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Kurzfassung

Die fortschreitende Digitalisierung aller Bereiche des Lebens und der Industrie
lässt die Nachfrage nach Mikrochips steigen. Immer mehr Branchen – unter
anderem auch die Automobilindustrie – stellen fest, dass die Lieferketten heutzu-
tage von den Halbleiterherstellern abhängig sind, was kürzlich zur Halbleiterkrise
geführt hat. Diese Situation erhöht den Bedarf an genauen Vorhersagen von
Lieferzeiten von Halbleitern. Da aber deren Produktion extrem schwierig ist, sind
solche Schätzungen nicht einfach zu erstellen. Gängige Ansätze sind entweder zu
simpel (z.B. Mittelwert- oder rollierende Mittelwertschätzer) oder benötigen zu
viel Zeit für detaillierte Szenarioanalysen (z.B. ereignisdiskrete Simulationen).
Daher wird in dieser Arbeit eine neue Methodik vorgeschlagen, die genauer als
Mittelwert- oder rollierende Mittelwertschätzer, aber schneller als Simulationen
sein soll. Diese Methodik nutzt eine Verkettung von Modellen des maschinellen
Lernens, die in der Lage sind, Wartezeiten in einer Halbleiterfabrik auf der
Grundlage einer Reihe von Merkmalen vorherzusagen. In dieser Arbeit wird
diese Methodik entwickelt und analysiert. Sie umfasst eine detaillierte Analyse
der für jedes Modell benötigten Merkmale, eine Analyse des genauen Produk-
tionsprozesses, den jedes Produkt durchlaufen muss – was als "Route" bezeichnet
wird – und entwickelte Strategien zur Bewältigung von Unsicherheiten, wenn die
Merkmalswerte in der Zukunft nicht bekannt sind. Zusätzlichwird die vorgeschla-
gene Methodik mit realen Betriebsdaten aus einer Wafer-Fabrik der Robert Bosch
GmbH evaluiert. Es kann gezeigt werden, dass die Methodik den Mittelwert- und
Rollierenden Mittelwertschätzern überlegen ist, insbesondere in Situationen, in
denen die Zykluszeit eines Loses signifikant vomMittelwert abweicht. Zusätzlich
kann gezeigt werden, dass die Ausführungszeit der Methode signifikant kürzer ist
als die einer detaillierten Simulation.
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Abstract

The ongoing digitization of all aspects of life and industry is boosting the demand
for microchips. It gets more and more visible that the supply chain of industries –
for example the automotive industry – are nowadays dependent on semiconductor
manufacturers, which became especially apparent in the ongoing semiconductor
crisis. This situation again highlights the need for accurate delivery estimations
of semiconductors, but since their production is extremely complex, those esti-
mations remain challenging. Common approaches are either too simplistic (e.g.
mean or rolling mean estimators) or need too long for detailed scenario analyses
(e.g. discrete-event simulations). Therefore, within this thesis, a new methodol-
ogy is proposed, which is shown to be more accurate than mean or rolling mean
predictors, while being simpler than discrete-event simulations. This methodol-
ogy makes use of a concatenation of machine learning models, which are able
to predict waiting times in a semiconductor fab based feature set. This thesis
includes a detailed analysis of the features needed for each model, an estimation
of the "route" of a lot through the fab and its impact on the cycle time and devel-
oped strategies to cope with uncertainty when feature values are not known in the
future. Additionally, the proposed methodology is evaluated with real operational
data from a wafer fab of the Robert Bosch GmbH. It is shown that the methodol-
ogy outperforms mean and rolling mean estimators, especially in situations where
a lot cycle time deviates significantly from the mean. In addition, it is shown that
the execution time of the method is significantly shorter than that of a detailed
simulation.
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1 Introduction and motivation

„In any system in which variable quantities change, it is of interest
to examine the effects that some variables exert (or appear to exert)
on others.“

(Draper and Smith 1998, p. 15)

The ongoing digitization of all facets of modern life is increasingly boosting
the demand for microchips. Especially in the automotive industry, the demand
is constantly on the rise. A recent prognosis from McKinsey (Burkacky et al.
(2019)) estimates that the market for electronics and software in cars will evolve
from 238 billion $ in 2021 to approximately 469 billion $ in 2030, which is
nearly twice as much. It is remarkable that McKinsey even indicates that the
software and electronics industry will outgrow the automotive industry by 2030.
An example of the immense impact of the semiconductor (SC) industry on the
automotive industry is currently given by the ongoing SC crisis. As depicted in
Figure 1.1, experts predict that the sales in 2021 will be 5.2 million cars lower,
solely because of missing SCs. Additionally, it is apparent that the impact of this
crisis will determine the sales of the automotive industry in the upcoming years.
As automotive suppliers tend to produce just in time and just in sequence, an
accurate estimation of a supply product’s completion date is of high need. Due to
the ongoing crisis, the supply is currently handled without a lot of stock – which is
normally used to buffer delivery uncertainties. There are a variety of metrics that
can be used to determine production performance in the SC industry. However,
it can be challenging to estimate them depending on the type and nature of the
metrics and the manufacturing environment. This is especially relevant in the SC
industry, the reasons for which we highlight in the next section.
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1 Introduction and motivation
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Figure 1.1: Sales prognosis for the automotive industry and the reduction caused by the SC crisis
(source: CAR-Auto-Report July 2021)

1.1 Problem description

A lead time estimation can be divided into the production time and the delivery
time. While the time to deliver a product depends on the distance to the customer
and on the transportationmode – in fact, the delivery time can be rapidly shortened
when express delivery is chosen, which is done extensively in the ongoing crisis
– the production time cannot be reduced easily. Additionally, the production time
cannot be pushed below a certain boundary and can only reach this boundary at the
expense of other products production times. Typically, the production of a single
SC chip lasts severalmonths, which is a possible explanation for the ongoing crisis,
as the SC industry was not able to react quickly to rapid variations in demand
(Association (2021)). This is the case due to the following reasons. SC production
is characterized by complex and interlinked manufacturing processes. Processing
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1.1 Problem description

takes place in loops that can vary in the production processes, depending on the
product and the degree of completion of the product. In addition to the cyclical
nature of production, bottlenecks due to limited machine capacity emphasize the
difficulty of scheduling. Additional challenges in SC manufacturing are the high
number of product variations and the high degree of automation (Klemmt 2012,
p. 5-15). This increases the importance of the optimization of production in
terms of cost structure, flexibility, and productivity (Klemmt 2012, p. 1).

To evaluate a SC factory, key performance indicators (KPIs) are applied, which
indicate corporate target measurements like productivity, quality, or sustainabil-
ity. With the help of these, production can be evaluated against predefined target
values. Performance indicators can be differentiated with regard to the evalua-
tion of individual machines and systems or the entire production. An important
production-related key figure is the cycle time. The cycle time of a unit incorpo-
rates all processing and waiting times (Pfeffer 2012, p. 18-22). Therefore, the
cycle time in a SC fab is defined as the time between the entering point qtl,n1 and
the leaving point dtl,nN

of a lot l when all necessary operations n1, ...., nN are
executed:

ctl = dtl,nN
− qtl,n1 (1.1)

A closer look at the components of cycle time reveals the waiting time seems to
be the most interesting lever in regards to estimating the overall cycle time, since
not only planned but also unplanned waiting times occur (Arnold and Furmans
2009, p. 113). Accordingly, when forecasting the cycle time, the forecast of the
waiting time is an essential factor, since the waiting time influences the cycle time
significantly (Pfeffer 2012, p. 48).

According to Arnold and Furmans (2009), waiting times are often an important
factor influencing production planning and can have awide variety of causes. They
can be caused by process-related factors, such as drying or cooling of the product
between two process steps, but also by the production process, such as necessary
non-value-add steps. Unplanned waiting times are often due to disruptions in
the production run due to quality related incidents or changes in the processing
sequence (Arnold and Furmans 2009, p. 113). Thus, the waiting time is the

3



1 Introduction and motivation

KPI to be used when estimating the cycle time. To be able to estimate it within
a production system, several methods are available. Production networks can be
modeled as queueing systems. In the discrete-time case, statistical distributions
are used to determine the waiting time distributions (Furmans 2004, p. 3).

A second option is the simulation of the production network. In contrast to
analytical methods, simulations achieve more accurate results in real-world situ-
ations. However, they are significantly more time-consuming and cost-intensive
to develop. Furthermore, simulations require high computing times and extensive
memory space compared to analytical models (Pfeffer 2012, p. 27f). Despite the
high need for accurate delivery estimations, the given estimations are approxima-
tive and calculated with simple heuristics (more on that in Section 4.2).

An accurate method for the estimation of the waiting time is needed, which pro-
vides results in reasonable computing time. For this purpose, the application
of machine learning algorithms is promising. In particular, more advanced esti-
mators like artificial neural networks, random forests or other machine learning
methods stand out, which can learn complex relationships and estimate target
values (Goodfellow et al. (2018)). Although this field is comparably new, some
efforts have already been made. Nonetheless, those efforts either tend to focus on
one sub-part of the production process, or use one overall model to estimate cycle
times (for example Wang et al. (2021)). While it is valid to estimate only parts
of the production process for some applications, it misses validation for whole
cycle times. Similarly, it is valid to estimate cycle times with one model, but those
approaches are rather inflexible when it comes to the constant changes in a SC
fab, which means they are quickly outdated and therefore more applicable for a
snapshot of data, and not the operational use. Therefore, we develop a methodol-
ogy where estimations for sub-parts of the process are concatenated to a complete
cycle time estimation. To our knowledge, this is the first approach to estimate
cycle time in such a way. Additionally it has to be mentioned that the majority
of publications uses artificial data to validate their approaches. In contrast, this
thesis provides validation with real operational data from a SC fab.

4



1.2 Organization of the Thesis

1.2 Organization of the Thesis

The thesis is organized as follows:

In Chapter 2, we provide an overview about the fundamentals of this work . This
part is separated in the main research areas of cycle time estimation: Analytical
modeling (Section 2.1), simulation (Section 2.2) and statistical analysis (Sec-
tion 2.3). Additionally, this part contains a section with definitions of all KPIs
used in the course of this thesis (Section 2.4).

In Chapter 3, we summarize current research on the scientific fields introduced
in the previous chapter. Since there is also a growing field of approaches where
classical methods are combined, a section is included to give an overview on
existing literature about hybrid methods (Section 3.4).

In Chapter 4, we explain the SC production process in detail and present industrial
standard approaches for cycle time estimation (Section 4.2).

In Chapter 5, we introduce the methodology which is developed in this thesis.
Within this approach, we identify three components, which are then elaborated:

1. Creation of models: In Chapter 6, the creation and optimization of models
for each operation is described. Note that this section was submitted as a
scientific paper. Thus, it includes a study, which influencing features are of
interest in SC cycle time estimation.

2. Route estimation: In Chapter 7, the estimation of the route of a lot is
described.

3. Feature estimation: In Chapter 8, the estimation of features under uncer-
tainty is presented. Strategies to cope with uncertainties are introduced.

In Chapter 9, we validate the methodology as a whole with real operational data.
Within this chapter, the data set is introduced (Section 9.2) and analyzed. Then,
a design of experiment is proposed (Section 9.1) and several experiments are
executed and analyzed.

5



1 Introduction and motivation

In Chapter 10, we summarize and discuss the results, leading to recommendations
for the direction of future research in this field.
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2 Fundamentals of cycle time
estimation

Cycle time estimation is a form of regression analysis, which tries to model the
functional dependency of a target value on a set of observables. Applied to the
case of cycle time estimation, the dependency of cycle time on different observ-
ables of a production environment is modeled. Often this relationship is rather
complex and too complicated to describe in simple mathematical functions. If
such relationships are found, it is possible to approximate themwith mathematical
models, which can then be used to estimate future values of this variable (Draper
and Smith (1998)). We distinguish between observed variables (x1, x2, ..., xn)
and a target variable (Y ). Each record in a data set can then be expressed as
follows, with vector x as a composition of n features x1, x2, x3, ..., xn and Y as
the target variable, which shall be estimated:

(x, Y ) = (x1, x2, x3, ..., xn, Y ) (2.1)

Regression analysis is then a method to evaluate relationships between features
and the target variable (Chung and Huang (2002)). For that, an amount of
records (N ) is collected. How much records are needed to sufficiently find
correlations depends on the complexity of the underlying function and cannot be
stated easily, but having more data is leading to better results. According to Chung
and Huang (2002), the efforts for cycle time estimations can be distinguished into
four categories: Analytical modeling, simulation, statistical analysis, and hybrid
methods. The fundamentals of the first three approaches are explained in the
following, while hybrid methods make use of the fundamentals of the individual
methods and combine them in different ways.
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2 Fundamentals of cycle time estimation

2.1 Analytical modeling

The majority of analytical models in SC manufacturing domain are based on
queueing models. Each resource in a production environment is modeled as a
node of a network, which in itself reflects the production and its processes. A node
of the network is called an operator station and forms an operator system with the
upstream waiting room (Furmans (2004)). This is illustrated in Figure 2.1.

