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A B S T R A C T   

Estimates of global horizontal irradiance (GHI) from reanalysis and satellite-based data are the most important 
information for the design and monitoring of PV systems in Africa, but their quality is unknown due to the lack of 
in situ measurements. In this study, we evaluate the performance of hourly GHI from state-of-the-art reanalysis 
and satellite-based products (ERA5, MERRA-2, CAMS, and SARAH-2) with 37 quality-controlled in situ mea
surements from novel meteorological networks established in Burkina Faso and Ghana under different weather 
conditions for the year 2020. The effects of clouds and aerosols are also considered in the analysis by using 
common performance measures for the main quality attributes and a new overall performance value for the joint 
assessment. The results show that satellite data performs better than reanalysis data under different atmospheric 
conditions. Nevertheless, both data sources exhibit significant bias of more than 150 W/m2 in terms of RMSE 
under cloudy skies compared to clear skies. The new measure of overall performance clearly shows that the 
hourly GHI derived from CAMS and SARAH-2 could serve as viable alternative data for assessing solar energy in 
the different climatic zones of West Africa.   

1. Introduction 

Global horizontal irradiance (GHI) also called surface shortwave 
downward radiation or solar irradiance, is defined as the amount of 
sunlight received from the Sun at the surface. It plays a vital role in the 
dynamics of the Earth’s surface and drives physical processes in the 
atmosphere and on the land surface [1]. In addition, knowledge of the 
values of GHI in the solar energy sector is crucial to installing photo
voltaic (PV) systems at a given location. The West Africa region receives 
abundant GHI throughout the year; and the daily average is estimated to 
be around 5–6 kWh/m2 [2]. In recent years, the capacities of solar PV 

technology in off-grid (rural and urban) and grid-connected systems 
strongly increased. For instance, between 2016 and 2018, the installed 
PV capacity almost tripled, and this trend is expected to continue in the 
coming years [3]. However, the long-term profitability of solar energy 
plants based on the PV technology requires an accurate GHI estimation. 

Ground-based measurements from state-of-the-art pyranometers 
according to the WMO (World Meteorology Organization) standards are 
still the best data source for GHI observations [4]. However, GHI ob
servations and related information such as sunshine duration from 
meteorological stations are often not accessible from African meteoro
logical agencies due to a poor station network, national data regulations 
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and other reasons [5–7]. In addition, station maintenance remains a 
challenge due to high costs, while support from local governments has 
declined [8]. This had a strong negative impact on data quality [9] and 
continuity in Africa [10]. Therefore, obtaining reliable long-term GHI 
observations and related information from weather stations across the 
region is a fundamental problem for recent and past periods. This 
strongly affects reliable GHI information for solar energy projects 
planning, operation, and quality assessment. Recently, a number of 
different initiatives such as WASCAL (West African Science Service 
Centre on Climate Change and Adapted Land Use; [6]), SASSCAL 
(Southern African Science Service Centre for Climate Change and 
Adaptive Land Management; [11]) and TAHMO (Trans-African 
Hydro-Meteorological Observatory; [12,13]) established a relatively 
dense network of automatic weather stations providing ground-based 
meteorological measurements at high temporal resolution for many 
parts of the Africa continent for the first time. 

GHI satellite and reanalysis data are essential in supplementing 
ground-based measurements, particularly in data-scarce regions such as 
Africa. These datasets provide long-term GHI time series for recent pe
riods in a relatively high spatio-temporal resolution [14,15] in uniform 
gridded data formats where users can retrieve the nearest grid point for 
their region of interest. Taking advantage of this, many investigations 
rely on GHI satellite-based or reanalysis data for the assessment of solar 
energy potential or climate impact studies [2,16–19]. 

However, to recommend the use of GHI satellite-based data or 
reanalysis data in the absence of ground-based measurements for these 
studies, a detailed inter-comparison and validation of these datasets for 
the region of interest are required. From this point of view, several 
studies have already carried out an inter-comparison between GHI 
observational, satellite, and reanalysis data. Most of them suggest that 
the accuracy of GHI from satellite-based and reanalysis data is lower 
than ground-based measurements [20]. For example, Yang and Bright. 

[21] evaluated hourly GHI from 57 radiometric stations of the Baseline 
Surface Radiation Network (BSRN) distributed across the world with six 
satellite-based and two reanalysis data in a period of 27 years. They 
concluded that the satellite-derived hourly GHI performed better than 
the reanalysis data; and also, cloudy days have a higher bias than 
clear-sky days. Another study was carried out in the Netherlands by 
Marchand et al. [22]; where they used a dense 32 observational net
works to assess the accuracy of hourly GHI using the Copernicus At
mosphere Monitoring Service version 3.2 (CAMS) and HelioClim-3 
version 5 with correlation between 0.94 and 0.98. They showed that 
both satellite-based data showed a relatively good correlation with the 
32 radiometric stations and satisfactorily reproduced the hourly varia
tions of GHI. Another study conducted in Brazil showed that GHI derived 
from 3 satellite-based datasets could be used as an additional source for 
solar energy assessment in this region [23] where the relative mean bias 
of CAMS is about 7%. A recent study by Du et al. [24] evaluated the 
hourly GHI performance of the second version of the MERRA-2 (Mod
ern-Era Retrospective Analysis for Research and Applications Version 2) 
reanalysis data compared to 37 in-situ measurements over China under 
different sky conditions in 2018. In general, MERRA-2 overestimates the 
hourly GHI over China with a mean bias error of 69.35 W/m2. Their 
results are consistent with [21] where high deviations occur under 
cloudy conditions. 

For sub-Saharan Africa, [4] recently performed an inter-comparison 
of five datasets (CAMS, ERA5, SARAH-2, MERRA-2 SOLCAST) for hourly 
GHI, with 13 ground-based data in South Africa, in which the MERRA-2 
reanalysis exhibits the weakest performance with a relative mean bias 
error (rMBE) of 11%. The authors recommended the use of the CAMS 
(rMBE = 2.14%) and SARAH-2 (Surface Solar Radiation Data Set – 
Heliosat; rMBE = 2.13%) datasets for solar energy applications in the 
country. In West Africa, [25] showed that ERA5 provided a good rep
resentation of daily GHI compared to ERA-Interim datasets at four 

Fig. 1. Study area showing the topography of the region. The different dots are the location of the automatic weather stations (AWSs). The AWSs in red and black 
dots are owned by GMet and ANAM, respectively. The blue dots indicate WASCAL’s AWSs and the orange locations are jointly operated by WASCAL and GMet. The 
red dashed lines delineate the different climatic zones. Each number corresponds to the station in Table 1. 
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Table 1 
The 51 AWSs used in this study with their basic measurement characteristics and pyranometer features.  

