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Abstract

Current manufacturing and development processes for therapeutic monoclonal

antibodies demand increasing volumes of analytical testing for both real‐time

process controls and high‐throughput process development. The feasibility of using

Raman spectroscopy as an in‐line product quality measuring tool has been recently

demonstrated and promises to relieve this analytical bottleneck. Here, we resolve

time‐consuming calibration process that requires fractionation and preparative

experiments covering variations of product quality attributes (PQAs) by engineering

an automation system capable of collecting Raman spectra on the order of hundreds

of calibration points from two to three stock seed solutions differing in protein

concentration and aggregate level using controlled mixing. We used this automated

system to calibrate multi‐PQA models that accurately measured product concentra-

tion and aggregation every 9.3 s using an in‐line flow‐cell. We demonstrate the

application of a nonlinear calibration model for monitoring product quality in real‐

time during a biopharmaceutical purification process intended for clinical and

commercial manufacturing. These results demonstrate potential feasibility to

implement quality monitoring during GGMP manufacturing as well as to increase

chemistry, manufacturing, and controls understanding during process development,

ultimately leading to more robust and controlled manufacturing processes.
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1 | INTRODUCTION

The development and manufacturing of biopharmaceutical products

including monoclonal antibodies include inherent risks that need to

be understood and controlled. Regulatory agencies and pharmaceu-

tical companies rely on sophisticated control strategies and

technologies for controlling product quality attributes (PQAs) that

could impact safety or efficacy (Berry et al., 2016; Rathore, 2014).

One emerging technology that promises significant process control

capabilities is process analytical technologies (PAT), which aims to

monitor critical PQAs and subsequently control processes in real time

(Tulsyan et al., 2019). In addition to applications in traditional batch
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bioprocessing, the implementation of PAT has been identified as a

key technological driver enabling intensified continuous manufactur-

ing (Khanal & Lenhoff, 2021; Pedro et al., 2022). Thus, there is a

cross‐industry consensus and interest in bringing PAT tools to

implementation (Gillespie et al., 2022). Regulatory agencies have

responded to industrial needs with updated guidelines that address

best practices for the implementation of this evolving technology

(ICH, 2021, 2022), including advising on potential pathways

toward real‐time release testing (RTRT). While the implementation

of PAT in monitoring and controlling molecular targets, bio-

pharmaceutical PQAs remain challenging to monitor using a rapid

and nondestructive in‐line sensor (Gillespie et al., 2022). Of particular

interest is the ability to monitor product breakthrough and aggrega-

tion content in affinity chromatography, which would allow continu-

ous downstream purification systems to operate with more efficiency

and consistency (Feidl et al., 2019a, 2019b; Rolinger et al., 2020).

Other unit operations also benefit from in‐line monitoring, for

example, product aggregation measurement using multiangle light

scattering (MALS) during hydrophobic interaction chromatography

(Patel et al., 2018). Ultimately, modern PAT implementation seeks to

minimize manufacturing variability by monitoring product quality and

controlling process parameters in real‐time to guarantee narrower,

more controlled quality attribute variations in the final pharmaceuti-

cal product.

Another promising approach to reducing manufacturing variabil-

ity and risk is through increased understanding of the process by

automated experimentation using high‐throughput process develop-

ment (HTPD) (Hubbuch, 2012). In addition to applications in early

stage process development screening, HTPD and advanced automa-

tion robotics have emerged as a promising companion to monitoring

and controlling processes by PAT, especially during the development

of continuous processes (Silva et al., 2022). Current automation and

miniaturization efforts have resulted in everincreasing numbers of

experiments being performed automatically. This build‐up of samples

has created an analytical bottleneck that limits the ultimate

generation of large quantities of representative, nonredundant data

necessary for machine learning and advanced statistical analysis,

since the corresponding analytical methods for measuring high

volumes of HTPD samples are more difficult to automate and

intensify. Computational analysis scripts are then necessary to render

useful measurements from raw spectral data and readily available

software for analyzing large quantities of data are similarly difficult to

intensify. One potential approach for resolving manual data collection

is to mechanistically model and computationally simulate PQAs for

each unit operation, which maximizes understanding for a given

amount of experimental effort (Saleh et al., 2021). Convolutional

neural networks have also been applied to model the relationship

between Raman spectral fingerprints and measures of product quality

(Rolinger et al., 2021). Thus, there remain potential unexplored

possibilities combining aspects of PAT, HTPD, and computational

methods that will ultimately lead to exciting advanced process

control technologies.

