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The mass transfer in a film of metal-organic framework with one-dimensional pores, oriented perpendicular to the sub-

strate surface, was gravimetrically explored. The diffusion coefficients of the probe molecules cyclohexane and p-xylene

were determined from the transient uptake curves. When exchanging cyclohexane by p-xylene in the MOF pores, the mass

transfer was significantly slower than the plain, single-component uptakes. However, a single-file-diffusion situation,

where mutual passage is hindered, tremendously slowing down the mass transfer, was not found.
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1 Introduction

Diffusion of molecules is a fundamental process in nature
[1–5]. It is the primary mechanism for the mass transport
of molecules in nanoporous materials [6]. Such materials
are highly attractive for various applications due to their
enormous surface areas [7–11]. For a single fluid diffusing
in the pores, the mass transport can be generally described
by Fick’s laws [12, 13]. For more insights in the diffusion
and mass transport in nanoporous crystalline materials, we
like to refer to the work of Jörg Kärger and other experts in
the field [6, 14–17].

In the last two decades, metal-organic frameworks
(MOFs) became a valuable model system for diffusion stud-
ies. MOFs are a class of nanoporous crystalline materials,
made of metal nodes connected by organic linker molecules,
forming a three-dimensional scaffold [10, 18]. MOFs pos-
sess many unique properties, like high porosities, high
specific surface areas as well as very diverse structures and
functionalities. In pioneering works by the group of
Jörg Kärger, the diffusion of light hydrocarbons in MOFs
was explored [19–21]. By using infrared and interference
microscopy to explore the uptake and release of the guest
molecules by/from single crystals, unique insights in the
diffusion in nanopores were obtained [19, 20, 22, 23]. A spe-
cial focus was on the verification and analysis of transport
resistances at the external MOF surface, termed surface
barriers [19, 22, 24–27]. The experimental work showed
that, not only many zeolites [28–32], but also many MOF

materials possess such a transport resistance at the surface
[19, 22–26]. This finding was verified by other groups
[17, 33, 34]. For a few examples, which are MOFs of type
Zn(tbip) [26, 35], Co-MOF-74 [36] and HKUST-1 [37, 38],
the surface barriers were characterized as a thin layer of
destructed MOF at the external surface which is widely
nonporous and thus impermeable. There, the molecules can
enter the intracrystalline pore space only via a few remain-
ing openings that are not destructed [26]. More details of
the structure of surface barriers and whether these findings
can be generalized to further members of the large class of
MOFs remain a future task.

Inspired and motivated by the diffusion studies in single
crystals, well-defined MOF films prepared and stored under
controlled conditions were employed to further explore the
surface barrier phenomenon [37–39]. To date, infrared and
interference microscopy were not yet applied to visualize the
transient concentration profiles and to gain deeper insights
in the uptake and release kinetics in thin films. Instead, a
quartz crystal microbalance (QCM) [40] was employed to
gravimetrically quantify the transient uptake of the guest
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molecules by the MOF film grown on the QCM sensor. So
far, the diffusion studies using MOF films have been focused
on MOF materials with three-dimensional pore systems. In
this communication, we like to introduce thin films of met-
al-organic frameworks with one-dimensional channels as
defined model system for diffusion studies.

Generally, the size, the shape and the connectivity of the
pore space has a severe impact on the molecular mass trans-
port [6, 16]. A particularly interesting case can be found in
one-dimensional channel-like pores where the mutual pas-
sage of the molecules is excluded. This situation is usually
referred to as single-file diffusion [41, 42]. In such single-
file-diffusion systems, the mobility of the particles is highly
correlated. In particular, the mobility of the particles at large
diffusion times (and large pore fillings) is tremendously
decreased by the phenomenon of single-file diffusion. In the
equilibrium case, the average mean square displacement of
the particle scales with the square root of time, rather than
with the time, as expected for plain Fickian diffusion.
Single-file diffusion in different zeolite structures has been
experimentally explored by pulsed field gradient nuclear
magnetic resonance and quasi elastic neutron scattering
techniques [42–47]. For MOFs, the observation of single-
file diffusion has been published only once to date [48].
However, due to the huge versatility and tunability of
MOFs, where the pore size and shape can be adjusted, we
expect that using this class of material as host for single-file
diffusion studies will provide further insights. Besides, the
channel length can be controlled by controlling the MOF
particle size or the film thickness, in case of diffusion stud-
ies with MOF films.

