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ABSTRACT

One of the central goals in extremal combinatorics is to understand how the global
structure of a combinatorial object, e.g. a graph, hypergraph or set system, is affected
by local constraints. In this thesis we are concerned with structural properties of graphs
and hypergraphs which locally do not look like some type of forbidden induced pattern.
Patterns can be single subgraphs, families of subgraphs, or in the multicolour version

colourings or families of colourings of subgraphs.

Erdés and Szekeres’s quantitative version of Ramsey’s theorem asserts that in every
2-edge-colouring of the complete graph on n vertices there is a monochromatic clique
on at least 1 log n vertices. The famous Erdds-Hajnal conjecture asserts that forbidding
fixed colourings on subgraphs ensures much larger monochromatic cliques. The con-
jecture is open in general, though a few partial results are known. The first part of this
thesis will be concerned with different variants of this conjecture: A bipartite variant,

a multicolour variant, and an order-size variant for hypergraphs.

In the second part of this thesis we focus more on order-size pairs; an order-size
pair (n, e) is the family consisting of all graphs of order n and size e, i.e. on n vertices
with e edges. We consider order-size pairs in different settings: The graph setting, the
bipartite setting and the hypergraph setting. In all these settings we investigate the
existence of absolutely avoidable pairs, i.e. fixed pairs that are avoided by all order-size
pairs with sufficiently large order, and also forcing densities of order-size pairs (m, f),
i.e. for n approaching infinity, the limit superior of the fraction of all possible sizes e,

such that the order-size pair (n, ¢) does not avoid the pair (m, f).
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Introduction

OUTLINE OF THE THESIS

In this thesis, we are concerned with the structure of graphs which do not contain
some given induced pattern. Here a pattern can be a single graph, a family of graphs, a

colouring of some graph or a family of colourings of graphs.

In Part I, we are concerned with different variants of the famous Erd&s-Hajnal
conjecture (EH-conjecture for short), which asserts that forbidding any graph H as an

induced subgraph forces a large homogeneous set in the host graph.

Chapter 1: The bipartite version of the Erdds-Hajnal conjecture. It was shown by
Erdés, Hajnal and Pach [60] that the EH-conjecture holds in the bipartite set-
ting. Axenovich, Tompkins and the author [15] (see also Master thesis [125])
characterised for which forbidden induced subgraphs the size of a largest homo-
geneoues set is linear in the number of vertices — except for four open cases. We

will show that for these cases it is also linear.

Chapter 2: Bipartite independence number for bounded maximum degree. Herewe
consider the following natural, yet seemingly not much studied, extremal prob-
lem in bipartite graphs: A bihole of size ¢ in a bipartite graph G' with a fixed
bipartition is an independent set with exactly ¢ vertices in each part; in other
words, it is a copy of K;, in the bipartite complement of G. Let f(n,A) be the
largest k for which every (n x n) bipartite graph with maximum degree A in
one of the parts has a bihole of size k. Thus, determining f(n,A) is the bi-
partite analogue of finding the largest independent set in graphs with a given
number of vertices and bounded maximum degree. It has connections to the
bipartite version of the Erd§s-Hajnal conjecture, bipartite Ramsey numbers, and
the Zarankiewicz problem. Our main result determines the asymptotic behaviour

of f(n,A). More precisely, we show that for large but fixed A and n sufficiently



large, f(n,A) = @(%n). We further address more specific regimes of A, espe-
cially when A is a small fixed constant. In particular, we determine f(n, 2) exactly
and obtain bounds for f(n,3), though determining the precise value of f(n, 3) is
still open. The results are joined work with Axenovich, Sereni and Snyder and are
published in SIAM Journal on Discrete Mathematics, 35(2):1136-1148, 2021 [13].

Chapter 3: The multicolour Erdds-Hajnal conjecture. Here we will look at a multi-
colour version of the Erd&s-Hajnal conjecture. Specifically, the most general
multicolour version of the conjecture states that for any fixed integers k, s, s’ and
any s'-edge-colouring c of K}, there exists ¢ > 0 such that in any s-edge-colouring
of K,, that avoids c there is a clique on at least n® vertices, using at most s — 1
colours. In particular, we reduce the multicolour EH-conjecture to the case where
the number of colours is equal to or one more than the numbers of colours used
in the forbidden pattern. Most of the results are joint work with Axenovich and

Riasanovsky [12].

Chapter 4: The multicolour EH-conjecture for 3 colours and families of triangles.
Here, we focus on quantitative aspects of the multicolour EH-conjecture in the
case where the number of colours is s = 3, and the forbidden colourings are
on triangles. More precisely, for a family H of triangles, each edge-coloured
with colours from {r,b,y}, Forb(n, ) denotes the family of edge-colourings of
K, using colours from {r,b,y} and containing none of the colourings from .
Let ha(n,H) be the maximum ¢ such that any colouring from Forb(n,#) has a
clique on at least ¢ vertices using at most two colours. We provide bounds on
ha(n, M) for all families H consisting of at most three triangles. For most of them
our bounds are asymptotically tight. This, in particular, extends a result of Fox,
Grinshpun, and Pach, who determined hy(n,H) for H consisting of a rainbow
triangle. In addition, we prove that for some 7, ha(n, ) corresponds to certain
classical Ramsey numbers, smallest independence number in graphs of given odd
girth, or some other natural graph theoretic parameters. The results are joined
work with Axenovich and Snyder and are published in Discrete Mathematics,
345(5):112791, 2022 [14].

Chapter 5: The Erdés-Hajnal conjecture for order-size pairs. We consider a variant
of the Erd§s-Hajnal problem for r-graphs where we forbid a family of hypergraphs
described by their orders and sizes. For graphs, we observe that if we forbid in-
duced subgraphs on m vertices and f edges for any positive mand 0 < f < (%),
then we obtain large homogeneous sets. For triple systems, in the first nontrivial
case m = 4, for every S C {0, 1,2, 3,4}, we give bounds on the minimum size of a

homogeneous set in a triple system where the number of edges spanned by every



four vertices is not in S. For all S we determine if the growth rate is polylogarith-
mic. The results of this chapter are joined work with Axenovich and Mubayi and

appear in the arXiv preprint https://arxiv.org/abs/2303.09578 [11].

In Part II, we are concerned with forbidding as induced subgraphs so called order-size-
pairs: a class of graphs/hypergraphs defined by their orders and sizes. Here we do not
focus on homogeneous sets, but rather on the question how many large graphs avoid a
given small order-size pair. We focus on the existence of absolutely avoidable pairs (m, f),
i.e. pairs which are not contained in any order size-pair (n, e) for n sufficiently large,
and on the forcing density of a pair (m, f), i.e. for the order n approaching infinity, the
limit superior of the fraction of all possible sizes e, such that the pair (n, e) forces the

pair (m, f). We consider these problems for graphs, bipartite graphs, and hypergraphs.

Chapter 6: Order-size pairs in graphs. We call an order-size pair (m, f) of integers,
m>10< f< (7;), absolutely avoidable if there is ng such that for any pair of
integers (n,e) withn > ngpand 0 < e < (g) there is a graph on n vertices and
e edges that contains no induced subgraph on m vertices and f edges. Here
we show that there are infinitely many absolutely avoidable pairs. We give a
specific infinite set M such that for any m € M the pair (m, (') /2) is absolutely
avoidable and show that for m > 754 either (m, [ () /2]) or (m, | (%) /2] — 6m) is
absolutely avoidable. In addition, we show that for any monotone integer function
qg(m), |g(m)| = O(m) there are infinitely many values of m such that the pair
(m, (%) /24q(m)) is absolutely avoidable. Most of the results are joined work with
Axenovich and have been accepted for publication by Journal of Combinatorics
[16].

Chapter 7: Bipartite order-size pairs: We investigate the existence of absolutely avoid-
able pairs and forcing densities in the bipartite setting. The question whether
there exist absolutely avoidable pairs in this setting remains open, but we show
the existence of infinitely many pairs with forcing density 0 and also infinitely

many pairs with forcing density 1.

Chapter 8: Order-size pairs in hypergraphs. We show that for any » > 3 and m > my,
either the pair (m, | (") /2]) or the pair (m, | (") /2] —m—1) is absolutely avoidable.
We also show that for » > 3 most pairs (m, f) have forcing density 0. Further,
we show that for m > r there exists no non-trivial pair (m, f) of forcing density 1
and provide some general upper bounds on the forcing density. The results have

been accepted for publication by Journal of Combinatorics [126].


https://arxiv.org/abs/2303.09578

Chapter 9: Positive forcing density of order-size pairs in hypergraphs. Answering a
question from Chapter 8, we show that (6, 10) is a pair of positive forcing density
for » = 3 and conjecture that it is the unique such pair. Further, we find necessary
conditions for a pair to have positive forcing density, supporting this conjecture.
The results are joined work with Axenovich, Balogh and Clemen and have been

submitted for publication to STAM Journal on Discrete Mathematics [10].

PRELIMINARIES

In this Section we will introduce some basic notation, concepts and previously known
results that are used throughout the thesis. Less common notions will be introduced
in the appropriate place within the chapters where they are needed. For a general

introduction to graph theory we refer to the books of Diestel [52] and West [127].

GENERAL

For a finite set V and some n € N let ( [Z]) denote the set of all n-element subsets of
V. For finite sets X and Y let XUY denote the disjoint union of X and Y and let
X xY ={(z,y) : € X,y € Y}. For a positive real number z, let [z] = {0,1,..., |z]}.

For two integers z,y, * < y, we denote by [z, y] the set of all integers at least = and
at most y. For two reals z, y, x < y, we use the standard notation (z, y), [z, y), (z,y], and
[x,y] for respective intervals of reals. For z € R let {z} = x — |z| denote the fractional
part of z,i.e. {x} € [0,1) and {z} =z (mod 1).

GRAPHS, BIPARTITE GRAPHS, AND HYPERGRAPHS

An r-uniform hypergraph, or r-graph G is a pair G = (V, EY) where V is the set of vertices
and £ C ([‘:]) is the set of edges of G. The uniformity of G is r, and if r = 2, we refer
to G as a graph. For an r-graph G, let V(G) be the vertex set and E(G) be the edge set
of G. The order of G is |V(G)| and the size of G is |E(G)|. For convenience we write
x1xg - - -z, foranedge {z1, x2,- - - , z,} of an r-graph. Anr-elementsubset f € (‘T{) with
f & E is called a non-edge of G. The complement G of G is the r-graph with vertex set
V(G) = V(G) and edge set E(G) = ([‘7{]) \ E(G).

Two r-graphs G and G’ are isomorphic if there is a bijection f : V(G) — V(G’), such



thate € ([‘7{]) isan edge in G if and only if f(e) isan edgein G’. Allr-graphs G considered
in this thesis are finite, i.e. V' (G) is finite and simple, i.e. they contain no multiple edges,
since E(G) is not a mulitset. Two vertices contained in a common edge are called
adjacent. For a vertex v € V(G) the set N(v) = {u € V(G) \ {v} : wis adjacent to v} is
the neighbourhood of v, and the elements are the neighbours of v. The degree d(u) = dg(u)
of a vertex v in an r-graph G is the total number of edges in G that contain u; we omit the
subscript G if it is clear from the context. A vertex u of an r-graph is isolated if d(u) = 0
and a leaf if d(u) = 1. The minimum degree 6(G) is the smallest and the maximum degree
A(G) is the largest degree of any vertex in V (G).

For an r-graph Gand U C V(G), F C E(G) let GIU| = (U, E(G) N ([[r]})), G-U-=
GIV(G)\U],and G — F = (V(G),E(G) \ F). A subgraph G' of an r-graph G is an
r-graph with V(G’') C V(G) and E(G') C E(G). G is called a supergraph of G'. We
write G’ C G. A subgraph G’ of G is induced if G' = G[V(G')]. A copy of some r-graph
H in an r-graph G is a subgraph G’ C G which is isomorphic to H. We call an r-graph
G H-free, if it contains no induced copy of H, i.e. no induced subgraph of G is a copy
of H. For a family of graphs H we say G is H-free if G is H-free for all H € H. The
vertex-disjoint union G U G of two r-graphs G; and G is the r-graph F' with vertex
set V = V1UV4, such that F[V;] = G, for i = 1,2. For an r-graph G and an integer n let

nG be the vertex-disjoint union of n copies of G.

Let K" denote the complete r-graph or clique on n vertices, i.e. the graph on n
vertices in which all () r-sets are edges; for r = 2, we simply write K,. Note that
for r < n, K. is a set of n isolated vertices. The clique number w(G) of an r-graph
G is w(G) = max{n : K;, C G}. An independent set or co-clique in an r-graph G is a
set I C V(G) such that every r-element subset of I is a non-edge. The independence
number o(G) of G is the size of a largest independent set in G. A homogeneous set is a

clique or a co-clique. The size of largest homogeneous set in an r-graph G is denoted
by h(G) = max{a(G),w(G)}.

In 2-graphs a path of length n, n > 2 consists of n vertices vy, ...,v, and n — 1 edges
V41, © € [n—1]. We write P, for the path of length n. For vertices u, v in some graph,
a u-v-path is a path in G starting at © and ending in v. A graph G is connected if for any
two vertices u, v € V(G) there exists an u-v-path.

A cycle of length n, n > 3 consists of n vertices vy, . .., v, and n edges v;viy1,1 € [n],
indices taken modulo n. We write C), for the cycle of length n. The girth of a graph G,
denoted by girth(G) is the length of a shortest cycle in G. If G contains no cycle, G is
called acyclic or forest, and we write girth(G) = co. A tree is a connected forest. The odd
girth of G, denoted by girth 44q(G), is the length of a shortest cycle of odd length in G.



If a graph contains no odd cycle, it is bipartite.

Given a positive integer n and some p with p € [0, 1], G(n, p) denotes the probability
space on all n-vertex graphs that result from independently deciding whether to include
each of the () possible edges with probability p. This model is called the Erdds—Rényi
model of random graphs. We call G € G(n, p) a random graph.

A vertex colouring of an r-graph is a map ¢ : V(G) — S, where S is a set of colours.
c is a proper colouring if each edge contains at least two vertices of distinct colours.
The chromatic number x(G) of an r-graph G ist the smallest number of colours used
among all proper colourings of G. An r-graph G is k-partite if there is a partition
V(G) = ViU --UVy, sucht that [enV;| < 1 for each e € E(G) and i € [k]. A 2-partite
r-graph is also called bipartite.

BIPARTITE 2-GRAPHS

Let G be a bipartite graph with parts U and V' of size m and n respectively, we write
G = ((UUV),E), E CU x V. We call such a graph an (m x n) bipartite graph. We shall
often depict the sets U and V' as sets of points on two horizontal lines in the plane and
call U the top part and V' the bottom part. We say that a graph is the bipartite complement
of G if it has the same vertex set as G and its edge setis (U x V') \ E. We denote the
bipartite complement of a graph G by G. By &(G) we denote the largest integer ¢ such
that thereare A C U, B C V with |A| = |B| =tand ab € Eforalla € A, b € B, ie.
A and B form a biclique. By &(G) we denote the largest integer ¢ such that there are
ACU,BCVwith|A| =|B|=tandab ¢ Eforalla € A, b € B,ie. Aand B form
a co-biclique or a bihole. A homogeneous set in a bipartite graph is a biclique or a bihole.
Let h(G) = max{&(G),&(G)} denote the size of a largest homogeneous set in G.

For bipartite graphs H = ((U,V),E) and G = ((A, B), E'), we say that H is an
induced bipartite subgraph of G respecting sides it U C A, V C B, and for any v € U,
v € V, we have wv € E(H) if and only if uv € E(G). We say that a bipartite graph
H = ((U,V),E)isacopy of abipartite graph H* = ((U*,V*), E*) if H* is isomorphic
to H with isomorphism ¢ : U* UV* — U UV such that o(U*) = U and p(V*) = V.

Let K, denote the complete bipartite graph with parts of sizes m and n and all

possible edges.



EXTREMAL GRAPH THEORY

The extremal number ex,(n,G) of a family G of r-graphs is defined as the maximum
number of edges any r-graph on n vertices can have without containing any G € G as
a subgraph. If G = {G}, we write ex; (n, G) = ex,(n,{G}).

By T'.(n,l) we denote the complete balanced [-partite r-graph on n vertices, i.e. the
I-partite r-graph in which each part has size | | or [% | and any r vertices from r distinct
parts form an edge. T»(n, () is also called the Turin graph.

For r = 2 Turdn’s Theorem [122], proved in 1941, tells us that exy(n, K;) =
|E(Ty(n,t —1))| = (i:—f + o(l)) (3)- Erd6s and Stone proved the following asymp-

totic generalisation: exa(n, H) = (i:—f + 0(1)) (%) for any H with x(H) =t > 2.

However, for bipartite graphs (i.e. graphs with x = 2) the Erd&s-Stone theorem
does not provide a tight bound; it is known that ex(n, G) = o(n?) for general bipartite
graphs. The Zarankiewicz function z(m,n; s,t) denotes the maximum possible number
of edges in a subgraph of K,,, which does not contain a copy of K ;. We write
z(n;t) = z(n,n;t,t) for the symmetric problem. It was proven by Kévari, S6s and
Turén [98] that z(m,n; s,t) < (s — 1)Y/¢(n —t + 1)m'~'/* + (t — 1)m. This was improved
in the diagonal case by Zndm [128] to z(n;t) < (t — 1)Y/'n2= Yt 4 L(t — 1)n.

Much less is known for r-graphs with r > 3. For an r-graph H the Turdin density is
exr(n,G)

defined as 7,(G) = limn — oo O and the currently best known general bounds

on the Turdn density are

r—1\"" - m—1\""
1-— <mK,,)<1- ,
m—1 r—1

due to Sidorenko [118] and de Caen [51].

RAaMSEY THEORY

An s-edge-colouring of an r-graph G isamap ¢ : E(G) — [s]. A monochromatic subgraph
H is a subgraph H C G, for which there exists some colour i € [s] such that c(e) = i for
alle € E(H).

Given r-graphs Hy, ..., Hy, the Ramsey number of (Hy, ..., H)is R,(Hy, ... Hy), the
minimum integer n, such that for any s-edge-colouring of K, there exists i € [s], such

that there is a monochromatic copy of H; in colour i. Ramsey’s theorem [114] states



that this is well-defined. Note that we can also replace a single graph by a family of
graphs in the definition: The Ramsey number R,({H1,...,H},{K1,...H;}) would
then be the smallest integer n such that in any 2-edge-colouring of K, there is either a
monochromatic copy of some H; in colour 1 or a monochromatic copy of some K; in

colour 2. If all H;s are complete, we write R, (k1, ..., k) for R (Kk,, ..., K,).

For r = 2 we usually omit the index Ry and simply write R(H;, H). Table 0.1 lists
some upper and lower bounds on Ramsey numbers for 2-graphs which will be used

throughout the thesis.

Ramsey number ‘ Bound ‘ Reference
> ok/2 Erdds [53]
R(k, k) X
<4 Erdés and Szekeres [65]
Q(k2/log k Kim [93
o @rosty | Kim 3 |
O(k?/log k) Ajtai, Koml6s, Szemeredi [1]
R(4,k) Q(k5/2/ log2 k) | Bohman [23]
R(Cs, K3) O(k%/2/\/logk) | Caro et al. [39]
R({Cs3,C4,C5}, Ki) | Q((k/logk)*/3) | Spencer [120]
R(3,3,3) =17 Greenwood and Gleason [81]

Table 0.1: Bounds on Classical Ramsey numbers

Note that the upper bound on the diagonal Ramsey number R(k, k) < (1 +
0(1))% due to Erd6s and Szekeres from 1935 has been improved to R(k, k) <
k~(clogk)/(loglogk) gk by Conlon [46] in 2009. Very recently, in March 2023, Campos,
Griffiths, Morris and Sahasrabude [33] improved the bound to R(k,k) < (4 — 277)*.

However, in this thesis, we will only use the old bound listed in the table.

For r = 3, the best known bounds in the diagonal case are due to Erdés, Hajnal and

Rado [61]. They showed that there exist positive constants ¢, ¢ such that

2en? < Ry(k, k) < 22"



Part 1

The Erd6s-Hajnal conjecture

INTRODUCTION AND BASIC NOTIONS

A homogeneous set in an r-graph is a clique or an independent set. We write h(G) for
the size of largest homogeneous set in an r-graph G. In 1935 Erdés and Szekeres [65]
proved that for any 2-graph G of size n we have h(G) > Jlogn. On the other hand,
a well-known theorem by Erdés [55] shows that for any n there exists a 2-graph G on
n vertices with h(G) < 2logn. Erdés and Hajnal [59] conjectured that this behaviour
changes if one only considers H-free graphs G for any fixed graph H.

We say that an r-graph H has the Erdds Hajnal-property or simply EH-property if there
is a constant € = e > 0 such that every n-vertex H-free r-graph G satisfies h(G) > n°.

Erdés and Hajnal [59] conjectured the following in 1989:

Conjecture 0.1 (Erdés, Hajnal [59]). Any 2-graph has the Erdds-Hajnal property.

In the same paper they investigated perfect graphs, i.e. graphs G for which neither
G nor its complement G contains an induced odd cycle of length at least 5. They were
able to prove that for a perfect graph G, we have h(G) > /|G]. Thus, one could also
formulate Conjecture 0.1 by asking for a large induced perfect subgraph in any H-free

graph.

The conjecture remains open, see for example a survey by Chudnovsky [43], as
well as [6,27,72], to name a few. However, some partial results are known. When
H is a fixed graph and G is an H-free n-vertex graph, Erdés and Hajnal [59] proved
that h(G) > 2¢V1°8 This was recently improved to h(G) > 2¢vIegnloglogn by Bycig,
Nguyen, Scott, and Seymour [31].

Only very few graphs are known to have the EH-property and the only operation



10 I. Tue ERDGs-HAJNAL CONJECTURE

known to preserve the EH-property, i.e. with which one can build larger graphs with
the EH-property from smaller ones, is the so called blow-up: For a 2-graph H with vertex
set V(H) = {v1,...,v;} and any other pairwise vertex-disjoint r-graphs Fi, ..., Fy, we
define the blow-up H(Fi,...,F}) as the 2-graph obtained by taking pairwise vertex-
disjoint copies of F1,. .., Fj, with an edge between vertices from F; and F} if and only
if viv; € E(H).

Lemma 0.2 (Alon, Pach, Solymosi [6]). If H, F1,..., F}, have the Erdés—Hajnal property,
then so does H(F1, ..., Fy,).

All graphs on up to four vertices are known to have the EH-property and the
constants in the quantitative version are known. With Lemma 0.2 one can show that all
but four graphs on 5 vertices also have the EH-property, the remaining ones being the
bull, C5, P5 and Ps. For the bull the conjecture was proven to hold by Chudnovsky and
Safra [44], and for Cj it was proven by Chudnovsky, Scott, Seymour and Spirkl [45], so

the only graph on up to 5 vertices for which the conjecture remains open, is Ps.

One can also consider a bipartite version of the Erdds-Hajnal conjecture. Here one
asks for a largest homogeneous set, i.e. a biclique or a bihole in a bipartite graph not
containing some forbidden induced bipartite subgraph. For a bipartite graph G, the
size of a largest homogeneous set is denoted by 2(G) = max{a(G),o(G)}. It is implicit
from a result of Erdés, Hajnal and Pach [60] that for any bipartite H with the smaller
part of size k, any H-free bipartite graph G satisfies h(G) = Q(|G|'/*). It was shown
in [15] that for bipartite graphs H containing a cycle, any H-free bipartite graph G
satisfies (@) € o(n), and for all but at most four bipartite graphs H with acyclic H
and bipartite complement H®, any H-free bipartite graph satisfies h(G) = cn for some
constant ¢(H). In Chapter 1 we will look at these open cases and in Chapter 2 we
determine the size of a largest bihole in a bipartite graph with bounded maximum
degree, which will lead to improved EH-coefficients for bipartite graphs H with only

one vertex in one part.

Erdés and Hajnal [59] further stated a multicoloured version of Conjecture 0.1
asserting that for any fixed integer £ > 3 and for any fixed s’-edge-coloured clique
K on k vertices, for s > s’ > 2, there is a positive constant ¢ = a(K) such that any
s-edge-colouring of a complete graph on n vertices with no copy of K contains a clique

on {2(n®) vertices using at most s — 1 colours.

In Chapter 3 we will make this precise and reduce the multicolour EH-conjecture
to the case where the number of colours s is equal to or one more than the number

of colours used on the forbidden colouring. We further state a size variant of the
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multicolour EH-conjecture and show that it holds for s € {2,3} colours. We also

generalise Lemma 0.2 to an arbitrary number of colours.

In Chapter 4 we will investigate the multicolour EH-conjecture for 3 colours and
forbidden patterns on triangles, i.e. we are looking for large 2-coloured cliques in 3-
coloured complete graphs which do not contain some given forbidden colourings on
triangles. In particular, there might be more than one forbidden triangle-colouring.
We show that the Erdés-Hajnal conjecture holds true in this setting. We focus on the
quantitative version of the conjecture and provide asymptotic bounds on the sizes of
the largest 2-edge-coloured cliques for all families of forbidden patterns containing at

most 3 triangle-colourings.

The Erdés-Hajnal conjecture fails for r-graphs, » > 3, already when H is a complete
graph of size r + 1. Indeed, well-known results on off-diagonal hypergraph Ramsey
numbers show that there are n-vertex r-graphs that do not have a clique on r + 1
vertices and do not have co-cliques on f,(n) vertices, where f, is an iterated logarithmic

function (see [110] for the best known results).

Moreover, the following result (Claim 1.3. in [80]) tells us exactly which r-graphs,
r > 3, have the EH-property. Here D is the unique 3-graph on 4 vertices with exactly
2 edges.

Theorem 0.3 (Gishboliner, Tomon [80]). Letr > 3. If F'is an r-graph on at least r+1 vertices
and F # Do, then there is an F-free r-graph H on n vertices such that h(H) = (logn)°M).

It is natural to consider the EH-property for families of r-graphs instead of a single
r-graph. We call an 7- graph F' on m vertices and f edges an (m, f)-graph, we call
the pair (m, f) the order-size pair for F' and we say that an r-graph H is (m, f)-free
if it contains no induced copy of an (m, f)-graph. Similarly, we say a pair (m, f) (or
a family of pairs Q = {(mu, f1),..., (mg, fr)}) has the EH-property if any (m, f)-free
(or Q-free) r-graph H satisfies h(H) > |H|® for some e only depending on (m, f). In
Chapter 5 we show that for r = 2 any order-size pair has the EH-property. We then
fix r = 3 and m = 4 and consider all possible families () of order-size pairs with these
parameters. For each such @) we give bounds on h(H) for any Q-free H and determine
which families () have the EH-property.
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CHAPTER 1 THE BIPARTITE VARIANT OF THE ERDGs-HAJNAL

CONJECTURE — QUANTITATIVE VERSION

1.1 INTRODUCTION

Let Forb(n, H) denote the set of all bipartite graphs with parts of size n which do not
contain a copy of H as an induced bipartite subgraph respecting sides. Recall that we
call a bipartite graph H-free if it does not contain an induced copy of H. Recall that
h(G) = min{a(G),&(G)} denotes the size of a largest balanced homogeneous set, i.e. a

biclique or a bihole/co-biclique in G. Let
h(n, H) = h(Forb(n, H)) = min{h(G) : G € Forb(n, H)}.

Lemma 1.1. If H is an induced bipartite subgraph of K (respecting sides), we have h(n, H) >

h(n, K).

Proof. Any H-free bipartite graph is also K-free by assumption. Thus, we have

Forb(n, H) C Forb(n,K), and thus, h(n,H) = min{i(G) : G € Forb(n,H)} >
min{i(G) : G € Forb(n, K)} = h(n, K). O

It is implicit from a result of Erdds, Hajnal and Pach [60] that for any bipartite
H with the smaller part of size k, we have h(n, H) = Q(n'/*). If either H or its
bipartite complement H¢ contain a cycle, then it must contain either Cy4, Cs or Cg. A
standard probabilistic argument, see for example [15], shows that in this case we have

h(n, H) = O(n'~¢) for some positive €.

Axenovich, Tompkins and the author [15] addressed the question of when ﬁ(n, H)
is linear in n. We say that a bipartite graph H is strongly acyclic if neither H nor its
bipartite complement H¢ contain a cycle. They showed that for all but at most four

strongly acyclic graphs H, h(n, H) is linear in n. Let
H ={Ps, P, 5123, Pr},

the set of these four strongly acyclic graphs, given in Figure 1.1.

Theorem 1.2 (Axenovich, Tompkins, Weber [15]). Let H be a strongly acyclic bipartite
graph. Ifneither H nor H' is in M, there is a positive constant ¢ = c(H) such that h(n, H) > cn.

Moreover, for several graphs H the value of ﬁ(n, H) was determined exactly; the
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Figure 1.1: The set H = {155, Ps, S1,2,3, Pr}.

results are summarised in Table 1.1. Here M 4 is the bipartite graph with vertex set

{v1,v2}U{s1, ..., sor42}, such that vy is incident to {s1,..., sk, Sor+1}, v is incident to

{Sk41s---,82k+1}, and Hy j, = 2K ;. Then any strongly acyclic bipartite graph with at

most two vertices in its smaller part is an induced subgraph of Mj, ;. for some k; one

can easily show that any strongly acyclic bipartite graph H with H ¢ H has at most 2

vertices in its smaller part. P; denotes the (2 x 2) bipartite graph which is a P; and an

isolated vertex. Using Lemma 1.1 one obtains the given bounds.

forbidden H h(n, H)
not strongly acyclic | o(n)

H C Jlfk:,k > W
HeH ?

H C Hy > %

P = [3]
2K, = (2]
Py > [%]

Table 1.1: Bipartite EH-coefficients from [15]

In the remaining part of this chapter we will deal with the four open cases. In

Chapter 2, we will look at large biholes in bipartite graphs with bounded maximum

degree in one part, which will yield the upper bound on h(n, H) for H with one vertex

in the smaller part. The results are summarised in Table 1.2.

forbidden H | h(n, H) Source

HC Ky > %biﬁ([l;]) Chapter 2, [13]

P > 1o Proposition 1.5

Py > 10% Corollary 1.9

S123 > 5 [2], Proposition 1.10
]55 > % Corollary 1.13

Table 1.2: Improved bipartite EH-coefficients
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In particular, the results from Table 1.2 together with Theorem 1.2 imply the follow-
ing:

Theorem 1.3. Let H be a bipartite graph. Then H is strongly acyclic if and only if there exists
some ¢ = c¢(H) > 0,s.t. h(n, H) > cn.

Scott, Seymour and Spirkl [117] proved the following theorem:

Theorem 1.4 (Scott, Seymour, Spirkl [117]). For every bipartite graph H which is a forest
and every T with 0 < T < 1 there exists ¢ = e(H) > 0, such that any H-free (n x n) bipartite
graph G with at most (1 — 7)n? edges satisfies &(G) > en.

Note that one can obtain Theorem 1.3 from Theorem 1.4 in the following way: Let
H be a strongly acyclic bipartite graph and let G be any (n x n) bipartite H-free graph.
If |[E(G)| < $n?, by Theorem 1.4 we have &(G) > e(H)n. Otherwise, G¢ is H-free and
has at most 1n? edges, so by Theorem 1.4 we have that &(G) = &(G¢) > ¢(H®)n.

However, the proof of Theorem 1.4 does not provide any specific constants ¢(H ).
It uses, amongst others, the existence of hypergraph Ramsey numbers, for which we
have the lower bound Ry (n,n) > t;_1(cn?), where t;(z) is the tower function defined
by t1(z) = x and t;11(2) = 24(®). At one step in the proof one iterates over all forests
on a fixed number of vertices, where k is the number of vertices in the forest, and
in each iteration, n is the Ramsey number from the previous step. Even when only
considering strongly acyclic bipartite graphs in H on 6 or 7 vertices, following the proof
of Theorem 1.4 will only give e=! > Rj(n,n) for some huge n, which is considerably

weaker than the bounds obtained in the next section.

Note that the notion of large bicliques and co-bicliques in ordered bipartite graphs
with forbidden induced subgraphs corresponds to the notion of submatrices of all 0’s
or of all 1’s in binary matrices with forbidden submatrices. Here ordered means that the
vertices in the two parts are ordered according to the rows and columns of the matrices,
thus, one forbidden submatrix only forbids one specific ordering of the corresponding
bipartite graph. A paper by Kordndi, Pach and Tomon [96] addresses a similar question
for matrices. In addition, one could interpret bipartite graphs as set systems consisting
of all the neighbourhoods of vertices from one part. Structural properties of these
graphs in terms of VC-dimension of the respective set system in connection to the

Erdés-Hajnal conjecture are addressed for example by Fox, Pach and Suk [72].
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1.2 SPECIFIC BOUNDS IN THE LINEAR REGIME

The goal of this section is to deal with the four remaining cases P, S1.2.3, Ps and Pr.
In particular, we will show that in each of those cases we obtain h(n, H) > ¢(H)n, for
some positive constants c(H ), which will then prove Theorem 1.3. Note that P5 and Ps
are induced subgraphs of S 23 and Pr respectively, so by Lemma 1.1 it suffices to find
positive constants ¢(S1 2 3) and ¢(Pr), even though these might not be best possible for
¢(Ps) and ¢(Ps).

1.2.1 PATHS ON 6 AND 7 VERTICES

Proposition 1.5. We have h(n, P;) > =135
The proof is partly inspired by a result by Bousquet, Lagoutte and Thomassé [27]
on the Erdés-Hajnal conjecture for paths and antipaths. Before we prove the statement,

we need some auxiliary lemmata:

Lemma 1.6. Let G = (AUB, E) be an (ny X ng) bipartite graph with nq,ng > 2. Then G
contains either a co-biclique or a connected component with parts of sizes at least *5- and "3 in

A and B respectively.

Proof. Let, for some index set I, the connected components of G have parts 4; and B; of
sizes a;, b;, respectively, A; C A, B; C B,i € I. Let G; = G[A;UB;] be the ith connected

component of G.

We can assume that for each i we either have a; < 5 or b; < 2, since otherwise

there is a connected component with parts of sizes -, 2.

Then we have a; < 5 and b; < “2 for each i € I: Assume thereisi € I s.t. a; > &

or b; > %, say a; > . Then by our assumption above we must have b; < . Hence,

we find a co-biclique with parts A4;, B\ B; of sizes at least 5 and 2% respectively.

Let I; be the set of indices for which we have Z—; < b letl, =1 \ I;. Let

na
Xi=UA, Y11= U Bi, Xo =A\ A, Yo = B\ By, 21 = |X1|, x2 = | Xo|, ;1 = V1,
i€l i€l
y2 = |Y2|. Consider the co-biclique with parts Y7, X5. We can assume thateither y; < =

or zg < . If 21 < %, then clearly x5 > 2%, so assume y; < ‘2. Then z; < % since

foreachi € I, Z—Zl < b—; Thus, in either case we have z9 > 2%

Consider a minimal subset I3 C I such that X3 = (J A4; C X, has size x3 > 7.
i€l
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Then z3 < 2"71, otherwise for any i € I3, | X3\ A;| > 2% — %t = % In particular, we

could have taken I3 \ {i} instead of I3, contradicting its minimality. Thus, Y3 = |J B;
i€l3

has size less than 2%, since 2—’2 < 7% for i € I3 C I5. This implies that X5 and B \ Y3

form a co-biclique with parts of sizes at least =5 and .

Note that % is best possible: For ni,ny > 3 take the pairwise disjoint union of 3
bicliques with part sizes in { | %], [%-], | %], [%]} - O

Lemma 1.7. For every k > 2 there exists ¢, > 0 and ci with 0 < ¢, < 1, such that every
connected (ny X ng) bipartite graph G = (UUV, E) with ny,ne > 2 satisfies one of the
following:

o There exists a vertex v € A of degree more than exny or a vertex v € B of degree more
than enq; or
e for every vertex v, G contains an induced Py, starting at v; or

o G contains a co-biclique with part sizes cyni and cigna.

. _ 1—
In particular, we can set €3 = co = 1 and e, = 31“6;1 and ¢, = ck_l(gie’“)for k> 3.

Proof by induction on k. For k = 2, the second item trivially holds, since G is connected

and thus, every vertex is the endpoint of an edge. Set €2 = cp = 1.

Ifk > 2 lete = Si’;il and ¢ = ¢_1 (1_36"’). Then we have ¢, = ¢;,_1 (1—3%), and so

we have ¢, = €.

Assume the first item does not hold, i.e. the maximum degree in A is at most exn2
and the maximum degree in B is at most €;n;. We will show that the 2nd or 3rd item
must hold then.

Let v be any vertex in V(G), wlo.g. v € A (for v € B simply swap the roles of
A and B in the proof) and set A’ = A\ {v} and B’ = B\ N(v). Then we have that
a=|Al=n —1and b= |B| > (1 — €;)n2. Then by Lemma 1.6, G[A'UB’] contains
either a co-biclique or a connected component S with parts of sizes n} > a/3 > anil
and nh > b/3 = % If S is a co-biclique, the third item holds and we are done, so

S is a connected component.

Let w € N(v) be adjacent to S (which exists, by connectivity of G). Consider

the graph G’ = G[SU{w}]. Then the maximum degree in A N V(') is still at most

€Ny = ek_l(%) < ep_1nf < ep_1(nh + 1) and the maximum degree in B' NV (G’)
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is still at most e;n; = ek_l(%) < e;—1n}. Thus, by the induction hypothesis,

either the second or third item holds in G’, which either gives a P, in G starting at v
(vw and a P, starting at w) or to a co-biclique with part sizes c;_1§ > cx—1 m-l >

3 -
Ck_l(l — Ek)% = CrN1 and Ck—l(% + 1) > Ck_l(l — Ek)% = Crpng. ]

This proves the existence of either a large co-biclique or a vertex of high degree in

Pr-free bipartite graphs.

The following lemma is due to Erdds, Hajnal and Pach [60], rephrased and proven
in a slightly more general form by Scott, Seymour and Spirkl [117]. It provides the
existence of either a sparse or a dense subgraph of any H-free bipartite graph.

Lemma 1.8 (Scott, Seymour, Spirkl [117]). Let H be a (k x 1) bipartite graph and let € > 0.
Then there exists v > 0 with the following property: Let G be an H-free (n x n) bipartite graph
withn > 0 and parts A, B; then there exist an (yn x ~yn) bipartite subgraph G' of G, such that
either

A(G) < eyn or 5(G') > (1 —e)yn.

In particular, v = min{3, (k + )71, (¢/2)*/1} is sufficient.
Now we can finally prove Proposition 1.5.

Proof of Proposition 1.5. Let ¢ = e7 from Lemma 1.7. By the recursion given (e2 = 1,

. €k—1
€k = 3tep_1

€7 = = = c7. Let vy = min{3}, 1, (¢/2)3/4} = (c 42)3.

forkZS)wehaveeg:1,632%,642%,%2%,66:%7%@

Let G be an (n x n) bipartite graph which is P;-free. We want to show that h(G) >
n. By Lemma 1.8, G contains a (yn x yn) bipartite subgraph G’ with either A(G) <

64

7
325
eynor 6(G) > (1 — e)yn.

Assume we have A(G’) < eyn (in the other case, consider the bipartite complement
G’°. Then since P = P;, G'° is Pr-free and has A(G’°) = yn — §(G) < eyn). By
Lemma 1.6, G’ contains either a connected component S or a co-biclique with parts of

size yn /3. In the latter case we are done, so assume the former. Let G” = G'[S5].

Then according to Lemma 1.7, G” contains a co-biclique with parts of sizes at least
g q p

cw%n. Thus, in either case we find a large homogeneous set, and in particular, we have

- (1 1 1 (er/2)3 € n n
WG) > mm{?ﬂn, 3cwn} =374 T3 Thuizp 18 -
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Corollary 1.9. We have h(n, Ps) > IVEREIE

Proof. Since Fs is aninduced subgraph of P7, by Lemma 1.1 we have ﬁ(n, P < ﬁ(n, Ps).
O

1.2.2 REMAINING BIPARTITE GRAPHS

Let H = S} 2 3 denote the following bipartite graph on 7 vertices:

e

Figure 1.2: The graph Si 23

Proposition 1.10 (Alecu, Atminas, Lozin, Zamaraev [2]). We have h(n, S123) > 5

A partial proof of this proposition appears, with some gaps, in [2]. We give a

complete proof here.

We use a decomposition scheme, using the language from [2,69], called canonical

decomposition:

We define a good split as the decomposition of a bipartite graph G = (UUV, E) into
two non-empty bipartite graphs G; = G[U1UV;] and G2 = G[U3UVs], where U = U UUs
and V' = V1UV,, such that each of the graphs G[U;UV,] and G[U2UV; ] is either complete

or empty.

If we want to canonically decompose a bipartite graph G, we find a good split into
G1 and G, and then recursively find good splits in G; and G'. If we cannot find a good
split in a bipartite graph, it is called canonically indecomposable. If we can recursively
decompose a bipartite graph by good splits until all components consist of a single

vertex, the graph is called fotally decomposable.

We need the following two characterisations:

Lemma 1.11 (Fouquet et al. [69]). A bipartite graph H is totally decomposable by canonical
decomposition if and only if it is{ Pr, S} 2,3 }-free.

Lemma 1.12 (Alecu et al. [2]). Any canonically indecomposable Sy 2 3-free (n x n) bipartite
graph G containing a Py satisfies h(G) > T
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In the proof of Lemma 1.12 a lemma from Lozin [104] is used, characterising S 2 3-

free graphs containing a P;. Now we can prove Proposition 1.10.

Proof of Proposition 1.10: Let G'be an S 2 3-free (nxn) bipartite graph. If G is canonically
indecomposable, by Lemma 1.11, G contains a P;, so by Lemma 1.12, we have E(G) > 7

So assume G is not indecomposable, so we can find a good split and decompose
G = (UUV, E) into two graphs G; = G[U;UV;] and G| = G[U{UV]]. Wlo.g. |U;| >
|U{|. We will recursively decompose Gy, into two graphs Gi11 = G [U+1UVi41] and
Gy = GplU; UV ] with [Ug11| > |Uj | until G} does not contain a good split, i.e.
until we are left with a canonically indecomposable bipartite graph Gj. Note that we
only further decompose the graphs Gy, never G).. In particular, for any j € [k] we have
U = UjuU3U - - - UU, UUy.

Casel: |Uy| > 2. If |Vi| > %, then by Lemma 1.12 hG,) > 12 = 2 50 assume
V| < 2. Then we have yvluvz ---UV/| > %, and G[U,UV/] is either complete
or empty for each ¢ < k. Thus, taking U; and some of the sets V/, we have

hG) > 3% =%

Case 2: |Uy| < %. Since U = UjUUU - - - UU}UU}, we have [U{U - - - UU;| > %. Pick the
smallest j s.t. |[U7| + [Us| + -+ + |U}| > §. Since |[UjUU3U- - UUUU;| = n and
by definition of j, we obtain |U}| + |U;| > 22 and thus, since |U;| > |U |, we have
Uj| =
Case 2.1: ]V\ > %. Then for i < j, each G[U/UV}] is either complete or empty.

Since Z |U!| > %, we find a collection of sets U/ that span %% vertices that

form a blchque or a co-biclique with V/, i.e. h(G) >

Case 2.2: |Vj| < ¢. Then for i < j, each G[Uj;, V] is either complete or empty.
Since |U;| > ?,and‘UileQ’ > 5%L,wehaveh( ) > ( [U]’ (U,LSJVZ)D >

G-

Thus, in any case, we have B(G) > %. O

Corollary 1.13. We have h(n, Ps) >

o3

Proof. Since P; is an induced subgraph of S 2 3, by Lemma 1.1 and Proposition 1.10 we
obtain% S iL(TL, 51,273) S iL(n, ]55) O
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1.3 CONCLUDING REMARKS

While Theorem 1.3 gives a full characterisation for which forbidden bipartite graphs
H the function h(n, H) is linear in n, we only know the asymptotic behaviour. The
constants c¢(H ) obtained in Propositions 1.5 and 1.10 are probably far from optimal; an
easy to see upper bound on c¢(H) for any graph in A is %, which can be obtained by

taking three pairwise disjoint copies of K, 3 /3.

For H € {S123,P5} we have ¢(H) < 2, as can be seen by considering the blow-
up of Cg, i.e. the (4m x 4m) bipartite graph G with parts U = UUU,UUsUU, and
V = ViUVaUV3UVy, where |U;| = |V;| = m for i € [4], and uv with u € U;, v € V
is an edge if and only if j € {i,i + 1} (mod 4). This graph is H-free and satisfies
a(G) =w(G) = 4. Thus, § <c(H) < 7.

Also, there is no other non-trivial upper bound on any of those constants ¢(H), so

it would be interesting to exactly determine those constants.
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CHAPTER 2 BIPARTITE INDEPENDENCE NUMBER IN GRAPHS WITH

BOUNDED MAXIMUM DEGREE

2.1 INTRODUCTION

The problem of finding g(n,A), the smallest possible size of a largest independent
set in an n-vertex graph with given maximum degree A is not very difficult. Indeed,
one can consider the graph that is the disjoint union of |n/(A + 1)| complete graphs
on A + 1 vertices each and a complete graph on the remaining vertices. This shows
that g(n,A) < [n/(A +1)]. On the other hand, every n-vertex graph of maximum
degree A contains an independent set of size [n/(A + 1)], obtained for example by
the greedy algorithm. Consequently, g(n,A) = [n/(A + 1)]|. The situation is more
interesting for regular graphs, see Rosenfeld [116] for a more detailed analysis. The
analogous problem in the bipartite setting is more complex: determining the smallest
possible bipartite independence number of a bipartite graph with maximum degree A is

still unresolved, even for A = 3.

