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ABSTRACT

This paper presents investigations of liquid velocity fluctuations based on direct numerical simulations
of bubbly flows. Investigations are performed by statistical analysis of instantaneous liquid flows gen-
erated by rise of monodisperse bubble swarms through initially quiescent liquid within a plane channel.
Effects of bubble rise velocity, bubble trajectory and bubble shape are analyzed considering gas-liquid
suspensions with different viscosity. The ultimate goal of the performed research was to shed some light
on mechanisms governing behaviour of liquid turbulence kinetic energy in bubble-driven liquid flows. In
relation to this quantitative analysis of the basic balance equation for liquid turbulence kinetic energy is
performed and the obtained results are used to assess performance of corresponding closure assumptions
applied in engineering turbulence models. Evaluations based on rigorous mathematical formulations re-
vealed that the fluctuating liquid flow is supplied with energy only through the work of fluctuating liquid
stress upon moving bubble interfaces. As this mechanism is related to the presence of bubbles, the local
non-equilibrium between the turbulence generation and turbulence dissipation results in an intensive dif-
fusion transport of liquid turbulence kinetic energy from the domains of high gas volumetric fractions to
the regions with low gas contents. All currently used engineering formulations overestimate the produc-
tion term and underestimate the diffusion term. The dissipation term modelling in one-equation models
is, also, inaccurate. On the other hand, the approximation of the interfacial turbulence generation by the
rate of the work of the drag force performs quite well.
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1 INTRODUCTION

Bubbly gas-liquid flows are widely used in engineering systems such as power generation, chemical
engineering and metallurgical facilities. The flow regimes applied in these systems span from very
slow buoyancy driven flows in bubble-columns and air-lift rectors to forced flows in pipes and ducts.
Whatever the regime under consideration, low or high Reynolds number, all bubbly flows have a
common characteristic - the relative motion of bubbles induces fluctuations of liquid phase quantities.
These fluctuations are caused not only by non-linearity of the flow, but also by the discrete buoyancy
distribution, motion of wakes behind bubbles and deformation of bubble interfaces. Such perturbations

1Corresponding author

mailto:ilic@irs.fzk.de
mailto:woerner@irs.fzk.de
mailto:cacuci@ikr.uni-karlsruhe.de


2/20 The 11th International Topical Meeting on Nuclear Thermal-Hydraulics (NURETH-11)
Popes’ Palace Conference Center, Avignon, France, October 2-6, 2005

of the liquid phase give rise to Reynolds stresses and other phenomena inherent to turbulence. Conse-
quently, the phenomenon is namedbubble-induced turbulence.

Examples of bubble-induced turbulence are encountered in various industrial processes involving
slow very dispersed gas-liquid flows where no shear-induced turbulence occurs and where the main flow
features such as distribution of phases and mixing are controlled only by agitation of the liquid phase by
moving bubbles. A realistic description of the bubble-induced turbulence is, therefore, one of the most
fundamental requests for an accurate modelling of such bubbly flows.

Among several engineering approaches commonly used to predict the bubble-induced turbulence far
the most popular concept is based onthe balance equation for turbulence kinetic energy of the liquid
phase(hereafter calledkl equation). Balance terms in this equation are formulated by an extension
of corresponding closure assumptions well-established for single-phase flows, while the effects of
suspended bubble interfaces are either completely ignored or implemented through more or less
empirically derived model terms. As it is not clear whether / how far closure assumptions originally
developed for single-phase flows can retain their validity when the dispersed phase is present, such
an approach might be argued as highly uncertain. Further, proposed closure relations for interfacial
turbulence effects differ from author to author conspicuously with model parameters mainly fitted to the
particular problem under consideration.

Most of the difficulties faced in the development of improved closure assumptions for balance terms
in kl equation concern an extremely poor understanding of mechanisms in which bubbles alter turbulence
generation, redistribution and dissipation in the liquid phase. Mathematically, these mechanisms were
rigorously formulated by the basic balance equation for the liquid turbulence kinetic energy in gas-liquid
flows (Kataoka & Serizawa, 1989). However, although known for more than a decade this equation
could not be exposed to an appropriate quantitative analysis, because highly resolved data about the flow
field and phase interface structure have not been available.

Recent improvements in computer performances and positive experience from single-phase flows
suggest use ofdirect numerical simulations(DNS). Although associated with serious limitations
concerning the magnitude of liquid Reynolds number and the number of bubbles that can be tracked,
DNS open a new promising way to gain a detailed insight into mechanisms governing the liquid phase
turbulence in the aforementioned slow dilute bubbly flows. Among these, the simplest case concerns
a confined multi-phase flow where gas phase is through a distributor sparged into a quiescent liquid
medium. A prominent example of such a flow is encountered in flat bubble columns widely used as
multi-phase contactors and reactors in chemical and metallurgical industries.

Current DNS based liquid turbulence analyzes employ the concept of fully periodic computa-
tional domain where an unbounded steady bubbly flow with uniformly sized bubbles and no bubble
coalescence is approximated by infinite arrays of identical monodisperse bubble-swarms (Bunner &
Tryggvason, 2003). In this way a homogeneous bubbly flow, that allows the use of volume averaging, is
put into consideration. This flow configuration is, however, not appropriate for a quantitative analysis of
kl equation because the imposed spatial uniformity excludes the considerations of the diffusion transport
as well as the energy transfer between the mean and fluctuating liquid flow. Consequently, the reported
turbulence investigations are restricted to evaluations of the liquid turbulence kinetic energy and its
dissipation rate.

At the Institute for Reactor Safety in the Research Centre Karlsruhethe computer code TURBIT-VoF
for direct numerical simulations of incompressible gas-liquid flows has been developed (Sabischet al.
, 2001). Different to other DNS codes, TURBIT-VoF is designed to perform computations of bubbly
flows within a domain bounded with two rigid walls. DNS of multiple bubble systems by TURBIT-VoF
can, therefore, quite realistically approximate a non-homogeneous developed gas-liquid flow within
a flat bubble column with a moderate ratio of the bubble diameter to the column depth and, in this
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way, provide an appropriate input data basis for the corresponding analysis of mechanisms governing
behaviour of liquid turbulence kinetic energy.

