
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tphl20

Philosophical Magazine Letters

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tphl20

Regression-based detection of missing boundaries
in multiphase polycrystalline microstructures

Manoj Prabakar & Prince Gideon Kubendran Amos

To cite this article: Manoj Prabakar & Prince Gideon Kubendran Amos (2023) Regression-
based detection of missing boundaries in multiphase polycrystalline microstructures,
Philosophical Magazine Letters, 103:1, 2237932, DOI: 10.1080/09500839.2023.2237932

To link to this article:  https://doi.org/10.1080/09500839.2023.2237932

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 25 Jul 2023.

Submit your article to this journal 

Article views: 99

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tphl20
https://www.tandfonline.com/loi/tphl20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09500839.2023.2237932
https://doi.org/10.1080/09500839.2023.2237932
https://www.tandfonline.com/action/authorSubmission?journalCode=tphl20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tphl20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/09500839.2023.2237932
https://www.tandfonline.com/doi/mlt/10.1080/09500839.2023.2237932
http://crossmark.crossref.org/dialog/?doi=10.1080/09500839.2023.2237932&domain=pdf&date_stamp=2023-07-25
http://crossmark.crossref.org/dialog/?doi=10.1080/09500839.2023.2237932&domain=pdf&date_stamp=2023-07-25


Regression-based detection of missing boundaries in 
multiphase polycrystalline microstructures
Manoj Prabakara and Prince Gideon Kubendran Amosa,b

aTheoretical Metallurgy Group, Department of Metallurgical and Materials Engineering, National 
Institute of Technology, Tiruchirappalli, India; bInstitute of Applied Materials (IAM-MMS), Karlsruhe 
Institute of Technology (KIT), Karlsruhe, Germany

ABSTRACT  
An efficient alternative approach for detecting missing 
boundaries in micrographs is presented in the current 
work. By treating the missing boundaries as a class of 
object, a suitable detection algorithm is extended to realise 
discontinuities in interfaces separating phases and grains. 
The metrics, including precision and recall, estimated 
during the development of the model indicate noteworthy 
performance. Moreover, a direct comparison with actual 
situations attests to the accuracy of the current approach 
in detecting missing boundaries across different multiphase 
polycrystalline micrographs.
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The properties of a material are broadly a reflection of its structure on the 
microscopic scale, referred to as its microstructure. A convincing understand-
ing on the behaviour of a material, under a given condition, can be gained by 
investigating this microstructure. The microstructures of materials are often 
complex and include more than one phase and/or numerous grains [1, 2]. 
The accuracy of the analysis on the behaviour of such materials relies hugely 
on the depiction of the corresponding multiphase polycrystalline microstruc-
ture. However, micrographs rendered by both optical and electron microscopy 
generally contain certain irregularities, thereby introducing a deviation from 
the actual microstructure, which ultimately, might lead to misinterpretation 
[3–5]. Defects in micrographs can stem either from improper sample prep-
aration or ill-defined imaging configurations. One of the most common fea-
tures in observations o f micrographs is that of missing boundaries [6, 7]. In 
other words, when a multiphase polycrystalline microstructure is captured, 
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not all the interfaces separating the phases and grains are accurately represented 
in the corresponding micrograph. This lack of complete depiction of the inter-
faces introduces missing boundaries in the micrograph. Owing to the signifi-
cant influence of grain (and phase) boundaries on the behaviour of materials, 
and their pivotal role in any microstructural transformation, added attention 
has been given to these features [8–10].

The process of eliminating missing boundaries in micrographs invariably 
begins with identifying this spatially distributed defect. Detecting the missing 
boundaries manually is an arduous task, particularly when the microstructure 
comprises several grains and phases. Therefore, computer vision techniques are 
generally adopted to identify the missing boundaries in the micrographs. 
Within the framework of reconstructing grains in three-dimensional polycrys-
talline microstructures, an approach has recently been proposed for detecting 
and rectifying missing boundaries [11, 12]. This computationally rigorous tech-
nique treats the boundaries as the foreground and separates it from the less-rel-
evant features of the micrograph including the bulk grains and phases [13]. 
Edge-detection algorithm aides in separating the boundaries from the back-
ground [14]. The micrograph now exclusively representing the boundaries is 
superimposed on the similarly treated neighbouring sliced images, which are 
generated as a part of the investigation, to identify the missing boundaries. 
Though this technique is exhaustive, it is also computationally demanding 
and is rather bound within the associated framework. In view of the character-
istic steps involved with the existing approach, the proposed technique see-
mingly offers an efficient alternate for rapid detection of missing boundaries 
in multiphase polycrystalline systems.

