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A B S T R A C T

We present an algorithm for generating short fiber-reinforced microstructures with almost planar fiber
orientation. The orientation corrected shaking (OCS) method achieves a high accuracy regarding the volume
fraction, fiber length distribution and fiber orientation state. Additionally, the algorithm is capable of
generating microstructures for industrial materials, e.g., for a PA66GF35 material with a volume fraction
of 19.3% and an aspect ratio of 33. For typical manufacturing processes, short fiber-reinforced composites
show a mainly planar fiber arrangement. Therefore, we extend the two-step shaking algorithm of Li et
al. [J. Ind. Text. 51(1), pp. 506–530, 2022] for a user-selected rectangular size of the unit cell and periodic
boundary conditions. Additionally, the hidden closure structure of the algorithm is uncovered and a precise
realization of the fiber orientation state achieved. We examine the representative volume element size for
the OCS method, observing representative errors below 2% even for unit cells with edge lengths smaller
than the mean fiber length. Additionally, the influence of different closure approximations on the stiffness
is investigated. When applied to an industrial PA66GF35 material with sandwich structure, the OCS method
demonstrates differences below 2% and 9% for the computed directional Young’s moduli 𝐸1 and 𝐸2 compared
to experimental data.
1. Introduction

1.1. State of the art

Discontinuous short fiber-reinforced polymers are used frequently
in lightweight design due to their advantageous high specific stiffness
and design freedom. As a result of the manufacturing process, the
composites are highly anisotropic and the descriptive components,
such as volume fraction, and fiber length and orientation distribu-
tion, vary throughout the component. To obtain the necessary three-
dimensional information on the microstructure, micro-CT imaging is
typically used [1,2]. Computational homogenization techniques [3]
based on the theory of homogenization [4,5] are strategies capable of
predicting the effective properties of heterogeneous materials comple-
menting the oftentimes time-consuming experimental measurements.

For the respective full-field simulations on the microscale, syn-
thetic, i.e., generated, microstructures complement data obtained from
3D imaging. Due to their random microstructure, discontinuous short
fiber/reinforced polymers feature non/periodic geometries on the mi-
croscale. Several procedures for stochastical homogenization of non-
/periodic microstructures are available for classical [6–10] and mi-
cropolar continua [11,12]. Previous studies [6,7] revealed that when
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considering periodic geometries in stochastical homogenization, uti-
lizing periodic boundary conditions for the displacement fluctuation
in mechanical problems leads to minimal artificial artifacts compared
to other boundary conditions, e.g., displacement or traction bound-
ary conditions. Obtaining periodic representative volume elements in
stochastic homogenization is called periodization of random media, see
Sab and Nadjar [13] for an introduction to the concept. Whereas peri-
odizing microstructures obtained from tomographic data is non/trivial,
microstructure generation offers the advantage that periodized samples
are obtained quite naturally. Due to the negligible bending of short
fibers, cylinder models describe such fibers accurately. Usually, the
fiber orientation and the length distribution are considered indepen-
dently, especially as data on coupling is available scarcely. Algorithms
for generating microstructures of fiber-reinforced composites may be
divided into two classes: sequential insertion algorithms and collective
rearrangement algorithms.

In case of sequential insertion algorithms, the fibers are placed
consecutively. Upon insertion of a fiber, both its direction and its mid-
point are fixed. The most common algorithm in this class, the random
sequential addition (RSA), is introduced by Widow [14] for spheres and
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adapted for cylinders by Feder [15]. During the RSA algorithm, fibers
are sampled randomly targeting a non-penetrating arrangement which
moreover represents the descriptive statistics. However, the achievable
volume fraction strongly decreases with increasing aspect ratio (the
quotient of length and diameter) [16,17]. To overcome this limitation,
several extensions of the RSA algorithm are proposed for short fiber-
reinforced composites [18–21]. For the special case of discontinuous
fiber-reinforced materials with non-uniformly dispersed and staggered
aligned fibers, Bahmani et al. [22] present as extension the 3D stag-
gered hard-core algorithm (SHCA). The method is capable of generating
periodic geometries of aligned fibers for volume fractions up to 40%
and accounting for different fiber aspect ratios in a computationally
efficient way. Whereas a dense packing for aligned fiber orientation
states is possible, even for high aspect ratios, still remains the question
of how to generate synthetic microstructures for fiber reinforced com-
posites with volume fractions and general fiber orientation states used
in industry. Components made of fiber lengths exceeding the thickness,
e.g., sheet molding compounds [23,24] and injection molding com-
pounds [25,26], feature almost planar fiber arrangements. For these
orientation states, Li et al. [27] present a two-step shaking algorithms,
which is capable of achieving high density packings even for longer
fibers. In an initial deterministic step, the fibers are first placed in a
planar and non-penetrating setting. Subsequently, the fibers are shaken
to introduce randomness and a deviation from planarity.

For collective rearrangement algorithms, all fibers change their
midpoints and directions simultaneously until the target conditions,
e.g., the non-penetration condition, are fulfilled. The mechanical con-
traction method (MCM) [28] of Williams and Philipse prepares a mi-
crostructure with non-overlapping particles and at a small volume
fraction first, e.g., by the RSA method. Subsequently, the unit cell is
contracted resulting in collisions between the fibers. To find a non-
penetrating fiber arrangement, existing overlap is removed in an it-
erative way. In its original form, only isotropic fiber microstructures
could be generated with MCM. For more general fiber orientation
states, Schneider presents the sequential addition and migration (SAM)
algorithm [29]. As a starting point, fiber midpoints and directions
are sampled randomly according to the descriptive components of
the microstructure. Due to the overlaps in the initial arrangement,
subsequently a procedure similar to the mechanical contraction method
is applied to remove the overlaps. In contrast to MCM, the overall
fiber-orientation state is accounted for in the overlap removal. Hence,
upon convergence the SAM algorithm produces microstructures where
the non-penetration condition as well as the fiber orientation state
is fulfilled. Based on the original algorithm, extensions of the SAM
algorithm are given in Schneider [30] for long fibers with curvature
and in Mehta and Schneider [31] for fiber length distributions.

1.2. Contributions

In this work, we introduce the Orientation Corrected Shaking (OCS)
method based on the two-step shaking algorithm for almost planar fiber
orientation states by Li et al. [27]. We address two main objectives for
the generated microstructures. First, we aim to minimize the necessary
representative volume element (RVE) size to reduce the time effort for
the microstructure generation and computational homogenization. Sec-
ondly, we require an accurate realization of the fiber volume fraction,
as well as the fiber length and orientation distributions.

For this purpose, we concern three restrictions of the algorithm
provided by Li et al. [27]. First of all, the generated microstructures
are fixed to an intrinsically calculated size of the rectangular unit
cell. In particular only thin plate shapes are obtained. However, to
investigate the representativity of different unit cell sizes, the size of
the rectangular volume elements has to be chosen in an arbitrary way.
Hence, we adapt the initial deterministic fiber placement to a modular
2

procedure accounting for the user-selected dimensions of the unit cell. s
The second restriction concerns the non-periodicity of the generated
microstructures. In previous studies [6,7,13] it turns out that non-
periodic geometries may adversely influence the representativity of a
unit cell due to increased boundary condition artifacts. To reduce the
necessary RVE size, we extend the algorithmic implementation, e.g., the
inter-fiber overlap detection, to a periodic description of the geometry.

Last but not least, the fiber orientation state is not represented
sufficiently by the original algorithm. Actually, the source of this
restriction is twofold. First, Li et al. [27] control the fiber orientation
state via fiber orientation tensors of second order. However, for com-
puting the effective elastic properties accurately the fiber orientation
tensor of fourth order is mandatory, see Müller and Böhlke [32]. The
second cause concerns the shaking procedure of the fibers. Especially
for increasing fiber alignment and volume fraction, deviations in the
realized fiber orientation tensor of second order are obtained. To handle
the latter two limitations, we provide an appropriate shaking strategy.
More precisely, we uncover the hidden closure approximation of the
shaking procedure. With this insight at hand, a semi-analytic estimation
of the shaking parameters is identified and implemented. Moreover, we
introduce the procedure of single orientation shaking to realize the fiber
orientation tensor of fourth order accurately.

This article is organized as follows. Section 2 provides the terminol-
ogy for short fiber-reinforced composites and details on the implemen-
tation of the fiber length distribution, as well as the inter-fiber overlap
detection. In Section 3, we introduce the OCS method and describe the
required extensions of the original two-step shaking algorithm [27].
Computational investigations on the implemented OCS method are
conducted in Section 4. After studying the effect of the semi-analytic
parameter estimation and the procedure of single orientation shaking,
we discuss the necessary resolution and RVE size. Subsequently, the
computed effective stiffness is compared to microstructures generated
by the SAM algorithm based on the exact and the maximum en-
tropy closure. Moreover, we apply the OCS method to an industrial
PA66GF35 material and compare the results to experimental data, as
well as to microstructures generated by the SAM algorithm. The ap-
pendix provides details for the semi-analytic estimation of the shaking
parameters.

1.3. Notation

We represent vectors and tensors either in direct tensor notation
or matrix representation with orthonormal basis {𝒆1, 𝒆2, 𝒆3}. Scalars
are denoted by non-bold letters, e.g., 𝑏, vectors by bold lowercase
letters, e.g., 𝒃, tensors of second order by bold uppercase letters, e.g., 𝑩,
and tensors of fourth order by, e.g., B. We represent tensors with
varying tensor order by, e.g., B

⟨𝑙⟩, where 𝑙 defines the tensor order.
Second-order tensors parameterized with diagonal components read
as, e.g., 𝑩 =̂ 𝚍𝚒𝚊𝚐(𝑏1, 𝑏2, 𝑏3). The transposition of a vector is written
s, e.g., 𝒃𝖳. The scalar product is denoted by 𝑨 ⋅ 𝑩 = tr(𝑨𝑩𝖳) and

the Frobenius norm by ‖𝑩‖ = (𝑩 ⋅ 𝑩)1∕2. The linear mapping of a
first-order by a second-order tensor reads as 𝒂 = 𝑪𝒃 and the linear
mapping with complete contraction including higher-order tensors as,
e.g., 𝑨 = C [𝑩] =̂𝐶𝑖𝑗𝑘𝑙𝐵𝑘𝑙 using the summation convention. The dyadic
roduct is symbolized by ⊗. The 𝑙-times repeated dyadic product of a
ector is abbreviated, e.g., as 𝒃⊗𝑙 = 𝒃⊗𝒃⋯⊗𝒃 (𝑙 repetitions). The unit
phere in R3 is denoted by 𝑆2.