In the context of the aforementioned, this paper reports DNS based investigations of liquid velocity
fluctuations generated by rise of monodisperse bubble-swarms within a plane infinite channel. In
particular, the effects of different bubble rise velocity, bubble trajectory and bubble shape on generated
fluctuating liquid flow are investigated by considering three gas-liquid suspensions with different
viscosity.

The paper is organized as follows. In Section 2 the applied methodology and specified computa-
tional set-up for DNS of bubbly flows by TURBIT-VoF are outlined. Section 3 deals with computed
bubble dynamics and characteristics of the generated liquid phase flow with a special attention paid to
the distribution of liquid turbulence kinetic energy. Section 4 focuses on the quantitative analysis of bal-
ance equation for liquid turbulence kinetic energy. Results for diffusion transport, viscous dissipation,
interfacial generation and transfer of energy between the mean and fluctuating liquid flow evaluated by
their basic definitions are in Section 5 used to test performance of corresponding closure assumptions
commonly used in engineering turbulence models. The paper is completed by conclusions.

2 DIRECT NUMERICAL SIMULATIONS OF BUBBLY FLOWS BY COMPUTER
CODE TURBIT-VoF

2.1 Methodology of TURBIT-VoF

An incompressible flow of two immiscible Newtonian fluids is in TURBIT-VoF described by a single set
of balance equations for mass (equation 1) and momentum (equation 2):

divU = 0 and (1)

∂ρU
∂θ

+ div(ρUU) = −gradP +
1

Reref
divT −

(1− f − 〈αg〉)Eöref

Weref

g
|g|

+
κAin

Weref
n, (2)

while the flow regions containing pure liquid are distinguished from the pure gas ones employing the
transport equation for the liquid volumetric fraction:

∂f
∂θ

+ div(Uf ) = 0. (3)

The equations 1 - 3 are given in dimensionless form. The following scaling applies: distance,X = x/lref ,
velocity, U = u/uref , time, θ = ϑuref/lref and density,ρ = %/%ref , where material properties of the
liquid phase, density and viscosity, are taken to be reference values (%ref = %l and µref = µl),
whereas the reference length,lref , and the reference velocity,uref , are to be specified. Reference
Reynolds number, reference Weber number and reference Eötvös number are, respectively, defined as:
Reref = %luref lref/µl , Weref = %lu2

ref lref/σ, and Ëoref = (%l − %g)|g|l2ref/σ, whereσ stands for the
surface tension andg represents the gravity, while subscriptsl andg denote the liquid and the gas phase,
respectively.

In order to prevent a uniform downward acceleration of the whole system and to ensure by the same
time a downward liquid flow in the vicinity of channel walls, an additional body force,〈%〉g, is imposed
to both fluids, where〈%〉 = %l + 〈αg〉(%g − %l) represents the overall density of two-phase mixture. In
relation to this, the dimensionless pressure is defined asP = (p− %lg · x)/(%lu2

ref), while the buoyancy
term involves the overall gas volumetric fraction,〈αg〉. The contribution of the surface tension force
is expressed by the last term in the momentum equation, whereκ stands for twice the mean interface
curvature,n indicates the unit normal vector to the phase interface pointing from the gas into the liquid
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andAin represents the dimensionless interfacial area concentration.

A computational cell is filled with the liquid phase whenf = 1 or with the gas whenf = 0. If
0 < f < 1, an interface exists within the cell. In such cells the model of a homogeneous two-phase
mixture is applied where the equality of phase velocities and pressures is assumed and where the mixture
density and viscosity are expressed as:% = f%l + (1− f )%g andµ = fµl + (1− f )µg.

The equation 3 is numerically solved employing a Volume-of-Fluid (VoF) procedure. First, the
interface orientation and location inside each mesh cell is reconstructed using PLIC (PiecewiseLinear
InterfaceCalculation) method EPIRA which locally approximates interface by a plane. In the second
step, the liquid fluxes across the faces of the mesh cell are computed and the interface is advected. The
methodology is verified comparing numerical results with experimental data for the rise of an ellipsoidal
bubble and an oblate ellipsoidal cap bubble (Sabischet al. , 2001).

2.2 Computational Setup for Direct Numerical Simulations of Bubbly Flows by
TURBIT-VoF

Employing TURBIT-VoF three numerical experiments are performed where the motion of monodisperse
swarms consisting of 8 bubbles within a plane channel bounded with two rigid walls is simulated.

The following parameters are common for all the simulations. The computational domain is
specified to be a cube of the sizel = lref and discretized with 643 uniform mesh cells. The equivalent
bubble diameter,db, is prescribed to be one fourth of the computational domain size what results in
the overall gas volumetric fraction〈αg〉 = 6.544%. The ratios of phase densities and phase viscosities
are, respectively, specified as%g/%l = 0.5 andµg/µl = 1. Bubble Ëotvös number is adopted to be
Eöb = 3.065.

In order to analyze the effects of different bubble rise velocity, different bubble shape and different
bubble trajectories, values of specified Morton number differ by two orders of magnitude. A preliminary
estimation based on the diagram of Cliftet al. (1978) shows, namely, that a bubbly flow with spherical
bubbles is expected whenM = 3.06 · 10−2 (further called scenario 8BM2), with slightly ellipsoidal
bubbles whenM = 3.06 · 10−4 (scenario 8BM4) and with ellipsoidal bubbles whenM = 3.06 · 10−6

(scenario 8BM6). Physically, such a decrease of Morton number while keeping bubble Eötvös number
constant can be achieved by choosing the liquid of a lower viscosity. In relation to this, corresponding
liquid viscosities relative to the viscosity in the scenario 8BM2 stand in the following ratio:

µ8BM6
l,r : µ8BM4

l,r : µ8BM2
l,r = 0.1 : 0.316 : 1, (4)

where the superscripts indicate simulation scenarios and the subscriptr indicates the division withµ8BM2
l .