Recall that a bihole of size k in a bipartite graph G = (AUB, E)) with a given biparti-
tion A, B, is a pair (X,Y) with X C A4, Y C B such that | X| = |Y| = k, and such that
there are no edges of G with one endpoint in X and the other endpoint in Y. Thus,
the size of the largest bihole can be viewed as a bipartite version of the usual indepen-
dence number. This chapter is devoted to studying the behaviour of this function. We

write log for the natural logarithm.

Definition 2.1. Let f(n,A) be the largest integer k such that any (n x n) bipartite graph
G = (AUB, E) with d(a) < A forall a € A contains a bihole of size k. Let f*(n,A) be the
largest integer k such that any (n x n) bipartite graph G with A(G) < A contains a bihole of

size k.

While f(n, A) is defined by restricting the maximum degree in one part of the graph,
f*(n,A) is its ‘symmetric’ version. Observe that f(n,A) < f*(n,A) for any natural
numbers n and A for which these functions are defined.

Theorem 2.2. There exists an integer Ag such that if A > Agandn > 5Alog A, then

log A

FnA) 2 fn,8) 2

n.

The proof of Theorem 2.2 follows by first determining the value of f(n,2) (see
Theorem 2.6) and then reducing the general problem of bounding f(n, A) by applying
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the bound on f(n,2) in conjunction with a probabilistic argument. A slightly weaker
bound was obtained by Feige and Kogan, [66]. They proved that f(n,A) > cnlog A/A,
for any constant ¢ < 1/2. The proof is a very similar probabilistic approach to the
one used here, but instead of looking for a subset of vertices inducing a graph with
maximum degree at most 2 in A, the authors immediately look for a bihole. Thus, our
Theorem 2.2 is a modest improvement of this result giving a constant term equal to
1/2; this has been improved recently by Chakraborti [41] to (1 — ¢), see Theorem 2.17

in Section 2.4.

Theorem 2.3. For any ¢ € (0,1) there is an integer Aoy = A(e) such that if A > A and

n > A, then
log A

A

In addition, there is a constant ¢ such that f*(n, A) < clOiA n.

f(n,A) < (2+¢)- n.

Theorems 2.3 and 2.2 thus determine f(n,A) asymptotically for sufficiently large,

but fixed A and growing n. We state this concisely in the following corollary.

Corollary 2.4. For every ¢ € (0, 1) there exists an integer Ao = Ag(e) such that the following
holds. For any A > Ag there is Ny = No(A) such that for any n > Ny,
1 logA

2 A

log A
A

n<f(nA)<2+e¢)- n.

Corollary 2.5. There is a A such that if A > Ay, then f*(n,A) = © (%n).

There is a gap between the lower bound in Theorem 2.2 (and also the improvement, see
Theorem 2.17) and the upper bound in Theorem 2.3. We leave the closing of this gap
as an open problem; see Section 2.4.

Given Corollary 2.4, it is natural to consider the behaviour of f(n,A) when A
is small. In this case, we have only the following modest results. The bounds are
obtained as corollaries of general bounds that become less and less precise as A grows;

see Table 2.1 and Section 2.3.2 for more explicit values.

Theorem 2.6. For any A > 2 and any n € N we have f(n,A) > | %52 |. Moreover, for any

n € Nwe have f(n,1) = |n/2], f(n,2) = [n/2] — 1, and there exists ng such that if n > ny,
then 0.3411n < f(n,3) < f*(n,3) < 0.4591n.

We also consider the other end of the regime for A, when A is close to n. In
particular, when A is linear in n, say A = n — cn, it follows from Theorem 2.3 that

f(n,n —cn) = O(logn). Furthermore, it is not too difficult to show that f(n,n —cn) =
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A Lowerbound Upper bound
3 0.34116 0.4591
4 0.24716 0.4212
5) 0.18657 0.3887
6 0.14516 0.3621
7 0.11562 0.3395
8 0.09384 0.3201
9 0.07735 0.3031
10 0.06459 0.2882

Table 2.1: Explicit asymptotic lower and upper bounds on f(n,A), divided by n,
obtained for small values of A, for n large enough.

(log n) (see Proposition 2.15 for details). When A is much larger (i.e. A = n — o(n)),
bounding f(n,A) bears a strong connection to the Zarankiewicz problem, which will
be discussed in the next section, and we are able to obtain the following result. We
formulate it in terms of a bound on the degrees guaranteeing a bihole of constant size ¢.
Let

A, (t) == max{q : f(n,q) =t}.

Theorem 2.7. Let t > 4 be an integer. There is a positive constant C and an integer Ny such
that if n > Ny, then n — Ccnl-1t < An(t) <n-— Cnl_t%l. In addition there is an integer Ny,
such that if n > Ny, then A, (2) = n — n'/2(1 + o(1)) and A, (3) = n — n?/3(1 + o(1)).

The main results of this chapter are joined work with Axenovich, Sereni and Sny-
der [13].

This chapter is structured as follows. We describe connections between the func-
tion f(n,A), classical bipartite Ramsey numbers, and the Erdds-Hajnal conjecture in
Section 2.2. We prove Theorems 2.2 and 2.3 in Section 2.3.1 and prove Theorem 2.6 and
establish the values for Table 2.1 in Section 2.3.2. We prove Theorem 2.7 in Section 2.3.3.
Section 2.4 provides concluding remarks and open questions.

2.2 RELATED PROBLEMS

The function f(n,A) is closely related to the bipartite version of the Erdds-Hajnal

conjecture, bipartite Ramsey numbers, and the Zarankiewicz function.

Note that f(n, A) for A sublinear in n corresponds to h(n, H) for H a bipartite graph
with one vertex in one part of degree A + 1. Indeed, a bipartite graph not having a
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star with A + 1 leaves is a graph with vertices in one part having degrees at most A.
Note that in our bipartite version of the Erdés-Hajnal conjecture we respect sides, so
H can also have an arbitrary number of isolated vertices in the larger part. In such
an H-free graph G with degree at most A in one part there are clearly no complete
bipartite graphs with A + 1 vertices in each part, so the largest homogeneous set is a

bihole, as A is sublinear in n. Its size is thus determined by f(n, A).

Furthermore, the parameter f(n,A) bears a connection to bipartite Ramsey num-
bers. If H; and H are bipartite graphs, then the bipartite Ramsey number br(H, Hs)
is the smallest integer n such that any red-blue colouring of the edges of K, ,, pro-
duces a red copy of H; or a blue copy of Hy respecting sides. Thus, if f(n,A) = &,
then br(Kj a41, Kk ) = n. For results on bipartite Ramsey numbers, see Caro and
Rousseau [40], Thomason [121], Hattingh and Henning [87], Irving [89], and Beineke
and Schwenk [21].

Finally, considering the bipartite complement, determining f(n, A) is related to the
Zarankiewicz problem in bipartite graphs. Recall that z(n;t) denotes the maximum
number of edges in a subgraph of K, ,, with no copy of K; ;. Finding a large bihole in a
bipartite graph is the same as finding a large copy of K;; in the bipartite complement,
where the bipartite complement has large minimum degree on one side (this is spelled
out more carefully in Section 2.3.3). There is some literature on the Zarankiewicz
problem for ¢ large (see, for example, Balbuena et al. [19,20], Culik [49], Fiiredi and
Simonovits [77], Griggs and Ouyang [82], and Griggs, Simonovits and Thomas [83]).
However, most of these results address the case when ¢ is close to n/2, or when the

results do not lead to improvements on our bounds.

2.3 BounbpsoN f(n,A)

In this section we establish upper and lower bounds on f(n,A) for various ranges of
A. First, we establish the exact value of f(n,2) that is used in other results. Then, we
treat the case when A is fixed but large. We then move on to the case when A is a small

fixed constant, and finally, when A is large, i.e. close to n.

Lemma 2.8. For every positive integer n, we have f(n,2) = [n/2] — 1.

Proof. To see that f(n,2) < n/2, simply consider an even cycle Cy, on 2n vertices. It
remains to establish the lower bound. Let H = (AUB, E) be an (n x n) bipartite graph
where the degree of each vertex in A is at most 2. Note that we may assume without

loss of generality that the degree of each vertex in A is exactly 2. Consider the auxiliary
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multi-graph G with vertex set B, in which two vertices are adjacent if and only if they
have a common neighbour in H. Consequently, there is a natural bijection between the
edges of G and A, and thus, G has n vertices and n edges. We assert that G contains
a set E' of edges and a set V' of vertices each of size [n/2] — 1, and such that no edge
in E’ has a vertex in V/. Note then that this pair of sets corresponds to parts of a bihole
in H of size [n/2] — 1, thus proving that f(n,2) > [n/2] — 1. The rest of the proof is
devoted to proving the above assertion.

To this end, we consider the (connected) components of G: a component C'is dense
if |[E(GIC))| > |C|. Let Si,...,Sk be the components of G, enumerated such that
S1,...,Sn are dense and the others are not. Note that we must have at least one dense
component, so m > 1, and it could be that all components are dense. Let x be the
number of components of G that are not dense, thatis, z .=k —m € {0,...,k — 1}.
Let v and e be the number of vertices and edges, respectively, in the union of all dense
components of G. Then the total number of edges in non-dense components of Gisn—e
and the total number of vertices in these components is n — v. In addition, the number
of vertices in non-dense components is at least the number of edges plus the number

of components. Thus,n —v>n—-e+z,s0z <e—wv.

Let G’ be a subgraph of G with precisely [n/2] —1 edges and consisting of Sy, ..., S,
and a connected subgraph of S, 1, for some ¢ € {0,...,k—1}. In particular, if S; has at
least [n/2] — 1 edges, then G is a connected subgraph of S;. It suffices to show that G’
has at most |n/2] + 1 vertices, since we can then choose a set V' of [n/2] — 1 vertices
in V(G) \ V(G'), which along with E’ := E(G’) will form the sought pair (V', E’). To
this end, first notice that if G’ has at most one non-dense component, then the number of
vertices of G’ is at most |E’|+ 1, which is at most [n/2] < [n/2]|+1, as desired. Suppose
now that G’ has more than one non-dense component. It follows that G’ contains all
dense components of G. Let 2’ be the number of non-dense components of G'. Then
x’ < z. The number of edges in dense components of G is e, and thus, the number of
edges in non-dense components of G’ is [n/2] — 1 — e. This implies that the number of
vertices in non-dense components of G’ isatmost ([n/2] —1—e)+2' < ([n/2]—1—e)+z.
Adding the number v of vertices in dense components of G and the number of vertices
in non-dense components of G’, we see that the total number of vertices in G’ is at most
v+ (([n/2] =1 —e)+z) < [n/2] —1 < [n/2] + 1. This concludes the proof. O
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2.3.1 Proor oF THEOREMS 2.2 AND 2.3

The upper bound given in Theorem 2.3 comes from suitably modifying a random
bipartite graph G € G (n,n,2). The idea of the proof of the lower bound given in
Theorem 2.2 is as follows. Let G = (AUB, E) be an (n x n) bipartite graph with
d(z) < A for every z € A. We choose an appropriate parameter s and choose a subset
S of B uniformly at random from the set of all s-element subsets of B and consider
the set T of vertices in A that have at least A — 2 neighbours in S. Lemma 2.8 can then
be applied to the bipartite graph induced on parts (7', B \ S), as in this bipartite graph
every vertex in 7" has degree at most 2. Intuitively, the set 7" should be “large enough”
to guarantee a large bihole in G. Floors and ceilings, when not relevant, are ignored in

what follows. We start by establishing the lower bound, that is Theorem 2.2.

Proof of Theorem 2.2. Consider an arbitrary bipartite graph with parts A and B each of
size n so that the degrees of vertices in A are at most A. Up to adding edges arbitrarily,
we may assume without loss of generality that each vertex in A has degree exactly A.

Choose a subset S of B of size (1 — 2z)n — 2 randomly and uniformly among all such

subsets, where z = %logAA. We assume that n > 5Alog A and A > A is chosen

large enough to satisfy the last inequality in the proof. Let X be the random variable

counting the number of vertices in A with at least A — 2 neighbours in S. Then
E[X] >n- h(w,n, A)a

where h(z,n, A) denotes the probability that an arbitrary vertex in A has exactly A — 2

neighbours in S. Since we may assume that every vertex in A has degree exactly A, we

Mz,n, &) = (AA— 2) <(1 —g;)rf— A) ((1 - 2Z)n - 2) B

Observe that if E[X]| > 2zn + 2, then there is a set A’ of at least 2zn + 2 vertices in

have

A, each sending at most 2 edges to B \ S. Since |B \ S| = 2zn + 2, Lemma 2.8 implies
that there is a bihole between A’ and B\ S of size at least zn. Thus, it is sufficient to
prove that h(xz,n, A) > 2z + 2/n. Let us now verify this inequality.

Recall that z = %IOZA. Leta=1-2z,s0a=1-— IOZA = % € (0,1). Note

that an > A since n > 5Alog A. Let 3 =1 — 1. Then 8 = s & _ We have

A—log A
A n—A
h(a:,n, A) _ (A72) ((172x)n7A)

((1—2Z)n—2) 7
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(27) =305
1

A—-2
(23:)204A*2 (1 — nB—AA> 2.1)

A A BA \4
> <2>(2x)204 (1_nA> ; (22)

where (2.1) holds because the function j — nﬁ—_jj is increasing, as 8 > 0. Now, express-
ing (3 in terms of A, we note that

BA < Alog A/(A —log A) log A

_ <1,
n—A " 5Alog A — A (5log A —1)(A —logA) —

and therefore Bernoulli’s inequality can be applied to (2.2). It follows that

h(z,n,A) > (?) (22)%(1 — 22)> (1 (A ﬁ;lﬁ(ﬁ - A))

> @) (22)2(1 — 22) <1 — LmlsgA> (2.3)
> (?) (22)2(1 — 23@)&%, (24)

where (2.3) follows since —1¢ < 2 and log A < A/2, and (2.4) holds since n > 5Alog A.

A o
Now, note that (1 —2x)2 = <1 - loiA> > %6_%'A = 5~. Thus, from (2.4) we obtain

h(z,n, A) > @)(23;)2 ! :(2@%.

Finally, to bound the right-hand side of the above inequality from below, observe that

(A —1)logA 1 log? A 2 2
= L2 > — = > > -
50A > (2z) |1+ 10 log A 22 + 2z + 2z + —,

(22) 40N — 5Alog A = n

where these inequalities hold for sufficiently large A. Accordingly, h(z,n, A) > 2z + 2,
which concludes the proof of Theorem 2.2. O]
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To prove Theorem 2.3 we shall need to use Chernoft’s bound. Specifically, we use

the following version (see [90], Corollary 21.7, p.401, for example).

Lemma 2.9 (Chernoff’s bounds). Let X be a random variable with distribution Bin(N, p)
and § € (0,1). Then

PX > (14 6)EX] < exp <—532EX> and (2.5)

P[X < (1-6)EX] < exp (—522EX> . (2.6)

Proof of Theorem 2.3. Let ¢’ € (0, 1) be arbitrary and let € := ¢’/8. We shall assume that
A > Ay(e) is sufficiently large such that our inequalities hold. In particular, we assume
that A > 27. Suppose that n > WAA/Z)' Set N .= (1+¢e)nand A’ := (1 — ¢)A, so
in particular A’ > 13.5. We consider first H € G (N , N, %), that is, H is a random
(N x N) bipartite graph with parts A and B, where each edge abwitha € Aand b € B
is chosen independently with probability A’/N. We first establish that the random
graph H contains no “large” biholes with fairly large probability. In the following, for
subsets X C Aand Y C B, let e(X,Y') denote the number of edges with one endpoint

in X and the otherin Y.

(A). With probability at least 0.75, any two subsets X C Aand Y C B with |X| = |Y| =
2N1A°§A, satisfy e(X,Y) > 0.

Proof. Set m = 2 lz/g 2" and note that m is therefore at least 8. Suppose that X C A
and Y C B both have size m. Then

Ple(X,Y) = 0] = (1 - g)m .

Let p be the probability that there is a pair (X,Y), with X C AandY C B, |X|=|Y| =
m, such that e(X,Y") = 0. Forming a union bound over all possible pairs of sets of size

m, we have

< N 2 1_5 m2 < & 2m 7A,]<7n2 _ Ale 710gA/ 2m_ e 2m
P=\m N —\m c N 210gA’e -~ \2log A

< 0.25.

Here, we used the standard estimates ;) < (4¢) ¥ 1—2 < e~*, the fact that (e/2log A') <
0.53 because A’ > 13.5, as well as the inequality 2m > 2. This establishes (A). |

Now, let g(¢) = 2log (%) . We shall show that, with probability sufficiently large
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for our purposes, at least n of the vertices of A have degree at most A’ + /3g(g)A’.

(B). With probability greater than 0.25, the number of vertices v € A with more than A’ +
3g(e)A’ neighbours in B is at most £ N.

Proof. We use standard concentration inequalities to show that the degree of every

vertex in A is approximately A’. For each vertex v € A, let X, be the degree of v in H.

Noting that E[X,] = A’, we apply (2.5) from Lemma 2.9 with ¢ := /3¢g(¢)/A’ < 1 to

obtain

/2
P, > (14 1] < oxp (WA> -0 = o )2

3 1+e¢

<075 ——.
1+e¢

Letting X be the random variable counting those vertices v € A with X, > (1+6)A’, by
Markov’s inequality, we deduce that P[X > ﬁN | < 0.75, thereby establishing (B). W

It follows from (A) and (B) that with positive probability, 4 has no large biholes,
and at least N — 15N = n of the vertices in A have degree at most A" + /3g(¢)A’ <
A’ = A, which holds for sufficiently large A depending on . We now fix such a
graph H. We can thus choose a subset A’ of A of size n such that every vertex in A’
has degree at most A in H. Now, arbitrarily choosing a subset B’ of B of size n, we
know that the subgraph H’ of H induced by A’UB’ is an (n x n) bipartite graph with

maximum degree A on one side and without a bihole of size larger than
log(A’) log A B ~ [ log A
2<1+€)”<(1—5)A < (2+ 8) A n=2+¢) A"

In order to obtain an upper bound on f*(n,A), all that is required is to make the

example obtained above have bounded maximum degree in both parts. Thus, it suffices
to apply Chernoff’s inequality to all vertices (instead of just the vertices in A). We may
have to remove more vertices after doing this, but the loss will only be reflected in the

constant. This completes the proof of Theorem 2.3. O

2.3.2 BOUNDING f(n,A) FOR SMALL A

We have already established a part of Theorem 2.6 via Lemma 2.8. Namely, we showed
that f(n,2) = [n/2] — 1. It is not hard to see that f(n,1) = |n/2]. Thus, our aim in

this section is to investigate the behaviour of f(n,3) more closely, and to complete the
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proof of Theorem 2.6. First, let us note the following lower bound on f(n, A), valid for
all integers n and A greater than 1. In the following, for a vertex subset X of a graph
let N (X) be the neighbourhood of X, i.e. N(X) = [J,cx N(z).

Proposition 2.10. If n and A are two integers greater than 1, then f(n, A) > |22 ].

Proof. We shall prove this by induction on A with the base case A = 2 following from
Lemma 2.8. Let H = (AUB, F) be an (n x n) bipartite graph, such that the degree of
each vertex in part A isequal to A, A > 3.

Consider a set X of | (n —2)/A| vertices in B. If |IN(X)| <n—[(n—2)/A], then X
and A\ N(X) form a bihole with at least | (n — 2)/A| vertices in each part. Otherwise,
IN(X)| >n—|(n—2)/A]. Let G’ .= GIN(X)U(B \ X)]. Then each of the parts of G’
has size at least n — [(n — 2)/A] > n — (n — 2)/A and the maximum degree of vertices
of N(X) in G’ is at most A — 1. Thus, by induction G’ has a bihole of size at least

|akin— (n—2/8-2)| = |252]. .

It follows from the above proposition that f(n,3) > |(n —2)/3|. However, this
lower bound can be improved slightly by choosing a random subset of B and consid-
ering the neighbourhood of this set in A, similarly as in the proof of the lower bound

in Theorem 2.2.

Lemma 2.11. If n and A are two integers greater than 1, then f(n,A) > f(|én],A —1),
where § = £(A) is a solution to the inequality 1 — A > ¢

Proof. For simplicity we omit floors in the following. Let G be a bipartite graph with
parts A and B each of size n such that the vertices in A have degrees at most A. We shall
show that thereisaset S C B, suchthat |S| = (1—¢)n and such that |[N(S)| > ¢n. Todo
this, we shall choose S randomly and uniformly out of all subsets of B of size (1 — {)n
and show that the expected number X of vertices from A with at least one neighbour
in S is at least £n. Indeed, if p is the probability for a fixed vertex in A not to have a

neighbour in S, then

Using the identity (".")/(}) = (";*)/(7), we see that p = (')/(%). Now, using the
inequality (°") < ¢”("), which is valid for every & € (0,1), we find that

<8
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Thus, E[X] = n(1—p) > n(1—£2) > né by our choice of £. Consequently, with positive
probability [N (S)| > {n. We also have | B\ S| = £{n. Since each vertex of N(S) sends at
most A — 1 edges to B \ S, it follows that there is a bihole between N (S) and B \ S of
size f(&n, A — 1). This completes the proof. O

We make explicit some lower bounds obtained using Lemma 2.11 (and Lemma 2.8).

Corollary 2.12. There exists Ny such that if n > Ny, then f(n,3) > 0.34116n, f(n,4) >
0.24716n, f(n,5) > 0.18657n, and f(n,6) > 0.14516n.

The next natural step regarding small values of A is to evaluate how good the
bounds written in Corollary 2.12 are. The following upper bounds are obtained by
analysing the pairing model (also known as the configuration model) to build random

regular graphs, tailored to the bipartite setting.

Lemma 2.13. Let A be an integer greater than 2, and assume that 3 € (0,1/2) is such that

(1 - 5209

(L BP0 P(1 - 2p)sa29 <

Then there exists Ny = No(/3) such that for every n > Ny we have f(n,A) < f*(n,A) < fn.
In particular, for n sufficiently large there exists a A-regular (n x n) bipartite graph with no
bihole of size at least Bn.

Proof. We shall work with the configuration model of Bollobas [25] suitably altered
to produce a bipartite graph. Fix an integer n and consider two sets of An (labelled)
vertices each: X = {z},..., 20, ...,z), ..., a2Yand Y = {yl,...,yf, .. .,ut, ... U5}

Choose a perfect matching F' between X and Y uniformly at random. We call F' a

pairing.
Given a pairing F, for each i € {1,...,n} the vertices z}, ...,z are identified with
anew vertex x;, and similarly the vertices y}, . ..,y are identified with a new vertex y;.

This yields a multi-graph G’. We prove that with positive probability G’ is a simple
graph. To see why this holds, first notice that the total number of different pairings
is (A - n)l. Second, each fixed (labelled) A-regular (n x n) bipartite graph arises from
precisely (A!l)?" different pairings (because for each vertex x; we can freely permute
the vertices {x}, ..., :ciA}). Third, McKay, Wormald and Wysocka [106] proved that the
number of different labelled A-regular (n x n) bipartite graphs is

(A-n)!
(A')Qn )

(A -1
(a-17,

(1+0(1))exp (- (A —-1)2+ 1))
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which is at least c((ﬁi)@,j, for some ¢ > 0. Combining these three facts, we find that

P|G" is a graph] > ¢ > 0, as announced.

Now, fix k = k(n) = - n for some € (0,1). For eachi € {1,...,n}, set X; =
{z},..., 28} and Y; == {y},...,y”}. Fixing a family of k sets X = {X;,,..., X;, } and
also Y = {Y;,,..., Y, }, let W(X,Y) be the event that the union U of the sets in X U Y
spans no edge in F' (and thus, corresponds to a bihole in G’). Let us now find the
probability of W (X,)). There are 2Ak edges incident to vertices in U. The number
of ways to choose these 2Ak edges is as follows: if the edge is incident to a vertex

in U§:1 Xi;, then its other vertex must belong to Y \ U§:1 Y;,;, and hence there are
(An — Ak)--- (An —2Ak+1)

different ways of choosing the edges incident to a vertex in U§=1 X;,. The situation is
analogous for edges incident to U§:1 Y;,, yielding a total of (An— Ak)?- - (An—2Ak +
1)? ways to choose the 2Ak edges incident to a vertex in U. For each such choice there
are (An — 2Ak)! ways to choose the remaining edges, for a total of (An — 2Ak)! - (An —
Ak)%--- (An — 2Ak + 1)? different pairings in which U spans no edge. It follows that
(An — 2AK)! - (An — Ak)? - (An—2Ak+1)2  ((An — AK)!)?

PW(X,»)) = (An)! = (An)\(An — 28R

Let W = Uy y W(&X,Y) be the event that F’ contains a bihole of size k. Taking the

union bound over all (}) % choices of (X,Y), we find that

n\? ((An— Ak))?
PW) = <k> (An)(An— 2AR)!" @7)

Using Stirling’s approximation,

g (%) e (g ) < 0t < Vo (2) e (<0 )

12n + 1 12n

in (2.7), and ignoring the exponential factors (they can be bounded from above by exp(1/(cn))

for some positive constant ¢, and hence be made arbitrarily close to 1), we thus obtain

n\? _ 1 1 g
<k> T 27B(1 - B)n <ﬁ25(1 —~ 6)2“6))

(An—AK)P  1-p ((1_5)%(15) )”
K

and

(An)!(An —2Ak)! 7 T—28\ (1 —28)A0-28
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Hence, if
(1 - 5?20
B (1— BP0-P (1= 28)509)

<1,

then P(W) — 0asn — oco. Thus, with positive probability G’ is a A-regular graph with

no bihole of size at least k = n (for n sufficiently large), as stated. O

Performing explicit computations in Lemma 2.13 for specific values of A yields the
following bounds (see also Table 2.1).

Corollary 2.14. There exists Ng such that if n > Ny, then f*(n,3) < 0.4591n, f*(n,4) <
0.4212n, f*(n,5) < 0.3887n, and f*(n,6) < 0.3621n.

In particular, one sees that f(n,3) < f*(n,3) < 0.4591n for sufficiently large n.
Thus, combined with our earlier work, it follows that 0.3411n < f(n,3) < 0.4591n. It

would be very interesting to improve either the lower or upper bound.

2.3.3 BOUNDING f(n,A) WHEN A IS LARGE

In this section we address the behaviour of f(n, A) for large A and prove Theorem 2.7.
Before doing so, let us note the following simple result, which shows that Theorem 2.3

is tight (up to constants) when A is linear in n.

Proposition 2.15. For any ¢ € (0, 1) there is a constant ¢ = c(g) such that for n sufficiently
large f(n, (1 —e)n) > clogn.

Proof. Let e € (0,1). To show the lower bound on f(n, (1 — €)n), consider an (n x n)
bipartite graph G with parts A, B, such that d(z) < (1 —¢)n for every x € A. Letting G°
be the bipartite complement of G, we see that G¢ has at least en? edges. The result then
follows from the fact that for any ¢ € (0, 1) and sufficiently large n, any (n x n) bipartite
graph with en? edges contains a K;; where t = clogn for some constant ¢ = ¢(¢). This

can be proved using the standard Kévari-Sés-Turdn [98] double counting argument. [

Therefore, the behaviour of f(n, A) is clear whenever A is linear, aside from more
precise estimates of the constants involved. What happens when A is very large, more
precisely, when A = n — o(n)? This is partly addressed in Theorem 2.7, which we now

prove.
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Proof of Theorem 2.7. Recall that the classical Zarankiewicz number, z(n; t), is the largest
number of edges in an (n x n) bipartite graph that contains no copy of K;;. Assume
first that t > 4.

The lower bound on A,, () follows from standard bounds on Zarankiewicz numbers.
Indeed, z(n;t) < Cn?~1/t for some constant C' = C' (t), see for example [98]. Thus, any

(n x n) bipartite graph on at least Cn?~1/*

edges contains a copy of K;;, and so any
(n x n) bipartite graph on at most n2 — Cn?~!/* edges contains a bihole of size . In
particular, any (n x n) bipartite graph with maximum degree at most n — Cn!'~1/*

contains a bihole of size ¢t. So the announced lower bound in Theorem 2.7 holds.

To determine the stated upper bound on A, (¢), we shall prove the existence of
a K;-free bipartite (n x n) graph with the additional constraint that the minimum
degree of vertices (on one side) is large. For that, we shall alter the standard random
construction used to prove lower bounds on Zarankiewicz numbers. For a graph F,
we shall carefully control X = Xp, the total number of copies of K;; in F, as well as

X (v) = Xr(v), the number of copies of K;; containing a vertex v in F.

Let N :=2nand p := ¢N~2/(+1) for a constant ¢ to be determined later. Consider a
bipartite binomial random graph G’ € G(N, n, p) with parts A and B of sizes N and n,
respectively. By Markov’s inequality, P[X > 2E[X]] < 1/2. Since d(v), for v € A4,
is distributed as Bin(n,p), Chernoff’s inequality (2.6) from Lemma 2.9 with ¢ := 1/2,
implies that with high probability, every vertex v € A has degree at least pn/2. So with
positive probability we have X < 2E[X] = 2(7) (")p"" < 2(Y) ’p* and d(v) > pn/2 for
every v € A.

Fix a bipartite graph G with these properties, i.e. GG is a bipartite graph with parts A
and B, the number X = X of copies of K, satisfies X < 2 (];[) thg and d(v) > pn/2 for
every v € A. Observe that there are fewer than n vertices v in A with X (v) > 2.2 (]X ) 2ptg.

2
Indeed, otherwise X > nt (];7 ) p'’ /t, a contradiction.

Let A’ C Abe a set of n vertices such that X (v) < 22(%) 2th forallv € A’. Let H'
be the subgraph of G induced by A’UB. Finally, let H be obtained from H’ by removing
an edge from each copy of K;;. Thus, H has no copies of K;;. It remains to check

that the degrees of vertices in A are sufficiently large. Indeed, for any v € A, we have
dH(’U) > ClH/(T)) — X(’U), i.e.
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where the last inequality holds for ¢ = 1/2. This concludes the proof of the general
upper bound for ¢t > 4.

Now, lett = 2o0rt = 3. Wehave z(n; 2) = (14 o(1)) n*/2and z(n; 3) = (1 + o(1)) n/3.
For the former, the upper bound on z(n;2) is due to Reiman [115] and the lower bound
is due to Erdds, Renyi and S6s [63], and independently Brown [30]. For the latter,
the lower bound is due to Brown [30] (with an improvement by Alon, Rényai and
Szab¢ [8]), and the upper bound is due to Fiiredi [76]. In fact, the constructions giv-
ing lower bounds on z(n;2) and z(n;3) are almost regular and therefore show that
there are (n x n) bipartite graphs with no K5 5 (no K3 3) with minimum degree at least
(1 + o(1))n'/? (at least (1 + o(1))n*?), respectively. This completes the proof. O

2.4 CONCLUDING REMARKS

We have made progress in determining the asymptotic behaviour of f(n, A). However,
we could not obtain better bounds for small A. The most glaring open problem is the

case A = 3.

Open Problem 2.16. Determine the value of f(n,3) for n sufficiently large.

We were able to show that for any ¢ € (0, 1) and fixed (but large) A, if n is sufficiently

large, then
1 log A
2 A

It would be interesting to close the gap between these two bounds.

5 B2 < f(n,A) < (24e)

n.

Chakraborti [41] considered a similar problem, replacing maximum by average

degree, and proved the following;:
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Theorem 2.17 (Chakraborti [41]). For every e € (0, 1) there exists Ao = Ao(€), such that the
following holds: For each A > Ay, there exists Ny, such that for any n > Ny, if G is an (n x n)

bipartite graph with average degree A > A, then G contains a bihole of size (1 — e)%n.

Clearly any (n x n) bipartite graph with maximum degree A in one part also has
average degree at most A, which means that for any € € (0, 1) and fixed (but large) A,
if n is sufficiently large, then

(1—€)~IOiAn§f(n,A)S(?—i—s)-

Open Problem 2.18. Close the gap between the lower and upper bounds from Theorem 2.17

and Theorem 2.3, respectively.
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CHAPTER 3 THE MULTICOLOUR VERSION OF THE ErRDG3s-HAJNAL

CONJECTURE

3.1 INTRODUCTION

In this and the following chapter, we will consider the multicolour version of the
Erdés-Hajnal conjecture, which asserts that for any fixed integer £ > 3 and for any
fixed s’-edge-coloured clique K on k vertices, for s > s’ > 2, there is a positive constant
a = a(s, K) such that any s-edge-colouring of a clique on n vertices with no copy of K
contains a clique on 2(n®) vertices using at most s — 1 colours. We will make this more

precise with the following definitions.

We shall consider edge-colourings of complete graphs using colours in [s] for some
integer s. An s-edge-colouring c of the complete graph K, on vertex set [n] is a map
c: ([;L]) — [s]. We denote by |c| the number of colours from [s] for which ¢! is not
empty. Note that an s-edge-colouring c of K, can be seen as an edge-partition of G into
s colour classes, i.e. K;, = G1 U--- UG, where G; corresponds to a maximal subgraph
of K,, whose edges are assigned colour i under c. Here G; can be an empty graph if
le| < s.

For an s-edge-colouring c of K,, and an s’-edge-colouring ¢’ of K}, we say that c is
-free if ¢ does not contain a copy of ¢, i.e. for any V' C [n] such that |[V| = k and for
any bijection ¢ : V' — [k], there are two vertices z,y € V such that c(zy) # ¢ (¢(z)d(y)).
Typically we assume that k is fixed and n is large, i.e. the ¢/-free property is a local
condition on the colouring. One can think of the colouring ¢’ as a forbidden colour
pattern. One of the key questions considered is how the local restrictions impact global

properties, in particular how large the homogeneous number must be:

A homogeneous set in an s-edge-colouring c of K, is a set X C [n] that has a colour
“missing”, i.e. [{c(zy) : x,y € X}| < s. The size of a largest homogeneous set of
c is denoted by hs_;(c) (since at most s — 1 colours are used on the homogeneous
set), or if the number of colours is clear from the context, simply h(c). Note that
any homogeneous set is an independent set in some colour class G;, i € [s]. Thus,

we have h(c) = mz[u]ca(Gi). For an s-edge-colouring ¢’ of K}, k < n, we also define
1E(s

hs—1(n, ) = min{h(c) | cis a /-free s-edge-colouring of K, }.

Note that for s = 2 one colour of c corresponds to the edges of some n-vertex graph

G and the other colour corresponds to the edges of G. Then in particular, we have
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h(c) = max{a(G),w(G)}, which coincides with the definition of a homogeneous set in

2-graphs.

Definition 3.1. Let ¢’ be an s'-edge-colouring of Ky and let s > s'. If there is a positive
constant € = €(c/, s) and a constant C' > 0, such that any '-free s-edge-colouring c of K,
satisfies h(c) > Cn¢, we say that ¢’ has the EH-property for s colours. We call e(c,s) the

EH-exponent for ¢ and s colours if it exists.

Conjecture 3.2 (Erdds, Hajnal [59]). Let k, s’ be integers with k, s’ > 2. Then forany s > ¢/,
any edge-colouring ¢’ of Ky, with |c'| = s’ has the EH-property for s colouts.
On could extend the arguments in [59] from two colours to multiple colours to show

that in the above setting h(n,c’) = Q(nvoe").

Note that ¢ might not use all colours in [s] and it is not immediately obvious
whether a larger number of colours in the edge-colouring of the host clique forces
larger homogeneous sets. We show that we can reduce the problem to the case when
the number of colours in the edge-colouring of a large clique is the same or one larger
than the number of colours in the forbidden pattern ¢’. The following is joint work with

Axenovich and Riasanovsky [12].

Theorem 3.3. Let ¢ be an edge-colouring of a clique and s be an integer with s > |c/|. Then ¢/

has the EH-property for s colours if and only if ¢’ has the EH-property for s + 1 colours.

Corollary 3.4. Let ¢’ be an s'-edge-colouring of a clique. Then the EH-conjecture holds for ¢/
if and only if ¢’ has the EH-property for s' and s’ + 1 colours.

This chapter is structured as follows. We extend Lemma 0.2 by Alon, Pach, and
Solymosi [6] on graph blow-ups to a multicoloured version in Section 3.2. We prove
Theorem 3.3 and Corollary 3.4 in Section 3.3. In Section 3.4 we consider two special
cases of edge-colourings c of small cliques and forbid them as sub-colourings. We show
that for those two cases allowing an additional colour in the c-free edge-colouring does
not necessarily yield a larger homogeneous set. We state some concluding remarks and

open problems in Section 3.5.

3.2 TuE muLTiICOLOUR EH-PROPERTY UNDER BLOW-UPS

For an edge-coloured clique H with vertex set V(H) = {v, ..., v;} and edge-coloured
cliques Fi,..., Fj, we define the blow-up H(F1,...,F})) as the edge-coloured clique
obtained by taking pairwise vertex-disjoint copies of F1, ..., Fj, and colouring the edge



3. THE MULTICOLOUR VERSION OF THE ERDGs-HAJNAL CONJECTURE 39

between a vertex of the copy of F; and a vertex of the copy of Fj according to the colour

of v;v; in H for any edge v;v; of H.

The following theorem is a straightforward generalisation of Lemma 0.2 by Alon,

Pach, and Solymosi [6] for 2-edge-coloured graphs.

Theorem 3.5. If edge-coloured cliques H, F1, . .., F}, have the EH-property for s colours, so
does the blow-up H(F1, ..., Fy).

Proof. Let H, F be edge-coloured cliques having the EH-property for s colours with
exponents ¢(H) and €(F'), respectively. Let V(H) = {v1,..., v} and for simplicity
write G = H(F) = H(F, K, ..., K;) for the blow-up of H where we only replaced the
vertex v;. Let the resulting colouring be c. Note that it suffices to prove that H (') has
the EH-property for s colours, since we can just replace one vertex of H by a clique F;

at a time, and each blow-up will have the desired property.

Let s’ be the number of colours used in H(F), and for s > ¢ let ¢ be an s-edge-

colouring of K, that is H (F')-free for n sufficiently large. Let

e(F)e(H)

5= 0, F) = i ey

We shall show that h(c) > n°.

Let m := n%<H)_ Assume first that some subset U C V(G) of size m contains no
copy of H under c. Then, since H has the EH-property for s colours, we know that
there is a homogeneous set of size at least m¢H) > nd in U, so we are done. Thus, we
can assume that each subset of V' (G) of size m contains a copy of H. It implies that the

number # H of copies of H in G satisfies

n\ (n—|H| *1: n (n—m)(m—k)! nl(m—k)
)G i) o

m/) \m — |H| m)im! (n—k)! - m!(n — k)’ (1)

#Hz(
Here, we use the fact that there are (:1) ways to choose subsets of size m in V (G), each

n—|H|

of them containing a copy of H. If we fix a copy of H, there are (m_‘ i

) sets of size m

containing that copy.

Consider the set Xy of ordered k-tuples (v}, ..., v;) of vertices in G such that they
induce a copy of H with vertices v}, ..., v, playing the roles of v, ..., v, respectively.
Consider the set Xy, of ordered (k — 1)-tuples (v5, ..., v}) of vertices in G such that
they induce a copy of Hy = H|va,...,v;] with vertices vj, ..., v, playing the role of

v2,..., vy, respectively, in some copy of H on vertex set {v],...,v;}. We have that



40 I. Tue ERDGs-HAJNAL CONJECTURE

| Xm,| <nn—1)...(n—k+2) =nl/(n—k+ 1)! since we can embed the first vertex
in at most n ways, the second in at most n — 1 ways, and so on. On the other hand,
| X | > #H. Thus, there is an ordered tuple (v, ..., v},) of vertices in G and a set W of
atleast | Xp|/|XH,| vertices in V(G) — {v5, ..., v, } such that for any w € W the vertices
w, vy, ..., v, induce a copy of H and play the roles of vy, vs,..., vy, respectively. In
addition, since G is H (F')-free, G[W] is F'-free. Since F' has the EH-property,

WMGW],¢) > |[W|)

|«
’X ’ )e(F
‘XH0|

e(F)
n‘/n—k‘+1 )

(

< “(F)
(n‘ n—k+1)>
(s

(o

m!(n —k n!

n—k+1 <(F)
m( (m—Fk+1)

)

S pe(F)(1=ks/e(H))

v
3
T

This implies that h(c) > h(G[W]) > n°. O

We also state a slight variant of the blow-up lemma applied to families of graphs.
Let H be an edge-colouring of a clique on vertices vy, . .., v and F be a family of edge-
coloured cliques. Then we define the blow-up H (F) tobe the family { H (F, K1, ..., K;) :

F € F}. Running almost identical to the previous lemma proof, we have

Theorem 3.6. If an edge-coloured clique H and a family of edge-coloured cliques F have the
EH-property for s colours, so does the blow-up H (F).

3.3 ALLOWING MORE COLOURS THAN USED IN THE FORBIDDEN PATTERN

Proof of Theorem 3.3. Let ¢’ be an edge-colouring of a clique, let s be an integer with

s > || and let n be a sulfficiently large integer.

“=": Assume that for any ¢-free s-edge-colouring c of K, we have h(c) > n® for some
€ > 0. Now let ¢’ be a ¢'-free (s + 1)-edge-colouring of K,,. We want to show that
h(c") > n® as well.
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“u,
=

Since s > |/|, there exists a colour a € [s] which is not used in ¢’. The colour s + 1
is also not used in ¢. Now recolour all edges of colour s + 1 in ¢ with colour a

', Then ¢” is an s-edge-colouring of K, which

and call the resulting colouring ¢

is ’-free, since the edges having colours from ¢’ are the same in ¢’ and ¢”. Thus,

by our assumption there is a homogeneous set X in K,, under ¢ of size at least
y

ne.

In particular, X avoids some colour o’ € [s] under ¢”. If @’ # a, then X avoids o
under ¢, then X also avoids a’ under ¢”’. If a = @', then X avoids ¢ and s + 1
under ¢’. Thus, in any case, X is a homogeneous set under ¢”’. In particular,
h(d") > n-.

Assume that for any c-free (s + 1)-edge-colouring ¢ of K,, we have h(c) > n
for some € > 0. Now let ¢’ be a ¢’-free s-colouring of K,,. We want to show that
h(d") > n-.

We shall construct an (s + 1)-edge-colouring ¢”’ of K, as follows: Recolour each
edge from ¢’ with colour s + 1 with probability 1, and leave the colour from ¢”
with probability 1. Since the colour s + 1 is not used in ¢/, the new colouring ¢’
is c-free, and thus, by assumption, h(c"”") > n3. Now assume h(c”) < n. Then
under ¢’ every set Y C V(K,,) of size |Y| = n contains at least one edge of each

colour in [s].

Using the properties of a random graph G € G(n, 1), for any § > 0 and n
sufficiently large, any subset of n?® vertices in K,, has an edge of colour s + 1
under ¢ with probability approaching 1 as n grows. On the other hand, we
know thatin ¢’ each subset Y C V(K,,) of size |Y'| = n¢ induces an edge of colour
i for each ¢ € [s|. Thus, using Turdn’s theorem [122], a given subset X C V(K,,)
of size | X| = n?¢ induces at least z = <(”22€) #) = Q(n>%) edges of colour i, for
any i € [s], under the colouring ¢’

The probability that all these edges of colour i are recoloured with s 41 is at most
(1/2)®. Thus, the probability that some subset of n*¢ vertices misses some colour

from [s] under ¢” is at most

n 2€ | _ . 3€

We see that p approaches zero as n grows. Therefore, with high probability, all
subsets of n?¢ vertices induce edges of all colours under ¢”. Thus, with high

probability h(c”’) < n?¢, a contradiction to our assumption that k(') > n3¢. [
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3.4 SPECIAL CASES

Corollary 3.4 shows that for an integer s and an edge-colouring c of a clique using all
colours from [s], one only needs to check whether ¢ has the EH-property for s and
for s + 1 colours. Intuitively one might think that having an extra colour in the host
graph allows for larger homogeneous sets. In this section we will consider two special
colourings, for s = 2 and s = 3 colours, which each have the EH-property for s colours.
In both cases we do not know if they still have the EH-property for s + 1 colours, but in
both cases we can show, that the size of a largest homogeneous set does not grow with

an extra colour, in the second case it is strictly smaller.

3.4.1 RAINBOW TRIANGLE AND AN EXTRA COLOUR

Consider the rainbow triangle, i.e. the 3-edge-colouring c of K3 in which the edges have
colours 1, 2 and 3. The structure of c-free 3-colourings of cliques is known and is called
a Gallai colouring [79,86]. It is known that c has the EH-property for 3 colours, see for

example [70], see also Theorem 4.7. In particular, we have

ha(n,c) € © (nl/?’ log? n) .

Next, we shall give a construction, providing an upper bound on the size of largest
homogeneous set in any c-free 4-colouring of K,. We will show that h3(n,c) €
O(ha(n,c)).

The lexicographic product ¢ x ¢’ of two edge-colourings ¢ of K’ and ¢ of K" is
the edge-colouring of the blow-up K'(K", K”,..., K") as defined in Section 3.2. For a
given colouring ¢ of some clique K and some colours i1, i2, i3, we denote by Sf]/- . the
size of largest clique in K that only uses colours from {7, j, k} under ¢’. It is easy to see

Lemma 3.7. We have hz(n,c) < O(n'/?log?n).

Proof. Let ¢;, i € [3] be a 3-edge-colouring of K 15 using colours [4] \ {i}, satisfying
ha(c;) € O(logn). Note that such colourings exist and could be chosen by randomly
assigning one of the three colours to each edge uniformly. Also note that ¢; is c-free
for i € [3]. Let cs = ¢1 X cg X c3 be the lexicographic product of ¢;,c and ¢, i.e. a

4-edge-colouring of K,,. This is a construction very similar to one used in [70].