ID Station Institution Temporal 
Resolution 

Climatic 
Zone 

Pyranometer model Maximum range 
(W/m2) 

Spectral range 
(μm) 

Sensitivity (μV/ 
W/m2) 

1 Abetifi GMet 10-min Guinea SMP12 Class A 2000 0.285–2.75 5–20 

2 Ada 

3 Akim_Oda 

4 Akosombo 

5 Akuse 

6 Axim 

7 Sefwi_Bekwai 

8 Tarkwa 

9 Tema 

10 Nakpaboni Savannah 

11 Wa_varenpera 

12 Fumbisi 

13 Yendi CMP3 0.3–2.8 

14 Jirapa SMP12 Class A 0.285–2.75 

15 Loagri 

16 Oualem WASCAL 5-min First class Global Solar Radiation 
Sensor (RSG1) 

0.3–3 ~10 

17 Nebou 

18 Doninga 

19 Aniabisi 

20 Bongo_Soe 

21 Tabou 

22 Gwosi 

23 Kpandai WASCAL- 
GMet 

24 Manga 

25 Tuna 

26 Kpando Guinea 

27 Bagre ANAM 15-min Savannah SP-Lite 0.4–1.1 ~75 

28 Bama 

29 Banfora 

30 Batie 

31 Beregadougou 

32 Bitou 

33 Diebougou 

34 Fara 

35 Hounde 

36 Boromo 

37 Gaoua 

38 Bobo_Dioulasso 

39 Guiloungou Sahel 

40 Bani 

41 Boulsa 

42 Bousse 

43 Gayeri 

44 Gorom 

45 Kamboince 

46 Kouka 

47 Barsalogho 

48 Djibo 

(continued on next page) 
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weather stations in Burkina Faso for the year 2017. Later, [26] used 
three radiometric observations from the African Monsoon Multidisci
plinary Analysis program (AMMA) to validate the daily and monthly 
GHI against the SARAH-2 dataset. On both temporal scales, the 
SARAH-2 performed relatively well but with notable biases. However, 
GHI was evaluated on a daily and monthly basis with a limited number 
of stations in these studies, while hourly GHI data are essential for ac
curate solar power plant design and planning. Moreover, knowledge of 
hourly GHI is useful for GHI forecasting [27]. A detailed validation 
process with high-quality data is needed to substitute GHI from 
ground-based measurements to GHI satellite-based or reanalysis data. 
To our knowledge, no such study has used hourly GHI from dense 

observation networks to validate GHI derived from satellite and rean
alysis data over West Africa. 

Therefore, this study aims to evaluate the performance of hourly GHI 
derived from MERRA-2, ERA5, SARAH-2 and CAMS data with ground- 
based data for the year 2020 for solar energy monitoring. For the first 
time in Africa, 51 automatic weather stations (AWS) are used for hourly 
GHI assessment. The AWS belongs to four different transboundary and 
national networks recently established by WASCAL, the Ghana Meteo
rological Agency (GMet) and the Burkina Faso National Meteorological 
Agency (ANAM) and partner institutions covering the most critical 
climate zones (Guinea, Savannah, and the Sahel) in West Africa. The 
focus of this study is on the evaluation of the different satellite and 
reanalysis datasets based on observations under different atmospheric 
conditions: (i) cloudy-sky, (ii) clear-sky and (iii) all-sky. This is realized 
by using a wide range of performance measures and methods and 
introducing a novel multi-objective performance measure to select the 
best performance among the datasets for the region. In addition, the 
effect of aerosols on the hourly GHI during the Harmattan period over 
the area is investigated. 

The paper is structured as follows. The following section presents the 
study area, the detailed information on the different datasets, and the 
methodology used. Section 3 presents the outcomes of the study and 
highlights the discussion of the various findings of the study. The study 
ends with conclusions and general recommendations regarding satellite 
and reanalysis based on GHI information. 

2. Materials and methodology 

2.1. Study area 

The study focuses on the West African region, particularly Burkina 
Faso and Ghana (Fig. 1). The region is governed by the West African 
Monsoon (WAM) which modulates atmospheric processes and triggers 
most of the rainfall in the region [28]. West Africa is characterized by a 
long dry season and a rainy season (during the summer months) with 
annual rainfall ranging between 150 and 2500 mm [29]. The Harmattan 
period lasts from late November to mid-March and transports dust from 
the Sahara Desert across the region [30]. The strong environmental 
transitions from the Guinean forests in the south to the hyper-arid 

Fig. 2. Flowchart of the quality control of the ground-based measurement used 
in this study. 

Table 1 (continued ) 

ID Station Institution Temporal 
Resolution 

Climatic 
Zone 

Pyranometer model Maximum range 
(W/m2) 

Spectral range 
(μm) 

Sensitivity (μV/ 
W/m2) 

49 Dedougou 

50 Dori 

51 Bogande  

Table 2 
Characteristics of different satellite and reanalysis datasets used in this study.  

Data SARAH-2 CAMS MERRA-2 ERA5 

Date type satellite Satellite reanalysis reanalysis 
Spatial resolution 0.05 x 0.05 (~5 km) Interpolation to the point of 

interest 
50 km 31 km 

Temporal resolution 30 min, day, month 1 min, 15 min, 
1 h, day, month 

1 h 1h 

Radiative transfer 
model 

LibRadTran [37] LibRadtran [37] Community Radiative 
Transfer Model [51] 

RTTOVv11 

AOD source ECMWF-MACC CAMS global services Advanced Very High-Resolution 
Radiometer (AVHRR) 

Global Ozone Chemistry Aerosol Radiation and 
Transport (GOCART) model 

Spatial and temporal 
of AOD 

120 km; monthly 40 km; 3-hourly 1.1 km prescribed monthly 
climatology. 

Time period 1983 to present 2004 to present (2 days delay) 1980 to present (2 months delay) 1979 to present 
Area of coverage Europe, Africa, Atlantic 

Ocean 
Europe, Africa, Middle East, 
Eastern of South America, 
Atlantic Ocean 

Global Global 

Data policy Free Free free Free  
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Fig. 4. Quality control of the 38 weather stations based on the Baseline Surface Radiation Network (BSRN). The measured hourly GHI are represented in blue dots. 
The red dots indicate the physically possible limit, while the extremely rare limit is in green dots. 

Fig. 3. Heatmap showing the missing values spread over the whole year for all the radiometric stations. The vertical black indicates a missing hour value. The total 
number of missing hours and the percentage is given on the right side. 
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Fig. 6. Density plot of hourly GHI values from different datasets (CAMS, ERA5, SARAH-2, and MERRA-2) against observation for 37 stations using Gaussian kernels 
with normalized values of 0–1 for different sky conditions. The RMSE, R, IOA, and MAE denote the root-mean-square error, the Pearson correlation, the index of 
agreement, and the mean absolute error, respectively, while nRMSE and nMAE denote the normalized RMSE and normalized MAE, respectively. 

Fig. 5. Boxplot of the daily clearness index (Kt) of the different AWSs for the year 2020. The red dots indicate the upper outlier limit, while the green dots indicate 
the lower outlier limit of the individual stations. The number indicates the percentage of data points that fall outside the upper and lower outlier limits. 
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Sahara Desert in the north, the region can be divided into three distinct 
climatic zones: Guinea (4◦N–8◦N), Savannah (8◦N–12◦N) and Sahel 
(12◦N–16◦N) [31] as shown in Fig. 1. The Guinea region is categorized 
as having a tropical monsoon climate near the coast and a tropical wet 
and dry climate in other areas. The zone is characterized by a humid 
climate and has an annual rainfall of 1250–1500 mm with a bimodal 
rainfall distribution. The intense presence of low clouds is common, 
while deep convective clouds are rare in this zone [32,33]. In addition, 
mid-level dust layers in the troposphere can occur in this area during the 
Harmattan period. The Savannah (tropical wet and dry climate) and 
Sahel (hot semi-arid climates) zones are semi-arid areas with average 
annual rainfall of 750–1250 mm and below 750 mm, respectively. Both 
zones have a unimodal rainfall distribution and are places where deep 
convective cloud activity is often associated with mesoscale convective 

systems and heavy rainfall during the summer monsoon (from June to 
September), which peaks in August. The Sahel zone is known as a pre
dominantly cloud-free zone and is an important source of mineral dust. 

2.2. Data 

2.2.1. Ground-based measurements 
Fig. 1 shows the spatial distribution of the 51 AWSs used in this 

study. The different AWSs measure in most cases several meteorological 
variables such as relative humidity, wind speed and direction, precipi
tation, air temperature at 2 m height and GHI. Of the 51 AWSs, 7 are 
owned by WASCAL, 15 are the property of GMet, 4 belong to WASCAL- 
GMet and 25 to ANAM. 