3 STATISTICAL ANALYSIS OF COMPUTED BUBBLY FLOWS

3.1 Three-dimensional Bubble Motion and Instantaneous Liquid Flow

The visualization of the bubble shape and liquid phase velocities in representative wall-normal planes
for simulated bubbly flow scenarios is presented in Figure 1, while the main DNS results concerning the
dynamics of bubbles are summarized in Table 1.

In the most viscous case 8BM2 no bubble deformation is observed, i.e. bubbles retained their initial
spherical shape. The evaluation of bubble trajectories has shown that individual bubbles move almost
rectilinearly keeping initially prescribed distances from each other. A detailed inspection of the liquid
flow structure revealed no existence of bubble wakes, what leads to the conclusion that the generated
liquid motion is the result of pure liquid displacement by moving bubbles. A rather different flow
configuration is seen in Figure 1c - only slightly ellipsoidal bubbles in scenario 8BM4 agitate the liquid
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low viscosity medium viscosity high viscosity
Simulation scenario 8BM6 8BM4 8BM2

computed timea 3 2.15 2.1
computed rise lengtha 6.89 2.26 0.94
lateral bubble motionc strong slight negligible
mean bubble rise velocityab 2.38 1.25 0.46
mean bubble axis aspect ratiob 1.526 1.132 1
a dimensionless
b in steady state
c during the whole simulation period

Table 1: List of main DNS results for the dynamics of simulated bubbly flows.

phase considerably, not only through the liquid displacement, but also through the formation of vortical
structures. Comparing to the case 8BM2 larger lateral deviations of individual bubble trajectories can
be observed in Figure 1d. In the low viscous case 8BM6 bubbles are oblate ellipsoids moving along
non-rectilinear paths with pronounced lateral deviations (see Figure 1f). Although displayed only in
one wall-normal section, perturbations of the liquid phase velocity are evident, not only due to the
bubble-induced liquid displacement, but, also, due to the formation and mutual interaction of bubble
wakes (see Figure 1e).

Finally, the following is stressed. In all the presented simulations of bubbly flows by TURBIT-VoF
a steady flow regime has been reached and kept sufficiently long to provide a complete data basis for the
statistical analysis of bubble-induced velocity fluctuations of the liquid phase.

3.2 Averaging of Instantaneous Liquid Flow

A statistical analysis of bubble-induced liquid motion based on time averaging requires the knowledge
of the instantaneous liquid flow for each computed time instant and over the whole computational
domain. A storage of such an amount of DNS data requires, however, a huge memory space. For
instance, in the statistical analysis of liquid fluctuations for the bubbly flow scenario 8BM6 the steady
state regime within the time intervalθ = 0.6− 2.5 should be considered. With the specified time step
width ∆θ = 0.5 · 10−4 this means that 38000 full data sets would have to be stored.

Fortunately, the configuration of the considered bubbly flows offers a possibility for an application
of a spatial averaging that is associated with significantly lower memory requests. When one, namely,
takes into account that all the analysis concern the steady developed flow regime where the liquid flow
within a doubly periodic domain is driven by two distinctive densely packed bubble populations rising
approximatively parallel to the channel walls, it might be assumed that perturbations of the liquid phase
spatially depend only on the wall-normal coordinate,x3. This implies that the liquid turbulence structure
in both, the vertical and the span-wise, directions might be considered as homogeneous, what further
allows the averaging over vertical slabs of mesh cells parallel to the channel walls.

In the context of aforementioned, the averaging performed here is defined as:

Aγ =
1

m1m2

m1∑
α=1

m2∑
β=1

Aαβγ , (5)

where subscriptsα, β andγ denote Cartesian coordinate directions andm1 andm2 represent, respectively,
the number of mesh cells in the vertical and span-wise direction. Since the concept of DNS assumes that
the liquid phase indicator function may be replaced by the local liquid volumetric fraction,f , mean



6/20 The 11th International Topical Meeting on Nuclear Thermal-Hydraulics (NURETH-11)
Popes’ Palace Conference Center, Avignon, France, October 2-6, 2005

x3

x1

(a) scenario 8BM2 (x2 = 0.734)

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 00 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

 x 2

 x 3

(b)

x3

x1

(c) scenario 8BM4 (x2 = 0.734)

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 00 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

 x 2

 x 3

(d)

x1

x3

(e) scenario 8BM6 (x2 = 0.781)

0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0

 x 2

 x 3

(f)

Figure 1: Visualization of computed bubbly flows: left - bubble shape and liquid velocities at representative span-wise posi-
tions,x2, right - lateral bubble movements (symbols represent initial bubble positions).
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magnitudes of the liquid and gas volumetric fraction are, respectively, computed as:

αlγ =
1

m1m2

m1∑
α=1

m2∑
β=1

fαβγ and αgγ =
1

m1m2

m1∑
α=1

m2∑
β=1

(1− fαβγ), (6)

while phase-weighted liquid quantities are evaluated from:

Alγ =
1

αlγ

1
m1m2

m1∑
α=1

m2∑
β=1

fαβγAαβγ . (7)

Liquid phase fluctuations in the bulk fluid and at the liquid side of phase interface are, respectively,
computed from:

A
′
lαβγ = Alαβγ − Alγ and A

′
liαβγ = Aliαβγ − Alγ , (8)

where the subscripti indicates an interfacial liquid quantity.

The presented averaging technique can successfully be performed using DNS data for any single
time instant within the steady regime of a considered bubbly flow. However, in order to obtain smooth
profiles of liquid turbulence quantities the following procedure is applied. First, evaluations based on
spatial averaging are done for the number of time steps within the interval of fully developed flow regime
and then the arithmetic mean of the results obtained for individual time instances is computed.