Claim: ¢, is c-free and h3(cs) < O(n'/?log®n).
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Consider first c; x c3. Since none of the ¢;’s contains ¢, we only need to consider
triangles 7" in ¢’ that have two vertices in some cz-coloured clique K, and another
vertex in a different c3-coloured clique K’. But since the edges between two different
c3-coloured cliqued all have the same colour, 7' is not rainbow. Thus, ca X c3 is c-free.

Similarly, we conclude that c4 = ¢ X (c2 X ¢3) is c-free.

For the size of a largest homogenous set in ¢4 consider the following:

STss = Sias Stz - 5735 = O(logn)O(log n)O(log n),
Sty = Sihy - Si3, - 873, = O(logn)O(log n)n'/?,

S%zl = 5%4 ) 5%4 : 5%4 = O(log n)nl/gO(log n) and
5534 = 55:1),4 ) 5%4 : S§§4 = nl/SO(log n)O(logn).

Since h3(cs) = max{Sij : {i,j,k} C [4],[{é,j,k}| = 3}, we have that h3(cs) <
O(n'/3log?®n). O

3.4.2 2-EDGE-COLOURED K4 AND AN EXTRA COLOUR

Let c be the 2-edge-colouring of K, in which each colour class induces P;. Note that c
having the EH-property for 2 colours is equivalent to P, having the EH-property. Any
Py-free graph is a co-graph (see for example [22,48] for properties of co-graphs), which
is in particular a perfect graph, and thus, by a Theorem of Erdés and Hajnal [59], any
Py-free graph G contains a homogeneous set of size /|V(G)|. In particular, we have

hi(n,c) = n'/2.

We will show that ha(n, c) < hi(n,c).

Lemma 3.8. There exists a 3-edge-colouring ¢’ of K,, which is c-free which satisfies ha(c') <
O(n?/>10g” n).

Proof. By Bohman'’s [23] upper bound on the Ramsey number R(4,t) = Q(t>/2/log®t),
we know that for n sufficiently large there exists a graph H on n vertices with w(H) < 4

and a(H) < Cn?/%log/® n, for some positive constant C.

Define a 3-edge-colouring of K, with colours in [3] on the vertex set of H as follows:
the edges not in H are coloured 3, and each edge of H is coloured 1 with probability 1/2
and 2 with probability 1/2. Note that in this colouring each K, has an edge of colour

3, and therefore there is no copy of c.
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Claim: With positive probability hy(¢') = O(n?/510g”® n).

Letting ¢(n) = 8a(H)log(n), we shall show that any set of g(n) vertices induces
edges of all three colours under ¢’. Let X be a fixed set of ¢(n) vertices. Then by Turdn’s
theorem [122], any graph G on n vertices with a(G) < r has at least 2 (}) edges. Thus,
the number of edges induced by X in H is at least

1 (a0 L ¢
‘”“a(H)( 2 )Zm(H)'

Then the probability that X induces only edges of colours 2 and 3 in ¢ or that X induces
only edges of colours 1 and 3 in ¢ is at most

px < 2.278X < 9.9 7 (n)/da(H)

Using the union bound over all ¢(n)-element subsets of [n], we have that the probability

that ¢’ contains a g(n)-vertex set inducing edges of only two colours is at most

( n ) Dy < (Wl ()/4a(i) _ oa(n)logn+1-g*(n)/1a(t))
q(n))" "~

—9 (Sa(H) log?(n)+1—16c(H) log? (n))

<1,

using the definition of ¢(n). Thus, with positive probability there is a desired colouring.
Ul

We remark that we did not attempt to optimise any of the constants involved.

3.5 CONCLUDING REMARKS

The multicolour Erdéds-Hajnal conjecture is concerned with the existence of large ho-
mogeneous sets in edge-coloured cliques that do not contain a copy of a given colouring
on small subcliques. It could be that the number of colours used in a large clique is
strictly larger than the number of colours used in a forbidden subclique-colouring. Al-
though intuitively it seems that having more colours on a large clique allows for larger
homogeneous sets, no formal proof of this is known and it is actually not clear whether

it is true.

We showed that the multicolour EH-conjecture could be reduced to the situation

when the large clique uses the same set of colours as the forbidden colouring or maybe
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one more. This brings us to the following special cases, in a sense smallest, for which
the EH-conjecture is known to be true for the number of colours used in the forbidden
colouring, but not any more once additional colours are allowed. In Section 3.4 we
provided upper bounds on hs(n,c) for those two colourings, which show, that the
size of a largest homogeneous set in large c-free edge-colourings does not grow when
allowing an extra colour, in the second case it even decreases. We still do not know if

those two colourings have the EH-property for s + 1 colours at all:

Open Problem 3.9. Does the 2-edge colouring of K4 in which each colour class is isomorphic

to Py have the EH-property for 3 colours?

Open Problem 3.10. Does the rainbow triangle have the EH-property for 4 colours?
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CHAPTER 4 THE ERDGs-HAJNAL CONJECTURE FOR THREE COLOURS

AND FAMILIES OF TRIANGLES

4.1 INTRODUCTION

In this chapter, we will consider the multicolour version of the Erdés-Hajnal conjecture
for s = 3 colours and forbidden families of colourings on triangles. We use the

definitions and notations from Section 3, but reproduce them here for this special case.

We say that a clique K’ edge-coloured with a colouring ¢ contains a copy of (or
simply contains) a clique K on vertex set {1, ..., k} with an edge-colouring ¢/, if there
is a set of k vertices {v1,..., v} in K’ and a bijection ¢ : {1,...,k} — {v1,..., v} such
that ¢(ij) = ¢(¢(i)p(j)), foralli,5,1 <i < j < k.

In this chapter, to avoid confusion, we will use the term pattern for a forbidden
colouring of a subgraph, so the term colouring will refer to the colouring of a larger
graph in which we forbid certain patterns. We consider the case when the number of
colours is three and the forbidden patterns are imposed on triangles, but there could
be more than one forbidden pattern. Specifically, we investigate all sets of at most three
patterns. We provide all our results in the Tables 4.1, 4.2, 4.3. One can immediately see
from Table 4.1 that the Erd6s-Hajnal conjecture holds true in this setting. We focus on
the quantitative version of the conjecture and provide asymptotic bounds on the sizes

of the largest 2-edge-coloured cliques.

All of the colourings considered here use colours r, b, and y, corresponding to ‘red’,
‘blue’, and ‘yellow’. The complete graph on n vertices is denoted by K,,. We call an
edge-coloured complete graph K}, using at most two colours on its edges a two-coloured
k-clique. We also call the set of vertices of a two-coloured clique a two-coloured set. For
a family H of patterns using colours r, b, y, we define the class of H-free edge-colourings
of K, as a family using colours r, b, y, and containing none of the patterns from #. We

denote the family of all #-free edge-colourings by Forb(n, H).

For an edge-colouring c, let
ha(c) = max{k € N | ¢ contains a two-coloured k-clique}, and

ho(n,H) = min{ha(c) | ¢ € Forb(n, H)}.

In particular, each edge-colouring of K, using three colours and not containing
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patterns from 7 contains a clique on hy(n, H) vertices using at most two colours. In
addition, there is an H-free colouring with every clique on more than hs(n, H) vertices

using all three colours.

We consider all sets # of at most three patterns on triangles using colours from
{r,b,y}. We also write, for example, rrb to represent a colouring of a triangle with one
blue and two red edges. These patterns are rrr, bbb, yyy, rrb, rry, bbr, bby, yyr, yyb, rby.
Note that if for two families H, ' there is a permutation 7 of colours, such that %' is
obtained by applying 7 to each pattern in H, we have ho(n, H) = hao(n, H'). If for two
sets of avoiding patterns, H and H', we have that H C #/, then ha(n, H) < ha(n,H’).

Indeed, this holds since any #’'-free colouring is also an H-free colouring.

Two of the entries of our tables are expressed in terms of functions f(n) and g(n)
that are interesting in their own right. For a graph G, let G? be the square of G, i.e. the
graph on the same vertex set as G with two vertices adjacent if and only if they are at

distance at most 2 in G. Let
F(G) = max{a(G),w(G?)} and f(n) = min{ f(G) : |G| = n, w(G) = 2}.

Further, recall that the odd girth, girth, 44(G), of a graph G is the length of a shortest
odd cycle in G. Let

g(n) = min{a(G) : |G| =n, girth, 44(G) > 7}.

H | ha(n,H) | Results
{£L} | ©(n'/3log?n) | [70]

{A} | ©(v/nlogn) | Lemmad4.1.1
{A} | [v/7] Lemma 4.1.2

Table 4.1: Bounds on hy(n,H) for families # of one pattern on a triangle

The main results of this chapter are joined work with Axenovich and Snyder [13].

This chapter is structured as follows. We give classical and preliminary results
and more definitions in Section 4.2. Section 4.3 contains most of the constructions we
use, and hence yields the upper bounds on hy(n, H) listed in Tables 4.1, 4.2, 4.3. The
remaining part of this chapter provides lemmata and their proofs for the corresponding

lower bounds on ha(n, H). Section 4.7 provides final remarks and open questions.

We remark that ‘log” for us always denotes the base 2 logarithm.
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H ‘ ho(n,H) Results
(CAWAS SRVAYAN SVAWAYS
(AN [vn] Lemma 4.2.1
{L, A} O(yv/n) Lemma 4.2.2
(O ALID B} D, 8) | o(/iTogn) et
AA Q(v/nlogn), O(v/nlog®? n) Lemma 4.2.5
5,89 f(n) < ha(n,H) <2f(n) Lemma 4.2.4
{L,A} Q(n?31og™%2n), 0(n?/3\/logn) | Lemma 4.2.7

Table 4.2: Bounds on hy(n,H) for families H of two patterns on triangles

4.2 CONNECTIONS TO OTHER RESULTS, PRELIMINARY RESULTS, AND MORE DEFINI-

TIONS

The conclusion of the multicolour Erd§s-Hajnal conjecture could be restated as: there is
a positive constant ¢ = a(K') such that in any s-edge-colouring of a clique on n vertices
with no copy of K there is a colour class with independence number ©(n®). Thus,
the multicolour Erd&s-Hajnal conjecture not only extends the respective conjecture for
graphs, but puts the problem in the framework of Ramsey problems defined through
some parameter p, where one seeks a largest clique coloured with a fixed number
of colours, such that the parameter p of each colour class is bounded by a given
number. For example, the classical Ramsey theorems are stated for the parameter p
being equal to the clique number, while the ErdSs-Hajnal conjecture has a formulation
as a Ramsey number with parameter p, for p equal to the independence number; see
other papers [7,42,62,75,78,91,94,105,107], where Ramsey problems with parameter p
have been considered for p equal to the diameter, the minimum degree, the connectivity,
and the chromatic number. Fox, Grinshpun and Pach [70] addressed the multicoloured
Erdés-Hajnal conjecture when K is a rainbow triangle, i.e. a complete graph on 3
vertices edge-coloured using three distinct colours. Among other results, they proved
that any such colouring with s = 3 colours contains a clique using at most 2 colours
that has order at least Q(n'/3 log? n). Moreover, they showed that this bound is tight.

For a given colouring c in r, b, y, we denote by S, Sﬁy,

clique using only colours from {r, b}, only from {r, y}, and only from {b, y}, respectively.

and Sy, the size of a largest

A pattern is monochromatic if only one colour occurs, i.e. rrr, bbb or yyy. For a subset of
colours, e.g., {r, b}, we say that a graph with all edges coloured r or b is a red/blue graph
(or a blue/red graph). If this graph is a clique, we refer to it as a red/blue clique.
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H ‘ ho(n,H) Results
VAWAWAN SR VANWWAWAN SRV Lemma 4.3.1
{A, A,_}, {A, Al IR i:rgmata 43.2,
AWAWAS: [n/2] +1 Lemma 4.3.5
(DALLINALY | 0y, OfiTogn) a3t
VANVAWAY' 0(n?/3) Lemma 4.3.7
VAWAVEENS no H-free col. for n > 17 [81]
IVAWAWAN! Q(v/nlogn), O(y/nlog?n) Lemma 4.3.9
AWAWAN 2(n/5] + €(n) Lemma 4.3.10
AWANES [(n—1)/3] < ha(n,H) <2[n/5] | Lemma 4.3.12
VAWAWAN SR VANWAVEN S Lemmata 4.3.13
(AN, ) In/2] 4321,43.23
VAWAWAN! Q(v/nlogn), O(y/nlog®?n) Lemma 4.3.14
IVAWAWAN! Q(v/nlogn), O(n?3\/logn) Lemma 4.3.15
(DA Q(n?31og'/3 n), O(n**logn) Lemma 4.3.18
g(n) < ha(n,H) < 2g(n) Lemma 4.3.17
IVANWANAY' Q(n?3log™3n), O(n?*/3\/logn) | Lemma 4.3.19
WWAWAWAYS O(yv/nlogn) Lemma 4.3.20
TAWANEY [3n/7] + €1(n) Lemma 4.3.22
{L, NN Q(n3/*10g™3/%n), O(n3/*\/logn) | Lemma 4.3.24
ii: i: 2? &8 A Q(n?*3log=2n), O(n?*3\/Togn) Lemma 4.3.25

Table 4.3: Bounds on hy(n,H) for families H of three patterns on triangles
e(n) =0ifn =0 (mod 5), e(n) = 1if n =1, and ¢(n) = 2 otherwise;
€1(n) =1if n =2 (mod 7) and €;(n) = 0, otherwise.

If a pattern is not rainbow, the colour used on more than one edge is called the
majority colour. For any given colour, e.g., red, we say that a vertex v has red degree k if
it is incident to exactly & red edges. We denote by N,.(v) the red neighbourhood of v, the

set of all vertices joined to v by edges coloured red.

For positive integers k and ¢, we let R(k,¢) denote the usual Ramsey number for
cliques, i.e. the smallest NV such that no matter how the edge set of Ky is coloured with
red and blue, there is a red K}, or a blue K in this colouring. For graphs F' and F’, we
let R(F, F) denote the graph Ramsey number of F' and F”, i.e. the smallest IV such that
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no matter how the edge set of Ky is coloured with red and blue, there is a red copy
of F or a blue copy of F’ in this colouring. Here a copy of F is a graph isomorphic to
F. This definition easily extends to the case when either F' or F” is replaced by a finite
family of graphs. As usual, we let V(G), E(G), x(G), a(G), w(G), and A(G) denote
the vertex set, edge set, chromatic number, independence number, clique number, and
the maximum degree of a graph G, respectively. For a clique with vertex set V, we
say that V] is the size of the clique, and we often write “a clique V" instead of “a clique
on the vertex set V". Most of the colourings we define in Section 4.3 are obtained
by ‘blowing up’ other colourings. We make this precise as follows. Suppose c is an
edge-colouring of K, on vertex set [k] and let V1, . . ., V}, be non-empty, pairwise disjoint
sets. The (V1, ..., Vi)-blow-up of c is the edge-colouring of the complete k-partite graph
with parts V; for i € [k], such that all edges between V; and V; have colour ¢(ij) for all

1 <1 < j < k. See also Section 3 for more on blow-ups of colourings.

Observation 4.1. Let ¢y, ca be 3-edge-colourings of Ky, , Ky,. Now let Vi, ..., V,, be vertex-
disjoint sets of size |V;| = nq each and consider the (V1, ..., V,, )-blow-up of ¢1, where each V;
is coloured according to cy. Let the resulting colouring be c. Then we have Si, = S;* - S;2 for

any k € {rb,ry,by}.

A graph is triangle-free if it does not contain K3 as a subgraph. We shall need some

results about triangle-free graphs and certain Ramsey numbers.

Theorem 4.2 (Kim [93]). For every sufficiently large n € N there exists a triangle-free graph
G on n vertices with a(G) < 9y/nlogn.

The following result gives a corresponding lower bound for the independence

number of triangle-free graphs:

Theorem 4.3 (Ajtai et al. [1]). For any integer t > 3, we have R(3,t) = O(t?/logt). That is,
there is a constant C, such that in any red/blue edge-colouring of K,, with n = Ct?/logt there
is either a red K3 or a blue K;.

Translating the above theorem into the language of independent sets in triangle-free

graphs, we have:

Corollary 4.4. For any triangle-free graph G on n vertices, a(G) = Q(y/nlogn).

The following result provides an upper bound on the chromatic number of any

n-vertex triangle-free graph.

Theorem 4.5 (Poljak, Tuza [113]). For any triangle-free graph G on n vertices, x(G) <

4+/n/logn.
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We shall also need some known bounds on Ramsey numbers listed in Table 0.1 in

the Preliminaries.

Observation 4.6. A lower bound on some Ramsey number R(s,t) corresponds to the existence
of a 2-edge-colouring of K,, with no red K and no blue K;. For example, R(3,k) = Q(k*/log k)
gives the existence of a red/blue edge-colouring of K,, with no red K3 and no blue K, for any
t > C'y/nlogn for some constant C.

Recall that a pattern containing all three colours r, b, and y is called rainbow. Colour-
ings not containing rainbow triangles are called Gallai colourings. We will need the
following fundamental theorem, which asserts that Gallai colourings have a specific

structure.

Theorem 4.7 (Gallai [79]). In any Gallai colouring of the complete graph on at least two
vertices, the vertex set can be partitioned into at least two non-empty parts such that

e for any two distinct parts, all edges between them are of the same colour;

o the total number of colours used between parts is at most two.

4.3 CONSTRUCTIONS

Here we will list some explicit or probabilistic 3-edge-colourings of K,, which are H-
free for certain families, which we will then refer to in order to prove upper bounds
on ha(n,H). We describe the colourings and bound the size of a largest 2-coloured
set for each of them. The constructions are ordered by increasing order of magnitude
of ho. For each constructed colouring ¢ an upper bound on hs(c) is established. We
remark that these upper bounds are asymptotically tight, but since these facts are not
needed for our results, we omit proofs. Some of the constructions are explicit and
give exact bounds, while others rely on probabilistic/Ramsey results, and therefore
only give asymptotic bounds. Lastly, in each construction where we obtain asymptotic
upper bounds, divisibility conditions are ignored, and floors and ceilings are omitted

for simplicity of presentation.

ConstrucTioN 2.1 ([\/n], NoNE oF A\, /\, A\, /\)

Let n > 3 be an integer, and assume first that n = m? for some integer m. Let the vertex

setbe {v;; : 4,7 € [m]}, a set of m? vertices. Define the colouring c of E(V) as follows:
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red ifi=jk+#I,
c(vikvj) = blue ifi# j,k=1,
yellow if i # j, k # L.

The red graph is the disjoint union of m cliques of size m, where m > 2. The same
holds for the blue graph. It is not difficult to see that this colouring contains none of
the stated patterns.

Claim: ha(c) < [/n].

Proof. LetV; = {vi; | k € [m]}, U; = {vj; | j € [m]}, i € [m]. Any blue/yellow clique can
use at most one vertex of any given V;, any red/yellow clique can use at most one vertex

of any given Uj;, so we have ;.

by Sry <m. In fact, it is not hard to find blue/yellow and

red/yellow cliques of size m, so Sy, = 57, = m. Assume there is a red/blue clique of
size m + 1. Then it uses two vertices =,y € V; and one vertex z € V; for some i # j
(here we are using m > 2). But then z can have a blue edge to at most one of {z,y}, a

contradiction. Thus, we have 7, S, S5 < m = \/n. O

Now let n € N be arbitrary and take the smallest m € N, such that n < m?. Note
that m = [y/n]. Take the construction described above with m? vertices and arbitrarily

remove m? — n vertices. Then the size of a largest two-coloured clique is still at most

m = [Val.

ConsTrucTION 2.2 (O(+/n), NONE OF Z_, /\)

Let k = /n. By Bohman'’s [23] result R(4,t) = Q(t°/?/log?t) and observation 4.6, we
may consider a blue/yellow edge-colouring of K}, (for sufficiently large n) with no

A5 & for some

yellow clique of size 4 and no blue clique of size larger than Ck?/® log
constant C. Call this colouring ¢. Now, let Vi, ...,V be pairwise vertex-disjoint sets
of size \/n each and consider the (V,..., Vi)-blow-up of ¢’. Inside each V; colour the
edges in red/yellow with no yellow clique of size 4 and no red clique on more than
Ck?/51og"/? k vertices. Call the resulting colouring c.

Observe that any triangle in this colouring contains edges from either one V; (in which
case it is coloured in red and yellow), from two distinct V;’s (in which case it is a
bbr, bby, yyr or yyy triangle), or from three distinct V;’s (then it uses only colours blue

and yellow). Thus, there are no rby, rrb triangles.
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Claim: ha(c) = O(y/n).

Proof. Note that any red /blue clique must be the blow-up of a blue clique in ¢ with red
cliques inside each V;. By construction, we then have S¢, < (C(y/n)?/°log?/?(y/n))? <
v/, for sufficiently large n. For red/yellow and blue/yellow cliques we have Sy, , S, <

3. /. O

ConsTtrucTION 2.3 (O(y/nlogn), NoNE oF 2\, A\, /\)

By Theorem 4.2, for n large enough there is a triangle-free graph G on n vertices with
a(G) < 9y/nlogn. By Theorem 4.5, we have that y(G) < 4y/n/logn. Consider a
partition of V(G) into x(G) independent sets V1, ..., V,(q) (each of size at most a(G)).
Now consider the following 3-edge-colouring c of K,,. Fix a copy of GG in K, and colour
it red, then colour all edges with both endpoints in the same V; blue and all remaining
edges (between two different V;’s that are not in G) yellow.

Observe that the blue graph is a disjoint union of cliques and the red graph is triangle-

free, so there are no rrr, bbr or bby triangles.

Claim: hy(c) = O(y/nlogn).

Proof. A blue/yellow clique in this colouring corresponds to an independent set in G,
ie. we have 5j = a(G) < 9v/nlogn. Since a red/yellow clique contains at most one
vertex from any V;, we have S;, < x(G) < 4y/n/logn. A red/blue clique contains

vertices from at most two V;’s, since otherwise there is a red triangle in G, i.e. we have
5S¢, < 2a(G) < 18y/nlogn. O

ConsTtrucTiON 2.4 (O(y/nlogn), NoNE oF L., /A, /\)

Take k = y/nlogn and consider a blue/yellow edge-colouring ¢’ of K} without a
monochromatic clique of size more than 2log k, which exists by the bound on the
Ramsey number R(t,t) > 2Y/2. Let Vi, ..., V} be pairwise vertex-disjoint sets each of
size n/k = y/n/logn, and consider the (V1,. .., Vj)-blow-up of ¢. Colour every edge
with both endpoints in V; red for each ¢ € [k]. Let us denote by ¢ the resulting colouring.

Observe that each triangle in c is either monochromatic red with all vertices in V;,
i € [k], a bbr or yyr triangle (one edge in a red clique and two edges of the same colour

to another clique), or one of bbb, bby, yyy, yyb (vertices from three different red cliques).
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Claim: hy(c) = O(y/nlogn).

Proof. Any blue/yellow clique contains at most one vertex from each Vj, i.e. we have
Sy, = k = v/nlogn. Any red/blue (red/yellow) clique in ¢ corresponds to a blue
(yellow) clique in ¢/, sowe have S5, = 57, < (n/k)-2logk = v/n/logn-2log(y/nlogn) <
2y/nlogn. O

ConstrucTION 2.5 (O(y/nlogn), NoNE oF £, /\,/\)

Let £ = y/nlogn. Consider a red/blue edge-colouring ¢ of K}, without a monochro-
matic clique of size larger than 2log k. Such a colouring exists by the bound on the
Ramsey number R(t,t) > 2%/2. Take m = n/k pairwise vertex-disjoint copies of K
each coloured according to ¢ with vertex sets Vi, ..., V,,. Colour every edge between
Vi and V; yellow for all distinct 4, j € [m/]. Call the resulting colouring c.

Observe that each triangle in c is either coloured in red and blue (all vertices are in the

same V;), or contains at least two yellow edges (vertices in at least two different V;’s).

Claim: hs(c) = O(y/nlogn).

Proof. Any red/blue clique contains vertices from at most one V;, so S5, = k = y/nlogn.

Any red/yellow (blue/yellow) clique contains at most 2 log k vertices from each V;, so
we have ST, Sp < (n/k) - 2logk = \/n/logn -log(y/nlogn) < 2y/nlogn. O

CONSTRUCTION 2.6 (O(y/nlog®? n), NoNE oF AN, /N, A\, )

From the lower bound on R(3,t), consider a triangle-free graph H with vertex set [n]
and independence number at most 9v/nlogn. Define ¢, a colouring of the edges of a
complete graph on vertex set [n] as follows: the edges not in H are coloured yellow, and
each edge of H is coloured red with probability 1/2 or blue with probability 1/2. Note
that in this colouring each triangle has a yellow edge, and therefore contains none of

the stated patterns.

Claim: With positive probability h(c) = O(y/nlog®? n).

Proof. Letting q(n) = 80y/nlog®/? n, we shall show that any set of ¢(n) vertices induces
edges of all three colours. Let X be a fixed set of ¢(n) vertices.
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Now we use Turdn’s theorem [122], which tells us that a graph G on n vertices with
a(G) < r has at least 1 (%) edges. Since o(G[X]) < 10y/nlogn, the number of edges
induced by X in H is at least

= — 1L an)\ o ¢*(n)
10y/nlogn\ 2 /) = 4-10y/nlogn’

Then the probability that X induces only yellow and blue edges in c or that X induces

only yellow and red edges in c is at most

px < 2-276X < 9.9 ¢ (n)/40vnlogn

Using the union bound over all ¢(n)-element subsets of [n], we have that the probability

that ¢ contains a ¢(n)-vertex set inducing edges of only two colours is at most

< Zl ))pX < pa(M)9l—q*(n)/40ynTogn _ 9(a(n)logn+1—q*(n)/40v/nlogn) <1,
qn B
using the definition of ¢(n). Thus, there is a desired colouring with positive probability

(we remark that we did not attempt to optimize the constants here). O

ConsTRUCTION 2.7 (O(n?/3), NoNE oF 2\, /\,/\, L)

Consider n'/3 pairwise vertex-disjoint red cliques of size n'/3 each and colour all edges
in-between blue. This is a red/blue edge-colouring of K, ./;. Consider n!/? pairwise
vertex-disjoint copies of K 2/3 each coloured as above, and colour all remaining edges
yellow. Call the resulting colouring c.

Observe that the red graph is a disjoint union of cliques, so any triangle contains either
3,1 or 0 red edges, if it has its vertices in 1, 2 or 3 different red cliques respectively, so
there is no triangle containing exactly two red edges. Assume there are vertices u, v, w,
such that c¢(uv) = b and ¢(vw) = y. Then u and v are in the same red/blue clique and

w is in a different red /blue clique, so c(uw) = y, and there are no rby, bby triangles.

Claim: hy(c) = O(n?/3).

Proof. Tt is not difficult to see that S¢, = O(n*3). Note that any red/yellow clique
contains vertices from at most one red clique inside each copy of K »/s. Since each red
clique has size n'/? and there are n!/? copies of K,/s, we obtain S, = O(n*?) (see

Observation 4.1). Finally, any blue/yellow clique contains at most one vertex from each
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red clique inside every copy of K 2/s. Since there are n'/? red cliques inside each K 2/3,
we have Sy = O(n?/3). O

CoNsTRUCTION 2.8 (O(n?/3\/Iogn), NONE OF /., /\, __, )

Let £ = n?/3\/logn. From the lower bound on R(3,t)/Observation 4.6 consider a
red /blue edge-colouring ¢’ of K} with no red K3 and no blue K} for any ¢ > 9/k log k.
Let V1, ..., Vj be pairwise disjoint sets each of size n/k, and consider the (Vi, ..., Vj)-
blow-up of ¢’. Colour all edges with both endpoints in V; yellow for each i € [k] and
call the resulting colouring c.

Observe that each triangle is either yyy (all vertices in the same V;), yrr or ybb (one edge
within a V; and two edges to a different V;) or one of rrb, bbr, bbb (all vertices in different
Vi’s).

Claim: hs(c) = O(n*/3\/Togn).

Proof. Since any red/blue clique can contain at most one vertex from each V;, we have
Sy, = k. Further, as ¢’ contains no red triangle, we obtain Sy, < 2 (n/k). Lastly, as ¢
contains no blue K for any ¢ > 9v/klog k, we have that Sy, < 9y/klogk - (n/k). Thus,
by our choice of k it follows that max{Sy;, S5, Sgy} < Cn?/3\/logn, for some constant

C. O]

ConsTRUCTION 2.9 (O(n?/3y/logn), NoNE oF £, /\,/\, )

Let k = n'/3/\/logn and consider the trivial edge-colouring ¢’ of K; where every
edge is coloured blue. Let V1,..., V) be pairwise vertex-disjoint sets of size n/k each
and consider the (V1, ..., Vi)-blow-up of ¢. From the lower bound on R(3,t), there
is a red/yellow edge-colouring ¢ of K, with no red K3 and no yellow K; for any
t > 9y/(n/k)log(n/k) and sufficiently large n. Colour the edges inside V; according to
¢’ for all i € [k], and call the resulting colouring c.

Observe that each triangle is either one of yyy, yyr or rry (all vertices in the same V;),

one of bbr, bby (vertices in two different V;’s) or bbb (vertices in three different V;’s).

Claim: hy(c) = O(n?/3\/logn).

Proof. First, note that any red/yellow clique can contain vertices from at most one of

the V’s. It easily follows that S7, = n/k. Furthermore, using the bounds on the sizes



4. THE ERD68-HA]NAL CONJECTURE FOR THREE COLOURS AND FAMILIES OF TRIANGLES 57

of red and yellow cliques inside any given V;, we obtain S; < k- 9./(n/k)log(n/k),
and S;;, < 2k. Thus, our choice of k implies that max{S};, 57, S, } < Cn?/3\/logn, for

some constant C. O

ConsTRUCTION 2.10 (O(n?/3\/Tog ), NONE 0F 2\, /N, /\, N)

Let k = n?/3\/logn and consider m = n/k pairwise vertex-disjoint copies of K}, with
vertex sets Vi,...,V,, where V; = {v;1,...,vy} for each i = 1,...,m. Let ¢’ be an
edge-colouring of K}, in red/yellow with no red K3 and no yellow clique larger than
9k log k. Colour the cliques induced by V; according to ¢ for each i = 1,...,m. For
i # j colour the edge v;sv;; blue if s = ¢t and yellow otherwise. Call this final colouring
c.

Observe that there is no rrr and no rrb triangle since ¢’ contains no red K3, and any
two incident red edges are completely contained in some V;, which contains no blue
edges. Similarly, any two incident blue edges are contained in a blue clique, so there

are no bbr and no bby triangles.

Claim: hs(c) = O(n*/3\/logn).

Proof. Consider the sets Uy = {vis : i = 1,...,m} fort = 1,..., k. Observe that any
red/yellow clique can contain at most one vertex from each U;. Therefore, we obtain
Sy, < k. From our bound on the sizes of largest yellow cliques in each V;, it follows that
S, < (n/k) - 9y/klogk. Lastly, since there is no clique using both red and blue edges,
there is no red triangle and each blue clique has size n/k, so we have that S5, = n/k.

Thus, our choice of k implies max{S5,, S¢,, S5, } < Cn*3\/logn for a constant C. [

ConstrucTioN 2.11 (O(n%/4\/logn), NoNE oF Z_, /\, /\, \)

Let k = \/n. By the lower bound on R(3,t), take a blue/yellow edge-colouring ¢ of Kj,
with no blue K3 and no yellow clique of size greater than 9/klogk. Let Vi, ...,V be
pairwise vertex-disjoint sets each of size n/k and consider the (V1, ..., Vi)-blow-up of
d. Colour each V; in red/yellow with no red K3 and no yellow clique of size greater
than 9./(n/k)log(n/k). Let the resulting colouring be c.

Note that ¢ contains neither a monochromatic red triangle nor a monochromatic blue

triangles, since ¢’ contains no blue K3 and the colouring inside each V; contains no red
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Ks. Since the V;’s contain no blue edges, there is no rrb triangle, and it is easy to see

that there is no rainbow triangle in c.

Claim: hs(c) = O(n®/*\/logn).

Proof. As there is no blue K3 in ¢/, any red/blue clique contains vertices from at most
two of the V;’s, and since there is no red K3 inside the V/s, we see that SH < 4.
Moreover, since yellow cliques in each V; have size at most 91/(n/k)log(n/k) and the
edges between any two distinct V; and Vj are coloured in blue/yellow, we obtain Sy <

(n/k)log(n/k). Finally, since any yellow clique in ¢’ has size at most 9v/k log &, it

follows that Sy, < 9v/klogk - (n/k). By our choice of k we have max{Sy,, 5§ , 57, } <
Cn3/*\/log n, for some constant C. O

CONSTRUCTION 2.12 (2 | 2| 4 ¢, NONE OF N, AN, /N, /\)

Consider the red/blue colouring ¢’ of K5 with no monochromatic triangle. Letn > 5
be an integer, take [%| pairwise vertex-disjoint copies of Kj5 coloured according to ¢/,
and delete some vertices from one of these copies to make sure that the total number of
vertices is n. Finally, colour all remaining edges between these copies yellow. Denote
by c the resulting colouring.

Observe that there are no monochromatic red or blue triangles and that each triangle
contains either no yellow edges (if it is contained in a red/blue K5) or at least two

yellow edges (if it contains vertices of at least two distinct red /blue K5’s.)

Claim: hy(c) <2 |2| +¢, wheree =0ifn =0 (mod 5), e = 1if n = 1, and 2 otherwise.

Proof. The largest red/blue clique has size 5, and any red /yellow or blue/yellow clique
contains at most two vertices from each of the |n/5] copies of K5 and at most e vertices

from the remaining vertices, so we obtain Sgy, Sﬁy <2 L%J + e O

CONSTRUCTION 2.13 (< 2 [2], NoNeoF A A )

Consider the red/blue colouring ¢ of K5 with no monochromatic triangle. Letn > 5
be an integer and let V1, ..., V5 be pairwise disjoint sets of sizes [%] or | #| such that
Z?:l |Vi] = n. Consider the (Vi, ..., Vs)-blow-up of ¢ and colour every edge within V;

yellow fori = 1,...,5. Denote by c the resulting colouring.
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Observe that there is no monochromatic red or blue triangle in ¢ and that the yellow
graph forms a disjoint union of cliques, so there is no triangle with exactly two yellow

edges.
Claim: hy(c) < 2[%].

Proof. The largest red/blue clique has size 5, and any red/yellow or blue/yellow clique

contains at most two of the parts V;’s, so we obtain Scy, S;fy <2 [%1 . O

CoNSsTRUCTION 2.14 (< [22] + 1, NoNE oF A, A A, )

Consider K7 with vertex set {vo, ..., vs}. Define a red/blue/yellow edge-colouring ¢’
of K7 as follows. For distinct i, 5 € {0,...,6} set

b, ifi—j=+1 (mod7),
d(vivj) =<y, ifi—j==+2 (mod7),
r, ifi—j=43 (mod7),

see Figure 4.1 for an illustration.

Figure 4.1: H-good colouring of K7

Note that ¢’ contains no monochromatic blue or red triangles, since the blue and red
graph form 7-cycles. Since vertices at distance 2 along the cycle are coloured yellow,
¢’ contains no bbr triangles. Finally, consider triangles containing two incident yellow
edges. By symmetry, we may assume that the vertices of this triangle are 0,2, and 5.

Then since 5 — 2 = 3, the third edge must be red. Thus, there are no yyb triangles in .

Now, let n > 7 be an integer and let Vj,..., Vs be pairwise disjoint vertex sets
Vo,..., Ve of sizes x = | 2| or w = [%] such that Z?:o |Vi| = n. The parts of sizes x
and w are arranged cyclically according to the following orders depending on when
nis0,1,2,3,4,5,6 modulo 7, respectively: xxzrrrr, wrrrrrr, wrwrrrr, wwrrwrr,

wwrzwwz, wvwwwwre, wwwwwwz. Consider the (Vp, . . ., Vs)-blow-up of ¢ and colour
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every edge within V; yellow for ¢ = 0,...,6. Call the resulting colouring ¢, and note

that c still does not contain any of the stated patterns.

Claim: hy(c) < [22] + €e1(n), where e;(n) = 1if n = 2 (mod 7) and €;(n) = 0,

otherwise.

Proof. If some clique contains vertices from four different V;’s, then it induces all three
colours. Thus, any two-coloured clique contains vertices from at most three different
Vi’s. To prove the upper bound we may assume n is not divisible by 7. Let us call a
partition set V; big if it has size w, and otherwise small. Write n = 7z +r for non-negative
integers x,r with 1 < r < 6. Given our distribution of sizes, it is not difficult to check
that any 2-coloured clique contains vertices from at most one big set if » = 1, at most
two big sets if 2 < r < 4, and at most three big sets if » = 5,6. Thus, if r = 1 the
largest 2-coloured clique has size 2z +w = 3z + 1 = [3n/7]. If r = 3, 4, then the largest
2-coloured clique has size 2w + « = 3z + 2 = [3n/7]. If r = 5, 6, the largest 2-coloured
clique has size 3w = 3z + 3 = [3n/7]. Lastly, suppose r = 2. The largest 2-coloured
clique has size 2w + x = 3z + 2. On the other hand, [3n/7] = [3z+6/7] = 3z + 1.
Hence, the largest 2-coloured clique has size [3n/7| + 1. This completes the proof of
the claim. O

ConsTrUCTION 2.15 (| 5], NoNEOF A, AN AN, )

Consider the following 3-edge-colouring c of K,: take disjoint blue cliques Vi, V5 of
sizes | %] and %], put a maximum red matching in between and colour all other edges
yellow.

Observe that each triangle is either monochromatic blue (if it is contained in V; or V3)

or one of rby, yyb (if it has w.l.o.g. one vertex in V; and two in V3).

Claim: hy(c) < [2].

Proof. The vertex set of any blue/red clique of size at least 3 is contained in either V; or
V3, and thus, S¢, < [%]. Any red/yellow clique contains at most one vertex from each
of V;’s, i = 1,2, so we have Sﬁy = 2. Consider a largest blue/yellow clique X. Then
it has x; vertices in Vj, each one has a red neighbour in V5, so X can contain at most

|Va| — x;1 vertices in Vs, i.e. we have Sgy < |Va| = {%1 O
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CoNsTRUCTION 2.16 ([ 2] + 1, NoNeOF L AN\ A\ /N)

Consider the following 3-edge-colouring c of K, for n > 3: Take a red clique V; of size

n

[2] and vertex-disjoint from it a blue clique V3 of size | %

2
V1 and V3 yellow.

| and colour all edges between

Observe that each triangle is either monochromatic red or blue (if it is contained in V;

or V5) or one of yyr, yyb (if it has vertices in both V; and V%).

Claim: h(c) < [%] + 1.

Proof. Any red/blue clique contains only vertices from either V; or V5. Any red/yellow
clique contains at most one vertex from V5 and any blue/yellow clique contains at most

one vertex from V1, so we have max{Sy;, S7,, Sg, } < [Vi| + L. O

4.4 ForBIDDING H wITH |H| =1

We start with forbidding only one pattern, i.e. up to swapping colours we only need
to consider 3 families H € {{L},{A}, {A}}. According to Fox et al. [70], if H = {L.},
then ha(n, 1) = O(n'/?log? n).

Lemma 4.1.1. Let H = {/\}. Then we have ha(n, H) = O(y/nlogn).

Proof. Consider an arbitrary red/blue/yellow edge-colouring c of K, that has no red
triangle. By the upper bound on the Ramsey number R(3, k) (Theorem 4.3) we see
that ¢ contains a blue/yellow K}, with k = Q(y/nlogn), so ha(n, {rrr}) = Q(v/nlogn).
Moreover, Construction 2.3 shows that ha(n, {rrr}) = O(y/nlogn). O

Lemma 4.1.2. Let H = {A\}. Then we have ha(n, H) = [/n].

Proof. For the lower bound, let ¢ be an H-free red /blue/yellow edge-colouring of K,.
Let A, be the maximum red degree in c. If A, > [/n], there exists a vertex v which has
a red neighbourhood N, (v) of size at least |\/n|. Note that this neighbourhood does
not contain a blue edge, since together with v that would create an rrb triangle. Thus,
N, (v) U{v} spans a red/yellow clique of size at least |\/n| + 1 > [/n]. Otherwise, we
have A, < |y/n] — 1 and so the graph induced on red edges may be vertex-coloured
with |y/n] colours. One colour class has size at least [n/ |/n]|] > [v/n]. This forms
a blue/yellow clique of size at least [\/n| as required. Finally, the upper bound on

ha(n, H) follows from Construction 2.1. O
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4.5 FORBIDDING H WITH |H| = 2

Proposition 4.2. Any family H consisting of two distinct patterns can be obtained by applying
a colour permutation to all patterns in one of the following families:

IR VAWAN SR VAWAY S VAWAN SR VAWAN S

o (AL},

IR VAWAN SR VAWAN SR VAWAN SR VAWAN 3

o (AL}

Proof. We split the cases according to rainbow and monochromatic patterns:

e 7 contains no rainbow and no monochromatic pattern.
Case 1: the majority colour is the same, i.e. w.lLo.g. A /\.

Case 2: the majority colour is different, say red and blue.
Case 2.1: non-majority colours are both not yellow, i.e. A A\ .
Case 2.2: yellow is a non-majority colour in one pattern, i.e. A /\.

Case 2.3: yellow is a non-majority colour in both patterns, i.e. /N\/\.

This givesus AN, AN, AN, /NN
e H contains a rainbow but no monochromatic triangle, w.l.o.g. LN

e 7{ contains a monochromatic triangle and no rainbow triangle, w.l.o.g. A . Then
the second patternis A, A, Nor A\

e 7{ contains a monochromatic triangle and a rainbow triangle w.l.o.g. A, ..

This completes the proof. O

4.5.1 H CONTAINS NO RAINBOW AND NO MONOCHROMATIC PATTERN

Lemma 4.2.1. Let H € {{L&, A} AL, DN} {AD, N}, {/\,/\}}. Then we have ha(n,H) =
[v/n].

Proof. For the lower bound note that we have {rrb} C H or {rry} C H for all of
these families. Thus, by ha(n,{rrb}) = hao(n,{rry}) and Lemma 4.1.2, we obtain
ha(n,H) > ha(n,{rrb}) = [/n]. The upper bound follows from Construction 2.1. [
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4.5.2 H CONTAINS A RAINBOW BUT NO MONOCHROMATIC PATTERN

Lemma 4.2.2. Let H = {4\, L}. Then we have ho(n, H) = O(y/n).

Proof. The lower bound follows from Lemma 4.1.2: ha(n, H) > ho(n, {rrb}) > [/n].

The upper bound follows from Construction 2.2. ]

4.5.3 H CONTAINS A MONOCHROMATIC BUT NO RAINBOW PATTERN

Since our forbidden family contains a monochromatic triangle, by Lemma 4.1.1 we have
the lower bound ha(n, H) > ha(n, {rrr}) = Q(v/nlogn).

Lemma 4.2.3. Let H € {{Q, A}, {A, A}}. Then we have ho(n, H) = O(y/nlogn).

Proof. Since {rrr} C H,Lemma4.1.1impliesthatho(n, H) > ha(n, {rrr}) = Q(v/nlogn).

The upper bound follows from Construction 2.3. O

Recall, that for a graph G, f(G) = max{a(G),w(G?)} and f(n) = min{f(G) : |G| =
n, w(G) = 2}. The following lemma shows that determining the value of f(n) is closely
linked to determining the value of ha(n, H), where H = {A\, A}

Lemma 4.2.4. Let H = {\,A}. Then f(n) < ha(n,H) < 2f(n).

Proof. For the upper bound consider a triangle-free graph G on n vertices such that
f(G) = f(n), ie. o(G) < f(n) and w(G?) < f(n). Colour the edges of G red, colour
each edge from E(G?) \ E(G) yellow, and colour all remaining edges blue. We see that
there are no red triangles and any two adjacent red edges form an rry triangle. Note
that S, = a(G) < f(n), S5, = w(G*) < f(n) and S < 2a(G) < 2f(n). Here, the

statement on S, holds since in any red /blue clique, the red graph forms a matching.

For the lower bound, consider an arbitrary #-free colouring c of K,,. Let G be the red
graph. Then Sy, = a(G). Since there is no rrb triangle, each triangle containing two red
edges is an rry triangle, so S5, > w(G?). Thus, ha(c) > max{a(G),w(G?)} > f(n). O

Lemma 4.2.5. Let H = {/\, A}. Then we have

ha(n, H) = Q(y/nlogn) and ha(n,H) = O(v/nlog®?n).
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Proof. The lower bound follows from the lower bound on hga(n, {rrr}), Lemma 4.1.1.

The upper bound follows from Construction 2.6. O

Lemma 4.2.6. Let H = {/\, A\}. Then we have ha(n,H) = ©(y/nlogn).

Proof. The lower bound follows from the lower bound on hy(n, {rrr}), Lemma 4.1.1.

The upper bound follows from a result by Guo and Warnke [84], that implies
that there are two edge-disjoint triangle free subgraphs G and G’ of K,, each with
independence number at most ¢y/nlogn. We colour the edges of G, the edges of G’
blue and the rest of the edges yellow. Then Sy, = a(G') < cv/nlogn, Sy, = a(G) <
cy/nlogn, and S¢ < 6 since red and blue graphs are triangle-free.