In queueing theory, the elements to be processed are called customers, which
arrive at service stations based on a random process. In the context of SC
manufacturing, customers are therefore lots. Characteristics of a service system
can be described using the Kendall notation. This notation follows the scheme
A|B|m - XXXX, where A defines the arrival process and B the service process.
The number of parallel serving stations is defined by m. Customers who are
in the waiting room are retrieved according to a serving discipline described by
XXXX. Well-known serving disciplines are, for example, FCFS (first-come-first-
served) or LCFS (last-come-first-served). The way how arrival (λ) and service
processes (µ) are modeled, as well as the time steps t between arrivals or service
completions considered in the model distinguishes two research areas of queueing
theory: Continuous-time and discrete-time, which are explained in the following.
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Figure 2.1: Elements of a queueing theory model; following (Furmans 2004, p. 3)
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2.1 Analytical modeling

2.1.1 Continuous-time queueing theory

In the continuous-time queueing theory, t can take any value from T = [0;∞).
The probability distributions of the intermediate arrival and the service time
are typically represented as continuous functions by an exponential distribution.
Their density function is:

f(t) = λe−λt (2.2)

The corresponding distribution function is:

F (x) =

x∫
0

λe−λtdt = 1− e−λx ∀x ≥ 0 (2.3)

For a queueing system with one queueing station, if inter-arrival and queueing
times are both exponentially distributed, the state of the queueing system can be
fully expressed with the number of customers in the system. The expected number
of customers in the system can solely be expressed with the utilization ρ, which
is defined as the fraction of arrival rate λ and the service rate µ:

ρ =
λ

µ
(2.4)

Subsequently, the expected number of customers in the system is obtained:

N =
ρ

1− ρ
(2.5)

For the expected value of the number of customers waitingNq the following holds
true:

Nq =
ρ2

1− ρ
(2.6)

Little‘s law can then be used to link the expected number of customers with the
expected waiting time of a customerWq:

Nq = λ ·Wq (2.7)
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2 Fundamentals of cycle time estimation

The expected waiting time can therefore be expressed as the fraction of expected
number of customers in the queueNq and the arrival rate λ, and consequently the
fraction of the number of customers in the system and the mean processing time
µ (Waldmann and Helm (2016)) :

Wq =
Nq
λ

=
N

µ
(2.8)

The derivation of the equations above can be seen in detail in Furmans (2000).

The previously described relationships are a simplified way to determine the
waiting time. Among other things, the condition has to be served that intermediate
arrival and service times are exponentially distributed. Nevertheless, continuous-
time queueing models are able to calculate general distributions as well, but only
approximately. In general, for the continuous-time queueing theory the condition
applies that we approximate the probability distributions by suitable functions
(Arnold and Furmans 2009, p. 148). If this assumption cannot be made, discrete-
time queueing models are the method of choice, which are introduced in the
following.

2.1.2 Discrete-time queueing theory

In most real-life scenarios concrete distributions can only be assumed approxi-
mately for the arrival and service process. Therefore, a methodology is needed
which is capable of handling all sorts of "discrete" distributions. In the discrete-
time theory of operation, events in the system are considered to occur at regular
intervals tinc, which is the smallest distinguishable time unit so that intermediate
arrival and service time distributions are multiples of this time unit. Intermediate
arrival and service processes are defined as renewal processes, as the respective
distributions do not necessarily have to be exponentially distributed (Arnold and
Furmans 2009, p. 152). According to Schleyer and Furmans (2007) the discrete-
time queueing theory allows both a higher accuracy of the results and a higher
level of detail compared to continuous-time queueing theory.
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2.1 Analytical modeling

The statistical distribution of the inter-arrival time is defined by ton. Thus, the
expected arrival rate λ = 1/E[ton] can be determined, which is the inverse of the
expectation value of the intermediate arrival time. Accordingly, the service time
toff of a customer at a station is also characterized by a statistical distribution, the
service time distribution. Following the arrival rate λ, the service rate is defined
as µ = 1/E[toff ] and denotes the average number of customers that can be served
at a service station at full capacity given the distribution of service time (Arnold
and Furmans 2009, p. 112f).

To calculate the distributions of waiting time, sojourn time and number of cus-
tomers from the known distributions of arrival and service time, the model must
be able to reach a state of equilibrium. This is possible if the load factor ρ = λ/µ

is less than 1. Only then the average number of arriving customers per time unit
is smaller than the expected number of served customers per time unit. If ρ ≥ 1

holds, the queueing system cannot reach an equilibrium state and the queue would
grow faster than customers can be served (Arnold and Furmans 2009, p. 113f).
Compared to continuous-time queueing models, discrete-time models are capable
of dealing with all general distributions G. This results in the notation G|G|1 for
discrete-time control systems with one control station (Furmans 2000, p. 9).

If a station is still occupied by another customer when a customer arrives, the
arriving customer must wait in the waiting room. This waiting time tw also
follows a probability distribution. Accordingly, the dwell time tv is composed of
the waiting time tw and the service time toff (Furmans 2000, p. 8f).

On a discrete time axis, a series of events with time intervals between event
n− 1 and n is given. This represents a renewal process if the lengths of all time
intervals are independent of each other and follow the same distribution (Schleyer
and Furmans 2007, p. 9f).

With these assumptions, probability distributions of the intermediate arrival and
service processes can be represented using the random variables Ton and Toff :

P (Ton = j · tinc) = ton|j ∀j = 1, ..., jton,max

P (Toff = j · tinc) = toff |j ∀j = 1, ..., jtoff ,max

(2.9)

11



2 Fundamentals of cycle time estimation

By assuming that inter-arrival and service time distributions are independent
of each other, the new random variable X is created with its corresponding
realization, as follows:

X(n) = T
(n)
off − T

(n)
on (2.10)

ton and toff can be transformed into probability vectors to calculate the system’s
work balance. The work balance denotes the change in the system’s labor supply
due to the arrival of a new customer and is calculated by convolving ton|j and
toff |j :

ci =

∞∑
j=0

ton|j · toff |i−j (2.11)

Once the work balance ci has been calculated, the probability distribution of the
waiting times of the customers is calculated. Here, a distinction is made between
waiting times that are greater than zero and waiting times that are equal to zero.
Waiting times greater than zero are denoted by:

wi =

jtoff ,max∑
j=−jton,max

wj · ci−j ∀i = 1, 2, ... (2.12)

Waiting times equal to zero can occur in two situations. Either the departure of
the customer coincides with the arrival of the next customer at the service station,
or the respective queueing systems are empty, which can happen when the supply
is short and therefore a fallow time is formed (Arnold and Furmans 2009, S.
150-154):

w0 =

jtoff ,max∑
k=−jton,max

wk · c−k +

∞∑
k=0

wk ·
−(k+1)∑

l=−jton,max

cl (2.13)

It must be noted that amethod is available to significantly speed up this calculation,
using the numerical solution of Grassmann and Jain (Grassmann and Jain (1989)).
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2.2 Simulation

2.2 Simulation

As an alternative to analytical models simulations are used, which – in oppose to
an analytical model – try to replicate the entities of a system, instead of solely
their distributions. They are one of the most popular methods in operations man-
agement (Lane et al. (1993) and Gupta (1997)). Within simulations, a collection
of entities is modeled as a system, which then takes a certain state. A state is
defined as a collection of variables to describe the system at a particular time.
Two types of systems are distinguished, discrete and continuous. (Law and Kelton
(2000)) In a continuous system, the state variables change continuously over time,
while in discrete systems those variables change only on certain points in time.
According to Law and Kelton (2000), simulation models can be classified by three
dimensions:

• Static vs. Dynamic Simulation Models. While static simulation models are
aiming to represent a system at a specific time point, dynamic simulation
models are aiming to represent the development of a system over time.

• Deterministic vs. Stochastic Simulation Models. A deterministic simu-
lation model does not cover any probabilistic components. Most systems
however cover at least some parameters with probabilistic influence and are
therefore captured in stochastic simulation models.

• Continuous vs. Discrete Simulation Models. Dynamic systems may be
continuous or discrete. Continuous dynamic systems (e.g. physical sys-
tems with moving material objects) are defined by state variables whose
values continuously change. In opposition, state variable values of discrete
dynamic systems (e.g. manufacturing simulations) are changed at discrete
time steps only (Birta and Arbez 2013, pp.249).

Since most models in the field of cycle time estimation in SC manufacturing
are discrete, dynamic and stochastic, only those fundamentals are covered in the
following. All models within this three-dimensional area are called discrete-event
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2 Fundamentals of cycle time estimation

simulation models.
Discrete-event Simulation

Within discrete-event simulations, each event (e.g. a start of production of a
lot) triggers a change of the system state at a particular time point. To do that,
one key element of a discrete-event simulation model is a proper time-advance
mechanism. The corresponding variable in a simulation model which keeps track
of the simulated time is called simulation clock (Law and Kelton 2000, p. 7). In
general, two approaches for advancing the simulation clock have been suggested:
Next-event time advance and fixed-increment time advance. While the fixed-
increment time advance is based on a fixed interval in which all variables are
updated, the next-event time advance jumps forward to certain events and updates
the variables at those time points. Between those points in time, the system is
assumed to remain stable, which allows the system to directly jump to the event
times. Hence, it can estimate future behavior on a shorter timescale (Robinson
(2014)). Since nearly all common simulation softwares and models are using the
next-event advance mechanism, we will focus on this technique in the following.

Within this approach, the simulation clock is initialized with zero and the time
of future events is calculated as the timely distance from it. Then, the simulation
clock is advanced to the first future event, where the system state is then updated.
The process is visualized in Figure 2.2, with ti as the time of arrival of the i-th
customer, Ai = ti − ti−1 as the inter-arrival time, Si as the processing time for
the fulfillment of the i-th customer, ci as the completion time of the ith customer
and ei as the occurrence of the i-th event of any type. Hence, the events where the
times have to be updated can be reduced to any arrival and completion times. In
general, each of those quantities is probabilistic and can be therefore modeled as
a random variable. Mostly, the probability distributions of the inter-arrival times
and the processing times are assumed to be known.
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Figure 2.2: The next-event time-advance approach for a single-server queueing system ((Law and
Kelton 2000, p. 9))

Discrete-event simulations canmodel concurring events like simultaneous arrivals
of lots at work stations. To do that, the system behavior is calculated for every
time step sequentially. Thus, it is capable of covering any desired complexity,
but it can be very calculation-intensive (Shanthikumar et al. (2007)). Therefore,
when combined with the event uncertainty, it is nearly impossible to simulate all
possible events in a fab, while being faster than real-time.

2.3 Statistical Analysis

Another method to estimate cycle time is statistical analysis, which makes use of
known statistical distributions in a system to estimate unknown ones. In statistical
analysis mathematical models are built that estimate the relationship between one
ormore variables and one ormore target variables. Those relationships are usually
used to either explain past behavior, or – more often – to estimate future behavior.
There are countless approaches to determine such relationships, but in the context
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2 Fundamentals of cycle time estimation

of this thesis, we focus on Machine Learning (ML) approaches. In the following,
we introduce their fundamentals as well as popular ML approaches.

2.3.1 Machine Learning

ML is a form of applied statistics. It differs from classical statistics in its focus
on using existing computational capabilities „to statistically estimate complicated
functions“ (Goodfellow et al. 2018, S. 107). Thus, ML refers to the ability of
computers or artificial intelligence to recognize patterns in data and generate
knowledge from them through generalization (Goodfellow et al. 2018, p. 3). The
process of generating knowledge from data is called "training", in which typically
only a fraction of the available data is used, so that the performance of the model
with unseen data can be evaluated. This performance evaluation is called "test".
Typically, a third fraction of data is held back for the "validation" of the model.

ML can be categorized as "supervised, unsupervised, reinforcement, and evolu-
tionary" learning. In supervised learning, the algorithm receives training data
and target values. It is supposed to learn patterns and relationships from the
training data and use this knowledge to estimate the corresponding target data.
Unsupervised learning algorithms, on the other hand, receive only training data
and are expected to recognize and categorize relationships between these inputs.
Reinforcement learning is a hybrid between supervised and unsupervised learn-
ing, and evolutionary ML algorithms are based on continuous adaptation. The
most common application is in supervised learning algorithms. These can be
used either for regression or for classification of the data. In classification, the
target values correspond to classes into which the training data should be di-
vided. This involves deciding which values of the inputs belong in which class. A
classification problem is always discrete. In a regression, the algorithm receives
training data containing various features and target values. Based on relationships
in the training data that the algorithm learns, the target value is to be estimated
(Marsland 2015, S. 6ff). Since the target of this study is to develop a regression

16
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method for cycle time, we focus on regression applications for the following ML
techniques – while they are in principle also valid to use for classification.

