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A B S T R A C T   

Models play a pivotal role in advancing our understanding of Earth’s physical nature and environmental systems, 
aiding in their efficient planning and management. The accuracy and reliability of these models heavily rely on 
data, which are generally partitioned into subsets for model development and evaluation. Surprisingly, how this 
partitioning is done is often not justified, even though it determines what model we end up with, how we assess 
its performance and what decisions we make based on the resulting model outputs. In this study, we shed light on 
the paramount importance of meticulously considering data partitioning in the model development and evalu
ation process, and its significant impact on model generalization. We identify flaws in existing data-splitting 
approaches and propose a forward-looking strategy to effectively confront the “elephant in the room”, leading 
to improved model generalization capabilities.   

1. Introduction 

Computer-based models are used extensively to help better under
stand Earth and environmental problems, and to manage various envi
ronmental and water resource systems. The use of data is central to the 
development of these models, as well as their practical applications 
(Vilas et al., 2023). Unfortunately, the choice of which data are available 
for model development is often beyond the control of modelers (Gibbs 
et al., 2018; Li et al., 2012). However, modelers do have a choice about 
how the available data are used. This generally relates to the manner in 

which the available data are partitioned into model development and 
evaluation subsets (Yang et al., 2018; Mai, 2023) - a process that is 
commonly referred to as “data-splitting” (e.g., Picard and Berk, 1990; 
Arsenault et al., 2018; Liu et al., 2018). 

Typically, the first portion of the available data is used for model 
development (e.g. 60% or 70%), while the remaining portion (e.g. 40% or 
30%) is used for model evaluation (Addor and Melsen, 2019; Mount 
et al., 2016). In some instances, the model development data are split 
further into selection and calibration subsets, where the selection subset is 
used for model structure determination and/or its hyperparameter 
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tuning, and the calibration subset for tuning the parameters of a model 
with a given structure. In contrast, the evaluation subset is used for in
dependent validation/testing of the generalization performance of the 
developed model (Coron et al., 2012; Wu et al., 2014; Maier et al., 
2023). However, this additional data splitting step is not required if a 
single model structure is considered. 

An alternative but related approach to the above data-splitting 
technique is the use of cross-validation, where models are calibrated 
and evaluated on multiple subsets of the data (see pioneering work on 
splines by Craven and Wahba, 1978). Three examples are: calibrating on 
subsets involving a moving window of the data and evaluating on the 
remainder (e.g., Coron et al., 2012); calibrating in multifarious ways on 
a majority of the data but omitting/holding out a much smaller sub
sample each time, which is useful when confronted with limited 
amounts of data; or calibrating on different conditions in the data such 
as those related to climate, for instance seasonal forcings and 
inter-annual variabilities (e.g., Trotter et al., 2023). 

The primary advantage of cross-validation is that a richer set of re
sults is obtained for which model performance can be assessed, or at 
least detected, according to its variability in both calibration and eval
uation, thereby providing a pragmatic appreciation of model uncer
tainty. In addition, cross-validation can provide an indication of the 
conditions under which a model performs to varying degrees, as well as 
highlight its limitations. In yielding a number of parameter sets corre
sponding to the different calibration splits, the parameter sets can be 
used to generate a combined or ensemble model; alternatively, the 
model parameterization that produces the most robust model, based on 
evaluation performance, can be chosen. 

Although papers reporting on modeling studies generally provide 
details on how the available data are divided into their respective sub
sets, very few justify why the selected data split has been selected. This is 
despite the significant body of literature pointing to the importance of 
attending to the characteristics of the data used for model development 
and evaluation, such as informativeness (Gupta et al., 1998; Vrugt et al., 
2003; Singh and Bárdossy, 2012) - an aspect that is commonly accepted 
in statistical learning (Hastie et al., 2009). The consequences of ignoring 
the impacts of how the available data are split into their respective 
subsets can be far reaching, potentially resulting in models with reduced 
generalization ability, a misleading assessment of the absolute and 
relative performance of models, and suboptimal decisions based on the 
outputs of these models (Chen et al., 2022; Zheng et al., 2022). These 
consequences arise because whichever data are used for model devel
opment and evaluation has a direct impact on which model is actually 
developed (e.g., values of the calibrated model parameters), as well as its 
perceived performance (Bowden et al., 2002; May et al., 2010). 