Here, we include a proof of a slightly weaker bound (ha(n,H) = O(y/nlogn)),
which is easily obtained by random packing:
We shall find two edge-disjoint triangle-free graphs each with sufficiently small inde-
pendence number. We shall colour the edges of one of them red, the other one blue,
and the rest of the edges yellow. Then the largest bicoloured clique will have size at

most the size of the largest independence set of each of these triangle-free graphs.

As we cannot directly guarantee that the desired packing exists, we shall deal with
a small overlap. Consider a graph G on a vertex set [N] that is triangle-free, such
that a(G) = O(v/Nlog N). In particular, we have that A(G) = O(y/NlogN) and
|E(G)| = O(N3/2,/log N). The following claim asserts that we can find a copy G’ of G
on vertex set [V] such that |[E(G) N E(G")| is small. A similar proof appears in Konarski

and Zak [95], but we include the short proof for convenience of the reader.
Claim 1: There is a copy G’ of G on vertex set [N] such that |[E(G) N E(G")| < |E(G)*/(5).

Proof of Claim 1: Consider a permutation 7 : [N] — [N] chosen uniformly at random
and apply it to G. Let E; = {m(u)7(v) : wv € E(G)}. For each edge e € E(G) we say
that e is bad if e € E,, and we let X be the random variable counting bad edges. For
each edge e = uv € E(G) there are 2| E(G)|(N — 2)! permutations that can make e bad.

Hence

2EG)|((N =2t _ |EG)]

N (3)

P(eis bad) =

Thus, E[X] = |E(G)[?/(}), and so there is a permutation o such that

|[E(G)NE,| <
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Consider the union of G with its isomorphic image G’ on [N] granted by the above
Claim. Since |E(G)| = O(N?3/2\/log N), we obtain |E(G) N E(G")| < |E(G)|2/(];) =
O(Nlog N). Let G” be the graph on [N] with edge set E(G) N E(G’). Then it has at least
N /2 vertices with degree O(log V). These vertices induce a graph with independence
number at least 2(N/log N), so a(G") = Q(N/log N). Let X be a largest independent
set in G”, and let N be selected such that n = |X|. In particular, n = Q(N/log N),
and N = O(nlogn). Now, colour the edges of G[X| red, edges of G’ X] blue and the
rest yellow. We see that S,;, < 5 since there are no red and no blue triangles. We have
that 53, < o(G) since any blue/yellow clique corresponds to an independent set in G.
Thus,

Spy = O(v/Nlog N) = O(y/nlognlog(nlogn)) = O(y/nlogn),

and the lemma follows. O

4.5.4 H CONTAINS A RAINBOW AND A MONOCHROMATIC PATTERN

Lemma 4.2.7. Let H = {/\,/.}. Then hy(n,H) = Qn*3/log??n) and hy(n,H) =
O(n?/3\/logn).

Proof. The upper bound follows from Construction 2.8.

For the lower bound, consider an arbitrary #-free colouring c of K,,. Consider the
vertex sets of red components, which we refer to as blobs. Note that all edges between
any two blobs are of the same colour, either blue or yellow, otherwise there is a rainbow
triangle in c. Since the colouring induced by each blob is Gallai, by Theorem 4.7 we have
that each blob is a disjoint union of sets which we call sub-blobs, so that all edges between
any two sub-blobs are of the same colour and the total number of colours between sub-
blobs is at most 2. Note that since each blob is a red connected component, one of the
colours between sub-blobs must be red and another is blue or yellow. Note also that

each sub-blob spans a blue/yellow clique. Otherwise, there is a red triangle in c.

We shall delete some vertices of the graph such that c restricted to the remaining
part is easier to analyse. Specifically, we will end up with a colouring ¢’ of a complete
graph on at least C"'n/ log® n vertices (for some constant C"') in which all blobs contain
the same number of sub-blobs and all sub-blobs overall have the same size. In addition,

this colouring will have only red and blue edges between sub-blobs of any given blob.

We can assume that each blob has at least two vertices because if there are at least

n/2 blobs of size 1, they correspond to a blue/yellow clique on at least n/2 vertices.
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It could be assumed, without loss of generality, that non-red edges between sub-blobs
of any given blob are blue. Indeed, either at least n/4 vertices are spanned by blobs
with red /blue between the sub-blobs or at least n/4 vertices are spanned by blobs with

red/yellow between sub-blobs. Let us assume the former.

We shall split the sub-blobs according to sizes. Let X; be the union of all sub-blobs
of sizes from 2° to 2i*1 — 1,4 = 0,...,logn. Consider i for which X; is largest, i.e.
|X;| > in/logn. Delete at most half of the vertices from sub-blobs in X; so that all of
them are of the same size, and call the resulting set X;. Now, consider a colouring ¢’ that
is the restriction of ¢ to X. We see that ¢ has the same structure as ¢ but with all sub-
blobs of the same size and total number of vertices n' > %n /logn. Let k be the size of
each sub-blob. If k > n?/? we are done since each sub-blob spans a blue/yellow clique,
and then Sy, > n?/3. Thus, k < n?/3. Let Y; be the union of blobs each having sizes
from 27 to 27t — 1, =0,...,logn’. Consider Y; of largest size so that |Y;| > n'/logn/.
By deleting at most half of the vertices in Y; we can assume that all blobs in Y; have
the same number of vertices, and hence exactly the same number of sub-blobs. Denote
the number of sub-blobs by ¢. Again, by restricting ¢’ to the resulting set, we have an
H-free colouring ¢’ on n” > C"n/log? n vertices (for some constant C"') with each blob
having ¢ sub-blobs and each sub-blob having & vertices. Recall that k < n?/3.

Now we shall analyse ¢”’. Since the red graph is triangle-free, each blob has a
blue/yellow clique of order at least C'/?log? - k for some constant C' > 0, by Corol-
lary 4.4. Taking a union of these cliques over all blobs, we see that

Sy > C\/Clogl -k -n" [kt = C\/log £ - 0" /NI > CC"\/log /1 - n/ (log? n).

Thus, if ¢ < n?/3, we are done as in this case Sy > C'n?/3 / 10g3/ 2 n, for some constant
C’. Thus, ¢ > n?/3. However, in this case pick a blob and pick a vertex from each
sub-blob of this blob. This gives a red /blue clique on ¢ > n?/ vertices. O

4.6 ForBIDDING H wiTH |H| = 3

Proposition 4.3. Any family H consisting of 3 distinct patterns can be obtained by applying
a colour permutation to all patterns in one of the following families:

L {A7 /\7 A}/ {Av /\7 /\}/ {Aa A7 —}/ {A7 /\7 —}/

o {DNLYALDLYANNLYABN L,

L {A7 Au }7 {A> A? A}u {Aa A7 /\}7 {Av A) —}/



4. THE ERD68-HA]NAL CONJECTURE FOR THREE COLOURS AND FAMILIES OF TRIANGLES 67

o (DA NNA, DAY D AN AN, ),
(AL, LY AN AN AL, Y AN D, Y AN, ),

o (LAY (LA A, (LAY, (LA

Proof. We split the cases according to rainbow and monochromatic patterns:

e 7 contains no rainbow and no monochromatic triangle.
Case 1: exactly two patterns have the same majority colour, w.l.o.g. A /\, third
pattern has different majority colour, say blue. Then the third pattern is either 2
or /\.
Case 2: patterns have different majority colour, w.l.o.g, rrx, bbx, yy*.
Then either all non-majority colours are distinct, w.l.o.g. A\ ,/\,__, or there are

only two different non-majority colours, w.lo.g A, A, .

e H contains a rainbow and a no monochromatic pattern. Then, the other two

patterns are listed in the first item of the proof of Proposition 4.2.

e H contains a monochromatic and no rainbow pattern.
Case 1: There are at least two monochromatic patterns, say we have A A . Then
all the options for the third pattern up to permutation of patternsare A, /\, .
Case 2: There is only one monochromatic pattern, say /A and two non-monochromatic

patterns. We have the following cases:
Case 2.1: Both non-monochromatic triangles have majority colour red: A A /\ .

Case 2.2: Exactly one non-monochromatic triangle has majority colour red,
w.lo.g. /\ . Then all the options for the 3rd pattern are N,/

Case 2.3: None of the non-monochromatic triangles has majority colour red. Then
they either have the same majority colour, w.l.o.g. A /\, or we have bb * yysx.
Then either both non-majority colours are red (A\ _ ), exactly one non-majority

colour is red (w.l.o.g. /A ) or no non-majority colour is red (/\ ).

e H contains a rainbow and a monochromatic pattern, w.l.o.g., /A and /.. Then the
third pattern either has a red majority colour, or other majority colour, say blue.
This gives the following options for the third pattern: A, A, /A, A

This completes the proof. O

4.6.1 7H CONTAINS NO RAINBOW AND NO MONOCHROMATIC PATTERN

Lemma 4.3.1. Let H € {{L,/\, A}, {4, /\,/\}}. Then we have ha(n,H) = [\/n].
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Proof. The lower bound follows from Lemma 4.1.2 since ha(n,H) > ha(n,{rrb}) =
[v/n] . The upper bound follows from Construction 2.1. O

Lemma 4.3.2. Let H = {A\, A\, _}. Then we have hy(n,H) = [%].

Proof. The upper bound follows from Construction 2.15.
For the lower bound, let c be an H-free edge-colouring of K.

Case 1: There is a red triangle in c.

Let the vertex set of a red triangle be {u, v, w}. Then there cannot be a blue edge adjacent
to the triangle. Assume the contrary;, i.e. there is a blue edge au. Then av cannot be red
or blue, since then uva would induce an rrb or a bbr triangle respectively, i.e. av has to
be yellow. The same holds for aw, but then vwa forms a yyr triangle, a contradiction.
Assume there is a blue edge xz in the graph. Since each of z and z send only red and
yellow edges to {u, v, w}, and each of x and z send at most one yellow edge to {u, v, w},
x and z have a common red neighbour in {u, v, w}, say u. But then uzz is a rrb triangle,
a contradiction. Thus, if the graph contains a red triangle, it contains no blue edge and

hence, we have a red/yellow clique of size n.

Case 2: ¢ contains no red triangle.

We show that in this case the red graph is bipartite. We need to show that there is
no red odd cycle. Assume the contrary, and let vivs - - - vpv1 (E > 5) be a shortest red
odd cycle. Then we cannot have any red chord of the cycle, since that would create a
shorter red odd cycle. Assume there is an index ¢ such that v;v; and viv;41 have the
same colour. But then viv;v;41 create a bbr or a yyr triangle. Also, the edge v1v3 has to
be yellow, since otherwise vjvov3 creates a bbr triangle. Similarly, viv,_; is yellow. But
then, combining these two facts we obtain that all edges of the form v;v; with ¢ odd are

yellow, including vivi_2. Then vi_ov,_1v1 forms a yyr triangle, a contradiction.

Thus, we have no odd red cycle, so the red graph is bipartite. But then in any
bipartition there is a bipartite class of size at least [ %] in which only colours blue and

yellow appear. Hence, we have a 2-coloured set of size [%]. O

Lemma4.3.3. Let H = {/\,/\, __}. Then we have ho(n,H) = [%| forn # 7and ho(7,H) =
3.

Proof. The upper bound follows from Construction 2.15.

For the lower bound, let cbe an H-free colouring of K, ona vertexset V. Assume first

that there is a monochromatic triangle. Because of symmetry on forbidden patterns, we
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may assume that there is a red triangle. Let R be a largest red clique in c¢. Then |R| > 3.
Note that every vertex not in R sends a yellow or a blue edge to R. Then every vertex
outside of R sends at most one yellow edge to R (otherwise we have a yyr triangle). In
addition, no vertex outside of R sends both red and blue edges to R, otherwise we get

an rrb triangle.

Thus, V' — R = O U P, where O is the set of vertices in V' — R such that each edge
between O and R is yellow or red and P is the set of vertices in V' — R such that each

edge between P and R is yellow or blue. Note that O and P are disjoint.

Every vertex from O sends |R| — 1 red edges to R. Then any two vertices in O have
a common red neighbour in R, and hence there cannot be a blue edge induced by O.
Similarly, any two vertices in P have a common blue neighbour in R and hence, there

cannot be a yellow edge induced by P.

n

Thus, we have either |P| > [%] which yields a red/blue clique of size [%] or
|[RUO| > [%], which is a red/yellow clique of desired size.

It remains to deal with the case where we have no monochromatic triangle. In this
case, the red neighbourhood of any vertex induces a yellow clique, the blue neighbour-
hood induces a red clique, and the yellow neighbourhood induces a blue clique, so
the maximum degree at each vertex must be at most 6, i.e. we only need to consider

colourings of K,, withn < 7.

For n = 7 every vertex must have degree 2 in any colour, so each colour class is a
2-factor. Since there is no monochromatic triangle, each colour class must be a C'7 and
up to isomorphism there is a unique such colouring (see also Construction 2.14). One
can create such a colouring by ordering the vertices cyclically and colouring an edge
with vertices at distance 1, 2, 3 along the cycle yellow, red, and blue respectively. In this

colouring the largest 2-coloured clique has size 3.

For n < 6, observe that there is no red Cs, otherwise all other edges induced by
the vertex set of this C5 are yellow since there are no rrr and no rrb triangles. But
then there is a yyr triangle. Thus, the red graph has no odd cycles and so is bipartite.

Therefore, the blue/yellow graph contains a clique of size [%]. O

4.6.2 7H CONTAINS A RAINBOW BUT NO MONOCHROMATIC PATTERN

Lemma 4.34. Let H = {A\,/\,/.}. Then we have ha(n,H) = Q(v/n) and ha(n,H) =
O(v/nlogn).
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Proof. By Lemma 4.2.2 we obtain ha(n,H) > hao(n,{rrb,rby}) = Q(y/n). The upper

bound follows from Construction 2.4. O

Lemma 4.3.5. Let H = {A\, A\, L.}. Then we have hy(n,H) = [2] + 1.

Proof. For the lower bound, let ¢ be an H-free colouring of K,,. Assume there is a vertex
vincident to a red edge vz and a blue edge vy. But then the edge xy cannot be coloured.
Thus, w.l.o.g at least [2] vertices are not incident to a red edge. Taking a maximum
set of vertices not incident to a red edge and an arbitrary additional vertex (if it exists)
creates a blue/yellow clique, i.e. we have ha(n, H) > [%] + 1.

The upper bound follows from Construction 2.16. O

Lemma 4.3.6. Let H = {/\,/\,/.}. Then we have ha(n,H) = Q(v/n) and ha(n,H) =
O(v/nlogn).

Proof. By Lemma 4.2.2 we obtain ha(n,H) > ha(n, {rrb,rby}) = Q(y/n). The upper

bound follows from Construction 2.5. O

Lemma 4.3.7. Let H = {A\,/\,/_}. Then we have hy(n,H) = ©(n??).

Proof. For the lower bound consider an H-free edge-colouring ¢ of K, on vertex set
V. Consider a partition of V into sets Aj, ..., Ay, such that A; is maximum sized red
clique in ¢, and for each ¢ > 2, A; is a maximum sized red clique in ¢ contained in
V — (A1 U---UA;_1). Note that |A;] = 1 is allowed here. Moreover, for each i # j
there is at least one non-red edge between A; and A;. We shall show that either there
is a 2-coloured clique of a desired size or there are at least n/2 vertices such that the
colouring restricted to these vertices is formed by pairwise vertex-disjoint red cliques

such that between any two such cliques all edges are blue or all edges are yellow.

First, assume there is a blue edge uv with v € A; and v € A;, for some i # j.
Then every edge between A; and A; incident to u or v must be blue, since otherwise a
rainbow or rrb triangle is formed. Assume there is an edge wz withw € A; and z € A;
that is not incident to uv. If wz is red, then uz cannot be coloured without forming a
forbidden pattern. Similarly, wz cannot be yellow. It follows that if there is a blue edge

between any A; and A;, then all edges between A; and A; must be blue.

We claim that for each A;, either A; sends red/yellow edges to every other A;, or
A; sends only blue/yellow edges to every other A;. Suppose otherwise, so that there
is 7, 7,k € [m] such that all edges between A; and A; are blue, and all edges between A;

and Ay, are red/yellow and there is at least one red edge. We assume first that k£ < i.
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In this case, A;, was chosen as a largest clique before A;. There must be at least one red
and at least one yellow edge between A;, and A;, so there exist vertices u, v, w such that
v e A, u,w € Ay, and c(uv) = r and c(vw) = y. Pick a vertex z € A;. Then zv is blue,
so we cannot use blue between A; and Aj: otherwise vzw is a bby triangle. Similarly,
we cannot colour zw red, because then vzw is a rainbow triangle. It follows that zw
is yellow. But then we cannot colour zu without forming an rrb or rainbow triangle.
The argument is similar if ¢ < k. Indeed, in this case we find vertices u, v, w such that
v € Ag, u,w € A; and c¢(vw) = r and c(vu) = y. Pick a vertex z € A; and note that both
uz and ww are blue. In this case, note that if vz is red, then vzw is an rrb triangle. If it is
blue, then uvz is a bby triangle, and if it is yellow, then vzw is a rainbow triangle. This is
a contradiction. Therefore, we say that A; is of Type I if it sends only blue/yellow edges
to all other A;’s. Otherwise, we say that A; is of Type II.

Given the above, we can now break the proof into two cases:

Case 1: There are at least n/2 vertices in cliques of Type II. In this case, we have a

red/yellow clique of size at least n/2.

Case 2: At least n/2 vertices are in cliques of Type I. Relabel and denote by Vi,...,Vj
the red cliques of Type I. Recall that all edges between V; and V}, ¢ # j must be blue or
all of them must be yellow. Then we denote by ¢(V;, V;) the colour of the edges between
Viand V.

Note that k < n?/3, otherwise we have a blue/ yellow clique of that size.
Let Z C [k] be the subset of indices such that |V;| > 1n!/3 iff i € Z. Spliteach V;, i € T

into disjoint sets B; j and Cj, j = 1,...,m;, with |B; ;| = %n1/3 and |C;| < inl/?’. Then
we have 1
. o 13,23 1
Z’CZHZW" < n'Pn?t =2
i€l €T
n/2—n/4

Thus, there are s > = n?/3 sets B; j. Consider a blue/yellow edge-colouring ¢’

nl/3 /4
of K, with vertex set {B; ; : i € Z,j € [m;]} where

d(Bij, By j) = W Vi) i
blue, 1=1.

Then in ¢/, there is no bby triangle, so in ¢’ there is a monochromatic set of size at least
V/s. Indeed, the blue graph in ¢’ is a pairwise vertex-disjoint union of cliques, so either
one of these cliques has at least /s vertices, or there are at least /s such cliques and
thus, there is a yellow clique on /s vertices. Such a blue clique in ¢’ corresponds to a

blue/red clique in ¢, such a yellow clique in c corresponds to a red/yellow clique in ¢
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of size \/s|B; j| > Vn2/3n1/3 /4 = n?/3 /4 in c.

The upper bound follows from Construction 2.7. O

4.6.3 H CONTAINS A MONOCHROMATIC BUT NO RAINBOW PATTERN

Lemma 4.3.8. Let H = {/\,\, " }. Then there is no H-free colouring for n > 17.

Proof. We know that the Ramsey number R(3, 3,3) = 17, so there is no edge-3-colouring

of K,, without a monochromatic K3 for n > 17. O

Lemma 4.3.9. Let H = {/\,\,A}. Then hy(n,H) = O(v/nlog®?n) and ha(n,H) =
Q(yv/nlogn).

Proof. The lower bound holds since ha(n, H) > ha(n,{rrr}) = Q(y/nlogn). The upper
bound follows from Construction 2.6. O

Lemma 4.3.10. Let H = {AN, A /\}. Then ho(n,H) = 2| 2] + ¢ where e = 0if n = 0
(mod 5), e =1ifn=1 (mod 5), and e = 2 otherwise.

Proof. To see the lower bound, consider an #-free colouring of E(K,,). Observe that the
red degree of every vertex is at most 2. Indeed, since there are no rry or rrr triangles,
the entire red neighbourhood of a given vertex must induce a blue clique. But as there
is no blue triangle, each red neighbourhood has at most 2 vertices. Thus each red
component is either a path or a cycle of length at least 4. Among all such red graphs,
the one with the smallest independent set is a union of pairwise vertex-disjoint Cs’s,
and if n is not divisible by 5, a component on at most 4 vertices. This matches exactly

the Construction 2.12 and gives a blue/yellow clique of size at least 2 [n/5] + €.

The upper bound follows from Construction 2.12. O

Lemma 4.3.11. If a family H contains three patterns with different majority colours, then
ha(n,H) > [%52).

Proof. Consider an #H-free colouring c and an arbitrary vertex v. Let N,., Np, and N, be
the red, blue, and yellow neighbourhoods of v, respectively. Then we see that each of
these sets induces a 2-coloured clique. Since at least one of the sets N,., N;, N, has size
at least [”T_l} , the result follows. O

Lemma 4.3.12. Let H = {A\, A, _}. Then [251] < hao(n, H) < 2[Z].
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Proof. The lower bound follows from Lemma 4.3.11. The upper bound follows from
Construction 2.13. O

Lemma 4.3.13. Let H = {\, A\, /\}. Then we have ha(n, 1) = [%].

Proof. For the lower bound, let ¢ be an #H-free colouring of K,,. Then there are no two
adjacent red edges, so the red graph forms a matching, i.e. there is a blue/yellow clique

of size [2]. The upper bound follows from Construction 2.15. O

Lemma 4.3.14. Let H = {A A, A}, Then ha(n,H) = Q(v/nlogn) and ho(n,H) =
O(y/nlog®?n).

Proof. For the lower bound, by Lemma 4.1.1 we have : ha(n,H) > hao(n,{rrr}) =
Q(v/nlogn). The upper bound follows from Construction 2.6. O

Lemma 4.3.15. Let H = {{\, A, /\}. Then ha(n,H) = Q(v/nlogn) and ho(n,H) =
O(n?/3\/Togn).

Proof. For the lower bound, by Lemma 4.1.1 we have : hy(n,H) > hao(n,{rrr}) =
Q(yv/nlogn). The upper bound follows from Construction 2.10. O

Although there is a gap between the lower and the upper bound in Lemma 4.3.15,
we are able to prove the following lemma concerning the structure of colourings with

no patterns in {2\, A /A\}.

Lemma 4.3.16. Let H = {{\,A\,/\} and let ¢ be an H-free colouring of K,,. Then either
ha(c) = Q(n?/31og'/? n) or at least n/4 vertices span pairwise vertex-disjoint blue cliques with
only red/yellow edges between them, with the red graph forming a matching between any two

distinct blue cliques.

Proof. Let ¢ be an H-free colouring of K,. Start by partitioning the vertex set into
blue/red cliques by greedily picking a maximal red /blue clique at each step. Let C be
the set of these cliques. Note that there is a yellow edge between any two cliques from
C. Within each clique the red graph is a matching and the red edges between any two
components also form a matching (otherwise we have rrb or rrr triangles). Let C’ be

the set of cliques from C on at least 4 vertices each.

Assume first that at least /2 vertices are spanned by cliques from C’. We shall show
first that there is no blue edge between any two cliques from C’. Assume U,V € C’ with

U| > |V| and there is a blue edge v'v, v’ € U, v € V. If there is a yellow edge u"v,
& y &
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for some u” € U, then u/u” must be red (since otherwise u/u"v is a bby triangle). Let
u € U — {u/,v"}. Since red forms a matching within U, we have c(v"u) = c(u'u) = b.
Then uv cannot be blue (u”uv would induce a bby triangle), and it cannot be yellow (v/vu
would induce a bby triangle), so it must be red. Since thisholds foreachu € U —{u/, u"},
we must have |U| < 3, for v cannot have two red neighbours in U, a contradiction to our
assumption that |U| > 4. Thus, the assumption that there is a yellow edge is wrong, so
all edges from v to U are blue or red. But then U U {v} would form a larger red /blue
clique and contradict how we greedily chose C. Thus, between any two cliques from C’
there is no blue edge and red forms a matching between any two cliques from C’. Thus
our structural result follows by choosing at least half the vertices from each clique of '

so that these vertices induce a blue clique.

Now assume that at least n/2 vertices are spanned by cliques from C —C’, i.e. cliques
of size at most 3 each. We have that |C — C’| > n/6. Each of the cliques from C — C’
either spans a blue triangle or not. Let " C C — C’ be the set of cliques forming blue

triangles. We distinguish the following cases:

Case 1: |C"| > n/12. Since there is a yellow edge between any two cliques from C,
there can’t be a blue edge between any two members of C”, otherwise we create a bby
triangle. Thus, we can pick one vertex from each member of C" and have a red/yellow
clique of size at least n/12 € Q(n?/3).

Case 2: |C"] < n/12,i.e. atleast n/12 cliques from C — C’ do not span a blue triangle.
Let G be the subgraph spanned by vertices of C — (C' UC") with the inherited colouring.
Assume that G contains a blue (5. Then all edges within this cycle must be red (no
blue K3, no bby triangle), so we have a red/blue K5, which contains an rrb triangle,
a contradiction. Thus, the blue subgraph of G is Cs-free, and since R(Cs, Kj) =
O(Kk*?//log k) we have a red /yellow clique of a desired size. O

Recall that g(n) is a smallest possible independence number of an n-vertex graph
that has no cycles of length 3 and no cycles of length 5, i.e. that has an odd girth at least
7.

Lemma 4.3.17. We have that g(n) < ho(n, {2, A, _}) < 2g(n).

Proof. For the upper bound, let G be an n-vertex graph with odd girth at least 7 and
independence number g(n). Colour its edges red, the edges corresponding to pairs of
vertices at distance two in G yellow, and all remaining edges blue. Clearly, we have
no rrr and no rrb triangles. Assume that there is a yyr triangle. Since vertices of any

yellow edge are endpoints of a red path of length 2, we see that a yyr triangle implies
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the existence of an rrr triangle, or a red cycle of length 5. Note that S, = a(G) = g(n).
Consider a largest yellow/red clique X. We see that since the yellow colour class is
induced Ps-free in X, the yellow edges form disjoint cliques in X, and there are at most
two of them since there are no red triangles. So, X contains a yellow clique on at least
| X|/2 vertices, i.e. | X|/2 < a(G) = g(n), thus, S,y = |X| < 2g(n). Similarly, let Y be
a largest red /blue clique. The red edges in it must form a matching, so there is a blue
clique of size atleast |Y'|/2, in particular |Y|/2 < a(G) = g(n). Thus, Sy, = |Y| < 2g(n).

For the lower bound, consider an {rrr, rrb, yyr }-free colouring of a complete graph
on n vertices. The red graph GG does not have 5-cycles because otherwise all other edges
induced by the vertices of that cycle must be yellow, forcing a yyr triangle. Thus, the
red graph has odd girth at least 7. We have that S, = a(G) > g(n). O

Lemma 4.3.18. Let H = {/\, A\, _}. Then hy(n,H) = Q(n?/3log'/®n) and ho(n, H) =
O(n*/*logn).

Proof. By Lemma 4.3.17 it is sufficient to bound g(n).

13/2

By Caro et al. [39], we have R(Cs, K;) < C Nk i.e. any Cs-free graph on n vertices

has independence number at least C'n?/3 log'/? n. Thus, g(n) > C'n?/31og"/? n.

By a result by Spencer [120] we have R({Cs3,C4,C5}, K¢) > C (t/log t)4/3 for some
positive constant C, i.e. for n sufficiently large there exists a graph G on n vertices with
no C3,Cy, Cs and o(G) < C'n?/*logn. Thus, g(n) < C"n3/*1ogn. O

Lemma 4.3.19. Let H = {/\,/\, __}. Then we have

ho(n, 1) = Q(n*?/log"? n) and hy(n,H) = O(n*>\/logn).

Proof. For the lower bound, let c be an H-free colouring of K,, and let the vertex set be
V.

We shall argue that either our lower bound holds or there is a subset of at least n/4
vertices that is a pairwise disjoint union of red/yellow cliques with only blue edges in
between. We shall conclude by showing that such a colouring has a large 2-coloured

clique of a desired size.

Consider a maximal blue clique B. Then each vertex in V' — B sends either a red
or a yellow edge to B. Moreover, each vertex in V' — B sends at most one red and at
most yellow edge to B. Let V; be the set of vertices in V' — B that send red edges to B.

Then these edges form a family () of pairwise vertex-disjoint stars with centres in B.
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Note that there is no red odd cycle in V;. Indeed, otherwise this cycle contains vertices
from three distinct stars from Q. In particular, there is a vertex v in one star from (@ in
V1 that sends red edges in V; to two distinct stars from (), say with centres wy, ws € B.
Then wiv and wov are yellow, so vwiws is a yyb triangle, a contradiction. So, if V; has
Cn vertices then the red graph induced by V; has an independent set of size at least
Cn/2. This gives S, > Cn/2. So, we can assume that |V;| < Cn. We can also assume
that |B| < Cn. So,let Vo =V — (BU V). Thus, |V2| > n/2 (by taking C = 1/4).

Now, there are only yellow and blue edges between 1, and B and moreover the
yellow edges among those form pairwise vertex-disjoint stars with centres in B. Let
Ry, ..., Ry, be the intersections of the vertex sets of these stars and V5. In particular, V5
is the union of the R;s. Note that there are no yellow edges between R;’s and there are

no blue edges within R;’s, otherwise we obtain a byy triangle.

There is no vertex v € V5 that sends a red edge to two different R;’s: assume the
contrary, i.e. we have red edges wiv and wov with w;, we belonging to different R;’s.
But then wjwy connects two different R;’s, but can be neither red nor blue without
creating a forbidden pattern, a contradiction. Thus, the red graph whose edges have
endpoints in different R;’s is bipartite. Let V3 C V5 be a larger part of such a bipartition
(i.e. |V3| > n/4) and let T; = R; N V3. Then the T;’s are red/yellow and all edges in

between are blue.

The remaining part of the proof shows that in any colouring ¢’ of K, that is
formed by pairwise vertex-disjoint red/yellow cliques 71, ..., T, with all edges be-
tween them blue has a large bi-coloured clique. This will imply the lower bound
ha(c) = Q(n?/3/(log'/? n)). The logarithmic factors here could probably be improved.

We shall split the 7;’s according to sizes. Let X; be the union of all T} of sizes from
2¢ to 201 — 1, where i = 0,...,logn. Consider a largest X;, i.e. |X;| > |V3]/logn >
n/(4logn). Delete at most half the vertices from each Tj in X; such that all members T
of X; have the same size, say k. Let the resulting set be X’. Let ¢’ be the colouring that
results from restricting ¢ to X’. Then ¢’ consists of red / yellow cliques of the same size k
and only blue edges in between. In addition, |X’| > n/(8logn). Then we have S,, > k.
Moreover, since the red graph is triangle-free, Corollary 4.4 implies that we may find a
yellow clique of size C'/klog k inside each of the red/yellow cliques. Hence,

| X , n Jlogk
Spy > C\/klogk >C :
by = o8 k —  logn k

If k < n?/3/log!/3 n, then Sy, > C"n?/3/log!/® n. Otherwise, we get a large red/yellow

clique, which concludes the proof.
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The upper bound follows from Construction 2.9. O

Lemma 4.3.20. Let H = {A\,/\,/\}. Then we have ha(n,H) = ©(v/nlogn).

Proof. For the lower bound by Lemma 4.1.1 we have ho(n, H) > ha(n, {rrr}) = ©(y/nlogn).

The upper bound follows from Construction 2.3. O

Lemma 4.3.21. Let H = {A\,/\, __}. Then we have ha(n, 1) = [ %].

Proof. For the lower bound, let ¢ be an #-free colouring of K,,. Assume that c contains
a red odd cycle. Let vy ---vgvi, kK > 5 be a shortest odd red cycle. First let & > 7.
Without loss of generality, we have c(viv3) = b. Then c(viv4) = y, since otherwise
v1,v3, v4 induce a bbr triangle. Thus, we have c¢(viv;) = b for i odd and c(vjv;) = y for
i even, and thus, ¢(vivg_1) = y. Since c¢(viv3) = b, we also have c(v3v) = y, and hence
c(vsvk—1) = b. Thus, we must have c(vi_jv2) = y, since otherwise v, v3, vi_1 induce a
bbr triangle, but then vq, v2, v induce a yyr triangle, a contradiction.

If £ =5, wlo.g. we have c¢(viv3) = b. Then we must have c(vivs) = y = c(v3vs),
since otherwise v1,vs,v4 Or vi,vs,vs induce a bbr triangle. But then we must have
c(vavg) = b = c(vavs), since otherwise vy, v2, v4 O v2,v3, v5 induce a yyr triangle. But
then v9, v4, v5 induce a bbr triangle, a contradiction.

Thus, the red graph is bipartite, so ¢ contains a blue/yellow clique of size at least [%].

The upper bound follows from Construction 2.15. ]

Lemma 4.3.22. Let H = {A\,/\,__}. Then we have ha(n,H) = [22] + e1(n), where
e1(n) =1ifn=2 (mod 7), and €;(n) = 0 otherwise.

Proof. The upper bound follows from Construction 2.14.

For the lower bound, let c be an H-free colouring of a n-vertex graph on a vertex set
V. Assume first that there is a blue clique B of size |B| > 3. Then each vertex not in
B sends at most one yellow edge to B (otherwise we have a yyb triangle) and no vertex
not in B sends both blue and red edges to B (otherwise we have a bbr triangle). Let
A be the set of vertices from V' — B that send only blue and yellow edges to B and let
O =V — B — A, i.e. each vertex from O sends a red edge to B. Then, in particular, each
vertex from O sends no blue edges to B, thus, it must send at least two red edges and at
most one yellow edge to B. Thus for any two vertices of A there is a vertex in B joined
to both of them with blue edges. Similarly, for any two vertices of O there is a vertex

in B joined to both of them with red edges. Then A induces no red edges and neither
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does O. Note that B, A and O span the whole graph; B U A induces no red edge and O
contains no red edge. Then S, > max{|BU A|,|O[} > [5].

Thus, we can assume that both the red and blue graph are triangle-free. We shall
show that the blue graph has a special structure, in particular it must be a blow-up of

a cycle on 7 vertices.

If the blue graph contains no odd cycle, then it is bipartite and hence S,, > [%].
Thus, we can assume that there is a blue odd cycle. The blue graph also does not contain
a cycle length 5 since otherwise all other edges spanned by the vertices of this cycle
are yellow, producing a yyb triangle. Assume the shortest blue odd cycle has length
k>9. Let C = C} = v;...v,v; be a shortest blue odd cycle with £ > 9. Then C has
no blue chord, otherwise there is a shorter blue odd cycle. Fix a vertex, v1, and order
chords incident to v; as they appear on the cycle, i.e. viv3, v1v4, ..., v1V5—2. Each chord
is red or yellow. There are no two consecutive yellow chords, otherwise we have a yyb
triangle. We have that vyv3 and viv,_2 are yellow, otherwise there is a bbr triangle. In
addition v vy is red, otherwise there are two consecutive yellow chords. Assume that
there are two consecutive red chords incident to v;. Let these chords be, without loss of
generality, viv; and v1v;41, for ¢ > 4. Then v4v; and v4v;11 must be yellow, resulting in
a yyb triangle. Thus, the chords incident to v; must have alternating colours yry ... ry.

However, this is impossible since the number of such chords is even.

Thus, a shortest blue odd cycle has length 7. Let the vertex set of such a 7-cycle be
Y = {vi,...,vr}. Then ¢(vv;) = y if v; and v; are at distance two on C and c(v;v;) =7

if v; and v; are at distance three on C.

Letz € V —Y. Note that 2 can send at most 3 yellow edges to Y, otherwise we have
a yyb triangle. Assume x sends no blue edge to Y. Then it sends at least four red edges
to Y, whose endpoints contain two vertices at distance 3 on C, which creates an rrr
triangle, a contradiction. Thus, = sends at least one blue edge to Y. Assume z sends
exactly one blue edge to Y, say to v;. Then zv, and zv; must be yellow. Then zv3 and
xve must be red. But this implies that zvsve forms an rrr triangle, a contradiction. Note
that = sends at most two blue edges to C, otherwise there is a shorter blue odd cycle.
Since x sends at least one, at most two, and not exactly one blue edge to Y, = sends
exactly two blue edges to Y. The endpoints of these two edges must be at distance 2
on the cycle, otherwise there is a shorter odd cycle. Without loss of generality, let these
endpoints be vy, v7. Consider a blue cycle zvvs - - - v7z. It must have the same colour
structure as C, i.e. in particular  “mimics" vy, i.e. ¢(zv;) = c(viv;) forallv; € Y — {v1}.
Since x was chosen arbitrarily outside of any blue cycle, we have that each vertex in

V —Y “mimics" some vertex on C and thus, the colouring contains a spanning blow-up
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of a colouring c restricted to Y.

More specifically, we have that V' is a disjoint union of parts p, . .., Vs such that for
any i,j € {0,1,...,6}, withi,j,and any z € V;,z € V}, c(zz) = bif |[i — j| =1 (mod 7),
c(xz) =yif|i —j| =2 (mod 7), c(xz) = rif |i — j| =3 (mod 7). All the edges induced
by each V; are yellow. That is, we have a colouring with a structure as in Construction

2.14 (where the V;’s have variable sizes).

Foreachi =0,...,6,letU; = V; U V41 U Vjje and W; = V; U V42 U V44 (indices
computed modulo 7). Then each U; spans a blue/yellow clique and each W; spans a
red/yellow clique. We have that |[Wy|+ - - - + |Ws| = 3n, thus, there is W; of size at least
[3n/7]. This proves the lower bound, except when n = 2 (mod 7).

Soletn =2 (mod 7),i.e. n = 7k + 2 for an integer k. We shall show that there is a
2-coloured clique of size at least [3n/7] + 1. In order to do so, we first shall show that

the sets V;’s pairwise differ in size by at most 1.

If there is an index ¢, such that |W;/| > [3n/7] + 1, we are done, so assume |W;| <
[3n/7] fori =0,...,6. Now assume there is an index ¢’ such that |W;| < [3n/7] —1. But
then we have "0 [Wi| < [3n/7| =146 [3n/7] = |3(Tk + 2)/7| —1+6 [3(7k + 2)/7] =
21k + 5 < 21k + 6 = 3n, a contradiction. Thus, |W;| and |W;| differ by at most 1 for
0 <i < j <6. Similarly, all U;’s differ in size by at most 1.

Note that W; " W19 = Vipo UVips fori =0, ..., 6 (indices computed modulo 7), so
the symmetric difference W;AW;,2 = V; U Vj16. By the above observation, that means
in particular that |V;_1| and |V;| differ by at most 1, for each ¢ = 0,1,...,6. Similarly,
by considering two consecutive U;’s, we see that |V;| and |V, 3| differ in size by at most
1. Then it is clear that |[Vj| — [V2|| < 2. Assume that |Vy| = ¢ and |V32| = ¢ + 2, for
some t. Then |Vi| = t+ 1 and |V3| > ¢t 4+ 1. Thus, |U;| > 3t + 4 that implies that
3t +3 < |Us| = |Vs| +t +t + 1, that in turn implies that |Vs| > ¢t 4 2. This contradicts
the fact that |Us| and |Uy| differ by at most 1. It shows that ||V;| — |Vi;2|| < 1. Together
with the fact that ||V;| — |Vi41|| < 1and ||V;| — |Vigs]| < 1, we see that any two set V;, V},
i,7 €{0,1,...,6} differ in size by at most 1. Thus, V;’s have sizes either [n/7] or [n/7].
Since n = Tk + 2, there are exactly two parts V;, V; of sizes [n/7]. No matter how they
are located, there is a third part Vj such that V; U V; UV, is either W,,, or U,,, for some
m. This gives a two-coloured clique on 2 [n/7] + [n/7] = [3n/7| + 1 vertices.

This concludes the proof. ]

Lemma 4.3.23. Let H = {A\,/\, _}. Then we have hy(n,H) = [%].
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Proof. For the lower bound let ¢ be an #H-free colouring. Let v be an arbitrary vertex

and denote by N, N, N, its red, blue and yellow neighbourhoods, respectively.

Then N, does not contain a red edge, so it must induce a monochromatic clique that
is either blue or yellow. Without loss of generality, we assume it is blue (a symmetric

argument deals in the case when it is yellow).

Between IV, and IV, there cannot be a single blue or yellow edge, so between them
we have a complete bipartite red graph. Thus, IV, and NV, cannot induce red edges,
so N, induces a monochromatic blue and N, a monochromatic yellow clique. Now
consider the bipartite graph between NN, and N,. There can be no incident blue and
yellow edges and each vertex in N, sends at most one yellow edge to IV, and each vertex
in N, sends at most one blue edge to N,. Likewise in the bipartite graph between 1V,
and N, the yellow edges form a matching and no vertex is incident to both blue and

yellow.

If one of the sets N,, N;, N, contains at most 1 vertex, then the larger of the other

two sets together with v is a 2-coloured a clique of size at least [n/2], as required.

So we may assume that each of the sets N,, N, IV, contains at least 2 vertices. We

consider two cases:

Case 1: There is a vertex w* € N, that sends only yellow edges to IV,,.
Every vertex in N := N, —{w*} sends only red edges to N, (otherwise, we obtain
either a yyb or bby triangle). This implies that there are no red edges between
N and Ny: if otherwise, we obtain a monochromatic red triangle with vertices
in N, Np, and N,, using the fact that the bipartite graph with parts N, and
N, is entirely red. Moreover, since the yellow edges between N, and NNV, form a
matching, we have that all edges between N;* and V, must be blue. Now, consider
thesets Vi = N UN, U {v} and V5 = {w*} U N, U {v}. Note that V; is a red /blue
clique and V5 is a red/yellow clique. One of them must have size at least [n/2],

completing the proof in this case.

Case 2: No vertex in IV, sends only yellow edges to IV,,.
Since no blue and yellow edges are incident in the bipartite graph between N,
and N,, every vertex in IV, sends at least one red edge to IV,. Now the proof is
similar to the previous case: we have that no edges between N, and N, are red
(otherwise, we obtain a monochromatic red triangle). Hence, as before all edges
between N, and N, are blue. So N, U N, U{v} is ared/blue clique and {v} UN, is

a yellow clique. One of these two sets has size at least [n/2], and this completes
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the proof of the lower bound.

The upper bound follows from Construction 2.15 with red and yellow swapped. [

4.6.4 H CONTAINS A MONOCHROMATIC AND A RAINBOW PATTERN
Lemma4.3.24. Let H = {/_,/\, A} Then Q(n3/*/1og®? n) = ho(n, H) = O(n3/*\/logn).

Proof. For the lower bound, consider an H-free colouring c of K,,. The structure of ¢
is very similar to the structure of {rrr, rby}-free colourings. Consider red components
and call their vertex sets blobs. Assume that each blob has at least three vertices.
This assumption can be done since if there are at least n/2 vertices spanned by red
components on at most two vertices, these vertices contain a blue/yellow clique on at
least n/4 vertices. Since the colouring is Gallai, Theorem 4.7 implies that each blob is a
union of sets (which we refer to as sub-blobs) with all edges between any two sub-blobs
of the same colour and such that the set of colours between all sub-blobs is either {r, b}
or {r,y}. Moreover, each sub-blob sends only red edges to some other sub-blob of its
blob. All edges between any two blobs are of the same colour, either blue or yellow,
otherwise there is a rainbow triangle. Lastly, there are no red edges contained in any

sub-blob, because otherwise we obtain a monochromatic red triangle.

As in the lemma on {rrr, rby}-free colourings, (Lemma 4.2.7) we can assume that
for some constant C” there is a subset of n’ > C”n/log®n vertices such that all sub-
blobs have the same size, k, and all blobs contain the same number, ¢, of sub-blobs.
Assume first that at least half the vertices are spanned by blobs with blue/red between
sub-blobs. Then, since the red and blue graph are both triangle-free, there are at most 5
sub-blobs in each blob, and each sub-blob is blue/yellow. By taking a largest sub-blob
in each such blob, we see that S, > n’/10 = Q(n/log? n).

Now, assume that at least half the vertices are spanned by blobs with red/yellow
between sub-blob. All edges between blobs are yellow or blue and all sub-blobs are
blue/yellow. As the red graph is triangle-free, applying Corollary 4.4 yields that there
are at least C'y/?log{ sub-blobs in each blob, such that there are only yellow edges

between them. By taking the union of these sets over all blobs we have that

n' n’+/log ¢
> C—./ k= ,
Sby_ck;é llogl-k=C /i

If £ < \/n then Sy, = Q(n%/*/log*?n). Otherwise, ¢ > \/n. By picking a yellow
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clique from each sub-blob and selecting a set of blobs with only yellow edges between
them (using Corollary 4.4 again, and the fact that the red and blue graphs are both

triangle-free), we have

Sry > C" - 0\/klog k\/n [ (k£) log(n' [ (kL)) = Q(Vn') = Q(n®/*/logn).

The upper bound follows from Construction 2.11. O

Lemma 4.3.25. Let H € {{L, DN}, {L, AN} {L, A A} ).
Then hy(n, H) = Qn?3/1og®? n) and hy(n, 1) = O(n?3\/Togn).

Proof. The lower bound follows from Lemma 4.2.7: ho(n,H) > ho(n,{rrr,rby}) =
Q(n2/3/10g%? n).

For the upper bound in case H € {{rby, rrr,bbr}, {rby, rrr,bby}}, we use Construc-
tion 2.8 with blue and yellow swapped. For the upper bound in case H = {rby, rrr,rrb}
we use Construction 2.9. O

4.7 CONCLUDING REMARKS

We have determined ho(n,H) asymptotically up to logarithmic factors for nearly all
families H of at most three patterns. Aside from improving logarithmic factors, there
are two major gaps left. First, for the family Hy := {Q\, A\, /\} we were able to show
that (see Lemma 4.3.15)

Q(y/nlogn) = ha(n, Ho) = O(n*>\/logn).