Of the common noninvasive rapid analytical techniques, Raman

spectrometry is increasingly being evaluated for in‐line pharmaceuti-

cal product quality measurement (Pedro et al., 2022). As a light‐based

technique, Raman spectrometry promises to continuously measure

molecular attributes from a nonstationary sample, making it ideally

suited as both a PAT tool for product quality monitoring, and as a

HTPD tool for intensifying analytical throughput. Raman spectrome-

try has been used in clinical manufacturing for upstream operations

(Esmonde‐White et al., 2022), and work is on‐going to develop the

capability to monitor product quality. Currently, Raman spectrometry

can feasibly measure therapeutic protein concentration (Goldrick

et al., 2020), product aggregation (Zhou et al., 2015), fragmentation,

charge variants, and oxidation (Wei et al., 2021). Although calibration

models perform well when considering off‐line data, several

theoretical and experimental challenges arise when generalizing off‐

line models to in‐line process monitoring. At present, it is possible to

measure protein concentration using an in‐line Raman sensor (Feidl

et al., 2019a, 2019b; Rolinger et al., 2021; Yilmaz et al., 2020). Other

in‐line sensors have also been investigated for monitoring aggregates

under flow, for example, using NMR (Taraban et al., 2019), MALS

(Patel et al., 2018), and UV‐Vis (Brestrich et al., 2018). Thus, we

sought to leverage automation tools to intensify Raman model

calibration data collection and evaluate commonly used machine

learning models that scale with larger datasets.

2 | MATERIALS AND METHODS

2.1 | Preparation of critical quality attribute (CQA)
calibration material

Stock solutions of therapeutical monoclonal antibody product, force‐

degraded protein product, and buffer were used to generate mixtures

of concentrations and aggregation levels used to calibrate Raman

models. One set of pure and degraded product samples was

generated for each buffer of interest, and thus it was necessary to

generate a unique Raman model for each buffer. To generate

aggregates, product samples were frozen to −20°C and stored for up

to 72 h. Freeze‐thaw was preferred over other degradation methods

due to its specificity in generating aggregates, and due to its

relevance in real‐world processes (Nowak et al., 2017). Both original

and degraded material were exchanged into the buffer of interest by

ultra‐ and diafiltration (UF/DF). Samples were stored at −70°C until

needed, and thawed samples were analyzed by analytical size

exclusion ultra‐performance liquid chromatography (UPLC) for high

and low molecular weight species. Analytical chromatography was

performed on an Acquity UPLC system (Waters Corporation) using a

BEH200SEC. 4.6 × 300mm column, and a mobile phase consisting of

200mM L‐Arginine, 120mM ammonium sulfate, 10% isopropanol,

and pH 7.3 adjusted by phosphoric acid. The mobile phase was run

under a flow rate of 0.2 mL/min and the targeted sample load was

30 µg/injection.
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2.1.1 | In‐line process analytical measurements

The FlowVPE was paired with a Cary 60 UV‐Vis spectrophotometer

which allowed measuring light absorbance at a range of wave-

lengths as well as a range of pathlengths. We used a fixed

pathlength of 1 mm on the FlowVPE and a wavenumber range of

190–350 nm at 0.5 nm increments, resulting in 321 absorbance

measurement. Four scans were taken over 10 min and the

absorbance measurements were averaged. Recording times were

stored in the filenames of both the UV‐Vis and Raman result files for

data alignment offline. Product concentration measurements were

validated by comparing results with those obtained on a NanoDrop

(Thermo Fisher Scientific Inc.). Raman acquisition settings were

optimized for maximizing the signal‐to‐noise ratio for a given

dynamic range of the experimental system (Rolinger et al., 2021). A

HyperFlux Pro Plus Raman spectrometer (Tornado Spectral Sys-

tems) was equipped with a standard 785 nm laser and operated at

the maximum power 495mW. A flow cell with a dead volume of

200 µL (Marqmetrix) was equipped with the spectrometer and was

connected in‐line to the AKTA Avant 25 system directly down-

stream of the built‐in UV flow cell. To determine the optimal

exposure time, we performed multiple autoexposure scans on

several buffers common to downstream purification and product

formulation, and we determined that 623 ms exposure time and an

averaging of 15 exposures per scan was optimal for maximizing the

signal‐to‐noise ratio of product protein concentration, aggregation,

and fragmentation. Raman spectra were saved to comma‐separated

value (CSV) files with the time‐stamp of the beginning of recording

as the filename, where the time stamp contained the date‐time

down to 1 ms. In contrast to the UV‐Vis, the Raman collected

spectra continuously during the experiment, with only the correctly

time‐aligned files being used at analysis time.

All machine learning model training, testing, and visualization

were carried out in Python. The PLS regression model was created

using the PLSRegression function from the module sklearn.cross_de-

composition using the default parameters, the principal component

regression (PCR) model was created using the PCA function from the

module sklearn.decomposition, and the LinearRegression function from

the module sklearn.linear_model. The k‐nearest neighbors (KNN)

model was made using the KNeighborsRegressor function from the

module sklearn.neighbors, using the “distance” as weights. Raman

spectra saved as CSV were parsed for the text content and organized

according to the timestamps to be paired with the corresponding

experiment number and thus mixed concentration and aggregation

levels. Odd‐numbered spectra files representing 9.3 s of Raman

recording were gathered and averaged to make up the training data

set. The remaining even‐numbered files were averaged to make up

the testing data set. After initializing the corresponding regression

models, the training data were fed into the model using the fit

function, and prediction of concentration and aggregation were

obtained using the predict function. To prevent arbitrary predictions

from very small changes to the input Raman spectra, a low amount of

Gaussian noise of 1% of the standard deviation was added to both

the training and testing datasets. The normal function from the

module numpy.random was used to randomly sample this noise.