The goal of ML methods is to generalize, which means that the model develops
the ability to produce sensible outputs from unknown input. There are two
phenomenons known, which can result in poor generalization capabilities of ML
models: Underfitting and overfitting. When a model is underfitting it means that
it has not learned to anticipate patterns in the data during training. Thus, a model
which is underfitted does not react sensitively to the input data, which is often
times the result of too short training. The algorithm was not able to generalize
enough to produce estimations with high accuracy. In opposition, a model which
reacts too sensitively to the input data it has already seen is called overfitted. In
this case, the algorithm learns not only patterns but also noise and outliers of the
training data and is no longer able to generalize. This is often a consequence of too
long training (Marsland (2015)). The best known indicator of the generalization
capabilities of a model is the comparison of the estimation performance on the
training data compared to the previously unseen test data. When the performance
on the training data is significantly higher than the performance on the test data,
the model is most probably overfitted. If the performance on the train data and
the test data is bad, the model could be underfitted.

In the following, we present four popular ML techniques: Linear Regression,
ANNs, Decision Trees, and Random Forests. For each of those techniques, we
also discuss the risk of under- and overfitting.

2.3.1.1 Linear Regression

Linear Regression is a popular method, because its results are easy to interpret,
since it is possible to show the parameter search by deriving the cost function to
each parameter. To apply it, the assumption has to be made that the assumed
functional relationship between the observed variable X and the target variable
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Y is linear. Hence, we assume that we can describe the target variable dependent
on the observed variable:

Y = β0 + β1X (2.14)

It must be noted that this is valid for the one-dimensional case. For more than
one variables, all variables are vectors. Thus, Y can be represented by a linear
transformation of X plus an amount ε, which indicates the random error of such
an estimation (Draper and Smith (1998)). This means, that β0, β1 and ε are
unknown. ε is not steady and changes for each observation. To determine β0 and
β1, we introduce estimations for both parameters (b0 for β0 and b1 for β1). With
those estimated parameters, we can generate estimations Ŷ for Y :

Ŷ = b0 + b1X (2.15)

Between every estimation and true value, there is always a non-explainable error ε
different from zero. To estimate the parameter values, the least squares estimation
is commonly used. Other methods possible are minimizing the lack of fit with
other norms (e.g. least absolute deviation), or minimizing a penalized version of
the cost function (e.g. L2-norm penalty). The least squares method finds optimal
parameter values by minimizing the sum of squared residuals (SSR):

SSR(β0, β1) =

N∑
n=1

(Yn − Ŷn)2 =

N∑
n=1

(Yn − b0 − b1Xn)2 (2.16)

It is now the task to vary b0 b1 so that SSR gets as small as possible. By
differentiating Equation (2.16) we can determine optimal b0 and b1 :

∂SSR

∂b0
= −2

N∑
n=1

(Yn − b0 − b1Xn) (2.17)

∂SSR

∂b1
= −2

N∑
n=1

Xn(Yn − b0 − b1Xn) (2.18)
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Hence, b0 and b1 are solutions of the following equations:

N∑
n=1

(Yn − b0 − b1Xn) = 0 (2.19)

N∑
n=1

Xn(Yn − b0 − b1Xn) = 0 (2.20)

This basic technique of finding the optimal set of parameter values is also used by
other ML methods, or more advanced search techniques through the parameter
space.

Since Linear Regression is only capable of finding linear patterns in the training
data, the method is of high risk of underfitting, while the risk of overfitting is
comparably low.

2.3.1.2 Artificial Neural Networks

Another popular approach in ML is ANN, which represents any collection of
inter-connected neurons, with each neuron producing a certain response at a given
set of input signals. By applying an external signal to some (input) neurons the
network is put into a defined state that can be measured from the response of one
or several (output) neurons. Hence, an ANN can be seen as a mapping from a
space of the input variables x1, x2, ..., xN to a one- or multi-dimensional space
of output variables y1, y2, ..., yM . In the given case, just one output variable (the
sojourn- or cycle time) is needed. Its behavior is determined by the layout of the
network, which consists of the number of neurons and their relationship to each
other, the weights of the inter-neuron connections, and by the response of the
neurons to the input, which can be described by the neuron response function ρ.

In principle, a neural network with n neurons can have (n− 1)2 connections (not
n2 because a neuron can not be connected to itself). Nevertheless, the complexity
can be reduced by organizing the neurons in layers, allowing only connections
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from a layer to its direct successor. This structure is called "Multilayer Perceptron"
(MLP) and is visualized in Figure 2.3. Within an MLP, the first layer is called the
"input layer", and the last one the "output layer", while all others are called "hidden
layers". Within a regression problem – similar as for classification problems –with
N input variables, the input layer consists ofN neurons that hold the input values
x1, x2, ..., xN and one neuron in the output layer representing the output variable,
the estimated target variable of the ANN yANN . Note that is it theoretically
possible to have more than one output variable, for example for a multi-target
regression, but since this is not the case in this thesis, its theory and implications
are left out of this summary.

Figure 2.3:Multilayer perceptron with one hidden layer, with linear activation function in the input
and output layers, and sigmoid activation function in the hidden layer. (Hocker et al. 2007,
p. 110).
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The neuron response function p is used to map the neuron input i1, i2, ...iN onto
the neuron output, as depicted in Figure 2.4. It can be separated into a Rn 7→ R
synapse function κ, and aR 7→ R neuron activation function α, so that p = α◦κ.
These functions can have the following forms:

κ : (y
(l)
1 , ..., y

(l)
N |w

(l)
0j , ..., w

(l)
Nj)→


w

(l)
0j +

∑N
n=1 y

(l)
n w

(l)
nj Sum,

w
(l)
0j +

∑N
n=1(y

(l)
n w

(l)
nj )

2 Sum of squares,
w

(l)
0j +

∑N
n=1 |y

(l)
n w

(l)
nj | Sum of absolutes,

(2.21)

α : x→


x Linear,

1
1+e−kx Sigmoid,
ex−e−x

ex+e−x Tanh,
e−x

2/2 Radial.

(2.22)

Note that – as visible in the example of Figure 2.3 – it is common to use different

Figure 2.4: Single neuron j in layer l with n input connections. Each incoming connections carries a
weight w(l−1)

ij (Hocker et al. 2007, p. 110).

activation functions for the visible and the hidden layers, to enable the model to
cover multiple kinds of correlations.

When building a network, the Stone-Weierstrass theorem has to be considered.
It states – when applied to neural networks – that for an MLP a single hidden
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layer is sufficient to approximate any continuous correlation function to optimal
precision, given the fact that a sufficient amount of neurons is used in the hidden
layer (De Branges (1959)). Hence, if the computing power and the amount of
training data allows, one can increase the number of neurons until the optimal
performance is reached. Nevertheless, it is likely that a similar performance can be
reached with fewer neurons and more hidden layers, which potentially decreases
training time and leads to more robust networks.

Training of an MLP

Learning patterns in data is done by training the algorithm using training data.
The training process is explained in the following. During training, the goal is to
set the weights of the nodes in an optimal way, so that a cost function is minimized.
For regression problems, an error measure like the sum of squared errors is often
used. The most common algorithm to adjust the weights is the so-called "back
propagation" (BP). It is a supervised-learning technique, where the desired output
is known (e.g. for each lot in training data, the cycle time is known). To illustrate
how the training process works, a simple MLP with only one hidden layer and a
Tanh activation function in the hidden layer is assumed. For this MLP, the output
of this network is given by:

yANN =

nh∑
j=1

y
(2)
j w

(2)
j1 =

nh∑
j=1

tanh(

nvar∑
i=1

xiw
(1)
ij )ẇ

(2)
j1 (2.23)

with nvar as the number of neurons in the input layer, nh as the number of
neurons in the hidden layer, w(1)

ij as the weight between input-layer-neuron i and
hidden-layer-neuron j, and w(2)

i1 as the weight between the hidden-layer-neuron j
and the output neuron. Within this equation, the sum was used for the synapse
function κ.

Within training, the network is fed withK training events xa = (x1, ..., xnvar
)a,

a = 1, ...,K. For each event a, the output yANN,a is computed and compared
to the desired output ya. An error function E measures the agreement of the
network output with the desired one. There are several possible error functions,

22



2.3 Statistical Analysis

but a typical error function is the sum of squared errors (SSE) and is defined as
follows:

SSE((x1, ..., xK)|w) =

K∑
a=1

SSEa(xa|w) =

K∑
a=1

1

2
(yANN,a − ya)2 (2.24)

withw as the set of weights in the network. During training, the goal is to find the
set of weights w that minimizes the error function. This can be reached using the
"gradient descent" (assuming that the neuron response function is differentiable
with regard to the input weights). Starting from a set of weights w(ρ), which
could be either chosen randomly or from past or similar models, the weights are
constantly updated by moving them inw-space into the direction−∇SSE, where
SSE decreases the most.

w(ρ+1) = w(ρ) − η∇wSSE (2.25)

with the positive number η as the "learning rate", which represents the moving
speed in the w-space.

The weights connected with the output layer (in this case the ones from the hidden
layer) are updated by:

∆w
(2)
ij1 = −η

K∑
a=1

∂Ea

∂w
(2)
j1

= −η
K∑
a=1

(yANN,a − ya)y
(2)
j,a (2.26)

The weights connected with the hidden layers (in this case the ones from the input
layer) are updated by:

∆w
(1)
ij = −η

K∑
a=1

∂Ea

∂w
(1)
ij

= −η
K∑
a=1

(yANN,a−ya)y
(2)
j,a(1−y(2)

j,a)w
(2)
j1 xi,a (2.27)

Note that in this simple example tanh′(x) = tanh(x)(1−tanh(x)) is used. This
method is called "bulk learning", since the sum of errors of all training events
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is used to update the weights. Another possibility would be "online learning",
where the weights are updated after each event.

BP is not the only possible method to train a model. Other options, such as the
"Broyden-Fletcher-Goldfarb-Shannon" method, will not be covered in this thesis,
since it is not used and therefore of minor interest.

When BP is executed until a predefined value of error function E (accuracy) is
reached, it leads to a set of weights wρopt. As the Weierstrass theorem indicates, it
would be theoretically possible to reach any desired accuracy, when enough data
and computational power is available. However, since data and computational
power are limited resources, this cannot be achieved all the time. Additionally,
as mentioned before, running the training long imposes the risk of overfitting to
the model, while too short training runs could result in underfitting. Thus, the
training of an ANN is a balancing act of those two extremes.

2.3.1.3 Decision Trees

Age

NoType

Yes Ground

Yes No

Old Young

Refined Natural

ThinRich

Figure 2.5: A binary decision tree to estimate whether an
apple tree will bear fruit

A decision tree is a classical
ML algorithm, which applies
a defined number of splitting
criteria to data sets to estimate
a target variable, as shown on
the exemplary decision tree
depicted in Figure 2.5. Deci-
sion trees are commonly used
for two tasks in data mining:
First, to estimate whether an
element can be assigned to
a certain class (classification),
which means that the output possibilities are a discrete number of classes (e.g.
whether an image shows a dog or a cat). Second, to estimate a real number (re-
gression), whichmeans that the output can be any real number (e.g. the estimation
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of a stock price in the future). Solving techniques for both problems with random
forests can be summarized with Classification and Regression Tree (CART) and
were first introduced by Breiman et al. (1984).

Training of a decision tree is called "growing". A good introduction is provided
by Janus (2013), and can be done using the following algorithm:

1. Iteration over the list of input variables. A cut value is determined that gives
the best separation between two classes of outputs (e.g. if a cycle time is
higher or lower than a certain value).

2. The input variable that gives the best separation is chosen and the sample
of events is separated into two daughter nodes, which are called "leaves"
according to the cut on this variable.

3. Steps 1 and 2 are repeated on each of the daughter leaves until a stopping
criterion is reached. This stopping criterion is usually a minimum number
of events of each type in one leave.

4. If the stopping criterion is reached for a leaf, the output of the leaf is defined
as the median of all events being in this class (e.g. a certain cycle time).

Within this process, one input variable can be used at multiple points, since used
variables are not erased from the input set. Hence, the sequence of cuts from the
root to each leave defines a hyper cube in the N -dimensional space of the input
variables x1, ..., xN .