In order to confront the elephant in the room,1 this position paper (i) 
articulates why a careful choice of how the data are partitioned into 
development and evaluation subsets is critical, (ii) outlines problems 
with both traditional and state-of-the-art data-splitting approaches, and 
(iii) provides a roadmap and call to action. We anticipate that this paper 
will stimulate discussion on what role data play in the model develop
ment process, what the purpose of model calibration and validation 
actually is, and how we should evaluate the performance of models. We 
also believe that such attention can only result in the development of 
improved approaches to data-splitting, and hence more credible models. 

2. The importance of data splitting – the elephant in the room 

To emphasize the importance of proper data splitting, it is helpful to 
consider the analogy to a student taking a hydrology course (Table 1). In 
this context, the role of teacher (model developer) is to both facilitate 
optimal student learning (model development) and to evaluate how well 

the student has learned the relevant material (model evaluation). To 
facilitate learning, we provide students with in-depth exposure to, and 
opportunities to engage with, relevant course topics, such as providing 
homework questions for refining their understanding. Then, to ascertain 
the degree of student competency, we test student performance by 
designing exam questions on some, if not all, of the same topics, using 
questions that are generally conceptually similar, but not the same, as 
those previously assigned as homework. If the exam questions were 
exactly the same as the homework questions, it would be impossible to 
tell whether students had internalized the information sufficiently well 
to be able to successfully answer new (but related) questions, or whether 
they had simply memorized the solutions. 

Analogously, as part of the model development process, our goal is 
for models to internalize an appropriate representation of the system’s 
structure (i.e., “learn” appropriate input-output mappings) so that they 
can effectively make predictions under the diverse boundary conditions 
and modeling objectives they were designed for (e.g., high, medium, and 
low flow conditions, wet and dry prior climatic conditions, warm and 
cool temperatures, etc. – akin to the variety of topics covered in the 
hydrology course). For a given model structure, this is achieved by 
adjusting the model parameters to minimize the difference between 
modeled and corresponding measured outputs for a set of example 
input-output data points (in which sequential/spatial patterns are 
analogous to homework questions given to students). In addition, we 
would also like to evaluate (validate) the performance of the calibrated 
models under a breadth of similar conditions (course topics), but using 
different input-output data points (exam questions). 

The reason we need to use different data for model development and 
evaluation is that, like students, models are potentially able to “memo
rize” input-output mappings for particular patterns of data points 
without properly internalizing (learning) the underlying representations 
(principles, processes, and relationships). In model development, this is 
referred to as “overfitting/overtraining” (Vaze et al., 2010; Lever et al., 
2016; Razavi, 2021). Clearly, to properly achieve the above goals, both 
types of data subsets (i.e., the ones used for model development and 
model evaluation) must comprehensively cover the full range of relevant 
hydro-climatic conditions the model is intended to be representative of, 
or we run the risk of biasing the model towards performing well under 
one limited set of conditions at the expense of some others. By analogy, if 
all homework questions are focused on one topic within the course, then 
students are likely to understand this topic at the expense of under
standing the other topics (Wu et al., 2013). 

The above examples highlight three key model-development 
principles.  

1) It is imperative that data sets used for model development and 
evaluation are different. To enable the true generalization ability 
of models (knowledge of students) to be tested, rather than how well 
they have memorized the input-output relationships in the model 
development data (homework questions), it is important that 
different data (questions) are used for model development (home
work) and evaluation (exam) (Maier et al., 2010; Humphrey et al., 
2017). While teachers can use their experience and understanding to 
generate a wide variety of representative homework and exam 
questions, modelers typically only have access to a fixed data set, 

Table 1 
Details of analogies between teaching a hydrology course and developing a 
model.  

Hydrology Course Teaching Model Development 

Teacher Modeler 
Student understanding Learned model representation 
Course topics to be covered Types of events to be modeled 
Homework questions Conditions represented in model development data 
Exam questions Conditions represented in model evaluation data  

1 “An elephant in the room” is an English expression that means that there is 
an obvious problem that people do not want to talk about. 
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which therefore needs to be split into development and evaluation 
subsets. Of course, it is then a simple example of a cross-validation to 
reverse the process by calibrating on the evaluation set and evalu
ating on the calibration set, thereby gaining an enhanced apprecia
tion of model performance. In more intricate cases, the number of 
development and evaluation sets may be several, and where data are 
limited there may be some overlap between data sets.  