We believe that the upper bound is the correct answer (up to logarithmic terms).

Our second gap comes from the family #; := {A\, A\, __}. We showed that ha(n, H1)
is related to the function g(n) defined as the smallest independence number of an n-

vertex graph of odd girth at least 7:
g(n) = min{a(G) : |G| = nand G is {C3, Cs }-free}.

In particular, we showed that g(n) < ha(n,Hi) < 2g(n). It follows that good bounds
on the Ramsey number R({Cs3,C5}, K,,) translate to good bounds on ha(n,#;). Us-
ing known results on the Ramsey numbers R(Cs, K,,) and R({C3,Cy,Cs}, Ky,), by
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Lemma 4.3.18 we have
Q(n?1log?n) = ha(n, H1) = O(n**logn).

A consequence of the work of Bohman and Keevash [24] and Warnke [124] is that
the Cs-free process with high probability terminates in a graph whose independence
number is O (n%/* log®* n). We suspect that the behaviour of the independence number
does not change much if one forbids triangles in addition to C5’s. Thus, we conjecture

that our upper bound on hy(n, H1) is close to the truth:

Conjecture 4.8.
g(n) = Q(n**)

and thus,

ho(n, {0\ AN, ) = Q(n®/*).

From our reduction to the function g(n), this would follow from the corresponding
upper bound on R({C3,Cs}, K,,). This is likely to be challenging, however, as cycle-
complete Ramsey numbers are widely open when the cycle lengths are small and fixed.

Lastly, we decided to stop our investigation at three forbidden patterns. Forbidding
more patterns in many cases makes the problem of finding large 2-coloured cliques
simple. For this reason (and also for the sake of brevity) we did not pursue this line
further. Still, one of course may consider families of forbidden patterns of size four and

larger.
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CHAPTER 5 THEERDGS-HAJNAL CONJECTURE FOR ORDER-SIZE PAIRS

5.1 INTRODUCTION

In this chapter, we consider families determined by a given set of orders and sizes.
Several special cases of this have been extensively studied over the years (see for example
Erd6s and Hajnal [58]). For 0 < f < ("), we call an r-graph F onm vertices and f edges
an (m, f)-graph and we call the pair (m, f) the order-size pair for F. Say that H is (m, f)-
free if it contains no induced copy of an (m, f)-graph. If Q = {(m, f1),..., (ms, fr)},
say that H is Q-free if H is (m;, f;)-freeforalli =1,...,¢.

Definition 5.1. Given r > 2 and Q = {(m, f1),...,(m, f:)}, let h(n, Q) = hy(n, Q) be the
minimum of h(H), taken over all n-vertex QQ-free r-graphs H. Say that Q) has the EH-property
if there exists € = eg > 0 such that h(n, Q) > n°.

For example h3(n, {(4,0), (4,2)}) = k means that any n-vertex 3-graph in which any
4 vertices induce 1, 3, or 4 edges has a homogenous set of size k, and there is an r-graph
H as above with h(H) = k. We may omit the subscript r in the notation &, (n, Q) if it is
obvious from the context. When @) = {(m, f)} we use the simpler notation h(n,m, f)

instead of h(n, {(m, f)}). Let us make two simple observations:

h‘T(nv Q) S hT(n> Q/) lf Q g Q/7 (51)

@ =@ where  @={(m(")-1):mneef. 62

Our first result concerns 2-graphs, where we show that forbidding a single order-size

pair already guarantees large homogeneous sets.

Proposition 5.2. For any integers m, f withm > 2and 0 < f < (') there exists ¢ > 0 such
that ho(n,m, f) > cn'/(m=1),

It seems a challenging problem to give good upper bounds on hy(n,m, f). For
example, determining hs(n, m, ('}')) is equivalent to determining off-diagonal Ramsey

numbers.

Our remaining results are in the hypergraph case r = 3 and m = 4. We shall

be considering sets @ of pairs (4,17) for i € {0,1,2,3,4}. We do not need to consider
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sets () that contain both (4,0) and (4, 4) because Ramsey’s theorem guarantees that for
sufficiently large n we cannot avoid both of them. Using complementation (5.2), this

leaves us with the following sets:

o {40}, {41}, {(4,2)}

e {(4,0),(4,1)}, {(4,0),(4,2)}, {(4,0),(4,3)}, {(4,1),(4,2)}, {(4,1),(4,3)}; and

e {(4,0),(4,1),(4,2)}, {(4,0),(4,1),(4,3)}, {(4,0), (4,2), (4,3)}, {(4,1), (4,2), (4,3)}.

We address h(n, Q) for each of these choices of Q.

We quickly obtain bounds for the first case using results in Ramsey theory (note
again that h(n,4, f) = h(n,4,4 — f)). Recall that the Ramsey number Rj(s,t) is the
minimum n such that every red /blue edge-colouring of the complete n-vertex k-graph
yields either a monochromatic red s-clique or a monochromatic blue t-clique. It is
known [47] that 2¢t1°8¢ < Rs(4,t) < 9c't*logt - Thig yields positive constants ¢ and ¢/,
such that

1 1/2 1
o L < hy(n,4,0) < c—2™ | (5.3)
loglogn loglogn

A more recent result of Fox and He [71] constructs n-vertex 3-graphs with every four
vertices spanning at most two edges and independence number at most ¢ log n/ log log n.

Together with (5.1) this yields positive a constant ¢, such that

logn

hB(na 4? 1) < h3(na {(47 O)a (4’ 1)}) < (54)

Clog logn’

For the remaining cases when |Q)| = 1 we obtain bounds using recent results by
Fox and He [71] and by Gishboliner and Tomon [80]. Recall that f(n) = (1 4 o(1))g(n)

means that there is a function e(n) such that li_>m e(n) » 0and f(n) = g(n) +e(n)g(n).

Proposition 5.3. There are positive constants cy, co such that

logn 1/2
hg(n,4, 1) > c1 < ) (55)

and
n® < hy(n,4,2) < (14 o(1))n'/2. (5.6)
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It is unclear if either bound for h(n,4,1) above represents the correct order of
magnitude, but the lower bound certainly seems far off; we leave this as an open

problem, see Section 5.4.

Our next results address the case when |Q| = 2. For the first case we have constants
¢, c > 0 such that

logn logn

hs(n,{(4,0),(4,1)} <

¢ loglogn loglogn’

The lower bound follows (after applying (5.2)) from an old result of Erdés and Haj-
nal [58]. This is the first instance of a (different) conjecture of Erdés and Hajnal [58]
about the growth rate of generalized hypergraph Ramsey numbers that correspond
to our setting of h(n,Q), where Q = {(m, f), (m, f +1),...,(m, (""))}. Recent results
of Mubayi and Razborov [109] on this problem determine, for each m > r > 4, the
minimum f such that h,(n,Q) < clog® n for some a and Q = {(m, f),...,(m, (7))}

When r = 3, the minimum f was determined by Conlon, Fox and Sudakov [47] for m

being a power of 3 and for growing m, as well as some other values.

For the second case when |Q)| = 2, we have hs(n,{(4,0), (4,2)}) > n° as follows
immediately from (5.1) and (5.6). However, the value of ¢ obtained from [80] is very
small (less than 0.005). We improve this below to 1/5 and also obtain bounds for the

other cases.

Theorem 5.4. There is a positive constant ¢y such that forn > 5

h3(n> {(4? 0)7 (4a 2)}) > 1 n1/57 (57)
hs(n,{(4,0),(4,3)}) > ¢1 n'/3, (5.8)
c1(nlogn)'/3 < ha(n,{(4,1),(4,2)}) < (1 + o(1))n'/?, and (5.9)

%logn < ha(n, {(4,1), (4,3)}) < 4(log n)?.

We note the upper bound

hs(n,{(4,0),(4,2)}) < hs(n,{(4,0),(4,1),(4,2)}) < cy/nlogn



5. THE ErRDGs-HAJNAL CONJECTURE FOR ORDER-SIZE PAIRS 87

that we will see below. Apart from this we were not able to obtain non-trivial upper
bounds in (5.7) or (5.8). Improving the bounds in (5.7), (5.8) and (5.9) seems to be an

interesting open problem; see Section 5.4.

Finally, we consider the case when |Q| = 3. If Q = {(4,0), (4,1), (4,2)}, then a Q-free
3-graph is a partial Steiner triple system (STS), and it is well known [28,57,112] that
the minimum independence number of an n-vertex partial STS has order of magnitude
v/nlogn. Thus, hz(n, Q) has order of magnitude v/nlogn. If @ = {(4,1), (4,2), (4,3)},
and n > 4, then it is a simple exercise to show that any (-free 4-graph on at least four
vertices is a clique or co-clique and therefore h3(n, Q) = n forn > 4. The two remaining

cases are covered below.

Theorem 5.5. Let n > 4. Then hs(n,{(4,0),(4,2),(4,3)}) =n — land

n ifn=0 (mod 6),

ha(n,{(4,0), (4,1),(4,3)) =4 2
[%52] ifn % 0 (mod 6).

The main results of this chapter are joint work with Axenovich and Mubayi [11].

This chapter is structured as follows. In Section 5.2 we prove Proposition 5.2 and in
Section 5.3 we prove our results for triple systems. Section 5.4 provides final remarks

and open questions.

5.2 GRrAPHS

In this section we prove Proposition 5.2. For a graph G, let w(G) and a(G) denote the
size of a largest clique and co-clique, respectively.

Proof of Proposition 5.2. We shall use induction on m with basis m = 2. In this case
f € {0,1}. Note that h(n,2,0) = h(n,2,1) = n = n' = n!/("=1 since forbidden
graphs are either a non-edge or an edge. Consider an (m, f)-free graph G on n vertices,
m > 3, and assume that the statement of the proposition holds for smaller values of
m. We can also assume that G is not a complete graph, an empty graph, a cycle, or
the complement of a cycle, since we are done in these cases. Consider A and A, the
maximum degree of G and of the complement G of G, respectively. Using Brooks’
theorem [29], the chromatic number of G and of G is at most A and A, respectively.
Thus, o(G) > n/A and w(G) > n/A. Therefore, we can assume that A > pn("—2)/(m=1)

and A > n(m=2)/(m=1) otherwise we are done. Thus, there is a vertex with at least
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m—2)/(m—1)

n(m=2)/(m=1) edges incident to it and there is a vertex with at least n/ non-

edges incident to it.

Assume first that f < m—1. Consider a vertex v with atleast n("—2)/(m=1) non-edges
incident to it, i.e. with a set X of vertices each non-adjacent to v, | X| > n(m=2)/(m=1),
Since G is (m, f)-free, G[X] is (m — 1, f)-free. Thus, by induction h(G) > h(G[X]) >

X [1/(m=2) > pl/(m=1),

Now assume that f > m. Consider a vertex v with at least n(™2/("=1) edges
incident to it, i.e. with a set X of vertices each adjacent to v, | X| > n(m=2)/(m=1) " Gince
Gis (m, f)-free, G[X]is (m—1, f —(m—1))-free. Thus, by induction h(G) > h(G[X]) >
| X |V (m=2) > pl/(m=1), O

5.3 TRIPLE SYSTEMS

In this section we prove Proposition 5.3, Theorem 5.4 and Theorem 5.5. We will need
the following notions and result for our proofs. For an r-graph H and one of its vertices
v, we define the link graph of v to be the (r —1)-graph L(v) whose vertex setis V(H)\ {v}
and edge setis {e C V(H) \ {v} : e U{v} € E(H)}. When denoting edges in 3-graphs,
we often shall omit parentheses and commas, for example instead of writing {z,y, 2}
we simply shall write zyz. For a 2-graph G, let L(G) be the 3-graph with vertex set
V(G)U{v}, v & V(G) and edge set {uvw : uw € E(G)}. Finally, when we consider a
3-graph H, the link graph of a vertex u € V (H) restricted to a vertex set S, denoted Lg(u)
is a graph on vertex set S and edge set {vw : v,w € S,uvw € E(H)}. A clique on s

vertices is denoted K.

We shall use the following theorem.

Theorem 5.6 (Fox, He [71], Thm. 1.4). Forall t,s > 3, any 3-graph on more than (2t)%
vertices contains either a co-clique on t vertices or L(K).

5.3.1 FORBIDDEN SETS OF SIZE 1

Proof of Proposition 5.3.

Casel: Q ={(4,1)}.
To prove the lower bound on h(n,4,1), we shall consider the complementary
setting and an arbitrary n-vertex (4, 3)-free 3-graph H. We shall apply Theo-

st

rem 5.6 with largest possible t = s such that (2¢)** < n. In this case t = s >

c¢(logn/loglogn)'/2. If H has a co-clique of size t, then h(H) > t and we are done.
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Otherwise H contains a subgraph isomorphic to L = L(Kj). Let V(L) = {v} UV,
where all edges are incident to v, v ¢ V. Note that V' induces a clique in H,
otherwise v and three vertices of V' not inducing an edge give a (4, 3)-subgraph.
Thus, h(H) > s — 1. In each case h(H) > c(logn/loglogn)'/2.

Case2: Q ={(4,2)}.
The lower bound on h(n, 4, 2) follows from a result of Gishboliner and Tomon [80].
The upper bound is obtained by taking an affine plane of order ¢q. More precisely,
given a sufficiently large n, choose a prime ¢ such that n'/? < ¢ < n!/2 4 n02%;
such ¢ exists by density results about primes (see, e.g., [17]). Let A(2,q) be the
affine plane of order ¢. Let H be the 3-graph whose vertex set is some n-element
subset of the point set of A(2, ¢), and whose edge set is the set of triples that are
contained in some line in A(2, ¢). Let S be a set of four vertices in H. If two lines
each contain at least three points in S, then they have two points in common,
which is impossible, hence at most one line contains at least three points in S.
This means that S induces 0, 1 or 4 edges, and consequently, H is (4,2)-free. The
largest clique in H is the vertex set of a line, and has size at most g. The largest
co-clique in H is a cap setin A(2, ¢) which is well known to have size at most g + 2.
Hence h(H) < ¢+ 2 < n'/? 4 n%3 for sufficiently large n. O

5.3.2 FORBIDDEN SETS OF SIZE 2

We will need the following special cases of results of de Caen [51] on the hypergraph
Turén problem and of Kostochka, Mubayi, and Verstraéte [97] on independent sets in

sparse hypergraphs.

Theorem 5.7 (de Caen [51]). Suppose that n > k > 3 and H is an n-vertex 3-graph with
more than (1 — (kgl)fl)(n?’/b‘) edges. Then H contains a clique of size k.

Theorem 5.8 (Kostochka, Mubayi, Verstraéte [97]). Suppose that H is an n-vertex 3-graph
in which every pair of vertices lies in at most d edges, where 0 < d < n/(logn)?". Then H has
an independent set of size at least ¢/ (n/d)log(n/d) where c is an absolute constant.

Proof of Theorem 5.4.

Case1: Q ={(4,0),(4,2)}.
Using complementation, we considera { (4, 2), (4, 4) }-free 3-graph H on n vertices.
Assume n is sufficiently large. We shall show that h(H) > Cn'/®, for some
constant C' > 0. For a vertex v in H, let K be a clique in the link graph L(v)
of v. Then K is a co-clique in H, for an edge within K in H together with v
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yields a 4-clique in H. We will use this observation repeatedly. Suppose that the
complement of H has (1—)(n?/6) edges for some 0 < v < 1and k > 3 is defined

via

—

1
B

Then by Theorem 5.7, H has a co-clique of size at least k. If & > n'/5, then we
are done so assume from now that k < n'/°. As H has at least yn?/6 — n?/2
edges, by averaging, H has two vertices v,w whose common neighbourhood S
has size at least yn — 4. If Lg(v) has an induced Cy}, then it induces a 4-clique in
H, for otherwise we obtain a (4, 2)-subgraph in H. Hence Lg(v) has no induced
C4 and by known results (see, e.g. [85]) it has a homogeneous set 1" of size at least
c|S|*/3. 1f T is a clique in Lg(v), then by our observation, T is a co-clique in H.
If T is a co-clique in Lg(v), then T is a clique in Lg(w) for otherwise we obtain
a (4,2)-subgraph in H with v, w and two vertices in 7. Again the observation
implies that T is a co-clique in H. Hence in both cases T is a co-clique in H and
h(H) > |T| > ¢|S|/3 > (¢/2)(yn)'/3. Since k < n'/5, we have v > n~2/5 and
h(H) > (c/2)n'/® completing the proof.

Case 2: Q ={(4,0),(4,3)}.

We shall again consider the complementary case. Suppose that H is a 3-graph on
n vertices that is {(4,1), (4, 4) }-free. We will prove that h(H) > n'/3. Let y be an
arbitrary vertex of H and consider the link graph L(y) of y.

Assume that there is an induced 2K in L(y), i.e. that there is a set X of four
vertices inducing exactly two disjoint edges in L(y). Any three vertices in X
form an edge in H, otherwise these three vertices and y span exactly one edge in
H, a contradiction. Thus, X spans exactly 4 edges in H, a contradiction. Thus,
L(y) is 2Ko-free. In the graph case it is known, that 2K5 has the Erdés-Hajnal
property, and in particular that any n-vertex graph with no induced 2K, contains

a homogeneous set of size cn!/3 (see e.g. [85]). Thus, h(L(y)) > cn'/3.

Note that a 3-vertex clique in L(y) is not an edge in H, since otherwise there is
a 4-clique in H. Similarly, a 3-vertex co-clique in L(y) is not an edge in H, since
otherwise together with y it induces a (4, 1)-subgraph of H. Thus, any set of
vertices that is a clique in L(y) or an independent set in L(y) is an independent
setin H. Thus, h(H) > h(L(y)) > cn'/? completing the proof.

Case 3: Q ={(4,1),(4,2)}.

We now prove ci(nlogn)'/® < h(n, {(4,1),(4,2)}) = h(n, {(4,3), (4,2)}) <n'/?+
en®3. The upper bound follows immediately from the construction used in the

upper bound in (5.6) so we turn to the lower bound. Using (5.2), consider an
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n-vertex 3-graph H thatis {(4, 2), (4, 3) }-free where n is sufficiently large. Let u, v
be a pair of vertices in H whose common neighbourhood S has maximum size
d > 0. Given vertices z,y € S, the edges zyu and xyv are both in H else {u, v, x, y}
induces a (4,2) or (4,3)-graph. Next, any three vertices z,y,z € S, must form
an edge of H otherwise {u,z,y, z} induces a (4, 3)-graph. Therefore S induces a
clique in H of size d. If d > n%4, say, then we are done as h(H) > d. Recalling that
n is large enough, we may assume that d < n%* < n/(logn)?". Now Theorem 5.8
yields a co-clique in H of size at least c¢\/(n/d) log n for some positive constant c.
Consequently, there is a constant ¢’ such that

h(H) > max {d, ¢\/(n/d)logn} > ¢ (nlogn)'/3.

Replacing ¢’ by a possibly smaller constant ¢; yields the result for all n > 4.

Note that the set of maximal cliques in any {(4, 2), (4, 3) }-free 3-graph H forms a
linear (maybe non-uniform) hypergraph #. Thus, determining h(H ) amounts to
finding max{¢, | X|}, where ¢ is the size of a largest hyperedge and X is a largest

set of vertices in # with no three in the same hyperedge.

Case4: Q ={(4,1),(4,3)}.
Finally, we prove % logn < h(n,{(4,1),(4,3)}) < 4(logn)?. For the lower bound
let H be an n-vertex Q-free 3-graph. Pick a vertex v in H and consider its link
graph L(v). Since Ry(t,t) < 471 (see Erd6s and Szekeres [65]), we see that L(v)
has a clique or co-clique K of size at least 1 logn. In the first case, K is a clique in
H, else we find a (4, 3)-subgraph in H, and in the second case, K is a co-clique in
H, else we find a (4, 1)-subgraph in H.

We now turn to the upper bound. Let x be a red/blue colouring of an n-vertex
complete graph on vertex set V' in which every monochromatic clique has size at
most 2logn. Such a colouring exists by the classical result of Erdés [53]. Let H be
the 3-graph on vertex set V whose edge set consists of all triples of vertices that

induce a triangle with one or three red edges under .

Consider four vertices z,y, z, and w of H and assume that zyz is an edge in H.
Then the triangle zyz has one or three red edges under x. Assume that xy is
red. We need to treat two cases when xz and yz are blue and when zz and yz are
red. In each of these cases, consider the fourth vertex w and possible colours on
the edges from w to z,y and z. In each of these cases {z,y, z, w} induces exactly
two or exactly four edges. Thus, any four vertices of H induce none, two, or four
edges. So, H is Q-free. Consider a homogeneous set S in H. If it is a clique, all

triangles with vertices in .S have exactly one or three red edges under x. Thus, the
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graph induced by S is a pairwise vertex-disjoint union of red cliques. Either one
of these red cliques has size at least 1/|S] or, by taking a single vertex from each
of these red cliques we see that there is a blue clique of size at least 1/]S| under y.
Since each monochromatic clique in the colouring x has size at most 2logn, we
have that |S| < 4(logn)?. Similarly, if S is an independent set in H, all triangles
with vertices in S have exactly one or three blue edges under x and again we get
that |S| < 4(logn)?. O

5.3.3 FORBIDDEN SETS OF SIZE 3

We will need the following structural characterization of Q-free 3-graphs for Q =
{(4,1),(4,3), (4,4)}.

Theorem 5.9 (Frankl, Fiiredi [74]). Let H be an {(4,1), (4,3), (4,4)})-free 3-graph. Then
H is isomorphic to one of the following 3-graphs:

1. A blow-up of the 6 vertex 3-graph H' with vertex set V(H') = [6] and edge set E(H') =

{123,124, 345, 346, 561, 562, 135, 146, 236, 245}. Here for the blow-up we replace every
vertex of H' by an independent set, and whenever we have 3 vertices from three distinct

of those sets, they induce an edge if and only if the corresponding vertices in H' do.

. The 3-graph whose vertices are the points of a reqular n-gon where 3 vertices span an edge

if and only if the corresponding points span a triangle whose interior contains the centre
of the n-gon.

Proof of Theorem 5.5.
Case1l: Q ={(4,1),(4,3),(4,4)}.

We are to prove that

2 if n = 0 (mod 6)

h(n,{(4,0), (4,1),(4,3)}) = h(n, Q) = { * _
VLTH—I if n Z 0 (mod 6).

First, let us prove that the second 3-graph H in Theorem 5.9 has independence
number exactly [(n + 1)/2)]. Assume the vertex set is [n] and the vertices are
labelled by consecutive integers in clockwise orientation. The lower bound is by
taking [(n + 1)/2)] consecutive vertices on the n-gon and noting that no three
of them contain the centre in their interior. For the upper bound, let us see
how many vertices can lie in an independent set containing 1. When n is odd,

the triangle formed by {1,4, (n — 1)/2 + i} contains the centre and hence is an
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edge. Therefore we may pair the elements of [n] \ {1} as (2, (n + 3)/2), (3, (n +
5)/2),...,((n+1)/2,n) and note that each pair can have at most one vertex in an
independent set containing 1. Hence the maximum size of an independent set
containing 1 is at most (n+1)/2 and by vertex transitivity of H, the independence
number of H is at most (n + 1)/2. For n even we consider the n/2 — 1 pairs
(2,n/2+1),(3,n/2+2),...,(n/2,n — 1) and add the vertex n to get an upper
bound n/2+1=[(n+1)/2)].

Next we observe that the 6-vertex 3-graph H' in Theorem 5.9 has independence
number exactly 3 (we omit the short case analysis needed for the proof). Hence if
we blow-up each vertex of H' into sets of the same size, then we obtain n-vertex
3-graphs with independence number exactly n/2 whenever n = 0 (mod 6). This
concludes the proof of the upper bound.

For the lower bound, let H be Q-free. Then by Theorem 5.9, H is isomorphic
to one of the two graphs described in Theorem 5.9. If H is isomorphic to the
second graph, then we have already shown that its independence number is at
least (n + 1)/2, so assume that H is isomorphic to the blow-up of the 6-vertex
10-edge 3-graph H'. There are 10 non-edges in H'. Let Vi, ..., Vi be the blown-up
vertex sets. Since every vertex i € [6] in H' is contained in exactly 5 non-edges,
we obtain
571:52“/1": Z Vil + 1Via| + [Vis]-
i€[6] J1j2jsE(H)

By the pigeonhole principle, there is a non-edge i;i2i3, such that |V;, | + |Vi,| +
|Viy| > n/2. Our bound follows by observing that for any non-edge i;i2i3 in the
original 3-graph H’ the set V;, UV}, U Vj, is an independent set. This gives an
independent set of size at least n/2, and if n # 0 (mod 6), then equality cannot
hold throughout (a short case analysis, which we omit, is needed to prove this)

and we obtain an independent set of size strictly greater than n/2 as required.

Case 2: Q ={(4,0),(4,2),(4,3)}.
We now prove h(n,{(4,0),(4,2),(4,3)}) =n —1, forn > 4. Let H be a 3-graph
that is a clique on n — 1 vertices and a single isolated vertex, then H is Q-free,
giving us the upper bound.

For the lower bound, let H be a Q-free 3-graph on n vertices, n > 4. Assume that
H is not a clique and not a co-clique. We shall show that H is a clique and a single
isolated vertex. Consider a maximal clique S in H. Since |S| < n, there is a vertex
v e V(H)\ S. From the maximality of S, Lg(v) is not a clique. If Lg(v) contains
an edge, then we have that for some vertices z,y,y’, zy € E(Ls(v)) and zy’ ¢
E(Lg(v)). But then {v,z,y,y'} induces a (4,2) or a (4, 3)-graph, a contradiction.
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Thus, Lg(v) is an empty graph, i.e. there is no edge in H containing v and two
vertices of S. Now assume there exists a second vertex v' € V(H) \ (S U {v}).
Then by the same argument as above, v’ is also not contained in any edge with two
vertices from S. Consider triples vv'z, z € S. Since |S| > 3, by the pigeonhole
principle there are two vertices x,2’ € S such that either vv'z,vv'2’ € E(H)
or vv'z,vv'x’ ¢ E(H). Then {v,v', z,2'} induces 2 or 0 edges respectively, a

contradiction. Thus, |S| = n — 1 and v is an isolated vertex. O

5.4 CONCLUDING REMARKS

For r = 3 we have determined for each family () of order-size pairs with order 4 whether
it has the EH-property. However, there remain some gaps between the upper and lower
bounds on h3(n, Q) for some families ) with |Q| € {1,2}:

Open Problem 5.10. Improve the exponent 1/2 in the lower bound on h3(n,4,1).

Open Problem 5.11. Prove or disprove that

o h3(n,{(4,0), (4,2)}) = n'/?+0),
o N3(n,{(4,0),(4,3)}) = n'toW),

o h3(n,{(4,1),(4,2)}) = nt/2e(),

Fix integers m > r. Say that a set @ of order size pairs {(m, f1),...,(m, f:)} is
Erdés-Hajnal (EH) if there exists € = eg such that h,(n,Q) > n. As |Q| grows, the
collection of Q-free r-graphs is more restrictive, and hence h,(n, Q) grows (assuming
that large (Q-free r-graphs are not forbidden to exist by Ramsey’s theorem). The case
when h,.(n, Q) = Q(n) was treated by Axenovich and Balogh [9] when r = 2. A natural
question then is to ask what is the smallest ¢ such that every @ of size ¢ is EH. Call this
minimum value EH,(m). Our results for » = 3 show that for m = 4, all ) of size 3 are
EH, but there are () of size 2 which are not EH. Consequently, EH3(4) = 3.

In order to further study EH,(m), we need another definition. Given integers
m > 1 > 3, let g,(m) be the number of edges in an r-graph on m vertices obtained by
first taking a partition of the m vertices into almost equal parts, then taking all edges
that intersect each part, and then recursing this construction within each part. For
example, g3(7) = 13 since we start with a complete 3-partite 3-graph with part sizes
2,2,3 and then add one edge within the part of size 3. It is known (see, e.g. [109]) that
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as r grows we have

onlm) = (1 o)) (™).

rm—r\r

Note that " approaches 0 as r grows. Mubayi and Razborov [109] proved that for all
fixed m > r > 3, there are n-vertex r-graphs which are Q-free, Q = {(m, 1) : g,(m) <
i < (")}, with h(G) = O(logn). In other words, there exists Q of size (') — g,(m)

which is not EH. This proves that EH,(m) > (") — gr(m) + 1.

Erdés and Hajnal [58] proved that for all m > r > 3, the set Q = {(m, i) : g,(m) <
i < (")} is EH. In other words, they proved that every n-vertex r-graph in which every
set of m vertices spans less then g, (m) edges has an independent set of size at least n¢,
where e depends only on r and m. This is a particular set Q of size (") — g-(m) + 1 that

is EH and we speculate that every other set () of this size is also EH.
Open Problem 5.12. Prove or disprove that for all m > r > 2,

m
r

B ) = () = anlm) 4 1.

We end by noting that EH3(4) = 3 = (3) — g3(4) + 1.



Part 11

Order-size pairs: absolute avoidability and forcing densities

INTRODUCTION AND BASIC NOTIONS

One of the central topics of graph theory deals with properties of classes of graphs
that contain no subgraph isomorphic to some given fixed graph, see for example Bol-
lobas [26]. Similarly, graphs with forbidden induced subgraphs have been investigated
from several different angles — enumerative, structural, algorithmic, and more. One
famous example are Erdés-Hajnal-type problems, like the ones discussed in Part I of
this thesis.

Erdés, Fiiredi, Rothschild and Sés [56] initiated a study of a seemingly simpler
class of graphs that do not forbid a specific induced subgraph, but rather forbid any
induced subgraph on a given number m of vertices and number f of edges. Following
their notation we say a graph G arrows a pair of non-negative integers, an order-size
pair (m, f), and write G — (m, f) if G has an induced subgraph on m vertices and
f edges. We say that a pair (n, ¢) of non-negative integers arrows the pair (m, f), and

write (n,e) — (m, f), if for any graph G on n vertices and e edges, G — (m, f).

As an example, if ¢(n, m — 1) denotes the number of edges in the complete balanced
(m — 1)-partite graph on n vertices, To(n, m — 1), then by Turan’s Theorem [122] we
know that any graph on n vertices with more than ¢(n, m — 1) edges contains a copy of
K. On the other hand, for any e < ¢(n, m — 1) there exists a subgraph of T5(n, m — 1)
with e edges, which does not contain a copy of K,,. Equivalently stated, we have
(n,e) — (m, (%)) if and only if e > t(n,m — 1).

For a fixed pair (m, f) let S, (m, f) = {e : (n,e) = (m, f)} and define the forcing
density

o, 1) = timsup 5, m. 1)1/ ()

n—o0

96
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In [56] the authors considered o(m, f) for different choices of (m, f). One of their main

results is

Theorem 0.4 (Erdés, Fiiredi, Rothschild, Sés [56]).
If (m, f) ¢ {(2,0),(2,1),(4,3),(5,4),(5,6)}, then o(m, f) < %; otherwise o(m, f) = 1.

On the other hand, they showed that there are infinitely many pairs of positive
forcing density, in particular there are infinitely many pairs (m, f) with o(m, f) > &.
He, Ma and Zhao [88] improved this result, by showing that there are infinitely many
pairs (m, f) with o(m, f) > 3. They also improved the upper bound 2/3 to 1/2 and

showed that there are infinitely many pairs for which the equality o(m, f) = % holds.

Erdés, Fiiredi, Rothschild and Sés [56] also gave a construction demonstrating that
“most of the” forcing densities o(m, f) are 0, by showing that for large n almost all
pairs (n,e) can be realised as the vertex-disjoint union of a clique and a high-girth
graph, and that for fixed m most pairs (m, f) cannot be realised as the vertex-disjoint
union of a clique and a forest. For some other results concerning sizes of induced
subgraphs, see for example Alon and Kostochka [4], Alon, Balogh, Kostochka and
Samotij [3], Alon, Krivelevich and Sudakov [5], Axenovich and Balogh [9], Bukh and
Sudakov [32], Kwan and Sudakov [100,101], Baksys and Chen [18] for a similar result for
bipartite graphs, and Narayanan, Sahasrabudhe and Tomon [111]. A similar question
on avoidable order-size pairs was considered by Caro, Lauri and Zarb [38] for the class

of line graphs.

In Chapter 6 we investigate the existence of pairs (m, f) for which we not only have
o(m, f) = 0, but the stronger property S, (m, f) = 0 for all sufficiently large n; we
call such pairs absolutely avoidable. We show that there exist infinitely many absolutely
avoidable pairs. Moreover, we give an infinite set of unavoidable pairs of the form
(m, ('5)/2). We also show that for any m sufficiently large, there exists some f for

which the pair (m, f) is absolutely avoidable.

In Chapter 7 we will consider a variant of the problem in the bipartite setting. We
only consider a balanced version here, i.e. a bipartite order-size pair (m, f) is the class
of all bipartite graphs with m vertices in each part and f edges. We use analogous
definitions of avoidability and the bipartite forcing density o,,(m, f). It would be
interesting to show whether there are also absolutely avoidable pairs in the bipartite
setting. Unfortunately we cannot use our method from Chapter 6 to find such pairs.
However, we can show that there exist infinitely many bipartite pairs (m, f) for which
apip(m, f) = 0 holds. On the other hand, there also exist infinitely many pairs (m, f)
with oy, (m, f) = 1.
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Finally we focus our attention on forbidden order-size pairs in hypergraphs. We

extend our definitions to r-uniform hypergraphs as follows:

We say an r-graph, G arrows a pair of non-negative integers (m, f) and write G —,
(m, f) if G has an induced sub-hypergraph on m vertices and f hyperedges. We say
that a pair (n, e) of non-negative integers arrow (or simply induces) the pair (m, f), and
write

(n,e) = (m, f)

if for any r-graph G on n vertices and e edges, G —, (m, f). We say a pair (n,e) is
realised by an r-graph G if GG has n vertices and e edges. If r is clear from the context,
we might omit the index and simply write (n,e) — (m, f). A pair (m, f) is absolutely
r-avoidable (or just absolutely avoidable, if the uniformity is clear from the context) if

for all n sufficiently large, we have {e : (n,e) —, (m, f)} = 0. The forcing density of a
pair (m, f) is

O'q«(m,f) — limsup ’{e : (n7e) —r (mvf)}|

nsoo (")

In Chapter 8 we show that for any r > 3 there exists m such that for every m > my
either (m, | (") /2]) or (m, [ ("")/2] — m — 1) is absolutely avoidable. We further show,
for any r,m € N, r,m > 3, all but at most m71 of all possible (") pairs (m, f) have
forcing density o,(m, f) = 0. We also give some general upper bounds on o, (m, f) and

show that there exists no non-trivial pair with o,.(m, f) = 1.

Chapter 8 raises the question whether for » > 3 there exists any non-trivial pair
(m, f) with o,.(m, f) > 0 at all and identifies some candidate pairs, the smallest being
(6, 10) for r = 3. In Chapter 9 we answer the question in the affirmative and prove that
03(6,10) > 0 indeed. We also give more precise upper and lower bounds on ¢3(6, 10)
and prove some conditions any other pair (m, f) must satisfy to have forcing density
or(m, f) > 0.
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CHAPTER 6 ORDER-SIZE PAIRS IN GRAPHS: ABSOLUTELY AVOIDABLE

PAIRS AND FORCING DENSITIES

6.1 INTRODUCTION

In this chapter we investigate the existence of pairs (m, f) for which we not only have

o(m, f) = 0, but the stronger property S,,(m, f) = 0 for large n.

Definition 6.1. A pair (m, f) is absolutely avoidable if there is ng such that for each n > ng

and for any e € {0,..., ()}, (n,e) 4 (m, f).

Our results show that there are infinitely many absolutely avoidable pairs. Our
first result gives an explicit construction of infinitely many absolutely avoidable pairs
(m, (") /2). The second one provides an existence result of infinitely many absolutely
avoidable pairs (m, f), where f is “close” to (') /2. Finally, the last result shows that for
every sufficiently large m at least one of the pairs (m, [ () /2]) and (m, [ () /2| — 6m)

is absolutely avoidable.

For the first result we need to define the following set M of integers. Let

i () ) e

In particular, we have M = {40,221,1276...}.

Theorem 6.2. For any m € M, f = (")) /2 is an integer and the pair (m, f) is absolutely

avoidable.

Theorem 6.3. For any monotone integer valued function q(m) such that |g(m)| = O(m), there
are infinitely many values of m, such that the pair (m, ('y) /2 — q(m)) is absolutely avoidable.

Moreover, there are infinitely many values of m, such that for any integer f' € (('y)/2 —
0.175m, (") /2 + 0.175m) the pair (m, f') is absolutely avoidable.

Theorem 6.4. For any m > 754 either (m, | (%) /2]) or (m, |('y)/2] — 6m) is absolutely

avoidable.

Theorems 6.2 and 6.3 are joint work with Axenovich and appear in [16], together
with Theorem 6.4 for m = 0,1 (mod 4):
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Proposition 6.5. Foranym > 740 withm = 0,1 (mod 4) either (m, ('y) /2) or (m, ('y) /2—

6m) is absolutely avoidable.

The result is obtained for m = 2,3 (mod 4) in a very similar way by carefully
changing some of the constants involved. The proof does not appear in [16], but we

include it here for completeness.

Proposition 6.6. Foranym > 754withm = 2,3 (mod 4) either (m, | ('y)/2]) or (m, | () /2] —

6m) is absolutely avoidable.

The main idea of the proofs is that for certain pairs (m, f), there is no graph on
m vertices and f edges which is the vertex-disjoint union of a clique and a forest or a
complement of a vertex-disjoint union of a clique and a forest. In order to do so, we
need several number theoretic statements that we prove in several lemmata. After that,
we use the observation Erdés, Fiiredi, Rothschild and Sés [56], that for any sufficiently
large n, and any e < c(g), for any 0 < ¢ < 1, there is a graph on n vertices and e
edges that is the vertex-disjoint union of a clique and a graph of girth greater than m.
In particular, any m-vertex induced subgraph of such a graph is a disjoint union of a
clique and a forest. Considering the complements, we deduce that (m, f) is absolutely

avoidable.

This chapter is structured as follows. We state and prove the lemmata in Section 6.2,
prove Theorems 6.2 and 6.3, Proposition 6.5 and Proposition 6.6 in Section in Section 6.3.

Section 6.4 provides final remarks and open questions.

6.2 LEMMATA AND NUMBER THEORETIC RESULTS

We say that a pair (m, f) is realisable by a graph H = (V,E) if |V(H)| = m and
|E(H)| = f. Recall that for € R the fractional part of x is denoted by {z}. A real-
valued sequence (z,,)ncn is called uniformly distributed modulo 1 (we write u.d. mod 1)

if for any pair of real numbers s, ¢ with 0 < s < ¢ < 1 we have

i H{n:1<n <N {x,} € [st)}

=t —s.
N—o0 N

We will use the following facts:

Lemma 6.7.  (a) The sequence (x,) = anis u.d. mod 1 for any o € R\ Q.

(b) If a real-valued sequence (xy,) is u.d. mod 1 and a real-valued sequence (y,) has the

property ILm (xn, — yn) = B, a real constant, then (y,,) is also u.d. mod 1.
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For proofs of these facts see for example Theorem 1.2 and Example 2.1 in [99]. The

following lemma is given in [56], we include it here for completeness.

Lemma 6.8. Let p € Nand c be a constant 0 < ¢ < 1. Then for n € N sufficiently large and
any e € [c(5)], there exists a non-negative integer k and a graph on n vertices and e edges which

is the vertex-disjoint union of a clique of size k and a graph on n — k vertices of girth at least p.

Proof. Letp > 0be given. We use the fact that for any v large enough there exists a graph
of girth p on v vertices with v1+ﬁ edges. For a probabilistic proof of this fact see for
example Bollobdés [26] and for an explicit construction see Lazebnik et al. [102]. Let n be
a given sufficiently large integer. Lete € [c(})]. Let k be anon-negative integer such that
(’2“) <e< (k;rl) —1. Note thatsince e < ¢(3), (g) < ¢(}), thus, k < /en+1 < ¢'n, where
¢ is a constant, ¢ < 1. We claim that (n,e) could be represented as a vertex-disjoint
union of a clique on k£ vertices and a graph of girth at least p. For that, consider a graph
G’ on n — k vertices and girth at least p such that |[E(G")| > (n — k:)Hi. Consider G”,
the vertex-disjoint union of G’ and Kj. Then |E(G")| > (5) + (n — k:)H% > (M) > e
Here, the second inequality holds since (n — k)Hﬁ > k for k < ¢'n and n large enough.
Finally, let G be a subgraph of G” on e edges, obtained from G” by removing some
edges of G'. Thus, G is the vertex-disjoint union of a clique on k vertices and a graph

of girth at least p. O

We shall need two number theoretic lemmata for the proof of the main result. Below

the set M is defined as in the introduction.

Lemma 6.9. For any m € M, m is a positive integer congruent to 0 or 1 modulo 4, and
V2m2 — 10m + 9 is an odd integer for each m € M.

3 4\ (3
Proof. Recall that M = {; ((1 0)-(2 3) '<1)+5> :seN,522}. We see,

that M corresponds to the following recursion: (zo,yo) = (3,1) and for s > 0

Ts41 = 3xs + 4ys
Ys+1 = 2T5 + 3ys.

()6 0)

Indeed, M = {(zs+5)/2:s > 2}.

Ie., fors >0,
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From the recursion we see that zos = 3 (mod 8), 22541 =5 (mod 8), yas = Yast1 = 1
(mod 8), and y4s+2 = Yas+3 = 5 (mod 8) for s € Ny. In particular y, is an odd integer.
Let ms = (x5 +5)/2,i.e. M = {ms : s > 2}. When s is even, ms = 0 (mod 4), and if s

isodd, ms =1 (mod 4). This proves the first statement of the lemma.

Next, we observe that (z,y) = (zs,ys) gives an integer solution to the generalized
Pell’s equation
2t — 2% =1 (%)

Indeed, (z,y) = (xo,y0) = (3,1) satisfies (x). Assume that (z,y) = (xs,ys) satisfies (x).
Let (z,y) = (2541, ys+1) and insert it into the left hand side of (x). Then we have

Toyq — 2y§+1 = 922 + 24wy, + 16> — 822 — 24x,y, — 18y2 =22 — 22 =T
Thus, (z,y) = (Ts+1,Ys+1) also satisfies (x).

Since (s, ys) satisfies (), we have that y, = %(m% — 7). Then

1 1
Ys = \/2((2ms —-5)2-17)= \/2(4m§ — 20m, + 18) = \/2m2 — 10ms + 9.
Since y; is an odd integer, the second statement of the lemma follows. O
For the next lemmata and theorems we will need the following definitions. Let
m,q € Z, m > 5+ 24/|q|. Let

v/ 2m2—10m—8q+9 vV 2m2—2m—8q+1

Yq(m) = 2 ) zg(m) = F—7%——,
tq(m) = Zq(m) - yq(m)a dq(m) = % - tq(m),
Ly(m) = L% + yq(m)J ) Ry(m) = L% + Zq(m)J .

Note that since m > 5 + 2+/|q|, we always have y,(m), z4(m) € R.

Lemma6.10. Let ¢ = g(m),m € Z,m = 0,1 (mod 4), m > 54+2+/|q|, and |g(m)| = O(m).

) = 2v2(1-1)
\/17—+12mS§+\/ + 2m2

(b) We have Ly(m) > Rq(m) if and only if {yqs(m)} € [0,dg(m)) U [3,1). In particular,
Lo(m) > Ro(m) if m € M.

(a) We have t,(m

. In particular, li_r>n dg(m) = % — 2.
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Proof. We start by proving (a). By definition of ¢,(m) we have

tg(m) = zq(m) — yg(m)

1 1
= 5\/2m2—2m—8q+1—§\/2m2—10m—8q—|—9
1 2m? —2m — 8¢+ 1 —2m? +10m + 8¢ — 9
2\/2m2 —2m — 8¢+ 1+ /2m2 — 10m — 8¢ + 9
2v3(1 - 1)

1, 1-8 5 , 9-8¢
\/1—E+W§+\/1—E+W§

V2,

[\e][O%)

This also shows that for |¢| = |g(m)| € O(m), 1i_r>n dg(m) = 3— lim t4(m) =

m— 00

which concludes the proof of (a).

Now we can prove part (b). From part (a) we have in particular that ¢,(m) =
V2 + €4(m), where for m sufficiently large |¢,(m)| < 0.05, and thus, t,(m) € (1,3).
Thus, dy(m) = 3 —ty(m) € (0, 3) for sufficiently large m. We compare L,(m) and
R,(m) using the expression z = |z | + {z}:

Ly(m) = |5+ w(m)|
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Thus,
0—1, {yy(m)} € [0.4) and ty(m) + {yy(m)} € [1.2)
Lyfm) — Ry(m) =2+ 0~ 2 a0 3) and ty(m) + {y(m)} € [3. E)
1—-1, {ys(m)} € [3,1)and ty(m) + {y,(m)} € [1,3)
(12, {yg(m)} € [3,1) and ty(m) + {yg(m)} € [5, 3)

So, Ly(m) — Ry(m) > 0 in all cases except for the second one, i.e. if and only if

{va(m)} € 10,1)\ ([0,3)

—

NI NI
—_
SN—

Now let m € M and consider yo(m) = 7&712—210771—&-9. Then by Lemma 6.9, 2yo(m) is
an odd integer for all m € M, ie. {yo(m)} = 1. Thus, we have Lo(m) > Ro(m) for all
m € M, which concludes the proof of (b). O

Lemma 6.11. If g = q(m) € Z, m € N,m = 0,1 (mod 4), m > 2+/|q| + 5, and L,(m) >
Ry(m), then the pair (m, ('y) /2 — q) cannot be realised as the vertex-disjoint union of a clique

and a forest.