. Microstructure generation for short fiber-reinforced composites

.1. Description of short fiber-reinforced composites

We consider a rectangular cell 𝑄 =
[

0, 𝑄1
]

×
[

0, 𝑄2
]

×
[

0, 𝑄3
]

ncluding 𝑁 right circular cylindrical fibers in a non-penetrating fiber
rrangement. The 𝑘th-fiber is characterized by the length 𝐿𝑘, the
iameter 𝐷𝑘, the midpoint 𝒙𝑘 ∈ 𝑄 and the direction 𝒑𝑘 ∈ 𝑆2,

ee Fig. 1. We assume uniform fiber diameters 𝐷 = 𝐷𝑘, but varying
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Fig. 1. Description of a short fiber.

fiber lengths following a given fiber length distribution 𝜌
(

𝐿𝑘
)

. For
short fiber-reinforced composites, the Weibull distribution [33] is often
used [34–36]. Alternatively, the unit vector 𝒑𝑘 may be represented by
the angles 𝜃𝑘 and 𝜑𝑘:

𝒑𝑘 =̂
⎡

⎢

⎢

⎢

⎣

sin
(

𝜃𝑘
)

cos
(

𝜑𝑘
)

sin
(

𝜃𝑘
)

sin
(

𝜑𝑘
)

cos
(

𝜃𝑘
)

⎤

⎥

⎥

⎥

⎦

, 𝜃𝑘, 𝜑𝑘 ∈ R. (2.1)

Notice that the angles 𝜃𝑘 and 𝜑𝑘 may be parameterized on the domain
[0, 2𝜋) equivalently by accounting for the periodic characteristics of the
trigonometrical functions throughout the article.

In a non-overlapping configuration, the fiber volume fraction 𝜙
computes as

𝜙 = 𝜋𝐷2

4𝑄1𝑄2𝑄3
𝐿𝗍𝗈𝗍𝖺𝗅 (2.2)

with the total length

𝐿𝗍𝗈𝗍𝖺𝗅 =
𝑁
∑

𝑘=1
𝐿𝑘. (2.3)

In this work, fiber orientation tensors are used as a compact char-
acteristic of the fiber orientation distribution, see Advani et al. [37]
and Kanatani [38]. Due to the finite number of fibers in a generated
microstructure and the varying fiber lengths, the volume-weighted fiber
orientation tensors of order 𝑙 compute as

A
⟨𝑙⟩ =

1
𝐿𝗍𝗈𝗍𝖺𝗅

𝑁
∑

𝑘=1
𝐿𝑘 𝒑

⊗𝑙
𝑘 . (2.4)

For fiber-reinforced composites, micro-computed tomography is a con-
venient tool to estimate the fiber orientation tensors [39–41]. By ap-
plying mean field homogenization methods [25,32,42], it turns out
that the effective properties can be approximated by functions of the
first two moment tensors. For this reason, typically the second- and
fourth-order tensors 𝑨 and A are considered.

2.2. Prescribing the fiber length distribution

In this work, we use the Weibull distribution to describe the fiber
lengths within the generated microstructures. It is defined via the
density function [43, eq. (4-43)]

𝜌𝜆,𝛽 (𝐿) =
𝛽
𝜆

(𝐿
𝜆

)𝛽−1
𝑒−(𝐿∕𝜆)

𝛽
, 𝐿, 𝜆, 𝛽 > 0, (2.5)

with the scale parameter 𝜆 and the shape parameter 𝛽. According to
Mehta and Schneider [31] the Weibull parameters 𝜆 and 𝛽 may be
computed from given values for the volume-weighted mean 𝑚 and
standard deviation 𝑠. With this notation at hand, we assume the length
𝐿𝑘 of the 𝑘th-fiber to follow the corresponding Weibull distribution,
i.e.,

𝐿 ∼ Weibull(𝑚, 𝑠). (2.6)
3

𝑘

When generating microstructures, it is necessary to sample the fiber
lengths with a specific sampling scheme. As result of the finite number
of fibers, the selected sampling scheme may lead to an inaccurate
fiber length distribution, e.g., characterized by a large deviation of the
realized statistical moments compared to the moments of the distribu-
tion. Mehta and Schneider [31] study the introduced error of sampling
with the classical Monte Carlo approach [44] and with scrambled
or non-scrambled Sobol sequences [45,46]. Due to the smallest error
for scrambled Sobol sequences, we use this scheme for the following
investigations.

We terminate the sampling of fiber lengths whenever the prescribed
volume fraction 𝜙 is exceeded. To match the targeted fiber volume
fraction exactly, we rescale each fiber length individually with

𝐿𝑘 ← 𝐿𝑘
4𝑄1𝑄2𝑄3𝜙
𝜋𝐷2𝐿𝗍𝗈𝗍𝖺𝗅

. (2.7)

2.3. Inter-fiber collision checks for periodic boundary conditions

To realize a non-penetrating fiber arrangement, it is necessary to
compute the inter-fiber distances repeatedly, leading to a significant
influence on the computational effort. To decrease the runtime, during
the computation of the inter-fiber distances we model each fiber as
a spherocylinder [28], i.e., a half sphere is attached to each end of
the cylinder. Two spherocylinders intersect precisely if the smallest
distance between the center lines of the fibers is smaller than the
diameter 𝐷. For the numerical computation of the effective elastic
properties with voxel-based grids, usually a minimum distance 𝑑𝗆𝗂𝗇

between the fibers is enforced to avoid excessively high stresses when
fibers are too close [47,48]. To realize the minimum distance, the
diameter of the fibers is increased only for the collision detection

𝐷 ← 𝐷 + 𝑑𝗆𝗂𝗇. (2.8)

Notice that a minimum distance between the fibers leads to an in-
creased runtime due to the artificially higher volume fraction during
the collision checks. For instance, the volume fraction increases by 44%
for a minimum distance of 20% of the fiber diameter.

For computing the smallest distance between the center lines of two
fibers, we rely on the modification of the Vega-Lago algorithm [49]
introduced by Pournin et al. [50]. For an efficient implementation of
periodic boundary conditions, we use the minimum image convention
strategy, commonly employed in molecular dynamics simulations, see,
e.g., Deiters [51]. More precisely, for two particles only the distance
between their closest periodic realizations is computed. For cylindrical
fibers, an adaption of the scheme is presented, e.g., by Schneider [30],
in case the fiber lengths are shorter than half of the smallest edge
length. Considering the 𝑘th- and the 𝑗th-fiber, the three components
(𝑖 = 1, 2, 3) of one of the fibers’ midpoints are corrected only for the
collision detection with

𝑥𝑖𝑘 ←

⎧

⎪

⎨

⎪

⎩

𝑥𝑖𝑘 −𝑄𝑖, if 𝑥𝑖𝑘 − 𝑥
𝑖
𝑗 > 𝑄𝑖∕2

𝑥𝑖𝑘 +𝑄𝑖, if 𝑥𝑖𝑘 − 𝑥
𝑖
𝑗 < 𝑄𝑖∕2

𝑥𝑖𝑘, else

⎫

⎪

⎬

⎪

⎭

provided 𝐿𝑗 , 𝐿𝑘 < min
(

𝑄1, 𝑄2, 𝑄3
)

∕2.

(2.9)

In case of a fiber length distribution with a high variance for
strongly anisotropic cells, condition (2.9) may not be satisfied, as
the fibers are too long. A simple workaround to treat longer fibers,
introduced by Mehta and Schneider [31], proceeds by a divide and
conquer strategy with respect to the fiber length.

Moreover, whenever a fiber exceeds a complete edge length, it
is necessary to check self-intersection to ensure a non-overlapping
configuration. We use the self-intersection scheme provided by Mehta
and Schneider [31], which is activated for the 𝑘th-fiber if the condition

𝐿𝑘𝑝
𝑖
𝑘 > 𝑄𝑖 −𝐷 with 𝑖 = 1, 2, 3 (2.10)

is fulfilled for at least one of the three components.



Composite Structures 322 (2023) 117352C. Lauff et al.

i

𝑨

b
t
c
w

f

𝜙

I
s

3. The orientation corrected shaking method

3.1. The initial step

We assume the second-order fiber orientation tensor 𝑨 to be given
n diagonal and ordered form

=̂ 𝚍𝚒𝚊𝚐(𝑎1, 𝑎2, 𝑎3) with 𝑎1 ≥ 𝑎2 ≥ 𝑎3. (3.1)

A symmetric second order fiber orientation tensor may be brought into
the form of Eq. (3.1) by an eigendecomposition and a rotation into the
eigenbasis.

The two-step shaking method [27] assumes the third eigenvalue 𝑎3
to be small. Therefore, an initial fiber orientation tensor �̃� is introduced
which attains the form

�̃� =̂ 𝚍𝚒𝚊𝚐(𝑎1, 𝑎2, 0) with 𝑎𝑖 =
𝑎𝑖

𝑎1 + 𝑎2
, 𝑖 = 1, 2. (3.2)

The presence of non-zero third component 𝑎3 in the original fiber
orientation tensor 𝑨 (3.1) will be accounted for in the shaking step.

In the initial step, the initial fiber orientation tensor 𝑎1 is realized
y a deterministic arrangement of the fibers. According to Li et al. [27],
he microstructure is divided into sublayers with aligned fibers. If the
ondition 𝑎1 < 0.6 holds, a division into two sublayers will be used,
here the standard unit vectors 𝒆1 and 𝒆2 represent the fiber directions

of the sublayers. Alternatively, the directions are represented with the
angles

𝜃1 =
𝜋
2
, �̃�1 = 0 and 𝜃2 =

𝜋
2
, �̃�2 =

𝜋
2
. (3.3)

To fulfill the initial fiber orientation tensor �̃�, the sublayers with fibers
in 𝒆1- or 𝒆2-direction are filled with fibers up to a volume fraction

𝜙1 = 2 𝑎1𝜙 or 𝜙2 = 2 (1 − 𝑎1)𝜙. (3.4)

For stronger alignment, i.e., under the condition 𝑎1 ≥ 0.6, the unit cell
is divided into three sublayers to reduce the difference of the volume-
fraction between the sublayers. Therefore, the fibers are placed in two
sublayers with direction 𝒆1 and in one sublayer with direction 𝒆2. The
iber volume fractions of the sublayers compute as

1̃ = 1.5 𝑎1𝜙, 𝜙2 = 3 (1 − 𝑎1)𝜙. (3.5)

n the algorithm introduced by Li et al. [27], the size of the initial filling
pace depends on the mean length of the fibers 𝐿𝗆𝖾𝖺𝗇 = 𝐿𝗍𝗈𝗍𝖺𝗅∕𝑁 , the

first eigenvalue of the fiber orientation tensor in the initial arrangement
𝑎1, the fiber volume fraction 𝜙 and the diameter of the fibers 𝐷.
Furthermore, hard boundary conditions are considered leading to a
low fiber content close to the boundaries. To overcome this prob-
lem, Li et al. choose larger dimensions 𝑄1,2 for the initial space than
for the shaking step. Computational evidence suggests [6,7,13] that
using periodic microstructures and periodic boundary conditions for
computational homogenization minimizes boundary condition artifacts.
For this reason, we consider an extension of the original algorithm
to generate periodic unit cells. Additionally, as fibers can pass the
boundaries without restriction, we use the same cell dimensions for the
initial step and for the shaking step.