A missing boundary in a micrograph can be viewed as a definite localised 
discontinuity in an otherwise continuous network. Such consideration allows 
the missing boundaries to be treated as objects in a given image. Correspond-
ingly, upon handling the missing boundaries as objects, in the present study, 
an efficient object-detecting algorithm is extended to identify these defects in 
the micrograph. The approach adopted for developing the current missing- 
boundaries detection model is schematically illustrated in Figure 1. Considering 
that the detection model is essentially trained to identify and locate missing 
boundaries, its development begins with acquisition of the relevant data. As 
opposed to conventional data, which primarily comprise of numerical or categ-
orical information, micrographs of multiphase polycrystalline systems serve as 
the building blocks for the present model.

The micrographs employed to train and validate the model are numerically 
generated by suitably discretising a two-dimensional domain. Resemblance of 
the numerically generated micrographs to the experimentally observed micro-
structures is ensured by involving a proven scheme called a Voronoi tessellation 
[15]. Stated otherwise, a tessellation scheme, which has already been sufficiently 
shown to render polycrystalline microstructures with features mirroring the 
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experimentally-captured micrographs, is adopted to generate multiphase poly-
crystalline images [16–18]. Twenty micrographs, each encompassing approxi-
mately 1000 grains of average size ranging from 20 to 30 µm is generated 
using the tessellation. One of three distinct phases are randomly, yet pro-
portionately, assigned to each of the grains, through an appropriate colour 
scheme as seen in Figure 1, in order to develop a three-phase polycrystalline 
micrographs. Such triplex micrographs characteristically include boundaries 
separating grains of identical chemical composition and ones associated with 
distinct phases. In other words, the micrographs considered in the present 
work accommodate interfaces between grains and phases.

The micrographs, before integrating with the model, are sliced into 200 
workable portions with each comprising 100 phase-associated grains. These 
200 sliced micrographs constitute the principal dataset illustrated in Figure 1. 
Since microstructures are numerically generated, the boundaries separating 
the phases or grains are hardly missing. Therefore, an additional processing 
step is introduced, as shown in Figure 1, prior to the training and validation 
of the model. In this preparatory step, an image-processing tool is extended 
[19], to randomly remove interfaces between the phases and grains in each 
of the sliced micrographs. The resulting processed dataset of micrographs 
with missing boundaries is subsequently employed to develop the detection 
model. A major portion of the processed dataset (80%) is employed to train 
the model, with the validation being performed on the remaining portion 
(20%).

Object detection, in the framework of computer vision and machine learn-
ing, is essentially a two-step process [20]. It begins with identifying regions 
of interest in a given image, followed by labelling them using a suitable clas-
sifier. These characteristic steps are iterated adequately to convincingly detect 

Figure 1. A schematic representation of the steps involved in extending object-detection algor-
ithm to identify missing boundaries in micrographs. The processing of the micrographs indi-
cates the random removal of the sections of the boundary network to introduce the missing 
boundaries.
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the objects. Irrespective of its accuracy, this detection technique, primarily 
owing to its underlying approach, is rather sluggish and consumes relatively 
excess computational resources. The algorithm employed in the present 
work, on the other hand, facilitates rapid detection through regression [21]. 
Missing boundaries, in the current framework, is detected by employing a 
well-known technique called YOLOv5 [22, 23]. Correspondingly, the detection 
of missing boundaries proceeds by discretising the micrographs into identical 
M × M grids. Assuming to be the spatial centre of a missing boundary, each 
of these cells predict a bounding box supposedly encompassing the object. 
The prediction associates each of the grids with parameters of the correspond-
ing bounding boxes which include its centre and dimension. Moreover, the 
confidence of finding the missing boundaries in the predicted bounding 
boxes are estimated in relation to the ground truth, and subsequently augmen-
ted to the existing parameters of the cells. Depending on the estimated confi-
dence, the bounding boxes accurately encapsulating the missing boundaries 
are sustained at the expense of others.

The training of the current regression-based detection approach involves 
introducing the ground truth by manually labelling of the objects. Put differ-
ently, the model to detect missing boundaries is trained by manually inserting 
bounding boxes around the corresponding defects in the micrographs. The 
ground truth defined in the form of the manually introduced labels, besides 
training, aides in refining the model during its validation. The performance 
of the model during testing and validation is ascertained through appropriate 
metrics and are graphically represented in Figure 2. The losses which indicate 
the deviation of the prediction from the ground truth are illustrated in Figure 
2a. While the box loss quantifies the disparity between the parameters of the 
manual labels and the predicted bounding boxes, the difference in the confi-
dences indicating the presence of the missing boundaries is expressed as the 
object loss. For a batch of four micrographs, Figure 2a shows that both box 
and object losses become increasingly negligible, as the number of epochs 
reach 1000. The minimal losses affirm the accuracy of the model in detecting 
missing boundaries. Other hyperparameters, besides epoch, are tuned to 
enhance the performance of the technique which includes learning rate, 
weight decay and momentum assuming values of 0.01, 0.0005 and 0.937, 
respectively.