Proof. Let f = (ZL) /2 — q. Suppose that (m, f) can be realised as the vertex-disjoint
union of a clique K on z vertices and a forest ' on m — x vertices. We shall show that
Lg(m) < Ry(m).

Claim 1: = > L,(m).

Proof. The forest F has f — (5) = ('})/2 — ¢ — (5) edges. Since F has m — z vertices, it
contains strictly less than m — x edges. Thus, we have (%) /2 — ¢ — (5) < m — 2. Solving
for x gives

3 1

3 1
x>§+§\/2m2—10m—8q+9 or 1:<§—§\/2m2—10m—8q+9.

Since m > 21/|q| + 5, we have 2m? — 10m — 8¢ + 9 > 9. The second inequality gives

T < % — %\/ 2m? — 10m — 8¢ + 9, and thus, = < 0, a contradiction. So only the first
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inequality for x holds and implies that

3+ /2m2 —10m — 8¢+ 9
2

T >
which proves Claim 1. [ |
Claim 2: z < R4(m).

Proof. The number of edges in the clique K is at most f and exactly (5). Thus, (5) <
f=(3)/2 — q, which implies that 2z(z — 1) < m(m — 1) — 4¢. This in turn gives

1 2m2 — 2m — 8q + 1
< +/2m 2m q+ — Ro(m),

and proves Claim 2. [ ]

Claims 1 and 2 imply that L,(m) < R,(m). O

Lemma 6.12. Let ¢ = g(m) € Z, m € N, m = 0,1 (mod 4), m > 2+/|q| + 5. If both
Lg(m) > Ry(m) and L_y(m) > R_y(m), then the pair (m, f) = (m, (') /2 — q) is absolutely

avoidable.

Proof. Let m satisfy the condition of the lemma and let f_ = (})/2 — ¢ and f =
("})/2 + g. Then by Lemma 6.11, neither (m, f) nor (m, f_) can be represented as the

vertex-disjoint union of a clique and a forest.

By Lemma 6.8, for every sufficiently large n, and all e < [(3) /2] we can realise (n, ¢)
as the vertex-disjoint union of a clique and a graph of girth greater than m. Thus, for
eache € {0,1,..., ()} there is a graph G on n vertices and e edges such that either G
or the complement G of G is a vertex-disjoint union of a clique and a graph of girth

greater than m.

If G is the vertex-disjoint union of a clique and a graph of girth greater than m, then
any m-vertex induced subgraph of G is a vertex-disjoint union of a clique and a forest.
Since (m, f-) cannot be represented as a clique and a forest, we have G 4 (m, f_). If
G is the vertex-disjoint union of a clique and a graph of girth greater than m, then as
above G 4 (m, f+). Since f_ = (")) — f+, we have that G 4 (m, f—). Thus, (m, f_) is
absolutely avoidable. O
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6.3 PROOFS OF THE MAIN THEOREMS

Proof of Theorem 6.2. Let m € M. By Lemma 6.9 we have m = 0,1 (mod 4), so f =
("y)/2 is an integer. By Lemma 6.10(b) we have Lo(m) > Ro(m). Now we can apply
Lemma 6.12 with ¢ = 0. Thus, the pair (m, f) is absolutely avoidable. O

Proof of Theorem 6.3. Let ¢ = q(m) € Z, |q(m)| € O(m), be a monotone function. Recall
that y,(m) = §/2m? — 10m + 9 — 8¢. Leta = lim am),

2 m— 00

Claim1: lim (% - yq(m)> = %—l—\/ia and lim (% - y_q(m)) = %—\/ia.

m—00 m—0o0
Observe that
. m . m 5 9-—8¢q
i (\/5 —yq<m>> = Jm = <1— \/1‘ m+2ma>
5 _ 9-8&
— lim = m___2m”
m—00 /92 5 9-8
V214 1454 s
) 2
= —=+ lim ﬁ
2\/§ m—oo M
)
= ——+V2a.
2v2
Doing a similar calculation for y_,(m) proves Claim 1. |

Claim 2: y,(4m) and y_,(4m) are u.d. mod 1; in particular, yo(4m) is u.d. mod 1.

Since = € R\ Q, by Lemma 6.7(a) the sequence (z4,,) = (4m)/+/2 is u.d. mod 1.

V2
Since we have n}i_{noo(um —yq(4m)) = % € Rand n%i_r}noo(um —y_q(4m)) = % €
R, by Lemma 6.7(b) (y4(4m)) and (y—4(4m)) are also u.d. mod 1. This proves Claim 2.
|

Now, to prove the first part of the theorem, from Lemma 6.12 it suffices to find
infinitely many integers m such that for ¢ = g(m), Ly(m) > Ry(m) and L_,(m) >
R_4(m).

By Lemma 6.10(a), we have that lgrl dg(m) = liin d_q(m) = 3/2 — /2. Let mg be
large enough so that for any m > my, d,(m) and d_,(m) are close to these limits, i.e.

[dg(m) — (3/2 — V)| < (3/2 — V2)/3 and |d_q(m) — (3/2 — V)| < (3/2 — V2)/3.

Let 6 > 0 be a small constant such that § < (3/2 — v/2)/2, 26 < 1 — {v/2a} and if
{V2a} < 1/2,then § < 1/2 — {v/2a}. In addition assume that ¢ is sufficiently small



6. ORDER-SIZE PAIRS IN GRAPHS: ABSOLUTELY AVOIDABLE PAIRS AND FORCING DENSITIES 107

that for any m > my, 0 < dy(m)/3, and § < d—_4(m)/3. Using Claim 1, define m; to be

m

sufficiently large, so that ms > mg and for any m > ms, y,(m) — % and y_,(m) — 7%

are d-close to the limiting values:

o (555 3] 4 (3553 )
e (g m) 4 (5 n) o)

We distinguish two cases based on the values of a:

Case1: {v2a}€0,5)U[3, %) ie {2v2a} € [0, 3).
Since ¥ — 5_jisa sequence u.d. mod 1, there is an infinite set M of integers at

\/i 2f
least m;, such that for any m € M,

4m )
eV, € (km 4+ 1/2+{V2a} 4 0, kp 4+ 1/2 + {V2a} + 26),

for some integer k,,. Then we have

yq(4m) € ((1/2+ ko + {V/2a} +6) — V2a — 8,(1/2 + kp + {V2a} +6) — fza+5) 7

y_o(4m) € <(1/2+k:m F{V2a) +6) +V2a — 6, (1/2 + kpm + {V/2a} +6) + \/§a+6) .

This implies that
{g(4m)}, {y—q(4m)} € [1/2,1).

From Lemma 6.10(b), Ly(4m) > R,(4m) and L_,(4m) > R_,(4m). Note that f =
(1) /2 — q(4m) is an integer. Thus, by Lemma 6.12 the pair (4m, (*")/2 — q(4m))
is absolutely avoidable for any m € M.

Case 2: {V2a} € [1,3)U[3,1),ie {2v2a} € [},1).
Since 42 — —%_jga sequence is u.d. mod 1, there is an infinite set M of integers

V2 2\/
at least mg, such that for any m € M

f/’g _ 2\5/5 € (m + {v/2a} + 6, ki, + {v/2a} + 20),
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for some integer k;,. Then we have

yq(4m) € ((km +{V2a} +6) — V2a — 6, (km + {V2a} + 8) — V2a + 5) and
y_q(4m) € ((km +{V2a} +6) + V2a — 6, (km + {V2a} +6) + V2a + 5) .

This implies that

{yq(4m)} € [0,20) ,{y—q(4m)} € [1/2,1).

Recall that for any m > m;, § < dy(m)/3. Thus, {y_,(4m)} € [1/2,1) and
{ys(4m)} € [1/2,1) U [0,dy(4m)). From Lemma 6.10(b), Ly(4m) > R,(4m) and
L_y4(4m) > R_,(4m). Note that f = (*J")/2 — q(4m) is an integer. Thus, by
Lemma 6.12 the pair

(4m, (%7") /2 — q(4m)) is absolutely avoidable for any m € Ms.

This proves the first part of the theorem.

For the second part, let ¢ = 0.175 < ﬁ. We shall show that there is an infinite set
M) of integers such that for any m € Mj and for all integers ¢ € (—cm, cm), the pair
(m, ('y)/2 — q) is absolutely avoidable. In order to do that, we shall show that yo(m)

does not differ much from y,(m), for chosen values of m.

Recall that limy,, o0 dg(m) = 3/2— V2 > 0 for any g € (—em, em). Thus, the interval
(2,2 + dg(m)) has positive length for any such ¢ and sufficiently large m. By Claim
2 the sequence yo(4m) is u.d. mod 1, thus, there are infinitely many values of m that
m =0 (mod 4) and {yo(m)} € [%, % + dg(m)). Now our choice for m will allow us to
use Lemmata 6.10, 6.11 and 6.12.

Let ¢ € (—cm,cm). It will be easier for us to deal with y,(m) — yo(m) instead of

yq(m). Let sq(m) = yq(m) — yo(m). We have

T sy(m) = Tim_ (gy(m)  yo(m)
1
—  lim - <\/2m2 —10m+ 9 —8g — V/2m2 — 10m + 9)
m—o0 2
— V2 Iim .
m—o0 M,

A75 < 4%/5, for m sufficiently large we have

c=20
sq(m) € (=3, 1). Since yq = s4(m)+yo(m), and {yo(m)} € [2, 2 + dy(m)), we have that
{yq} = {sq(m)+yo(m)} € [0,dy(m))U[},1). Lemma 6.10(b) implies that Ly (m) > Rq(m)

Thus, since ¢ € (—cm,cm),
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and L_4(m) > R_4(m). Lemmata 6.11 and 6.12 then imply that (m, ('})/2 — q) is
absolutely avoidable. O

Proof of Proposition 6.5. Letm > 740,m = 0,1 (mod 4). If Lo(m) > Ry(m), by Lemma 6.12
(m, (") /2) is absolutely avoidable, so we, assume using Lemma 6.10(b), that {yo(m)} €
[dO(m)a %)

We shall first make some observations about yg,,,(m) and y_g,,(m) by comparing

them to yo(m). From the definition we have

1
yo(m) = 5\/2m2 —10m + 9,

1 1
Yem(m) = 5\/27712 —58m+9, y_em(m)= 5\/27712 +38m + 9.
Thus,
lim yo(m) — yem(m) = 6v2 and  lim yo(m) — y_em(m) = —6v2.
m—0o0 m—0o0

By Lemma 6.10(a),

lim to(m) = lm tem(m) = lim t_gn(m) = v2.

m—ro0 m—o0 m—ro0

This implies that

imyo(m) = Yem(m) — tem(m) = 5V2 > 7
lim yo(m) = yem(m) +to(m) = V2 <10
Jim —(yo(1m) = y—em(m)) +t-em(m) = V2 <10
lim —(yo(m) — y—em(m)) —to(m) = 5v2>7.

m—00

Thus, for sufficiently large m we have

Yom(m) < yo(m) —tem(m)—7

Yem(m) > yo(m) +to(m) — 10
Y—em(m) < 10+ yo(m) —t_em(m)
Y_em(m) > 7+ yo(m)+ to(m).
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Thus, combining these inequalities and recalling that d,(m) + t,(m) = 3/2, for any

q, we have

yo(m) — 8 — 5 — do(m) < yom(m) < yo(m) — 8 — 7 + dom(m),

1 1
yo(m) + 8+ 5= do(m) < y—em(m) < yo(m) +8+ 3 + d_gm(m).

Recall that {yo(m)} € [do(m), 5). Recallalso thatby Lemma 6.10(a), lim, 0 dg(m) =

3 — V2 ~ 0.086, for ¢ € {0,6m,—6m}. Then {ygn(m)} € [0,dgn(m)) U [3,1) and

{y76m(m)} € [Oa d76m(m)) U [%’ 1)'

This implies by Lemma 6.10(b) that Lg,,(m) > Rem(m) and L_g,,(m) > R_gm(m).
Therefore by Lemma 6.12, the pair (m, (%)) /2 — 6m) is absolutely avoidable.

In particular, one can check that all the above inequalities hold for each m > 740. [

Proor or PROPOSITION 6.6

Here we prove Proposition 6.6, i.e. Theorem 6.4 for m = 2,3 (mod 4). It is very similar
to the proof of Proposition 6.5 for m = 0,1 (mod 4), so it is not included in the paper
containing the other results [16], but we include it here for completeness.

We will need the following definitions. Let m,q € Z, m > 6 + 2,/|q|. Let

Y (m) = YEIOmIBats sy /2mPodm8g-3
q 2 ’ q 2 )
tim) = z(m)—y(m).  djm) = 3 —tim),
Lg(m) = L% + yé(m)J ) Ry(m) = L% + z(’](m)J )

Note that since m > 6 + 2,/[q|, we always have y, (m), z,(m) € R.

Lemma6.13. Let g = g(m),m € Z,m = 2,3 (mod 4), m > 6+2+/|q|, and |g(m)| = O(m).

—V2.

N[OV

_1
(a) We have t},(m) = 2\/5(1 ) -
\/17i+_;2q+ 1-243

m

, : y B
= In particular, ﬂlgnoo dy(m) =
2

(b) We have L},(m) > R} (m) if and only if {y,(m)} € [0,d(m)) U [5,1).



6. ORDER-SIZE PAIRS IN GRAPHS: ABSOLUTELY AVOIDABLE PAIRS AND FORCING DENSITIES 111

Proof. We start by proving (a). By definition of ¢ (m) we have

t(m) = zg(m) — yy(m)

1 1

= 5\/27712—2m—8q—3—§\/2m2—10m—8q—|—5

1 2m®—2m—8¢—3—-2m”+10m+8¢—5

2\/2m2 —2m — 8¢ — 3+ +/2m2 — 10m — 8¢ +5
2v2(1— 1)

EEEE R

This also shows that for |¢| = |g(m)| € O(m), 1i_r>n di(m) = 3— lim t,(m)=3-v2
which concludes the proof of (a).

Now we can prove part (b). From part (a) we have in particular that t;(m) =
V2 + €4(m), where for m sufficiently large |e,(m)| < 0.05, and thus, t(m) € (1, 3).
Thus, di(m) = 3 — ty(m) € (0, 1) for sufficiently large m. We compare Ly (m) and
R, (m) using the expression z = | x| + {x}, similar as in the proof of Lemma 6.10(b):

Lym) = |5+ sytm)|

R;(m) = Bsz;(m)J

" (m "(m 3

_ Mmu+?’“)+@“”eff

2, th(m) + {yy(m)} € [3.3)

Thus,

(01, {y4(m)} € [0, 1) and t;(m) + {yy(m)} € [1, )
L) — Ry (my 244 0 % Wamre o 3) and £ (m) + {y,(m)} € [3, 32)
-1, {yj(m)} € [5,1) and t;(m) + {y;(m)} € [1. )
1-2, {yy(m)} € [3,1) and t;(m) + {yy(m)} € [3,3)
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So, Ly, (m) — Ry (m) > 0 in all cases except for the second one, i.e. if and only if

{yg(m)} € [0,D)\([0.3) N[5 = t(m), 5 = t5(m)))

O]

Lemma 6.14. If ¢ = q(m) € Z, m € N, m = 2,3 (mod 4), m > 2+/|q| + 6, and Lj(m) >
R (m), then the pair (m, | (') /2] — q) cannot be realised as the vertex-disjoint union of a clique

and a forest.

Proof. Let f = L(’;) / 2J — % —q. Suppose that (m, f) can be realised as the vertex-disjoint
union of a clique K on z vertices and a forest ' on m — x vertices. We shall show that
Lg(m) < Ry(m).

Claim 1: z > L;(m).
The forest F has f — (3) = (') /2— 1 —q— (5) edges. Since F has m — x vertices, it
contains strictly less than m — z edges. Thus, we have (7})/2—3—q— (5) < m—=.

Solving for x gives

3 1 3 1
z > §+§\/2m2—10m—8q+5 or z< 5—5\/2m2—10m—8q+5.
Since m > 24/|q| + 6, we have 2m? — 10m — 8¢ + 5 > 9. The second inequality

gives r < % - %\/ 2m? — 10m — 8¢ + 5, and thus, z < 0, a contradiction. So only

the first inequality for = holds and implies that

34++/2m2 —10m — 8¢ +5

>
= 2

+ 1= Ly(m),

which proves Claim 1.

Claim 2: = < Rj(m).
The number of edges in the clique K is at most f and exactly (5). Thus, (5) <
f=(%)/2 - % — ¢, which implies that 2z(z — 1) < m(m — 1) — 2 — 4¢. This in

turn gives

14+ +/2m2 —2m — 8¢ —3
X
= 2

and proves Claim 2.
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Claims 1 and 2 imply that L} (m) < Ry (m). O

Lemma 6.15. Let ¢ = g(m) € Z, m € N, m = 2,3 (mod 4), m > 2,/|q| + 6. If both
Ly(m) > Ry(m) and L', (m) > R_ . ,\(m), then the pair (m, f) = (m, [(5)/2] —a)
is absolutely avoidable.

Proof. Let m satisfy the condition of the lemma and let f_ = |('})/2| — ¢ and fy =
1 (%) /2] +a+1=[(%)/2] + ¢. Then by Lemma 6.14, neither (m, f;) nor (m, f_) can

be represented as the vertex-disjoint union of a clique and a forest.

The rest of the proof is identical to the proof of Lemma 6.12. O

Proof of Proposition 6.6. Letm > 754, m = 2,3 (mod 4).

If Lj(m) > Rj(m)and L’ (m) > R (m),by Lemma 6.15 (m, | (') /2]) is absolutely
avoidable, so we assume, using Lemma 6.13(b), that {y)(m)} € [d(m), 3) or {y" ;(m)} €
[dy(m), 5)-

We shall first make some observations about yg,,, (m) and v (6m-+1)(m) by comparing

them to yo(m). From the definition we have

1 1
yh(m) = 5\/2m2 —10m+5, ¢ 1(m)= 5\/2m? —10m + 13

1 1
Yo (M) = 5\/2m2 —58m+5, Y gn(m)= 5\/2m2 + 38m + 13.
Thus,
T yh(m) — Yo (m) = 41 () — Y (m) =62 and
n}iinoo yo(m) — y/—(6m+1)(m) =y 4(m) — y/—(ﬁm—i-l)(m) = —6V2.

By Lemma 6.13(a),

. / BT / BT ! T / o
n%gnoo to(m) = n}gnoo t_y(m) = W}E}loo tom(m) = H}E)noo t_(6m1y (M) = V2.
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This implies that
() — Y (m) — thy(m) = V2> T
im_yp(m) — g (m) + th(m) = TV2 <10
Tim = (yo(m) =y (grg1) (1)) + 1L (g g1y (M) = V2 <10
lim —(y0(m) = 5 (gm41) (M) — to(m) = 5V2>7,

m—o0

and the same holds if we replace y(,(m) by y'_;(m) and t{,(m) by t_(m).

Thus, for sufficiently large m we have

Yom(m) < yo(m) — top,(m) =7
Yom(m) > yo(m) +to(m) — 10
Y miny(m) < 10+ yo(m) =t (g1 (m)
Yo omeny (M) > T+yp(m) +to(m),

and the same holds if we replace y;(m) by y’_; (m) and t{(m) by ¢ (m).

Thus, combining these inequalities and recalling that d;, (m) + t;(m) = 3/2, for any

q, we have

1 1
Yo(m) =8 = 5 — do(m) < () < wh(m) = 8 — 5 + d, (m),

1 1
Yo(m) +8 + 5 = do(m) <y gmr) (M) < yo(m) +8+ 5 +d gy (m),

and the same holds if we replace y{,(m) by ¥ ;(m) and d{,(m) by d’_; (m).

Now assume that {yj(m)} € [dj(m), 3) or {y";(m)} € [dj(m), 3). Recall that by
Lemma 6.13(a), h_r)n dg(m) = % — /2 = 0.086, for ¢ € {0,—1,6m, —6m — 1}. Then
{Yom(m)} € 10, dgy, (m)) U [5,1) and {y” 4, 1) (M)} € [0,d_(6m1)(m)) U5, 1).

This implies by Lemma 6.13(b) that L, (m) > Rg,,(m)and L’_(6m+1)(m) > R’_(6m+1)(m).
Therefore by Lemma 6.15, the pair (m, [ (') /2] — 6m) is absolutely avoidable.

In particular, one can check that all the above inequalities hold for each m > 754. [
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6.4 CONCLUDING REMARKS

We showed that there are infinite sets of absolutely avoidable pairs (m, f). One could

further extend our results and provide more absolutely avoidable pairs.

The arguments in the proof of Proposition 6.5 should still hold if we deviate from
fo = (") /2 by a small term, as in Theorem 6.3. The reason here is that this change does
not affect the limit computations for d,(m) and y,(m). Thus, for each large enough m,
one should be able to obtain a small interval for f so that each (m, f) is absolutely avoid-
able. We cannot hope to do much better though: In infinitely many cases, if (m, fo) is
absolutely avoidable, then already for (m, fo —m) or (m, fy +m) our method does not
give a contradiction. The constant 6 is the smallest integer for which the argument in
the proof of Proposition 6.5 works (since {6v/2} is close to 5 while {¢v/2}, ¢ € [5] is not).
We believe that one could show by an argument very similar to that used in the proof,
that for sufficiently large m, for any constants a, b which satisfy that {av/2 — bv/2} is

close enough to 3, we have that either (m, fo —am) or (m, fo—bm) is absolutely avoidable.
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CHAPTER 7 BIPARTITE ORDER-SIZE PAIRS

7.1 INTRODUCTION

In Chapter 6 we were mainly concerned with the existence of absolutely avoidable pairs
in graphs. A similar question on avoidable pairs can be asked in the bipartite setting.
Recall that a biclique is a complete bipartite graph and a bihole is an empty bipartite
graph, i.e. the bipartite complement of a biclique.

We say a bipartite graph G bipartite arrows the pair (m, f), and write G 4 (m, f) if
G has an induced subgraph with parts of size m each, contained in the respective parts
of G, with exactly f edges. We say that a pair (n, e) of non-negative integers bipartite
arrows the pair (m, f), written (n, e) o (m, f) if for any bipartite graph G with parts of
size n each and with e edges, G iy (m, f).

We say that a bipartite graph H bipartite realises a pair (m, f) if H has m vertices in
each part and f edges. We also call H a bipartite (m, f)-graph. We call a pair (m, f)
absolutely bipartite avoidable if there exists ng, such that for each n > ny and for any
e € {0,...,n%}, (n,e) R (m, f). We define the bipartite forcing density of a bipartite

bi
order-size pair as oy, (m, f) = limsup {e(”e)nw

n—oo

In Section 7.2 we will show that the methods for showing the existence of absolutely
avoidable pairs in the graph case from Chapter 6 are not extendable to the bipartite

setting.

Proposition 7.1. Let (m, f) be a bipartite order size pair. Then either (m, f) or its bipartite

2

complementary pair (m,m?* — f) can be bipartite realised as the vertex-disjoint union of a

biclique and a forest.

Proposition 7.1 also appears in [16] together with most of the results from Chapter 6.

In Section 7.3 we will show that there is a family of three unavoidable bipartite
graphs, one of which appears as an induced subgraph of any bipartite graph with
sufficiently large order and sufficiently many edges and non-edges. We will connect

this to avoidability of order-size pairs.

Proposition 7.2. Let m, f € Nwith 0 < f < m?. Then for all n sufficiently large there exists
a positive ¢ = ¢y, and a number o+ € O(nz_l/q) such that for all e € [pp m, n? — ©nm)s

(n,e) il (m,a-m) forall a € [m].
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In Section 7.4 we will look at a specific pair, namely (3, 4) and completely characterise
which graphs (and hence pairs) bipartite arrow (3,4). In Section 7.5 we will use the
results from the previous two sections to derive some results on the bipartite forcing

density.

Proposition 7.3.  (a) There are infinitely many pairs (m, f) with op;p(m, f) = 1. In par-

ticular, for any m € N, a € [m], we have op;,(m, am) = 1 and op;,(3,4) = 1.

(b) There are infinitely many pairs (m, f) with op,(m, f) = 0. In particular, for any
m, f € Nwithm > 2, (m — 1)m < f < m? we have op;p(m, f) = 0.

In particular, we did not find any bipartite pair for which oy, (m, f) € (0,1); we

leave the existence of such a pair as an open question, see Section 7.6.

7.2 REALISING BIPARTITE ORDER-SIZE PAIRS AS THE VERTEX-DISJOINT UNIONS OF

A BICLIQUE AND A FOREST OR ITS COMPLEMENT

Our entire argument for the existence of absolutely avoidable pairs in the graph setting
(see Chapter 6) built on the fact that certain pairs (m, f) cannot be realised as the
disjoint union of a clique and a forest. The following lemma shows that our argument
for the existence of such absolutely avoidable pairs in the non-bipartite setting cannot

be extended to the bipartite setting.

Note that a biclique is an induced subgraph of a complete bipartite graph, i.e. could

be in particular an empty set or a single vertex.

Lemma 7.4. For any positive integer m and any non-negative integer f, f < L@J , there is a

2
bipartite graph H with m vertices in each part and f edges, which is the vertex-disjoint union

of a biclique and a forest.

Proof. Fix a pair (m, f) with f < [%QJ Let # = |%| and let y be the largest integer
such that zy < f. In particular

m

zy>f—x and y < {2J/[J

We shall use the fact that for any non-negative integers v’ and ¢/, with ¢/ < v’ and for an
y g g y
partition v’ = v” + 0", with v”,v" positive integers, there is a forest with partite sets of
sizes v” and v"" and ¢’ edges. To see this, let F' = K ,v_1 or K,_1 1 if min{o”, 0"} =1,

or otherwise, let F' be the vertex-disjoint union of K; ,~_; and K,~_; 1, connected by
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a single edge between two leaves. Then F is a tree with parts of sizes v and v"" with
v +0" —1 =" —1edges. Then any subgraph of this with e < v’ edges is a forest with

desired part sizes.

Casel: y <m.
If y = 0then f < L%J In this case (m, f) is bipartite realisable as a forest. So,
assume that y > 0. We shall show that (m, f) is bipartite realisable as the vertex
disjoint union of K, , and a forest. Let e’ = f — zy, v' = 2m — « —y. We have
that ¢/ < 2 —1 = |Z] — 1. On the other hand, using the upper bound on y,
we have that v/ > 2m — [ 2] — Q%QJ / L%J) . Considering the cases when m is
even or odd, one can immediately verify that ¢/ < v'. Since z + y + v' = 2m and
zy + €’ = f, we have that (m, f) is bipartite realisable as the vertex-disjoint union
of K, , and a forest on v’ vertices and ¢’ edges. Note that in this case we needed

y < m so that K, , does not span one of the parts completely.

Case 2: y =m.
In particular, we have that f > [2'|m. If m is even, we have that f > m?/2
and from our original upper bound f < m?/2 it follows that f = m?/2. Thus
(m, f) is bipartite representable as K, 5 ,,, and isolated vertices. If m is odd, let
m=2+1 k=1 Then f < |%| = 2%+ 2k and [ > y|%] = 2 + k.
Consider Kj119,—1 and let e’ = f — (k + 1)(2k — 1) and v/ = 2m — 3k. Then
e <2k%+2k— (2k*+k—1)=k+1landv =4k +2— 3k = k+2. Thus, v’ > ¢'.
Therefore (m, f) is bipartite realisable as a vertex-disjoint union of K 2x—1 and

a forest on v’ vertices and e’ edges.

Case3: y=m+ 1.
This case could happen only if m is odd. Let m = 2k 4+ 1. Then we have z = k
and y = 2k + 2 and f = 2k? + 2k. We see that (m, f) is bipartite representable by

Koy, 1+1 and isolated vertices. O

m2

Proof of Proposition 7.1. If f < LTJ , thenby Lemma 7.4 we can bipartite realise (m, f) as

m2

the vertex-disjoint union of a biclique and a forest. Otherwise, we have m?—f < LTJ ,

so we can apply Lemma 7.4 to the complementary pair (m, m?

— f). In particular, we
can bipartite realise (m, f) as the bipartite complement of the vertex-disjoint union of

a biclique and a forest. O
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7.3 UNAVOIDABLE BIPARTITE PATTERNS

In this section we will show that any (n x n) bipartite graph with positive edge-density
in both G and G° contains at least one of three induced unavoidable subgraphs. This

result is inspired by the following result for the general graph case:

Theorem 7.5 (Cutler, Montagh [50]). Let F}, be the family of 2-graphs on 2k vertices, which
are isomorphic to either Ky, and k isolated vertices, Ko, — E(K}), 2K}, or Ko, — E(2K,).

Then for any € > 0 and positive integer k, there exists n(k, €), such that any complete graph
of order n > n(k, €) and size e with €(}) < e < (1 — €)(}) contains a member of Fy.

Theorem 7.5 was first proven by Cutler and Montagh [50] who showed that n(k, €) <
4¢/k. This was further improved by Fox and Sudakov [73] to n(k,¢) < (%)%H for
€ < 1, using probabilistic arguments. Caro, Hansberg and Montejano [37] reproved
the theorem using only classical Ramsey and Turan numbers for bipartite graphs and

the results on Zarankiewicz numbers.

This result on unavoidable patterns is also related to the notion of balanceability

of graphs which was introduced by Caro, Hansberg and Montejano [37]. A graph H

is called balanceable if in any 2-colouring of the edges of a large complete graph with

“enough” edges in both colours, there exists a copy of H having exactly LMJ edges

of one colour. One might use Theorem 7.6 below to obtain bipartite balanceability

results. For more on Zero-Sum problems and balanceability in the general graph case,
see also Caro, Hansberg and Montejano [35,36] and the survey by Caro [34].

Recall that for the symmetric Zarankiewicz number z(n;t) we have z(n;t) < (¢ —
1)Vtn?=1/t 4 1 (1 — 1)n. We define the following bipartite graphs with 2¢ vertices in each
part: A; is isomorphic to Ko 9; — E (K 2¢), and By is isomorphic to Koot — E(Kyy).

Figure 7.1: The bipartite graphs A;, B; and By with 2t vertices in each part

Theorem 7.6. Let t be a positive integer. For all sufficiently large n there exists a positive
1
q = q and a number ¢ = pp; € O(n®7 %), such that any (n x n) bipartite graph G with
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|E(G)| € [@nt,n? — ony] contains an induced copy of either A, By or B, the bipartite

complement of B;.

Proof. Let ¢ > t be an integer satisfying

1 1
¢ > (t=1)VIP V4 S (t—1)q,
2 2
and set )
1= (g = 1YWV 4 (g = Dn+2(n— q)g + 1,

which is clearly in O(n?~1/9).

Let G be an (n x n) bipartite graph with |E(G)| € [pnt,n* — ¢n.] edges. Then by
definition of z(n; ¢), there is a copy of K, , in G, let its parts be V3, W;.

Consider the ((n —¢) x (n—q)) bipartite graph G, obtained by removing V; and W,
from G. Then the bipartite complement G of G; has at least E(G*) — |Vi|(n — [W1]) —
(Wil(n — [Vi]) > @ni — 2(n — q)q > z(n;q) > z(n — g; q) edges, so we find K, in G§.
Denote the parts of this K, , by V2 and W5.

Now consider the two (¢ x ¢) bipartite graphs Gz = G[Vi, W3] and G4 = G[Va, W1].
Each of them has either at least £¢* edges or non-edges, so there is K;; in G; or G¢ for
i = 3,4, i.e. either a biclique or a bihole. If we have two bicliques, we have a copy of B,
if we have two biholes, we have a copy of By, and if we have a bihole and a biclique, we

have a copy of A;. O

Lemma 7.7. If G il (m, f) for some G € {Ay, B, Bf'}, we have (n,e) il (m, f) for all n
sufficiently large and all e € [@p m,n* — ©nm)-

Proof. By Theorem 7.6, for pairs (n,e) as given, we have (n,e) Iﬁ G for some G €
{A¢, By, Bf}. Then by assumption, we have (n, ¢) el (m, f). O

Clearly if ¢ > m, the graph A; contains all pairs (m, f) for which f = a - m and

a € [m]. These pairs are also induced by B; and Bf, so we obtain Proposition 7.2 as a

Corollary of Theorem 7.6 and Lemma 7.7.

7.4 A CHARACTERISATION OF GRAPHS THAT BIPARTITE ARROW (3, 4)

The goal of this section is to find all bipartite graphs G that bipartite arrow the pair
(3,4).
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For n > 7 consider the following graph classes G; = G;(n) of (n x n) bipartite
graphs. We shall claim that these classes of graphs contain all graphs for which we
have G 22 (3,4):

1. Gi = Gi(n) = {Ps+isolated vertices}U{G C K,,,, : G is a union of pairwise vertex
disjoint stars (with centres in the same part)}.
Then G € G; does not contain (3,4): If G = P4, then G has only 3 edges. Other-
wise, all vertices in one part of G have degree at most 1, i.e. there cannot be (3,4).
Foreach e € {0,...,n} there exists G € G1(n) with |E(G)| = e.

2. Go =Ga(n) ={G =K, —{e} C Ky, : 2 < a <n— 1}, where e is an arbitrary
edge of the K, .
Then G € G does not contain (3,4): In any (3 x 3) induced subgraph of G, there
is at most one vertex of degree 2, any other vertex has degree 0 or 3. Thus, any
(3 x 3) induced subgraph H of G has |E(H)| € {0,2,3,5,6,8,9} edges.
Foreacha € {2,...,n — 1} there is G € Ga(n) with |E(G)| = an — 1.

3. G3=03(n) ={Kpn— E(Kup) :a,be [n]}.
For G € G3 we have G¢ = K, ;,+ isolated vertices for some a, b € [n]. This clearly
does not contain (3,5), and thus, G does not contain (3,4).
For any integers a,b with 0 < a < b < n there is G € G3(n) with |E(G)| = n? — ab.

4. Gy = Gu(n) = {Kpnn — E(U, Hi) : H; € Hyn,J; Hi € Ky 5}, where H,, = {Cs} U

{H C K, : H isatree with at most 2 vertices in one part}. Note that we can
have one tree component in G¢ with a part of size at least 3 in U and another tree
with a part of size at least 3in V.
Then G € G4 does not contain (3,4): No component of G¢ contains (3,5), and
since any (3,5)-graph is connected, G cannot contain (3,5). In particular, the
complement of any G € G, is the vertex-disjoint union of Cg’s and a forest, so
|E(G)| > n?% - 2n.

We also define the following set:
En)={e:e=|E(G)|, GeG;, i=1,...,4}.

Now we can state our characterisation lemma:

Lemma 7.8. Let G be a bipartite graph with n vertices in each part, n > 7. Then G % (3,4)

if and only if G € \Ji_, Gi. In particular, for n > 7 we have (n, e) 4 (3,4) if and only if
ed &(n).
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Before we prove this lemma, we need an auxiliary result:

Lemma7.9. Let G be a Cy-free (n x n) bipartite graph. Then either G il (3,5) or G¢ € Ga(n).

Proof. Let G = (UUV, E) be a Cy-free bipartite graph with |U| = |V| = n and assume

»
that G -4 (3,5). We want to show that each connected component of G is either C or
a tree with at most 2 vertices in one part.

Let G’ be a connected component of G.

Assume that G’ is a tree. If G’ has at most 2 vertices in one part, we are done, so
assume G’ has at least 3 vertices in each part. Then there must be a P, in G/, otherwise
G’ would be a star, a contradiction to G’ having at least 3 vertices in each part. Then
this P4 and two vertices adjacent to it, one from each part, induce a (3, 5)-graph, a

contradiction.

Consider a longest induced cycle in G'. If it has length at least 8, we find induced F,
which is a (3, 5)-graph, a contradiction. Since G’ is C4-free, it must contain induced Cs.
If G’ = Cg, we are done, so there must be a vertex v’ incident to the Cg = wuv1usv2u3v3.
Since G’ is Cy-free, «’ is incident to exactly one vertex of Cs, w.lo.g. vs. But then

{uy,ug,u’,v1,v2,v3} induces (3,5), a contradiction. O
Now we can prove Lemma 7.8.

Proof of Lemma 7.8. Let G = (UUV, E) be a bipartite (n,e)-graph, and assume that
G %2 (3,4). We will show that G € G;(n) for some i € [4].

Let u; € V(G) be a vertex with d(u;) = A(G), wlo.g. vy € U.

If A(G) = 1, then G is a matching and isolated vertices, in particular, G € G;(n).
Thus, we can assume that d(u;) = A(G) > 2.

Assume N (u1)NN(u) = @forallu € U\{u;}. Assume thereisavertexv € V\ N (u1)
of degree d(v) > 2. But then we find induced K2 U K31, which is a (3,4)-graph, a
contradiction, see Figure 7.2 for an illustration. Thus, we have d(v) € {0,1} for all
v € V\ N(u1), so G is a vertex-disjoint union of stars with centres in U, and in

particular, G € G;(n)

Thus, there exists some u € U \ {u1} such that N(u1) N N(u) # (. Let us be such

that |V (u1) N N (uz)| is maximal and with maximal degree among all such vertices.
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U1

Figure 7.2: K; U Ka

Assume that [N (u1) N N(ug2)| = 1, i.e. there is no vertex in U that shares more than
one neighbour with u;. Note that since d(u;) > 2, we have |N(uq) \ N(u2)| > 1.

o If A(G) = d(uy) = 2, there are vi,v9 € V such that vy, u1,ve, us induce a Py. In
particular, d(uz) € {1, 2}.

— Assume d(uz) = 1. If d(u) = 0 for all w € U \ {u1,u2}, then G is Py and
isolated vertices, in particular, G € Gi(n). So let us € U \ {u1,us} with
d(uz) > 0.

Then ug3 either has (exactly) one neighbour in {v;, v2}, w.l.o.g. v, then let
vz € V '\ {v1,v2}, or it has no neighbour in {v;, vz}, then let v3 € N(u3). In

either case, there is induced (3, 4), see Figure 7.3a for an illustration.

- If d(ug) = 2,letvs € N(uz)\ N(up). Then forn > 5thereis us € U\ {uy,u2}
with N (u3) N {vy,ve,v3} = 0: since A(G) = 2, the set {vy, v, v3} has at most
2 more neighbours in U \ {u1,ug}, i.e. for n > 5, such a vertex us exists, so

we find (3, 4), a contradiction. See Figure 7.3a for an illustration.

o If A(G) = d(u1) = 3, we find vertices vi,v2 € N(uj) \ N(u2) and vz € N(u1) N
N(ug). Claim: For n > 7 there is a vertex uz € U \ {u1,u2} with N(u3) N
{v1,v2,v3} = (. Since A(G) = 3, we have d(v1) + d(v2) + d(v3) < 9, so there
are at most 5 vertices in U \ {uy,u2} which are incident to {v1,ve,v3}. Thus, if
|U| > 8, ug exists. Then {uy,ug, us,v1,v2,v3} induces (3,4). See Figure 7.3b for

an illustration.

o If A(G) =d(uy) > 4,ie wehave |[N(up)\ N(u2)| > 3.

Recall that each vertex v € U \ {u;} has at most 1 neighbour in N(u;). Let
vz € N(up) N N(ug). Assume there is a vertex ug € U \ {uy, us} with vs & N (ug3).
Since | N (u3)NN (u1)| < 1, there exist two vertices v1, va € (N (u1)\N(u2))\N(us),
i.e. {u1,ug,us,v1,v2,v3} induces (3,4), a contradiction. See Figure 7.3 for an
illustration.

Thus, we have v3 € N(u) for all u € U, i.e. d(v3) = n = d(u;) and have d(u) =
d(v) = 1for u,v € UUV \ {u1,v3}, i.e. e = 2n — 1 and G° = K,,_1 -1, ie.
G € G3(n).

Thus, we can assume that | N (u1) N N(uz)| > 2. Recall that d(u;) = A(G) and that
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us uy U2 us
b’vU3 1}1“ ’Ué V3
(a) d(u1) = 2 (b) d(us) > 2

Figure 7.3: |[N(u1) N N(u2)| =1

ug € U\ {u1}is such that [N (u;) N N (ug2)|is maximal and with maximal degree among

all such vertices.
Let Vi = N(u1), Va = N(ug), V{ = V1 \ Vo and Vj = V5 \ V4. We split the remaining
proof into the following 4 cases:
Case1: Ju € U\ {ug,u2}: [(V/UV)\ N(u)| >2and [(Vi NV2) \ N(u)| > 1,
Case2: Ju € U\ {ug,u2}: [(V]UVY)\ N(u)| >3,
Case 3: Ju e U\ {ug,uz}: [(ViNnVe)\ N(u)| >3,
Case4: Vu e U\ {ug,u2}: [(V1UVR)\ N(u)| <2.

In particular we will show that Case 1 is impossible, in Case 2 we have G € G3, in Case
3.1 we have G € G5, and in Cases 3.2 and 4 we have G € G4.

Case 1: Thereisus € U\ {u1, uz} with |(V/UVZ)\N(u3)| > 2and |(ViNV2)\ N (us)| > 1.
Thenletvy, ve € (V/UVY)\N(u3)and vz € (ViNV2)\N (u3). Then {u1, ug, us, v1,v2,v3}
induces (3,4). See Figure 7.4a for an illustration.

Uiy U U3 U U2 U3 uy Uy U3 uyp U ug

vr V2 V3 U1 V2 U3 v V2 U3 or v U2 U3

(a) Case 1 (b) Case 2

Figure 7.4: Cases 1 and 2

Case 2: Thereisuz € U\ {u1,u2} with [(V] UVY) \ N(us)| > 3.
Since we are not in Case 1, (V41 N'V5) \ N(uz) = 0. Let v1,ve € (V{ UVY) \ N(us),
vz € V1 N Va. See Figure 7.4b for an illustration.
Assume thereis vy € V' \ (V1 U Vo) with vgus € E(G). Then {uy, uz, us, v1,v3,v4}
induces (3,4). Assume there is a vertex vy € V{ U V] with vqus € FE(G). Then
{u1,u2,us,v1,v2,v4} induces (3,4). See Figure 7.5 for an illustration.
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U U2 U3 U U2 U3 U1 U2 U3
Q! o o

V1 V3 U4 V1 V2 VY4 V1 V2 Vg V1 V2 Vg4

E|’U4€V\(V1UV2):U3’U4 QE(G) E|U4€V1/UV2/IU3’U4EE(G)

Figure 7.5: Case 2 continued

Thus, N(u3) =V \ (VJ UVY),ie. V = VJUVJUN (u3)UV; N V3 and any vertex in V'
is either in exactly one or in all three neighbourhoods N (u1), N(ug), N (u3).

Let ugs € U \ {u1,u2,u3}. Assume uy has a non-neighbour v3 € Vi N V5. Since
we are not in Case 1, u4 has at most 1 non-neighbour in V/ U Vj. Recall that
VI +|V3] > 3,ie. |N(ug) N (V] UVY)| > 2. I |N(ug) N V]| > 20r |[N(us) NVy| > 2,
w.lo.g. the former, let v1,v3 € N(usq) NV]. Then {ug,us, us, vi,v2,v3} induces
(3,4). Thus, we have | N (ug) N V]| = |N(ug) N V3| = 1. Since |V] UVJ| > 3, wl.o.g.
thereis vy € V] withvjuy € E(G). Letvy € N(uq)NVy. Then {ug, us, uq, v1,v2,v3}
induces (3,4). See Figure 7.6

Ug U2 U3 Ug U U3

Ul Ué >U3 U1 Uﬁ >U3
|N(ug) N V] =2 [N (ua) N V| = [N(us) N V3| =1
Figure 7.6: Case 2 continued
Thus, V1NV, C N(u) forallu € U, and thus, since ViNV; # (), wehaven = A(G) =

d(u1). In particular, we have V = (V; N V5)UV{, and G = K, ,, — E(Kn,17|vl/|), ie
G € Gz(n).

Case 3: Thereisug € U \ {uy,u2} with [(V1 NV2) \ N(u3)| > 3.

Since we are not in Case 1, u3 is incident to all vertices in V{ U V5.

We partition V into four sets V' = V/UVJU(V; NV5)UV'. Note that v'ug € E(G) for
all v’ € V': assume not. Then there exists v' € V' with vu; ¢ E(G) fori =1,2,3,
and since u3 has two non-neighbours vy, ve € ViNVa, {uy, u2, us, v1, v2,v'} induces
(3,4).

Claim 0: |V’| < 1.