It should be noted, that many different MOF structures
with one-dimensional channels have been presented
[49–52]. When growing the MOF structures in the form of
thin films, the pores are usually oriented parallel to the
substrate surface [53, 54]. There, the uptake, which is
assumed to occur via defects and domain boundaries, can
be explored [55], but a thorough characterization of the
mass transfer is difficult. Please note, although the layer-by-
layer synthesis of making surface-mounted MOFs (SUR-
MOFs) possesses many advantages for studying the diffu-
sion in the nanopores (such as a small defect density and a
controlled thickness) [56], SURMOF films with sub-nm-
sized channels perpendicular to the substrate surface have
not yet been presented to date. To the best of our knowl-
edge, except of metal-organic-graphene-like MOFs such as
CuHHTP with relatively large pores [57, 58], the only report
of a homogenous MOF film with one-dimensional channels
perpendicular to the substrate surface is a Cu(BDC) MOF
film made by chemical vapor deposition [59]. The mass
transfer in these pores has not yet been explored.

Here, we present uptake and exchange experiments in
MOF films with one-dimensional channels perpendicular
to the substrate. Since the pores are perpendicular to the
substrate, each pore has one open end, where the molecules
can enter and leave the pores, and one end that is blocked

by the substrate. The pore diameter is approximately
0.8 nm. The guest molecules cyclohexane and p-xylene are
slightly smaller than the pore diameter of the defect-free
MOF structure, Figure 1. The transient molecular uptake
from the vapor phase was gravimetrically recorded by
QCM. Form the transient guest uptake, the diffusion coeffi-
cients were determined. When exchanging cyclohexane
guest molecules in the pores by p-xylene, the time constant
of the exchange is about 4 times smaller than of the pure
guest uptake. This points on a strong interaction of the dif-
fusing guests. However, single-file diffusion, which would
cause a tremendous mobility drop, can be excluded.

2 Experimental Section

The MOF films of type Cu(BDC) were prepared via chemi-
cal vapor deposition, following published directions [59, 60]
(BDC stands for 1,4-benzene dicarboxylic acid, i.e., tereph-
thalic acid). The synthesis was performed in two steps. First,
a 100nm-thick copper layer was deposited on the substrate,
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Figure 1. a) Sketch of the MOF film on the QCM sensor. The
MOF film (blue) is grown on the gold-coated QCM sensor. The
channels are perpendicular to the substrate surface. The chan-
nel with the MOF structure (Cu – orange, O – red, C – grey and
H – white) and the van-der-Waals surface (transparent blue) are
also shown. b) The MOF pore with one cyclohexane (left) and
one p-xylene (right) guest molecule in the pores. The molecules
are next to each other in the pore. The van-der-Waals volume
of all atoms (MOF and guest) are shown in semi-transparent
blue. Flexibility, vibrations, and defects are not considered here.
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which was plain quartz or a gold-coated-QCM sensor, via
vapor-phase deposition using a BAL-TEC MED 020 coating
system. The metallic copper film was oxidized by thermal
treatment at 300 �C in air for 30 min. In the second step, the
substrate was placed in a Schlenk flask in an upside-down
position, 4 cm above the BDC molecules (about 500 mg).
Then, the reaction vessel was evacuated (down to
2 � 10–1 mbar), heated to about 200 �C and kept for 18 h.
After cooling down, the final sample was obtained.

The crystallinity was investigated by in-plane X-ray dif-
fraction (XRD) using a Bruker D8 DISCOVER Plus XRD
diffractometer. The resulting diffractogram was compared
with the data calculated for the corresponding published
crystal structure (ZUBKEO in the Cambridge Crystallo-
graphic Data Centre).[59]

The uptake experiments were performed using a quartz
crystal microbalance (QCM) with the Cu(BDC) film on the
gold-coated QCM sensors. The QCM is a QSense QCM-D
E4. The QCM cell was purged by a nitrogen stream with a
constant flow rate of 100 SCCM. Before the experiments,
the sample was activated in pure nitrogen at 45 �C for 24 h,
to ensure that the MOF pores are activated (i.e., empty). In
the uptake experiments, the gas flow was instantly switched
from pure nitrogen to the nitrogen flow enriched with the
guest molecules (p-xylene or cyclohexane), which was real-
ized by the nitrogen stream flowing through a wash bottle
filled with the liquids. The partial pressure of the vapors is
slightly below the saturated vapor pressure at room temper-
ature [61]. The setup was optimized in our previous studies
[38, 39, 61, 62]. The experiments were performed at a tem-
perature of 30 �C.

After the uptake experiments, the sample was imaged
with scanning electron microscopy (SEM). The SEM mea-
surements were performed with a TESCAN Vega III elec-
tron microscope. The secondary electron detector, a beam
voltage of 30 kV and a working distance of 8–9 mm were
used. Before the SEM imaging, the sample was covered with
a thin (~5 nm) layer of platinum.

