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Abstract. In our connected world, ensuring and demonstrating the confiden-
tiality of exchanged data becomes increasingly critical for software systems.
However, especially in early system design, uncertainty exists about the soft-
ware architecture itself and the software’s execution environment. This does not
only impede early confidentiality analysis but can also cause data breaches due
to the lack of awareness of the impact of uncertainty. Classifying uncertainty
helps in understanding its impact and in choosing proper analysis and mitigation
strategies. There already exist multiple taxonomies, e.g., from the domain of self-
adaptive systems. However, they do not fit the abstraction of software architecture
and do not focus on security-related quality properties like confidentiality.

To address this, we present a classification of architectural uncertainty regard-
ing confidentiality. It enables precise statements about uncertain influences and
their impact on confidentiality. It raises awareness of uncertainty properties,
enables knowledge transfer to non-experts, and serves as a baseline for discussion.
Also, it can be directly integrated into existing notions of data flow diagrams for
uncertainty-aware confidentiality analysis. We evaluate the structural suitability,
applicability, and purpose of the classification based on a real-world case study
and a user study. The results show increased significance compared to existing
taxonomies and raised awareness of the impact of uncertainty on confidentiality.
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1 Introduction

Today’s software systems become increasingly complex. With growing size and con-
nections, ensuring software quality becomes a major challenge. This is especially true 
for security-related quality properties like confidentiality. Confidentiality demands that 
“information is not made available or disclosed to unauthorized individuals, entities, or 
processes” [17]. Violations of confidentiality cannot only harm user acceptance [45] but  
also have legal consequences [16]. To identify flaws early and to avoid costly repairs of 
running systems [4], design-time confidentiality analyses have been proposed [39,42]. 
Based on analyzing the software architecture and its data against confidentiality 
requirements [15], the software design can be enhanced and statements about potential



violations can be made. Here, data flow-oriented analyses became common because
“problems tend to follow the data flow, not the control flow” [40].

However, especially in early development and in complex systems of systems, the
software architecture is subject to uncertainty. Uncertainty describes “any departure
from the unachievable ideal of complete determinism” [43]. This does not only affect
decision making—also known as the cone of uncertainty [28]—but even blurs which
decisions should be prioritized. When not managed properly, the lack of awareness of
uncertainty can void a system’s confidentiality. Also, the OWASP Top 10 [29] lists
issues like insecure design as top security risks.

Multiple taxonomies were defined to better understand the nature of uncertainty
[31,32,43]. However, they mostly originate from the domain of self-adaptive systems
and do not focus on confidentiality. Consequences are the lack of applicability and an
increase of ambiguity. The relation of software architecture, confidentiality and uncer-
tainty remains unclear [13]. And while “there is growing consensus on the importance
of uncertainty” [27], much is yet unknown regarding the impact of uncertainty on soft-
ware systems [10]. Hezavehi et al. [27] conducted a survey on uncertainty. They find
a “lack of systematic approaches for managing uncertainty” [27] and that uncertainty
should already be addressed at design time. This statement is supported by the work of
Troya et al. [41]. They conducted a Systematic Literature Review (SLR) and analyzed
123 papers. They state that software engineers require more help “to identify the types
of uncertainty that can affect their application domains” [41].

In previous work [38], we presented a unified model to express data flows and ana-
lyze confidentiality violations in software architectures. We mined modeling primitives
from existing approaches [37,42], defined a meta model and an analysis using label
propagation. We also showed its integration into existing Architectural Description Lan-
guages (ADLs) like Palladio [33]. The underlying goal of a data-centered approach
without predefined analysis goals or data flow constraints is the possibility of user-
defined confidentiality analyses [39]. However, the previous approach was only able
to analyze confidentiality with perfect knowledge, i.e., by excluding uncertainty about
software systems and its data.

In this paper, we present a classification scheme of architectural uncertainty. This
classification is specifically designed to express uncertainty on the architectural abstrac-
tion level regarding confidentiality. We build on the existing data flow model [38] and
consider the impact of uncertainty on the software architecture’s confidentiality. Here,
we focus on known unknowns, i.e., uncertainty that can be identified but not always
resolved immediately. The classification shall help architects to describe uncertain influ-
ences more precisely, find mitigation and analysis strategies, raise awareness of relevant
uncertainty attributes, enable the reuse of knowledge, and serve as a baseline for discus-
sion. We argue that making uncertainty explicit enhances the overall design and sim-
plifies phase containment, i.e., fixing defects in the same phase as they appear. Here,
uncertainty should not be avoided but become a source for improvement [11].

We start by discussing the state of the art in Sect. 2 and present the contributions of
this paper (C1 and C2) thereafter.

C1. First, we define architectural uncertainty and relate uncertainty to Architec-
tural Design Decisions (ADDs) and confidentiality in Sect. 3. We extract relevant



classification categories and discuss their applicability to describe the impact of
uncertainty on confidentiality. Based on this, we present an uncertainty classifica-
tion scheme in Sect. 4.

C2. Second, we show how the classification helps identifying the impact of uncertainty
on confidentiality in Sect. 5. We demonstrate how the classified impact of uncer-
tainty maps can be modeled using the unified modeling primitives [38]. We also
provide a reference set of classified uncertainties.

The evaluation of the classification in Sect. 6 is based on the guidelines of Kaplan et al.
[19]. The authors propose to evaluate the structure’s suitability, the applicability, and
the purpose. This enables us to make statements not only about the appropriateness
and the quality of the classification as such, but also consider its reliability and ease of
use, as required by usable security [36]. The evaluation also includes the metrics-based
comparison to the state of the art, i.e., existing taxonomies of uncertainty. We con-
ducted a user study with researchers from the software architecture domain and a real-
world case study based on the German open-source contact-tracing app Corona Warn
App [34].

The results show increased significance compared to existing taxonomies, i.e., better
applicability and more precise classification. The user study shows that the classifica-
tion scheme helps in understanding and analyzing uncertainty and is a satisfying base
for discussions. This cannot only be seen in the gathered data but has also been inde-
pendently reported by multiple study participants. Section 7 concludes this paper and
gives an outlook on future application areas.

2 State of the Art

In this section, we give an overview of the state of the art based on three categories:
Uncertainty taxonomies, uncertainty in software architecture, and ADDs.