3.3 Distribution of Liquid Turbulence Kinetic Energy

Due to its relevance to the topic considered in this paper the attention in this section is focused on the
distribution of liquid turbulence kinetic energy in simulated bubbly flows.

Wall-normal profiles of liquid turbulence kinetic energy,

kl =
1
2

u′
l · u′

l , (9)

are presented in Figure 2 for different bubbly flow scenarios. Figure 2 shows thatkl drastically decreases
with the increase of the liquid viscosity. The evaluation of the overall liquid turbulence kinetic energy,
〈kl〉, has revealed a non-linear nature of the dependance〈kl〉 = f (µl): in the range of less viscous flows
(scenario 8BM6 to 8BM4) the increase of the liquid viscosity of 3.162 times decreases〈kl〉 by the
factor of 4.233, whereas for more viscous flows (scenario 8BM2 to 8BM4) the same increase of the
liquid viscosity results in 9.812 times lower values of〈kl〉. Taking into account the differences of the
considered flow configurations, at least three parameters associated with such a behaviour of the liquid
turbulence kinetic energy can be identified: the magnitude of the bubble velocity, the bubble shape
(reflected through added mass) and the formation of bubble wakes.

The bubble rise velocity,〈ub〉, certainly strongly influences magnitudes of the liquid turbulence
kinetic energy in here considered bubbly flows since〈ub〉 dramatically decreases with the increase of
the liquid viscosity (see Table 1). However, a rough estimate shows that the dependance〈kl〉 = f (µl) is
remarkably steeper than the dependance〈ub〉2 = g(µl), what gives rise to the consideration of effects
related to the added mass.

The added mass for a bubble with volumeVb and axis aspect ratioχ is defined as (Wijngaarden,
1998):

mam = Q(κ)
1
2
%lVb, (10)

where:

Q(χ) = 2
(χ2 − 1)1/2 − cos−1 χ−1

cos−1 χ−1 − (χ2 − 1)1/2/χ2
. (11)
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Figure 2: Kinetic energy of liquid velocity fluctuations generated by bubble rise through liquids with different viscosity.

Using the above relations and the data on bubble axis aspect ratio from Table 1 it can be shown that
compared to the bubbly flow case with spherical bubbles (scenario 8BM2) the magnitude of liquid
turbulence kinetic energy should be higher 1.159 times in the case 8BM4 and even 1.641 times in the
case 8BM6 only due to the ellipsoidal bubble shape in the two latter scenarios.

Finally, effects of bubble wakes on the distribution of liquid turbulence kinetic energy can be
observed analyzing the shapes of correspondingkl profiles given in Figure 2. Therefore, whilekl profiles
in the cases 8BM2 and 8BM4, where the influence of bubble wakes is very weak, are smooth,kl profile
in the case 8BM6 has a double saddle-like shape with pronounced peaks in the domains of low gas
volumetric fractions. The analysis of the instantaneous liquid velocity field has shown that these peaks
are caused by the formation of intensive vortical structures around the bubble equator.

An attempt to elucidate mechanisms governing the aforementioned complex behaviour of liquid
turbulence kinetic energy in slow bubble-driven liquid flows is presented in the next section.

4 QUANTITATIVE ANALYSIS OF BALANCE EQUATION FOR LIQUID TURBU-
LENCE KINETIC ENERGY IN SIMULATED BUBBLY FLOWS

Based on local instant and averaged formulations of mass and momentum conservation laws for gas-
liquid flows Kataoka & Serizawa (1989) derived balance equation for turbulence kinetic energy of con-
sisting phases. When the liquid phase is considered, this equation takes the following form:

∂

∂ϑ
(αlkl)︸ ︷︷ ︸

unsteady term

+
∂

∂xβ
(αlklulβ)︸ ︷︷ ︸

convective term

= − ∂

∂xα
(αlp

′
l u

′
lα)− ∂

∂xβ
(αl

1
2

u
′
lαu

′
lαu

′
lβ) +

∂

∂xβ
(αlτ

′
lαβu

′
lα)︸ ︷︷ ︸

diffusion, Diff(kl)

−αlτ
′
lαβ

∂u
′
lα

∂xβ︸ ︷︷ ︸
dissipation,εl

−αlu
′
lαu

′
lβ

∂ulα

∂xβ︸ ︷︷ ︸
production,Πl

−p
′
li u

′
liαnlαai + τ

′
liαβu

′
liαnlβai︸ ︷︷ ︸

interfacial terms,Υl

, (12)
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where Einstein’s summation rule applies toα andβ and does not apply tol, g and i. An evaluation
of balance terms in equation 12 offers a possibility for the analysis of mechanisms in which bubbles
alter the liquid turbulence generation, dissipation and redistribution as well as its interplay with flow
parameters such as velocity field, phase distribution and interfacial structures. The evaluations presented
here comprise balance terms on the right-hand-side of the equation 12. Due to the adopted averaging
technique, namely, magnitudes of the convective term can be neglected. Further, since only steady flow
regimes are considered the unsteady term is, also, negligible.

The budget of the basic balance equation for the turbulence kinetic energy of the liquid phase pre-
sented in Figure 3 revealed the prominent role of the interfacial terms. Since magnitudes of the produc-
tion term are, namely, so low that it can be neglected, the generation of liquid turbulence kinetic energy
is continuously maintained by moving bubbles through the work of fluctuating liquid stress upon the
bubble interfaces. However, as the interfacial generation of liquid turbulence kinetic energy is strictly
related to the bubble presence, profiles of interfacial terms consist of parabolic-like pieces with high
values in domains of high gas volumetric fractions and zero values in regions permanently occupied by
the liquid phase. On the other side, although the dissipation rate of liquid turbulence kinetic energy in
two-phase regions is remarkably more intensive than in single-phase parts, the dissipation profiles are
non-zero valued along the whole channel width. The local balance can, therefore, be established only if
some energy from the two-phase domains is transported towards the single-phase regions. Indeed, Figure
3 shows that the significant portion of the liquid turbulence kinetic energy produced by moving bubble
interfaces diffuses towards the parts of the channel occupied only by the liquid phase.