The accuracy of the model in detecting the missing boundaries, in addition 
to the losses, is gleaned from two other parameters referred to as precision and 
recall. Precision is the ratio of the true positive, indicating accurate detection of 
missing boundaries, and the sum of true and false positives, which reflect the 
incorrect perception of regular interfaces as missing by the technique. On the 
other hand, the ratio of true positive and sum of true positive and false negative, 
representing the undetected missing interfaces, is termed as recall. In other 
words, while the precision measures the performance of the model in the 
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light of its inaccurate detection, whereas the failure to identify the missing 
boundaries is included in the calculation of recall. Both precision and recalled 
are estimated as the trained approach is validated with suitable dataset. When 
expressed in the form of precision-recall plot, the area under the curve reflects 
the average precision of the model (AP). Considering that present approach 
detects only one class of object, AP is also equivalent to the mean Average Pre-
cision (mAP). The precision-recall plot for the current missing-boundaries 
detecting model is shown in Figure 2b. An ideal model which detects all the 
objects in a given image, would yield an absolute mean Average Precision of 
mAP = 1.0. In Figure 2b, the accurate performance of the model in detecting 
the missing boundaries is indicated by the marginal deviation of its mean 
average precision, mAP = 0.985, from the absolute value. Moreover, it is vital 
to note that the validation dataset involved in the calculation and plotting of 
the precision-recall curve includes experimental micrographs. Accordingly, 
Figure 2b unravels a convincing performance of the present technique over 
the physical microstructures.

After sufficient training and validation, the model is allowed to detect 
missing grain boundaries in hitherto unknown micrographs. The ability of 
the present approach to realise the missing boundaries is illustrated in  
Figure 3 by placing the manually labelled micrographs alongside the respective 
machine-detected images. Evidently, almost all missing boundaries in the 
micrographs have been accurately detected by the current model. Irrespective 
of its nature, either separating phases or grains, the approach as shown in 
Figure 3 identifies and locates the missing sections of the interface.

Figure 2. (a) Change in the box and object loss with number of epochs during training and 
validation of the model. (b) Precision-Recall curve of the model in detecting the missing 
boundaries.
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In order to ensure that detection of the current model is not primarily depen-
dent on the colour scheme associated with the micrographs, grey-scale rep-
resentation of these images are generated and the approach is allowed to 
explore for missing boundaries. The ability of the model to detect missing 
boundaries in grey-scale multiphase polycrystalline microstructures is shown 
in Figure 4. The accurate performance of the approach, made evident in com-
parison with manually labelling, remains unaltered despite the change in the 
colour scheme. The sustained accuracy exhibited by the model, irrespective 
of the general appearance of the micrographs, indicate that the detection is 

Figure 3. The ground truth of missing boundaries in multiphase polycrystalline micrographs is 
compared with the detection of the present model.

Figure 4. Comparison of ground truth and current predictions in grey scale depiction of the 
three-phase polycrystalline micrographs.
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primarily based on the relevant features associated with the boundaries. There-
fore, this approach can directly be extended to realise the missing boundaries in 
the experimental micrographs. This claim is substantiated by analysing exper-
imental microstructures reported in the literature. Attempts will be made in 
near future to augment this approach with image processing techniques to 
rectify missing boundaries, besides detecting them. Moreover, the efficacy of 
the current approach in detecting long-range missing boundaries will be exam-
ined in subsequent investigations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

PGK Amos thanks the financial support of the Science & Engineering Research Board 
(SERB) under the project SRG/2021/000092.

Notes on contributors

The corresponding author, Prince Gideon Kubendran Amos, is an assistant professor in the 
department of Metallurgical and Materials Engineering at the National Institute of Technol-
ogy Tiruchirappalli. He is also the Principal Investigator of the Theoretical Metallurgical 
Group, in which the other author Manoj Prabakar is a research fellow.

References

[1] A. Perlade, A. Antoni, R. Besson, D. Caillard, M. Callahan, J. Emo, A.-F. Gourgues, P. 
Maugis, A. Mestrallet, L. Thuinet, et al., Development of 3rd generation medium mn 
duplex steels for automotive applications. Mater. Sci. Technol. 35(2) (2019), pp. 204– 
219.