3 Results and Discussion

The MOF film was prepared following the synthesis direc-
tions, recently presented by Ameloot et al. [59, 60]. The
targeted MOF is made of Cu-nodes which form linear
chains. The Cu-chains are connected by terephthalate. The
pore cross section of the Cu(BDC)-MOF-channels is
approximately square-shaped with an edge length of
approximately 0.8 nm. The structure of the thin MOF films
was explored by X-ray diffraction, Fig. 2a. There, the diffrac-
togram was recorded in the in-plane-geometry, since the
out-of-plane X-ray diffraction of this MOF structure shows
only weak diffraction peaks [59]. The in-plane-XRD shows
that the film is crystalline and it has the structure of the
targeted MOF. Moreover, it shows that the MOF pores are
aligned perpendicular to the substrate surface, see [59].

The sample morphology was imaged by SEM, Fig. 2b and
c. The images show that the film covers the substrate homo-
geneously. The film has a thickness of approximately 500 to
700 nm, in average about 600 nm. A small surface rough-
ness can also be observed.

The film thickness of these sample is somewhat larger
than the films in [59], indicating a higher CuO fi MOF-
conversion, most likely due to the longer synthesis time and
a somewhat different synthesis setup. Based on the CuO-
thickness of 100 nm and on the CuO fi MOF-volume-
conversion factor of 13 [59], a maximum MOF-film-thick-
ness of 1.3 mm is expected.

The transient uptakes of the pure probe molecules, either
cyclohexane or p-xylene, by the MOF film are shown in
Figure 3a and b as well as in Figure S1. The increase of the
mass can be described with a mono-exponential decay func-
tion with a time constant t of about 1.3 s for cyclohexane
and 20 s for xylene. The uptake experiments were repeated
several times. An average uptake time constant of 1.3 ± 0.2 s
for cyclohexane and 19 ± 6 s for xylene was determined, see
Figure S1, supporting information. The average observed
cyclohexane uptake amount was 1.7 ± 0.1 mg cm–2 and
2.2 ± 0.2 mg cm–2 for p-xylene.

For diffusion-controlled uptake by a thin homogeneous
film (or infinite slab) of thickness l, the time constant t
corresponds to l2/3D, see ref.8 (page 278) or ref.6 (page 445).

Chem. Ing. Tech. 2023, 95, No. 11, 1–8 ª 2023 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH www.cit-journal.com

Figure 2. a) In-plane X-ray diffractogram of the Cu(BDC) MOF
film (black) compared with the calculated structure grey. The
experimentally observed peaks are labelled. b) and c) SEM top-
view and the cross-section of the broken sample. The quartz
sensor and its Au coating as well as the MOF film are labeled.
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Based on the film thickness of 600 nm, we calculate a diffu-
sion coefficient of ~9.5 ·10–14 m2 s–1 for cyclohexane and
6.2 ·10–15 m2 s–1 for p-xylene.

The transient uptake data can also be described with the
analytical solution of the diffusion equation (i.e., Fick’s law)
with the respective boundary conditions [6, 62, 63]. By this
approach (see Fig. S1 in the Supporting Information, SI) a
diffusion coefficient of (9.5 ± 0.7) � 10–14 m2s–1 was deter-
mined for cyclohexane and (6.6 ± 2.7) � 10–15 m2s–1 for
p-xylene. Both methods result in very similar diffusion
coefficients.

The release of the guest molecules was significantly
slower. The release-time-constants were approximately one
order of magnitude larger than the uptake-time-constants
(representative release curves are shown in Fig. S2, SI). We
assume that this is caused by a diffusion coefficient which
increases strongly with the guest loading, where similar dif-
ferences in the time constants have been found before
[30, 64]. Here, this is not explored in detail.

In order to explore the diffusion mechanism, particularly
whether the mass transfer is governed by single-file diffu-
sion, guest-exchange experiments were performed. In case
of single-file diffusion, a tremendously slowed-down ex-
changed kinetics would be obtained. To this end, the sam-
ples were first loaded with cyclohexane. Then, after the
MOF pores are filled with cyclohexane, the cyclohexane
vapor in the gas atmosphere was exchanged by the xylene
vapor. The change of the recorded mass is shown in Fig. 3c.
There, it can be seen that the mass uptake slowly changes

from 1.8 mg cm–2 to 2.5 mg cm–2. We interpret this as an
exchange of the guest molecules from cyclohexane to
xylene. The time constant of the exchange is 94 s, which is
about 4 times slower than the uptake of xylene by the ini-
tially empty MOF film.