The AWSs of the WASCAL network are part of a mesoscale research 
observation network established by WASCAL and partner institutions in 
the Sudan Savannah in Ghana and Burkina Faso in 2012 and 2013 [6, 
34]. Measurements from this network are made at a temporal resolution 
(average over each 5 min) and standard equipment maintenance such as 
cleaning radiation sensors is carried out regularly (e.g., twice a month). 

GMet operates a surface observation network of 120 weather stations 
in Ghana, which are well distributed across the country. In late 2018 and 
early 2019, 22 novel AWS were installed by GMet and radiation mea
surements of which 15 AWS were are in the current study. The temporal 

Fig. 7. The panel (a–c) shows the Taylor diagram of different datasets under clear, cloudy and all-sky conditions for the 37 stations. The dashed grey circle indicates 
the centered mean-square-error. The panel (d–f) presents the cumulative distribution function for the 37 stations under different atmospheric conditions. 

Table 4 
Kolmogorov-Smirnov (KS) metric values for CAMS, SARAH-2, ERA5, and 
MERRA-2 datasets under different atmospheric conditions and datasets.  

Sky condition  CAMS SARAH-2 ERA5 MERRA-2 

Cloudy KS 0.224 0.215 0.331 0.294 
pvalue P < 0.05 P < 0.05 P < 0.05 P < 0.05 

Clear KS 0.090 0.110 0.042 0.070 
pvalue P < 0.05 P < 0.05 P < 0.05 P < 0.05 

All KS 0.104 0.142 0.088 0.036 
pvalue P < 0.05 P < 0.05 P < 0.05 P < 0.05  

Table 3 
Error metrics of different datasets and atmospheric conditions on GHI of the 
aggregated 37 stations. The bold number shows the best metric values.  

Sky condition Metric CAMS SARAH-2 ERA5 MERRA-2 

Cloudy RMSE (W/m2) 232 238 303 282 
nRMSE (%) 93.63 96.05 122.28 113.81 
R 0.62 0.60 0.42 0.44 
MAE (W/m2) 153 160 232 215 
nMAE (%) 61.87 64.58 93.97 87.10 
IOA 0.56 0.56 0.50 0.52 

Clear RMSE(W/m2) 119 113 120 142 
nRMSE (%) 20.14 19.13 20.31 24.04 
R 0.90 0.92 0.89 0.86 
MAE (W/m2) 90 84 91 106 
nMAE (%) 15.32 14.25 15.56 18.03 
IOA 0.88 0.89 0.88 0.84 

All RMSE (W/m2) 153 161 177 179 
nRMSE (%) 31.19 32.82 36.08 36.49 
R 0.86 0.86 0.80 0.77 
MAE (W/m2) 111 118 131 134 
nMAE (%) 22.66 24.11 26.76 27.39 
IOA 0.83 0.82 0.80 0.80  
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resolution of the radiation measurements is an average of 15 min. Due to 
the number of weather stations across the country, maintenance is done 
twice a year. 

The WASCAL-GMet stations belong to a transboundary climate 
observation network established under the WASCAL programme for 
different West African countries [6]. 6 AWSs were donated by WASCAL 
through a funding from the German Federal Ministry of Education and 
Research (BMBF) and were installed by a joint team from both WASCAL 
and GMet in December 2017 after the signature of Memorandum of 
Understanding (MoU) on data sharing and services development. The 
implemented stations were handed over to GMet, which manages their 
maintenance. Measurements are being recorded on an average of every 
10 min. 

ANAM has a total of 270 weather stations across the country whereof 
which 22 were selected in this study, as outlined in Table 1. New AWSs 
were installed in 2017 in cooperation between the Burkina Faso gov
ernment and its technical and financial partners. The maintenance 
schedule of these stations is similar to GMet, and data is recorded at 15- 
min intervals on an average basis. Note that all data recorded in the 
different AWS are subject to basic quality control (e.g., data format, 
measurement interval, and data consistency) by different institutions. 
Accordingly, to the data availability, we have collected raw data for the 
year 2020 to validate GHI with the datasets from ERA5, MERRA-2, 
SARAH-2, and CAMS datasets. 

2.2.2. SARAH-2 dataset 
The satellite dataset used in this study is the second edition of the 

Surface Solar Radiation Data Set – Heliosat Edition 2 (SARAH-2) from 
the Satellite Application Facility on Climate Monitoring [35]. The 
SARAH-2 covers the region of ±65o longitude and ±65o latitude 
(Europe, Africa, and the Atlantic Ocean) with a spatial resolution of 
0.05◦ by 0.05◦ (~5 km). The dataset has a temporal resolution of 30 min 
(instantaneous values) and is available from 1983 to the present. The 
SARAH-2 products are based on the Heliosat algorithm, which in
corporates the LibRadTran radiative transfer model and the MAGICSOL 
clear sky model to estimate GHI under cloud-free conditions [36,37]. 

The GHI data used in the SARAH-2 (referred to as surface incoming 
shortwave radiation) product are calculated using a radiative transfer 
model from water vapor, surface albedo, a cloud index (from satellite 
observations), aerosols and ozone. SARAH-2 uses the monthly aerosol 
climatology from the Monitoring Atmospheric Composition and Climate 
(MACC) project, which has a spatial resolution of 120 km and is inter
polated on the SARAH-2 grid [38]. The 30-min instantaneous values of 
GHI were downloaded from the SARAH-2 database (https://wui.cmsaf. 
eu/) for the year 2020. The hourly GHI is the average of two 30-min 
periods within 1 h. 

2.2.3. CAMS dataset 
The Copernicus Atmosphere Monitoring Service (CAMS) Radiation 

Service provides solar energy radiation products. Its algorithm for 
calculating these products is based on the Helliosat-4 approach [39]. 
The method uses the McClear algorithm to estimate GHI under clear-sky 
conditions [40] and the McCloud model to estimate the attenuation of 
solar irradiance caused by clouds. The McClear and McCloud models are 
implemented using the libRadtran radiative transfer model developed 
by Mayer and Kylling. [37]. The radiative transfer model calculates GHI 
under all-sky conditions by the product of GHI under clear-sky condi
tions with a clear-sky index, also called the cloud modification factor 
[39,41]. The aerosol optical depth (AOD) inputs are from the CAMS 
service with a spatial resolution of 40 km and are updated every 3-h. 
CAMS covers Africa, Europe, the Eastern part of South America, the 
Middle East and the Atlantic Ocean and has been available from 2004 to 
the present with a delay of 2 days. The data are accessible in 
high-temporal resolution and different resolutions (e.g., 1 min, 15 min, 
hourly, daily, and monthly); users can access the data up to the point of 
interest. In this study, we used the latest version of CAMS radiation 
service (version 4.5), which uses a second APOLLO_NG production chain 
to improve cloud redundancy. We downloaded the 1-min GHI for the 51 
AWS sites for the year 2020 and then computed the average hourly GHI 
values. 