Uncertainty Taxonomies. To better understand uncertainty, researchers created several
taxonomies [5,8,26,31,32,43]. Walker et al. [43] present a taxonomy of uncertainty
using three dimensions. The location describes where the uncertainty can be found, e.g.,
in the model input or context. The nature distinguishes between epistemic (i.e., lack of
knowledge) and aleatory (i.e., natural variability) uncertainty. Last, the level describes
how much is known about the uncertain influence. Although this taxonomy has been the
baseline for many others, it does not specifically aim to describe software-related uncer-
tainty. Perez-Palacin and Mirandola [31] build upon this classification in the context of
self-adaptive systems. They adjust the dimension location to better fit software models.
Bures et al. [5] adapt this taxonomy again to “fit the needs of uncertainty in access con-
trol” [5]. Although this work only considers access control in Industry 4.0 scenarios, it
is also a good foundation for our classification. Esfahani and Malek [8] describe charac-
teristics of uncertainty and hereby focus on the variability and reducibility of different
sources of uncertainty. Mahdavi-Hezavehi et al. [26] propose a classification frame-
work of uncertainty. They aim at architecture-based, self-adaptive system but do also
not consider security, privacy, or confidentiality. Also related is the uncertainty tem-
plate by Ramirez et al. [32]. They present a scheme to describe uncertainty sources for



dynamically adaptive systems in requirements, design, and runtime. Due to the different
scope, they describe uncertainty in software architecture as inadequate design which is
not precise enough to identify the impact of architectural uncertainty on confidentiality.

Uncertainty in Software Architecture. Numerous approaches exist to handle uncer-
tainty in software architecture [7,22,25]. For the sake of brevity, we only summarize to
work related most. For an in-depth analysis, refer to the previously mentioned surveys
[27,41]. GuideArch [7] and PerOpteryx [22] are approaches to explore the architectural
solution space under uncertainty. Both approaches try to achieve optimal architectures
under given constraints and degrees of freedom but do not aim at security-related prop-
erties like confidentiality. Lytra and Zdun [25] propose an approach to combine ADDs
under uncertainty by utilizing fuzzy logic. Although this approach considers the soft-
ware design, the representation of uncertainty as fuzzy values alone is not suitable to
analyze confidentiality.

Architectural Design Decisions. The relation between design decisions and uncertainty
has already been described more than two decades ago [28]. Kruchten [23] presents an
ontology of ADDs. The author distinguishes between existence, property and executive
decisions and provides an overview of ADDs attributes. This is especially relevant when
considering uncertainty that can void existing decisions and require software archi-
tects to backtrack. Jansen and Bosch [18] see software architecture as a composition
of ADDs. This shows how uncertainty, e.g., about the system context, can hinder good
software design as the best decision might not be found. Although both approaches do
not focus on uncertainty, they inspired our classification which is strongly coupled to
architectural design.

3 Uncertainty, Confidentiality, and Software Architecture

In this section, we give an overview of uncertainty in software architecture. We pro-
pose the term architectural uncertainty and describe the relation of uncertainty, ADDs
and confidentiality based on an exemplary architecture model. Afterwards, we discuss
existing classifications of uncertainty and their applicability to describe the relation of
architectural uncertainty and confidentiality.

When speaking about uncertainty in software architecture, we propose speaking
in terms of impact rather than only considering the uncertainty’s type or source. This
enables software architects to focus on its mitigation during design, e.g., to enhance
confidentiality. Also, when interpreting an architecture as set of ADDs [18], the impact
is one of the most important properties to consider [28].

We understand architectural uncertainty as uncertainty, that can be described on
architectural abstraction and where (early) awareness enables considering its impact on
quality attributes like confidentiality. We do not use the term design time, as the real
impact of the uncertainty might happen later, e.g., at runtime. We also do not only refer
to known unknowns, as this only implicates awareness which is too imprecise. We refine
this term by requiring the architectural abstraction, e.g., as part of an architectural model
with specified impact on software-architectural elements, e.g., software components,



interfaces, or hardware resources. Here, we also exclude higher orders of uncertainty
[31] as their impact cannot immediately be expressed due to the lack of awareness.
However, awareness can be raised with increasing knowledge, e.g., by asking a domain
expert [30] or by using a classification scheme for systematic treatment [43].

Figure 1 shows an example of two architectural uncertainties and their impact on
confidentiality [12]. The diagram represents a simplified Online Shop that consists of
two components and two hardware resources. The first uncertainty U1 is the allocation
of the Database Service that stores the Online Shop data. The second uncertainty U2 is
the trustworthiness of the provider of the cloud service, a potential deployment location
of the Database Service. Both uncertainties can be annotated in the architectural model
and have a potential impact on confidentiality, e.g., due to legal requirements like the
GDPR [6]. However, this example also shows the difference between awareness and
mitigation: While deciding the allocation could resolve Uncertainty U1, Uncertainty
U2 potentially remains and requires further ADDs, e.g., the encryption of data.

Fig. 1. Combined component and deployment architecture model with uncertainty.

When dealing with architectural uncertainty, considering ADDs helps to structure
the design process. In the beginning of this process, much is yet unknown or impre-
cise and ADDs are made under assumptions [28], e.g., that the provider is trustwor-
thy in Uncertainty U2. Making this uncertainty explicit can help to mark decisions as
challenged [23] and consider backtracking. While some uncertainty only exists due to
not yet decided ADDs (e.g., Uncertainty U1), other cannot be reduced immediately
[31] (e.g., Uncertainty U2). Still, creating awareness of the impact of uncertainty can
help refining the architecture and making more informed statements about confiden-
tiality. This impact can be understood, modeled, simulated, analyzed, measured and—
eventually—managed.

There are multiple relevant properties of ADDs that help in the mitigation of uncer-
tainty. The number of solutions of related ADDs [18] can help to estimate whether the
uncertainty can already be fully reduced at design time. We distinguish between closed
sets that could at least partially be analyzed and open sets with a potentially infinite
number of solutions or configurations. In our example, Uncertainty U1 relates to the
ADD of the allocation and represents a closed set. This can be analyzed, e.g., by com-
bining design space exploration with dataflow analysis [44]. But even with a closed



Table 1. Available categories and options to classify uncertainty used in related work.