This is based on the principle of variance reduction. It tries to reduce the variance
of the subsets by splitting the data set at a node N . The variance reduction IV of
the target variable y can be calculated as follows:

IV (N) =
1

|S|2
∑
i∈S

∑
j∈S

1

2
(yi − yj)2

−(
1

|St|2
∑
i∈St

∑
j∈St

1

2
(yi − yj)2 +

1

|Sf |2
∑
i∈Sf

∑
j∈Sf

1

2
(yi − yj)2)

(2.28)
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S corresponds to the set before splitting, St corresponds to the set for which the
splitting condition applies, and Sf to the set which does not satisfy the condition.
(Han et al. 2011, p. 332ff) While trees used for classification and trees used
for regression have some similarities, they differ, for example in their procedure
where to split (Breiman et al. (1984)).

Decision trees are capable of covering as many hyper cubes as possible – given
a sufficient depth of the tree. This means that decision trees can estimate any
volume in the variable space, and therefore any type of correlation. On the
other side, decision trees tend to be unstable when statistical fluctuations in the
training samples occur. Additionally, when the tree is built sufficiently deep, the
risk of overfitting is significant. To circumvent these problems, several methods
have been developed, which make use of so-called "ensemble learning", meaning
the creation of an ensemble of trees. Those trees are combined to make an
estimation – or classification. Three ensemble techniques can be mentioned.
Firstly, a technique called "boosting" (Freund et al. (1996)), using the "AdaBoost"
algorithm (Freund and Schapire (1997)), where a succession of decision trees
with the same inputs and samples is built. For each successive tree, the falsely
estimated events by the previous tree are weighted with a so-called "boost weight",
to ensure that the estimation of those events will be handled with priority in
the next tree. The weights are then renormalised so that the sum of weights
remains constant. Ultimately, any event is then estimated by the median of all
tree decisions. Secondly, a technique called "bootstrap aggregated" decision trees
could be applied, wheremultiple decision trees are built by resampling the training
data (Breiman (1996)). In oppose to boosted trees, bootstrap aggregated trees use
random samples of the data to build successive trees, instead of the whole data set
every time. Thirdly, "rotation forests", where a principal component analysis is
applied on a random subset of the input features, before a tree is trained (Rodriguez
et al. (2006).)

2.3.1.4 Random Forests
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Random Forests were first developed by Ho (1995), and are a specific type of
bootstrap aggregated decision trees. They were further developed by Breiman
(2001), who also registered "Random Forests" as a trademark in 2006. Random
Forests – as depicted in Figure 2.6 – combine a large number of decision trees to
reduce the variance in their solution quality (Couronné et al. (2018)) and overcome
the poor generalization capability of single random forests (Huang et al. (2016)).
For a random forest, each CART is built on a random bootstrap data sample from
the original data set. This is done B times. Hence, the process can be expressed
as follows:

Figure 2.6: Depiction of a regression random forest (Bakshi
(2020))

For b = 1, ..., B:

1. Sample, with replace-
ment, n training sam-
ples, which are called
Xb, Yb.

2. Train a tree fb, as
described in Sec-
tion 2.3.1.3.

Afterwards, the estimations
for the samples which have
been unseen in training (x′)
can be made by averaging the
estimations from all trees:

f̂ =
1

B

B∑
b=1

fb(x
′) (2.29)

Subsequently, a random forest can be expressed as follows, with t(x, sΘk
) as the

base estimator, which is represented by a CART k = 1, 2, ...,m, using the input
vector x:

{t(x, sΘ1), t(x, sΘ2), ..., t(x, sΘm)} (2.30)
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sΘk
is a random vector, representing the random extraction of training samples

for the kth tree. Hence, all sΘm
share the same distribution, but are independent

from each other. Additionally, as only a fraction of features is considered at each
split when building each tree, the growth process also represented by sΘk

is also
random.

While all the above holds true for all bootstrap aggregated trees, random forests
make additional usage of a technique called "feature bagging". This technique
uses only a random subset of features at each split to avoid that strongly correlated
features are used too extensively, which can easily lead to over-fitting (Ho (2002)).

Random forests are a popular technique in businesses, since they generate useful
estimations with low configuration efforts. Compared to Decision Trees, they
are less prone to overfitting, since feature bagging counteracts that. Nevertheless,
they loose one of the biggest advantages of decision trees: their interpretability.

2.4 Definitions of statistical properties

To compare all approaches presented in this thesis, KPIs have to be introduced,
which are defined in Section 2.4.1. To prove the statistical significance of the KPI
deviations, statistical hypothesis tests are used. Their fundamentals are introduced
in Section 2.4.2.

2.4.1 Definitions of KPIs

As mentioned in Chapter 2, we observe a target variable Yn. When an estimation
has been made, a set corresponding estimated values Ŷn is computed. Each
performance metric compares Yn and Ŷn for each n = 1, 2, ..., N . The most
intuitive comparison is to check standard positional parameters of both the target
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variable distribution as well as the estimation distribution. First, the mean X̄ of
a set of values X1, X2, ..., XN is compared and can be calculated as follows:

X̄ =
1

N

N∑
n=1

Xn (2.31)

If the mean of the target variable distribution and the estimation distribution
differs, a systematic shift in the distribution is observed. Since the mean is
an indicator of the position of the center of the distribution, another positional
parameter for the width of the distribution is needed. Subsequently, the unbiased
standard deviation of the sample σX can be considered:

σX =

√√√√ 1

N − 1

N∑
n=1

(Xn − X̄)2 (2.32)

BecauseX1, X2, ..., XN is a sample of values from an unknown distribution, it is
important to mention that the actual positional parameters of the distribution are
not known. Therefore, the observed mean Ȳ and the observed standard deviation
σX do not necessarily equal the mean of the distribution µ and the standard
deviation of the distribution σ. Hence, the mean value of this sample X̄ comes
along with a standard error on the mean σX̄ :

σX̄ =
σ√
N

(2.33)

Because σ is not known, it is usually estimated by the sample standard deviation
σX :

σX̄ ≈ σ̂X̄ =
σX√
N

(2.34)
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2 Fundamentals of cycle time estimation

Additionally, the median of both distributions could be compared. The median X̃
can be calculated as follows, withm as the middle observation of a distribution:

X̃ =

{
Xm+1 if N is odd

1
2 (Xm +Xm+1) if N is even

(2.35)

The median is the value of a distribution where 50 % of the values are below this
threshold. Hence, it is a positional parameter that is more robust against outliers
in the distribution. All the above positional parameters can be calculated for the
observed values (X = Y and Xn = Yn) as well as the estimated values (X = Ŷ

and Xn = Ŷn), which enables a comparison of both.

In addition to the comparison of positional parameters, error parameters are
considered. In general, an estimation error for the n-th value En is given by:

En = Ŷn − Yn (2.36)

Subsequently, the mean errorME can be calculated as follows:

ME =
1

N

N∑
n=1

En =
1

N

N∑
n=1

(Ŷn − Yn) (2.37)

It may happen that theME is low, when the positive and negative errors cancel
each other out. Therefore, the mean absolute errorMAE is conducted, given by:

MAE =
1

N

N∑
n=1

|En| =
1

N

N∑
n=1

|Ŷn − Yn| (2.38)

The MAE values each error equally, independent of the size of the error. The
fraction of ME and MAE is a measure of how much the bias is affecting the
accuracy of the estimation. It is defined as follows:

δ(MAE) =
ME

MAE
(2.39)
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Thus, δ(MAE) comes along with a value range of 0% to 100%, indicating the
fraction of error which can be explained by the bias of the estimation.

Since it is also of interest to analyze how prone the estimation is to outliers, the
root mean squared error RMSE is obtained, given by:

RMSE =

√√√√ 1

N

N∑
n=1

E2
n =

√√√√ 1

N

N∑
n=1

(Ŷn − Yn)2 (2.40)

To analyze the predictive capability of a model, the positional parameters (Ȳ , Ỹ ,
σ̂Ȳ and σY ) both of the target values and the estimations, as well as the error
measures (ME, MAE and RMSE) of all estimations are compared for each
conducted experiment. Note that for the decision-making, the MAE will be
mostly used. Compared to the RMSE, theMAE is easier to interpret, and less
prone to outliers.

2.4.2 Definitions of Statistical Hypothesis Tests

We use two tests to validate the significance of our results. First, we use the
unpaired two-sample t-test to estimate the significance of deviations in means
(Ȳ ). Second, we use the one-sided t-test to estimate the significance of deviations
in mean errors (ME, MAE and RMSE). Both tests as well as the underlying
hypotheses are presented in the following.

Both used tests are t-tests, also known as Student´s t-tests, which is a group
of statistical hypothesis tests, in which the test statistic follows a Student´s t-
distribution for the null hypothesis. This distribution was developed by Student
(1908) and arises when the mean of normally distributed populations with un-
known standard deviations are analyzed. With a defined degree of freedom ν and
n observations, which describes the number of values in a statistic that are free
to vary, the t-distribution is defined as the sample mean relative to the true mean,
divided by the sample standard deviation and multiplied by the standardizing term
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2 Fundamentals of cycle time estimation

Figure 2.7: Student´s t-distribution under different degrees of freedom ν. (Wikipedia (2010))

√
n. The t-distribution is visualized in Figure 2.7 for selected ν. There are two

types of t-tests. First, the one-sample t-test, which is used when a sample mean
is compared to a known distribution (e.g. normal distribution). Second, the
two-sample t-test, which is used to compare two samples. If those samples are
independent, meaning they are not drawn from the same distribution, the t-test is
called "unpaired". Since both used tests are unpaired, we focus on this group in
the following.

Given two samples (1, 2), this test is only applicable when the sample sizes are
equal, both samples are normally distributed and the sample distributions share
the same variance. While we will not violate the first two assumptions, we can
not necessarily assume that the variances of both samples are equal. In this case,
Welch´s t-test is applicable, because it does not assume equal variances (Welch
(1947)).
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This test can be used for two different kinds of relations. First, it can test for
equality of the means. Using this variation, which is called two-sided t-test, we
test for the following null and alternative hypothesis:

H0: The two population means Ȳ1 and Ȳ2 are equal (Ȳ1 = Ȳ2).

H1: The two population means Ȳ1 and Ȳ2 are unequal (Ȳ1 6= Ȳ2).

Second, the test can be applied to test whether a one population mean is signifi-
cantly higher than another population mean. It is called a one-sided t-test. Then,
the null and alternative hypothesis look as follows:

H0: The population mean Ȳ1 is greater than or equal to Ȳ2 (Ȳ1 ≥ Ȳ2).

H1: The population mean Ȳ1 is smaller than Ȳ2 (Ȳ1 ≤ Ȳ2).

Regardless of the variation, the t statistic is then defined as follows:

t =
∆Ȳ

σ∆Ȳ

=
Ȳ1 − Ȳ2√
σ2
Ȳ1

+ σ2
Ȳ2

(2.41)

The degrees of freedom ν in the case of equal sample sizesN can be approximated
by:

ν ≈
σ4

∆Ȳ

ν−1
1 σ4

Ȳ1
+ ν−1

2 σ4
Ȳ2

(2.42)

with νi = N − 1. To apply the test, we define a level of significance α, which
represents the maximum probability that the null hypothesis is falsely neglected.
In combination with ν, a p-value p is calculated, which represents the probability
that, if the null hypothesis is correct, test results at least as extreme as the observed
results are obtained. This value is then compared with the predefined α. If p < α,
the null hypothesis can be neglected.

In the analysis, we use both the two-sided, as well as the one-sided version of
Welsh´s t-test. We use the two-sided version to estimate whether our estimations
are significantly biased, by comparing the mean of the estimations and the mean
of the actual cycle times. We use the one-sided t-test to estimate whether the

33



2 Fundamentals of cycle time estimation

estimation error of one configuration of our methodology is significantly lower
than from other configurations, or even from other, well-established approaches
that are commonly used in the industry.
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3 Literature review

In the following, recent efforts in the four areas of cycle time estimation in SC
manufacturing are presented. An additional and extensive literature overview of
waiting time estimation and feature selection in SC manufacturing is presented in
Section 6.1 in the course of the publication presented in the next chapter.