Fig. 8. Similar to Fig.6 but for cloudy days occurring during the Harmattan period (DJF) and the rainy season (JJA).  
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2.2.4. MERRA-2 dataset 
The Modern-Era Retrospective analysis for Research and Applica

tions, Version 2 (MERRA-2) is a product of the NASA atmospheric 
reanalysis [42]. MERRA-2 replaces the original MERRA with an 
improved data assimilation system of the Goddard Earth Observing 
System Model version 5 (GEOS-5). The GEOS-5 model is coupled with 
the Goddard Chemistry Aerosol Radiation and Transport (GOCART) 
model and simulates five types of aerosols: sulfate, dust, sea salt, and 
black and organic carbon [43,44]. The system includes a large-scale 
prognostic cloud in the moist physics scheme and uses a shortwave 
and longwave radiation scheme from Chou and Suarez [45] and Chou 
et al. 46] respectively. MERRA-2 uses real-time bias-corrected AOD in
puts from the Advanced Very High Resolution Radiometer (AVHRR) 
instruments with a spatial resolution of 1.1 km [47]. It has a spatial 
resolution of 0.5◦ by 0.625◦ (~50 km) with an output of 72 model levels 
and 42 pressure levels from the surface to 0.01 hPa and a temporal 
resolution of 1h. The data cover the period from 1980 to present with a 
lag of 2 months. GHI hourly data were downloaded from the MERRA-2 
server for the year 2020. Hourly data in MERRA-2 are averaged over the 
specified hour and stamped at the central hour, i.e., 00:30 GMT, 01:30 
GMT, etc. 

2.2.5. ERA5 dataset 
ERA5 is the fifth-generation of atmospheric reanalysis from the Eu

ropean Centre for Medium-Range Weather Forecasts (ECMWF; [48]). 
ERA5 has a spatial resolution of 0.25◦ by 0.25◦ (~31 km) and a temporal 

resolution of 1 h. It includes 137 model levels, and 37 pressure levels and 
covers the entire globe. ERA5 uses the RTTOVv11 model as the radiative 
transfer model and “McRad” as the radiation scheme, which includes the 
shortwave and longwave Rapid Radiative Transfer Model for GCM 
(RRTMG) schemes. ERA5 uses a prescribed monthly climatological 
aerosol information from the Global Ozone Chemistry Aerosol Radiation 
and Transport (GOCART) model with a horizontal resolution of 2.5◦

longitude by 2◦ latitude which includes stratospheric sulfate aerosols 
[49,50]. Over West Africa, the GOCART shows a discrepancy with the 
observed AOD from AERONET data which is attributed to the strong 
perturbation of local dust source [44]. The ERA5 data are available from 
1979 to the present. From the ECMWF platform, we retrieved the hourly 
GHI, which refers to surface solar radiation for the year 2020. The ERA5 
GHI values are hourly expressed in J/m2. We divided the accumulated 
values by 3600 s to get the average GHI values in W/m2. The hourly data 
of GHI in ERA5 are computed as the mean rate of the previous hour. For 
example, the GHI value at 12:00:00 UTC corresponds to the average GHI 
from 11:00:00 UTC to 11:59:59 UTC. To ensure consistency with the 
observation data and other datasets where the hourly averaged is 
computed on the current time, we adjusted the time to a 1 h shift. 

Table 2 shows the different datasets used with their characteristics. 
We used a linear interpolation technique to determine the radiation 
information from the ERA5, MERRA-2, and SARAH-2 datasets for cor
responding sites of the in-situ measurements. 

Fig. 9. Similar to Fig.6 but for all-sky conditions for different seasons.  
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2.3. Methodology 

2.3.1. Quality control 
Fig. 2 outlines a comprehensive process for quality control of the 

individual weather stations. This process includes visualization of the 
data, various tests and techniques, identification of unrealistic values 
and removal of outliers to ensure data quality. These steps help improve 
the integrity and reliability of the station data used in this study. 

The observational data used in the study have different temporal 
resolutions (5 min, 10 min and 15 min, see Table 1). To compute the 
hourly data, the sub-hourly data were averaged using the following 
steps:  

1. If there is a missing date in the time series, the date is added, and the 
value for GHI is marked as missing.  

2. All GHI values during nighttime are set to 0, even if there are missing 
values.  

3. For the 5-min data, the values of GHI are averaged to an hourly value 
if 95% of the measurements are available within the specific hour. 
Otherwise, the value is set to a missing value. For the 10- and 15-min 
data, 100% of the measures must be available to calculate hourly 
GHI values. 

To validate the accuracy of the hourly GHI satellite and reanalysis 
data, reliable ground-based GHI measurements are essential. To ensure 

the quality of the different AWSs, we applied the techniques shown in 
Fig. 2. Our first step was to exclude stations with large missing data. 
Fig. 3 shows the periods with missing hourly GHI data for the different 
AWS in 2020. The vertical bars indicate missing periods, while the sum 
of the missing hours and their percentage (in parentheses) can be seen 
on the right ordinate. Overall, 44 out of 51 stations have no data gaps or 
only a few missing measurements. However, stations such as Abefiti, 
Loagri, Aniabisi, Bango Soe, Kpando, Tuna and Gaoua have a much 
higher percentage of missing data between 5% and 33.5%. For the data 
quality assessment, these stations were excluded. No gap-filling tech
niques were applied to stations with less than 5% missing values. All 
missing data were removed from the station in question and the 
extracted coordinate of this station were subjected to the same exclusion 
process in the corresponding satellite and reanalysis datasets. 

The second step was to categorize the different AWS based on their 
respective climate zones (see Appendix Figs. 17–20). We then excluded 
stations that differed from their counterparts. Such discrepancies could 
be caused by shadows, faulty sensors, or calibration problems. We also 
combined this analysis with the clearness index (Kt) to identify suspi
cious AWS. For this purpose, we calculated the daily average (Kt) for all 
AWSs. The Kt is defined as the ratio of surface solar irradiance to 
extraterrestrial solar irradiance G0 and is expressed as follows: 

Kt =
GHI
G0

(1) 

Fig. 10. Normalized root-mean-square error (nRMSE) for hourly GHI at each AWS for cloudy-sky, clear-sky, and all-sky conditions and different datasets. Each color 
point indicates the value of nRMSE represented by the color bar. 
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The daily GHI is determined from the hourly GHI if there is no single 
missing value. 

The clearness index has been used in previous studies to identify sky 
conditions. For instance, Du et al. [24] classified the sky conditions 
using Kt to validate the MERRA-2 hourly dataset for clear-sky and cloudy 
conditions over China. However, the values of Kt used to define cloudy 
and clear skies vary by location. [52] have used the modified clearness, 
Kt’ introduced by Perez et al. [53]; for clear skies they used 0.65 < Kt’ 
≤1. On the other hand, [54] have used the diffuse fraction, Kd, and 
established the range of 0 ≤ Kd ≤ 0.26 to correspond to clear skies 
worldwide. This study describes clear-sky when Kt ≥ 0.6 and cloudy-sky 
when 0.12 ≤ Kt < 0.35. These values were adopted from previous studies 
on West Africa [55–57]. Based on this information, the number of 
clear-sky days and cloudy days was calculated for each station, and 
those stations with no realistic clear-sky days throughout the year were 
removed (see Fig. 21 in the Appendix). After the first and second steps, 
only 38 stations passed these tests and were used for other quality 
checks. 

The third step was to identify GHI values that are outside the normal 
range of the 38 AWSs, we, therefore used the extremely rare limit (Eq. 
(2)) and the physically possible limit (Eq. (3)) of GHI measurements 
from the BSRN guidelines [58]. 

− 2 W/m2 <GHI < I0*1.5*cos (SZA)1.2
+ 50 W/m2 (2)  

− 4 W/m2 <GHI < I0*1.5*cos (SZA)1.2
+ 100 W

/
m2 (3)  

where I0 the solar constant (1367 W m− 2; [59]) and SZA is the solar 
zenith angle. For the BSRN’s closure tests, the analyses were done when 
SZA < 80◦ to account for the seasonality of sunrise and sunset over the 

region. 
Fig. 4 illustrates the quality control of the hourly GHI aggregated 

data for all stations based on the Eqs. (2) and (3). The physically possible 
limit is drawn in red, the extremely rare limit in green. The blue dots 
indicate the individual hourly GHI measurements for all 38 weather 
stations. Most data points that fall outside the BRSN interval are for 75◦

< SZA < 80◦. These intervals correspond to early morning and late af
ternoon measurements, i.e., 7am-8am and 5pm–6pm, respectively ac
cording to the region. At some stations such as Oualem, Nebou and 
Mange (see Tab.5 in the Appendix), there are some data points that show 
a high value of GHI under conditions of low irradiance and high zenith 
angle. These deviations could be due to interfering reflections from the 
roof edge in the early morning and late afternoon hours [60]. These data 
points have GHI values that are above the physically possible and 
extremely rare limits GHI. About 649 (0.44%) such data points were 
flagged and removed from the analysis. 

