KIT | KIT-Bibliothek | Impressum | Datenschutz

Multi-Objective Optimization of AISI P20 Mold Steel Machining in Dry Conditions Using Machine Learning—TOPSIS Approach

Abbas, Adel T.; Sharma, Neeraj; Alsuhaibani, Zeyad A.; Sharma, Abhishek; Farooq, Irfan; Elkaseer, Ahmed 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

In the present research, AISI P20 mold steel was processed using the milling process. The machining parameters considered in the present work were speed, depth of cut (DoC), and feed (F). The experiments were designed according to an L$_{27}$ orthogonal array; therefore, a total of 27 experiments were conducted with different settings of machining parameters. The response parameters investigated in the present work were material removal rate (MRR), surface roughness (Ra, Rt, and Rz), power consumption (PC), and temperature (Temp). The machine learning (ML) approach was implemented for the prediction of response parameters, and the corresponding error percentage was investigated between experimental values and predicted values (using the ML approach). The technique for order of preference by similarity to ideal solution (TOPSIS) approach was used to normalize all response parameters and convert them into a single performance index (Pi). An analysis of variance (ANOVA) was conducted using the design of experiments, and the optimized setting of machining parameters was investigated. The optimized settings suggested by the integrated ML–TOPSIS approach were as follows: speed, 150 m/min; DoC, 1 mm; F, 0.06 mm/tooth. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000161520
Veröffentlicht am 21.08.2023
Originalveröffentlichung
DOI: 10.3390/machines11070748
Scopus
Zitationen: 4
Web of Science
Zitationen: 5
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2023
Sprache Englisch
Identifikator ISSN: 2075-1702
KITopen-ID: 1000161520
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Machines
Verlag MDPI
Band 11
Heft 7
Seiten Art.-Nr.: 748
Vorab online veröffentlicht am 18.07.2023
Schlagwörter machine learning, optimization of face milling parameters, surface roughness, power consumptions, AISI P20 mold steel, cutting temperature
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page