A second extension concerns the use of more than two or three
sublayers, respectively. Indeed, we consider a repetition of the con-
struction, compare Eqs. (3.4) and (3.5). In this way, we may investigate
representativity of the structures in direction 𝒆3, as well. Therefore, the
structure of 𝑛𝗌𝗎𝖻 = 2 (or 𝑛𝗌𝗎𝖻 = 3) layers is repeated 𝑛-times until the
prescribed height is achieved. The height of the single sublayers ℎ𝗌𝗎𝖻 is
calculated with

𝑐 =

√

𝜋𝐷2

2𝜙1
, 𝑛 =

⌊

max
(

𝑄3
𝑛𝗌𝗎𝖻𝑐

, 1
)⌋

and ℎ𝗌𝗎𝖻 =
𝑄3
𝑛𝗌𝗎𝖻𝑛

, (3.6)

where the bracket type ⌊⋅⌋ denotes the floor function.
According to Li et al. [27], we decompose each sublayer into a

row of smaller cells. In Fig. 2, schematically a single sublayer with
4

Fig. 2. Sublayer with a single continuous fiber per cell, compare Li et al. [27, Fig.
4(a)].

Fig. 3. Cross-section of a cell with two fibers.

continuous fibers in direction 𝒆1 is shown consisting of five cells. The
parameter 𝑐 in Eq. (3.6) refers to the quadratic edge length of the cells
and is computed under the assumption of continuous, i.e., infinitely
long, fibers. For increasing the possible density of the initial packing,
two fibers per cell are assumed (Z. Li, personal communication, January
17, 2022), see Fig. 3. Therefore, an additional factor

√

2 in Eq. (3.6)
for the parameter 𝑐 arises.

To fill the 𝑗th-sublayer, fiber lengths are sampled according to the
fiber length distribution in a successive fashion and assigned to the
first cell. If a fiber cannot be arranged without fiber intersection, a
new cell will be filled. This procedure is terminated provided the target
volume fraction is reached. In case its length exceeds the edge lengths,
a fiber is exclusively assigned to a cell and fiber self-intersection in the
initial step is accepted. We denote the number of cells considered in
the 𝑗th-sublayer with 𝑛𝑗

𝖼𝖾𝗅𝗅
.

The width of the cells 𝑏𝑗
𝖼𝖾𝗅𝗅

, see Fig. 3, computes for each sublayer
(𝑗 = 1,… , 𝑛𝗌𝗎𝖻𝑛) as

𝑏𝑗
𝖼𝖾𝗅𝗅

=
𝑏𝑗
𝗌𝗎𝖻

𝑛𝑗
𝖼𝖾𝗅𝗅

, (3.7)

accounting for the number of cells 𝑛𝑗
𝖼𝖾𝗅𝗅

considered in the sublayer and
its total width 𝑏𝑗

𝗌𝗎𝖻
– either 𝑄1 or 𝑄2. As a consequence of the extension

of the initial step proposed in the article at hand, the dimensions of a
rectangular unit cell may be chosen in an arbitrary way. This contrasts
with Li et al. [27], where the size of the unit cell is fixed.

In Fig. 4(a), an initial microstructure with edge length 𝑄𝑖 = 500 μm,
lengths distributed according to 𝐿𝑘 ∼ Weibull(𝑚 = 200 μm, 𝑠 = 80 μm),
volume fraction 𝜙 = 20%, uniform diameter 𝐷 = 10 μm and second-
order fiber orientation tensor 𝑨 =̂ 𝚍𝚒𝚊𝚐 (0.49, 0.49, 0.02) is shown.

3.2. The shaking step

After the initial placement the fibers are shaken to introduce ran-
domness. Li et al. [27] present a procedure where the fibers are shaken
consecutively, using the initial arrangement as starting point. For every
fiber, first intense shaking (global shaking) is applied. To ensure non-
interpenetration of the fibers, a shaken fiber will be accepted if there
is no collision with any fiber that has already been accepted. If within

a maximum number of attempts 𝑚𝗆𝖺𝗑 no admissible setting was found,
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Fig. 4. Initial and shaken microstructure with edge length 𝑄𝑖 = 500 μm, volume fraction 𝜙 = 20%, lengths distributed according to 𝐿𝑘 ∼ Weibull(𝑚 = 200 μm, 𝑠 = 80 μm), uniform
diameter 𝐷 = 10 μm and second-order fiber orientation tensor 𝑨 =̂ 𝚍𝚒𝚊𝚐 (0.49, 0.49, 0.02).
smaller shaking steps will be applied (local shaking). In case the fiber
placement fails again, it will be broken into two smaller parts and they
are shaken individually (breaking and shaking). Fibers which cannot be
updated in one of these three steps are deleted. Broken or deleted fibers
lead to errors in the fiber length distribution 𝜌 and the fiber orienta-
tion tensor 𝑨. The shaking procedure of the entire microstructure is
repeated 𝑁𝗆𝖺𝗑-times. With increasing 𝑁𝗆𝖺𝗑, the intensity of shaking in
a single iteration decreases [27, Eq. (14)].

In contrast to Li et al. [27], we only shake the entire microstructure
once (𝑁𝗆𝖺𝗑 = 1) and use the procedure of global shaking, as this turns
out to be sufficient for obtaining good results. Furthermore, we require
that all fibers can be updated successfully to preserve the fiber length
distribution 𝜌 and the fiber orientation tensor 𝑨.

Let us focus on the update of the midpoint and the direction of a
single fiber during the shaking step. For every attempt 1 ≤ 𝑚 ≤ 𝑚𝗆𝖺𝗑,
the midpoint of the 𝑘th-fiber is computed by adding a shaking step to
the midpoint of the previous attempt:

𝒙𝑚𝑘 ← 𝒙𝑚−1𝑘 + 𝛥𝒙, 𝛥𝒙 =̂ 𝑐
[

𝛼 𝜉1 𝛼 𝜉2 𝛽 𝜉3
]𝖳. (3.8)

Randomness is introduced by the realizations 𝜉1, 𝜉2 and 𝜉3 of the
normal distribution 

(

𝜇 = 0, 𝜎2 = 1∕3
)

with mean 𝜇 = 0 and variance
𝜎2 = 1∕3. The parameter 𝑐 follows Eq. (3.6). To control the intensity
of the shaking, the parameters 𝛼 and 𝛽 are selected by trial and error.
The location of the midpoint in the initial arrangement �̃�𝑘 is used as
starting point for computing the midpoint of the first attempt.

The angles of the fibers with initial direction 𝒆𝑖 (𝑖 = 1, 2) are
computed according to the sampling procedure

𝜃𝑖 ← 𝜃𝑖 + 𝛥𝜃 𝜉𝜃 =
𝜋
2
+ 𝛥𝜃 𝜉𝜃 and 𝜑𝑖 ← �̃�𝑖 + 𝛥𝜑 𝜉𝜑. (3.9)

Notice that Eq. (3.9) depends on the initial direction 𝒆𝑖 but not on the
specific fiber 𝑘 or number of attempt 𝑚. The parameters 𝛥𝜃 and 𝛥𝜑
control the intensity of the directional shaking and are set to

𝛥𝜃 = 𝛾1 arcsin
(

𝑄3
𝐿𝑓

)

and 𝛥𝜑 = 𝛾2
𝜋
4
. (3.10)

Similar to 𝛼 and 𝛽, the shaking parameters 𝛾1 and 𝛾2 are selected
by trial and error. Randomness is introduced by realizations 𝜉𝜃 and
𝜉𝜑 of the normal distribution  (0, 1∕3). A pseudo-code for the OCS
method is provided in Alg. 1 and a result of the shaking step visualized
in Fig. 4(b).
5

Algorithm 1: OCS method with multiple orientation shaking
1: Initial Step
2: Arrange fibers in orthogonal layers according to 𝜙, 𝜌𝜆,𝛽 (𝐿𝑘), �̃�

and 𝑄
3: Shaking Step
4: Sort fibers by length (long to short)
5: for 𝑘← 1 to N do
6: for 𝑚 ← 1 to 𝑚𝗆𝖺𝗑 do
7: Update the fiber state (equations (3.8) and (3.9))
8: Check the inter-fiber distances with the already

accepted fibers
9: if no collision is detected then

10: Accept updated fiber
11: Exit loop
12: else if 𝑚 = 𝑚𝗆𝖺𝗑 then
13: Exit program (microstructure generation failed)

3.3. Control of the second order fiber orientation tensor

We are interested in the effect of the shaking procedure (3.9) on the
fiber orientation tensors of order 𝑙. Recall that the volume-weighted
fiber orientation tensors of 𝑙th-order for a finite number of fibers
are defined via equation (2.4). Suppose the fibers follow the shaking
procedure (3.9) and ignore the non-interpenetration condition. Then,
the empirical fiber orientation tensors compute as

A
⟨𝑙⟩ =

1
𝐿𝗍𝗈𝗍𝖺𝗅

𝑁
∑

𝑘=1
𝐿𝑘 𝒑𝑘

(

𝜃𝑖(𝜉𝜃), 𝜑𝑖(𝜉𝜑)
)⊗𝑙 (3.11)

with the additional information on the initial direction 𝒆𝑖 of each fiber.
To understand this formula more thoroughly, we consider the contin-
uum limit as the number of fibers 𝑁 goes to infinity. A specific direction
𝒑
(

𝜃𝑖(𝜉𝜃), 𝜑𝑖(𝜉𝜑)
)

depends on the realizations 𝜉𝜃 and 𝜉𝜑 of the normal
distribution  (0, 1∕3). Hence, an integration over the realizations 𝜉𝜃
and 𝜉 is necessary to include all directions on the unit sphere in the
𝜑
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computation of A𝖼
⟨𝑙⟩. We are led to the result

A𝖼
⟨𝑙⟩ =∫

∞

−∞
∫

∞

−∞

[

𝑎 𝗋
1 𝒑

(

𝜃1(𝜉𝜃), 𝜑1(𝜉𝜑)
)⊗𝑙

+𝑎 𝗋
2 𝒑

(

𝜃2(𝜉𝜃), 𝜑2(𝜉𝜑)
)⊗𝑙

]

𝜓(𝜉𝜃)𝜓(𝜉𝜑) d𝜃d𝜑,

𝜓(𝜉) =
√

3
2𝜋
𝑒−3∕2𝜉

2
, 𝜉 ∈ R.

(3.12)

The two additive terms in the brackets account for the shaken directions
of the two initial directions. As their influence on the computed fiber
orientation tensor depends on their volume fractions, the two terms
are weighted by the parameters 𝑎 𝗋

1 and 𝑎 𝗋
2, which denote the realized

igenvalues of the initial step. The latter may feature deviations in
espect to the prescribed initial eigenvalues due to sampling of the
iber lengths. Independently from its initial direction, the probability
f a shaken direction is computed by multiplying the probability of the
ealizations 𝜉𝜃 and 𝜉𝜑. Therefore, the function 𝜓(𝜉) is used representing

the probability density function for the normal distribution  (0, 1∕3).
otice that for the probability of the realizations 𝜉𝜃 and 𝜉𝜑 is accounted

n an uncoupled way as Li et al. [27] assume independent shaking
rocedures for the angles 𝜃𝑖 and 𝜑𝑖, see Eq. (3.9).