3.1 Analytical modeling

Shanthikumar et al. (2007) have presented a survey on queueing theory for SC
manufacturing systems and came to the conclusion that the practical use of those
models is limited. Furmans et al. (2017) reviewed publications making use of
queueing models. Baumann (2020) has developed a methodology to evaluate
different service rules in a multi-queue environment. Nevertheless, Schlosser
(2020) showed that models of queueing theory cannot be sufficiently applied to
the real world environment in a SC fab, because those models are not sufficiently
capable of handling the heterogeneous production environment. Especially on
equipments where batches are processed, queueing models tend to estimate the
waiting time distributions falsely. There is no sufficient queueing model to cope
with all possible processing situations in a SC fab.
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3.2 Simulation

Scholl and Domaschke (2000) have applied discrete-event-simulation to investi-
gate the current situation in a fab of Infineon Technologies, leading to recommen-
dations on actions how to reduce the impact of time constraints. Sivakumar and
Chong (2001) have investigated the relationship between selected input and output
variables in the backend of a SCmanufacturing systemwith a data-driven discrete-
event-simulation. Can andHeavey (2016) combine discrete-event-simulationwith
genetic programming to estimate cycle times of a production line. All those stud-
ies have in common that they show great performance in estimating cycle times
in SC manufacturing, but they indicate in the Discussion the immense effort to
build and maintain such models.

Because of this property of simulations, to estimate accurately at the cost of high
building, maintenance and calculation time effort, they are also commonly used
to validate other techniques. For example Veeger et al. (2010a) validated their
system with a discrete-event simulation.

To summarize, simulation is the method of choice to validate models, because
of its potential accuracy, while its building, maintenance and calculation time
properties make them difficult for generalized cycle time estimation models.

3.3 Statistical Analysis

Pearn et al. (2009) modeled waiting times for single operations of each product
type in SC packaging factories, using a gamma distribution. Subsequently, they
combined those models into a cycle time estimation model. Akhavan-Tabatabaei
et al. (2009) created a flow analysis model to forecast the WIP using existing
correlations in arrival and service processes. This forecast can then be used in
cycle time estimations.

Chen and Wang (2010) have applied a fuzzy c-means to classify jobs in a factory,
which they used to construct a back propagation network (BPN) to estimate a cycle
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time range over each confidence interval for each job category. This approach is
problematic, since a confidence interval does not necessarily contain the actual
value. Therefore, Chen and Lin (2011) randomized the parameters of a BPN to
create a fuzzy cycle time forecast. Wang and Zhang (2016c) have created a cycle
time estimation model based on the fuzzy c-means classifier in combination with
a BPN by implementing a feature selection mechanism. They showed the positive
correlation between data availability and solution quality. However, the estimation
range was again based on confidence intervals, which do not necessarily contain
the actual value. Wang et al. (2021) introduced a fuzzified BPN approach with
threshold optimization for all input and output nodes to estimate cycle time ranges.

3.4 Hybrid Methods

While this field is comparably young, the amount of methods which combine ana-
lytical, statistical and simulation for cycle time estimations is constantly growing.
Schelasin (2011) calculated factory variability on historical data by making use of
a backward calculation algorithm, which he combinedwith theKingman equation,
and later improved it by aG/G/m formula (Schelasin (2013)). Veeger et al. (2010b)
developed a simulation model to estimate mean cycle times of workstations for
different scenarios in terms of throughput and product mix. Additionally, they
have used a curve fitting procedure, which allows them to sufficiently estimate
distributions under limited data availability for arrival and departure processes, as
it is often the case in SC manufacturing (Veeger et al. (2010a)). Can and Heavey
(2016) made use of genetic programming in combination with a discrete event
simulation to estimate cycle times of a production line. Then, a machine learning
algorithm was trained on the simulation results to imitate the whole production
system. Yang et al. (2011) have combined queueing theory and simulation-based
metamodelling to estimatemean cycle times for different workstations and product
mixes. Additionally, the authors have developed another fitting approach based
on neural networks (Yang et al. (2011)). A more general approach was developed
by Hsieh et al. (2014), who provided a simulation metamodel, which is able to
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characterize the relationship between the input and the target variable. This was
then used to calculate the mean cycle time depending on the percentage of urgent
lots.

A ready-to-implement solution combining queueing theory, simulation and statis-
tical analysis was developed by IBM and is called "Enterprise Production Planning
and Optimization System" (EPOS) (Brown et al. (2010)). It is a simulation sys-
tem based on queueing theory, which can be integrated in the fab MES to capture
routes, tools, raw process times, rework rates andWIP (Zisgen et al. (2008)). This
tool can be also used to optimize production planning and management. In this
context, tools are modelled asGX /G(a, b)/c server queues and the manufacturing
system as an open queueing network. Queue lengths for each equipment are
determined with a decomposition approach in the open queueing network.
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4 Semiconductor production
process

For the production of SCs, silicon wafers with a thickness of about 1 mm are
used as the starting product in the front end. Depending on the size of the
chips, one wafer can contain several thousand chips. In SC production at Bosch
in Reutlingen, wafers with diameters of 150 mm and 200 mm are processed.
Up to 25 wafers are combined into one batch and transported together through
the production line, which is called a fab. This transport takes place in special
plastic boxes, which vary according to the size and type of wafers. As depicted in

Frontend Wafer-Test Backend Assembly

Figure 4.1: The four phases of semiconductor production (Klemmt (2012)).
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Figure 4.1, the SC production is divided into four phases, the front-end, wafer test,
back-end, and assembly. In the front-end, wafer processing takes place in a level
A clean room environment (cle (2021)), since even the smallest contamination
can damage the wafers. Here, several layers of material are applied to the wafer
to produce micro-electric circuits. (Klemmt 2012, p. 5f)

In the subsequent wafer test, each silicon wafer is checked for damaged chips and
sorted out if necessary. The wafer is then transported to the back end. There, it is
shredded to separate the chips and assemble them into a package. Finally, SCs are
combined into components in assembly. This is often done on a printed circuit
board. (Klemmt 2012, p. 11-15)

4.1 The Frontend Production Process

Within this thesis the Frontend production process is of major interest since the
majority of production steps are executed here and its complexity is significantly
higher than in the other phases. The production process can be described as
follows: Layers are brought onto the wafers by executing certain process steps
repetitively. Hence, as depicted in Figure 4.2, SC production facilities are struc-
tured in work centers. According to Klemmt (2012), the Frontend production can
be distinguished into six areas:

• Lithography: In lithography, a light-sensitive photo-resist is first applied
through so-called coaters, and then the wafer is exposed through a mask.
Depending on the product, this exposure can be carried out several times in
succession. Finally, the wafer is developed to remove the unwanted areas of
the photo-resist layer. Since Lithography is a very capital-intensive process
and there are correspondingly few machines available, it often represents
the production bottleneck. Additionally, Lithography is always the first step
when carrying out a new layer on the wafer, which makes the throughput in
Lithography a valid counter for the so-called mask-out (produced layers).
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Wafer Processing (Front-End)Raw Wafer/ Wafer 

Start

Oxidation/ Deposition/ 

Diffusion
Photolithography Etching

Planarization

Ion Implantation

Sort, Assembly, Final 

Test

Processed

Wafer

Figure 4.2: Work center production process in Wafer Processing (Mönch et al. (2011))

• Doping: Foreign atoms are deposited on the wafer surface to change the
conductivity. This step can be done either by Ion Implantation or Dif-
fusion. If Ion Implantation is used, ions are directed onto the wafer at
high velocity within an electric field. The Diffusion process takes place at
high temperatures in a furnace, causing the materials in the carrier gas to
penetrate the SC crystal. Furnace processes in the diffusion area are often
batch machines and lead to challenges in scheduling.

• Oxidation: The oxidation process takes place in a thermal furnace (1000
°C) under a pure oxygen atmosphere, where the surface of the Si-wafer
reacts with the oxygen to a SiO2-layer (oxid layer). The layer is necessary
to protect and insulate thewafer. Like diffusion furnaces, oxidation furnaces
are often batch machines and complicate scheduling.

• Depostion: To deposit layers of materials, either chemical vapor deposition
(CVD) or physical vapor deposition (PVD) is used.
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• Etching: In contrast to deposition, Etching involves the removal of layers.
For this purpose, anisotropic (direction-dependent) dry etching or isotropic
(direction-dependent) wet chemical etching can be used.

• Measuring, cleaning and polishing: Between the production stations,
there are a large number of preparatory and inspection steps, such as clean-
ing steps, chemical-mechanical polishing or layer thickness measurement.
For example, scrubbers remove tungsten and oxide by polishing the wafers.
Apart from the regular inclusion of these steps in the production process
at some points, they can occur also everywhere else in the process, due
to regular cleansing steps of an equipment, or due to quality parameter
measurements.

Depending on the type of product, these production steps are run several times
by each batch in a different sequence. This results in a reentrant product flow,
with batches at different stages of completion competing for the same machine
capacity. Since machines often have to be retooled and adapted depending on the
type of product, the work involved in scheduling becomes much more intensive.
Complexity also increases as development engineers design and test new products
in the same fab where regular wafer production takes place. In addition, so-called
test wafers are used to check the parameters of the manufacturing process for
correctness. These factors make SC manufacturing much more demanding in
terms of scheduling and sequencing (Uzsoy et al. (1992)).

Routing in a SC wafer fabrication process is a complex iterative process. As
depicted in Figure 4.3, the production process can be separated in non-repetitive
stages. Within stages, a set of operations is executed, while the exact sequence
can differ. Three reasons lead to this fact:

• Rework: Every operation has a certain probability to be executed incor-
rectly. Quality parameters are regularly measured and if they are out of a
defined scope, the operation is defined as not successfully executed, which
does not necessarily produce scrapping of an entire wafer, but results in
rework. This rework could either be to repeat the operation, or to execute
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Figure 4.3: Route process through stages.

another sequence of operations (including removal of applied materials,
cleaning steps and manual test steps).

• Metrology: There are operations which must be executed on each machine
after a certain amount of operation executions or a certain amount of time.
Hence, those operations are included in a fraction of operation sequences.

• Process changes: The operation sequence that will be executed in stages
and the rework is changing regularly, mostly due to engineering-based
process improvements or adjustments of the equipments. This unstable
environment makes it difficult to interpret routes from the past.

Thus, an estimation of which route a lot will take is a non-trivial task.

While the industry is aware of the complexity, several techniques are commonly
used to create cycle time estimations. We explain these techniques in the fol-
lowing, so that they can be used for a comparative analysis with our developed
methodology in Chapter 9.
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4.2 Industrial State-of-the-Art

The industrial state of the are regarding completion date estimation can be distin-
guished by their time horizon.

In the short-term – which typically means not more than a few weeks – discrete-
event simulations are used. Because all processes can be realistically covered with
this technique, it can be – in theory – completely accurate. Nonetheless, it comes
along with heavy investments in the creation phase as well as in maintenance, as it
intends to cover the production process as completely as possible. Since this pro-
cess is undergoing constant change, this is a difficult task. Additionally, as already
mentioned, the execution of discrete-event simulations are calculation-intensive –
especially in complex production environments like SC fabs. Therefore, it is not
typically used for long-term estimations, while it is commonly used to estimate
completion dates of already started lots that are close to completion.

Long-term estimations – meaning the estimation of cycle times before the lots
have entered the fab – are regularly made with mean estimators. The easiest
approach here is to estimate a cycle time ctl|p of lot l and product p with the
product’s mean cycle time of all previous lots L:

ctl|p =
1

L

L∑
i=1

cti|p (4.1)

This approach is depicted in Figure 4.4 (a) and ignores the current fab situation,
resulting in a complete insensitivity to any cycle time or fab development.

A more elaborated method, which is commonly used, estimates the cycle time of
a lot with the average cycle time for all lots L in a defined time window δ:

ctl|p,t =
1

L(t− δ → t)

∑
i∈L(t−δ→t)

cti|p,t (4.2)

This approach is depicted in Figure 4.4 (b).
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Figure 4.4: (a): Mean estimations of cycle time. (b): Rolling mean estimations of cycle time.

An approach of rolling means is expected to work better for typical cycle time
developments of products over their lifetime. A typical cycle time development
over a product life cycle is depicted in Figure 4.5 part (a). As visible, the
cycle time initially decreases rapidly, mostly due to engineering- and production-
process-related improvements. Then, it saturates against a certain threshold of
cycle time, which represents the high running behavior of this product.

Product Life Cycle

(a)

ct
 [

d
]

Product Life Cycle

ct

fixed
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Figure 4.5: (a): Expected development of a product cycle time over its life cycle. (b): Expected
behavior of both presented industrial standard approaches on the expected cycle time
development.

The expected behavior of those two industrial standard approaches is depicted in
part (b) of Figure 4.5. As shown, the fixed mean approach slightly decreases over
time, but as it still considers each lot from the past, its decrease is slower than the
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4 Semiconductor production process

actual decrease, leading to a systemic error. The rolling average approach is more
flexible, as old lots from outside its time window are not considered anymore.
Hence, its decrease will sufficiently cope with the actual cycle time decrease after
a short initialization period.

Both methods have in common that they do not need any maintenance, nor do
they come along with heavy calculation complexity. Hence, they are easy to use,
even for long-term situations.