2.2 | Mixing calibration on AKTA bench‐scale
chromatography systems

In mixing experiments where the FlowVPE (C Technologies, Inc.) was

utilized, the flow‐cell was attached directly downstream of the

integrated in‐line UV detector. A flow‐cell with a dead volume of

0.9mL was installed onto the FlowVPE, and the FlowVPE was

installed after the in‐line UV detector of the AKTA Avant 25

chromatography system (Cytiva). The flow path was set to bypass the

column and flow restrictor. Each of the pure product, degraded

product, and buffer stocks were assigned to inlets Q1‐4 for the

quaternary valve. The quaternary gradient variables were set by

scouting runs. A flow rate of 10 L/min was used to flush using the

initial quaternary gradient for 15mL. A flow rate of 0.1 mL/min was

set as the calibration rate, and a digital signal was sent through the

input/output (I/O) box to mark the start of calibration. The calibration

lasted 1mL, or 10min, resulting in a total material usage of 16mL,

plus minor additional volumes wasted between pilot run resets. The

order of each mixing run was further randomized to eliminate carry‐

over effects in between pilot runs. The randomization was based on a

unique seed which was saved to recreate the pseudorandom ordering

during analysis.

Single and multivariate mixtures were used to generate quaternary

gradient variables using the itertools Python library, and the resulting

gradient percentage values were algorithmically added to an AKTA

Unicorn base method by modifying the XML‐based method instructions

and updating the 64‐bit cyclic redundancy check (CRC) hash codes. To

sign each new XML file for protection against file corruption, the 32‐bit

CRC hash was first computed using the zlib Python library. The resulting

CRC32 hash in hexadecimal notation was extended with leading zeros

until an eight‐character string was achieved to avoid the rare cases

when the resulting hash had fewer than eight characters. The 32‐bit

hexadecimal hash string was then unpacked as a big‐endian signed int32

data type. This resulting signed integer value was then packed as a

signed big‐endian int64 hexadecimal string in all‐capital letters and with

leading zero characters removed. After obtaining the verification hash

strings, they were entered in the new XML files where appropriate to

ensure that no data had been corrupted. Following this procedure, we

created one template method with the mixing protocol and added a new

scouting run for each unique mixture.

A method for communicating between the AKTA system and the

computer that controlled the Raman and FlowVPE analytical instruments

was necessary to align acquisition times to sample flows. An I/O box for

AKTA systems was installed to send a digital output signal each time the

quaternary gradient as set, marking the beginning of a calibration

instance. The digital output signals from the Akta were recorded using a

USB‐6009 multifunction data acquisition (DAQ) device and the NI‐

DAQmx Python library (National Instruments). The digital out pins from

the AKTA I/O box were connected directly to the digital in ports by
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jumper wires. A light‐emitting diode light and resistor were connected to

the digital out ports on the DAQ device to indicate the status of the

script. A series of scripts was used to trigger the collection of FlowVPE

data using Python, the Windows batch scripting system, and the Agilent

ADL API (Agilent Technologies, Inc.). The collection time on the Cary UV‐

Vis spectrophotometer connected to the FlowVPE was shorter than the

total flow duration on the AKTA system, thus communication in the

reverse direction from the FlowVPE to the Unicorn software was not

necessary and not established. Start and stop times of these digital events

were also used to align the FlowVPE spectra to the Raman spectra and

the corresponding quaternary gradient variables from the AKTA. Using a

measuring caliper, the detector head was manually positioned by

incrementing the stepper motor rotation step‐by‐step from 1747 steps

(0mm pathlength) to 1547 steps (1mm pathlength), for a step rate of

200/mm. At the start of each scan, the stepper motor position was set by

the SetAcc function and the number of steps as the distance parameter.

Next, UV‐Vis scanning settings were set by changing variable values with

the SetVal function, setting the value “UVVIS averaging” to 28.0 s and

“UVVIS interval” to 0.5 nm. Next, the scan was initiated using the

CollectAndGraph function with “Scan Data” and “Scan Graph” as the first

two parameters, the start and stop wavelengths in nanometers, for

example, 190–350nm, as the third and fourth parameters, and the

keyword “Wavelength_XMode” as the fifth and last parameter. At the

end, the scanned data is exported to a CSV file using the function

FConvert with “Scan Data” as the first parameter, the numeric value 1 as

the second parameter, and the output filename as a string as the third and

last parameters.