Since the cyclohexane diffusion is one order of magnitude
faster than the xylene diffusion, we believe the kinetics of
the cyclohexane fi xylene exchange is essentially limited
by the xylene mobility, not by cyclohexane. (We believe the
current communication is a great starting point for a thor-
ough study, which also includes the xylene fi cyclohexane
exchange, where the kinetics are presumably governed by
the slow release of xylene.) Based on the exchange curves,
the counter diffusion coefficient of xylene is 4 times smaller
than the single-component diffusion coefficient (in the
initially empty MOF pores). We believe the reason for the
significantly slower counter diffusion, compared to the
plain single-component diffusion, is the interaction of the
guests, where the mass transport of both components
occurs in opposite directions during the exchange. More-
over, the multi-component adsorption equilibrium may also
affect the uptake kinetics. The effect of the adsorption
amount as well as the shape of the isotherm may also con-
tribute.

On the other hand, for single-file diffusion in channels
with a length L of 600 nm, the effective diffusion coefficient
Deff would drop and the time constant would increase by
many orders of magnitude, depending on the pore filling
[65]. The effective diffusion coefficient for (tracer) exchange
in single-file-diffusion systems can be calculated by

Deff ¼ D
1� q

q
l
L

[65]. As a rough estimation, assuming a

pore filling (occupancy q) of 50 % and a diffusion step
length (l) of 1 nm, the effective diffusion coefficient is
600-times smaller than the diffusion coefficient. This means
the time constant of the exchange would be 600-times larger
than of the uptake. Such a larger difference between the
uptake and exchange processes is not observed, thus, we
exclude (pure) single-file diffusion in our system.

The gas kinetic diameter of cyclohexane is 0.60 nm and
0.67 nm for p-xylene [66, 67]. Thus, if both molecules would
be rigid spheres of that diameters, their passage would be
excluded in the (defect-free) MOF pores with a diameter of
about 0.8 nm. However, p-xylene has a planar shape and
cyclohexane is also more flat than spherical, so that both
molecules can pack next to each other in the pores, see
Fig. 1c. This means, mutual passage is possible, and the
exchange process is not hindered by single-file diffusion.
Moreover, the flexibility of the MOF and of the guest might
also contribute. In addition, defects in the MOF structure,
where the pore shape deviates from the straight channel
form, may also allow the guest passage.

www.cit-journal.com ª 2023 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH Chem. Ing. Tech. 2023, 95, No. 11, 1–8

Figure 3. Transient guest uptake and exchange recorded by
QCM. a,b) Uptake of cyclohexane and p-xylene. The exposure
to the vapor is indicated by the blue and green area, respective-
ly. The description of the data with monoexponential decay
functions as well as its time constants are shown in red.
Zoomed-in views of the uptakes are shown in Fig. S1, Support-
ing Information. c) Exchange of cyclohexane by xylene. Upon
the sample was exposed to the cyclohexane vapor for about
10 min, the cyclohexane vapor was exchanged by the xylene
vapor, see labels.
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4 Conclusion

An uptake and diffusion study with MOF films of type
Cu(BDC) with one-dimensional channels and cyclohexane
and p-xylene as probe molecules is presented. From the
transient uptake curves, the diffusion coefficients were
determined to be (9.5 ± 0.7) � 10–14 m2s–1 for cyclohexane
and (6.6 ± 2.7) � 10–15 m2s–1 for p-xylene. When the cyclo-
hexane molecules in the MOF pores are exchanged by
xylene, the exchange mass transport is four times slower
than the single-component uptake of xylene. We interpret
this as slow counter diffusion. A situation where the passage
of the molecules is fully excluded, causing single-file diffu-
sion (with tremendously decreased exchange rates), is not
present. We speculate that larger, more spherical guest
molecules will not be able to pass each other in the pores, so
their mass transport might follow the single-file-diffusion
mechanism.

The study intends to suggest and to highlight MOF films
as model system for diffusion study. Since the thickness of
the MOF film and, thus, the channel length as well as the
pore diameter can be tuned [59], many critical parameter
can be modified. At the moment, the study suffers from the
fact that QCM is only sensitive to the mass changes, and
not to the type of molecules. Thus, it is insensitive to the
guest exchange. In future studies, the QCM data should be
combined with vibrational spectroscopy. Moreover, we
believe the combination with theoretical data by molecular-
dynamics simulations will help to gain deeper and more
profound insights.

Supporting Information

Supporting Information for this article can be found under
DOI: https://doi.org/10.1002/cite.202300045.
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isoreticular metal organic frameworks: realizing metastable
structures by liquid phase epitaxy, Sci. Rep. 2012, 2, 921.

[55] M. Cakici, Z.-G. Gu, M. Nieger, J. Burck, L. Heinke, S. Bräse,
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