In the last step, we employed outliers to identify erroneous GHI from 
the different AWSs. In this study, we analyzed a far outlier for obser
vation, which is calculated as follows [61]: 

Upper outlier limit= 3rd quartile + 3 x
(
3rd quartile – 1st quartile

)
(4)  

lower outlier limit= 1st quartile − 3 x
(
3rd quartile – 1st quartile

)
(5) 

The outlier analysis was based on daily Kt, and we removed from the 
analysis data that fall outside the upper and lower limit. Fig. 5 shows the 
interquartile range (in grey) and the upper outlier limit (red dot) and the 
lower limit (green dot) of the different AWSs. There are some stations 
where some data points are beyond the designed bound. Consequently, 
with combination of other AWSs from the same area, Bani was removed 
from the analysis. After performing all the steps outlined in this study, 

Fig. 11. Average diurnal variation of the observed GHI compared with the CAMS, ERA5, SARAH-2, MERRA-2 dataset for the selected stations under cloudy skies. 
Nb_days means the number of days that fall in clear skies conditions. The grey shaded curve indicates the 95% interval confidence of the measurement. 
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only 37 AWSs were used to evaluate the performance of GHI, based on 
satellite and reanalysis data, for the year 2020. 

2.3.2. Performance metrics 
The performance of the different datasets against the AWSs was 

assessed using several statistical metrics. We used the mean absolute 
error (MAE), the root mean square error (RMSE) and their normalized 
versions (nRMSE and nMAE) as important accuracy measures. In addi
tion, the Pearson’s correlation (R) was used to include a skill score in the 
current analysis. A statistical metric that is sensitive to extreme values is 
important for evaluating GHI. For that we applied the index of agree
ment (IOA), which represents the ratio between the mean square error 
and the potential error. The value of IOA ranges from 0 to 1; 1 means 
perfect agreement while 0 means no agreement [62]. The different 
statistical metrics are expressed as follows: 

MAE =
1
n
∑n

i=1
(|Pi − Oi|) (6)  

nMAE =

[
MAE

O

]

*100 (7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(Pi − Oi)
2

n

√

(8)  

nRMSE =

[
RMSE

O

]

*100 (9)  

R=

∑n

i=1
(Oi − O)(Pi − P)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Oi − O)

2 ∑
n

i=1
(Pi − P)2

√ (10)  

IOA= 1 −

∑n

i=1
(Pi − Oi)

∑n

i=1
(|Pi − O||Oi − O|)

2
(11)  

where P is the reanalysis or satellite data value, O the observation data at 
timestep i and n the number of data points used for comparison. O and P 
are the mean values of the observation and reanalysis or satellite data, 
respectively. 

Comparing observations and different datasets using the above sta
tistical metrics can sometimes be challenging to select the best dataset. 
For example, some datasets may have low RMSE, high correlation, and 
high IOA, while other datasets may have a low RMSE, low correlation, 
and low or high IOA compared to their subjects. We included therefore 
an additional performance measure based on the nRMSE, R and IOA to 
better determine the overall performance for the different datasets. 
Based on these metrics, a satellite or reanalysis dataset perfectly fits to 
the ground-based observations, if the nRMSE = 0, the IOA = 1, and the 
R = 1. The new overall performance measure (OP) can be expressed as 
follows: 

OP= 1 −

[
nRMSE

100
+(1 − R)+ (1 − IOA)

]

(12) 

This new coefficient is dimensionless. +1 means that the dataset is 
perfectly close to the observation, while a negative value means that the 

Fig. 12. Similar to Fig. 11, but for clear-sky conditions.  
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dataset is far from the observation. Moreover, the OP provides a unified 
grade that considers a range of statistical metrics to assess the overall 
performance of the dataset. It allows a more comprehensive assessment 
of a dataset’s agreement with ground-based observations and gives 
valuable insight into the performance of a dataset and its suitability for a 
particular application or assessment. 

2.3.3. Evaluation of GHI 
The analysis was based on "clear-sky", "cloudy-sky" and "all-sky" 

conditions. The atmospheric sky condition depends on the observations. 
An algorithm was developed to identify the days that meet the criteria 
for average cloudy and clear sky days for different AWSs. Based on the 
day found in the observation for the sky condition classification, the 
same day was used as cloudy-sky or clear-sky for the different datasets. 
Nevertheless, the criteria used may consider the day with aerosol par
ticles present in the atmosphere as a cloudy day. Dust aerosols and 
carbonaceous aerosols from biomass burning are the main aerosol types 
over the region. The latter aerosol type is the most important during the 
winter season (Harmattan period), while dust aerosol dominates in the 
rest of the year [44]. Therefore, we analyzed conditions on cloudy days 
during the Harmattan period (December-January-February) and on 
cloudy days during the rainy season (June-July-August). We selected 15 
stations to analyze the diurnal variation of GHI. The selection was based 
on the representativeness of the stations in their respective climatic 
zones, i.e., we have taken the minimum, maximum, median, 25th 
percentile and 75th percentile based on the annual mean of GHI. We also 
used the Taylor diagram [63] and the cumulative distribution function 
(CDF) to evaluate the different datasets. Finally, we analyzed the per
formance of the different datasets under different atmospheric condi
tions at the seasonal level for individual stations and also for the 
different climate zones. 

3. Results and discussions 

3.1. Performance of reanalysis and satellite-based hourly GHI 

The performance of the different datasets varies according to the sky 
conditions for the 37 AWSs (Fig. 6. a-d). High performance occurs in 
clear skies, while low performance occurs in cloudy skies for CAMS, 
ERA5, SARAH-2, and MERRA-2. This performance also differs from 
dataset to dataset. Under cloudy skies, most data points are on the left 
side of the 1:1 line, i.e., all datasets overestimate the hourly GHI. The 
RMSE ranges from 232 to 303 W/m2 and the MAE varies from 153 to 
232 W/m2. CAMS shows the lowest RMSE and MAE, while ERA5 gives 
the highest values. In general, both satellites (CAMS and SARAH-2) 
show good performance compared to the reanalysis data (ERA5 and 
MERRA-2). The biases in the reanalyses are higher than those in the 
satellite data. For example, the MAE in ERA5 is 303 W/m2 (122.28%) 
and the SARAH-2 has a value of 238 W/m2 (96.07%). This discrepancy 
between the satellite and reanalysis data could be explained by the 
methodology used to calculate the cloud contents and their optical 
properties in the radiative transfer model. The cloud contents and their 
optical properties used in CAMS and SARAH-2 come from satellite ob
servations, while the cloud contents in the reanalysis (ERA5 and 
MERRA-2) are prognostic clouds [64,65]. In addition, the misinterpre
tation of cloudy skies as clear skies could also be a factor in the poor 
performance of the reanalysis (Fig. 21 a-d in the Appendix). The rean
alysis data show a poor correlation (ERA5 = 0.04; MERRA-2 = 0.08) on 
cloudy-sky days, while the satellite data indicate a moderate correlation 
(CAMS = 0.22; SARAH-2 = 0.23). However, all datasets show high MAE 
and RMSE under cloudy skies. 