The execution of the Cary ADL script for triggering the UV‐Vis scan

was conducted through a separate Python script. The nidaqmx library

was used to receive digital output data coming from the AKTA system

continuously, filling up a constant array of 30 samples, which required

approximately 3 s to fill. At every data query point, the new voltage

value was added to the array while removing the oldest sample. Next, if

the absolute maximum of the array voltages was above or below

12 standard deviations of the typical voltage fluctuation (2.83mV), then

the appropriate state was switched between the high and the low digital

states. Additionally, another state change within 2 s of any previous

change is ignored to filter out noise. At the trigger of a state change in

either direction, the Cary ADL script was executed using the

check_output (shell = True) function from the subprocess library. Since

the original source text of the ADL script was not modified, it deposited

data with one filename for every scan, thus another function was

created to rename the UV‐Vis output CSV file by including the system

time in the filename. A live plot of the current‐voltage array was

displayed to confirm to the operator that the scans were being

consistently triggered.

3 | RESULTS

A mixing script was assembled in Python for systematically

programming multiple compositions of stock solutions on AKTA

chromatography systems to generate samples of known mixed ratios

which are then channeled through in‐line analytical flow‐cells (see

Section 2). Early attempts to achieve well‐mixed fractions used 9mL

of wash volume at a flow rate of 10mL/min, however, this resulted in

incomplete mixing (p = 0.002, n = 8, two‐sided t test). Thus, a larger

volume of 15mL was decided for mixing (Figure 1a). First, the

automated method was validated by mixing water with formulated

drug substance as the pure product protein stock (0–2.097 g/L,

n = 197). The product concentrations of each fraction were measured

by Nanodrop in duplicate after each mixing run. The averages of

these resulting empirical concentration measurements were then

fitted against the algorithmically set concentrations, resulting in an

excellent linear fit (R2 = 0.99991, intercept = 0.0005, slope = 1.01,

n = 197) (Figure 1b). The error between the set and empirical

concentrations appeared to be normally distributed (Figure 1c),

showing a Kullback–Leibler (KL) divergence of 0.015 bits as com-

pared to a baseline divergence of 0.43 bits from the uniform

distribution. To quantify variations in concentration useful for

engineering, we performed repeat measurements on the Nanodrop

and compared errors with concentration values measured by UV‐Vis.

Repeat measurements (n = 16) were performed with a separate stock

solution (2.471 g/L) to quantify the Nanodrop error, resulting in a

standard deviation of 0.008 g/L (0.3%). The standard deviation of the

differences between the set concentrations and measured concen-

trations of the 197 mixtures was 0.004 g/L, which was comparable to

the nanodrop measurement standard deviation. Due to the long

experiment duration of several hours, six measurements of product

concentration by nanodrop before and after the experiment were

collected to assess stability. No statistically significant differences in

product concentration were found after conducting a two one‐sided

test (TOST) at an equivalence range of ±3σ between 2.08 and 2.12 g/

L (is equivalent, p = 0.001). Thus, we were able to demonstrate an

automated AKTA‐based mixing system that only requires one stock

solution and could be controlled by automatic scripting.

Once the AKTA system was validated for mixing, we installed in‐

line sensors to test whether the system could produce mixtures robust

enough for calibration. First, we installed a FlowVPE in‐line UV‐Vis

spectrophotometer manufactured by CTech (Bridgewater) in front of

the integrated in‐line UV detector of the AKTA. We integrated the

hardware and software across systems to allow the UV‐Vis to

automatically scan after the active mixing phase (see Section 2). We

were able to perform the calibration with extremely reduced effort and

hands‐on time by simplifying preparation to two stock solutions, only

one of which required off‐line analytical analysis, and by running

automated scripts to handle method generation, instrument communi-

cation, and data analysis. A stock solution of 2.471 g/L was prepared

and mixed 201 times with water to generate calibration UV‐Vis scans

(Figure 2a). The smoothness of the UV‐Vis scan line transitions

between one calibration point to the next is notable here, greatly

contributing to a more robust and accurate calibration data set. After

fitting a linear regression between the UV‐Vis scanned absorbance

values and the set concentration, we achieved excellent linearity

across the scanned wavelengths (Figure 2b), with an overall linearity of

R2 = 0.99997 (Figure 2c). The standard deviation in prediction was
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0.003 g/L (0.1%), which is lower and more accurate than what was

achievable by hand and with the nanodrop detector (Figure 1b),

demonstrating superior accuracy and consistency in the automated

system. Thus, we have demonstrated the capability of a mixing system

that relies extensively on hardware and software automation, that can

generate a calibration model from UV‐Vis spectra with only one stock

solution of known product concentration.