Assume there exist v/, v” € V'. Then uzv’, ugv” € E(G), i.e. {uy,ug,us,vy,v',0"}
induces (3,4) (with v; € (V1 N Va) \ N(us)), a contradiction. [ |
Consider the bipartite complement G¢ of G. We will find a (3, 5)-graph in G°¢
which corresponds to a (3,4)-graph in G.
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Case 3.1: There is a Cy uzvsuqvqus in G¢ with us,uqy € U \ {u1,u2} and vz, vq €
VinWws.
Claim 1: |[V'| = 0.
Assume there is v’ € V. If ugv’ € E(G°) (or ugv’), then {uy, us, us, v’ v3, v4}
induces (3,5) in G¢. If both ugv’,ugv’ € E(G°), then {uy, us,uq, v, us, us}
induces (3,5) in G, a contradiction. [ |
Claim 2: [V U V3| < 1. We have vus, vuy € E(G€) for v € V{ U VJ.
Let v; € VJ UV (wlo.g. vy € V{). Then v is incident to at least one of
{us, us} in G (else {ug, us,uq,v1,v3,v4} induces Ko U Cy, a (3,5)-graph, a
contradiction), not incident to only one of {u3, us} (else {u1, us, ug, v1,v3,v4}
induces C, with a pendant edge, a (3,5)-graph, a contradiction). Thus, v,
is incident to both {u3,us}. Assume there is a second vertex vo € V] U
V. Then by the same argument it is also incident to both {ug,us}. Then
{u1, ug,us, v1,vy,v3} induces (3, 5) in G¢, a contradiction. |
Thus, we have |[Vi N V3| > n— 1 and 0 = dge(u1) < dge(uz) < 1, ie.
0=l < Vil < 1.
Claim 3: N(ug) = N(uq).
Assume not. Then wlo.g. thereis vz € V = (Vi1 N V,) U V], such that
ugvs € E(G) and ugqvs € E(G€). Then {uy, us, u4,vs, vy, vs} induces (3,5) in
G¢, a contradiction. [ |
Letus € U \ {u1, ua, us, uq}.
Claim 4: If [ Nge(us) N Nge(ug)| > 2, then N(u3) = N (us):
Assume not, i.e. w.l.o.g. we have v,v’,v” € Nge(us) such that usv, usv’ €
E(G°) and usv” ¢ E(G°). Then {uy,us,us,v,v’',v"} induces (3,5) in G¢, a
contradiction. |
If INGe(us) N Nge(usz)| > 2, by Claim 4 we have N (u3) = N (us).
If Nge(us) N Nge(ug) = 0, then dge (us) = 0:
Otherwise there exists vs € N(us) \ N(us3), i.e. {us, u4, us, v3, v4,v5} induces
Ko U Cy,ie. (3,5) in G, a contradiction.
If |IN(us) N N(us)| = 1, (and hence |N(us3) \ N(us)| > 1), then V' \ N(u3) C
N(us):
Otherwise there is vs € V' \ (N (u3) U N(us)) and thus, {us, u4, us, vs, v, vs}
induces (3, 5) in G¢ (where w.l.o.g. usvs € E(G®) and usvs ¢ E(G)).
Note that we must have dg<(us) < 2, since otherwise there are two vertices
vs,v6 € N(us) \ N(us), i.e. {us,uq,us,vs,vs,vs} induces (3,5). Thus, we
have |[N(ug)| > |[V| — 1. Now assume d(us) = 2. Then since n > 4, we
have |N(u3)| > 3, and thus, there exist v1,v3 € N(u3) \ N(us) and vz €
N(us) \ N(ug), i.e. {us,uq,us, vy, v, v3} induces Cy U Ko, i.e. (3,5). Thus, if

>
>
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|N(us) N N(us)| =1 for some us € U \ {uy, uz,us, us}, then N(ug) =V.
Assume there is a second vertex ug € U \ {u1, ug, us, uq, us} with |N(ug) N
N(ug)| = 1. Then we find a (3, 5) with {us, us, ug}, the neighbour(s) of us, ug
and an arbitrary other vertex in V' = N (u3). Thus, there exists at most one
vertex with this property.
In conclusion, if no vertex in U has degree 1 in Ng<(u3), for all vertices u € U
we have Nge(u) € {0, N(u3)}. Thus, G¢ = K, ,, for some a > 2 is a complete
bipartite graph, i.e G € Gz(n). Otherwise, there is exactly one vertex in U
with degree 1 in Nge(u3) we have that G¢ = K, ,, with a pendant edge, i.e.
G = Kp,, — {e} forsome a with2 < a <n—1,s0 G € Ga(n).

Case 3.2: There isno Cy in G¢[U \ {uy,uz}, Vi N V).
We will show that then there is no Cy in G¢.
There cannot be a Cy in G° containing both u; and u», since u; and us share
at most one neighbour (By Claim 0, [V’/| < 1).
Assume there is a Cy = ugviuqve in G¢ with uz, ug € U \ {ug,ua}.
Assume vy € Vi3 N Va. Then we must have v; € V/ U V/ U V]. Note that
then no vertex vs € V1 N V4 \ {v2} is incident to both us, uy, since otherwise
{us, uq,v2,v3} is a Cy, a contradiction.
If vy € V/, letwg € (Vi NVa) \ {ve}. If vg is incident to none of ug, uy, then
{u1,us, uq,v1,v2,v3} induces (3, 5) in G¢, a contradiction. Thus, v3 is incident
to exactly one of ug, u4, say vsuz € E(G€). Then {uy, ug, us, v1, v2, v3} induces
(3,5) in G¢, a contradiction.
If v € V/UVy, wlo.g. vy € V/: If there is v3 € V; NV, incident to
none of ug,us, then {ug, us, uq, v1,v2,v3} induces (3,5). Otherwise, there
is v3 € Vi NV, incident to exactly one of {us,u4}, say uzvz € E(G¢), then
{u1, us, uq,v1,v2,v3} induces (3,5) in G¢, a contradiction.
So assume vi, vy € V/ U Vy U V', and there is no v € Vi NV, which is
incident to both ug and wuy. If there is v3 € V1 NV, incident to none of ug, ug4,
then w.l.o.g. u; has exactly one neighbour in vy, v2, so {u1, u2, uz, v, v2, v3}
induces (3, 5). Otherwise all v € V; N V3 are incident to exactly one of us, ug,
pickvs,v4 € ViNVa. Thenw.l.o.g. u; isincident to vy, so {u1, ug, us, v1, v3, va}
induces (3, 5), a contradiction.
Thus, if there is a Cy in G, it contains exactly one of uj, u2, so it consists
w.lo.g. of uj,u3 € U and vy,ve € Vy UV".
Assume that v; € V' and vy € VJ. Then ug is incident to every vertex in
ViNV2in G¢ (otherwise thereis vg € ViNVa\ Nge (ug), i.e. {u1, ua, us, v1, va, v3}
induces (3,5)in G¢). Since |V; N V| > 2, there are vs,vqs € V3 N Va. Then

{u1,ug,us,v1,vs,v4} induces (3,5).
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Thus, both v1,v2 € V. Then Nge(u3) N (V1 N Va) = 0: otherwise there exists
v3 € Nge(ug) N (Vi NVa), ie. {u1,ug,us,v1,ve,vs} induces (3,5).

Let ug € U \ {u1,u2,ug}. Then uy has at most 1 neighbour in {v;, v} (else
we have a Cy on {ug, u4,v1,v2}, a contradiction). Assume u4 has exactly
one neighbour in {vy, v}, say v;. If it has a non-neighbour vz in Vi N V3,
then {uy,us, uq,v1,v2,v3} induces (3,5), i.e. v3 is incident to all vertices in
Vi N Vs, Letws,vg € Vi N Va. Then {uq,us, ug, vy, v3,v4} induces (3,5). So
assume u4 has no neighbour in {v1,v2}. If it has at least one neighbour in
vy € Vi N Vy, then {uy, us, uq, v1,v2,v3} induces (3, 5) in G¢. Thus, no vertex
u € U has any neighbours in V; N V3, so 6(G¢) = 0. This is a contradiction to
0(G¢) = d(uy) > 2.

Thus, there is no Cy in G, so by Lemma 7.9, we have G € G4(n).

Case 4: Forall u € U \ {uy,us} we have |(V; U V,) \ N(u)| < 2.
That means in particular, that d(u;) > d(u) > d(u;) —2forallu € U.

Thus, there are at least d(u;)n—2(n—1) edges between U and V7, i.e. the maximum

degreein V; is at least n — 2&?1;1;). Since d(u1) = A(G), we must have n — 26(17(11;1;) <

d(ul), ie.

dw)’ —nd(w) > 242 & (dw)-7) = (2) ~amr2= (2 -2) -2
Ul nal\uy) = n Ul 5 > (3 n — 5

and in particular, we either have

d(u1) Zg—l-\/((n/Q) —2)2-2> g+\/((n/2)—3)2 =n—3 (forn >7),

or

d(ul)gg—\/((n/2)—2)2—2<g—g+3:3.

In the second case, we have A(G) = d(u1) = 2, and uy, ug,v1,v2 induce a Cy
disjoint from the remaining graph. Since |U \ {ui,u2}| > 3, there must be uz €
U\ {u1,uz} and vg € V'\ {v1,v2} with wv ¢ E(G). But then {u;, ug, ug, v1,v2,v3}

induces (3,4), a contradiction. Thus, we have d(u;) € {n —2,n — 1,n}.

Case 4.1: d(u;) = n.
Then G has at least n + (n — 1)(n — 2) = n? — 2n + 2 edges. In particular we
have 0 = dge(u1) < dge(uz) < dge(u) < 2. Assume there is a Cy ugvsugvy in
G°. Then any vertex u € U has N(u) € {0, {vs, vs4}}, since otherwise there is
(3,5),ie. G° = Ky, for some a € [n — 1], i.e. G € G3(n).
If there is no Cy in G¢, by Lemma 7.9 we have G € G4(n).



7. BIPARTITE ORDER-SIZE PAIRS 129

Case 4.2: d(u1) =n— 1.
We consider the complement G¢. Then d(u;) = 1 and d(u) € {1,2,3} for
u € U. Assume there is a Cy = ugvousvs in G€.
If N(up)N{va,v3} # 0, then {uy, ug, us, v2, v3} and any vertex in V'\ (N (uz) U
N(us3)) (which exists, since |V| > 5) induce C4 with a pendant edge, i.e. a
(3,5)-graph, a contradiction.
If (N(ug) U N(uz)) N N(up) = 0, then {uy,us,us,ve,v3} U N(u1) induces
Ko U Cy,ie. a(3,5)-graph, a contradiction.
Let v; be the neighbour of u;. Then w.l.o.g. usv; € E and usv; ¢ E.
Now let ug € U \ {u1,u2,us}.
If u4 has no neighbour in {v1, v2, v3}, then {ug, us, us, v1, v2,v3} induced Cy
and a pendant edge, i.e. a (3, 5)-graph, a contradiction.
So u4 has at least one neighbour in {v;, v, v3}. Note that since dge(u) < 3

forallu € U and n > 7, there must exista vertexvy € V\ (|  N(w;))
i€{1,2,3,4}

Assume u4 has exactly one neighbour in {vi,ve,v3}. If wgv; € E(G°),

then {u, ug, us,v1,v2,v3} induces (3,5), and if w.lLo.g. usvy € E(G°), then

{ug, us, uq, v2,v3,v4} induces (3, 5), a contradiction.

Thus, u4 has at least 2 neighbours in {v;, v2, v3}.

If {v1,v2} C N(uyg), then {uy,us,uq,v1,v9,v4} induces (3,5). If {v1,v3} C

N (uy), then {uy,uz,us,v1,v3,v4} induces (3,5). So N(uz) N {v1,va,v3} =

{v2,v3}. Then {uy, ug, u4,v1, vz, v3} induces Ko UCy, a (3, 5)-graph. Thus, in

either case we have a contradiction.

Thus, G° does not contain Cy, so by Lemma 7.9 we have G € G4(n).

Case 4.3: d(u1) =n — 2.

Consider the bipartite complement G¢. Let v, v2 be the neighbours of uq

in G°. Note that in G° every vertex in U has degree € {2, 3,4}, while in V/

every vertex has degree > 2. Then since 6(G¢) = 2, both v; and v, have

at least one more neighbour. Assume vy, v2 have a common neighbour, say

ug € U \ {u1}, choose uy of maximum degree with that property.

e dge(ug) =2: Letus € U\ {ug,uz}.

Assume N (u3) N{v1,v2} = (. Since d(us) > 2, there exists vs € N(ug3),
ie. {ug,ug,us,vi,ve,v3} induces (3,5). Assume |N(uz) N {vi,v2}| =1,
say vz € N(ugz). Then there exists v3 € V' \ {v1,v2} with uzvsz ¢ E(G°),
since d(uz) < 4 and |V| > 6 ), so {u1,uz2,us,v1,v2,v4} induces (3,5).
Thus, {vi,v2} € N(u) for all u € U and d(uz2) > d(u), so we have
N(u) = {v1,v2} forallu € U, and hence d(v) = 0 forallv € V'\ {v1,v2},
a contradiction to §(G¢) > 2.
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o dge(uz) =3: Let N(uz) = {v1,v2,v3}. Assume there exists us € U \
{u1,us} with vz € N(u3).
If [N (us)N{v1,ve}| = 0, thenletvy € N(ug)\{vs}. Then{ui,uz,us,v1,va,v4}
induces (3,5). If [N (ug) N{vi,v2}| > 1, wlo.g. v2 € N(u3), thenletvy €
V' \ (N (ug2) U N(u3)), which exists for n > 6. Then {u1, ug, us, v2, v3,v4}
induces (3,5).
Thus, for all vertices u € U \ {ua} we have uvs ¢ E(G¢),i.e. dge(v3) =1,
a contradiction to §(G¢) > 2.

o dge(uz) =4: Let N(ug2) = {v1,v2,v3,v4} and let ug € U \ {u1, ua}.
If IN(ug) N N(ug)| < 1, wlo.g. wva,v3 € N(uz). If vy € N(u3), then
{u1,ug,us,v1,vs,v4} induces (3,5), otherwise {u1, us, us,v1,v2,v3} in-
duces (3,5). If [N (u3) "N (u2)| > 3, w.l.o.g. we have vaug, vzusz € E(G°),
so for vy € V \ (N(u3) U N(uz)), the set {u1,us, us,ve,vs,vs} induces
(3,5).
Thus, we have |N(u3) N N(uz)| = 2. If N(u3g) N N(uz) = {v1,v2}, then
{u1, ug,us, v1,vs,v4} induces (3,5). If [N(uz) N {v1,v2}| =1=|N(uz)N
{vs,v4}, say {v1,v4} € N(u3), then let vs € V \ (N(u3) U N(u2)), so
{u1, ug,us, v1,v2,vs} induces (3, 5).
Thus, all vertices u € U \ {u1,ug} satisty N(u) N N(uz) = {vs,v4}. But
then for us, uy € U\ {u1,uz}, the set {uy, v1, us, ug, vs3, vy} induces (3,5).
Thus, there is no vertex u € U \ {u; } with {v;,v2} € N(u). Pick vertices
ug, uz € U with viug, vous € E(G°).
Assume there is a Cy in G¢ with vertex set C' = {ug, u3,v3,v4}. Then
up ¢ C and [{vi,v2} N {us,va}| < 1. If {v1,v2} N {vs,vs} = 0, then
{u1,u2,u3,v1,v3,v4} induces (3,5). If {v1,v2} N {vs,v4} # 0, say va =
vy, then let v € V' \ {N(u1) U N(u2) U N(u3)} (# 0 for n > 8), then
{u1,ug,us, v3,v4,vs5} induces (3, 5). Thus, G¢ is Cy-free, so we can apply

Lemma 7.9, and in particular, G € G4(n). O

7.5 DENSITY OBSERVATIONS IN THE BIPARTITE SETTING

Consider the class of (n x n) bipartite graphs which are the vertex-disjoint union of
bicliques and isolated vertices, i.e. M,, = {{JKq,p, : @i b; € [n],> a; < n,> b < n}.
Then the set of sizes of graphs in M,, is given by

T(n)={|EG)|:GeM,}= {Zaibi Dag, b € [n],Zai < njzbi < n}

Lemma 7.10. For any c € [0, 1), there exists an n > ng such that T(n) > cn?.
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Proof. We will show that for any e with 0 < e < cn? there exists a graph in M,, with

exactly e edges.
Let e < cn? and let = be an integer such that 2% < e < (z + 1)2.

We want to realise the pair (n, €) as a union K U K’ U K y and isolated vertices, with
K € {Ky 2, Ky (11)} and K’ = K, ,, for some suitable y < |/z] and £ < 2y + 1.

Ife<z(x+1),let K = K, ;. Otherwise, let K = K, ;1. Thene — |E(K)| < x, so
we need to show that for any f with 0 < f < z we can find a graph in M,,_,_; with
exactly f edges. Fix some f with 0 < f < .

Lety = |\/f| let K" = K, and let { := ¢ — E(K) — E(K') = f — y*. Recall that
{y} denotes the fractional part of y. Thus, we have

t=f (I =2vI{VI -1V <2Vf <2/

€(0,1) €(0,1)

Thus, if we can show that 2/ < n —xz — 1 — y, we can realise the remaining ¢ < 2,/z
edges as K ¢. Equivalently, we need to show thatn > = + 2\/z + y + 1. We have

e 0Tty +1<z+3/T4+1<ed +3ei +1<cin+t3ciyvntl.

Note that depending on ¢, there exists ng such that cin + 3ci vVn+1<nforalln > ng.

Thus, forn > ng, we canrealise all pairs (n, e) with0 < e < cn?as KUK'UK; 4y € M,,
with K, K’, ¢ defined as above. O

Lemma 7.11. If for some bipartite pair (m, f) we have G 2 (m, f) for all G € M,, then

Jbip(m, f) =0.

Proof. Assume we have G 3 (m, f) for all G € M,,. Then by the definition of the
bipartite forcing density, we obtain for all ¢ € [0,1):

n? — |{e: (n,e) 2 (m, f)}|

e : (n,e) 2% (m, )}

obip(m, f) = 1i£ﬂj£p 3 = ligsogp 3
. M ) T(n
Sl—hmsup‘ 2n| =1—limsup (2) <1l-—g
n—00 n n—oo N

where the last inequality follows from Lemma 7.10. Thus, we obtain oy;,(m, f) = 0. O

Observation 7.12. Any bipartite pair (m, f) which cannot be realised as H with H € M,,

satisfies op;p(m, f) = 0.
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Proof. Any induced subgraph of a component of a graph in M,, is a biclique. Thus, any
induced (m, f)-subgraph H of a graph in M, is the vertex-disjoint union of bicliques
and isolated vertices, and thus, H € M,,. O

Lemma 7.13. There are infinitely many bipartite pairs (m, f) which satisfy op;,(m, f) = 0. In
particular, for any m > 4 and f with (m —1)2 +1 < f < m(m — 1) we have op;p(m, f) = 0.

Proof. Let m > 4 and f with (m —1)2+1 < f < m(m — 1). Note that for m > 4,
[(m —1)2+2,m(m — 1) — 1] # 0. Let H be a bipartite (m, f) graph.

Assume H is disconnected and has two components H' and H”, both containing
at least one edge. But then f < |E(H')| + |[E(H")| < |[E(Km-1,m-1)| + |E(K2)| =
(m — 1)% + 1, a contradiction. Thus, H is either connected or H = H' + {v} and H' is
connected.

Now assume H is connected. Then it cannot be a complete bipartite graph, since
f <m? = E(|Kpnml|). Soassume H = H'U{v}. Then H’ is not complete bipartite since
f<m(m—1) = |Kpym—1].

Thus, H ¢ M,,, and thus, by Observation 7.12, oy;,(m, f) = 0. O

Lemma 7.14. For any m > 2 and f with m(m — 1) < f < m? we have oy;,(m, f) = 0.

Proof. Let m > 2 and f with m(m — 1) < f < m?. Note that for m > 2, [m(m — 1) +
1,m? — 1] # (. Let H be a bipartite (m, f) graph.

Assume that H is disconnected. Then |E(H)| < |E(Kmm-1)] = m(m — 1), a
contradiction. So H is connected, and H is also not complete bipartite, since E(H) <
m? = |E(Kmm)|-

Thus, H ¢ M,,, and thus, by Observation 7.12, oy;,(m, f) = 0. O

This shows that there are infinitely many pairs which have forcing density 0. On
the other hand, we can show, using the results from the previous sections, that there

also exist pairs with positive forcing density:

Lemma 7.15. Let m € N. We have op,,(m, am) = 1, for any a € [m].

Proof. By Proposition 7.2, we have (n,e) o (m,am) for any n sufficiently large and

e € [nz_%,n2 — nz_%] for some ¢ depending only on m. Thus, by definition of the
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bipartite forcing density, we obtain

b o1
_ e:(n,e) % (m,am) ) n? —2n°"q
Obip(m, am) = hzn_}sotip it ’ - d ) > hTILn_)SOlép e
2
=1-limsup— =1. O
n—o0 nq

In the previous section, we have characterised the bipartite graphs that bipartite
arrow (3,4). Note that4 # 3-a for any a € [3], so we cannot apply Lemma 7.15 to (3, 4),
so the following lemma shows that not all pairs of bipartite forcing density 0 are of the

form (m, am).

Lemma 7.16. We have oy;,(3,4) = 1.

, 4

Proof. By Lemma 7.8 we know that G il (3,4) if and only if G ¢ |J Gi(n), for the
i=1

families G;(n) given in Section 7.4. Let E;(n) = {|E(G)| : G € G;(n)}. In particular we

have

1. Any graph in G (n) is a vertex-disjoint union of stars, i.e. a graph with at most n
edges. In particular, |E;(n)| € O(n).

2. Any graph in Go(n) is of the form K, ,, \ {e}. Since there are at most n choices for
a, we obtain |E2(n)| € O(n).

3. Any graph in G3(n) is K, — E(K,y) for some 0 < a,b < n. Thus, |E3(n)| =
{ab : 0 < a,b < n}. This set was considered by Erdds [54], who proved that
|E5(n)| € o(n?). For the correct asymptotics of the cardinality of this set see also
Ford [67,68].

4. There at most 2n edges in the complement of any graph in G4(n), and thus,
|E4(n)| € O(n).

By the definition of the forcing density, we obtain

bi
: 23,4
Tpip(3,4) = limsup [He: (m.e) = (3,4)) = lim sup

2
n—00 n n—00

4
1
> 1—limsup — E;(n zl—limsupon
2

n—oo T i1 n—00 n?
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Now Proposition 7.3 follows immediately from Lemma 7.14, Lemma 7.15 and

Lemma 7.16.

7.6 CONCLUDING REMARKS

We have shown that there exist infinitely many bipartite pairs with forcing density 0,
but we were not able to extend our results on absolutely avoidable pairs to the bipartite

setting. This leaves the following open problem:

Open Problem 7.17. Are there any absolutely avoidable pairs (m, f) in the bipartite setting?

Clearly good candidates for absolutely avoidable pairs are those for which we
already know that the bipartite forcing density is 0. Lemma 7.11 and Observation 7.12
tells us, that we might want to look at pairs which are not realisable as the vertex
disjoint union of bicliques and isolated vertices, i.e not as graphs in M,,. Pairs (m, f)
withm(m—1) < f < m?arenotabsolutely bipartite avoidable, since (n, n?—(m?— f)) o
(m, f), but it might be interesting to look at the pairs identified in Lemma 7.14.

While finding infinitely many pairs (m,am) and the additional pair (3,4) with
bipartite forcing density 1, we also did not find any pair of non-trivial density, i.e. not

0 or 1. This leaves the second open question for this chapter:

Open Problem 7.18. Are there any bipartite pairs (m, f) with op;,(m, f) € (0,1)?
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CHAPTER 8 ORDER-SIZE PAIRS IN HYPERGRAPHS: ABSOLUTE AVOID-

ABILITY AND FORCING DENSITIES

8.1 INTRODUCTION

This chapter is concerned with order-size pairs in r-graphs with r» > 3. We will look at

questions about avoidability and forcing densities.

Recall that in Chapter 6 we investigated the existence of so-called absolutely avoid-
able pairs (m, f) for which we not only have o3(m, f) = 0, but the stronger property
{e: (n,e) = (m, f)} = 0 for all sufficiently large n. We showed that for r = 2 there are
infinitely many absolutely avoidable pairs and amongst others constructed an infinite
family of absolutely avoidable pairs of the form (m, ('})/2) and showed that for any
sufficiently large m, there exists an f such that (m, f) is absolutely avoidable. Here, we

extend this result to higher uniformities:
Theorem 8.1. Let » > 3. Then there exists mq such that that for any m > my either

(m, (™) /2]) or (m, | (") /2| — m — 1) is absolutely r-avoidable.

Recall that the forcing density of a pair (m, f) is defined as

ar(m,f) — limsup ’{6 : (n7e) —r (mvf)}|

e @

Erdés, Fiiredi, Rothschild and Sés [56] claimed for » = 2 that “almost all pairs” have

forcing density o2(m, f) = 0. Here we prove the following for higher uniformities:

Proposition 8.2. For r,m € N, r,m > 3, all but O (mﬁ) of all possible (") pairs (m, f)
satisfy o (m, f) = 0.

As seen in Theorem 0.4, for r = 2 there exist pairs with o3(m, f) = 1. This
changes for r > 3, as seen in Proposition 8.4 below, for which we need some additional
definitions and notation. Recall that 7}.(n,[) denotes the complete I-partite r-graph on
n vertices and part sizes ny,...,n; € {HJ , {%] }. Note that for I < r, T;.(I, n) is empty,
and for r = 2 this is just the Turdn graph. The number of edges in 7}.(n, ) is denoted
by t,(n,l) and for [ > r we have

b = 30 [Lns= Qe (1) ot

se(1)i€s
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where (1), = [[;Zg(l — i) = (1 —1)--- (I — 7+ 1). Note that for r > 2, Qr = (={(1 -

1)Ti and by Bernoulli’s inequality we have (1 — %)T >1-7, e Dr 8:3:, SO (?T

l—r’ r
(?T — 1. Also note that we have ")r — rt < 1

Tt —

1
is strictly increasing in /, and lim
l—00

Let I, be the largest | € N for which ¢,(m, 1) < 3(""). Note that this is well-defined
by the previous observation, in particular, [, , > 7 and [,,, is increasing in m. In
particular, for fixed r there exists some mg such that l,, , = I, for all m > mg. One

can verify that the following holds for r = 3:

3, 4<m<11,
Observation 8.3. We have l,,3 = ¢ 4, 12 <m < 72,
5, m >T73.

Proposition 8.4. Let m >r > 3,0 < f < (). Then o,(m, f) < 1.

In particular, we can give the following upper bounds on o, for any | € N satisfying | < l,,, ,:

)r
(a) We have o.(m, f) <1— (12, .

(1) Ift,(m,1) < f < () — t,(m,1) for some I, then o(m, f) <1 — 2(?f.

Note that He, Ma and Zhao [88] mentioned in their conclusion without proof, that
for pairs (m, f) withm >r > 3,0 < f < (), the bound o7.(m, ) <1 — ! holds.

rr

This chapter is organised as follows. In Section 8.2 of this chapter we will build
on one of the proof ideas used in [16] for 2-graphs, and extend these methods to
higher uniformities in order to prove Theorem 8.1. In Section 8.3 we will make some

observations on the forcing density o, and prove Proposition 8.2 and Proposition 8.4.

8.2 EXISTENCE OF ABSOLUTELY AVOIDABLE PAIRS

We will call an r-graph G m-sparse if every subset of m vertices in G induces at most m

edges. We call an r-graph with at most m edges an <m-edge (“at most m-edge”) r-graph.

In order to prove results in the 2-uniform case, the following fact is used in [16,56]:
Let m > 0 be given. Then for any v large enough there exists a graph of girth at least
m on v vertices with v!* zn edges. For a probabilistic proof of this fact see for example

Bollobas [26] and for an explicit construction see Lazebnik et al. [102].

Our first lemma is inspired by this: A 2-graph of girth > m is an (m — 1)-sparse
graph. The proof of the lemma follows a standard probabilistic argument:
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Lemma 8.5. Let m > 0, 7 > 2 be given. Then for any n large enough there exists an n-vertex

r-graph with Q(nr_1+%ﬂ) edges which is m-sparse.

Proof. Let ¢y g, = (2) 7 1 Consider a random r-graph G € G,(n,p), for p <

mre2l/f*
¢m.r.gn~™/f. Then the probability that some m-subset contains at least f edges is less

than ( ) ;
n " ne\™ (m"ep 1
() ()< G () <2 *

Now let X be the number of edges in G. Using the the standard bound (7) > (2)’,

T

we have
anm/f

n
E[X] = <T>p Z Cm.fr

Using Chernoff’s bound for Bin(n, p) distributed random variables ([90], see Lemma 2.9),
we obtain that for § € (0, 1) the probability that G has fewer than a (1 — ¢)-fraction of

the expected number of edges is
r—m 1
POX < (1= )BCX)) < exp (~5BIX) < emp (—empr P ) < 5,

where the last inequality holds for %z < r and n sufficiently large. Together with (x)
that gives there exists an r-graph on n vertices with at least (1 — &) (") p edges in which

each m-element subset spans at most f — 1 edges.

Note that, by choosing f = m 4+ 1, we obtain the existence of an r-graph with

c f’mnr_1+%ﬂ hyperedges and no m-subset which spans more than m hyperedges, i.e.
an m-sparse graph. O

The next two lemmata show that for many possible order-size pairs (n,e) we can
find an r-graph which realises this pair and has a “nice”, i.e. easy to analyse, structure.

We will use them repeatedly throughout this chapter.

Lemma 8.6. Let m,r € N, m,r > 2, and c be a constant, 0 < ¢ < 1. Then for n € N
sufficiently large and any e € [c(T)], there exists a non-negative integer k and an r-graph on n
vertices and e edges which is the vertex-disjoint union of a K ,Sf) and an m-sparse r-graph on

n — k vertices.

Proof. Letm,r > 0be given and let n be a given sufficiently large integer. Let e € [¢(T)].
Let k be the non-negative integer such that (*) < e < (1) —1. Note thatsince e < ¢("),
(’;) < ¢(), and thus, k < {/cn + 1 < ¢'n, where ¢ is a constant with ¢/ < 1. We claim
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that the pair (n, e) could be represented as the vertex-disjoint union of a K ,E,T) and an

m-sparse r-graph.

Let G’ be a m-sparse graph on n — k vertices with exactly e — (f) edges. Lemma 9.13

guarantees the existence of such a graph, since

SORCYRCRENETSE

Now let G be the vertex-disjoint union of K ,gr) and G. ]

Lemma 8.7. Let m,r € N, m,r > 2, and c be a constant, 0 < ¢ < 1. Then for n € N

n
T

sufficiently large and any integer e with ¢(T) < e < (T), there exists a non-negative integer

k < nand an r-graph on k vertices and e edges which is the complement of an m-sparse r-graph.

Proof. Note thatadding isolated vertices to the complement of an m-sparse graph results
in the complement of the vertex-disjoint union of a clique and an m-sparse graph. Thus,

the statement immediately follows from Lemma 8.6 by taking complements. O

Lemma 8.8. If for some integers m,r, f withm > r > 2and 0 < f < (') neither (m, f)
nor (m, (") — f) can be realised as an r-graph which is the vertex-disjoint union of a complete

r-graph and an <m-edge r-graph, then the pair (m, f) is absolutely avoidable.

Proof. Assume we can realise neither (m, f) nor (m, (") — f) as the vertex-disjoint union

of a complete r-graph and an <m-edge r-graph.

By the previous lemma, for n sufficiently large and any e < [ (") /2], there exists an
r-graph G with e hyperedges which is the vertex-disjoint union of a clique and an r-
graph which is m-sparse. In particular, for every e € {0,1,..., (7)}, there is an r-graph
G on n vertices with e edges, such that either G or its complement is the vertex-disjoint

union of a clique and an m-sparse r-graph.

If G is the union of a clique and an m-sparse r-graph, then clearly G /4, (m, f),

since (m, f) cannot be realised as the union of a clique and an <m-edge r-graph.

If G is the union of a clique and an m-sparse r-graph, then any induced r-graph on
m vertices is the complement of the vertex-disjoint union of a clique and an <m-edge
r-graph. Since (m, (") — f) cannot be realised as the union of a clique and an <m-edge
r-graph, the pair (m, f) = (m, (") — (("") — f)) cannot be realised by a graph whose

complement is the union of a clique and an <m-edge r-graph. Thus, G /4, (m, f). O
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In the 2-uniform case we used a slightly stronger statement (i.e. no m-subset spans
more than m — 1 edges), to find absolutely avoidable pairs. For r > 2, it suffices to find
pairs (m, f), which cannot be realised as the vertex-disjoint union of a clique K. ) and

an <m-edge r-graph.

Good candidates for such pairs (m, f) are again, as in the 2-uniform case, pairs
which look roughly like (m, (") /2 4 o(1)).

We will use the following lemmata several times:

Lemma 8.9. Let r > 2,m, f be integers with m > r, 0 < f < (). If for some k € N,
(" +m < f < (*11), then the pair (m, f) cannot be realised as an r-graph which is the vertex
disjoint union of a clique and an <m-edge r-graph.

Proof. Assume (m, f)isrealised as K Z(T) + H,wherel > 0and H is an <m-edge r-graph.

Then from the lower bound on f, we have that ! > £, and from the upper bound on f,
we see that ! < k + 1. Thus, no such [ exists. O

Lemma 8.10. Let r > 2,m, f be integers with m > r, 0 < f < (). If for some k € N,
("1 < £ < (¥) — m, then the pair (m, f) cannot be realised as an r-graph which is the union
of the complement of an <m-edge hypergraph and some isolated vertices.

Proof. Assume (m, f)isrealised as K l(r) — H,wherel > 0and H is an <m-edge r-graph,
and some isolated vertices. Then from the upper bound on f, we have that ! < k, and

from the lower bound on f, we see that [ > k — 1. Thus, no such [ exists. ]

Proof of Theorem 8.1. Letr >3, m > mg and let fo = [ () /2] .

Using Lemma 8.8, we need to show that either (m, fy) or both (m, fo — (m + 1)) and
(m, (") = fo + (m + 1)) are not realisable as the vertex-disjoint union of a clique and
an <m-edge r-graph. To this end we will show that the condition of Lemma 8.9 is
satisfied.

Let z be an integer such that (*) < [(7)/2] < (*I'). By standard bounds we observe
the following;:

and thus,
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Thus, by choosing mg sufficiently large, we have for m > mq that x — 1 > ¢, since for
r>3/2e > /2e > 4,and

(i:i) > <f:i>_1 > <4(rm_”>7“—1 > 2m+2. (%)

Let f- = [(7)/2] — (m+1)and f+ = [(7)/2] + (m +1).

Case I: (¥) + m < fo. Then by Lemma 8.9, (m, fo) cannot be realised by K ,(f) + H,
where k € Nand H has at most m edges. If [ (") /2] < (xjfl), then again by Lemma 8.9,
(m, (") — fo) cannot be realised as the disjoint union of a clique and an <m-edge -
graph, i.e. by Lemma 8.8, (m, fo) is absolutely avoidable.

Otherwise, we have [(")/2] = (“I') = [ (")/2] + 1. We clearly have f_ < (“}') and

r

fi> (x:fl) + m, so it remains to show that f_ > (¥) + mand f; < (”2). Indeed, we

r

have

() (1)) () S

ie f_ > (f) + m, and also

fo = <x+1>+m+1< (x+1)+2m+1(2) (x+1)+<x—1> - <SU—|—2>’
r r r r—1 T
and thus, f1 < (“}?).

Case 2 (5) < [(7)/2] < (2) + m.
It remains to check that neither (m, f_) nor (m, f;) can be realised as the vertex-
disjoint union of a clique and an <m-edge r-graph. On the one hand we have f_ <
(¥) +m — (m+1) < (7). Thus, in order to use Lemma 8.9, it remains to verify that we

also have f_ > (121) 4+ m. Indeed, we have

7)) (()-()- ()
Comtlom—1=m

r—1

for m > my, i.e. we have ( .

) +m < f- < (%), so by Lemma 8.9, (m, f—) cannot be

realised as the vertex-disjoint union of a clique and an <m-edge r-graph.

On the other hand, we clearly have f1 > (¥) + m, and also,

(e 2 () (204 (2)- (1)
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so by Lemma 8.9, (m, f1) cannot be realised as K ,gr) + H, where k£ € N and H is an
<m-edge r-graph.

Thus, by Lemma 8.8 the pair (m, f_) is absolutely avoidable. O

8.3 DENSITY OBSERVATIONS

Letr >3, m, f < (). Recall from the Introduction to Part I that the forcing density is

defined as
or(m, f) = limsup {e: (n.e) = (m, )}

(7 '
n—oo r

m

It immediately follows that oy.(m, f) = o,.(m, ("

) — f) by considering complemen-
tary pairs. Recall that for a family of r-graphs G, ex, (n, G) denotes the extremal number,

and for an r-graph H, m,.(H) denotes the Turan density.

Note that for f = 0, o, can be expressed in terms of the Turan density, i.e. 0,,(m,0) =

or(m, (M) = 1—m (K, o ), where the currently best known general bounds on the Turdn

At (kry<i— (™1 -
m—1 = MBm) = r—1 ’

due to Sidorenko [118] and de Caen [51]. Also note that o,.(r,1) = 0,(r,0) = 1. Thus,

the only non-trivial cases are m > r, which are dealt with in Proposition 8.2 and

density are

Proposition 8.4.

Before we prove Proposition 8.2, we show the following auxiliary lemma:

Lemma 8.11. Let m,r, f e Nwithm >r >3and 0 < f < (T)

(a) If (m, f) cannot be realised as the disjoint union of a clique and an <m-edge r-graph,
then o,(m, f) = 0. In particular, if there is no x € [m], such that 0 < f — (¥) < m,
then o.(m, f) = 0.

(b) If (m, f) cannot be realised as the complement of an <m-edge r-graph and some isolated
vertices, then o.(m, f) = 0. In particular, if there is no x € [m)|, such that 0 < (f) —f<
m, then o,.(m, f) = 0.

(c) If or(m, f) > 0, then there exist x, & € [m] such that 0 < f — (¥) < mand
0< () -H- (@) <m

(d) If for some | € N we have (,',) > 2m, then for f > (}) and f # () for x € [m] we
have o.(m, f) = 0.
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Proof.

(b)

(©)

(d)

(a) By Lemma 8.6, forany 0 < ¢’ < 1, n sufficiently large, and e € &, := [¢/ ()]
there exists an r-graph G on n vertices with e edges which is the vertex-disjoint

union of a clique and an m-sparse r-graph.

Note that any induced subgraph on m vertices of G is the union of a clique and
an r-graph with at most m edges. Thus, by definition of o, if a pair (m, f) cannot

be realised by a clique and an <m-edge r-graph, we have

=1-/.

: (n]y _
o, (m, f) = limsup {e:(n,e) = (m, )} < limsupw

n
n—oo (T‘ n—o0 (,,.)

Since this holds for any ¢ € (0, 1), o,.(m, f) = 0.

If there isno & € [m], such that 0 < f — (¥) < ('), then the pair (m, f) cannot be
realised as the union of a clique and an <m-edge r-graph. Thus, in this case we
have o, (m, f) = 0.

By Lemma 8.7, forany 0 < ¢ < 1, nsufficiently large,and e € &, := [(7)] — [¢ (1) ]
there exists an r-graph G on n vertices with e edges which is the complement of

an m-sparse r-graph and some isolated vertices.

Note that any induced subgraph on m vertices of G is the union of a clique with
at most m edges removed and an empty graph. Thus, by definition of o, if a pair
(m, f) cannot be realised as the complement of an <m-edge r-graph and some

isolated vertices, we have

: ]y _
or(m, f) = limsup He: (n,e) = (m, )} < Tim sup (") =&l

nooo (7) oo (7)

Since this holds for all ¢ € (0,1), we have o, (m, f) = 0.

The “in particular” part follows similarly as in part (a).

The first part is the contrapositive of the “in particular” statement in part (a). The

second statement follows trivially using o, (m, f) = or(m, (') — f).

Let f > (1), f # (%) for « € [m], and let ¢ be the unique integer satisfying (%) <
f< (ttl). Since (Til) > 2m, it implies that (ttl) -0 =(") = (Til) > 2m.

Thus, we either have f > (%) + mor (*I') —m > f. In particular, by part (a) or
(b), we have o,.(m, f) = 0.

Note: The results by Axenovich, Balogh, Clemen and the author in [10] imply
that the condition f > (i) might not be needed. It is shown there forr =3. [

Proof of Proposition 8.2. Let m be fixed and f < ("); write f uniquely as f = (i) +0,

r
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wherel € [m]and 0 <!’ < (Tfl). By Lemma 8.11(d) it follows that we have o,.(m, f) = 0
if () > 2mand !’ > 0. In particular, any pair (m, f) with o,(m, f) > 0 must satisfy
either I’ = 0 or (i ) < 2m. In the first case, there are exactly m + 1 possible choices
for f (ie. f = () for some z € {0,...,m}). In the second case, we obtain that
(L)< (L) <2my el < @m)Yrtrde £ < (D) < (2) < en(2m)7/7L. Thus, at

most (m+1)+e”(2m)/"~1 € O (mﬁ) of all possible pairs (m, f) satisfy o,.(m, f) > 0.
Note that for > 3, we have m™—1 € o((™)). O

Proof of Proposition 8.4. Note that ¢,(n,[) is the maximum number of edges an [-partite
r-graph can have.

Letm >7r>2,0< f< (7).

Let | € N, such that t,(m,1) < £("). Note that for » > 3, such an [ always exists, since
we have t,(m,r) < (™), so we can always choose | = r.

Thus, in particular, we are in one of two cases: Either we have f > %(’:‘) > t.(m,l), or
we have f < 2("),ie. f— (7) > 1(") > t.(m,1).

Case 1: f > t,(m,l). Then any r-graph that realises the pair (m, f) is not l-partite. If
e < ty(n,l), we have (n,e) /4 (m, f), since taking any subgraph of T}.(n, ) with e edges
yields an [-partite (n, e)-graph, which cannot contain any (m, f)-graph. In particular,

this implies that

() = (1)
or(m, f) < lim ~—ptr""
( f) n=00 (7.)

Case 2: (') — f > t,(m,1). Then any graph that realises (m, (") — f) is not [-partite.
Then any r-graph G with G —, (m, (') — f) cannot be [-partite, i.e. |[E(G)| > t.(n,1).
Thus, for each e < t.(n, 1), (n,e) /4, (m, (") — f), and thus, by using complementation,

foreach e > (") — t,(n,1), (n,€) #, (m, f). In particular, we have

. () =t (n,0)
or(m, f) < lim ~—p—-=
e

Thus, in either case we have

O’,«(m, f) <1- limsup tr(:” l) -1 (l)r <1.
n—o00 (7”) l’r
This proves part (a).

To obtain part (b), assume that for some I € N we have t,(m,l) < f < (") —t,(m,1).
Then by Cases 1 and 2, we see that (n, e) —, (m, f) requires t,(n,l) < e < () —t.(n,1).
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Thus, we obtain that

op(m, f) < 1— 2limsup blml) _y oDr

) a

which completes the proof. O

Remark 8.12. For the proof of Proposition 8.4(a) one can also use the following extension of
Turdn’s theorem to hypergraphs by Mubayi [108]. This is also the proof that appeared in the
paper [126] containing the result. For fixed l,r > 2 let ]—"l(r) be the family of r-graphs with
at most (é) edges, that contain a core S of | vertices, such that every pair of vertices in S is

contained in an edge.

Theorem 8.13 (Mubayi [108]). Let r,i,n > 2. Then
ex(n, ]-'l(;)l) = ty(n,l)

and the unique r-graph on n vertices containing no copy of any member of .E(J:)l for which

equality holds is T, (n, 1), the complete balanced l-partite r-graph on n vertices.

Alternative proof of Proposition 8.4. Now letm >r >2,0 < f < (7).

Let ! € N, such that ¢,.(m,[) < %(T) Note that for r > 3, such an [ always exists, since
we have t,(m,r) < ('), so we can always choose | = r.

Thus, in particular, we are in one of two cases: Either we have f > %(T) > t,(m,1), or
wehave f < 2(7),ie. f— (7) = 3(7) > t,(m,1).

Case 1: f > t,(m,l). Then by Theorem 8.13, any r-graph that realises the pair (m, f)
contains a member of ]-"l(i)l
subgraph of T).(n, ) with e edges yields an (n, e) graph not containing any member of

i

If e < t.(n,l), we have (n,e) 4 (m, f), since taking any

and thus, a graph not containing induced (m, f). In particular, this implies that

() = t(n,D)
or(m, f) < lim ~—pt""

Case 2: (") — f > t;(m,l). Then by Theorem 8.13 any graph that realises (m, (") — f)

contains a member of K. l(-?l' Then any graph G with G —, (m, (") — f) must contain a

member of ]-'Z(J:)l,i.e. |E(G)| > ty(n,l). Thus, foreach e < t,(n,1), (n,€) / (m, (") = f),

and thus, by considering the complement, for each e > () — t,(n,1), (n,e) £ (m, f).

In particular, we have

() )
or(m, f) < lim ~—p—-—
) = B
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Thus, in either case we have

or(m, f) <1—limsup tr(n, ) — 1 (D)r

RN "

<1 O

Corollary 8.14. For an integer m with m > 3 and any integer f with 0 < f < (y), we have:

1. o3(m, f) < &.
2. Ifts(m,3) < f < (7) — t3(m, 3), then o3(m, f) < 3.

3. If m > 12, then o3(m, f) <

ool

4. If m > 73, then o3(m, f) < 32.
For an integer m with m > 4 and any integer f with 0 < f < ('}), we have:

1. 0-4(maf) < %/
2. There is my, such that for all m > mg we have o4(m, f) < % ~ 0.54.

Proof. Recall that Proposition 8.4(a) says that for a pair (m, f) and any [ satisfying
I <lpm,, wehave o,(m, f) <1— (Q’”. Recall that [, , is the largest integer [ for which

tr(m,1) < (). Note again that l,,, , is increasing in m and that for fixed r there exists

some mg such that l,, , = I, for all m > my.