Under clear skies, the performance of the different datasets improved 
significantly compared to that under cloudy skies, with a difference of 

Fig. 13. Similar to Fig.11, but for all-sky conditions.  
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more than 150 W/m2 in terms of RMSE (Fig. 6. e-h). This shows how 
difficult it is for reanalysis and satellite data to reproduce the hourly GHI 
under cloudy skies. The RMSE, R, and IOA of ERA5 (120 W/m2; 0.89; 
0.88), CAMS (119 W/m2; 0.90; 0.88) are comparable, but MERRA-2 
(142 W/m2; 0.86; 0.84) shows poor performance under clear-sky con
ditions. There is good agreement between SARAH-2 and observations. 
The values of RMSE, MAE, R, and IOA for SARAH-2 are 113 W/m2, 84 
W/m2, 0.92, and 0.89, respectively, indicating that the MAGICSOL clear 
sky model used in SARAH-2 to derive GHI under cloud-free conditions 
performs well over the area compared to the other clear sky models used 
in ERA5, MERRA-2 and CAMS. 

For all-sky conditions, CAMS outperforms the datasets from ERA5, 
MERRA-2, and SARAH-2 in the hourly estimates of GHI (Fig. 6. i-l). 
MERRA-2 shows poor performance with an RMSE value of 179 W/m2 

(36.49%) and a MAE value of 134 W/m2 (27.39%). The unsatisfactory 
performance of MERRA-2 is the result of poor performance under a clear 
sky. A similar result of poor performance of MERRA-2 in hourly GHI 
estimation was highlighted in South Africa [4]. Moreover, our results are 
comparable with different sites around the world under all-sky condi
tions. For example, the study by Yang and Bright. [21] found that the 
nRMSE values for the hourly GHI of MERRA-2, ERA5, CAMS and SARAH 
-2 ranged from 8% to 127% under all-sky conditions. Our results are 
consistent with previous studies that found satellite data to perform 
better than reanalysis data in estimating GHI [4,21,66,67]. The statis
tical metrics of the datasets under different atmospheric conditions are 
summarized in Table 3. 

Fig. 7 shows the Taylor diagram and the cumulative distribution of 
the hourly GHIs under different sky conditions. The Taylor diagram 
displays the correlation coefficient, the centralized RMSE and the 

normalized standard deviation of each dataset relative to observations. 
A dataset performs well when it is closer to the observation, while a 
dataset with large differences is far from the observation. From the 
Taylor diagram, it is clear that the SARAH-2 and CAMS exhibits the best 
performance in estimating the hourly GHIs under different atmospheric 
conditions over the area (Fig. 7 a–c). However, the satellite and rean
alysis data exhibit poor performance and each source is clustered under 
cloudy-sky conditions. Moreover, both satellite and reanalysis data miss 
the shape of the observation and overestimate the hourly values (Fig. 7 
d). This shows how difficult it is to mimic the spatio-temporal variation 
of cloud properties with reanalysis and satellite data. In clear skies, the 
ERA5, MERRA-2 and CAMS are clustered with a slightly high value of 
the centered root-mean-square (0.6 W/m2) from MERRA-2 compared to 
the SARAH-2 dataset where the value is about 0.4 W/m2. All datasets are 
able to capture the pattern of the observation, but the MERRA-2 shows a 
slight underestimation for values of 400–800 W/m2 but agrees under all- 
sky conditions (Fig. 7 e–f). Under all-sky conditions, the ERA5, CAMS 
and SARAH-2 slightly overestimate the observed values of 400–800 W/ 
m2. 

To assess how well the different datasets capture the maximum 
observed GHIs, we used the Kolmogorov-Smirnov (KS) Integral metric. 
This metric measures the maximum vertical distance between two CDFs. 
The KS metric ranges between 0 and 1, where 0 indicates that the CDFs 
are identical. Table 4 displays the significant KS values at a 95% con
fidence level for different datasets under various sky conditions. When 
compared to the satellite data, the reanalysis data demonstrate high KS 
values under cloudy conditions. In other words, the satellite demon
strates the capability of capturing the maximum observed GHIs with low 
bias compared to reanalysis. Conversely, the reanalysis data exhibit a 

Fig. 14. Overall performance of hourly GHI for different AWS under cloud (a), clear (b) and all (c) sky conditions.  
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low bias in capturing the maximum observed GHIs compared to the 
satellite data under clear skies. Overall, our analysis revealed that the 
ERA5 (KS = 0.088) and MERRA-2 (KS = 0.036) demonstrate a low bias 
in capturing the maximum observed GHIs, whereas the SARAH-2 (KS =
0.142) and CAMS (KS = 0.104) exhibit a higher bias under all-sky 
conditions. 

To better understand the poor performance of the different datasets 
under cloudy skies, Fig. 8 shows a density plot of GHI for cloudy skies 
during the Harmattan period (DJF) and the rainy season (JJA) over the 
region. In general, all datasets perform better in the rainy season than in 
the Harmattan period. In the Harmattan period, the nRMSE value rea
ches 20–50% of the RMSE values in the rainy season. During the 
Harmattan period, trade winds transport large amounts of mineral dust 
from the Chad Basin to the Sahel and the Guinean coast [68]. The effect 
of aerosol could explain the large RMSE, and MAE found over the region 
under cloudy skies. The effects of aerosols as a source of large un
certainties in the estimation of GHI are well known in the literature [60, 
69,70]. Among the datasets, the MERRA-2 shows the lowest RMSE (331 
W/m2), MAE (263 W/m2) during the Harmattan period. The relatively 
better performance of MERRA-2 in DJF (Harmattan period) is also seen 
under all skies (Fig. 8). The AOD inputs to MERRA-2 have a spatial 
resolution of 1.1 km and a temporal resolution of 1h. This suggests that 
high spatial and temporal resolution of the AOD could improve the 
estimated hourly GHI over the region. However, the observed large 
deviation suggests that the reanalysis and satellite data did not correctly 
estimate the hourly GHI during the dust period. This result is consistent 
with [24,71]. During the rainy season under cloudy-sky (Fig. 7 e–f), the 

CAMS shows the lowest RMSE (171 W/m2), while the MERRA-2 gives 
the highest value (270 W/m2). The good performance of SARAH-2 and 
CAMS under cloudy-sky could be a consequence of their performance 
during the rainy season. This can be confirmed in Fig. 9(i–l) where both 
datasets show good performance under all skies compared to that for 
MERRA-2 and ERA5. In the seasons of MAM (Fig. 9 e–h) and SON (Fig.9 
m–p), the satellite data also outperform the reanalysis data. 