It must be noted that there are also more advanced methods available to estimate
the cycle time. For example an estimation based on one determining variable,
such as the WIP, could be made. While this is slightly more flexible than the
mean guessing method, it is still not capable of covering the large amount of
inter-dependencies present in a SC production process. Since an inclusion of
those methods would open up several degrees of freedom, we will not use them
in this thesis.

Since this thesis aims to develop a methodology for long-term situations, both
the mean as well as the rolling mean method are used as a comparison for
the developed methodology in Section 9.6.5. Discrete-event simulation is only
compared qualitatively, since the additional setup of a comparable simulation
exceeds the scope of this thesis.
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5 A concatenated cycle time
estimation methodology

After the introduction on both the semiconductor manufacturing process as well
as recent efforts in estimating cycle times, we present our own approach in the
following.

The flow described in the previous chapter can be distinguished by so-called
stages (s), which are sequential and non-repetitive by definition. Typically, the
execution of a predefined series of stages sums up to a layer. Therefore, the cycle
time of a lot (ctl) can be described as the sum of the sojourn times (sts) over all
necessary stages S:

ctl =

S∑
s=1

sts (5.1)

A stage consists of a sequence of operations o. This sequence is called a route
(r). The sojourn time of any possible route (str) can be expressed as the sum of
sojourn times over all operations of the route (sto):

str =

r(O)∑
o=1

sto (5.2)

The route can differ, due to several reasons, which we will discuss in Chapter 7.
Each operation sojourn time consists of a transportation time (tto), a waiting time
(wto) and a processing time (pto):

sto = tto + wto + pto (5.3)
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5 A concatenated cycle time estimation methodology

In the given case, transportation times are included in the waiting time, which
means that the sojourn time of an operation can be expressed as follows:

sto = wto + pto (5.4)

Subsequently, the cycle time equals the sum of the waiting and processing times
along the route of operations over all stages:

ctl =

S∑
s=1

O(r)∑
o=1

wto + pto (5.5)

The share of the waiting and processing time on the sojourn time is depicted in
Figure 5.1 (a). It is visible that the biggest part of the sojourn time is the waiting
time. Additionally, the variability of waiting and processing time is depicted in
Figure 5.1 (b). It becomes clear that also the major source of variability is the
waiting time.

This assumption is well accepted in the community and can be explained with the
autarky of the production process, leaving nearly no room for human interference.
Therefore, it is common practice to assume fixed processing times through the
technical processing times of the equipment. As this methodology is data-driven,
we estimate processing times by their mean of past N executions:

pto =
1

N

N∑
n=1

ptn = pt (5.6)

We verify this statement as shown in Figure 5.2, since the processing time neither
incorporates an underlying trend nor has great variance.

Fixing the processing time leads to three remaining variables in the equation, for
which we will present strategies to approximate them in the following chapters:

• wto: We will identify a possibility to estimate the waiting time of an
operation, and features that determine the waiting time in Chapter 6.
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Figure 5.1: (a): Distribution of the share of the waiting (wt) and the processing time (pt) on the
sojourn time. (b): Boxplot of the standard deviation (σ) of the waiting time (wt) and
processing time (pt). The upper bar indicates the 95% percentile, the lower bar the 5%
percentile. The upper limit of the box indicates the 75% percentile, the lower limit the
25% percentile. The line within the box indicates the median. Note that the data set
which is introduced in Section 9.2 is used here.

• r: Wewill develop amethodology to calculate sojourn times over a selection
of routes and weigh them with their probability in Chapter 7.

• wto under uncertainty: While all influencing features for wto can be mea-
sured at t0, they are uncertain for future estimations. To cope with that
problem, we will present a methodology to extrapolate the values of the
feature set in the future in Chapter 8.

The complete methodology with pseudo-code for the final script is depicted in
Figure 5.4 andworks as follows. From the traces, we extract three sets of data. The
first two are used to train and optimize models for each operation with get_model,
as explained in Chapter 6. We use these models in exec_prediction to estimate
the waiting and processing time of an operation. Additionally, we extract the
routes with get_route and the feature set with get_features and return them
based on the chosen method. In the combining method get_cycletime we use
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Figure 5.2:Mean total waiting time (wt) and mean total processing time (pt) in days as a function of
time in calendar weeks. For each calendar week the means are computed over the set of
lots started that entered the fab in that week. Note that the data set which is introduced in
Section 9.2 is used here.

all these inputs to calculate the cycle time for every method. It should be noted
that this figure is only an overview and provides information about the general
input and output, while the sub-steps explained in the referring chapters are
not mentioned, for example, the exact model optimization steps or the route
probability calculation. Those steps are still included in the methodology, but not
visualized.

Figure 5.3 shows the cycle time estimation from a process perspective. A route of
N operations is chosen based on a route estimation policy. This refers to the route
algorithm introduced in Chapter 7. For each operation on in the route, a model
M(on) is executed with a set of features, which is estimated based on a feature
estimation policy. This mirrors the feature estimation options that we introduce in
Chapter 8. We use this feature set in the model to estimate the operation‘s sojourn
time st(on). Subsequently, the cycle time ct is the sum of all operation sojourn
time. Hence, the different methods that we explain in Chapter 6 and Chapter 7

50



5 A concatenated cycle time estimation methodology

𝑜1qt 𝑜2 … 𝑜𝑁𝑜𝑁−1

𝑀(𝑜1) 𝑀(𝑜2) … 𝑀(𝑜𝑁−1) 𝑀(𝑜𝑁)

Feature Prediction Policy
Tracing 

data

snapshot

𝑠𝑡(𝑜1) 𝑠𝑡(𝑜2) … 𝑠𝑡(𝑜𝑁−1) 𝑠𝑡(𝑜𝑁)

𝑐𝑡 = ෍

𝑛=1

𝑁

𝑠𝑡(𝑜𝑛)

Route Prediction Policy

Figure 5.3: The proposed cycle time estimation approach

can be a source for several degrees of freedom for the methodology. Based on
this, we present exploratory analyses in Chapter 9.

The expected advantages of the proposed methodology can be distinguished in
three aspects. First, it is expected to react better to strong variation of cycle
times in a SC fab compared with mean approximators currently in use for long-
term estimations. Second, it is expected to be easier to build and maintain than
discrete-event simulations, since no inter-dependencies have to bemodeled for this
methodology, because it is based on historical data. Because of its construction,
with a concatenation of models along a route, process changes can be easily
accustomed, since only affected parts of the system need to be modified. Third,
its computation time is expected to be significantly shorter than a simulation,
because no inter-dependencies of lots have to be considered for calculating a lot‘s
cycle time.

Additionally, the methodology intends to be applicable to all sorts of production
configurations. To apply it in other production environments, possibly relevant
input features have to be identified and calculated. Furthermore, data pipelines

51



5 A concatenated cycle time estimation methodology

df_train

Traces df_test

df_validate
get_cycletime(methods, lot)

exec_prediction (o, df_in)get_model(df_train, df_test, hparams)

inp df_train [df] data to train the

models on 

inp df_test [df] data to optimize the

models on

inp hparams [dict] hyperparameter space

out model [obj] model of operation o

inp o [str] operation

inp df_in [df] feature set

out 𝑤𝑡 [𝑖𝑛𝑡] waiting time of o

out p𝑡 [𝑖𝑛𝑡] processing time of o

get_route(method)

inp method [str] method how to get the

route

out route [list] list of operations for 

all stages

get_features(t, method)

inp t [timestamp] time for lookup

inp method [str] feature method

out df_in [df] feature set

for method in methods: 

route = get_route(method)

t = lot.start_time

for o in route.operations:

df_in = get_features(t, method)

𝑤𝑡𝑜, 𝑝𝑡𝑜 = exec_prediction(o, df_in)

𝑐𝑡𝑙𝑜𝑡+= 𝑤𝑡𝑜 + 𝑝𝑡𝑜

inp methods [list] list of methods to get

route and features

inp lot [str] lot to calculate the

cycle time of

out ct [int] calculated cycle time

Figure 5.4: Overview of the complete methodology without sub-classes

have to be created, to feed the methodology. Apart from that, no adjustment to
the methodology has to be made.
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6 Creation of models for
operational waiting time
prediction

As mentioned in Chapter 5, the proposed methodology consists of a concatena-
tion of models for operational waiting time estimation. Hence, we describe the
creation of those models in the following. It consists of three steps: First, we
identify a basic feature set, which is used for an initial training of the models. Sec-
ond, we reduce the feature set, to tune the model performance. Third, we analyze
patterns in the feature usage to create a study on the importance of certain features.

The chapter is based on Schelthoff et al. (2022)1.

As the first author of this study the publishing house IEEE

grants me the right to include this work in this dissertation.

The following text is taken from that paper without changes.

1 Authors contributions
Conceptualization: Kai Schelthoff, Michel Janus, Kai Furmans
Methodology: Kai Schelthoff, Michel Janus, Eva Schlosser, David Plohmann
Design of Experiments: Kai Schelthoff, Michel Janus, Christoph Jacobi
Formal analysis and investigation: Kai Schelthoff,Michel Janus, Christoph Jacobi, Eva Schlosser,
David Plohmann
Writing – original draft preparation: Kai Schelthoff, Christoph Jacobi
Writing – review and editing: Kai Schelthoff, Christoph Jacobi, Michel Janus, Kai Furmans
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6 Creation of models for operational waiting time prediction

SC manufacturers are faced with increasing customer requirements regarding
demand, functionality, quality, and delivery reliability of microchips. This con-
stantly growing market pressure necessitates accurate and precise performance
estimation for decision-makers to enter delivery commitments with customers.
One significant performance measure is waiting time, which frequently accounts
for the highest proportion of cycle time and contributes the most to its variance.
While there are many studies which predict cycle time, we prefer to address wait-
ing time as the variable of interest and allow the practitioner to decide how they
want to estimate processing times (i.e. deterministic or stochastic). To obtain
the accumulated total waiting time in a semiconductor fab, one could conduct
individual predictions for each operation and sum them up for the entire produc-
tion cycle of a lot. Predicting waiting times is, however, a non-trivial task since
numerous potentially important influencing features must be considered. Predic-
tion models that consider a great variety of features are computationally extensive
and prone to over-fitting while, in contrast, basic models fail to provide valuable
predictions. Consequently, semiconductor manufacturers are confronted with the
task of identifying the relevant feature set for waiting time prediction.

Furthermore, European semiconductor manufacturers are confronted with a
volatile demand for a plethora of products. Consequently, semiconductors are
produced in so-called high product-mix / low-volume (HMLV) semiconductor
wafer factories. The competitive advantages of HMLV manufacturers are flexi-
bility (managing a plethora of products), and agility (adapting to new constraints
rapidly without threatening costs) at the cost of significant increase of interde-
pendencies. In a HMLV wafer fab, the product mix, available technologies, and
production capacities constantly evolve over time and a multitude of operations
are processed simultaneously on heterogeneous tool sets. This complex produc-
tion environment implies a multitude of additional features correlated with the
waiting time, but so far it is unclear how these features contribute to the forecast
quality.

To address this problem, we investigate a plethora of features for waiting time
estimation based on real operational data from the Robert Bosch GmbH. We
propose a method to predict single waiting times per lot and operation at the
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point of the completion of the previous operation. We demonstrate the method
with real operational data from two production areas, namely Lithography and
Diffusion. To the best of our knowledge, we are the first to attempt for waiting
time estimation in a HMLV wafer fab.

This paper is organized as follows: Section 6.1 presents the related literature.
In Section 6.2, we introduce the methodological approach and define the feature
set. In Section 6.3, the framework is applied on a data set from an HMLV fab
in Germany belonging to the Robert Bosch GmbH and our results are presented.
We discuss the results achieved in Section 6.4 and derive managerial implications
in Section 6.5. Section 6.6 draws conclusions on our study and identifies further
research needs.

6.1 Literature Review

The literature categorizes the approaches on estimating cycle and waiting times
in semiconductor wafer fabs into five areas. The first area is analytical models
with queueing theory being one main example. Queuing theory models allow for
fast computation of key performance indicators based on the stochastic analysis
of arrival and service processes (see Shanthikumar et al. (2007) for an extensive
review, and e.g. Schelasin (2011), Akhavan-Tabatabaei et al. (2009), Zisgen et al.
(2008), Morrison and Martin (2007) for recent approaches). Second, extensive
simulation studies (Dilefeld et al. (2020), Seidel et al. (2019), Yang et al. (2008),
Johnson et al. (2005)) are conducted for performance evaluation of semiconductor
wafer fabs. However, building statistically significant simulation models is time-
consuming and increasingly harder for complex manufacturing systems. Both
approaches seem to be unsuitable for our use case and are therefore not discussed
in more detail.

