for the 3D CPD simulation

tern since these secondary cracks appear over time.
It is fascinating that this effect occurs very similarly
for the peridynamics and the phase-field approach,
despite being fundamentally different methods. How-
ever, a small difference can be foundwith the secondary

cracks. In the peridynamic calculation, the secondary
cracks are wider and slightly branched in the upper
edge region, which can be explained by possible sur-
face effects, as already mentioned in Sect. 5, cf.Bobaru
and Zhang (2015); Le and Bobaru (2018).
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A similar behavior can also be observed with the
3D model (see Fig. 9). One crack starts in the model’s
center after the pressure wave’s initial reflection and
conversion to tensile waves, see Fig. 10. The stress dis-
played in Fig. 10 is obtained by calculating the cauchy
stress tensor additionally to the CPD simulation with
the method of Warren et al. Warren et al. (2009). Addi-
tionally, cracking brought on by additional wave super-
position can be seen. The location differs from the 2D
model, although this could be explained by the sev-
eral peridynamics-based continuum kinematics influ-
encing aspects, including material characteristics and
various discretizations. Further research is required in
this case. Because of the much larger computational
cost, we could not perform 3D calculations using the
phase-field method with the same bar model.

In conclusion, it can be said that CPD can be utilized
to map cracking caused by the material’s reaction to
wave propagation and compares well to similar results
of phase-field computations.

8 Summary

This study presents investigations on the non-local
approximation of dynamic fracture with a novel,
continuum-kinematics-based peridynamic formulation
and an energy-optimizing phase-field approach. We
show the relations between the critical crack proper-
ties of both methods by deriving the critical cohesive
stress σc and the corresponding critical strain εc for the
one-dimensional solution of a non-local crack.

Numerical studies support that the CPD and the
phase-field fracture approach are well suited to sim-
ulate dynamic fracture. With the proper choice of σc
and εc, both methods give almost identical fracture pat-
terns. However, the load-deflection curves of the CPD
strongly depend on the discretization, which is presum-
ably attributed to the incomplete neighborhood along
the newly formed crack surfaces. These findings under-
line the crucial role of carefully considering the dis-
cretization and the horizon size for peridynamic frac-
ture simulations.

The dynamic shear test of Kalthoff & Winkler was
computed to investigate the performance of the new
CPD damage model compared to a phase-field simu-
lation. The crack paths show a good agreement with
slight deviations. The minor differences between the
peridynamics simulation and the expectations could

be attributed to the surface effect. Further research is
required in this regard. Additionally, curved bar sim-
ulations investigate crack initiation induced by prop-
agating and superposing pressure waves. An excel-
lent agreement between the two-dimensional CPD and
phase-field simulations can be found here.

Our juxtaposition of continuum-kinematics-based
peridynamics and phase-field fracture computations
highlights the potential of non-local models in accu-
rately predicting dynamic fracture behavior.
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