[2] D. Kim, H.-G. Lee, J.Y. Park, and W.-J. Kim, Fabrication and measurement of hoop 
strength of sic triplex tube for nuclear fuel cladding applications. J. Nucl. Mater. 458 
(2015), pp. 29–36.

[3] M.W. Davidson and M. Abramowitz, Optical microscopy. Encyclopedia of Imaging 
Science and Technology, 2(1106-1141):120, 2002.

[4] D.E. Newbury, and N.W. Ritchie, Performing elemental microanalysis with high accu-
racy and high precision by scanning electron microscopy/silicon drift detector energy-dis-
persive x-ray spectrometry (sem/sdd-eds). J. Mater. Sci. 50(2) (2015), pp. 493–518.

[5] D.E. Newbury*, and N.W. Ritchie, Is scanning electron microscopy/energy dispersive X- 
ray spectrometry (SEM/EDS) quantitative? Scanning 35(3) (2013), pp. 141–168.

[6] C. Bao, C. Ji, H.F. Poulsen, and M. Li, Missing information and data fidelity in digital 
microstructure acquisition. Acta Mater. 173 (2019), pp. 262–269.

[7] M.V. Kral, M.A. Mangan, G. Spanos, and R.O. Rosenberg, Three-dimensional analysis 
of microstructures. Mater. Charact. 45(1) (2000), pp. 17–23.

PHILOSOPHICAL MAGAZINE LETTERS 7



[8] T. Watanabe, Grain boundary engineering: historical perspective and future prospects. J. 
Mater. Sci. 46(12) (2011), pp. 4095–4115.

[9] P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, and M.P. Harmer, Grain 
boundary complexions. Acta Mater. 62 (2014), pp. 1–48.

[10] E.A. Holm, R. Cohn, N. Gao, A.R. Kitahara, T.P. Matson, B. Lei, and S.R. Yarasi, 
Overview: computer vision and machine learning for microstructural characterization 
and analysis. Metall Mater Trans A 51(12) (2020), pp. 5985–5999.

[11] M.-n. Feng, Y.-c. Wang, H. Wang, G.-q. Liu, and W.-h. Xue, Reconstruction of three- 
dimensional grain structure in polycrystalline iron via an interactive segmentation 
method. Int J Miner, Metall Mater 24(3) (2017), pp. 257–263.

[12] B. Ma, X. Ban, Y. Su, C. Liu, H. Wang, W. Xue, Y. Zhi, and D. Wu, Fast-finecut: grain 
boundary detection in microscopic images considering 3d information. Micron 116 
(2019), pp. 5–14.

[13] B, Ma, C. Liu, X. Ban, H. Wang, W. Xue, and H. Huang, Wpu-net: boundary learning 
by using weighted propagation in convolution network. arXiv preprint 
arXiv:1905.09226, 2019.

[14] J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. 
Mach. Intell. 6 (1986), pp. 679–698.

[15] T. Suzudo, and H. Kaburaki, An evolutional approach to the numerical construction of 
polycrystalline structures using the voronoi tessellation. Physics Leners A 373(48) 
(2009), pp. 4484–4488.

[16] A. Brahme, M.H. Alvi, D. Saylor, J. Fridy, and A.D. Rollett, 3d reconstruction of micro-
structure in a commercial purity aluminum. Scr. Mater. 55(1) (2006), pp. 75–80.

[17] S. Kumar, Computer simulation of 3d material microstructure and its application in the 
determination of mechanical behavior of polycrystalline materials and engineering 
structures. Tech. Rep., Pennsylvania State Univ., University Park, PA (United 
States). Davey Lab., 1992.

[18] A. Leonardi, P. Scardi, and M. Leoni, Realistic nano-polycrystalline microstructures: 
beyond the classical voronoi tessellation. Philos. Mag. 92(8) (2012), pp. 986–1005.

[19] T.K. Shih, L-C. Lu, and R-C. Chang, An automatic image inpaint tool. In Proceedings of 
the Eleventh ACM International Conference on Multimedia, pages 102–103, 2003.

[20] C.P. Papageorgiou, M. Oren, and T. Poggio. A general framework for object detection. 
In Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), 
pages 555–562. IEEE, 1998.

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: unified, real- 
time object detection. In Proceedings of the IEEE Conference on Computer Vision and 
Panern Recognition, pages 779–788, 2016.

[22] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, A review of yolo algorithm developments. 
Procedia. Comput. Sci. 199 (2022), pp. 1066–1073.

[23] D. Thuan. Evolution of yolo algorithm and yolov5: the state-of-the-art object detention 
algorithm, 2021.

8 M. PRABAKAR AND P. G. KUBENDRAN AMOS


	Abstract
	Disclosure statement
	Notes on contributors
	References