Available Categories Available Options

Location: Describes where
uncertainty originates from or
where it manifests itself within the
system or model [5,26,31,41,43]

Context: system boundaries [31,43], user input [5], execution context [26]; Model
structural: existence of elements [41], elements and their relationship [31,43],
structural differences [26], components and their properties [5]; Model technical:
software and hardware [43]; Input: input types [43], input values [31], measurement
deviation [41]; Parameters: parameter calibration [31,43]; System behavior: actual
behavior [5], including parameters and actions [41]; Belief: uncertain statements about
system and environment [41];

Level: Describes how much is
known about the uncertain
influence and how the uncertainty
can be described [1,5,26,31,43]

Statistical: Statistical data available [26,43]; Scenario: Possible scenarios available
without statistical data [1,26,43]; Recognized ignorance: Awareness of uncertainty, but
cannot be further described [43]; Total ignorance: Lack of awareness of uncertainty
[43]; Orders of Uncertainty: No uncertainty (0th), known uncertainty (1st), lack of
awareness, i.e., unknown unknowns (2nd), lack of awareness and process (3rd),
meta-uncertainty (4th) [1,5,31];

Nature: Describes the essence and
character of the uncertainty
[5,26,31,41,43]

Aleatory: Uncertainty due to inherent variability or randomness [5,26,31,41,43];
Epistemic: Uncertainty due to a lack of knowledge [5,26,31,41,43];

Manageability: Describes whether
the uncertainty can be reduced
[8,43]

Reducible: Uncertainty can be fully reduced after acknowledgement [8,43];
Irreducible: Uncertainty cannot be further reduced at this point in time [8,43];

Emerging time: Describes at which
state of the software development
uncertainty arises [26,27,31,32,41]

Requirements time: As requirements are defined [32,41]; Design time: As the software
system is designed [26,27,32,41]; Verification: At verification of software models [41];
Testing: During software testing [27,41]; Implementation: As the software gets
implemented [41]; Run time: During software execution [26,27,31,32,41];

Impact on Quality: Describes how
uncertainty affects quality
properties [27]

Performance: Impact on performance [27]; Resources: Impact on resource
consumption [27]; Safety: Impact on a system’s safety [27];

Relationship: The relation between
uncertainties [32]

Directed: Directed relationship or influences between uncertainties [32]; Related:
Unspecified relationship between uncertainties [32];

Source: Potential sources of
uncertainty [8,26,31,32]

Several publications list sources of uncertainty, e.g., human in the loop, abstraction,
missing requirements, inadequate design, . . .

set of alternatives, one cannot guarantee that a given ADD might not be challenged in
the future [23] due to changes in requirements or the system’s execution context. Thus,
when speaking about decisions under uncertainty, considering the probability, possibil-
ity and costs of revisions can help to quantify the risk. This awareness also helps in the
prioritization of ADDs and deciding whether existing mitigation is sufficient.

However, only considering ADDs to understand the impact of uncertainty is not
enough because uncertainty might not be directly connected to a single decision (e.g.,
resolving Uncertainty U2). Thus, we argue to also consider which architectural ele-
ments are affected, rather than only considering this transitively via the impact of
ADDs. This does not only help understanding the consequences of uncertain influences
but also helps to connect these to architecture-based analyses. In our example, model-
ing and analyzing the data flows [38,39] between the Online Shop component and the
Database Service component helps determining whether the impact of Uncertainty U2
is a problem for confidentiality.

To choose proper decision, mitigation, and analysis strategies, software architects
need to be aware of the impact of uncertainty and be able to describe this impact pre-
cisely. To support this activity, we analyzed existing taxonomies and classifications of
uncertainty. We gathered, assessed and adapted categories (i.e., dimensions, or char-
acteristics) and options with the purpose of more precisely classifying uncertainty in



relation to confidentiality. The following discussion is based on existing taxonomies
[5,8,26,31,32,43] as well as recent systematic literature reviews and surveys on uncer-
tainty [27,41]. Table 1 gives an overview of available categories and options derived
from related work.

Uncertainty is often described with its location. However, there is no common dis-
tinction between the source and the impact of an uncertain influence. Also, there is no
common understanding of the term model and its boundaries as the taxonomies origi-
nate from different research areas. Thus, uncertainty U1 could be classified as context,
model structural, model technical, and belief uncertainty. Such ambiguity can invalidate
the purpose of a taxonomy. Regarding the level, two different approaches exist. Some
classifications define the level based on the description of uncertainty, e.g., by using
statistical means or scenarios. Others refer to the orders of uncertainty [1]. As already
discussed, we focus on known unknowns, i.e., the first order of uncertainty. However,
even in this order exist different nuances, e.g., recognized ignorance compared with
statistical data.
Many classifications refer to the nature of uncertainty. However, this category is ques-
tioned [8,20] as it depends on the point of view and is often not clearly distinguishable.
Thus, we prefer the category manageability since it focuses on the reducibility. Besides
the category emerging time, we propose to also consider the resolution of uncertainty,
i.e., at which time the impact of uncertainty can be understood and managed. Regard-
ing design-time confidentiality analyses, it is valuable to know whether uncertainty can
be directly analyzed (e.g., Uncertainty U1) or must be mitigated in later phases (e.g.,
Uncertainty U2).

The impact on quality is an important as not all uncertainties affect a system’s con-
fidentiality. To focus analysis capabilities, software architects must know about poten-
tial impacts and their severity. Although we focus on confidentiality, the analysis of
multiple properties is possible, e.g., by using design space exploration combined with
dataflow analysis, as demonstrated by Walter et al. [44]. The remaining categories are
only defined for sources of uncertainty. Still, such information can be valuable, e.g., to
describe the relation of uncertainty to ADDs like the allocation to Uncertainty U1.

4 Classification of Architectural Uncertainty

In this section, we present a classification scheme to aid software architects in under-
standing the impact of architectural uncertainty on confidentiality. This shall raise
awareness of properties of uncertainty and their relevance for choosing appropriate
ADDs and mitigation strategies. We intentionally speak of a classification rather than a
taxonomy because we focus on a subset of uncertainty, i.e., known unknowns on archi-
tectural abstraction.