Once the mixing system was validated against existing off‐line

product protein concentration measurements, we installed an in‐line

Raman spectrometer manufactured by Tornado in front of the

FlowVPE flow‐cell to test its ability to quantify product concentration

and aggregation. Again, we made use of extensive automation

systems to align all the mixing experiments with the correct UV‐Vis

and Raman spectra results (Section 2). Recently, the ability to

measure several PQAs by Raman spectrometry was demonstrated in

a therapeutic protein (Wei et al., 2021), thus we investigated whether

it would be possible to calibrate our in‐line Raman spectrometer to

measure product aggregation with a stock sample of enriched

(a)

(b) (c)

F IGURE 1 Mixing chromatogram for one
automated calibration sample. The UV
absorbance, pH, and conductivity are plotted
during mixing between stock therapeutic
monoclonal antibody product samples of
known concentrations. All indicators reached
equilibrium near the end of mixing (a). Mixed
samples were validated by manual off‐line
concentration measurements (b) to be
equivalent to the algorithmically determined
set points. This resulted in the creation of 197
calibration sample points from two manual
measurements of starting stock product
solutions. The error between the set and
empirical concentrations appeared to be
normally distributed (c).

(a)

(b)

(c)F IGURE 2 Automated in‐line calibration of
product concentration using UV‐Vis
absorbance. A custom automatic mixing system
was used to collect a series of UV spectra (n =
201) from two stock solutions. Absorbance in
the 190–320 nm range was visibly correlated to
product concentration (a), demonstrating good
linear fit over most scanned wavelengths (b).
After fitting UV scans to algorithmically set
mixed protein concentrations, the integrated
automated system achieved linearity (c)
superior to that of manual measurement
(Figure 1b).
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aggregates. Being able to monitor product quality in a noninvasive in‐

line sensor would dramatically increase analytical process knowledge

and understanding, enabling a wide range of new industrial

applications, such as intensified bioprocesses (Pedro et al., 2022).

The enriched aggregate stock was made by forced degradation,

specifically freeze‐thaw cycling (Nowak et al., 2017), and all stocks

were buffer exchanged into a cation exchange elution buffer

(Section 2). Aggregation content was measured using analytical size

exclusion UPLC, by summing all high molecular weight (HMW) peak

groups. A full‐factorial design‐of‐experiments (DOE) experiment was

planned with product concentration and aggregation as two factors

with 10 values each, resulting in a 100‐point calibration. The

monomer‐enriched stock solution contained 2.90 g/L total product

with 1.3% aggregation, the aggregate‐enriched stock solution

contained 2.91 g/L total product with 1.8% aggregation, and the last

stock solution contained elution buffer, which was the same buffer

used for all stock solutions. The UV‐Vis scan continued to show

linearity with increasing protein concentration (Figure 3a), and high

correlation coefficients between concentration and absorbance in

individual wavelengths (Figure 3b), with an overall linearity of

R2 = 0.99993 and a prediction standard deviation of 0.005 g/L

(0.2%). The Raman spectra consisted of light intensity counts across

3101 wavenumbers from 200 to 3300 cm−1 and showed a similar

correspondence between intensity and protein concentration

(Figure 3c) as the UV‐Vis scans. This correlation is quantified for

each individual wavenumber (Figure 3d), and although the correlation

coefficients are not as high as for the UV‐Vis scans, the overall

linearity was R2 = 0.9993, with a prediction standard deviation of

0.016 g/L (0.6%). Notable peaks in the Raman spectra sensitive to

product concentration included the range 998–1043, 1204–1274,

1443–1462 cm−1, and the plateau at 2863–2970 cm−1. Although the

differences in aggregation were relatively small in magnitude,

calibration of product protein concentration was still achievable

using the UV‐Vis spectra. This capability remained when calibrating

the Raman spectra, demonstrating that it was possible for the

automated calibration system to generate meaningful Raman

calibration models as well.

A second full‐factorial experiment was planned with a wider

range of aggregates to test whether it was possible to calibrate the

Raman in‐line sensor to measure product aggregation, a quality

attribute that is often considered critical in chemistry, manufacturing,

and controls (CMC) strategy. Using the same methods as the first

combined UV‐Vis and Raman calibration, we created new stock

solutions containing 12.01 g/L total protein and 0.3% aggregation in

the monomer‐enriched sample and 12.04 g/L total protein and 6.3%

aggregation in the aggregates‐enriched sample. We were confident

from our previous results (Figure 3) that our system was capable of

producing stable mixtures for calibrating both UV‐Vis scans and

Raman spectra, thus we updated our analysis of the Raman spectra to

include methods that have been recently successful for calibration

(a) (c)

(b) (d)