We start with r = 3. In order to obtain our bounds, we can compute the fraction
(% for different [ > 3. We have that

Note that % > 1, 50 for r = 3, the best possible upper bound on o3(m, f) one can

achieve for any pair (m, f) using Proposition 8.4 will use I = 5.
Now (1) and (2) immediately follow from Proposition 8.4, by setting | = r = 3 and
observing that for r > 3, we always have ¢,(m,r) < 3(""). Then by Proposition 8.4(a)

we have N ;
03(m7f) §1_373:§7

and for all f with t3(m,3) < f < (") — t3(m, 3), by Proposition 8.4(b) we have
(3)s 5
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Now for (3), by Observation 8.3 we know that for m > 12 we have l,,3 > 4, ie.
t3(m,4) < 3 (%) for all m > 12, and thus, by Proposition 8.4(a), for all pairs (m, f) with

m > 12 we have
(4)3 6 5

US(m’f)§1_<43>:1—16:8

For (4), by Observation 8.3 we know that for m > 73 we have [,,, 3 = 5, i.e. t3(m,5) <
(%) for all m > 73, so by Proposition 8.4(a), for all pairs (m, f) with m > 73 we have

(5)3 12 13
<108 2222
os(m. f) 1= "5 25 25

For the case r = 4, we obtain the first part by computing (j% = 2. As before, since
ta(m,4) < 3(7}) for all m, by Proposition 8.4(a) we have

4l 3 29
oufm. /) <1-5 32~ 32
The second part is obtained by computing O 2 < fand (}82{‘ = £ > L. This

implies, that for » = 4 there exists some mg, such that ,, 4+ = 9 for all m > my. In
particular, we then have t4(m,9) < % (T) for all m > mg and thus, by Proposition 8.4(a),

we have
(94) 1 112 131

94 243 243

for m > mg. O

8.4 CONCLUDING REMARKS

We have shown that for » > 3 and m sufficiently large there always exists an f such that
(m, f) is absolutely r-avoidable; however, in the cases considered f is always roughly

(") /2. This inspires the following interesting question:

Open Problem 8.15. Are there absolutely avoidable pairs where f /(") is bounded away from
3 in the limit?

We have proven that for m > r > 3 and f with 0 < f < ("), we always have
or(m, f) < 1. Wehave also shown that for fixed r, most pairs (m, f) satisfy o,(m, f) = 0.
On the other hand, for r > 3 we have not identified any pair (m, f) with 0 < f < (")
for which we could show that o,.(m, f) > 0. We will now use Lemma 8.11 to identify

candidate pairs (m, f) for r = 3, m < 15 which might satisfy o3(m, f) > 0:

Lemma 8.16. Let r = 3,4 < m < 15and 0 < f < (7). If (m,f) # (6,10), then
03(ma f) =0.
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Proof. Let (m, f) be a pair with4 <m < 15,0 < f < (T) with o3(m, f) > 0. One can
verify that for 4 < m < 15, we have 2(m§3) +4<(3) ie (m§3) +2< (%) - (m§3) —2.
Thus, for any f < (), we either have f > ("7 3) +2or () —f= ("3 3) + 2, assume
w.lo.g. thatwehave f > ("7 3) +2. Let 2 be the unique value with (3) < f < (wgl) and
write f = (g) +2/,0< 2 < (”2”) Then by assumption we have x € {m—3,m—2,m—1}.

By Lemma 8.11(a) we know that if we cannot realise the pair (m, f) as the vertex-
disjoint union of a clique and an <m-edge 3-graph, then we have o3(m, f) = 0. Thus,
we can assume that the pair (m, f) can be realised as the vertex-disjoint union of a
clique and an <m-edge 3-graph. By Lemma 8.9, it follows that (m, f) can be realised
as the disjoint union of K %) and an <m-edge 3-graph.

Assume we have z = m — 3. Since by assumption f > (g) +2, clearly the pair (m, f)
cannot be realised as the vertex-disjoint union of K. ® and a graph with at most 1 edge.
Since m — z = 3, it also cannot be realised as the vertex-disjoint union of K. ) and a

graph with 2 edges, a contradiction. Thus, for + = m — 3 we have o3(m, f) = 0.

So assume x € {m — 2, m — 1}. Note that since m — = < 2, the pair (m, f) cannot be
realised as the vertex-disjoint union of a clique on x vertices and a graph with at least 1
edge. Thus, the only pairs (m, f) which might satisfy o3(m, f) > O have 2’ =0, ie. f €
{(™52), (™51} Then (m, f) € A1 U A U {(6,10), (10,84), (13,165), (15,169), (15,91)}
with

Ay = {(5,4), (7,20), (8,35), (9,56), (11,120), (12, 165), (13, 220), (14, 286)},
Ay = {(5,1), (6,4), (7,10), (8, 20), (9, 35), (10,56), (11, 84), (12, 120), (14, 220)}.

Now let (m, f) € A1 U Ag. Let f = (}) — f and let y € [m] such that (}) < f < (y'gl),
ie. f=(}) +v forsomey < (4). Then it is easy to verify that we are in one of three

cases:

eyc{m—1,m—2}andy >0,
e y=m—3andy > 1,

e y<m—4andy >m.

In each case, by Lemma 8.9 (m, f) cannot be realised as the disjoint union of a clique

and an <m-edge 3-graph, and thus, by Lemma 8.11(a), o3(m, f) = o3(m, f) = 0.

The pair (6, 10) is self-complementary with 10 = (3) = (5) /2.
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For the pair (10,84) we have (%) —84 =36 = (5) +1 = (%) — (3). Note that for
m = 10, we have 2m < (;), i.e. by Proposition 8.2, 03(10, 36) = 0.

For the pair (13,165) we have (133) —165 =121 = (130) +1= (133) - (131). Note that
for m = 13, we have 2m < (Y, i.e. by Proposition 8.2, o3(13,121) = 0.

For the pair (15,91) we have 91 = () — () = (3) + 7, and for the pair (15, 169) we
have 169 = (135) — (133) = (131) + 4. Note that for m = 15, we have 2m < (g) < (121), ie.

by Proposition 8.2, 03(15,91) = 03(15,169) = 0. O

Lemma 8.16 implies that for » = 3, the smallest value of m for which we might have
oz(m, f) > 0 for some f is m = 6. In this case, f = 10 is the only possible value for
which we might have o3(6, f) > 0. We will show in Chapter 9 that indeed o3(6,10) > 0.
This is based on the work by Axenovich, Balogh, Clemen and the author [10], where
both upper and lower bounds on 03(6, 10) are provided.

It would be interesting to further investigate this problem, as currently there is no
other known non-trivial pair (m, f) for r > 3 which satisfies o,.(m, f) > 0. Here the

results from Chapter 9 also provide some further insight.
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CHAPTER 9 ORDER-SIZE PAIR IN HYPERGRAPHS: POSITIVE FORCING

DENSITY

9.1 INTRODUCTION

Recall that the Turin function or extremal number ex,(n, H) is the maximum number of

edges in an H-free n-vertex r-graph, and the Turin density of H is defined as n(H) =
lim &« (f H)
n—oo (1)

Determining the Turdn function for graphs and hypergraphs is a central topic in
extremal graph theory with many challenging open problems, trying to identify what
graph density forces the occurrence of a specific subgraph. Here, we are concerned
with conditions on the graph density that forces the occurrence of an induced subgraph

on a given number of vertices and a given number of edges, i.e. a given order-size pair.

As seen in Chapter 8, there are many pairs (m, f) for which o, (m, f) = 0, but not
a single (non-trivial) pair with positive forcing density was known for r-graphs when

r > 3. Note that o,(r,1) = o,(r,0) = 1 and for f = 0, o, corresponds to the Turdn

m

=7 K,(,’;) , where the best currently known general
")) = y g

density, i.e. o(m,0) = o.(m, (

bounds on the Turdn density are

(U (KOy<1- (™1 -
m—1 =7 m - r—1 )

due to Sidorenko [118] and de Caen [51]. In the previous chapter we asked whether
for m > r > 3, thereis any f with0 < f < (Zf) such that o, (m, f) > 0 and suggested

the pair (6,10) as a candidate. We answer this question in the affirmative and prove
03(6,10) > 0.

Given families of r-graphs F, G, we denote by ex(n, inaF, §) the maximum number
of edges in an n-vertex r-graph not containing any F' € F as an induced copy and also

not any G € G as a copy. Further, denote by 7 (i,q.F, G) the limit

T (inaF, G) = limsup M

nosoo (7)

We mostly consider 3-graphs in this chapter. When clear from context, we shall write
abc for the set {a, b, ¢} corresponding to an edge in a 3-graph. The 3-graph on vertex set
[4] with edge set {123,124, 124} is denoted by K. Let F¢° be the family of 6-vertex
3-graphs containing exactly 10 edges.



150 II. ORDER-SIZE PAIRS: ABSOLUTE AVOIDABILITY AND FORCING DENSITIES

Theorem 9.1. We have that 3(6,10) = 1 — 27 (inaFe%, {K3™}). Moreover, 0.42622 <
o3(6,10) < 0.47106.

We do not know whether other pairs (m, f) with m > 3,0 < f < (}') exist, such
that o3(m, f) > 0. We conjecture that for r = 3 there are indeed no other pairs with
positive forcing density. The following result provides evidence for this conjecture to

be true.

Theorem 9.2. Let m and f be positive integers, 0 < f < ('3). If o3(m, f) > 0, then there
exist x1,x9,x3 € [m — 1] such that

=)= (0) () =) G)ome o

Thus, in particular if there are no other non-trivial solutions except for m = 6,
x1 = 5,29 = 5, x3 = 3, to the above Diophantine equation, then Conjecture 9.19 is true.

A computer search for suitable solutions of (9.1) did not give a result for m < 10°.
The main results of this chapter are joint work with Axenovich, Balogh and Clemen [10].

This chapter is organised as follows. In Section 9.2 we prove Theorem 9.1. In
Section 9.3 we prove Theorem 9.2. Finally, in Section 9.4 we make concluding remarks

and state open problems.

9.2 Proofr oF THEOREM 9.1

We say a 3-graph G induces (6, 10) if G contains an induced copy of some F € F°. If G
does not contain any F € 2" as an induced copy, we say G is (6, 10)-free, i.e. a 3-graph

is (6, 10)-free if no 6-vertex set induces exactly 10 edges.

9.2.1 PrROOF IDEA

Before proving Theorem 9.1, we give a short sketch of the proof. We shall show that for

every € > 0 there is ng such that for every n > ng if G is an n-vertex 3-graph satisfying

e(@)
(5)

then G induces (6, 10). Then we first use a standard Ramsey type argument to partition

€ [ﬂ—(ind]:(}()7 {Kz:f_}) +e, 1- W(indfélov {Ki)_}) - 5] ) (92)

most of the vertices of GG into many large homogeneous sets. First, we rule out the case
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that there is a large clique and a large independent set that are disjoint. Thus, most
of the vertex set of G or its complement G can be partitioned into large independent
sets. Due to the symmetry of the problem, if we find a (6,10)-set in G, we also find
a (6,10)-set in G. Thus, without loss of generality, we can assume that most of the
vertices of G can be partitioned into many large independent sets. Using a classical
supersaturation result and the density assumption on G, we find many copies of K}~ in
G and thus, in particular, four large independent sets spanning many transversal copies

of K;~. Using a final cleaning argument, we find a (6, 10)-set in this substructure.

On the other hand, we fix an arbitrary 3-graph G on ex(n, naFa?, {K>"}) edges
that is (6, 10)-free and K -free. Then every set of 6 vertices spans at most 9 edges,
so there is a graph on n vertices and e edges, for any e < ex(n, inaFa’, { K> }), that is
(6,10)-free. By taking complements, there also is a graph on n vertices and e edges for
every e > (1) — ex(n,inaF¢’, {K; }), that is (6, 10)-free.

9.2.2 DEFINITIONS, NOTATIONS, AND CONSTRUCTION

Let G be a 3-graph and let X,Y,Z C V(G), not necessarily disjoint from each other.
Then, let Eq(X,Y,Z) = {(z,y,2) € E(G) : z € X,y € Y,z € Z,x,y,z pairwise
distinct}. We say Eq(X,Y, Z) is complete if Eq(X,Y,Z) = {(z,y,2) v € X,y € Y,z €
Z,x,y, z pairwise distinct}, and Eq(X,Y, Z) is empty if Eq(X,Y, Z) = (). If the 3-graph
G is clear from the context, we might omit the index and simply write £(X,Y, Z).

Let H be an r-graph and ¢t € N. The t-blow-up of H, denoted by H(t), is the r-
graph with its vertex set partitioned in |V (H )| sets V1, Va, ..., Viy (s, each of size t and
edge set {{a1,...,a,} 1 a; € V;;,j = 1,...,7{i1,...,ip} € E(H)}. Informally, H(t)
is obtained from H by replacing each vertex ¢ with an independent set V; and each
hyperedge e of H with a complete r-partite hypergraph with parts corresponding to
the vertices of e.

We say that a 3-graph G is a weak t-blow-up of H, which we also call weak H(t), if
the vertex set of G' can be partitioned into |V (H)| sets V1, Va, ..., Vjy (g each of size ¢
such that if ijk € E(H) then for every a € V;,b € Vj,c € V}, we have abc € E(G), and if
ijk ¢ E(H) then for every a € V;,b € V},c € V}, we have abc ¢ E(G). Moreover, V; is
an independent set fori =1, ..., |V(H)|. Note that we do not impose any condition on

3-tuples of vertices with exactly two vertices in some part V;.

Recall that R,(t,t) denotes the Ramsey number of Kt(r) versus Kt(r). Erdés, Hajnal
and Rado [61] showed that there exists a constant ¢ > 0 such that Rs(¢,t) < 22
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Next, we shall provide a construction of a (6, 10)-free graph that we shall use to

provide an upper bound in Theorem 9.1.

CONSTRUCTION OF THE 3-GRAPH H*

Let H be the 3-graph with vertex set [6] and edges 123, 124, 345, 346, 561, 562, 135, 146,
and 236. Note that adding the edge 245 to H results in a 5-regular 3-graph on 6 vertices,
which is K}~ -free and the basis for the construction for the lower bound on 7(K; ) by
Frankl and Furedi [74].

We define the following iterated unbalanced blow-up of this graph. Denote by H,,
the 3-graph on n vertices where the vertex set is partitioned into six sets A1, A, A3, A4, As

and Ag, where

el = = |5 = |
Ay] = | Ag| = [n <; - 3\1@” and
46| = n (; - 3\1@) +o(1).

The 3-graph H,, consists of all triples xyz, where x € A;,y € Aj and z € A, and
ijk € E(H). Now, let Hi* be the 3-graph constructed from H, by iteratively adding a
copy of H| 4, with vertex set A; for all i € [6] if |A;| is sufficiently large.

Lemma 9.3. The graph H.® is an n-vertex 3-graph with 557 f( ) + o(n®) edges such that

every 6 vertices in H* induce at most 9 edges. In particular, Ht is (6, 10)-free.

Proof. We have

2 2
n 1 1 1
E(H,)|=3(—= -———=|n+6 - ———= ] n®+o(n®
e =3(55) (5-5a) 0 (ava) (5 7a) o)
2
ing’ + o(n?).
Since HY is an n-vertex 3-graph, it has at most () < n?®/6 edges. Let |E(H}Y)| =
dn?® + o(n?) for some d € [0, +]. We have

B - 208 3+3d<3\/§>3+3d<;—3\1/§>3n3+0(n3)

(2( + 9(2 - \/§)> nd + o(n?).



9. ORDER-SIZE PAIR IN HYPERGRAPHS: POSITIVE FORCING DENSITY 153

Comparing the two expressions for |E(H.*)|, we get d = 2/(9 + 21+/3). In particular,

|E(HY) 4 ‘o
(%) 34+ 7V3

(1) = 0.26447 + o(1).

Next we show that every set of six vertices in Hl' spans at most 9 edges. Recall that
H}! is obtained as an iterated blow-up construction with a “seed" graph H, where H is
the 3-graph with vertex set [6] and edges 123, 124, 345, 346, 561, 562, 135, 146, and 236.
At the first iteration, the vertices 1,...,6 or H correspond to parts A, ..., As. We have
that H has three vertices of degree 4 and three vertices of degree 5, and H is Kjf_—free,
so every subset of four vertices spans at most two edges. Moreover, the link graph of
any vertex of H is a subgraph of a 5-cycle. Here, the link graph of a vertex x is a 2-graph

which has contains an edge yz if and only if zyz is an edge of H.

Let X be an arbitrary set of six vertices of H.’.

Case 1: X contains vertices from six distinct parts Ay, ... As.
Then | X| induces a copy of H, i.e. exactly 9 edges.

Case 2: X contains vertices from five distinct parts, say A;,, A;,, Ai,, Ai,, and A;;.
Assume we have two verticesin A4;,, and one vertexineach of 4;,, A;,, A;,,and A;,.
Note that A;,, Ai,, Aiy, Ai,, and A;, correspond to the vertices i1, ...,i5 € V(H).
Let H' = H[{i1, i2, i3, 14, i5 }]. Since the link graph of any vertex in H is a subgraph
of Cs, the link graph of any vertex in H' has at most three edges, so the maximum
degree of H' is at most three. This implies that the total number of edges in H'
is at most 3 - 5/3 = 5. Since the subgraph of H.’ induced by X corresponds to
H' with an added copy of i; which contributes at most three edges, X induces at

most 5 + 3 = 8 edges.
Case 3: X contains vertices from four distinct parts: A;,, A;,, A;,, and A;,.

Case 3.1: X contains 3 vertices from A;, and one vertex from each of A4;,, A;,, A;,.
Then H|[{i1, 12,3, 14}] contains at most two edges, so X induces at most 2 - 3
edges between the parts and at most one additional edge inside A;,, so in

total at most 7 edges.
Case 3.2: X contains two vertices from each of A;,, A;, and one vertex in each of
Aiy, A;,. Again, since H[{i1, 42,3, 14 }] contains at most two edges, X induces

atmost 2 - 4 = 8 edges.

Case 4: X contains vertices from three distinct parts: A;,, A;,, and A;,.

If we have two vertices in each of the three parts, they induce at most2-2-2 =38
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edges. If there are exactly three vertices in one of the parts, then there is a part
with two vertices and a part with one vertex, i.e. there are at most 3-2-1 = 6
edges between the parts, and at most one additional edge inside the first part,
giving at most 7 edges. If there are four vertices in one part, then there are at
most 4 -1 -1 edges between the parts, and at most (3) = 4 additional edges inside

the first part, i.e. at most 8 edges in total.

Case 5: X contains vertices from only one or two distinct parts.
Then there are no edges between these parts, and all possible edges induced by
the six vertices are inside the A;’s. Since the construction is iterative, we can use

the previous cases to conclude that X induces at most 9 edges. ]

9.2.3 LeMMATA

The following lemma shows that every sufficiently large 3-graph can be partitioned

into many large homogeneous sets.

Lemma 9.4. Let t > 0. Then there exists ng = no(t) such that for every n > no, if G is an
n-vertex 3-graph, then G or G contains at least n/t — \/n pairwise disjoint homogeneous sets

of size t.

Proof. Lett > 0 be fixed. Set ng = ([22"])2 and let n > ng. Let G = G be an n-vertex
3-graph. Since n > R3(t,t), there exists a homogeneous set of size ¢ in G. Call it Dy and
define G1 = G \ Dy. We iteratively repeat this process. Define G;;1 := G; \ D;, where
D; is a homogeneous set of size ¢ in G;. We can proceed as long as |V (G;)| > Rs(t,1).
Since R3(t,t) < {22“} < y/no < v/n, we have found at least (n — \/n)/t > n/t — \/n
pairwise disjoint homogeneous sets of size t each. ]

The following lemma analyses the structure “between" two large vertex sets. This

is partly motivated by a result by Fox and Sudakov [73] for 2-graphs.

Lemma 9.5. Let t > 0. Then there exists ng such that for all n > ng the following holds. Let
G be a 3-graph with vertex set V(G) = AU B with AN B = 0, |A| = |B| = n. Then there
exist sets A" C A, B' C B with |A’| = |B'| = t such that each of the edge sets E(A’, A’, B)
and E(A', B', B') is either empty or complete.

Proof. Let m = 442t let ng = 44 . Let A and B be sets of size n > ng. For
m
a € A, X C B we define an auxiliary 2-graph GX = (X, ()2( )) and an edge-colouring
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 fa.by by} € E(G),
X L B(GX) = {r, b} with X ({b1, b)) = {a.bi,bo} € E(G)
b, else.

Note that by the standard bound on the diagonal Ramsey number 73(s, s) < 4%, each

2-coloured 2-clique on k vertices contains a monochromatic clique of size log, (k).

Let A = {ai1,...,an}, let By C B be the vertex set of a monochromatic clique in

GEB of size log,(|B|). Now assume B;, i > 1, has been chosen. Let B;;; C B; be a

B;

monochromatic clique in G |

of size log,(|B;|). Thus, after m iterations we obtain a

set By, of size |B,,| = log, ---logs(n) > 2t — 1, such that for each a;, i € [m], the set
—_———

&

2t—1

m
E({a;}, B, By,) is either empty or complete. Thus, there exists a subset A” C A, |A”| =
>4t

[2] such that the set E(A”, B, By,) is either empty or complete.
Now we repeat this process with vertices in B” = B,,, to obtain a subset A’ C A”,
|A’| = log, - --log,(|A”|) > t, such that for each vertex b € B”, the set E(A’, A, {b})
—_———
1571
is either empty or complete. Thus, there exists a subset B’ C B”, |B/| > |BT‘-‘ =t
such that the set E(A’, A’, B') is either empty or complete. The sets A’, B’ satisfy the

conditions of the lemma, completing the proof. O

The next lemma shows that in a (6, 10)-free 3-graph there cannot be a large inde-

pendent set and a large clique that are disjoint.

Lemma 9.6. There exists to > 0 such that for all t > tg the following holds. Let G be a 2t-vertex
3-graph with vertex set V(G) = AU B where AN B =0, |A| = |B| = t, G[A] is a clique and
G|[B] is an independent set. Then G induces (6, 10).

Proof. By Lemma 9.5, for sufficiently large ¢, we can we find subsets A’ C A, B’ C B
with |A’'| = |B’| = 5 such that the two sets E(A’, A’, B’) and E(A’, B', B) are either

empty or complete.

If E(A',B’, B) is complete, then any vertex from A’ together with the 5 vertices
from B’ induces (6, 10). If E(A’, A’, B') is empty, then any vertex from B’ together with
the five vertices from A’ induces (6, 10). Hence, we may assume that F(A’, B', B') is
empty and E(A’, A’, B') is complete. But then three arbitrary vertices from A’ together
with three arbitrary vertices from B’ induce (6, 10). O

Lemma 9.4 together with Lemma 9.6 immediately implies the following lemma.
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Lemma 9.7. There exists to such for all t > t, the following holds. There exists ng = ng(t)
such that for all n. > no, if G is a (6, 10)-free n-vertex 3-graph, then either G or G contains at
least n/t — /n pairwise disjoint independent sets of size t.

Lemma 9.8. Let t' > 0. Then there exists to > 0 such that for all t > to the following holds.
Let G be a (6,10)-free 2t-vertex 3-graph with vertex set V(G) = AU B where |A| = |B| =t,
AN B =0, G[A] and G[B] are independent sets. Then there exists A’ C A, B' C B of sizes
|A'| = |B'| = t' such that the two sets E(A’, B', B") and E(A’, A’, B") are empty.

Proof. We apply Lemma 9.5 for t’. Then there exists ¢y such that for ¢t > ty, we find
A" C A, B' C B, such that the two sets E(A’, A’, B') and E(A’, B, B') are either empty
or complete. Assume the set E(A’, A’, B') is complete. Then we find induced (6, 10) by
taking any 5 vertices from A’ and 1 vertex from B. By symmetry the same holds for the
set E(A’, B', B'), so in particular, G[A’ U B'] is the empty graph. O

Lemma 9.9. There exists to > 0 such that forall t > to a weak K f) (t) and also a weak K3~ (t)
induces (6, 10).

Proof. Let G be a weak K. (t) with independent sets Vi, Vs, V3, V4. By iteratively
applying Lemma 9.8 to all of the tuples (V;,V}), 1 < i < j < 4, we obtain an induced
copy H C G of K (2) with sets X1, Xo, X3, Xy, X; C V;, i € [4], i.e. H[X; U X,] is
empty for all i # j, the sets E(X;, X, X}) are complete for {7, j, k} € ([g}) except for
E(X3, X3, X4), which is empty. Let z1,2] € X, 3,25 € X9, 23 € X3 and z4 € Xy.

Then {z1, 2}, x9, 2, 3, x4} induces (6, 10).

Now assume there is a weak K ;Z’ (t) called G with independent sets V7, V2, V3, Vy. By
iteratively applying Lemma 9.8 to all of the tuples (V;,V}), 1 < i < j < 4, we obtain an
induced copy H C G of K3(3) with sets X1, Xo, X3, X4, X; C V;, i € [4],ie. H[X; U Xl
is empty for all i # j and the sets E(X;, X;, X;) are complete for all {7, j, k} € (IJ). Let
x9 € X9, 23 € X3,24 € Xy. Then H[X; U {2, x3,24}] is a 6-vertex 3-graph spanning
exactly 10 edges. O

Lemma 9.10. Let t > 0 be an integer and 6 > 0. Then there exists mo = mo(t,d) such that
for all m > my the following holds. Let G be a 3-graph on 4m vertices such that the vertex set
of G can be partitioned into four independent sets V1, Va, V3, Vi of size m each and the number
of copies of K~ with one endpoint from each of the Vs is at least Sm*. Then G contains an
induced copy of a weak K3 (t) or a weak K3~ (t).

Proof. Define the auxiliary 4-graph H on 4m vertices where a 4-set spans an edge iff

the corresponding four vertices in G form a copy of K. We 5-colour the edges of H
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in the following way: An edge {v1,v2,v3,v4} of H with v; € V] for i € [4] is coloured
with j € [4] if {v1,v2,v3,v4} \ {v;} is not an edge in G, and it is coloured with colour 5

if {v1, v2,v3,v4} induces a K3 in G.

By the pigeonhole principle, there exists (§/5)m* edges of the same colour. Erdés [55]
proved that 7(K}(t)) = 0 and thus, there exists a monochromatic copy of Kj(t) in H.
Denote by T' the vertex set of this monochromatic copy. The 3-graph G[T] is a weak
K3(t) or weak K3~ (t). O

We will use a supersaturation result discovered by Erdés and Simonovits [64]. The

proof presented below follows a proof given by Keevash (Lemma 2.1. in [92]).

Lemma 9.11. For € > 0and families F, G of r-graphs, there exists constants 6 > 0 and ng > 0
so that if G is an r-graph on n > ng vertices with e(G) > (7 (iwaF, G) +¢) (1), then G contains
at least 8 (jy; 3y, ) copies of H for some H € G, or at least & (jy, (3| ) induced copies of H for some
HeF.

Proof. Let G be an r-graph on sufficiently many vertices n with e(G) > (7(inaF,G) +
e)(?). Fix an integer k > r, k > |V(H)| for all H € F UG so that ex(k,naF,G) <
(7(inaF, G) + £) (¥). Thereareatleast 5 (}) k-sets K C V(G) withe(G[K]) > ((inaF, G)+
%)( ). Otherwise, we would have

> ey = (1)@ > (377 . 942 (1)

— (7(maF,G) + <) <Z> <’:>

a contradiction. By the choice of k, each of these k-sets K contains an induced copy
of some H € F or a copy of some H € G. By the pigeonhole principle, there exists
H; € F such that at least W( ) of these k-sets K contain an induced copy of Hy,
or there exists Hy € G such that at least W( ) of these k-sets K contain a copy of
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Hj. Thus, in the first case, the number of induced copies of H; is at least

e _ g . :
(Vi <V<H1>!>’ T A F 18D ()

k—|V (Hy)|

Similarly, in the second case, the number of copies of Hs is at least

n g
5(|V<Hz>\> for 9= 271+ 16D (1 (hzy) N

9.2.4 Proor oF THEOREM 9.1.

Proof of Theorem 9.1. Let ¢ > 0. Fix an integer ¢t whose existence is guaranteed by
Lemma 9.9, such that every weak K f’) (t) and also every weak K3~ (t) induces (6, 10),
see the paragraph before Lemma 9.9 for the definition of a weak blow-up. Fix § > 0 and
ni € N, given by Lemma 9.10, such that every (6, 10)-free 3-graph G on n > n; vertices
satisfying e(G) > (m(inaFa% {K; }) + e)(3) contains at least 26(';) copies of K. Let
mo = mo(t,d) be given by Lemma 9.10. Fix integers m; and ng whose existence is
guaranteed by Lemma 9.7, such that m; > mg and for all n > ny, if G is (6, 10)-free
n-vertex 3-graph, then either G or G contains at least n/m; — \/n pairwise disjoint

independent sets of size m;. Choose ng := max{ni, ng, mf, [400005~2]} and let n > ny.

Let G' be a (6, 10)-free n-vertex 3-graph satisfying the density assumption (9.2):
e(G)
(5)

By Lemma 9.7 either G or G contains at least n’ := n/m; — \/n pairwise disjoint

6[ (md {K3 })+€71_ (md {K3 })—E].

independent sets, each of size m;. Since the density assumption is symmetric, and
since G induces (6, 10) if and only if G induces (6, 10), we can assume, without loss of
generality, that G contains at least n’ pairwise disjoint independent sets V1, V5, ...,V

of size m; each.

By Lemma 9.11, G contains at least 25('}) (not necessarily induced) copies of K.
We call a 4-set transversal in G if each of the four vertices is in a different V;. A copy
of K3~ in G is called transversal if the vertex set of the copy is transversal in G. The

number of 4-sets which are not transversal in G is at most

T
2

vnn? 4+ n’ (Tr;)nQ <ns +mnd < 2n ;
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for n > m?. The number of transversal copies of K}~ in G is at least 35(’}), since

n 3.(n o (n § nt 0 4 7
_ 2 - - > 2 /2
25(4) 25<4> 2<4> 29541 96" T

where the last inequality holds for n > 400005 2. By pigeonhole principle there exist
1 <11 <ig < iz <4 < n/, such that the number of copies of Kff* with one endpoint in
each of V;, Vi,, Vi,, V;, is at least

By Lemma 9.10, the 3-graph G[V;, U V;, U Vj, U V;,] contains a weak K3~ (t) or a weak
K 53) (t) as an induced subhypergraph. This contradicts Lemma 9.9.

We conclude 03(6,10) > 1 — 27(;naFa {K; }). In fact, we have 03(6,10) =
1 — 27 (1naFa?, {K2}) holds by the following argument' Let G be an n-vertex K; -
free and (6, 10)-free 3-graph with exactly ex(n, i Fa°, { K;~ }) many edges. Since G is
K3 -free, every four vertices span at most 2 edges, so using double counting, we see
that every 6 vertices span at most () - 2/3 = 10 edges. Since G is also (6, 10)-free,
every 6 vertices span only at most 9 edges. We conclude that every subgraph G' C G
is (6,10)-free. Further, by symmetry, also the complement 3-graph of any G’ C G is
(6,10)-free. This proves the first part of the theorem.

To get specific numerical bounds on the forcing density, recall again that if

e(G)

(5)

then G induces (6,10). In particular, if % € [r(Ky ) +e,1—n(K]")—¢], then G
3

induces (6,10). The Turdn density of K}~ is not known precisely. The best currently

known bounds on the Turdn density of K}~ are 0.28571 ~ 2 < m(K27) < 0.28689,

where the lower bound construction was given by Frankl and Fiiredi [74]. The upper

€ [ﬂ(indflo,{f(ff_}) +e,1 — 7(inaFg ,{K3 3 5] 7

bound was proved by Vaughan [123] who applied the flag algebra method, see also
the webpage of Lidicky [103]. Thus, 03(6,10) > 1 — 2 - 0.28689 = 0.42622. However,
from Lemma 9.3, we have that there is a 3-graph on n vertices and 357 f( )(1+0(1))

hyperedges, such that each of its subgraphs is (6, 10)-free. Moreover, the complement
of this 3-graph has (1 — 3+‘7L 7 (g)) (14 o(1)) hyperedges and each of its supergraphs
is (6, 10)-free. Thus, 03(6,10) <1 — = 0.47105. O

4
3+7V3
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9.3 Proor oF THEOREM 9.2
9.3.1 CONSTRUCTIONS AND NOTATIONS

We shall first construct a special class of 3-graphs.

Letn,k € N,k <nand S C [2]. Let G(S, n, k) be the 3-graph with vertex set AU B,
|A| =k, |B| = n—k, where A and B are disjoint such that A induces a clique, B induces
an independent set, called base set, and we have the additional edges | J,. g £i, where
E,={AUB :A € (’?),B’ € (?El)} Thus, Gy(n, k) is just a clique on k vertices and
n — k isolated vertices, and G/y)(n, k) is the complete graph on n vertices with a clique

of size n — k removed. For an illustration of G({2},n, k) see Figure 9.1.

A B

Figure 9.1: Illustration of G({2},n, k).

Note that the complement of G(S,n, k) is G([2] — S,n,n — k). Let f(S,n,k) =
|E(G(S,n,k))|. We call a 3-graph G m-sparse if every subset of m vertices in G induces
at most m edges. We say that a 3-graph G is canonical plus with parameters (S, n, k), or
simply canonical plus if G is a 3-graph obtained as a union of G(S, n, k) and an m-sparse
graph whose vertex set is the base independent set of G(S, n, k). A 3-graph G is canonical
minus with parameters (S, n, k), or simply canonical minus, if G is the complement of a
canonical plus graph with parameters ([2] — S,n,n — k). Note that a canonical minus
graph with parameters (S, n, k) is obtained from the graph G(S,n, k) by removing
edges of a copy of an m-sparse graph from the clique A. We see that (letting (¥) = 0 for

y < x), that
k Z E\ (n—k

Moreover, |f(S,n,z) — f(S,n,z — 1)| € O(n?). Note that any induced subgraph
of a canonical plus 3-graph with parameters (.5, n, k) is a canonical plus 3-graph with
parameters (S,n’,k’), for some n’ and k. A similar statement holds for canonical
minus graphs. Thus, these two classes of graphs are hereditary. We see that if an

m-vertex 3-graph is canonical plus with parameters (S,m,x), then the number of
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edges in such a graph is in the interval [f(S,m,x), f(S,m,z) + m]. Similarly, the
number of edges in a canonical minus graph with parameters (.S, m, x) is in the interval
[f(S,m,x) —m, f(S,m,z)]. Thus, if f is the number of edges of a graph that could be
represented as both a canonical plus and a canonical minus graph with first parameter
S and m vertices, then f € F'(S,m), where

1 m
F(S,m): f(S,m,x), f(S,m,x) —|—mﬂU f(S,m,z) —m, f(S,m,x)]
=1

o)

9.3.2 PROOF IDEA

3

N

We are using the following general principle:

Proposition 9.12. Let Cy, . .., Cy, be hereditary classes of r-graphs such that for any ¢, 0 < ¢ <
1/2, any sufficiently large n, and any e with ¢(") < e < (1 — ¢)(7), there is a graph G; € C;
on n vertices and e edges for all i = 1,. .., k. If for any sufficiently large n and some i € [k],
each n-vertex graph in C; is (m, f)-free, then o,.(m, f) = 0.

Here, we use two classes C; and C, of 3-graphs that are canonical plus and canonical
minus with the same first parameter S. Specifically, the main idea of the proof of
Theorem 9.2 is that for any sufficiently large n, any S C [2], and any e in the interval
[e(3), (1 = ¢)(5)] for 0 < ¢ < 1/2, there is a canonical plus 3-graph G ¢ and a canonical
minus 3-graph G ¢ with first parameter S, on n vertices and e edges. If, for a pair
(m, f), f & F(S,m) for some S C [2], then the pair (m, f) is not representable as a
canonical plus or canonical minus graph with first parameter S. Then in particular,
GZS and G_g are (m, f)-free and (n,e) # (m, f). Letting c be arbitrarily small, we
conclude that o3(m, f) = 0 for such a pair (m, f). Finally, we derive number theoretic
conditions for a pair (m, f) not being representable by a canonical plus or a canonical

minus graph.

9.3.3 LemMmMATA

In the following lemmata, n,m, f, e are non-negative integers withm > 3,0 < f < ().
In [126] it was shown that for any m < 15 and for any 0 < f < (') such that (m, f) #
(6,10), o3(m, f) = 0. Thus, we can assume that m > 16. The following folklore result

can be obtained by a standard probabilistic argument.
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Lemma 9.13. Let m > 0. Then for any sufficiently large n there exists an n-vertex 3-graph

with Q(anFﬁ) edges which is m-sparse.

For a proof of Lemma 9.13 see e.g. [126]. The next lemma is a generalization of a

similar statement proven in [56] for graphs.

Lemma 9.14. Let S C [2] and c be a constant, 0 < ¢ < 1/2. For n € N sufficiently large and
any e where ¢ < e < (1 — ¢)(%), there exist 3-graphs G1(n, e) and Ga(n, e) on n vertices and

e edges that are canonical plus and canonical minus respectively, with first parameter S.

Proof. Let n be a given sufficiently large integer. Let k£ be a non-negative integer such
that either f(S,n,k) <e < f(S,n,k+1)or f(S,n, k) <e < f(S,n,k— 1) holds. With-
out loss of generality assume that f(S,n,k) < e < f(S,n,k+1). Let¢; = 1 — c. Note

thatsincee < ¢;(}), (g) < ¢i(3), wehave k < yein+1 < 'n, where ¢ < 1isa constant.

Let G’ be an m-sparse 3-graph on n — k vertices with |E(G")| > (n — k)“ﬁrl. The
existence of G’ is guaranteed by Lemma 9.13. Define G” to be the 3-graph obtained as
a union of G(S, n, k) and a copy of G’ on the vertex set that is the base independent set
of G(S,n, k). Then |E(G")| > f(S,n, k) + (n — k)" a1 > f(S,n,k+1) > e. Here, the
second inequality holds since f(S,n, k +1) — f(S,n, k) = O(n?). Finally, let G1(n, ¢) be

a subgraph of G” with e edges, obtained from G” by removing some edges of G'.

For the second part of the lemma, take G3(n, €) to be the complement of G4 (n, () —¢)
with first parameter [2] — S, guaranteed by the first part of the lemma. O

Lemma 9.15. Let S C [2]. If f & F(S,m), then o3(m, f) = 0.

Proof. Assume we have integers m, f as above, some S C [2] and f ¢ F(S,m). Let
¢ be a constant, 0 < ¢ < 1/10, n > ng, and e be any integer satisfying c(}) <

e < (1 —¢)(3). Define graphs G; = Gi(n,e) and G2 = Ga(n,e) whose existence is

guaranteed by Lemma 9.14. Any induced subgraph of G on m vertices is canon-

ical plus with parameters (S, m,z) for some = and thus, its number of edges is in
m—1

U [f(S,m,x), f(S,m,z) + m]. Any induced subgraph of G5 on m vertices is canon-
=0

ical minus with parameters (S, m,z) for some z and thus, its number of edges is in

G [f(S,m,x) —m, f(S,m,x)]. Since f ¢ F(S,m), we get that G; and G2 are (m, f)-

=1
free. Letting c go to zero, we see that o3(m, f) = 0. O



9. ORDER-SIZE PAIR IN HYPERGRAPHS: POSITIVE FORCING DENSITY 163

In the following lemmata we shall use the set S =), S = {1}, or S = {2}, to claim
that for many pairs (m, f), o3(m, f) = 0.

Lemma 9.16. Let m > 7and 0 < f < (m2—1) Then o3(m, f) = 0.

Proof. Let S = {1}. By Lemma 9.15, it is sufficient to verify that f ¢ F'({1}, m). For that
it is sufficient to check that F({1},m) N [1, ("5 1) — 1] = (. Recall that

m—1 m
F({1},m) = |J F ({1}, m, ), f({1},m,2) +m] N U f{1}y,m,2) —m, f({1},m,x)].
=0 =1

Note that f({1},m,0) =0, f({1},m,1) = (™, "), and f({1},m,z) > (", '), forz > 1.

Thus, we have

m—1

F((1hm) O [L (") = 1) = ({1 m,2), f({Lm,) +mln (L, (") -1

=0
= [f({l}amv 0)>f({1}7m70) + m] N [17 (m;) - 1] = [17m]a

U me) = m. f({1}m, 2 0 1 (") = 1) = [F({1},m. 1) = m. f({1},m. 1) ~ 1]
=[("") = m. (") = 1]
In particular, we have
F{1},m)n[L, (") =1 =[0,m]n[("") —m, (") =11 =10,

where in the last step we used that ("™, ') > 2m. Thus, o3(m, f) = 0. O

Lemma 9.17. Let f be an integer such that (";") < f < (%) and for any x € [m], f # ().
Then os(m, f) = 0.

Proof. Define f as given in the statement of the lemma and S = (). By Lemma 9.15,
it is sufficient to prove that f ¢ F((,m) and in particular it is sufficient to show that

F@,m)n (™Y, (3) =1 C{(%) : = € [m]}. Since f(0,n,z) = (3), we have

F@,m) = JIG), G) +mn UJIE) -
=0 =1

m—1

see Figure 9.2 for an illustration of the set F(,m). Note that (5) > (™, ") implies
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(5) > 2m, which is equivalent to (“f') —m > (}) + m. In particular, in this case the
interval [(%), (*£1)] is long enough that we have [(%), (£) +m] N [(%) —m, (%)] = 0 for
x # 2" and (3), (“g) > (m2—1) Thus,

| p—
| I I I I I

|
0 (D) () (G I G I €9

m—1 m

Figure9.2: This figure displays theset |J [(3), (5)+m]inredand theset |J [(5)—m, (5)]
=0 =1

in blue on the number line. Here, x is the smallest integer x such that (m'gl) —m >

(g) + m.

Lemma 9.18. Let m > 13 and f be an integer, such that (mgl) <f< (Tg) _ (mgl) and for
any x € [m], f # (?);) + (326) (m — x). Then o3(m, f) = 0.

Proof. Consider m and f as given in the statement of the lemma and let S = {2}. By
Lemma 9.15, it is sufficient to prove that f ¢ F'(.S, m) and in particular, it is sufficient to
show that

i (75 (2)- (73] () m-r v

Recall that
F({2},m) = L_J [F({2},m, ), F({2}), m,2) +m] 0 | [P ({2} m, ) — m, f({2}, m, 2)).
z=0 r=1

From the definition of f, we have that f ({2}, m,z) = (3)+(5) (In—z). Note thatforz < 4
we have f({2},m,z) + m < (";') and for z > m — 4, f({2},m, ) —m > (F) — (" V).
Therefore it is sufficient to consider only

m—4 m—4
U {2t m @), f({28 myz) +ml 0 ([ [F({2), m, @) —m, f({2},m, 2)).
=4 =4

One can verify, thatform > 13and 4 < x < m—4, f({2},m,z) — f({2},m,x—1) > 2m.
Thus,

m—4 m—4
U [rd2y my), ({2}, my2) +ml 0 [ [F({2),m, ) — m. f({2},m,2)]
r=4 =4

={f({2},m,x): 4 <z <m—4}.
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In particular, we have

F({2hm)n[("7), (5) = (" S {G) + G)m—2) 14 <o <m -4}, O

9.3.4 Proor oF THEOREM 9.2

Proof. For m < 15 it was already shown in [126], that the only possible pair (m, f) with
0 < f < (%) and o3(m, f) > 0is (6,10), where 10 = (g) = (g) - (g) = (g) + (3)(6 - 3).
Now let m > 15, and assume that for some f we have o3(m, f) > 0. Then applying
Lemma 9.16 to (m, f) and (m, (') — f), we obtain that (";') < f < (%) — (™).
Applying Lemma 9.17 to (m, f) gives us that f = (%), for some z1; applying it again to
(m, (§) — f) gives us that f = (")) — (?), for some z5. Lemma 9.18 shows the existence

of some x3, for which we have f = (%) 4 (7) (m — 23). This completes the proof. [

9.4 CONCLUDING REMARKS

In this chapter we have investigated 3-uniform hypergraphs and forcing densities
o3(m, f). We have shown that ¢3(6,10) > 0 and provided more specific bounds.
Apart from the pairs (m,0), (m, ('})), the pair (6, 10) is the only known non-trivial pair
for which the forcing density is positive. We conjecture that (6, 10) is the unique pair
(m, f) with 0 < f < (%) for which a3(m, f) > 0:

Conjecture 9.19. Let m and f be positive integers, 0 < f < (%J). If o3(m, f) > 0, then
(m, f) = (6,10).

Theorem 9.2 implies that if there is no m # 6 for which there is a solution (z1, z2, 3),

x; € [m — 1], of the system of Diophantine equations

1 . m _ €T _ I3 T3 _
(3)=()-(3)=()+ (BJmra 09
then Conjecture 9.19 is true. However, we do not know much about solutions (z1, z2, x3)
to the above system of equations. A computer search for suitable solutions of (9.3) for
any givenm < 10° did not give aresult. Considering only the equation (%) = (') —(2),

Sierpinski [119] found an infinite class of solutions.

It might be possible to find stronger necessary conditions for a pair to have positive
forcing density using different constructions than the ones used in the proof of Theo-

rem 9.2. Inparticular, the reader might wonder why Lemma 9.15 and the corresponding
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constructions in Lemma 9.14 were not used when S = {1}. The reason for this is that
the respective function f({1},m,z) = (3) +z ("™, ") is not monotone, making it difficult
to capture the structure of the set F/({1},m). However, this construction could very

well be used to conclude that certain pairs (m, f) have forcing density zero.

Determining the exact value of o3(6,10) remains open. We believe that the upper
bound from Theorem 9.1, coming from the iterated construction H}' in Lemma 9.3, is
tight.

. _ 12
Conjecture 9.20. We have 03(6,10) =1 — 2001~ 0.47105.
We remark that a standard flag algebra calculation yields that 7(;,qFa°, { K3 }) <
0.275 < 2/7. Using the first part of Theorem 9.1, this gives o3(6,10) > 0.45 which
improves the lower bound on ¢3(6, 10) given in the second part of Theorem 9.1.
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