The third area is statistical approaches, which include probability-based and
regression-based models. Backus et al. (2006) conducted cycle time predic-
tion and policy control based on production line status and data mining. Tai et al.
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(2012) calculate the cycle time for final testing with the assumption of Weibull-
distributed waiting times. Hassoun (2013) shows that segmentation of the process
line leads to improvements in the predictability of the forecast of cycle time. Wang
and Zhang (2016b) use big data analytics to predict cycle time and correlation
analysis for feature selection (Wang et al. (2018b, 2020)) of suitable variables.

The fourth area is artificial intelligence models. A post-classification approach
with an artificial neural network is proposed by Chen et al. (2008) to cluster jobs
with similar cycle time forecast accuracy. Chen et al. (2009a) consider lot cycle
time prediction during production ramp-up using a self-organization map fuzzy-
back-propagation network algorithm. A fuzzy-neural approach for estimating the
remaining cycle time of each job is proposed in Chen et al. (2009b). In recent
publications, a bi-directional classifying fuzzy-neural approach is developed to
aggregate the results of pre-classification and post-classification (Chen (2011)),
and a procedure is developed to divide jobs into several groups according to
their estimation errors (Chen (2016)). Meidan et al. (2011) present a detailed
study to determine relevant influencing features by using simulated data. Tirkel
(2013) compares the prediction quality of a Decision Tree model and a Neural
Network model for cycle time prediction of a single operation step, a line segment
and a complete production line. Lingitz et al. (2018) use real operational data
to forecast lead times for the production steps Sorter, Bakefuse and Sputter,
focusing on the performance of different machine learning algorithms. Zhang
et al. (2018) propose an imperialist competitive algorithm incorporating remaining
cycle prediction for photolithography machines’ scheduling problem. Wang et al.
(2018a) design a density peak based radial basis function network to forecast
cycle time. Chakravorty and Nagarur (2020) present a cycle time prediction
methodology based on a back-propagation trained artificial neural network which
can be used for making real time dispatching decisions at trigger steps of queue
time restricted zones.

The fifth and last area is hybrid models, which combine some of the aforemen-
tioned approaches. Chen (2007) uses real data collected from a semiconductor fab
to predict the job completion time using fuzzy c-means and a back-propagation
network ensemble. Chen and Wang (2010) extend this approach by incorporating
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a nonlinear programming model and present and iterative procedure to deal with
outliers (Chen and Wang (2013)).

The studies presented show that many researchers focus on improving forecasting
models and designing more sophisticated neural network or data mining models
to forecast cycle times. However, as Wang et al. (2018b) recognize, relatively
few studies focus on feature selection to exploit the potential of highly correlated
input data to predict the output value. This process is, however, crucial in our
use case, since we are analyzing real operational data of a HMLV wafer fab. In
contrast to former studies, which were mostly subject to some limitations (such
as the analysis of selected tool groups, or the consideration of a limited number
of product types), we analyze highly volatile production data for the production
areas Lithography and Diffusion. In related studies, some global features are
widely used as input values. We adopt these features, and introduce novel features
based on the expert knowledge of line experts in our fab to incorporate the special
behavior of the HMLV fab under consideration. Therefore, our set of potential key
features increases, and feature selection becomes even more necessary to build
lightweight prediction models.

6.2 Methodology

It is well known that cycle time is one of the most relevant performance measures
for semiconductor manufacturing processes. Cycle time is defined as the elapsed
time between starting and completing a task, which is composed of transport
time, waiting time, processing time, and time for additional steps (Tirkel (2013)).
The Manufacturing Executing System (MES) of our fab tracks Move-In and
Move-Out times of each machine (that is, start and end of each processing step).
After completing the previous task, the lots enter the joint waiting room of the
tool group of the next processing step and wait to be processed. Note that the
waiting room is not physically co-located to the tool group and upon arrival of
a lot, it is not determined which machine will process the lot. Consequently,
the waiting times in our study include transport times between the tool groups.
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The dispatching strategy of the waiting room is dependent on various factors, not
FIFO. In previous studies, processing times were assumed to be constant for a
given processing step. However, in our use case, the processing times are found
to be subject to some fluctuations. Nevertheless, the fluctuation of the waiting
time outreaches the processing time‘s fluctuation by far. Therefore, in this study,
our focus is on analyzing and forecasting the waiting times, while the behavior
of the processing time in the past is used as an independent variable. We define
the dependent variable of our models to be the expected waiting time per lot at a
given tool group upon arrival at the tool group at t0.

6.2.1 Feature investigation

Table 6.1 shows the feature set of our study. The feature set indicates the manifold
of this feature, either for nominal categoricals (nominal cat.), which have to be
one-hot-encoded, or for ordinal categoricals (ordinal cat.) and continuous (cont.),
which are often times collections of features. The features stem from two sources.
First, we investigate and adapt features based on past publications which are
applicable to our use case. Second, with the help of line experts from the fab
where the data stem from, we identify new features which have not yet been
included in the literature.

6.2.1.1 Adapted features

The features used in literature are also depicted in Table 6.1. We are aware that
some of the mentioned publications use more features than depicted, but we focus
on those which are applicable to our case. Publications dealing with cycle time
predictions or just one equipment can possibly use a different feature set. To use
these features in our case, we have to partially adapt them. In the following, each
feature is briefly explained, including why we assume an importance and adaption
mechanics if necessary.

• Lot priority (P ): Each lot is assigned a priority at fab entry.
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Table 6.1: Features considered in the analysis

Origin Feature Abbreviation

Li
te
ra
tu
re

Priority P
WIP in fab WIP
WIP in queue (prod./non-prod.)* wipX

Job Arrival Time qt

Inter-Arrival-Time IApreX

Inter-Departure-Time IDpreX

Machine (group) utilization upreX

Machine (group) availability a

Prev. (1/3/10) waiting time* min/max/µ/σ2(wtpreX)

Prev. (1/3/10) processing time* min/max/µ/σ2(ptpreX)

Nbr. of operation loops l

Product mix in fab pmfab

Ex
pe
rts

Product mix in queue pmqueue

Nbr. of different products in the queue nqueue

Time since last departure dt

WIP profile WIPdist

Similar operations waiting qlsim

Waiting times at t0 in queue wtdist|t0
Level of completion of lot at t0 complt0
Shift S

Weekend w

Holidays h

Previous operation oprev

Layer L

Stage Stcur/total

* This feature represents a set of features which is summarized for clarity.

In all further steps, those features are handled independently.
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Table 6.2: Type and set size of the considered features.

Abbreviation Type Set Size
P Nominal cat. 3
WIP Ordinal cat. 1
wipX Ordinal cat. 3
qt Cont. 1
IApreX Cont. 2
IDpreX Cont. 2
upreX Cont. 2
a Ordinal cat. 5
min/max/µ/σ2(wtpreX) Cont. 9
min/max/µ/σ2(ptpreX) Cont. 9
l Ordinal cat. 1
pmfab Cont. 10
pmqueue Cont. 10
nqueue Cont. 1
dt Cont. 1
WIPdist Ordinal cat. 10
qlsim Ordinal cat. 1
wtdist|t0 Cont. 10
complt0 Cont. 1
S Nominal cat. 3
w Nominal cat. 2
h Nominal cat. 2
oprev Nominal cat. var.
L Nominal cat. var.
Stcur/total Nominal cat. var.
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Table 6.3: Acknowledgment of features in past publications

Paper Feature

P W
I
P

w
ip
X

qt I
A

I
D

u
p
r
e
X

a w
t p
r
e
X

Chakravorty and Nagarur (2020) X

Wang et al. (2020) X X X X

Lingitz et al. (2018) X X X X X X X X

Wang et al. (2018b) X X X X

Zhang et al. (2018) X X X X X

Wang and Zhang (2016c) X X X

Chen (2016) X X X X

Meidan et al. (2011) X X X X X

Chen (2007) X X X X

Backus et al. (2006) X

Chung and Huang (2002) X X X X

p
t p
r
e
X

A
M
H
S

l p
m
f
a
b

Chakravorty and Nagarur (2020) X

Wang et al. (2020) X X

Lingitz et al. (2018) X

Wang et al. (2018b) X

Zhang et al. (2018) X

Wang and Zhang (2016c)
Chen (2016)
Meidan et al. (2011) X X

Chen (2007)
Backus et al. (2006)
Chung and Huang (2002) X X
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– Importance: This priority refers to the importance and urgency of the lot,
which is especially important for scheduling during manufacturing and
therefore considered an influencing feature.

• Work-in-progress (WIP ): TheWIP is defined as the number of lots currently
in operation in a machine group and the number of lots currently waiting in
front of the machine group.

– Importance: This feature is considered an important feature impacting the
cycle time in nearly all publications dealing with this topic. This is in line
with Little‘s law, which defines a direct correlation between the amount
of customers in a system and their time in the system.

– Adaptation: Since there exist productive and non-productive lots, i.e.
lots used for testing and maintenance purposes, the WIP for all jobs are
calculated for productive lot types (wipp) and for non-productive lot types
(wipnp) individually. The resulting totalWIP in the machine group equals
the sum of both features, but is not used as a feature to avoid redundant
information. Additionally, the WIP of the total fab (WIP ) is considered.

• Arrival time in the day (qt):

– Importance: It is of relevance for batch-building (group of lots to be
processed together) operations, in which rate other lots arrive or depart.

• Inter-arrival (IA) and inter-departure times (ID): Let atl be the time of
the arrival and dtl the time of the departure of lot l. IA and ID are defined as
the time between the arrival/departure of the current and the previous lot of the
same operation type:

IAl = atl − atl−1 (6.1)
IDl = dtl−1 − dtl−2 (6.2)

The order of the lots is defined by the corresponding arrival timestamp.
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– Importance: For batch operations, it is of importance in which frequency
other lots arrive.

– Adaptation: For both features, the last inter-arrival (IApre1) and inter-
departure time (IDpre1) as well as the rolling average of the last 10 values
(IApre10; IDpre10) are utilized as features.

• Utilization of machine groups (u): For each machinem in machine groupM
there is an available processing time (cat|m) and an occupied time (cut|m) in a
defined time window t = t0 − x→ t0, e.g. an hour. They can be expressed as
follows, withM as group of machines capable to process o:

cat|M =
∑
m∈M

cat|m (6.3)

cut|M =
∑
m∈M

cut|m (6.4)

The utilization (upreH ) is the share of the occupied time on the available
processing time:

upreX =

t0∑
t=−X

cut|M

cat|M
(6.5)

– Importance: The utilization of the equipments indicates the available
capacity for the process execution and is therefore a common feature.

– Adaptation: We obtain both, the utilization in the past hour (upreH ) as
well as in the past day (upreD) to indicate recent developments in the
utilization of the equipments.

• Availability of machines (a): In the context of this paper, the availability is
defined by the number of available machines which are able to execute the
operation.
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– Importance: This is a common feature in literature, as the availability
of processing tools has direct impact on the waiting time in the machine
group queue, as it determines the availability of capacity.

– Adaptation: We obtain the number of machines in each equipment state
("available", "repair", "maintenance", "setup", and "shutdown") as fea-
tures in order to enable learning on the composition of the machine states
in the machine group and its consequences on the waiting time.

• Processing time (ptpreX ) and waiting time (wtpreX ):

– Importance: Several publications use the previous cycle time as influenc-
ing features to predict cycle times.

– Adaptation: In this paper, we split up the cycle time to acknowledge the
fact that both values do not share the same distribution. Additionally,
we indicate both values of the last finished operation, of the previous 3
and of the previous 10 recently finished operations of the same product-
operation-combination, because it could help to indicate recent trends in
both values. Since these features vary (except for the very previous waiting
and processing time), the minimal (min) and maximal (max) value, the
mean (µ) and the variance (σ2) of wt and pt are added as features.

• Product mix in the fab (pmfab):

– Importance: An increasingly complex product mix is more challenging
and therefore further increases the planning complexity. Since increased
complexity impacts the performance of dispatching algorithms, it can
be used as an indicator of the stress level of production planning, in
combination with the overall fab WIP.

– Adaptation: The complexity of a product can be measured by the amount
of layers necessary for its completion. Hence, we indicate the product mix
by the deciles of layers necessary for the completion of all products in the
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fab at arrival time, as well as of all lots in the queue of the equipments
which are capable of executing the operation.

• Number of tool loops (l): This feature indicates whether an operation is
executed for the first time, or is repeated as a rework step.

– Importance: The underlying assumption is that a rework step could get
urgent or could get extra attention from planners, since it is an unforeseen
event.

6.2.1.2 Novel features

In the following, the novel features are listed, including why we assume them to
be a relevant feature for waiting time estimations.