F IGURE 3 Automated in‐line design‐of‐experiments calibration of product and aggregate concentration using combined UV‐Vis and Raman
spectroscopy. The UV‐Vis spectra for a 100‐point full‐factorial run are shown and colored by the expected mixed protein concentrations (a).
Product concentrations were accurately modeled over most scanned wavelengths (b). As shown for the UV‐Vis spectra, the Raman spectra are
similarly colored by the same concentration range (c), and were also able to be modeled over a wide range of Raman shift wavenumbers (d).
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model building, including partial‐least squares (PLS) regression

modeling (Brestrich et al., 2018; Wei et al., 2021) and PCR (McAvan

et al., 2020; Ramakrishna et al., 2022; Silva et al., 2020), as well as

nonlinear models such as Gaussian processes (GPs) (Tulsyan

et al., 2020). Model hyperparameter selection was made by

subjective judgment from published values and included: 10 for the

number of PLS and PCA latent variables, and 60% as k, for the

KNN model that we used instead of a GP model to reduce risk of

overfitting. A total of 10min of recording was made for each of 100

calibration points, and these recordings were further subdivided into

9.3 s segments. The odd‐numbered chunks were averaged together

to make up the training set, while the even‐numbered chunks made

up the testing set. The three models were then trained and tested

using this scheme, and the results of predicting both concentration

and aggregation as a percentage of HMW species (HMW%) is shown

in Figure 4a. Since we did not have a solid understanding of the

impact of the k hyperparameter in the KNN model, we repeated the

training and testing for all values of k from 1 to 100, showing

decreasing performance with increasing k (Figure 4b). We chose the

value of 60 for k due to its centrality in a relatively stable region of

the hyperparameter space with a lower impact on performance. A

quantitative summary of the model performance is shown in Table 1,

with PLS and PCR models performing well for predicting concentra-

tion, achieving linearities of R2 > 0.99. The PLS model is a supervised

(b)

(a)

(c)

F IGURE 4 Performance of different machine learning models in predicting product and aggregate concentration from Raman spectra. The
predicted product and aggregate concentrations of the testing set are plotted over values from the training set (a) for three commonly used
models. The impact of the hyperparameter k on KNN performance is plotted in terms of the mean squared error (b). VIP scores identified regions
of the spectra most important for the calibration model and are shown in (c). HMW, high molecular weight; KNN, k‐nearest neighbor regressor;
PCR, principal component regressor; PLS, partial least squares regressor; VIP, variable importance in projection.
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variant of PCR, choosing automatically features that best represent

the relationships between the Raman spectra and product quality

measures. We demonstrate empirically that the PLS model does

perform better than the PCR model for concentration in terms of the

mean absolute percent error (MAPE), but the results were not clear

for mean absolute and squared errors. For aggregation, we find the

same trend that the PCR model performs better than PLS on all

metrics except the MAPE. After training the PLS model on both

concentration and aggregates, we computed the variable importance

in projection (VIP) scores to identify wavenumbers most important

for the calibration model (Mehmood et al., 2012). We found that the

main sapphire peak 415–422 cm−1 showed a VIP score of greater

than 2, as well as the regions 987–990, 3043–3097, and

3266–3300 cm−1 (Figure 4c). The KNN model achieved R2 = 0.91

on product aggregation over a range of 0.3% to 6.3%HMW, which

out‐performed both PLS and PCR models (R2 < 0.62). The KNN model

is a nonlinear assumption‐free model that does not infer any patterns

in the data and seems to work quite well for this application. Thus, we

have demonstrated the capability of our automated calibration

system to create calibration models for measuring product concen-

tration up to 12.04 g/L and product aggregation up to 6.3%.

To demonstrate the value of using an in‐line sensor, we

investigated whether the calibration model created by the automated

system could be applied to measure product concentration and

aggregation in real‐time in a real‐world product purification process.

We installed our in‐line Raman probe used for calibration on an AKTA

system and recorded the Raman spectra continuously using the same

recording parameters and used the calibration models (Figure 4) to

predict the concentration every 22.5 s, or an average of three

spectra. The results of off‐line analytical analysis of elution fractions

and the in‐line Raman predictions are shown in Figure 5, where the

PLS model was used for product concentration and KNN model was

used for aggregation. The model captured the main features of the

elution profile and was comparable to off‐line results after applying

simple linear transformations. The transformed values fit not only

the concentration range of calibration, but also the range at the

beginning of the elution phase around 51min that exceeded the

calibrated maximum concentration of 12.04 g/L. It may be possible to

bridge the difference between predicted and actual values by using

appropriately high stock concentrations for calibration to cover the

entire elution range. Thus, we demonstrate the possibility for an off‐

line calibration model trained to measure product concentration and

aggregation after linear adjustment, as well as the ability to predict

out‐of‐range values once fitted to the in‐range data set.

TABLE 1 Performance of different models used for in‐line DOE
calibration.

Model Target R2 R MMSE MAE MAPE (%)

PLS Conc (g/L) 0.990 0.995 0.15 0.28 13.3

HMW (%) 0.620 0.790 1.47 0.91 48.5

PCR Conc (g/L) 0.992 0.996 0.12 0.27 15.5

HMW (%) 0.679 0.824 1.23 0.79 213

KNN Conc (g/L) 0.947 0.973 1.83 1.08 24.7

HMW (%) 0.909 0.953 1.51 1.05 34.6

Note: As illustrated in Figure 4, the performance of the PLS, PCR, and

KNN on a 100‐point calibration data set is shown using the metrics R2, R,
mean squared error (MSE), mean absolute error (MAE), and mean absolute
percent error (MAPE).