The classification scheme consists of 8 categories with a total of 27 options and
is shown in Table 2. The categories are partially based on taxonomies of uncertainty
[5,8,26,31,32,43], related work on ADDs [18,23] and ADLs like Palladio [33]. A
category-based classification helps to group uncertainties and identify similar char-
acteristics and mitigation approaches. Once classified, the information can be reused
across different software architectures. This is possible due to the connection between



architectural uncertainty and reusable ADDs. To create this classification, we assessed
and adapted existing categories and combined or refined their options (see Sect. 3). We
repeated this process until each category fulfilled its purpose, i.e., being able to describe
and partition the impact of uncertainty on confidentiality in software architectures.

In this work, we focus on confidentiality requirements in the design time. Thus, the
categories should be interpreted from an architectural viewpoint, e.g., while modeling
a software system. In the following, we explain each category. We provide information
about the rationale and possible benefits of applying each category. We also define
whether the options are unordered (i.e., nominal) or ordered without defined distance
(i.e., ordinal), and single or multiple choice. Last, we specify if the gained knowledge by
classification can be reused, i.e., if it is specific for the uncertainty type, or the software
architecture under investigation.

Location and Architectural Element Type. The first two categories are concerned with
the location of the uncertainty impact. Previous taxonomies [5,26,31,43] already con-
sidered “where the uncertainty manifests itself within the model” [31] but did not
explicitly relate to an ADL. Since the location of the impact is one of the most impor-
tant properties for design-time confidentiality analysis, we connect this category with
the viewpoints and element types of Palladio [33]. Compared to existing taxonomies,
this enables more precise description and mitigation planning because we can model
uncertainty and its relation to existing architecture elements. While Location is on the
abstraction of the viewpoint (e.g., structure, or behavior), the Architecture Element Type
describes the concrete elements (e.g., components, or hardware resources) affected by
the uncertainty. Because this—especially regarding confidentiality—may affect mul-
tiple elements at once, both categories are multiple choice. Also, both categories are
nominal as there is no order between location or element types. By understanding which
elements and viewpoints are affected, software architects can assess responsibilities and
evaluate mitigation methods. The knowledge gained about the location is uncertainty-
specific and can thus be reused across architectural models.

Type and Manageability. The next two categories specify how much is known about
the uncertain influence and whether the uncertainty can be reduced. Other taxonomies
[5,31] only specify this in terms of levels on a scale from knowledge to ignorance [1]
which is too imprecise to classify uncertainty for mitigation. With the Type, we describe
how much is known about the uncertainty, based on the definitions by Walker et al. [43].
All options represent known unknowns [31] but also specify how this knowledge can
be represented for mitigation, e.g., if there is statistical data available. Manageability
states whether we can control or reduce the impact of the uncertainty at design time
(see Data Protection by Design [6]) or are only aware of it [8]. We do not consider the
nature of the uncertainty [43] because the manageability is closer to the uncertainty’s
impact [8]. Both categories are ordinal and single choice. By understanding how much
is known about an uncertain influence beyond awareness, one can choose appropriate
mitigation methods or choose to gather specific knowledge. The classification depends
on the context of the architecture under investigation. However, many uncertainty types
tend to be categorized similarly across architectures. For instance, the allocation (see



 Table 2. Categories and options of the architectural uncertainty classification.

Location: Describes where uncertainty manifests itself within the architecture

System Structure Structure, e.g., components, their static wiring, assembly, and allocation

System Behavior Behavior of the system and its components as well as their communication

System Environment System’s context, including hardware resources and the external situation

System Input Inputs provided by external actors, e.g., people using the software system

Architectural Element Type: Elements to which an uncertainty can be assigned

Component Assignable to software components, e.g., related to their allocation

Connector Assignable to, e.g., wires between components, or communication

Interface Assignable to interfaces, e.g., signatures, parameters, and return values

Hardware Resource Assignable to hardware resources, e.g., servers, and external actors

Behavior Description Assignable to behavior descriptions, e.g., algorithms or user input

Type: How much is known about the uncertainty and how can it be described

Statistical Uncertainty Uncertainty describable with statistical means, e.g., stochastic expressions

Scenario Uncertainty Distinct scenarios depending on the uncertain outcome, no statistical means

Recognized Ignorance Awareness of the uncertainty but no mitigation or description strategy

Manageability: Can more knowledge or appropriate means reduce the uncertainty

Fully Reducible Reducible, e.g., by acquiring more knowledge, or comprehensive simulation

Partial Reducible At least partially reducible, e.g., by applying scenario-based mitigation

Irreducible Uncertainty cannot be further reduced, e.g., due to its aleatory nature

Resolution Time: Time at which the uncertainty is expected to be fully resolved

Requirements Time As soon as requirements are defined, e.g., confidentiality requirements

Design Time As soon as the systems is designed, e.g., its structure, or components

Realization Time As soon as the system or parts of it are implemented and deployed

Runtime As knowledge is gained from testing and system operations, e.g., monitoring

Reducible by ADD: Uncertainty resolvable by an architectural design decision

Yes Uncertainty can be reduced by taking an ADD, i.e., by designing the system in a
way that the impact of the uncertainty is (partially) mitigated

No Uncertainty is not resolvable or treatable by taking an ADD

Impact on Confidentiality: Potential impact on confidentiality requirements

Direct Direct impact on confidentiality, e.g., by directly affecting personal user data

Indirect Impact only in conjunction with contextual factors, ADDs or uncertainties

None No impact on confidentiality, e.g., if only publicly available data is affected

Severity of the Impact: Describes the severity if uncertainty is not mitigated

High Total loss of confidentiality, or sensitive data, e.g., an admin’s password

Low Access to restricted information could be obtained but the damage is limited

None No loss of confidentiality expected at all

Uncertainty U1 in Sect. 3) can usually be described scenario-based and be reduced in
the design or realization time.



Resolution Time and Reducible by ADD. These categories relate uncertainty to the
architectural design using ADDs. The Resolution Time is based on the phases of soft-
ware development and can help to narrow down sources and responsibilities. Since we
focus on the impact of uncertainty on confidentiality, we consider the expected full res-
olution time rather than the emerging time [27,31,32,41]. Also, we only include phases
that are relevant from the point of view of design time analyses. The category Reducible
by ADD specifies whether the impact of the classified uncertainty can at least be par-
tially mitigated by a design decision. Making the connection between ADDs and uncer-
tainty explicit [25] helps to prioritize, e.g., check whether multiple or critical uncertainty
impacts can be tackled by a single decision. Both options are single choice, the options
of the Resolution Time are ordinal, reducibility is considered to be nominal. Also, both
categories are only uncertainty-specific and thus reusable.