2) It is vital that all types of patterns/events contained in the 
available data that are relevant to the modeling purpose are 
included in the model development subset (i.e. for selection and 
calibration). To ensure that models (students) have the opportunity 
to develop the best possible representation of the system (best un
derstanding of the course topics), the model development data 
(homework questions) must cover all types of events that are rep
resented in the available data (all course topics). Without this, 
neither the generalization potential of the model, nor the learning 
potential of the student, can be maximized.  

3) It is ideal that all types of patterns/events contained in the 
available data are also included in the model evaluation subset. 
To assess the potential generalization ability of the model (level of 
competence achieved by the student), the model evaluation data 
(exam questions) must seek to cover all types of events that are 
represented in the available data (all course topics). Without this, the 
potential ability of the calibrated model to perform well in practice 
remains poorly understood, while the understanding of the student 
remains untested, both of which are undesirable as they present an 
incomplete and potentially misleading picture of future perfor
mance. This is especially important to consider when the resulting 
model will be used for modeling of specific event types (such as peak 
flows) to ensure that the model is actually fit for its intended purpose 
(e.g., see Hamilton et al. (2022) on characterizing fitness for purpose 
in terms of usability, reliability and feasibility). 

In general, the latter two principles can be satisfied relatively easily 
for the hydrology course example, since the teacher simply needs to 
generate (or select) an appropriate number of homework and exam 
questions from each of the course topics. However, for model develop
ment and evaluation, given that the available data are fixed, the modeler 
must deal with the facts that (i) the types of events covered by the data 
might be poorly informative/representative, and (ii) the number of data 
points (or data patterns) corresponding to different types of events are 
often highly variable – in general, infrequently experienced events (such 
as extreme events, which might be highly important to be able to 
properly simulate) constitute only small fractions of the data and are 
therefore represented in an unbalanced manner. This can make it diffi
cult, and sometimes impossible, to ensure that sufficient examples of the 
different types of events are properly included in both the model 
development and evaluation subsets, making it extremely challenging to 
ensure that the second and third principles are satisfied. Consequently, 
great care needs to be taken when assigning the available data to 
development and evaluation subsets to avoid perverse and/or 
misleading outcomes. This issue is exacerbated when the model devel
opment data need to be split further into selection and calibration 
subsets. 

When speaking about generalization ability, we must point out the 
need to distinguish between the ability of models to generalize well 
under “in-sample” conditions – in the sense of learning a representation 
that enables it to perform well under conditions that are well repre
sented by the entire available data sample, as opposed to its ability to 
generalize to “out-of-sample” conditions – in the sense of learning a 
representation that enables it to perform well in extrapolation, that is 
under conditions that have not yet been seen (e.g., see discussion in 
Klemes (1986), Razavi (2021), Shen et al. (2022), as well as literature on 
“prediction in ungauged basins” (Hrachowitz et al., 2013)). We can think 
of the former as an “Order-one” generalization ability, and the latter as 
an “Order-two” generalization ability. Out-of-sample generalization is 

clearly a more challenging problem, because it requires the model 
development process to be able to detect, extract and construct repre
sentations of deeper underlying process principles that might not be 
apparent from a more superficial “pattern-matching” (e.g., loss-function 
minimization) based analysis of the available data; it may even 
require access to a much larger database (Gupta et al., 2014; Gauch 
et al., 2021) from which such deeper underlying process principles can 
be extracted and learned (Kratzert et al., 2018; Lees et al., 2022). The 
important point is that “Order-one” generalization ability can be thought 
of as a necessary prerequisite to achieving “Order-two” generalization 
ability – if the model is unable to perform robustly under the conditions 
for which it has been trained, we should be skeptical about its ability to 
generalize to new, unseen conditions. 

By analogy, if, as part of their exam, students are tested on their 
ability to answer questions that require insights into hydrological sci
ence deeper than have been covered by the training components of the 
course (lectures, discussions, and homework questions), then we can 
reasonably first require that they perform well on “in-sample” exami
nation questions (i.e., the pre-requisites to deeper understanding), 
before going on to test their ability to generalize (i.e., extrapolate) 
beyond the content covered in the course. In the discussion that follows, 
we focus primarily on how to ensure the ability of models to achieve “in- 
sample” (Order-one) generalization ability. 