Abbreviations: DOE, design‐of‐experiments; HMW, high molecular
weight; KNN, k‐nearest neighbor regressor; MAPE, mean absolute
percent error; PCR, principal component regressor; PLS, partial least
squares regressor.

F IGURE 5 In‐line monitoring of product and aggregate concentration. Cation exchange chromatography elution was monitored by both off‐
line fractionation analysis using UPLC and in‐line analysis using Raman measurement. Violet, green, and blue lines indicate off‐line product
concentration, in‐line Raman concentration, and adjusted in‐line Raman measurements. The coefficients and offsets used for the Raman
adjustment are indicated for the corresponding lines in the legend. Following the format for concentration, brown, gold, and orange lines indicate
the corresponding measurements for product aggregation. HMW, high molecular weight; KNN, k‐nearest neighbor regressor; PLS, partial least
squares regressor; UPLC, ultra ‐performance liquid chromatography.
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4 | DISCUSSIONS

We investigated the capabilities of the AKTA system and demon-

strated controlled, consistent mixing from two or three stock

solutions. We achieved this by minimizing sample volume consump-

tion while achieving sufficient mixing. This optimization resulted in a

sample consumption of 15mL, which produced mixtures that were

equivalent to that of manual methods (Figure 1). Our resulting

automation system can systematically mix samples of known

analytical properties to significantly intensify off‐line analytical

measurement effort by up to 100‐fold and is readily adaptable for

measuring other PQAs such as fragments or charge variants (Wei

et al., 2021). The ability to accelerate analytical data collection is

critical since off‐line analytical testing is a limiting step for major

decision‐making milestones in both development and commercial

manufacturing. Previously, this analytical bottleneck has been

identified as the root cause of the “Low‐N” problem in biomanu-

facturing (Tulsyan et al., 2019), which implies that limited training

data set sizes are the root cause of less than ideal performance of

machine learning models such as PLS and PCA. Variations in

representativeness between training, testing, and real‐world data

due to changes in process materials or parameters also diminish

model performance. While one strategy of solving this data scarcity is

by innovating new data analysis methodologies to more effectively

make use of precious data (Tulsyan et al., 2020), we demonstrate

here the potential of using automated and high throughput mixing to

generate new samples of known analytical properties. Theoretically,

an unlimited number of product‐related impurities could be analyzed

and mixed to generate intermediate samples of known analytical

values, provided that the mixing hardware automation system can

produce the algorithmically set mixing ratios. We validated our

hardware system by manually measuring concentrations of 197

mixed samples from one stock solution (Figure 1a) and demonstrated

a 201‐point calibration of product concentration using UV‐Vis scans

(Figure 2). If scaled up, this could translate to a theoretical scale‐up

factor of 200× in the analytical output of existing manual calibration

experiments, where each calibration point is analyzed by a panel of

off‐line analytical testing. If all four quaternary valve inlets were filled

with stock solutions, three analytical measurements would be needed

to generate a calibration for three product quality values, leading to a

data collection rate of 201 data points per day. Current methods such

as PLS and PCA rely on dimensionality reduction to reduce 3101

Raman variables (Figure 3) down to 10 (Ryabchykov et al., 2018), and

this is done because there would not be enough equations (number

of calibration experiments) to solve the regression coefficients

(number of wavenumber variables). However, with the automated

capability presented here, it would be possible to solve all 3101

Raman variables with just three AKTA system‐weeks of collec-

tion time.

We extended our initial study of product concentration to

involve both product and aggregate concentration (Figure 4),

demonstrating that our calibration system was able to model the

relationship between Raman spectra and product aggregation UPLC

measurements. While Raman has been calibrated for measuring

product aggregation previously, and for other PQAs (Wei et al., 2021),

we demonstrate here the first use of a nonlinear KNN model for

predicting aggregation levels ranging from 0.3% to 6.3%. We also

demonstrate the ability to use both PLS and KNN models trained on

off‐line calibration samples to measure values out of the calibration

range in a real‐world cation exchange preparatory chromatography

operation (Figure 5), and we achieved this with only two off‐line

analytical test samples for the calibration stock solutions. While

several previous studies investigated real‐time bioprocessing mon-

itoring at the affinity capture step (Feidl et al., 2019a, 2019b;