Impact on Confidentiality and Severity of the Impact. The last two categories are used to
quantify the impact of uncertainty on confidentiality requirements. To prioritize uncer-
tainty with a critical impact, we combine the impact type with its severity. A direct
Impact on Confidentiality can void confidentiality even without taking other factors,
decisions, or uncertainties into account. Indirect impact relates to such contextual prop-
erties. Severity of the Impact is based on the confidentiality impact metrics of the open
industry standard Common Vulnerability Scoring System (CVSS) [9]. They refer to
a high impact if a total loss of confidential data or access to restricted information is
expected. An impact that is rated low implies that data can be stolen, but the infor-
mation could not be used directly or is limited. Both categories are single choice and
ordinal. The knowledge gained by classification can help in clustering and prioritizing
uncertainty and related ADDs but is specific for the architecture and its context.

5 Applying the Classification for Confidentiality Analysis

In this section, we apply the previously defined classification to analyze the impact of
uncertainty on confidentiality. Confidentiality requirements are manifold. They include
the legal restriction of data processing, e.g., personal data being regulated in the GDPR
[6] but also organizational protection policies of restricted data like an administrator’s
password or encryption keys [9]. Thus, when speaking about the impact of uncertainty
on confidentiality, one has to consider all relevant data in a software architecture. We
achieve this by first classifying uncertainty and then considering the impact of this
uncertainty in data flow-based confidentiality analysis [38,39].

Table 3 shows an exemplary classification based on the online shop in Sect. 3. While
the allocation (U1) represents uncertainty in the structure of the architecture and can
be annotated to the deployable component, trustworthiness (U2) of a resource provider
affects the behavior and is located in the environment of the system. Making the loca-
tion explicit already helps in understanding the impact in terms of architecture models,
e.g., describable as possible scenarios or model variations [30]. The allocation refers to
the ADD of the same name and can thus be fully resolved at realization time, e.g., by
limiting possible deployment locations. The trustworthiness remains unclear even at run-
time, but can be partially mitigated, e.g., by enforcing encryption of data that flows to the



Table 3. Exemplary classification of the uncertainty in the online shop example.

U1: Allocation U2: Provider Trustworthiness

Location System Structure System Behavior/Environment

Architectural Element Type Component Behavior/Hardware Resource

Type Scenario Uncertainty Scenario Uncertainty

Manageability Fully Reducible Partial Reducible

Resolution Time Realization Time Runtime

Reducible by ADD Yes Yes

Impact on Confidentiality Direct Indirect

Severity of the Impact High Low

Database service. Regarding legal confidentiality requirements [6], the allocation rep-
resents a serious and direct impact and can be prioritized over the trustworthiness which
also depends on the allocation. Here, the classification helps to connect uncertainties
and ADDs and also helps to prioritize. If a decision is revoked later, e.g., the deploy-
ment is changed to theCloud Service, documenting classified uncertainties, assumptions
and risk helps in reevaluation [23] and potential backtracking. Note, this classification is
only exemplary and also allows to draw other conclusions due to the lack of contextual
information in our simplified example. A comprehensive reference set of architectural
uncertainties and their impact on confidentiality can be found in our data set [14].

Besides documentation and design, classifying uncertainty also helps in analy-
sis and mitigation. Here, several approaches have been proposed (see Sect. 2). Perez-
Palacin and Mirandola [30] distinguish between two mitigation paths: modifying the
model (i.e., making the required ADD) and managing a model with uncertainty. These
paths are a good fit to the previous discussion about manageability and reducibility.
However, to choose one of these paths, software architects must be aware of the uncer-
tain influence and require knowledge about its potential impact and related ADDs and
elements of the software architecture.

To analyze confidentiality under uncertainty, we demonstrate how to manage a
model with uncertainty and integrate the classification results into the previously pre-
sented data flow meta model [38]. This is possible because our classification has been
designed for confidentiality and both—the classification scheme and the data flow meta
model—relate to Palladio [33] as common ADL.

The unified modeling primitives [38] consist of nodes, pins, flows, behavior and
label assignments. Nodes represent structural elements of software systems, e.g., pro-
cesses, stores, or external entities. Pins represent their interfaces and flows are used to
connect multiple nodes through their pins. Nodes have a defined behavior that assigns
labels, e.g., based on labels at the node’s input pins, constants, logical expressions or
a combination of the above. We can follow the data flow by propagating the assigned
labels through the system and applying the propagation function at each node. By com-
paring the labels at each node to defined requirements that are formulated as data flow
constraints [15,39], we can analyze confidentiality.



Table 4. Mapping of architectural element types to data flow modeling primitives.

Architectural Element Data Flow Modeling Primitive Impact of Uncertainty

Component Node (process or store) Existence and use of nodes

Connector Flow Existence of flows to nodes

Interface Pin (input or output) Existence and form of pins

Hardware Resource Label assignment Values of node assignments

Behavior Description Behavior (label propagation) Propagation function output

The modeling primitives are integrated into the control flow modeling of Palladio
[33,38]. Table 4 shows the mapping of Palladio elements used in our classification to the
meta model of the unified modeling primitives. It also shows how the impact of uncer-
tainty on these elements can be transformed and represented in data flow models. As
explained in Sect. 4, describing affected elements can be used for mitigation planning
and analysis. Regarding the data flow modeling primitives, structural uncertainty can
alter the existence of nodes, pins, and flows. Exemplary uncertain influences are com-
ponent choices, interface definitions, or system configuration. Uncertainty can also arise
from the context of a system, which is expressed by label assignments on nodes. Last,
behavioral uncertainty could alter the output of affected label propagation functions.

Fig. 2. Data flow diagrams of the running example with and without uncertainty.

We demonstrate this mapping based on the Online Shop example whose uncer-
tainties (U1 and U2) have been classified in Table 3. Here, we are interested in the
confidentiality of user data that is processed in the Online Shop component and then



stored in a database. Figure 2 shows the resulting data flow diagrams, following the
adapted notation presented in [38]. In the upper part, we show a non-deterministic data
flow diagram under uncertainty (U1 and U2). In the lower part, we show the impact of
those uncertainties by rolling out the upper diagram and listing all resulting, determin-
istic diagrams. This is possible because both uncertainties represent Scenario Uncer-
tainty, and we are also aware of all possible cases. Uncertainty U1 is caused by an
unknown allocation and represented by the two alternative label assignments Cloud and
On Promise. Uncertainty U2 is caused by the unknown provider trustworthiness that is
represented by two alternative label propagation functions. While the Forward behavior
passes incoming labels without modification, unauthorized behavior is represented as
Declassify Behavior that changes propagated labels.