5 ASSESSMENT OF CLOSURE ASSUMPTIONS FOR BALANCE TERMS IN TUR-
BULENCE KINETIC ENERGY EQUATION OF LIQUID PHASE

Since the results presented in the previous section are obtained on the basis of rigorous mathematical
formulations for balance terms given by equation 12, they may be considered as exact, and, in this con-
text, used to test the assessment of corresponding closure assumptions commonly applied in engineering
liquid turbulence models (further called modelled terms). In this section more detailed considerations of
individual balance terms in equation 12 are presented from that point of view.

5.1 Transfer of Kinetic Energy Between Mean and Fluctuating Liquid Flow

The transfer of kinetic energy between the mean and fluctuating flow is called production, because in
shear flows it is always the source of turbulence kinetic energy. Predictions of the production term
in engineering liquid turbulence models for bubbly flows are based on the following single-phase-like
closure assumption:

Πl = αlν
eff
l [∇ul +∇u

T
l ] : ∇ul (13)

whereνeff
l represents the effective viscosity of the liquid phase.

In one-equation (k− l) models the liquid effective viscosity,νeff
l , is given by (Kataoka & Serizawa,

1995a), (Kataoka & Serizawa, 1995b):

νeff
l = β1ltp

√
kl , (14)

whereltp denotes the two-phase mixing length and the coefficientβ1 = 0.56. It is noted that, the method
proposed for the determination ofltp could not be strictly followed in this paper. The definition ofltp
as the sum of shear-induced mixing length,lsi, and bubble-induced mixing length,lb, used by Kataoka
& Serizawa (1995a) and Kataoka & Serizawa (1995b) for analysis of bubbly flows with high Reynolds
numbers is found to be inappropriate for here considered very slow bubble-driven liquid flows. In
relation to this, it was reasonable to neglectlsi and assumeltp = lb = αgdb/3.

The approaches used to evaluateνeff
l in two-equation models (k− ε and algebraic stress models) can

be classified into the following three groups:
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Figure 3: Budget of balance equation for turbulence kinetic energy of liquid phase (see equation 12) in bubbly flows with
different viscosity. Notations given in c) apply to the whole Figure.
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Figure 4: Performance of closure assumptions for production term in the case of bubbly flow scenario 8BM6.

• Only the eddy viscosity evaluated by two-phasek−ε model,νkε
l , is considered (Boisson & Malin,

1996), (Grienberger & Hofmann, 1992), (Svendsenet al. , 1992), (Troshko & Hassan, 2001),
(Politanoet al. , 2003), (Morel, 1997), (Deenet al. , 2000), (Sheng & Irons, 1993), (Spickaet al. ,
2001), (Hill et al. , 1995), (Mudde & Akker, 2001), (Oeyet al. , 2003):

νeff
l = Cµk2

l /|εl |︸ ︷︷ ︸
νkε

l

(15)

• Besideνkε
l the molecular viscosity of the liquid phase,νl , is accounted for (Olmoset al. , 2003),

(Pfleger & Becker, 2001):
νeff

l = Cµk2
l /|εl |︸ ︷︷ ︸

νkε
l

+νl (16)

• In addition toνkε
l the bubble-induced eddy viscosity,νb

l , evaluated by model of Satoet al. (1981)
is taken into consideration (Lahey & Drew, 1999):

νeff
l = Cµk2

l /|εl |︸ ︷︷ ︸
νkε

l

+ 0.6αgdb|ur |︸ ︷︷ ︸
νb

l

. (17)

The following notation is used in the aforementioned relations:εl represents magnitude of the dissipation
rate,ur stands for the mean relative velocity between the phases and the coefficientCµ = 0.09.

The assessment of presented closure assumptions for production term is illustrated in Figure 4 for
the bubbly flow scenario 8BM62. Figure 4 shows an extremely poor modelling of the production term -
first, none of the applied closure assumptions was able to predict negative values of the production term
evaluated by its basic mathematical formulation; second, absolute magnitudes of the production term are

2Results for bubbly flow scenarios 8BM4 and 8BM2 show approximatively the same relationship between the exact and
modelled production term as observed in the case 8BM6 and are for that reason here not presented.



12/20 The 11th International Topical Meeting on Nuclear Thermal-Hydraulics (NURETH-11)
Popes’ Palace Conference Center, Avignon, France, October 2-6, 2005

overestimated. However, while the overestimation is in the case ofk− l model andk−ε whereνeff
l = νkε

l
moderate, it is strong for the case whereνeff

l = νkε
l + νl and drastic when bubble-induced eddy viscosity

is accounted for (νeff
l = νkε

l + νb
l ).

5.2 Redistribution of Liquid Turbulence Kinetic Energy

Like in single-phase flows the diffusion transport of liquid turbulence kinetic energy involves three
contributions: pressure correlation, triple correlation and molecular diffusion (the first, the second and
the third term on the r.h.s. of equation 12, respectively). The evaluation of corresponding diffusion
subterms on the basis of their basic mathematical formulations given by equation 12 revealed a dramatic
effect of the liquid viscosity on the role of mechanisms that govern the diffusion transport of the
liquid turbulence kinetic energy. For instance, in the low viscosity case 8BM6 the transport of liquid
turbulence energy from the domains with high gas volumetric fractions is mainly performed by pressure
correlation and, at a lower extent, by triple correlation, while the contribution of the molecular diffusion
is almost negligible. However, in domains with low gas volumetric fractions and in single-phase regions
the relation between the different diffusion subterms significantly changes - the molecular diffusion
gains on importance, while the triple correlation plays a minor role. The pressure correlation, however,
represents a significant form of the diffusion transport over the whole domain. The increase of the
liquid viscosity by factor of 3.162 (scenario 8BM4) affects the diffusion mechanisms appreciably - the
transport by velocity fluctuations is completely dampened, while the contributions of the molecular
diffusion and the pressure correlation are approximatively equal. The further increase of the liquid phase
viscosity (scenario 8BM2) additionally suppresses the turbulent transport of liquid turbulence kinetic
energy. Although the contribution of the pressure correlation in this case is lower than the one of the
molecular diffusion, it is remarkable that even in such a very viscous liquid flow, the diffusion of liq-
uid turbulence energy resulting from the correlation of pressure and velocity fluctuations is not to neglect.