Li et al. [27] select the shaking parameters 𝛥𝜃 and 𝛥𝜑 by trial
nd error. However, the computed fiber orientation tensor of second
rder 𝑨𝖼 only equals the prescribed tensor 𝑨 for a special parameter
election. Hence, for general fiber orientation the selection by trial and
rror leads to errors in the fiber orientation state of the generated
icrostructures. With the insight of the computed fiber orientation

ensors at hand (3.12), we require that the computed tensor 𝑨𝖼 equals
he prescribed tensor 𝑨. Therefore, the shaking parameters 𝛥𝜃 and 𝛥𝜑
re computed instead of selecting them by trial and error.

.3.1. Computing the shaking parameter 𝛥𝜃
To match the third eigenvalue of the computed second-order fiber

rientation tensor 𝑨𝖼 with the prescribed tensor 𝑨, the condition

3
!
=∫

∞

−∞

[

𝑎 𝗋
1 𝑝3

(

𝜃1(𝜉𝜃)
)2 + 𝑎 𝗋

2 𝑝3
(

𝜃2(𝜉𝜃)
)2
]

𝜓(𝜉𝜃) d𝜃

=∫

∞

−∞

cos
(𝜋
2
+ 𝛥𝜃 𝜉𝜃

)2
𝜓(𝜉𝜃) d𝜃

(3.13)

must hold. The latter equation involves only the single unknown 𝛥𝜃.
As all fibers start in a planar setup with 𝜃𝑖 = 𝜋∕2, the two orthogonal
ayers are considered in a single term. We use the relationship between
he trigonometrical functions to shorten the expression to

3
!
=∫

∞

−∞

sin
(

𝛥𝜃 𝜉𝜃
)2 𝜓(𝜉𝜃) d𝜃 . (3.14)

Recasting equation (3.14) as optimization problem

min
𝛥𝜃∈R

abs
⎛

⎜

⎜

⎜

⎝

∫

∞

−∞

sin
(

𝛥𝜃 𝜉𝜃
)2 𝜓(𝜉𝜃) d𝜃 − 𝑎3

⎞

⎟

⎟

⎟

⎠

, (3.15)

we obtain the shaking parameter 𝛥𝜃 through a one-dimensional opti-
mization procedure.

3.3.2. Computing the shaking parameter 𝛥𝜑
The first and the second eigenvalue of the prescribed second order

iber orientation tensor are obtained by scaling the eigenvalues of the
nitial microstructure to consider that the third eigenvalue is set to
ero:
6

1 = (1 − 𝑎3) 𝑎1 and 𝑎2 = (1 − 𝑎3) 𝑎2. (3.16)
As in Eq. (3.16), we split up the first eigenvalue of the tensor 𝑨𝖼 into
two parts:

𝑎1
!
=
(

1 − 𝑎3
)

∫

∞

−∞

[

𝑎 𝗋
1 cos

(

𝛥𝜑 𝜉𝜑
)2 +𝑎 𝗋

2 sin
(

𝛥𝜑 𝜉𝜑
)2
]

𝜓(𝜉𝜑) d𝜑.

(3.17)

A derivation of Eq. (3.17) is given in Appendix.
Let us compare equation (3.16) and (3.17), then we observe that

the integral in Eq. (3.17) must equal the initial orientation tensor
component 𝑎1 to obtain the prescribed eigenvalue 𝑎1:

𝑎1
!
=∫

∞

−∞

[

𝑎 𝗋
1 cos

(

𝛥𝜑 𝜉𝜑
)2 + 𝑎 𝗋

2 sin
(

𝛥𝜑 𝜉𝜑
)2
]

𝜓(𝜉𝜑) d𝜑. (3.18)

This condition always holds, for the special case with equal eigenvalues
𝑎1 = 𝑎2 and an exactly realized initial fiber orientation tensor 𝑎 𝗋

1 = 𝑎1:

𝑎1
!
= 𝑎1∫

∞

−∞

[

cos
(

𝛥𝜑 𝜉𝜑
)2 + sin

(

𝛥𝜑 𝜉𝜑
)2
]

𝜓(𝜉𝜑) d𝜑 = 𝑎1. (3.19)

Indeed, the parameter 𝛥𝜑 may be selected freely without changing
the computed fiber orientation tensors. Besides this special case, the
condition as defined in Eq. (3.17) cannot hold. To handle this problem,
two varying shaking parameters 𝛥𝜑1,2 for the initial directions have
to be defined, i.e., the fibers shake with different intensity. Then, the
equation

𝑎1
!
=∫

∞

−∞

[

𝑎 𝗋
1 cos

(

𝛥𝜑1 𝜉𝜑
)2 + 𝑎 𝗋

2 sin
(

𝛥𝜑2 𝜉𝜑
)2
]

𝜓(𝜉𝜑) d𝜑. (3.20)

may be solved. Therefore, one parameter is set as shaking parameter
– we choose 𝛥𝜑2 – which is selected by trial and error. The second
parameter – we choose 𝛥𝜑1 – is identified via the optimization problem

min
𝛥𝜑1∈R

abs
⎛

⎜

⎜

⎜

⎝

∫

∞

−∞

[

𝑎 𝗋
1 cos

(

𝛥𝜑1 𝜉𝜑
)2 + 𝑎 𝗋

2 sin
(

𝛥𝜑2 𝜉𝜑
)2
]

𝜓(𝜉𝜑) d𝜑 − 𝑎1
)

.

(3.21)

Notice that the optimization problem (3.21) is applicable for all cases.
For the special case with equal eigenvalues and an exactly realized
initial fiber orientation tensor, the parameter 𝛥𝜑1 equals the chosen
parameter 𝛥𝜑2.

3.3.3. Implementation and workflow to determine the shaking parameters
Let us focus on the workflow for computing the shaking parameters

𝛥𝜃 and 𝛥𝜑1 which derive from the optimization problems (3.15) and
(3.21). For solving these problems, we need the shaking parameter 𝛥𝜑2,
as well as the orientation tensors 𝑨, �̃� and �̃�

𝗋 as input. As the orienta-
tion tensor �̃�𝗋 is only available after the initial placement, we compute
the shaking parameters 𝛥𝜃 and 𝛥𝜑1 as part of the preprocessing of the
shaking step — subsequent to the initial step.

For the numerical implementation of the optimization problems
(3.15) and (3.21), we use Python-integrated numerical integration
and optimization tools. As limits for the corresponding integrals, we
select the 99.99994%-confidence interval of the normal distribution
 (0, 1∕3):

𝜉𝗆𝗂𝗇 = −5 𝜎 = −5

√

3
3

and 𝜉𝗆𝖺𝗑 = 5 𝜎 = 5

√

3
3
. (3.22)

3.4. Single and multiple orientation shaking

The procedure of changing the fiber direction impacts the time
efficiency, the achievable volume fraction as well as the realized fiber
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orientation tensors. We investigate two types of shaking to study the
differences. For the first protocol, which we call multiple orientation
shaking, the fiber direction is updated recursively for every attempt.
More precisely, the new shaking step is added to the initial angles of
the fiber, see Eq. (3.9). By repeatingly changing the fiber direction, a
faster microstructure generation is possible and higher volume fractions
can be achieved. However, the prescribed fiber orientation state is not
accurately realized.

In previous studies [52,53] it turns out that the fiber orientation
influences the mechanical properties significantly. Hence, with more
accurate fiber orientations in mind, we consider single orientation shak-
ing as our second protocol. In this scenario, the angles are computed
only once for every fiber before the first shaking attempt starts. After
shaking the angles, the sampled direction 𝒑𝑘 of every fiber is cor-
rected to fulfill the fiber-orientation tensor of fourth order A𝖼 obtained
by Eq. (3.12). To be more precise, we apply the iteration scheme
introduced by Mehta and Schneider [31], see Alg. 2. The prefactor
𝑡 is used to account for the influence of the fiber lengths on the
volume-weighted fiber orientation tensor.

Although the procedure leads to a higher fidelity, it also increases
the runtime and decreases the achievable volume fraction as it is not
possible to change the direction during the shaking procedure. To
compensate for this effect, we introduce the following idea. Suppose
there is a fiber which could not be placed after a critical number 𝑚𝖼𝗋𝗂𝗍.
Then, we allow the 𝑘th-fiber to change its fiber direction in every
attempt — similar to multiple orientation shaking. The critical number
of attempts is chosen to depend on the maximum number of attempts
𝑚𝗆𝖺𝗑 and the mean number of attempts of the previous ten percent of
the fibers �̄�10%. As we update the fibers in order of descending fiber
length, the volume-weighted fiber orientation tensor is mostly affected
by the first fibers. To ensure a stable control of the fiber orientation
state, we choose a higher critical number of attempts for the first thirty
and last two percent of the 𝑁 fibers:

𝑚𝖼𝗋𝗂𝗍(𝑘) =

⎧

⎪

⎨

⎪

⎩

0.1𝑚𝗆𝖺𝗑, if 𝑘 < 0.30𝑁,

𝑚𝗆𝖺𝗑, if 𝑘 > 0.98𝑁,

min
(

max
(

1.5 �̄�10%, 1000
)

, 0.1𝑚𝗆𝖺𝗑

)

else .

(3.23)

By changing the presampled direction of the fiber, we influence the
fiber orientation state. To compensate for this error, the presampled
directions of the remaining (not updated) fibers are corrected again. For
this reason, we adapt the factor 𝑡 to take into account that the directions
of the already updated fibers do not change:

𝑡 = (𝑁 − 𝑘)

( 𝑘
∑

𝑖=1
𝐿𝑖

)( 𝑁
∑

𝑖=𝑘+1
𝐿𝑖

)−2

. (3.24)

If a correction is not possible, the 𝑘th-fiber will be shaken again starting
from its last corrected direction with

𝒑𝑘 ←
𝒑𝑘 + 𝛥𝒑

‖𝒑𝑘 + 𝛥𝒑‖
, 𝛥𝒑 =̂

[

𝜉𝛥𝑝1 𝜉𝛥𝑝2 𝜉𝛥𝑝3
]𝖳
. (3.25)

The parameters 𝜉𝛥𝑝1 , 𝜉𝛥𝑝2 and 𝜉𝛥𝑝3 are realizations of the normal dis-
tribution  (0, 𝑔) using the parameter 𝑔 to control the intensity of
changing the direction. We choose an initial value of 𝑔 = 1∕3 for every
iber. If a correction is not accepted repeatedly, we will decrease the
arameter with 𝑔 ← max (𝑔∕1.5, 0.001).

In Alg. 3, a pseudo-code for the OCS method with single orientation
haking is provided.