3.2. Spatial distribution of the nRMSE 

Fig. 10 depicts the spatial distribution of the nRMSE over the area for 
different sky conditions. For a given sky condition, the nRMSE decreases 
from south to north, i.e., high nRMSEs are in the Guinea zone and low 
nRMSEs in the Sahel zone. The Sahel zone is known as a zone with low 
cloud cover, while the Guinea zone is a place with frequent occurrence 
of clouds and higher humidity throughout the year. This result leads to a 
similar conclusion where the reanalysis and satellite data show a large 
bias in the GHI estimate for cloudy regions [21,72]. Under cloudy skies, 
most stations have a high nRMSE in the range of 80–120%. This large 
bias in cloudy regions could be due to the 3D effect of clouds leading to 
overshoots – a feature that becomes important in the case of patchy 
cumulus clouds, especially if the clouds have a large height. In partic
ular, the angle of view in each pixel by the satellite could be a relevant 
factor in this respect. Clouds are 3D structures, and the way they reflect, 
absorb and scatter light can affect the angle from which the satellite 
observes them [73]. On the other hand, most AWSs show low nRMSE 
values under clear-sky and all-sky conditions. The nRMSE values under 

Fig. 15. Average diurnal variation of the observed GHI compared with the CAMS, ERA5, SARAH-2, MERRA-2 datasets with high positive overall performance (OP) 
under cloudy skies. Nb_days means the number of days that fall in clear skies conditions. The grey shaded curve indicates the 95% confidence interval of the average 
diurnal cycle. 
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clear-sky are better than those under all-sky conditions. The majority of 
the stations indicate good coherence with the datasets of the SARAH-2 
and CAMS, while the ERA5 and MERRA-2 show relatively poor perfor
mance under different atmospheric conditions. The ERA5 has the 
highest nRMSE in most of the stations under cloudy conditions. The high 
biases in the ERA5 dataset could be due to overestimation or underes
timation of cloud properties as reported in some studies [4,72]. How
ever, the good performance of ERA5 has been demonstrated in some 
regions [66,74,75]. The discrepancy of the ERA5 performance in the 
studied area under cloudy conditions could be due to the low number of 
weather stations in the region for the ERA5 reanalysis assimilation 
and/or the representation of cloud properties in the dataset, as the re
gion is located within the Intertropical Convergence Zone (ITCZ). In the 
region, low-level clouds are common, and it is well known that rean
alysis and climate models poorly represent them [76]. 

3.3. Average diurnal cycle of GHI 

3.3.1. Cloudy-sky conditions 
The average diurnal variation between the measured and estimated 

values of GHI for 15 selected stations within the three climate zones 
under cloudy skies is shown in Fig. 11. It can be observed that the Guinea 
zone experiences a greater number of cloudy days compared to the Sahel 
zone. All datasets are able to reproduce the pattern of observed GHI but 
overestimate the average diurnal variation. The overestimation occurs 
mainly at midday for all datasets and also in the early morning and late 
afternoon for some of them. The overestimation in the early morning 
could be related to cloud cover, as there is stratus in the morning 
especially on the Guinea coast [77]. A minimum of convective activity 

occurs over the climate zones around noon and the maximum occurs in 
the late afternoon (~17:00 local time) mainly at latitudes below 9◦ N 
(Guinea zone and some parts of the Savannah zone) and also above 9◦ N 
(some parts of the Savannah zone and the Sahel zone) around 20:00 
[77]. In the Savannah and Sahel zones, all datasets are able to mimic the 
late afternoon observation well. In addition, these overestimates of the 
diurnal GHI pattern could also be due to the suspension of dust particles, 
especially during the DJF season when the reanalysis and satellite data 
are challenging to estimate GHI (see Fig. 8 a–d). However, the satellite 
data show less bias compared to that of the reanalysis data in estimating 
the maximum observed GHI. This is consistent with the results of 
Table 3. Overall, the reanalysis and satellite data show how difficult it is 
to reproduce the average daily variations of the selected stations under 
cloudy skies. 

3.3.2. Clear-sky and all-sky conditions 
Figs. 12 and 13 display the aggregate diurnal variations of GHI from 

the observation and the datasets under clear-sky and all-sky conditions, 
respectively. Unlike cloudy skies, most of the datasets show a good 
pattern of the measured GHI in most stations under clear and all skies. 
The number of clear sky days increases towards the north. In the Guinea 
zone, the ERA5 and MERRA-2 generally underestimate the maximum of 
the observation, while the SARAH-2 and CAMS are able to record the 
maximum under clear skies. In the Savannah and Sahel, most datasets 
also capture the maximum GHI, whereas the SARAH-2 and CAMS 
slightly overestimates the maximum. Similarly, in all skies, the SARAH-2 
and CAMS slightly overestimates the maximum GHI. This agrees with 
the KS values previously mentioned (see Table 3) for both clear and all- 
sky conditions. In general, most datasets overestimate the maximum 

Fig. 16. Similar to Fig. 10, but for a high negative overall performance (OP).  
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GHI under all-sky conditions in all climate zones, especially in the 
Guinea zone. This could be the result of an overestimation of the average 
diurnal variation of GHI under cloudy and/or overcast sky (Kt < 0.2, 
which is not shown in this study). 

3.4. Overall performance over different stations 

The use of GHI, derived from reanalysis and satellite data, to assess 
and monitor solar energy is widespread. However, selecting the best 
product can be a difficult task. Here we present a new overall perfor
mance based on the nRMSE, correlation, and IOA (see Eq. (12)) to select 
the best product for the area. The corresponding statistical metrics 
(nRMSE, nMAE, R, IOA) for each station are given in the Appendix (see 
Figs. 22–24). Fig. 14 shows the OP of the different AWSs under various 
sky conditions. Under cloudy-sky conditions, all the datasets show a 
negative value with a maximum of − 1.5 at some stations. This means 
that the datasets are significantly far from observations. However, the 
SARAH-2 and CAMS show the lowest OP values compared to that for the 
ERA5 and MERRA-2 at most stations. Some stations like Oualem, Nebou, 

Doninga, and Manga show good OP for the CAMS and SARAH-2 datasets 
with a high positive value especially in Nebou. The OP value is about 
0.5, which means that CAMS and SARAH-2 are consistent with the ob
servations. To verify this, Fig. 15 shows the average diurnal variation of 
four stations under cloudy conditions. We can clearly see that the sta
tions of Nebou, Oualem, Doninga and Manga, which show a high OP 
value for SARAH-2 and CAMS, are closer to the average diurnal varia
tion of measured GHI in comparison with ERA5 and MERRA-2. We also 
plotted the average diurnal variation of GHI with stations showing a 
high negative OP (Ada, Akue, Jirapa, and Dedougou), as shown in 
Fig. 16. The average diurnal variations of all datasets are far from the 
observations. The results confirm that it is a good choice to use an 
overall performance indicator for the selection of datasets for the esti
mation of GHI. The satellite data, however, show the best performance 
at most stations under cloudy conditions. 

In both clear-sky and all-sky conditions, all stations show a positive 
value of OP. The OP value of SARAH-2 and CAMS are higher than that of 
the MERRA-2 and ERA5 datasets, especially in stations that belong to the 
Guinea and the Savannah zones. In the Sahel region, the OP values are 

Fig. 17. Performance metrics showing the normalized root-mean-square-error (nRMSE), normalized mean absolute error (nMAE), correlation (R), index of agree
ment (IOA) and the overall performance (OP) for the hourly GHI in different climate zones and various sky conditions. Panels (a, d, g, j, m) show the performance of 
different datasets under cloudy skies, while panels (b, e, h, k, n) indicate that for clear skies. The performance under all-skies is depicted in panels (c, f, i, l, o). 
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comparable between the ERA5, CAMS and SARAH-2 under clear skies at 
some stations. The OP value reaches about 0.7 under clear skies in 
Oualem, Nebou and Manga for the SARAH-2 dataset. In summary, it can 
be deduced from this analysis that the satellite data are better than the 
reanalysis data over the entire area. 

We also examined the performance of different datasets at different 
stations and different seasons, considering different atmospheric con
ditions. A more detailed analysis can be found in the Figs. 25–27 in the 
Appendix. During the DJF season, when the sky is cloudy, we observed 
the highest uncertainties at each station. Most datasets showed similar 
values, but the MERRA-2 dataset showed relatively better results. In 
contrast, the satellite data performed better than the reanalysis data 
during the rainy season, which is consistent with the results shown in 
Fig. 9. Under clear skies, the datasets showed relatively low nRMSE 
values at each station throughout the year. However, during the JJA 
season we noted high nRMSE values at some stations, reaching up to 
45%. This indicates larger uncertainties during this period. These results 
are consistent under all-sky conditions. Both the satellite and reanalysis 
data showed higher nRMSE values during the JJA season than in other 
seasons. Nevertheless, the satellite data outperformed the reanalysis 
data at each station overall. 