By defining constraints on these labels, we can analyze the resulting data flow
diagrams on confidentiality violations. An exemplary constraint could prohibit unen-
crypted user data to be declassified. Although this is only the case in one of the possible
data flows, to completely mitigate this issue, the On Premise allocation has to be cho-
sen. Alternatively, user data can be encrypted. By altering propagation functions and
data flow constraints, multiple scenarios under different uncertainties can be analyzed.
This can be automated with tool support by combining the presented approach [37–
39] with data flow constraints [15] and design space exploration. An initial approach
has been realized by using PerOpteryx [22] to analyze confidentiality under structural
uncertainty [44].

6 Evaluation

In this section, we present the evaluation of our classification. First, we define goals,
questions and metrics and present the evaluation design. Afterwards, we discuss the
evaluation results as well as threats to validity and known limitations.

6.1 Goals, Questions, and Metrics

Konersmann et al. [21] state the lack of guideline-based evaluation in current software
engineering research. Especially taxonomies of uncertainty are often only evaluated
based on application examples [5,31] or not evaluated at all [32,43]. To prevent this,
we structure our evaluation according to the taxonomy evaluation method of Kaplan
et al. [19]. The authors propose to use a Goal-Question-Metrics-plan [2] to evaluate
the structure’s suitability, the applicability, and the purpose of a classification. Table 5
summarizes the evaluation plan together with the evaluation results. In the following,
we give an overview.

We evaluate the structure’s suitability (G1), i.e., whether it permits the appropri-
ate classification of objects under study by having the right scope and granularity. This
includes the generality (Q1.1), where we measure if the classification is not too gen-
eral but also not to specific. Here, low laconicity (M1.1.1) indicates a too fine-grained
and low lucidity (M1.1.2) indicates a too coarse-grained classification. A good trade-
off regarding the granularity is important because we want to be able to differentiate
between uncertainties without assigning a separate class to every instance. Also, the



granularity must fit to the purpose of classifying architectural uncertainty regarding
confidentiality. The appropriateness (Q1.2) asks whether the classification is complete
(M1.2.1), i.e., has enough categories, and whether it is sound (M1.2.2), i.e., has no
unnecessary categories. On the one hand, we shall be able to classify every architectural
uncertainty that can have an impact on confidentiality. On the other hand, categories and
options that are never used, should not be maintained. Last, the orthogonality (Q1.3)
evaluates whether the taxonomy has overlapping categories (M1.3). A lack in orthog-
onality implicates that options depend on each other and can be removed to increase
preciseness. Overall, a classification with bad structural quality yield ambiguous results
and shall be adapted.

We evaluate the applicability (G2), i.e., whether the classification is understandable
and usable (see Usable Security [36]) by conducting a user study. Here, we consider the
reliability (Q2.1), i.e., whether participants have consistent results (M2.1). An ambigu-
ous classification with inconsistent results indicates a lack of preciseness. We evaluate
the correctness (Q2.2) by comparing the classification results to a predefined gold stan-
dard and calculating the recall (M2.2) based on classification hits and misses. A lack
in correctness indicates that users could not benefit from applying the classification.
Last, we evaluate the ease of use (Q2.3) based on the System Usability Scale (SUS)
[24] (M2.3). Additionally, we ask participants if they understand the categories and
find them helpful and whether they experienced a knowledge gain by participating in
the user study. A taxonomy has to yield consistent results to be usable.

We evaluate the purpose (G3), i.e., the classification’s quality compared to exist-
ing taxonomies based on case study. We consider the relevance (Q3.1), i.e., whether
each category helps the purpose of the classification (M3.1). In our case, the purpose
is understanding the impact of uncertainty on confidentiality. The novelty (Q3.2) asks
how many categories and options are new (M3.2.1) or adapted (M3.2.2). Here, the sum
of both metrics indicates the strength of the relation of the classification to other tax-
onomies. Last, we consider the significance (Q3.3) by measuring the classification delta
(M3.3) of our classification to other taxonomies. A positive delta indicates an increase
in preciseness for which we aim. If the classification fails the evaluation of purpose, it
represents no significant improvement over the state of the art.

6.2 Evaluation Design

Our validation comprises three properties. We evaluate the structural quality (G1) by
analyzing the classification and we perform a user study to evaluate its applicability
(G2). Our evaluation of purpose (G3) compared to the state of the art is based on the
real-world case study of the Corona Warn App [34]. In the following, we describe the
evaluation design in detail. Additional information such as raw evaluation data and
questionnaires can be found in our data set [14].

Structural Evaluation. We start the evaluation by considering generality (Q1.1) and
appropriateness (Q1.2). The calculation of the related metrics is based on the guidelines
of Kaplan et al. [19]. The authors also provide tool support. For the metrics laconic-
ity, lucidity, completeness, and soundness 1 represents the best and 0 the worst result.
Besides the categories and options of our classification, this evaluation requires terms



that describe uncertainties. We extracted a total of 38 terms of existing taxonomies (see
Sect. 3). Examples are Uncertainty fully reducible by acquiring enough knowledge or
Uncertainty refers to user input. The full list of terms can be found in our data set
[14]. To evaluate the orthogonality (Q1.3) we construct a self-referencing orthogonal-
ity matrix based on our classification’s categories and options. A category or option that
is implied by another is not orthogonal and thus overlapping. Based on the 27 options
of our classification, we evaluate all 27 ∗ 27 − 27 = 702 combinations.