2.1. The problem with traditional data-splitting approaches 

As mentioned above, the traditional and most common approach to 
data-splitting is to use the first (or sometimes last) X% (say 60%) of the 
available time series of data for model development (model selection 
and parameter calibration) and the remainder for evaluation (valida
tion/testing). Although not generally mentioned explicitly, the most 
likely rationale for this approach is that it mimics what happens in 
practice once a model has been deployed (Shen et al., 2022; Mai, 2023). 
However, this approach has the potential to result in a number of per
verse outcomes. 

Most important of these is, that by using the first X% of the available 
data for model development and the remainder for evaluation, the 
modeler has no oversight over which types of events are included in 
either data set. For example, the first part of the available data used to 
develop a rainfall-runoff model may consist mainly of low-flow events 
while the second part may consist mainly of high-flow events. Per our 
hydrology course analogy, this would be analogous to covering, for 
example, only groundwater-related material during the course and then 
assessing the ability of students to address questions related to surface 
water hydrology during the exam. Clearly, not only can this undermine 
the ability to achieve the best possible outcomes given available infor
mation, but it is also likely to result in a misleading assessment of real 
performance. 

Specifically, the potential for generalization is limited to aspects of 
groundwater hydrological understanding (covered in the course) that 
translate in some meaningful manner to the surface water realm. 
Further, not covering surface water hydrology during the training phase 
would undermine the ability of the student to become a competent hy
drologist. Similarly, by not presenting examples of high-flow events 
during model development, we undermine the ability of the model to 
perform well over the widest range of events possible, and by evaluating 
the model on events it has not seen during model development we would 
obtain a misleading assessment of the quality of the model development 
process. 

The degree to which this data-splitting problem occurs will largely 
depend on the temporal (or spatial) distribution of events in the data 
(Zheng et al., 2018; Guo et al., 2020; Chen et al., 2022). Taking catch
ment rainfall-runoff modeling again as an example, if the distribution of 
different types of hydrological events is relatively even over time (see 
Fig. 1a), then the above issue is less likely to occur, due to all kinds of 
events being equally likely to be included in both the model 
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development and evaluation subsets, as evidenced by the similarity in 
the statistical properties of the two subsets in the example data in 
Fig. 1a. However, if the different types of events are not evenly 
distributed over time (Fig. 1b), the types of events that are included in 
the development and evaluation data can be very different, as evidenced 
by the dissimilarity in the statistical properties of the two subsets in the 
example data in Fig. 1b. Consequently, when traditional approaches to 
data splitting are used, whether a model can generalize well or not is 
completely arbitrary, as it is contingent on the distribution of the data, 
over which modelers have no control. In addition, the model developer 
has no idea which of these two cases applies. This means that there is a 
large “random” element to both the resulting model (i.e., which values 
the calibrated parameters take) and the evaluation performance of the 
model. 

2.2. The problem with state-of-the-art data-splitting approaches 

To provide the best opportunity for the development process to result 
in models that can generalize well over a variety of different types of 
events, whilst also providing a rigorous independent assessment of 
model generalization ability, the method for partitioning the data 
should seek to ensure that the stochastic properties of, and the processes 
embedded in, the development and evaluation subsets are as similar as 
possible. A number of data-splitting methods have been developed that 
try to achieve this goal by using a variety of approaches. Examples 
include.  

1) Using theoretical hydrological understanding of system processes 
and behaviors to pre-label different kinds of events in the data and 
then allocating these to the different subsets (Seibert and McDonnell, 
2015).  

2) Using formal optimization approaches to allocate individual data 
points to the respective subsets so as to minimize the difference be
tween key statistical properties (e.g. mean, standard deviation, 
skewness, etc.) of the different data subsets (e.g. Bowden et al., 
2002).  

3) Using deterministic allocation processes that ensure that the data 
points allocated to the different subsets correspond to similar “pat
terns” in the data based on their relative degree of closeness to each 
other using an appropriate distance metric (e.g. DUPLEX (Snee, 
1977; May et al., 2010), Modified DUPLEX (MDUPLEX) (Chen et al., 
2022)).  