. Computational investigations

.1. Setup

The presented algorithm is implemented in Python with Cython
7

xtensions. The collision checks between the fibers are parallelized with
Algorithm 2: Orientation correction (Mehta and Schnei-
der [31])

1: while ‖A𝖼 − A𝗋
‖ > ‖A𝖼

‖ ⋅ error do

2: A𝗋 = 1
𝐿𝗍𝗈𝗍𝖺𝗅

[

𝑁
∑

𝑖=1
𝐿𝑖 𝒑𝑖 ⊗ 𝒑𝑖 ⊗ 𝒑𝑖 ⊗ 𝒑𝑖

]

3: 𝑡 ← 1∕𝐿𝗆𝖾𝖺𝗇

4: for 𝑖 ← 1 to 𝑁 do
5: ∇𝒑𝑖𝑓 = (𝟏 − 𝒑𝑖 ⊗ 𝒑𝑖)

(

(A𝖼 − A𝗋)
[

𝒑𝑖 ⊗ 𝒑𝑖 ⊗ 𝒑𝑖
])

6: 𝒑𝑖 ←
𝒑𝑖 + 𝐿𝑖 𝑡∇𝒑𝑖 𝑓

‖𝒑𝑖 + 𝐿𝑖 𝑡∇𝒑𝑖 𝑓‖

Algorithm 3: OCS method with single orientation shaking
1: Initial Step
2: Arrange fibers in orthogonal layers according to 𝜙, 𝜌𝜆,𝛽 (𝐿𝑘), �̃�

and 𝑄
3: Shaking Step
4: Sort fibers by length (long to short)
5: Update the directions of all fibers (equation (3.9))
6: Correct the directions of all fibers (Alg. 2)
7: for 𝑘← 1 to N do
8: for 𝑚 ← 1 to 𝑚𝗆𝖺𝗑 do
9: Update the fiber midpoint (equation (3.8))

10: if 𝑚 > 𝑚𝖼𝗋𝗂𝗍(𝑘) then
11: if correction failed in the previous attempt then
12: Update the fiber direction (equation (3.25))
13: else
14: Update the fiber direction (equation (3.9))

15: Check the inter-fiber distances with the already
accepted fibers

16: if no collision is detected then
17: if 𝑚 > 𝑚𝖼𝗋𝗂𝗍(𝑘) then
18: Correct the directions of the unshaken fibers

(Alg. 2 with equation (3.24))
19: if correction is successful then
20: Accept updated fiber
21: Exit loop

22: else
23: Accept updated fiber
24: Exit loop

25: else if 𝑚 = 𝑚𝗆𝖺𝗑 then
26: Exit program (microstructure generation failed)

OpenMP. The runtimes for the microstructure generation are recorded
on a desktop computer with a 8-core Intel i7 CPU and 64 GB RAM.

For computing the effective elastive properties, we use FFT-based
computational homogenization software [54,55] with discretization on
a staggered grid [56] and a conjugate gradient solver [57,58] termi-
nated at a relative tolerance of 10−5. For more details, we refer to the
review article [59]. The effective elasticity tensor is computed based
on six independent load cases. As the microstructures are orthotropic
on average, we report on the effective orthotropic engineering con-
stants. These are computed from the full effective elastic tensor in a
postprocessing step [60,61].

We consider a polyamide 6.6 matrix, reinforced by E-glass fibers
with the isotropic elastic parameters listed in Table 1, obtained by
Hessman et al. [35]. For our studies, we select as our reference setup
fibers with a diameter of 𝐷 = 10 μm and Weibull-distributed lengths
with (volume-weighted) mean 𝑚 = 200 μm and standard deviation
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Table 1
Material properties for the PA66 matrix and the E-glass fibers [35].

E-glass fibers PA66 matrix

𝐸 = 72.0 GPa 𝐸 = 3.0 GPa
𝜈 = 0.22 𝜈 = 0.40

Table 2
Used algorithmic parameters.
𝛼 𝛽 𝛥𝜑2 𝑚max

4 2 3𝜋∕8 107

𝑠 = 80 μm. We quantify the anisotropy of the microstructure in a
unified way using the fiber orientation tensor of second order 𝑨. A
material with an isotropic fiber orientation is represented by the fiber
orientation tensor 𝑨 =̂ 𝚍𝚒𝚊𝚐(1∕3, 1∕3, 1∕3). Thus, the deviation of the
fiber orientation tensor from this diagonal state represents a convenient
measure of anisotropy. Moreover, the class of anisotropy may be read
off the fiber orientation tensor. For instance, the fiber orientation
tensors representing the class of transversely isotropic materials with
polar direction 𝒆1 read as

𝑨 =̂ 𝚍𝚒𝚊𝚐(𝑎, 𝑏, 𝑏) with 𝑏 = 1 − 𝑎
2

and 𝑎 ∈ [0, 1], (4.1)

where we drop the sorting of the eigenvalues in the diagonal matrix
𝑨 for notational clarity. We correct the fiber directions in the pro-
cedure with single orientation shaking until the relative error of the
fiber-orientation tensor of fourth order is lower than 10−5. To avoid
excessively high stresses between close fibers, we choose 20% of the
fiber diameter, i.e., 2 μm, as the minimum inter-fiber distance. The
selected shaking parameters and the maximum number of attempts are
listed in Table 2. Previous studies showed [6,7] that periodization of
non-periodic media in combination with periodic boundary conditions
leads to the lowest errors between the computed apparent stiffness and
the desired effective stiffness for a given unit-cell size. According to
these results, we generate periodic microstructures and use periodic
boundary conditions for the displacement fluctuation to decrease the
size of the RVEs.

4.2. On using the semi-analytic shaking parameter estimation

In this section, we investigate the difference in the computed and re-
alized fiber orientation tensors by using identical parameter 𝛥𝜑1 = 𝛥𝜑2
for both orthogonal layers and computing the parameter 𝛥𝜑1 sepa-
rately (3.21). For the study, we restrict to four volume fractions 𝜙𝑖
and five different fiber orientation tensors 𝑨𝑗 =̂ 𝚍𝚒𝚊𝚐(𝑡𝑗 , 0.98 − 𝑡𝑗 , 0.02),
see Table 3.

Let us start by comparing the computed fiber orientation tensors
obtained via evaluating equation (3.12). Using the computation of
parameter 𝛥𝜑1 leads to coinciding tensors 𝑨𝖼 and 𝑨 by construc-
tion (3.21). Hence, no error in the fiber orientation state is induced
by the semi-analytic parameter estimation. In contrast, a difference
between the tensors occurs for a parameter selection 𝛥𝜑1 = 𝛥𝜑2,
see Table 4, in general. Notice that the prediction only depends on the
shaking parameter 𝛥𝜑2 and is independent of the volume fraction. We
observe that for mainly-planar isotropic microstructures the absolute
error is zero. In this special case, the assumption of equal shaking
parameters 𝛥𝜑1 = 𝛥𝜑2 does not infer an additional error, in agreement
with the theoretical prediction (3.19). With increasing alignment of
the fibers, the error intensifies and the maximum error is realized for
the orientation state 𝑨5 with an absolute deviation of 0.341. Hence, it
turns out that selecting equal shaking parameters 𝛥𝜑𝑖 for both initial
directions leads to a significant error in the computed fiber orientation
tensors.

To compare this results with the realized fiber orientation tensors,
8

we generated ten microstructures for every case of the study. For the
Table 3
Considered volume fractions 𝜙𝑖 and parameters 𝑡𝑗 .

𝜙1 𝜙2 𝜙3 𝜙4 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5
5% 10% 15% 20% 0.49 0.59 0.69 0.79 0.89

Table 4
Computed fiber orientation tensor 𝑨𝖼

𝑗 with 𝛥𝜑1 = 𝛥𝜑2.
(

𝑨𝖼
𝑗

)

11

(

𝑨𝖼
𝑗

)

22

(

𝑨𝖼
𝑗

)

33
‖𝑨𝖼

𝑗 −𝑨𝑗‖

𝑨1 0.490 0.490 0.020 0.000
𝑨2 0.530 0.450 0.020 0.085
𝑨3 0.569 0.411 0.020 0.171
𝑨4 0.609 0.371 0.020 0.256
𝑨5 0.649 0.331 0.020 0.341

process of changing the direction, we use the multiple orientation
shaking protocol resulting in a new direction in every attempt. We
choose a cubic cell-size with dimension 𝑄𝑖 = 500 μm representing
the 99.98%-quantile of the prescribed fiber length distribution. Hence,
most of the fibers are smaller than an edge length.

For the lowest volume fraction of 5%, the observed errors transfer to
the mean of the realized fiber orientation states with low discrepancy,
see Fig. 5(a) for the component

(

𝑨𝖼
𝑗

)

11
. The discrepancy is caused by

sampling the direction of a fiber multiple times as result of detected
inter-fiber collisions. Hence, the prescribed fiber orientation distribu-
tion is not realized exactly. For higher volume fractions, the deviation
is increasing, as inter-fiber collisions are detected more frequently.

We notice that the deviation leads to an increasing mean of the
component

(

𝑨𝖼
𝑗

)

11
for the orientation tensors 𝑨2 to 𝑨5. This tendency

is caused by the preference of the fibers to arrange in more aligned
states with increasing fiber volume fraction, also observed in previ-
ous studies [62,63]. For the mainly-planar isotropic orientation tensor
𝑨1, the fiber orientation state does not feature a preferred direction.
Hence, the mean value of the component

(

𝑨𝖼
1
)

11 does not change
systematically. As a result of the tendency to arrange in more aligned
states, the absolute error ‖𝛥𝑨𝑗‖ = ‖𝑨𝗋

𝑗 − 𝑨𝑗‖ (𝑗 = 2,… , 5) increases
for higher volume fractions with computation of the parameter 𝛥𝜑1,
see Fig. 5(b). In contrast, the error decreases for equal parameters
𝛥𝜑1,2 as the underestimation of the component

(

𝑨𝖼
𝑗

)

11
(𝑗 = 2,… , 5)

is compensated. However, for the orientation state 𝑨5, even for the
highest volume fraction of 20%, the absolute error is 0.16 with equal
shaking parameters, whereas, with computing the parameter 𝛥𝜑1, it is
0.06. Due to the lower errors resulting for the fiber orientation states
𝑨𝑗 (𝑗 = 2,… , 5), we conclude that computing the parameter 𝛥𝜑1 is an
essential factor for achieving reliable results.

Last but not least, we focus on the differences in the runtime.
Solving the problem (3.21) is conducted as part of the preprocessing
of the shaking step and has no significant influence on the runtime.
During the shaking step the runtime slightly increases for equal param-
eters 𝛥𝜑1 = 𝛥𝜑2 as it is computationally more expensive to generate
microstructures which are closer to the mainly-planar isotropic state.

As a result of the smaller errors in the fiber orientation state, the
subsequent investigations use a computed parameter 𝛥𝜑1.