Rolinger et al., 2021), the ability to monitor aggregates in real‐time

has not yet been established. Of the studies that look at noninvasive

methods for measuring multiple quality attributes (de Faria e Silva

et al., 2020; Taraban et al., 2019; Wei et al., 2021; Zhang et al., 2019),

the transferability of models trained on off‐line calibration data for

measuring in‐line results remains an open question. We greatly

increased the analytical data throughput and data representativeness

by performing calibration on the same hardware as the real‐world

chromatography operation, and we demonstrated how a nonlinear

KNN model can leverage this data set to reproduce meaningful

product quality patterns in real‐time (Figure 5). To achieve the goal of

being able to apply the off‐line calibration consistently without

additional adjustments, more understanding of the Raman spectra

and how features are translated to product quality measurements is

needed, although this task may be increasingly complex (Guo

et al., 2021). The sapphire peak is one of the most prominent

features of the Raman spectra and it was also the most important

feature in our calibration model (Figure 4c). Since sapphire was the

material least likely to change properties in our experiment, this could

be a baseline effect that need to be filtered out by one or a

combination of baseline correction methods (Byrne et al., 2015;

Ryabchykov et al., 2018). Further, normalization or smoothing

techniques could be used to pre‐process the data before modeling

to improve the model quality (Wei et al., 2021). We anticipate the

application of baseline removal methods such as those based on

frequency filtering would greatly reduce sources of bias originating

from confounding effects such as flow rate, background fluores-

cence, and variations in laser characteristics (Zhang et al., 2010).

The implementation of PAT is expected to dramatically reduce

risks involved in both development and manufacturing (Berry

et al., 2016; Gillespie et al., 2022; Rathore, 2014), where real‐time

monitoring would be able to flag out‐of‐spec intermediate analytical

checkpoints. One key aspect of risk‐minimization strategy is to

understand how in‐line sensors such as UV absorbance probes

(Gillespie et al., 2022) make measurements, when they become

saturated, and how to overcome these limitations by for example

varying the pathlength. Chemometric analysis pose severe challenges

to this understanding (Guo et al., 2021) due to very large numbers of

processing steps and the algorithmic complexity of those steps.

Individual amino acids show distinct Raman fingerprints that can be

clearly identified (Zhu et al., 2011), thus serving as the chemical

foundation for the theoretical possibility of deconvolving every
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complex product spectrum down to its component root elements.

Until we have sufficient data and mechanistic understanding to do

this, we have employed single‐variate analyses where possible to try

to simplify this algorithmic transparency problem (Figures 2b

and 3b,d). The VIP score for PLS model evaluation has additionally

proven extremely useful in this respect (Mehmood et al., 2012)

(Figure 4c), although this technique does not readily generalize to the

PCR and KNN models (Table 1). In addition to single wavenumber

effects, protein aggregation may additionally interact with indirect

sources of Raman distortions such as the flow of water (Taraban

et al., 2019). Until the complex relationship between Raman spectral

features and product quality variants is elucidated (Zhu et al., 2011),

it will be critical to fully characterize any potential impact of process

parameter deviations on calibration model representativeness in an

industrial application. The reduction of the number of latent variables

for both PLS and PCR has been a common technique for reducing

model over‐fitting (Wei et al., 2021), due to the relatively higher

Raman spectral dimensionality compared to the number of experi-

ments (Tulsyan et al., 2020). The literature seems to accept a wide

variety of values for this parameter, ranging from as low as

2 (Brestrich et al., 2018) to 12 (Feidl et al., 2019a). We used a value

of 10 (Figure 4a) as the number of variables to balance for enough

explained variance while not overfitting characteristics of the off‐line

calibration training data set that would result in difficulties in

predicting the in‐line PQAs. We were also careful to mitigate this

risk when pioneering the use of the nonlinear KNN model by

studying the effect of the number of neighbors parameter on

prediction accuracy (Figure 4b), choosing the conservative value of

60 as the number of neighbors which did not necessarily result in the

most accurate prediction, but did result in a shallow slope, or the least

change in performance for any given variation in the hyperparameter.

Although the KNN model was a nonlinear model, it shared similarities

to the GP regressor, which has been demonstrated in a bioprocessing

monitoring context (Tulsyan et al., 2020), and which does not need

large quantities of data for training because it does not assume any

class of kernel functions whether linear or nonlinear.

5 | CONCLUSIONS

We demonstrate a hardware and software automation system that

combines algorithmic control of experiments and machine learning

modeling to create calibration datasets at high volume and low

variability. The mixing capabilities were first established by manual

measurements, then by multiwavelength UV‐Vis scans. Once the

relationship between algorithmically set concentrations and actual

empirical measurements was established, we demonstrated that it was

possible to then calibrate a Raman spectrometer to simultaneously

measure product concentration and aggregation. We demonstrated the

use of a nonlinear KNN model for accurately measuring product

aggregation during bioprocessing is promising because the predicted

elution profiles were highly correlated to the offline measurements. The

expansion of other product qualities such as low molecular species and

charge variants naturally present an opportunity for further work. We

envision great potential for in‐line monitoring, once implemented, to

shape the future of CMC control strategy and advanced manufacturing.
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