4) Using clustering approaches to partition the available data into 
similar regions that correspond to the different types of events that 
can be detected in the data (see Bowden et al., 2002). Samples from 
each region are then allocated to the development and evaluation 
subsets in accordance with some desired percentage split using an 
appropriate sampling approach (e.g., self-organizing map (SOM) 
based proportional sampling (SBSS–P) (May et al., 2010), coupled 
SOM-DUPLEX (SOMPLEX) (Chen et al., 2022)).  

5) Using k-fold cross validation, where multiple splits are used to 
perform multiple calibrations (specifically k splits, where k is some 
integer number) and subsequent validations. This does raise some 
questions about how to combine the multiple calibration parameters, 
but approaches like Bayesian model averaging (Duan et al., 2007; 
Wöhling et al., 2015) can address this question. Additionally, the use 
of k-fold cross validation uses all of the available data and can be 
used to compare evaluation in each of the splits, which can provide 
insight into performance for particular events such as extreme 
rainfall, and in more general terms into what is the most robust 
model parameterization. 

While such state-of-the-art data-splitting methods are better at 
ensuring mutual consistency of the statistical properties of the model 
development and evaluation data subsets than traditionally used stra
tegies, they face two primary challenges.  

1) Extreme values in the available data generally result in the bias- 
variance dilemma. When deterministic data-splitting methods are 
used (e.g., DUPLEX (Snee, 1977; May et al., 2010) and MDUPLEX 
(Chen et al., 2022)), a single data split is obtained. Consequently, 
extreme values have to be either allocated to the development or 
evaluation subset, most likely resulting in some degree of dissimi
larity (i.e., bias) between the statistical properties of the two data 
subsets, which is undesirable. However, given that these approaches 
are deterministic, the same data split is obtained every time they are 
applied (i.e., zero variance), which is desirable. In contrast, when 
stochastic data-splitting methods are used (e.g., SBSS-P (May et al., 
2010), SOMPLEX (Chen et al., 2022)), a number of data splits are 
obtained. Consequently, extreme values can be allocated to either 
development or evaluation subsets in different splits, enabling the 
average difference between the statistical properties of the subsets (i. 
e., bias) to be reduced, which is desirable. However, as different 
splits are obtained every time the method is applied, there is some 
variance, which is undesirable. Consequently, there are 
bias-variance trade-offs between the different state-of-the-art 
methods. Although some guidance is available on their application 
based on the properties of the available data (e.g., Wu et al., 2013; 
Zheng et al., 2018; Guo et al., 2020; Chen et al., 2022), a decision 
regarding these trade-offs needs to be made by modelers when 
selecting a state-of-the-art data-splitting approach.  

2) Their application to “path-dependent” models that possess 
memory representations requires additional care. Preserving the 
time-order, or path-dependency, of data is critical to all process- 
based models and some data-driven models that are memory- 
enabled, such as recurrent neural networks (RNNs) and their popu
lar variation, long short-term memory (LSTM) networks (Maier et al., 
2023). This is because the input-state-output trajectories generated 
by these models can be highly sensitive to the values used to initialize 
the system states and more generally to the system states in the 

Fig. 1. Example runoff time series data from two 
Australian catchments (Raupach et al., 2009; 2012), 
showing (a) a time series where the different types of 
events that are contained in the data are relatively 
evenly distributed over time, resulting in similar sta
tistical properties of the model development and 
evaluation subsets and (b) a time series where the 
different types of events that are contained in the data 
are not evenly distributed over time, resulting in 
dissimilar statistical properties of the development 
and evaluation subsets. SD: standard deviation of the 
runoff data, Skew: skewness of the runoff data.   
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previous time steps (e.g., the initial level of soil water storage). In 
other words, their states are dependent on system components hav
ing long residence times (memory) that persist for extended periods 
(Hoell et al., 2017). As a practical consequence, such models cannot 
(in general) be developed via a parameter calibration process that is 
based on the use of randomized, mini-batches of data, as is 
commonly adopted in the development of many data-driven models 
(Kratzert et al., 2018). Therefore, to ensure that the model states 
evolve in a manner that is consistent with the dynamics of the 
physical system, we are restricted to the use of calibration methods 
wherein the data fed to the model during calibration must consist of 
temporally-consecutive inputs. This restricts the application of 
data-splitting methods that are designed to assign data without 
maintaining their underlying time structure and is likely the reason 
why state-of-the-art data-splitting approaches have been applied 
primarily in the data-driven modeling domain (e.g., Bowden et al., 
2002; May et al., 2010; Wu et al., 2013; Zheng et al., 2018; Guo et al., 
2020; Chen et al., 2022). 