4.3. On the difference between single and multiple orientation shaking

In the previous section, significant errors in the fiber orientation
states, even with computed 𝛥𝜑1, are observed due to the multiple
orientation shaking in case of inter-fiber collisions. As the effective me-
chanical properties of a composite strongly depend on the orientation
state of the reinforcing fibers, it is essential to match the prescribed
fiber orientation tensors accurately. To focus on this objective, we
additionally investigate the procedure of single orientation shaking,
which leads to matching fiber orientation tensors:

𝑨 = 𝑨𝖼 = 𝑨𝗋 and A𝖼 = A𝗋. (4.2)
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Fig. 5. Comparison of the realized fiber orientation tensor 𝑨𝗋
𝑗 between using 𝛥𝜑1 = 𝛥𝜑2 and computing 𝛥𝜑1 with Eq. (3.21) for five different prescribed fiber orientation tensors

𝑨𝑗 .
We repeat the study from Section 4.2 for single orientation shaking and
compare the results to multiple orientation shaking. Fig. 6(a) shows
that the component

(

𝑨𝗋
𝑗

)

11
equals the component 𝑡𝑗 for all cases.

The price to pay for this increase in accuracy is an increase in run-
time, see Fig. 6(b). For the mainly-planar isotropic case, the mean of
the runtime is similar for both procedures and only the high whisker is
larger for multiple orientation shaking. For the fiber orientation states
𝑨𝑗 (𝑗 = 2,… , 5), the procedure of multiple orientation shaking leads
to smaller runtimes as it permits the fibers to follow their natural, and
computationally less expensive, tendency to more aligned orientation
states. In contrast, single orientation shaking enforces the prescribed
fiber orientation state which leads to a higher computational expense,
in general. By taking the fiber orientation tensor 𝑨3 and a volume
fraction of 20% as example, the runtime is 149 s for multiple orientation
shaking and 255 s for single orientation shaking, i.e., an increase by
71%.

Despite the increase in runtime, the microstructures are still gen-
erated in acceptable time. Hence, we use single orientation shaking
throughout the next investigations to ensure reliable microstructures.

4.4. Study on the resolution and the RVE size

To compute precise effective properties, we need to investigate the
necessary resolution and the RVE size leading to accurate results. For
this purpose, we consider the fiber setup from the study in Section 4.2
and the material parameters of Table 1. We examine the extreme fiber
orientation states 𝑨1,5 and choose 𝜙 = 20% as volume fraction.

In Fig. 7, the realized directions of two corresponding microstruc-
ures are represented by a pole figure. For a two-dimensional represen-
ation, a stereographic projection of the fiber directions into the plane
ith normal direction 𝒆3 is used. Then, the angle 𝜃 of each fiber is

represented by the parameter 𝑟 = tan (𝜃∕2), see [64]. Notice that for
this representation the angle 𝜑 is parameterized on the domain [0, 2𝜋)
and 𝜃 on the domain

[

0, 𝜋∕2
]

using the periodic characteristic of the
angles and the equivalent description of a fiber with direction 𝒑 or −𝒑.
To represent the influence of a single fiber on the volume-weighted
fiber orientation tensor, the color and size of the marks accounts for
9

the fiber lengths. We observe that in Fig. 7(a) the fiber directions are
equally distributed in respect to the angle 𝜑, but tend to the outer parts
for the parameter 𝑟, which represent more planar orientation states.
This corresponds to the mainly-planar isotropic characteristic of the
fiber orientation tensor 𝑨1. In contrast, in Fig. 7(b) most directions
are located near the horizontal line at 𝜑 = 0, representing the almost
unidirectional fiber orientation tensor 𝑨5.

To compute the effective properties accurately, the resolution has
to be sufficiently fine [58,65]. However, with smaller mesh size, the
runtime for the computation of the effective properties is increasing. To
balance these conflicting objectives, it is necessary to select a resolution
leading to reasonable computational effort and sufficient accuracy. We
select one of the ten microstructures generated in Section 4.3 for both
fiber orientation tensors. We consider the voxel edge-lengths 4 μm, 2 μm
and 1 μm resolving a fiber with 2.5, 5 and 10 voxels per diameter,
respectively. In Fig. 8, (240 μm)3-extractions of the microstructures for
varying mesh sizes are shown.

For the mainly-planar isotropic fiber orientation tensor 𝑨1, the
fibers’ directions feature no preference in the 𝒆1-𝒆2-plane. Hence, the
Young’s moduli in 𝒆1- and 𝒆2-direction almost coincide for all three
resolutions, see Table 5. Due to the dominant fiber arrangement in
the 𝒆1-𝒆2-plane, the Young’s modulus in 𝒆3-direction is smaller. The
same reason leads to a higher shear modulus 𝐺12 compared to the
other two shear moduli. For a voxel edge-length ℎ = 4 μm, the largest
relative error – relative to the highest resolution – is obtained for the
shear modulus 𝐺12 with 5.95%, decreasing to 2.38% for ℎ = 2 μm.
As we report on the approximated orthotropic engineering constants
instead of the full effective elastic tensor, the orthotropic approximation
error 𝚎𝚛𝚛𝚘𝚛𝚝𝚑 must be assessed to control the quality of the results. We
observe that even for the coarsest resolution, the error is lower than
two percent and decreases to a quarter percent for the finest resolution.
For the almost aligned case, the Young’s modulus 𝐸1 exceeds the other
moduli by at least a factor of two. Also it is affected the most by
increasing the resolution. For the coarsest resolution, the relative error
is 6.99% decreasing to 1.91% for ℎ = 2 μm. Similar to the mainly-planar
isotropic case, the approximation error is rather low and decreases to
under one percent with ℎ = 2 μm.

As an outcome of the resolution study, we choose a voxel edge-

length of five voxels per diameter leading to a relative error below
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Fig. 6. Comparison of the realized fiber orientation tensor
(

𝑨𝗋
𝑗

)

11
and the runtime between single and multiple orientation shaking for five different prescribed fiber orientation

tensors 𝑨𝑗 .
Fig. 7. Stereographic projection of the fiber directions of two realized microstructures for varying fiber orientation tensors.
Table 5
Approximated effective orthotropic engineering constants for three different resolutions and fiber orientation tensors 𝑨1 =̂ 𝚍𝚒𝚊𝚐(0.49, 0.49, 0.02)
and 𝑨5 =̂ 𝚍𝚒𝚊𝚐(0.89, 0.09, 0.02).

ℎ 𝐸1 𝐸2 𝐸3 𝐺23 𝐺13 𝐺12 𝚎𝚛𝚛𝚘𝚛𝚝𝚑

μm GPa GPa GPa GPa GPa GPa %

𝑨1 4 6.59 6.61 5.16 1.78 1.78 2.46 1.91
2 6.79 6.82 5.19 1.72 1.72 2.51 0.74
1 6.86 6.89 5.18 1.68 1.68 2.52 0.25

𝑨5 4 10.25 5.07 4.90 1.69 1.86 1.98 1.48
2 10.81 5.09 4.90 1.63 1.80 1.94 0.63
1 11.02 5.08 4.89 1.59 1.77 1.91 0.30
three percent and an orthotropic error below one percent. This selection
confirms the results of previous resolution studies [29,66].
10
After identifying the necessary resolution, we turn our attention to
the required size of a representative volume element. As a result of the
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Fig. 8. (240 μm)3-extractions of microstructures with three different voxel-edge lengths and fiber orientation tensors 𝑨1 =̂ 𝚍𝚒𝚊𝚐(0.49, 0.49, 0.02) (top) and 𝑨5 =̂ 𝚍𝚒𝚊𝚐(0.89, 0.09, 0.02)
(bottom).
Fig. 9. Generated microstructures with the second-order fiber orientation tensor 𝑨1 =̂ 𝚍𝚒𝚊𝚐(0.49, 0.49, 0.02) for three different cubic cell-sizes.
manufacturing process and the material, fiber-reinforced composites
are characterized by randomness in, e.g., their realized fiber lengths,
fiber directions and fiber positioning. Consequently, the computed
elastic properties are random variables, as well. However, the effective
properties as deterministic descriptors are only obtained on cells of
sufficient size, the so-called representative volume elements (RVEs) [6,
67,68].

When working with cells of finite size, the incurring error naturally
decomposes into two terms. The standard deviation of the apparent
properties is called random error and quantifies their dispersion [6,69].
This error may be reduced by averaging multiple samples on cells of
equal size [70,71]. The second, so-called systematic, error equals the
difference of the mean of the apparent properties and the effective
elastic properties [6,69]. We monitor this error by increasing the unit
cell size and observing to what extent the mean is changing. In case of
11
sufficiently small random and systematic errors, the investigated unit
cell size is usable for a representative volume element.

For reducing the representativity errors, we enforce a high accuracy
regarding the prescribed properties, for example the fiber length distri-
bution and the fiber orientation state. According to previous studies, pe-
riodic boundary conditions leads to lower random and systematic errors
as well [7,13]. For these reasons, we expect rather low representativity
errors.

In the following RVE study, we choose cubic cell-sizes with dimen-
sions 𝑄𝑖 = 300 μm, 𝑄𝑖 = 550 μm and 𝑄𝑖 = 700 μm and the previously
identified resolution ℎ = 2 μm. For the fiber orientation tensors 𝑨1 and
𝑨5, we consider ten realizations for every unit cell size. Fig. 9 shows
generated microstructures for the orientation state 𝑨1 and the three cell
sizes. To quantify the representativity of the unit cells, we compute
the empirical mean and the standard deviation of the approximated
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Table 6
Approximated effective orthotropic engineering constants for three different cubic cell-sizes and fiber orientation tensors 𝑨1 =̂ 𝚍𝚒𝚊𝚐(0.49, 0.49, 0.02)
and 𝑨5 =̂ 𝚍𝚒𝚊𝚐(0.89, 0.09, 0.02).

𝑄𝑖 𝐸1 𝐸2 𝐸3 𝐺23 𝐺13 𝐺12 𝚎𝚛𝚛𝚘𝚛𝚝𝚑

μm GPa GPa GPa GPa GPa GPa %

𝑨1 300 6.90 ± 0.07 6.88 ± 0.05 5.22 ± 0.01 1.72 ± 0.00 1.72 ± 0.00 2.54 ± 0.01 0.79 ± 0.12
550 6.83 ± 0.02 6.81 ± 0.02 5.19 ± 0.00 1.72 ± 0.00 1.72 ± 0.00 2.53 ± 0.00 0.96 ± 0.06
700 6.82 ± 0.02 6.81 ± 0.02 5.19 ± 0.00 1.72 ± 0.00 1.72 ± 0.00 2.53 ± 0.00 0.94 ± 0.07

𝑨5 300 10.86 ± 0.08 5.11 ± 0.04 4.91 ± 0.01 1.63 ± 0.00 1.81 ± 0.00 1.94 ± 0.01 0.63 ± 0.06
550 10.88 ± 0.03 5.09 ± 0.01 4.91 ± 0.00 1.63 ± 0.00 1.81 ± 0.00 1.94 ± 0.00 0.63 ± 0.03
700 10.88 ± 0.02 5.09 ± 0.01 4.91 ± 0.00 1.63 ± 0.00 1.81 ± 0.00 1.94 ± 0.00 0.63 ± 0.01
W
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engineering constants, see Table 6. The orthotropic error 𝚎𝚛𝚛𝚘𝚛𝚝𝚑 is
smaller than 1%, showing an adequate orthotropic approximation of
the computed effective stiffness. We observe that the shear moduli
are almost unaffected by changing the size of the unit cell. Also for
the Young’s moduli, the dispersion and the bias are rather low and
decrease for an increasing unit cell size. The highest systematic error
is computed for the Young’s modulus 𝐸1 in the mainly-planar isotropic
fiber arrangement. Compared to the large-scale modulus a relative error
of 1.17% occurs for 𝑄𝑖 = 300 μm, dropping to 0.15% for 𝑄𝑖 = 550 μm.
The systematic error for the almost aligned case is even lower, not
exceeding 0.5% for any engineering constant or unit cell size.