The observed different intensity of the diffusive transport due to the fluctuating liquid flow makes
questionable the validity of closure assumptions commonly used for the diffusion term. Current mod-
elling of the diffusion in bubbly flows is, namely, based on closure relations well-established for single-
phase forced flows, where the redistribution due to pressure fluctuations is of minor importance. In
relation to this, the pressure correlation is grouped with the triple correlation and the sum is further
modelled as a gradient-like process. Consequently, the total diffusion flux ofkl is expressed as:

Diff (kl) = ∇ · [αlν
Diff
l ∇kl ], (18)

whereνDiff
l represents the diffusion coefficient. In one-equation models the diffusion coefficient is given

by ( (Kataoka & Serizawa, 1995a) and (Kataoka & Serizawa, 1995b)):

νDiff
l = 0.5νl + β2ltp

√
kl︸ ︷︷ ︸

νkl
l

, (19)

where the coefficientβ2 = 0.38, while in two-equation modelsνDiff
l is evaluated in the analogous way

as the effective eddy viscosity,νeff
l , i.e.:

• νDiff
l = νkε

l (Troshko & Hassan, 2001), (Politanoet al., 2003), (Morel, 1997), (Deenet al., 2000),
(Sheng & Irons, 1993);

• νDiff
l = νkε

l + νl (Boisson & Malin, 1996), (Grienberger & Hofmann, 1992), (Svendsenet al. ,
1992), (Spickaet al. , 2001), (Olmoset al. , 2003), (Hill et al. , 1995), (Mudde & Akker, 2001),
(Oeyet al. , 2003), (Pfleger & Becker, 2001);

• νDiff
l = νkε

l + νb
l (Lahey & Drew, 1999).

The performance of the above presented closure assumptions for the diffusion term is illustrated in
Figure 5 for the bubbly flow scenarios 8BM2 and 8BM6. It can be seen that closure assumptions used
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Figure 5: Performance of closure assumptions for the diffusion term inkl equation for bubbly flows with different viscosity.
Notations given in a) apply to the whole Figure.

in k− l and ink− ε models whereνDiff
l = νkε

l + νl in the case 8BM2 underestimate the magnitudes of
the diffusion term, but correctly predict the shape of the diffusion profile over the whole channel width.
Such a situation is to be expected since in this, the most viscous, case significant contribution to the
exact diffusion term is made by the molecular diffusion that is in these approaches included throughνl .
On the other side, closures where the liquid viscosity is not taken into account totally failed estimating
approximatively zero values of the diffusion term.

While the presented results for the scenario 8BM2 give a hope that acceptable modelling of the
diffusion term could be achieved establishing a proper closure for the diffusion coefficient,νDiff

l , the pre-
dictions of the diffusion term for the bubbly flow case with the lowest liquid viscosity (scenario 8BM6)
clearly indicate that the whole concept of currently used engineering formulations for the diffusion trans-
port of liquid turbulence kinetic energy in bubbly flows is inappropriate. In Figure 5b it can, namely, be
seen that dramatic disagreement between the modelled and exact diffusion terms occurs in two-phase re-
gions of the channel - not only the magnitudes of the diffusion term are incorrectly predicted, but, also, its
sign. The attempt to include the two-phase effects in the diffusion coefficient through the bubble-induced
eddy viscosity,νb

l , resulted even in higher discrepancies.

5.3 Viscous Dissipation of Liquid Turbulence Kinetic Energy

While the production and diffusion of liquid turbulence kinetic energy are in all the considered models
expressed in the form of closure assumptions, the dissipation term ink− ε and algebraic stress models
is evaluated by a separate transport equation. In this context, discussions concerning the dissipation
term are restricted on closure assumptions used in the one-equationk− l model. Therefore, Kataoka &
Serizawa (1995a) and Kataoka & Serizawa (1995b) proposed the following closure assumption for the
dissipation rate:

εl = γ1αlk
3/2
l /ltp, (20)

where the coefficientγ1 = 0.18.

Results obtained using the above definition of the dissipation term are presented in Figure 6. Since
two-phase mixing length,ltp, as defined in this work involves only the bubble-induced contribution, the
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Figure 6: Predictions of dissipation term byk− l models for bubbly flows with different viscosity.

dissipation rate in channel regions permanently occupied by the liquid phase could not be computed.
The comparison of the modelled dissipation term with the exact one shows poor performance of the
expression 20 for all the considered bubbly flow scenarios.

5.4 Interfacial Generation of Turbulence Kinetic Energy

The interfacial terms as given in equation 12 can, after some simple mathematical manipulations, be
expressed in the following form (Troshko & Hassan, 2001):

Υl =
1
%l

u′
li

[
−

(
pli − pli

)
I + τli

]
︸ ︷︷ ︸

M l

∇Φl −
1
%l

[(
pli − pl

)
I + τ l

]
: u′

li∇Φl , (21)

where the unit tensor is denoted byI , the gradient of the liquid phase indicator function is given as
∇Φl = nlai and the average interfacial pressure of the liquid phase is defined aspli = pli ai/ai (Kataoka
& Serizawa, 1989), whileM l represents the instantaneous interfacial force density (Drew, 1983).