3.5. Overall performance over the climate zones 

Fig. 17 shows the performance metrics of different datasets in 
different climate zones for hourly GHI. The values were obtained by 
aggregating the stations in each climate zone. The Guinea zone and the 
different sky conditions have high values for nRMSE and nMAE with low 
correlation and IOA. In Guinea and Savannah, the nRMSE and nMAE 
values are comparable under cloudy skies. The satellite-derived data 
outperform the reanalysis data in the Sahel with low nRMSE (~25%) 
and nMAE (~20%) under cloudy skies. Under cloudy skies, all the zones 
show a negative OP value; the CAMS and SARAH-2 datasets show the 
lowest value compared to that of the two-reanalysis datasets. All climate 
zones exhibit a positive value for clear skies and all skies, with SARAH-2 
and CAMS showing a higher value. The ERA5 also performs well for 
clear skies in all climate zones. When estimating the hourly GHIs, the 
satellite data outperform the reanalysis data under all-sky conditions in 
all climatic zones. 

4. Conclusion 

The aim of this study was to validate four state-of-the-art satellite 
and reanalysis (CAMS, SARAH-2, ERA5, and MERRA-2) data using 
hourly GHI data from ANAM, WASCAL and GMet for the year 2020. To 
ensure the accuracy of the data, the ground-based measured data were 
subjected to strict quality controls; only 37 out of 51 stations were 
finally used as reference stations for analysis. The evaluation was con
ducted under different weather conditions, including cloudy skies, clear 
skies and all skies, using a new overall measure to identify the best 
product for the region, along with other criteria. In addition, the study 
examined the relationship between aerosol, clouds, and radiation during 
the Harmattan period and the rainy season. The results of the study can 
be summarized as follows:  

• For the combined 37 stations, the hourly GHI values derived from 
satellite and reanalysis data perform better in an area with cloud-free 
conditions than in a cloudy region in terms of the RMSE and MAE 
metrics.  

• Both satellite-based hourly GHI estimates perform well in cloudy 
conditions compared to the reanalysis data.  

• MERRA-2 outperforms SARAH-2, ERA5 and CAMS in estimating 
hourly GHI during the Harmattan period (DJF season), while 
SARAH-2 performs best during the rainy season (JJA) under cloudy 
skies.  

• Most datasets capture the average diurnal variation in measured GHI 
under cloudy and all skies, while overestimating it under cloudy 
skies.  

• ERA5 reanalysis also shows a good performance in estimating hourly 
GHI under clear-sky conditions.  

• The overall performance measure shows that the SARAH-2 and 
CAMS data outperforms the ERA5 and MERRA-2 ones in all climate 
zones of the region and under different atmospheric conditions. 

The results of this study showed that the satellite data from SARAH-2 
and CAMS perform well in estimating hourly GHI data over the study 
area and may serve as viable alternative to ground-based measurements 
for assessing solar energy in West Africa. However, the data showed 
significant biases, especially during the Harmattan period when dust is 
more prevalent in the region. Future research should focus on exploring 
the spatial and temporal resolution of the AOD data from SARAH-2 and 
CAMS. On the other hand, the atmospheric reanalysis datasets used in 
this study performed poorly under cloudy conditions compared to the 
satellite data. It is important to note that the use of a one-year dataset 
could limit the generality of conclusions between reanalysis and satellite 
data in the region. For the poor performance of the reanalysis data, we 
hypothesize that the parameterization of the convective scheme and the 
interaction between radiation and aerosols in global circulation models 
needs to be improved to better capture the specific features of the 
monsoon, such as squall lines in this challenging region [78]. In addition 
to the evaluation of the GHI products, the novel AWS networks with the 
sub hourly GHI measurements enables many other important applica
tions such as the evaluation of regional climate models, as shown for the 
Weather Research and Forecasting (WRF) model [79–81]. The data can 
also be used for statistical refinement of the satellite and reanalysis 
products to remove biases and perform spatio-temporal disaggregation 
of the satellite products to better meet the needs of local applications. In 
addition, the high-resolution measurements of the novel networks could 
also improve the reconstruction of weather conditions on the ground 
and lead to better GHI estimates over West Africa, if this information is 
directly incorporated into the atmospheric models that to produce 
reanalysis products. Thus, there are many opportunities to further 
improve GHI data products for solar energy applications that need to be 
explored in future studies for West Africa. This will enable better plan
ning and design of PV systems and directly contribute to better meeting 
the rapidly increasing demand for sustainable electricity in Africa. 
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Appendix

Fig. 17. Hourly GHI plot for different AWS within the Guinea zones for the year 2020.   
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Fig. 18. Same ad Fig.17, but within the Savannah zone.   
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Fig. 19. Same ad Fig.17, but within the Sahel zone.  

Fig. 20. Bar plot showing the number of clear-sky and cloudy-sky days for different stations.   
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Table.5 
Number of data point that are above the physically possible limit and the extremely rare limit for different stations.  

Station Number of data outside from the BSRN range Number of data outside from the BSRN range in percentage 

Ada 2 0.05% 
Akim_Oda 1 0.03% 
Akosombo 1 0.03% 
Akuse 11 0.29% 
Axim 3 0.08% 
Fumbisi 1 0.03% 
Jirapa 0 0.00% 
Nakpaboni 2 0.05% 
Tema 10 0.26% 
Wa_varenpera 0 0.00% 
Yendi 2 0.05% 
Oualem 134 3.47% 
Nebou 146 3.79% 
Doninga 0 0.00% 
Tabou 151 3.91% 
Gwosi 2 0.05% 
Manga 179 4.64% 
Bagre 1 0.03% 
Bama 1 0.03% 
Banfora 0 0.00% 
Bani 1 0.03% 
Batie 0 0.00% 
Beregadougou 1 0.03% 
Bitou 0 0.00% 
Boulsa 0 0.00% 
Bousse 0 0.00% 
Diebougou 0 0.00% 
Djibo 0 0.00% 
Gayeri 0 0.00% 
Gorom 0 0.00% 
Hounde 0 0.00% 
Kamboince 0 0.00% 
Kouka 1 0.03% 
Barsalogho 0 0.00% 
Boromo 0 0.00% 
Dedougou 0 0.00% 
Dori 0 0.00% 
Bogande 0 0.00% 
Bobo_Dioulasso 2 0.05% 
Guiloungou 0 0.00% 
all stations 649 0.44%  

Fig. 21. Density plot of the daily clearness index (Kt) from different datasets (CAMS, ERA5, SARAH-2, and MERRA-2) against observation for 37 stations using 
Gaussian kernels with normalized values of 0–1 for different clear and cloudy skies. The dashed grey line shows the line: 1:1 line. R indicates the Pearson correlation.  
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Fig. 22. Performance metrics of different datasets at different weather stations under cloudy skies. Panel (a) shows the normalized root-mean-square-error (nRMSE); 
panel (b) indicates the normalized mean absolute error (nMAE); panel (c) shows the correlation, and panel (d) displays the Index of Agreement (IOA).  
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Fig. 23. Similar to Fig.22, but for clear skies.   
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Fig. 24. Similar to Fig.22, but for all skies.   
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Fig. 25. Performance metrics of different datasets at different season under cloudy skies. The number in the heat map shows the number of cloudy days that occur at 
a given season and station. The empty areas indicate absence of cloudy days. 

Fig. 26. Similar to Fig.25, but for clear skies.    
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Fig. 27. Similar to Fig.25, but for all skies.  
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