To sum up, the results confirm our expectation that combining
periodic boundary conditions and higher accuracy of the descriptive
parameters of the microstructure results in low representativity errors.
In fact, even the smallest unit cell size 𝑄𝑖 = 300 μm leads to acceptable
errors for engineering applications.

4.5. Effective stiffness compared to the SAM algorithm

In this section, we compare the computed effective stiffness of mi-
crostructures generated with the Orientation Corrected Shaking method
and the Sequential Addition and Migration (SAM) algorithm [29,31].
Therefore, we reproduce the results of the RVE study in Table 6 for
microstructures generated by the SAM algorithm.

Already in previous studies [29,30,32], it is pointed out that the
effective elastic properties are determined by the fiber orientation
tensor of fourth order A, i.e., prescribing the fiber orientation tensor
of second order 𝑨 is not sufficient. For this reason, the presented OCS
method as well as the SAM algorithm enforce a close match of the
fiber orientation tensor of fourth order. However, in practice, only the
fiber orientation tensor of second order is available and the additional
information included in the fiber orientation tensor of fourth order is
not known. For this reason, the fourth order fiber orientation tensor
within the SAM algorithm is estimated by a closure approximation [25,
72–75]. In contrast, for the OCS method the previously presented in-
trinsic computation of higher-order fiber orientation tensors is applied,
see Eq. (3.12).

Due to the lack of data, the choice of the closure approximation rep-
resents another parameter to be selected. Furthermore, as second-order
fiber orientation tensors are either isotropic, transversely isotropic or
orthotropic [61,76], closure approximations are restricted on these
material symmetries as well [42].

In the following study, we investigate the influence of the chosen
closure approximation on the computed effective stiffness. Therefore,
we consider the intrinsic closure of the OCS method and, for the SAM
algorithm, the exact closure (ACG) [77,78] as well as the maximum
entropy closure (MEC) [32,79].

We choose 𝑄𝑖 = 550 μm as cell size, following the results of the RVE
tudy for the OCS method. In Mehta and Schneider [31] the necessary
VE size is investigated for the SAM algorithm, as well. It is shown that

or a similar material the cell size 𝑄𝑖 = 300 μm is already representative
or engineering applications. Hence, we assume that the chosen cell size
𝑖 = 550 μm is applicable for the SAM algorithm as RVE, especially as
12

e consider even shorter fibers than Mehta and Schneider [31].
In Table 7, the results for both microstructure generators are shown.
e observe that both random and orthotropic error are small for the

ffective stiffness based on the SAM algorithm, in the same manner
s we observed for the OCS method. Hence, the chosen cell size is
epresentative for both generators.

For the mainly-planar isotropic case, the computed moduli for the
hree closure approximations are comparable. Considering the shear
oduli 𝐺23 and 𝐺13, we even notice that all considered closures lead

to almost the same results. The remaining moduli turn out to be close,
as well.

The highest relative difference is computed for the shear modulus
𝐺12 between the OCS method and the exact closure with 3.95%. Higher
differences are obtained by investigating the almost aligned case. Even
for the shear moduli 𝐺23 and 𝐺13, we observe remarkable differences
with a maximum of 3.41% for 𝐺13 between the exact and the maximum
entropy closure. Moreover, the Young’s modulus in 𝒆1-direction 𝐸1 dif-
fers by more than half a GPa, slightly more than six percent. Again, the
highest relative difference is computed for 𝐺12 with 13.92%, which is
about ten percent higher compared to the mainly-planar isotropic case.
Bauer and Böhlke [80] study the influence of the exact and maximum
entropy closure on the reconstructed fiber orientation distribution for
planar fiber arrangement. Higher differences between the approxima-
tions are observed for increasing fiber alignment, corresponding to our
results for the computed effective stiffness.

Let us focus on the almost unidirectional case to investigate the
higher differences more thoroughly. In Fig. 10(a), the mean of the
direction dependent Young’s modulus with tensile directions in the
𝒆1-𝒆2-plane is shown. For details on the computation of the direction
dependent Young’s modulus 𝐸(𝒑), we refer to, e.g., Böhlke and Brügge-
mann [64]. Notice that the computed effective stiffness, instead of its
orthotropic approximation, is used for the computation of direction
dependent Young’s modulus. Via the visualization, it turns out that the
shape of the Young’s modulus almost coincides for the OCS method and
the exact closure, whereas it differs for the maximum entropy closure,
especially near the angle 𝜑 = 𝜋∕2. By plotting the relative difference to
the OCS method

𝛿𝐸(𝒑) =
|

|

|

𝐸OCS(𝒑) − 𝐸ACG/MEC(𝒑)
|

|

|

𝐸OCS(𝒑)
⋅ 100% (4.3)

n Fig. 10(b), we observe that the highest relative differences are com-
uted for the maximum entropy closure for planar tensile directions
ith angles near 𝜑 = 𝜋∕4, corresponding to the result shown in Table 7.

Additionally, the plot visualizes that the computed Young’s moduli are
not exactly orthotropic as the relative difference is not symmetric with
respect to the vertical line at 𝜑 = 𝜋∕2, see, e.g., the angles 𝜑 = 𝜋∕4 and
𝜑 = 3𝜋∕4.

To conclude, it turns out that especially for the almost aligned
orientation state the selection of the closure approximation influences
the computed effective stiffness noticeably, i.e., up to 10% in this
study. As all microstructures represent the prescribed tensors 𝑨1,5, it
is not possible to decide which closure approximation performs best
without additional data. For this reason, we emphasize the importance
of including additional information on the fiber orientation state to

reduce the uncertainty by selecting a closure approximation.
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Table 7
Approximated effective orthotropic engineering constants of microstructures with fiber orientation tensors 𝑨1 =̂ 𝚍𝚒𝚊𝚐(0.49, 0.49, 0.02) and
𝑨5 =̂ 𝚍𝚒𝚊𝚐(0.89, 0.09, 0.02) generated with the OCS method and with the SAM algorithm (based on the exact (ACG) or on the maximum
entropy closure (MEC)).

𝐸1 𝐸2 𝐸3 𝐺23 𝐺13 𝐺12 𝚎𝚛𝚛𝚘𝚛𝚝𝚑

GPa GPa GPa GPa GPa GPa %

𝑨1 OCS 6.83 ± 0.02 6.81 ± 0.02 5.19 ± 0.00 1.72 ± 0.00 1.72 ± 0.00 2.53 ± 0.00 0.96 ± 0.06
ACG 7.02 ± 0.02 7.02 ± 0.01 5.32 ± 0.00 1.71 ± 0.00 1.71 ± 0.00 2.63 ± 0.00 1.06 ± 0.04
MEC 6.98 ± 0.01 6.98 ± 0.01 5.27 ± 0.00 1.73 ± 0.00 1.73 ± 0.00 2.62 ± 0.00 1.01 ± 0.03

𝑨5 OCS 10.88 ± 0.03 5.09 ± 0.01 4.91 ± 0.00 1.63 ± 0.00 1.81 ± 0.00 1.94 ± 0.00 0.63 ± 0.03
ACG 11.04 ± 0.03 5.11 ± 0.00 5.00 ± 0.00 1.67 ± 0.00 1.76 ± 0.00 2.04 ± 0.00 0.68 ± 0.02
MEC 10.41 ± 0.02 4.88 ± 0.00 4.96 ± 0.00 1.65 ± 0.00 1.82 ± 0.00 2.21 ± 0.00 0.78 ± 0.02
Fig. 10. Comparison of the computed mean Young’s modulus in the 𝒆1-𝒆2-plane of microstructures with fiber orientation tensor 𝑨5 =̂ 𝚍𝚒𝚊𝚐(0.89, 0.09, 0.02) generated with the OCS
method and with the SAM algorithm (based on the exact closure (ACG) or on the maximum entropy closure (MEC)).
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4.6. Application to a PA66GF35 material

In this section, we apply the OCS method to an injection molded
PA66GF35 composite with experimental data provided by Hessman
et al. [35,39]. The material is reinforced with fibers of 10 μm diameter,
making up a volume fraction of 𝜙 = 19.3%. Mehta and Schneider [31]
fit the measured length distribution [39] with a Weibull distribution,
resulting in a volume-weighted mean 𝑚 = 332.16 μm and a standard
deviation 𝑠 = 127.64 μm as distribution parameters. Concerning the
iber orientation state, a skin-core–skin distribution is observed which
s typical for injection molded composites [81–83]. To analyze the
nfluence of whether the layer structure is explicitly modeled or not,
n analogy to Mehta and Schneider [31], we generate microstructures
ith a mean fiber orientation tensor

𝗆𝖾𝖺𝗇 =̂ 𝚍𝚒𝚊𝚐(0.7855, 0.1962, 0.0183) (4.4)

over the whole height as well as skin-core–skin layered microstructures
with
𝑨𝗌𝗄𝗂𝗇 =̂ 𝚍𝚒𝚊𝚐(0.8602, 0.1227, 0.0171)

𝑨𝖼𝗈𝗋𝖾 =̂ 𝚍𝚒𝚊𝚐(0.2255, 0.7424, 0.0321),
(4.5)

where the core layer occupies one sixth of the total height. Both the
fiber orientation data and the height of the core layer is extracted
from Hessman et al. [35,39]. For a comparison with the results given
by Mehta and Schneider [31], we choose the same cubic cell size
𝑄𝑖 = 800 μm, a resolution ℎ = 2 μm and consider ten realizations. The
boundaries between the layers are characterized by a soft constraint
forcing the midpoint of a fiber to be in its respective layer. In Fig. 11,
generated mean and sandwich microstructures are shown. Taking a
look at the sandwich microstructure in Fig. 11(b), we notice the dif-
ferent preferred directions of the fibers for the skin and core layers
resulting from the prescribed fiber orientation tensors 𝑨𝗌𝗄𝗂𝗇 and 𝑨𝖼𝗈𝗋𝖾.