3. A roadmap of the way forward – Confronting the elephant in 
the room 

When it comes to developing Earth and environmental systems 
models, the impact of data splitting is undoubtedly the elephant in the 
room (Fig. 2). Even though data splitting occurs near the beginning of 
the model development process, and therefore impacts all subsequent 
processes, its impact is largely ignored, with little to no justification of 
why the available data are split the way they are and seemingly no 
understanding of, or interest in, the potential impacts of these choices. 
This is despite the fact that the way the data are split determines what 
model we end up with, how we assess its performance, the resulting 
uncertainty in model outputs and, ultimately, what decisions we make 
based on these model outputs (Fig. 2). This is extremely surprising, given 
the large amount of attention that is paid to other model development 
processes, such as calibration (van Vliet et al., 2016), evaluation (Ben
nett et al., 2013) and uncertainty/sensitivity analysis (Ascough et al., 
2008; Pianosi et al., 2016; Razavi et al., 2021; Saltelli et al., 2021), as 
well as the significantly greater degree of scrutiny that these processes 
are subjected to, even though the outcomes of these processes are all 
contingent on how the available data are split into their respective 
subsets. This is somewhat analogous to focusing on the noise, while 
ignoring the signal. Conversely, if data splitting is undertaken in a more 
considered manner, these methods of calibration, sensitivity and un
certainty analysis etc. can be applied in a cross-validation setting, 
thereby strengthening their value. 

In order to confront the elephant in the room and improve modeling 
practice, we call on the modeling and research communities to focus on 

the following courses of action (Fig. 3).  

1) Increase Awareness and Adoption. Researchers and modelers need 
to become more aware of the widespread impacts the way the 
available data are split into development and evaluation subsets has 
on the resulting model and its perceived performance. This is the 
case for all domains within the Earth and environmental sciences, 
especially due to the prevalence of data that are highly temporally 
variable and that contain extreme events (e.g., floods, droughts, ty
phoons and heat waves), which exacerbates the impacts of a lack of 
attention to the impacts of data splitting. Consequently, modelers 
and researchers alike need to act to adopt appropriate data-splitting 
practices as part of routine model development. Here, editors and 
reviewers of modeling journals can play an important role in 
demanding that greater attention be given to the justification of how 
the available data are used for model development and evaluation 
and report on any implications of the choices made. The modeling 
community should also promote the need to appropriately address 
the data-splitting issue when developing guidelines for modeling 
best practices. This assists in assessing model relevance, especially 
the range of applicability of models. In some sense this is a holy grail 
problem when dealing with Earth system models or any of their 
components driven by climate dynamics. It is possible we will never 
have a model that works well under all historical and future condi
tions, making the above recommendation for assessing applicability 
very important.  

2) Perform Comparison and Evaluation. Researchers and modelers 
need to quantify the impact of data splitting (both what fraction(s) of 
the available data are used for model development and evaluation 
and how the available date are apportioned to each of these), relative 
to that of other steps in the model development process (e.g., Jake
man et al., 2006). This is because, in addition to the way the data are 
split into model development and evaluation subsets, model errors or 
biases can also be induced at other stages of the model development 
processes, such as the selection of model structure and type, the 
choice of calibration algorithm and even in the selection of objective 
functions. However, the relative influence of these choices on these 
errors and biases will be unknown unless they are investigated in 
context. Consequently, a focus of future research efforts should be 
developing procedures that distinguish errors emanating from 
different stages of the modeling process and how they relate to the 
ways data splitting is undertaken. In addition, there can be much 
usefulness in evaluating alternative approaches to identifying 
appropriate data-splitting practices for different study areas, models 
and their accompanying data. At the very least, modelers should test 
a range of data-splitting options and associated cross-validation ex
ercises for a particular case study application to gain an improved 
understanding of model performance and its limitations for the 
problem at hand.  

