KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving Diagnostics with Deep Forest Applied to Electronic Health Records

Khodadadi, Atieh ORCID iD icon 1; Ghanbari Bousejin, Nima; Molaei, Soheila; Kumar Chauhan, Vinod; Zhu, Tingting; Clifton, David A.
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

An electronic health record (EHR) is a vital high-dimensional part of medical concepts. Discovering implicit correlations in the information of this data set and the research and informative aspects can improve the treatment and management process. The challenge of concern is the data sources’ limitations in finding a stable model to relate medical concepts and use these existing connections. This paper presents Patient Forest, a novel end-to-end approach for learning patient representations from tree-structured data for readmission and mortality prediction tasks. By leveraging statistical features, the proposed model is able to provide an accurate and reliable classifier for predicting readmission and mortality. Experiments on MIMIC-III and eICU datasets demonstrate Patient Forest outperforms existing machine learning models, especially when the training data are limited. Additionally, a qualitative evaluation of Patient Forest is conducted by visualising the learnt representations in 2D space using the t-SNE, which further confirms the effectiveness of the proposed model in learning EHR representations.


Verlagsausgabe §
DOI: 10.5445/IR/1000161525
Veröffentlicht am 21.08.2023
Originalveröffentlichung
DOI: 10.3390/s23146571
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2023
Sprache Englisch
Identifikator ISSN: 1424-8220
KITopen-ID: 1000161525
Erschienen in Sensors
Verlag MDPI
Band 23
Heft 14
Seiten Art.-Nr.: 6571
Vorab online veröffentlicht am 21.07.2023
Schlagwörter electronic health record, deep learning, intensive care unit, deep random forest, representation learning
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page