Evaluations performed using DNS data for here considered bubbly flows have revealed that the con-
tribution of the first term in expression 21 to the total interfacial generation of liquid turbulence energy
is absolutely dominant comparing to the contribution of the second term. Assuming that the aforemen-
tioned conclusion about the negligible contribution of the correlation between the velocity fluctuations
and the interface dynamics may, also, be extended to the gas phase (u′

g∇Φg ∼ 0) the interfacial genera-
tion of the turbulence kinetic energy in two-phase mixture,Υtp, can be given as:

%tpΥtp = %lΥl + %gΥg =
∑
k=l,g

u′
kiMk, (22)

whereΥg represents the interfacial generation of gas turbulence kinetic energy and the subscriptsk andtp
indicate the phase (liquid or gas) and the two-phase mixture, respectively. Having in mind the definition
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Contributions to interfacial terms
Model Drag Non-drag

M1 (Morel, 1997)
3
4

Cd%lαg|ur |3/db︸ ︷︷ ︸
Wd

Mam · ur

M2 (Boisson & Malin, 1996) 0.05αlWd None
M3 (Olmoset al. , 2003) 0.75Wd None
M4 (Pfleger & Becker, 2001) 1.44Wd None

M5 (Kataoka & Serizawa, 1995a) 0.075fw 3
4Cd%lαgu3

t /db αg%lk
2/3
l /db

M6 (Lahey & Drew, 1999) 0.25αlαg(1 + C4/3
d )|ur |3/db None

M7 (Sheng & Irons, 1993) 0.63
4%lCd

αg
db
|ur |kl 2.53αgαlΠl

M8 (Hill et al. , 1995) 3
4

Cd
db
|ur |

(
2αg%l(Ct − 1)kl −

νkε
l

αlαg
ur · ∇αg

)
None

Table 2: List of currently used engineering formulations for interfacial turbulence transfer in bubbly flows.

of interfacial velocity fluctuation,u
′
ki = uki−uk, the equality of phase interface velocities in the absence

of phase change,uli = ugi, and validity of the principle of action and reaction on the phase interface,
M l = −Mg, the expression 22 can be given in the following form:

Υl =
1
%l

M l(ul − ug)−
%g

%l
Υg. (23)

The benefit of the relation 23 is indispensable for engineering considerations of the liquid turbulence in
bubbly flows. As in typical bubbly gas-liquid flows, namely, the ratio of phase densities,%g/%l , is very
low, it is reasonable to neglect the second term in expression 23 and express the interfacial generation
of the liquid turbulence kinetic energy as the rate at which the work is performed by interfacial forces
in relative motion of bubbles. However, since bubbly flows considered here are associated with the
high density ratio (%g/%l = 0.5), the second term on the right-hand-side of equation 23 has to be taken
into account. In this context, the performance of closure assumptions for interfacial turbulence energy
transfer is tested against the following sum:

Υ = Υl +
%g

%l
Υg, (24)

whereΥg is evaluated replacing the subscriptl in expression forΥl (see equation 12) by the subscriptg.

Literature overview of closure assumptions for effects of bubble interfaces on the liquid phase tur-
bulence has shown that the aforementioned concept is followed - the interfacial term is in various ways
related to the rate of work performed by interfacial forces. An inspection of the reported formulations
further revealed that in development of closure assumptions forΥ bubbly flows are, generally, considered
to be drag dominated. Therefore, in Table 2 it can be seen that the drag contribution,Υd, is included in
all the models, while in models M2, M3, M4, M6 and M8 it is even considered to be the only one. In
the model M1Υd is equal to the total power of drag force,Υd = Wd, in models M2, M3 and M4Υd is
equal to a portion,Cb, of the total power of the drag force,Υd = CbWd, while in the models M6, M7
and M8 the power of the drag force is not explicitly contained inΥd. Except for the model M5, where

the evaluation of the drag is based on terminal velocityut = 1.414

[
σ|g|(%l − %g)/%2

l

]0.25

, in all other

models the mean relative velocity between phases,|ur |, is used. The drag coefficient in models M1, M5
and M8 is evaluated from the ’standard’ relation:

Cd =
2
3

√
Eöb

1 + 17.67α1.3
l

18.67α1.5
l︸ ︷︷ ︸

fα

, (25)
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whereEöb represents bubble Eötvös number andfα takes into account multiple bubble effects. Since
in models M6 and M7 the applied relation forCd is not reported, in here performed computations the
expression 25 is used. In the model M3 drag coefficient is determined asCd = 2

3
√

Eöb(1 − 〈αg〉)p,
where p represents an integer dependent on the bubble diameter and gas superficial velocity (for
conditions of bubbly flows considered herep takes the value of 0). In the model M4Cd = 0.44, while in
the model M2Cd = 20.68/Re0.643

b , where the bubble Reynolds number is defined byReb = |ur |db/νl .
Van Driest’s function,fw, used in the model M5 is formulated in the same way as in single-phase flows.
For the definition of the coefficientCt in the model M8 see the corresponding reference.

The non-drag contributions to the interfacial terms,Υnd, are taken into account only by a few authors.

Therefore, in the model M1 the work of the added mass force,Mam = Cam
1+2αg
1−αg

αg%l

(
Dgug

Dt − Dlul
Dt

)
, is

included (Cam is the added mass coefficient), in the model M5 the term that accounts for absorption of
liquid turbulence by bubbles is considered, while in the model M7Υnd is related to the liquid turbulence
production by mean shear,Πl .

The performance of all the presented closure assumptions is first tested for the bubbly flow scenario
8BM6 (see Figure 7). The analyses of obtained results revealed the following:

• All the non-drag contributions are an order of magnitude lower than the corresponding drag ones.

• Models M2, M5, M7 and M8 totally fail predicting almost zero magnitudes of interfacial terms.

• Models M3, M4 and M6 underestimate the magnitudes of interfacial terms.

• Model M1 gives acceptable discrepancies and seems to be the promising approach in modelling of
interfacial terms.