The computed Young’s moduli in 𝒆1- and 𝒆2-direction are listed in
able 8. Mehta and Schneider [31] use the exact closure. In brackets
he relative error of the computed Young’s modulus compared to the
xperimental data is shown.
13

O

Considering the computed standard deviations, we obtain an in-
ignificant random error for all generated microstructures. In fact, the
tandard deviation of the experiments is one order of magnitude higher.
or the Young’s modulus in 𝒆1-direction 𝐸1, we observe that by using
he sandwich structure a close approximation to the experimental data
or both microstructure generators is obtained. Using the mean data
eads to an underestimation of the modulus 𝐸1 with higher differences
han the sandwich structure, up to 3.38% for the OCS method and
.16% for the SAM algorithm. In contrast, the transverse Young’s
odulus 𝐸2 for the mean data fits to the experimental data with high

ccuracy. However, the sandwich structure leads to a significantly
verestimated modulus 𝐸2 with relative errors of 8.18% for the OCS
ethod and 5.09% for the SAM algorithm. For the transverse modulus,

here is a remarkable difference between the microstructure generators.
Taking a look at the runtime, for the OCS method, the mean

untime to generate the microstructures is about 100 min for the mean
tructures and 110 min for the sandwich structures. In contrast, Mehta
nd Schneider [31] compute a runtime below two minutes for all
enerated microstructures. Notice that for this study a different desktop
omputer is used. The smaller runtime for the SAM algorithm is charac-
eristic of collective-rearrangement methods, whereas the OCS method
s a sequential insertion algorithm. Still, we observe that sequential
nsertion methods are capable of generating industrially relevant fiber
icrostructures with a reasonable computational effort, displaying a

ood agreement with experimental data.

. Summary and conclusion

In this work, the Orientation Corrected Shaking method is pre-
ented based on the two-stage shaking algorithm by Li et al. [27] for
enerating microstructures with almost planar fiber arrangements. As
xtensions, we consider periodic boundary conditions and implement
scheme that works for general rectangular unit cells, in contrast to

i et al. [27]. Additionally, the realized fiber orientation states of the
CS method are investigated. Therefore, we uncover the hidden closure



Composite Structures 322 (2023) 117352C. Lauff et al.
Fig. 11. Microstructures generated with mean data and with data for a sandwich structure according to Hessman et al. [35,39].
Table 8
Comparison of the experimental results [35] and the computed mechanical properties obtained by using the OCS method or the SAM algorithm
[31] with exact closure.

Experiments Sandwich Mean data Sandwich Mean data
[35, Fig. 2] [31, Tab. 5] [31, Tab. 5]

𝐸1 in GPa 10.34 ± 0.4 10.17 ± 0.04 9.99 ± 0.03 10.42 ± 0.03 9.91 ± 0.03
– [1.64%] [3.38%] [0.77%] [4.16%]

𝐸2 in GPa 5.50 ± 0.1 5.96 ± 0.01 5.47 ± 0.01 5.78 ± 0.00 5.56 ± 0.02
– [8.18%] [0.55%] [5.09%] [1.09%]
structure by revealing an exact expression of the realized fiber orienta-
tion tensors of any order ignoring the non-penetration condition. With
this insight at hand, we compute the shaking parameters 𝛥𝜃 and 𝛥𝜑1
directly instead of selecting them by trial and error. Last but not least,
the procedure of single orientation shaking is presented to overcome
inaccuracies during the shaking step as result of the non-penetration
condition.

The computational investigations included in this work lead to the
following conclusions:

• The influence of the semi-analytic shaking parameter estimation
and of the procedure of single orientation shaking on the realized
fiber orientation tensors is studied. It turns out that a combination
of both strategies is necessary to match the fiber orientation
state accurately. Otherwise, we observe significant errors for the
fiber orientation tensor of second order, e.g., an absolute error of
34.1% in case of equal shaking parameters for both orthogonal
layers and single orientation shaking.

• Due to the user-selected rectangular unit cell size of the OCS
method, it is possible to investigate the necessary RVE size. The
study reveals rather low random and systematic errors, even for
the smallest unit cell rather. Additionally, a good approximation
of the orthotropic engineering constants is observed. Hence, the
OCS method leads to rather small representative volume ele-
ments. We emphasize that this is caused by the combination of
periodic boundary conditions with an accurate realization of the
fiber volume fraction, as well as the fiber length and orientation
distributions.

• The computed effective stiffness of the intrinsic closure approx-
imation of the OCS method is compared with the exact and
maximum entropy closures implemented within the framework
of the SAM [29,31] algorithm. We observe differences exceeding
ten percent between the three approximation closures, although
all microstructures represent the same fiber orientation tensors
14
of second order. Hence, it is confirmed that using only a fiber
orientation of second order as input is not sufficient to describe a
fiber-reinforced composite. To minimize uncertainties introduced
by closure approximations, access to the full fiber orientation
tensors of fourth order is necessary.

• Applying the OCS method to an injection molded PA66GF35 ma-
terial with mean aspect ratio of 33 and volume fraction of 19.3%,
shows the capability of generating microstructures for industrial
produced materials. By comparing the computed effective stiff-
ness to experimental data, a good coincidence of the longitudinal
Young’s moduli is observed, especially for the layered sandwich
structure. Similar to the microstructures generated by the SAM
algorithm based on the exact closure [31], the transverse Young’s
modulus is overestimated for the OCS method as well — by about
8%, which is still adequate for engineering accuracy. According
to Mehta and Schneider [31], possible reasons for the differences
are imprecise fiber orientation and length distributions due to
the incomplete segmentation of the fibers during the analysis of
the Micro-CT scan, the missing fiber orientation tensors of fourth
order and the assumption of the fiber length distribution to be
uniform for the entire microstructure.

To conclude, the numerical investigations show that the OCS method
is capable of generating representative microstructures for industrial
volume fractions and aspect ratios in reasonable time. The synthetic mi-
crostructures feature accurately realized properties, as volume fraction
and fiber length and orientation distributions. Especially the represen-
tation of the fiber orientation state is improved significantly as we
adapt the shaking step to account for an accurate realization of the fiber
orientation tensor of fourth order. Hence, the generated microstructures
are capable of representing the real microstructure adequately, which
leads to a close match between experimental data and the results of
computational homogenization. Last but not least, the extensions for
a user-selected rectangular size of the unit cell and periodic boundary
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conditions reduce the RVE sizes resulting in smaller runtimes for the
microstructure generation and computational homogenization.
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ppendix. Separating the first eigenvalue of the computed fiber
rientation tensor of second order into two terms

The Appendix derives equation (3.17) for computing the shaking
arameter 𝛥𝜑. As starting point, we require that the first eigenvalue
f the prescribed and the computed fiber orientation tensor of second
rder are equal:

1
!
= 𝑎𝖼1. (A.1)

Using Eq. (3.12) leads to the equivalent formula

𝑎1
!
=∫

∞

−∞
∫

∞

−∞

[

𝑎 𝗋
1 𝑝1

(

𝜃1(𝜉𝜃), 𝜑1(𝜉𝜑)
)2

+𝑎 𝗋
2 𝑝1

(

𝜃2(𝜉𝜃), 𝜑2(𝜉𝜑)
)2
]

𝜓(𝜉𝜃)𝜓(𝜉𝜑) d𝜃d𝜑,

(A.2)

where 𝑝1
(

𝜃𝑖(𝜉𝜃), 𝜑𝑖(𝜉𝜑)
)

denotes the first component of the fiber direc-
tion. We are interested in the influence of the shaking parameter 𝛥𝜑 on
the fiber orientation tensor of second order. Thus, we need an explicit
formulation of the shaking procedure for the first component of the
fiber direction. Following Eq. (2.1) the component is computed as

𝑝1
(

𝜃𝑖(𝜉𝜃), 𝜑𝑖(𝜉𝜑)
)

= sin
(

𝜃𝑖(𝜉𝜃)
)

cos
(

𝜑𝑖(𝜉𝜑)
)

. (A.3)

To proceed, we account for the sampling procedure of the angles (3.9)
and are led to the expression

𝑝
(

𝜃 (𝜉 ), 𝜑 (𝜉 )
)

= sin
(

𝜃 + 𝛥𝜃 𝜉
)

cos
(

�̃� + 𝛥𝜑 𝜉
)

. (A.4)
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1 𝑖 𝜃 𝑖 𝜑 𝑖 𝜃 𝑖 𝜑
With the initial angles (3.10), we obtain the explicit shaking procedure
for the 𝑥-component of the fiber direction for both initial directions

𝑝1
(

𝜃1(𝜉𝜃), 𝜑1(𝜉𝜑)
)

= sin
(𝜋
2
+ 𝛥𝜃 𝜉𝜃

)

cos
(

𝛥𝜑 𝜉𝜑
)

𝑝1
(

𝜃2(𝜉𝜃), 𝜑2(𝜉𝜑)
)

= sin
(𝜋
2
+ 𝛥𝜃 𝜉𝜃

)

cos
(𝜋
2
+ 𝛥𝜑 𝜉𝜑

)

.
(A.5)

o shorten the expressions (A.5), we use the reduction formulas for
rigonometrical functions:

1
(

𝜃1(𝜉𝜃), 𝜑1(𝜉𝜑)
)

= cos
(

𝛥𝜃 𝜉𝜃
)

cos
(

𝛥𝜑 𝜉𝜑
)

1
(

𝜃2(𝜉𝜃), 𝜑2(𝜉𝜑)
)

= −cos
(

𝛥𝜃 𝜉𝜃
)

sin
(

𝛥𝜑 𝜉𝜑
)

.
(A.6)

ith this insight at hand, we reformulate equation (A.2)

1
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=∫

∞

−∞
∫

∞

−∞

[

𝑎 𝗋
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)2

+𝑎 𝗋
2 cos

(

𝛥𝜃 𝜉𝜃
)2 sin

(

𝛥𝜑 𝜉𝜑
)2
]
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∞
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∫

∞
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(
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)2

[
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(

𝛥𝜑 𝜉𝜑
)2

+𝑎 𝗋
2 sin

(

𝛥𝜑 𝜉𝜑
)2
]

𝜓(𝜉𝜃)𝜓(𝜉𝜑) d𝜃d𝜑

(A.7)

and uncover that the shaking parameters 𝛥𝜃 and 𝛥𝜙 are considered in
two decoupled terms. Hence, the double integral may be separated into

𝑎1
!
=∫

∞

−∞

cos
(

𝛥𝜃 𝜉𝜃
)2 𝜓(𝜉𝜃) d𝜃∫

∞

−∞

[

𝑎 𝗋
1 cos

(

𝛥𝜑 𝜉𝜑
)2

+𝑎 𝗋
2 sin

(

𝛥𝜑 𝜉𝜑
)2
]

𝜓(𝜉𝜑) d𝜑.

(A.8)

Let us recall equation (3.14), then we may reformulate the first integral
of Eq. (A.8)

𝑎1
!
=
(

1 − 𝑎3
)

∫

∞

−∞

[

𝑎 𝗋
1 cos

(

𝛥𝜑 𝜉𝜑
)2 + 𝑎 𝗋

2 sin
(

𝛥𝜑 𝜉𝜑
)2
]

𝜓(𝜉𝜑) d𝜑,

(A.9)

leading to Eq. (3.17).
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