User Study. We conduct a user study with ten researchers from the domain of soft-
ware architecture. First, they complete a self-assessment, where they describe their prior
knowledge related to the task, e.g., uncertainty, and software architecture. Then, we pro-
vide them with a one-page summary of our classification (cf. Sect. 4) with all categories
and options and also an application example (cf. Sect. 5) that demonstrates how to use
it. During the study, the participants have to classify two different tasks within 15 min
time, respectively. Each task consists of an architecture diagram, a short description (cf.
Sect. 3), and four uncertainty impacts to classify using our classification. We counterbal-
ance the task order to mitigate learning effects and anonymize the participants’ results.
Last, they fill out a SUS (Q2.3) and a questionnaire related to their understanding of our
classification. No session takes longer than one hour to mitigate fatigue effects. After
gathering all results, we measure the reliability (Q2.1) by calculating the percentage of
agreement and the correctness (Q2.2) by comparing them to a predefined gold standard
and calculating the recall.

Case Study. The Corona Warn App [34] is a German digital contact tracing app. It
is publicly founded and open source. The source code of the app and the server, as
well as comprehensive documentation can be found on GitHub1. This does not only
include architecture documentation but also security analysis and risk assessment. By
rolling back design decisions and considering solutions for problems and risks that are
related to confidentiality, realistic uncertainties can be analyzed. We created a collec-
tion of 28 uncertainties that are possible during the design process based on the avail-
able documentation and ADDs. We use this collection as baseline for the evaluation of
the purpose. For each category, we argue whether it helps to understand the impact of
the uncertainties and is thus relevant (Q3.1). This extends the evaluation of generality
(Q1.1) and appropriateness (Q1.2) based on our case study. We compare all categories
to other taxonomies [5,8,26,31,32,43] of uncertainty to evaluate the classification’s
novelty (Q3.2). Here, we discuss the origin and adaption compared to the state of the
art. We evaluate the significance (Q3.3) by classifying all 28 uncertainties with our clas-
sification and with other taxonomies [5,26,31] with a related purpose. As our goal is a
higher precision for the impact of uncertainty, we aim for a positive classification delta,
i.e., a higher number of uncertainty classes.

6.3 Evaluation Results and Discussion

In the following, we present and discuss the evaluation results for each question indi-
vidually. Table 5 summarizes all goals, questions, and metrics as well as the evaluation
results.

1 https://github.com/corona-warn-app/.



Table 5. Evaluation plan with goals, questions, metrics, and evaluation results.

Goal Questions Metrics Results

Structure’s Suitability Generality Laconicity, Lucidity 0.95, 0.70

Appropriateness Completeness, Soundness 0.97, 1.00

Orthogonality Orthogonality Matrix 695 of 702

Applicability Reliability Inter-Annotator Agreement 0.69

Correctness Recall 0.73

Ease of Use Usability Score 68.25

Purpose Relevance Fraction of Relevant Classes 1.00

Novelty Innovation, Adaptation 0.49, 0.51

Significance Classification Delta 0.54

Structure’s Suitability. To evaluate the structure’s suitability (G1) of the classification,
we consider generality (Q1.1) and appropriateness (Q1.2) and we measured laconic-
ity, lucidity, completeness, and soundness. These metrics are defined for the leaves
of a taxonomy, i.e., the 27 options of our classification. We gathered a collection of
38 terms R that describe the object under study, i.e., architectural uncertainties. In a
laconic (M1.1.1) and thus non-redundant classification C, each term can be described
using exactly one option. The laconicity is the fraction of terms that is uniquely describ-
able: laconicity(C,R) = 36

38 = 0.95. We argue that the remaining two redundant terms
are totally acceptable and originate due to the increased precision regarding confiden-
tiality: User input can be classified as Input and Environment and uncertainty about
non-confidentiality data has both no impact and no severity. In a lucid (M1.1.2) clas-
sification, each option describes no more than one term. Lucidity is the fraction of
options that describe exactly one term: lucidity(C,R) = 19

27 = 0.70. Several terms
are described by the same option, e.g., Structure describes both uncertainty in com-
ponents and assembly. Another example is the realization time that includes imple-
mentation and deployment as this can be simplified from a design time perspective.
Here, we decided that more fine-grained options would only harm the purpose of clas-
sifying and clustering uncertainties for understanding their impact and mitigation. In
a complete (M1.2.1) classification, there is no term than cannot be described by at
least one option. The completeness is thus calculated as fraction of terms that can be
described: completeness(C,R) = 37

38 = 0.97. The completeness is reduced because
we do not explicitly handle known unknowns that never resolve. From a design time
point of view, it does not matter whether an uncertainty resolves at run time or never. In
a sound (M1.2.2) classification, there are no unnecessary options that are not required
to describe at least one term. soundness(C,R) = 27

27 = 1.0. The perfect result is
expected, as we intentionally build the classification to fit our purpose. To evaluate the
orthogonality (Q1.3), we constructed an orthogonality matrix (M1.3) and searched for
implications between options. We found overlapping only in 7 of 702 cases, e.g., uncer-
tainty about the system’s input implies a behavioral description and there exists the
already discussed relation between no impact and no severity. However, none of the



overlaps where comprehensive enough to justify the removal of a category or an option.
All results were satisfying, so we continued with the second evaluation step as proposed
by Kaplan et al. [19].

Applicability. To evaluate the applicability (G2), we conducted a user study with
researchers with knowledge about software architecture but no or only little knowl-
edge about uncertainty (for detailed results, please see our data set [14]). Ten partic-
ipants classified two architecture models with four uncertainties each which yields a
set of 80 classified uncertainties and 640 selected options [14]. To evaluate the reliabil-
ity (Q2.1), we calculated the inner-annotator agreement (M2.1) by finding the largest
consensus for each uncertainty and each category. The overall agreement is 69 percent.
High agreement was measured in the categories Location, Impact on Confidentiality,
Severity, and Reducible by ADD. The lowest agreement was measured in the category
Resolution Time. One explanation is the earlier description of the category, which was
ambiguous and has thus been refined. To evaluate correctness (Q2.2), we compared
the classifications to our gold standard and calculated a recall (M2.2) of 0.73. Based
on the participants’ feedback, we find that the result can be explained with the short
case descriptions of about the quarter of a page and the hard timing constraints. As also
shown in Sect. 5, short descriptions of fictional architectures can leave a large room
for interpretation. In view of the fact that the participants had no prior experience in
classifying uncertainty, this result still is satisfying. Last, we evaluated the ease of use
(Q2.3) with an average SUS (M2.3) score of 68.25. In the questionnaire, most of the
categories were considered understandable and helpful to describe the impact of uncer-
tainty. The only outlier is the category Type. However, the value of this category has
already been discussed in multiple publications [26,43]. Additionally, we demonstrated
in Sect. 5 that this category helps in design-time confidentiality analysis. Also based on
the participants’ feedback, we summarize that our classification is a sufficiently useful
tool to understand the impact of uncertainty but requires some familiarization. Most
of the participants welcomed a lively debate about their classifications after the study
sessions which is what we aimed for.