The encouraging performance of the model M1 in the simulation scenario 8BM6 has, however, not been
obtained when bubbly flows 8BM4 and 8BM2 were considered - interfacial terms have been strongly
underestimated in both cases. Taking into account significantly different flow conditions in scenarios
8BM2 and 8BM4 this situation is suspected to be assigned to the inappropriate formulation of the drag
coefficient. The correlation for the drag coefficient given by expression 25 is, namely, developed for
the most often used suspension of air bubbles in water - its applicability to bubbly flows 8BM4 and
especially 8BM2 is, therefore, seriously limited due to the increased liquid viscosity. In relation to this,
it is supposed that the better performance of the model M1 can be achieved by use of drag coefficient
correlations reported by Tomiyama (1998), that have experimentally been verified within a wide range
of fluid properties (bubble Ëotvös numberEöb = 10−2 − 103, Morton number,M = 10−14 − 107 and
bubble Reynolds number,Reb = 10−3 − 105). For a pure gas-liquid system considered in this paper the
drag coefficient relation is formulated by:

Cd = max

[
min

(
16
Reb

, (1 + 0.15Re0.687
b )

)
,
8
3

Eöb

Eöb + 4

]
. (26)

The evaluation of interfacial terms as defined by the model M1, but with the drag coefficient defined by
26 instead of 25, has confirmed the importance of the proper choice of the drag coefficient formulation.
Therefore, as it can be seen in Figure 8, despite the discrepancies between the modelled and the exact
interfacial term profiles, the modelling concept proposed by Morel (1997) (model M1) may be judged as
correct. Further, when one takes into account that in Figure 8 results computed by a semi-empirical en-
gineering approach are drawn versus the ones evaluated on the basis of rigid mathematical formulations
for an extremely wide range of bubbly flow parameters, it may be stated that modelling of the interfacial
turbulence effects by the model M1 is acceptable.

The results presented in this and in the previous section have revealed that in dilute bubble-driven
liquid flows the rate of the work done by bubbles on the continuous phase is, on overall level, balanced
by the viscous dissipation term (the magnitude of the production term is negligible and the diffusion term
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Figure 7: Performance of closure assumptions for interfacial turbulence transfer in the case of bubbly flow scenario 8BM6.
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Figure 8: Predictions of interfacial turbulence transfer by model M1 using the drag coefficient relation 26.
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has no net contribution). Therefore, in a steady drag dominated bubbly flow the overall dissipation rate,
〈εl〉, can be expressed using an appropriate empirical correlation for the power of the drag force. This
fact is here used to check whether the computational grid 643 imposed on flow domain is sufficiently
fine to resolve the smallest vortices. In relation to the aforementioned, the well-known definition for
Kolmogorov length scaleη = ν

3/4
l |〈εl〉|−1/4, takes the following form:

η = db

[
4
3

1
Cd%l〈αg〉

] 1
4
Re
− 3

4
b , (27)

where the bubble Reynolds number is defined on the bases of overall phase relative velocity,〈ur〉.
The values of Kolmogorov length scale evaluated using the drag coefficient correlation 26:η8BM6 =
2.4788∆x, η8BM4 = 7.4935∆x andη8BM2 = 22.1151∆x demonstrate that the requirementη > 2∆x is
satisfied in all the simulation cases.

6 CONCLUSIONS

This paper reports investigations of liquid phase turbulence in slow dilute bubbly flows. Investigations
are based on statistical analysis of liquid velocity fluctuations, where the liquid turbulence kinetic
energy is considered as the fundamental turbulence quantity. The main goal of the performed analysis
was to improve understanding of mechanisms in which bubbles alter generation, redistribution and
dissipation of turbulence kinetic energy in the liquid phase. Second issue concerns assessment of closure
assumptions commonly used in engineering liquid turbulence models.

Input data for the liquid turbulence analysis are provided by direct numerical simulations of bubbly
flows. In total three numerical runs were performed, where the rise of bubble swarms consisting of 8 bub-
bles within cubic channel with two lateral walls is simulated. The influence of bubble shape and bubble
rise velocity on characteristics of generated liquid flow is analyzed specifying different liquid viscosities.

It has been found that the increase of the liquid viscosity causes a drastic decrease of the liquid
turbulence kinetic energy. Three flow parameters have been identified as reasons for such a behaviour
of the liquid turbulence energy: decrease of the bubble rise velocity between the phases, the change
of bubble shape from ellipsoidal to spherical (reflected through the decrease of added mass) and the
suppression of vortical structures in bubble wakes.

An attempt to elucidate physical mechanisms in which bubbles alter the liquid turbulence is made
by evaluation of balance terms in the basic equation for the liquid turbulence kinetic energy. The main
conclusions from this analysis are as follows. The transfer of kinetic energy between the mean and
fluctuating liquid flow (so-called production term) is negligible. The generation of liquid turbulence
kinetic energy is, therefore, continuously maintained only through the work of fluctuating liquid stress
upon the moving bubble interfaces. Since this term has a local character determined by the distribution
of bubbles, the local non-equilibrium between the turbulence generation and turbulence dissipation
gives importance to the diffusion term. A detailed analysis of the diffusion subterms has shown that
the molecular transport process plays an important role and may, therefore, not be neglected in slow
bubble-driven liquid flows. An especially important form of the diffusive transport in all the considered
bubbly flows turned out to be correlation including pressure fluctuations.

DNS based evaluations of balance terms in the basic equation for liquid turbulence kinetic energy are,
further, used to assess performance of corresponding closure assumptions applied in engineering models
for the liquid phase turbulence. The performed analysis have revealed the following. Currently used
closure assumptions failed to realistically predict both, the production term and the diffusion term - while
the production term is strongly overestimated, the diffusion transport of liquid turbulence kinetic energy
is strongly underestimated by all closure assumptions. When the performance of closure assumptions for
the interfacial term is concerned, encouraging results are obtained. Therefore, although majority of the
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available closure assumptions resulted in the strong underestimation of this term, predictions made by
the model of Morel (1997) are quite acceptable. An inspection of the results obtained by this modelling
approach indicated that the interfacial term can be formulated very simply - as the rate at which the work
of the drag force is performed. It is, however, emphasized, that a great caution has to be paid when the
closure relation for the drag coefficient is specified. According to the analysis performed here, the use of
drag coefficient relations proposed by Tomiyama (1998) is suggested.
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