3) Develop Improved Data-Splitting Approaches. Research is 
required to improve a number of aspects of data-splitting ap
proaches, including:  
a. Addressing the bias-variance dilemma. Although some efforts 

have been made to develop data-splitting methods that minimize 
the bias-variance dilemma for data with different characteristics 
(e.g., May et al., 2010; Zheng et al., 2018; Chen et al., 2022), 
further work is required to ensure the “best” possible models, 
given the available data, are developed. This is particularly the 
case when dealing with noisy data, extreme events and data with 
underlying trends and patterns that are associated with changing 
forcing conditions (such as climate). A promising avenue for 
development is the adoption of a two-step calibration process, 
where the first step requires data splitting to obtain insights on 
model transferability and to quantify uncertainties (e.g., by using 
k-fold cross-validation), while the second step uses all available 

Fig. 2. Impacts of data splitting on a number of stages in the model develop
ment process and consequently on the model outputs and subsequent decisions 
made based on these outputs. These impacts have been virtually ignored by the 
modeling community, making it the “elephant in the room”. 
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data in the final calibration, provided the first step indicates that 
overfitting is not an issue (Mai, 2023).  

b. Improving the applicability of data-splitting methods to 
process-based models. As discussed, many existing data- 
splitting methods do not address the need to maintain the un
derlying time structure of the data, and hence cannot be applied 
directly to process-based models that require time-consecutive 
observations as inputs. Consequently, efforts need to be intensi
fied to develop strategies that extend the application of data- 
splitting methods to process-based model development (see 
Zheng et al., 2022 for an example).  

c. Accounting for data scale and data sampling variability. 
When considering data sampling variability, it is important to 
bear in mind the scale of data (i.e., big data vs small data) and the 
complexity of the system being modeled. Small data represent a 
particular challenge for data splitting due to the limited scale of 
data and further efforts are required to provide guidance on which 
data-splitting approach is most appropriate. The use of cross- 
validation is likely to be advantageous in these settings, as mul
tiple splits are made, exhausting all combinations of model 
development and validation splits, although this introduces new 
potential concerns. For instance, by having multiple calibration 
data subsets, different model parameters will be produced for 
each split. However, no matter how extensive the available ob
servations, the available data necessarily represent a specific 
realization of the underlying physical process. This means that 
data sampling variability (i.e., variability due to which particular 
subset of the available data is used for model development and 
evaluation (see Zheng et al. (2023)) inevitably exists, even in 
large datasets, and again this issue has been largely ignored by the 
modeling community. Consequently, when developing models, it 
is necessary to properly account for data sampling variability, and 
this should be a focus of future research.  

d. Improving out-of-sample-performance. Whereas this position 
paper focuses on new methods to improve “in-sample” model 
performance, future work should also address the need to better 
use the available data to enhance out-of-sample model perfor
mance. In principle, evaluating the performance of models in 
“true” out-of-sample prediction is inherently challenging, as it 
involves extrapolating system behaviors into unobserved state 
spaces. For instance, models are often employed to address 
questions such as the potential impact of changes in climate on 
system performance (e.g., Wu et al., 2023). To advance this field, 
future research should concentrate on developing novel methods 
within the following two interrelated approaches:  
i. Stress-testing models. One area of focus for future research 

involves stress-testing models to evaluate their performance 

when subjected to inputs beyond the range of data used for 
standard calibration and validation. This approach involves 
creating hypothetical input data by perturbing specific statis
tical properties of these data to stress test the model (e.g., 
Bennett et al., 2021; Culley et al., 2021; Razavi, 2021). For 
instance, historical temperature time series in a region can be 
shifted to simulate warmer climates, which can then be uti
lized as input for a hydrologic model. By observing the model’s 
response to such stressors, valuable insights can be gained into 
its performance in true out-of-sample prediction scenarios.  

ii. Model intercomparison in extrapolation scenarios. In cases 
where multiple alternative models exist for a system, 
comparing their responses under stress-testing conditions and 
benchmarking those responses against the available knowl
edge base can provide valuable insights into model behaviors 
under unseen conditions (e.g., see out-of-sample validation of 
12 process-based and 1 data-driven model in Mai et al. 
(2022)). This allows for a comprehensive evaluation of how 
different models perform in extrapolation scenarios. However, 
it is crucial to note that generating hypothetical inputs by 
perturbing historical data may pose challenges, especially for 
process-based models. These models often require the preser
vation of certain relationships between different input vari
ables (e.g., between precipitation and air humidity) during the 
data generation and stress-testing processes. This requirement 
demands careful attention and consideration to ensure the 
integrity of the data used in stress testing these models (see 
Guo et al. (2018) and Culley et al. (2019)). 
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