Purpose. To evaluate the purpose (G3), we first argue for the relevance (Q3.1) based on
the fraction of relevant classes (M3.1). The purpose of our classification is to describe
the impact of architectural uncertainty on confidentiality. The Location has already been
discussed in other work [5,31]. We use Architectural Element Type because this enables
the connection to architectural modeling and analysis. We demonstrated this in Sect. 5
with analyzing data flow models under uncertainty. We argue that Type and Manage-
ability are better to describe uncertainty than only to refer to its level because this helps
in choosing appropriate mitigation strategies. E.g., a scenario-based, reducible uncer-
tainty can be handled different to a recognized, irreducible uncertainty. This has also
been discussed in Sect. 5. Resolution Time, Reducible by ADD and both impact-related
categories can be used in prioritization together with connected ADDs. This prioriti-
zation and connection to ADDs is important because it helps structuring the software
design and also helps focusing modeling and analysis capabilities. We close that no
category can omitted without significantly reducing the expressiveness and thus the
fraction of relevant classes is 1.0. For the novelty (Q3.2), we counted new (M3.2.1)



and adapted (M3.2.2) categories and options. A category or option is adapted if it is
adopted or derived from another classification. Examples for adopted categories are the
Resolution Time or Severity of the Impact. Examples for new options are the partial
reducibility. We find the hard distinction between manageable and irreducible not pre-
cise enough for design time mitigation. Also in our running example, we were able to
better understand and partially reduce the impact of uncertainty. A full discussion of all
8 categories and 27 options can also be found in our data set [14]. We are right in the
middle between innovation ( 1735 = 0.49) and adaption ( 1835 = 0.51). This is expected as
we build upon existing taxonomies but extended them to fit our purpose. Last, we eval-
uate the significance (Q3.3) by calculating the classification delta (M3.3). Our classifi-
cation is able to distinguish the 28 uncertainties of the case study into 21 classes. Other
taxonomies yield between 4 and 8 classes. Thus, the classification delta is 21−8

28 = 0.54.
As we aimed for higher precision, a value higher than 0 is sufficient. We conclude that
the metrics indicate that our classification fits its purpose, also compared to the state of
the art.

6.4 Threats to Validity

We discuss threats to validity based on the guidelines by Runeson and Höst [35].
Regarding internal validity, the biggest threat is the evaluation of structure’s suitability
that has only been performed by the authors and is thus based on their limited expe-
rience. However, we adhered to the metrics and guidelines of Kaplan et al. [19]. The
external validity and generalizability of our results is threatened by the number of par-
ticipants in our user study and the selection of the case study. Still, we argue that both
were large enough to identify a general trend of applicability and purpose. The partic-
ipating researchers deal with software architecture in their daily work and the Corona
Warn App is a large open-source system that is actively observed by the community.
Additional information on the construction of the case study can be found here [3]. To
face threats to construct validity, we applied a GQM-based evaluation plan [19]. Addi-
tionally, the SUS provides a standardized format, which might not fit the evaluation
of classifications. We mitigated this using a questionnaire which yields similar results
regarding the usability. To enhance reliability and replicability by other researchers, we
publish all evaluation data [14].

6.5 Limitations

We are aware of three limitations of our classification. First, we only focus on confi-
dentiality as central quality attribute. While this reduces the applicability, we did this
intentionally to obtain more precise results for mitigation. For example, the focus on
confidentiality at design time enables the connection to a data flow meta model [38] for
design time confidentiality analysis. Second, the classification is focused on Component
Based Software Engineering (CBSE) and works best based on architectural modeling.
This was also an explicit design decision due to fit existing modeling [33,38] and anal-
ysis [37,39,42] approaches for confidentiality. Still, most categories are general enough
to be used even without explicit models, e.g., Type, Manageability, or Resolution Time.



Last, the classification provides no assistance for the transitive impact of uncer-
tainty. The direct impact is often not the location where the uncertainty affects con-
fidentiality and where it can be mitigated. In our exemplary application in Sect. 5, the
uncertain provider’s trustworthiness could not only directly affect the data base but indi-
rectly other parts of the system. However, to face such propagation effects, a precise
description of uncertainty—such as our classification—is required in the first place.
Additionally, the propagation, mapping, and analysis of uncertainty for design-time
confidentiality analysis requires tool-support as “detecting confidentiality issues manu-
ally is not feasible” [37].

7 Conclusion

In this paper, we presented a classification of architectural uncertainty to describe its
impact on confidentiality. We explained the relation of software architecture, uncer-
tainty, and confidentiality based on existing classifications. Then, we defined our uncer-
tainty classification and showed how the gained knowledge can be used for mitiga-
tion. We demonstrated the mapping of classified uncertainties to an existing data flow
model for design time confidentiality analysis. This shall help software architects to
better understand the different uncertainty types and analyze their impact. The evalua-
tion showed satisfying results regarding the structural quality, the applicability, and the
significance of our classification compared to the state of the art.

Our work benefits software architects in terms of more precise statements about
architectural uncertainty and awareness of its different types. As several categories
are reusable, this also enables knowledge transfer and reduces the required expertise
for mitigating uncertainty. It is also a good baseline for discussion and assessment of
uncertainty impacts. This has also been confirmed by our user study. Our classification
helps to understand uncertainties and also to document and to prioritize ADDs. This can
shorten the span of required backtracking in case of challenged decisions. By making
design time confidentiality analyses uncertainty-aware, more comprehensive statements
about confidentiality are possible. This shall also help in building more resilient soft-
ware systems.

In future work, we want to tackle the limitation of manual annotation and analysis
of the impact of uncertainty. Based on the presented classification, we want to create
assistance for modeling and propagating uncertainty through the software architecture.
We also want to create guidelines for better understanding different types of uncertainty
and their potential impact on confidentiality. This shall not only enhance reliability and
correctness of uncertainty classification, but also enable software architects to identify
and mitigate the transitive impact of uncertainty and to make statements about confi-
dentiality under uncertainty.
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