• Product mix in the queue (pmqueue): Despite of the aforementioned pmfab,
we conduct this feature using the same calculation pattern.

– Importance: Similar to pmfab, pmqueue is an indicator of the plan-
ning complexity of the machine group and may be of interest in highly
sequence-dependent production areas, because it indicates the hetero-
geneity of a queue. Hence, it might be of relevance for waiting time
estimations.

• Number of different products in the queue (nqueue):

– Importance: It may be of importance in areas with sequence-dependent
setup times, since a heavy variety of products may lead to increased setup
times and therefore higher waiting time.

• WIP profile (WIPdist): This feature is a measurement of the level of comple-
tion of all lots in the fab at t0. It can be calculated as the fraction of completed
layers and all necessary layers of a lot. We introduce the WIP profile as deciles
for the whole fab as well as for lots in the queue of the machine group.
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– Importance: WIP profile is an essential feature because it is used to decide
how the queues are steered. Products which are close to completion (that
is, products which have a highWIP profile value) are likely to be preferred
by the dispatching algorithm as its completion is directly influencing the
output of the fab, which is a key performance metric.

• Level of completion (complt0 ): This feature indicates the fraction of layers
already completed and the total amount of layers of the lot we are currently
predicting.

– Importance: With this featuere we acknowledge the importance of the
completion level not only for all concurring lots, but also for the lot to be
predicted.

• Amount of similar operations in the queue (qlsim):

– Importance: Similar operations are of the same operation type (inde-
pendent of its product) and can be therefore produced in batches, if the
equipments are capable of processing batches. Hence, a lot could be
preferred if a lot of similar operations is waiting for execution to create
full batches. It is expected that this feature shows no positive effect on
operations where no batch process is involved.

• Waiting times of all lots waiting in the queue at t0 (wtdist|t0 ): In order to
keep a fixed shape of input features, we group the waiting lots in the queue into
deciles of waiting times.

– Importance: This feature is used to extract further information about the
queue participants.

• Shift at t0 (S): Early: 6:00-14:00, late: 14:00-22:00 and night: 22:00-6:00.
Weekend at t0 (w): 1 if lot enters the queue on a weekend, else 0. Holidays
(h): 1 if lot enters the queue during national holidays of the fab location, else 0.
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– Importance: We assume that personal resources differ between shifts,
weekends and holidays.

• Previous operation ID (oprev): This categorical feature is introduced, since in
our use case, the transportation time is included in the waiting time.

– Importance: We assume that it can work as an estimator for the distance
to be transported within the fab.

• Time span since the last departure of a product with the same operation
(dt): This feature indicates whether an operation is executed regularly, rarely
or if the operation is new.

– Importance: The underlying assumption is that the production efficiency
is higher for high-runner products.

• Layer (L) and stage (Stcur) of the current operation: This feature indicates
the lot’s position in the fab.

– Importance: These features might be of interest since products are treated
differently when they are close to completion, or facing a capital-intensive
stage or layer.

• Number of total stages necessary (Sttotal) for completion:

– Importance: This feature shall indicate how complex the respective lot is,
assuming that more complex products shall be of higher priority in certain
dispatching situations.

6.2.2 Feature Selection Framework

The proposed feature selection process is composed of three steps which are ex-
ecuted for each product-operation-combination. The following methodology has
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been derived from a combination of a permutation feature importance calcula-
tion (Breiman (2001)) and a sequential backwards search based on the permu-
tation feature importance values (Huang et al. (2016)). The data set for each
part-operation-combination is divided in a training (50%), a test (25%), and a
validation set (25%) by a random split, applying scikit-learn train-test-split. In
the setup phase of this study we compared the results using a random split with a
time-dependent split. The results were comparable, but since the data set contains
different value ranges over time, we decided to work with a random split.

For each product-operation-combination, we first train a random forest classifier
using the scikit-learn library (Pedregosa et al. (2011)) with the training data set and
execute hyper-parameter tuning using the test set. In the set up phase of this study,
we also tried other modeling techniques (e.g. Multi layer Perceptrons, Recurrent
Neural Networks), and the results show to be comparable. Hence, we decided
to focus on Random Forests in the course of this study. We trained a model
for each product operation-combination as the so-called baseline model, using
all previously introduced features. Second, we evaluate the performance of the
baseline model on the validation set in order to ensure that the model is evaluated
on unseen data. Note that only baselinemodelswith a sufficient performance score
are suitable for feature selection and consequently, all models with low predicting
capability are erased from further analysis. In the third step, a Permutation
Feature Importance (PFI) based feature reduction is executed for each model. A
scikit-learn based model with optimized hyper-parameters is trained with only the
identified relevant features. Finally, we evaluate the performance of the optimized
model of a given part-operation-combination against the corresponding baseline
model on the validation set.

6.2.2.1 Baseline Model

The optimal set of hyper-parameters is chosen by a grid search with the python
package scikit-optimize (sko (2020)). The boundaries of the grid search can be
seen in Table 6.4. The hyper-parameters optimized are described in the following,
all other parameters of the method are left at default values. A random forest

68



6.2 Methodology

Table 6.4: The hyper-parameter space for all random forests

Hyper-parameter Value Range

estimators 200 - 2000
max depth 10 - 110
max features [auto, sqrt]
min samples split [2, 5, 10]
min samples leaf [1, 2, 4]
bootstrap [True, False]
warm start [True, False]

is built alongside various hyper-parameters. First, the number of estimators
determines the number of decision trees within the random forest. Second, the
max depth determines the maximum allowed depth of each decision tree. Third,
the max features determines the number of features to consider when looking
for the best split. If it is "auto", then the maximum features is the total number
of features. If it is "sqrt", then the square root of the total number of features
is chosen. The hyper-parameter min samples split determines the minimum
number of samples required to split an internal node. The hyper-parameter min
samples leaf determines the minimum number of samples required to build a
leaf. Hence, splitting points are only considered to be implemented in the tree if it
leaves the defined amount of training samples for the other branches. The hyper-
parameter bootstrap defines whether bootstrap samples are used for building the
trees. Finally, the hyper-parameter warm start defines whether the solution of
the previous call is reused when building the forest, or if a whole new forest is
fitted.

6.2.2.2 Baseline Model Evaluation

Since we face a regression problem, we evaluate the model performance based on
the coefficient of determination (R2). Let ȳ denote the mean of n observations
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ȳ = 1
n

∑n
i=1 yi, and fi the corresponding prediction of the random forest baseline

model. R2 is defined as one minus the share of the explained sum of squares
(SSres) in the total sum of squares (SStot):

R2 = 1− SSres
SStot

= 1−
∑
i(yi − fi)2∑
i(yi − ȳ)2

. (6.6)

Hence,R2 for a given model is 1, if all estimates fi equal the observations yi, and
0, if all estimates equal the mean ȳ.

6.2.2.3 Permutation-based Feature Set Reduction

In the following, we execute a permutation feature importance algorithm Breiman
(2001), which is then used as a sorter in a sequential backwards search. Starting
with the described baseline model and its performance s, for each feature j, the
values in the data set are randomly permuted K-times and the resulting model
performance skj is computed. We deploy the aforementioned coefficient of
determination R2 as performance measure skj . The importance ij of feature j is
defined as the resulting decrease in the model performance by this shuffle

ij = s− 1

K

K∑
k=1

skj . (6.7)

To reduce the influence of random fluctuations in PFI, this process was carried
outK = 1000 times for each feature in every model. One could argue that lower
values are also acceptable, but since this step is computationally inexpensive
(since no models must be retrained), we chose to do it that often.

Afterwards, to identify the optimal feature set for a given problem, we use a
sequential backward search as proposed by Huang et al. (2016), where the PFI
is used as a sorter. This method was compared with a common method for
estimating feature importance in random forests, namely the Gini Impurity feature
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importance (Pedregosa et al. (2011)), in the set up phase of this study. We chose
to instead use the proposed method due to the known problems in high-cardinality
features within this alternative.

6.3 Framework Application

We apply the proposed methodology to real operational data. We first briefly
describe the use case. Afterwards, we analyze the results when applying the
methodology on the described use case.

6.3.1 Use Case Description

The features are evaluated on real operational data from a Bosch Wafer Fab in
Germany. Within this study, we focus on the so-called Diffusion and Lithography
work centers (for more information on the details of those work centers, see
Mönch et al. (2011)). We do so, because they are either tending to be the most
repetitive step in the production process (Lithography), or be capital intensive,
which makes it important to keep utilization high, which subsequently results
in higher waiting times. Additionally, those areas differ in their configuration.
In Lithography, single lots are processed with relatively short processing times
and therefore higher fluctuation in the queues. The loading is done completely
automated. It is especially interesting to analyze Lithography since in the given
case it comes along with significant sequence-dependent setup times. This is
due to the fact that so-called reticles, which define the chip layout, are used. If
two product-operation combinations in the sequence can reuse the same reticle,
no setup time is needed. In opposite, Diffusion operations are produced in
so-called batches, which means that groups of lots are produced together, with
comparatively long processing times. This again could possibly increase the
importance of some features. Additionally, the loading is executed manually, and
no significant sequence-dependency is given. Hence, those two production areas
are ideal to analyze the resulting differences in feature importance. Data from
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the highest volume products from January 2017 until October 2020 was used,
with over 14,000 lots and a total number of over 1.4 million operations located in
Lithography and Diffusion. The highest volume products are of big interest for
a precise prediction, as customers rely on this information in a Just-in-Time or
Just-In-Sequence production. Within this study, we filter out operations that are
either always very short (e.g. test and transportation steps) or occur very rarely
(e.g. some rework steps). In both cases, the practical use of a model would be
very limited. Hence, we have added a constraint of at least 1,000 data points and
at least ten minutes of median waiting time. Additionally, since we are working
with real operational data, invalid data points are in the data set. In the absence
of an identification possibility, we only use the 99.9 percentile in overall cycle
time of lots. Given the fact that each model will be trained on at least 1,000 data
points, subsequently at least one data point per model is removed as an outlier.
Even after removal of outliers, both our target feature (waiting time) as well as the
predictiveness of our input features vary strongly.

6.3.2 Results

We trained models and optimized their hyper-parameters for 262 product-
operation combinations, as described in Section 6.2.2.1. 199 of those models
create predictions for Diffusion operations, while 63 relate to Lithography opera-
tions, as the variety of operations in this production area is smaller. As described
in Section 6.2.2.2, we constrain our analysis to baseline models with a reasonable
minimum of predictive power. Hence, before we perform the feature importance
analysis, we have to reject models, which are not predicting with satisfactory
accuracy. We assume a model to perform well in the given case, if R2 is greater
than 0.3. The threshold was manually chosen to retain as manymodels as possible
while ensuring that an observed change in predictive accuracy can be safely dis-
tinguished from statistical fluctuations, but has to be discussed in further review
(see Section 6.4). Applying this filter step to all our models erases 131 models
from further analysis and leaves 131 models for the next step. For the remaining
131 models, we observe aR2 value of 0.55 for Diffusion and 0.56 for Lithography
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Figure 6.1: Violinplot of the R2 distribution before (left) and after (right) the feature reduction by
production area (dotted lines representing the quartiles)

on the validation data. For each of those models, the permutation feature impor-
tance was calculated and used as a sorter for the sequential backwards search as
described in Section 6.2.2.3.

The performance of the methodology is depicted in Figure 6.1 and Figure 6.2.
Figure 6.1 shows violinplots of theR2-score of the baselinemodels (darker colors)
and the reduced models (brighter colors) distinguished by production area. As
visible, when using the reduced feature set for waiting time predictions, the model
performance remains stable. The mean R2 is only weakly affected (+0.054;
+0.049 in Diffusion, +0.079 in Lithography). From all 131 models, 2 are pushed
below the R2 = 0.3 threshold (both in Diffusion).

To analyze the impact of the feature reduction in more detail, Figure 6.3 shows
the median R2-performance on the test set as a function of the size of the feature
set. For each number of features, we report both the median and the 95% quantile
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Figure 6.2: 95% Boxplots of the change in feature set size by production area

performance out of all models across product-operation-combinations and differ-
ent feature sets. It can be seen that the R2-score drops sharply when going below
five features. This tells us that on average there are only around five features
used to predict the waiting time. This threshold varies only slightly depending on
the product-operation-combination. Interestingly, there is also a slight increase
in the model performance when using 5-10 features, compared to models using
all features. This shows one of the benefits of applying feature selection, as it
safeguards the machine learning algorithm against an overabundance of features.
While the performance of an ideal machine learning algorithm should not degrade
when using more features, small degradations are possible due to distributing the
same data set across more dimensions during training.

At the same time, the size of the feature set could be significantly reduced, as
depicted in Figure 6.2. It can be observed that the approach proposed within this
study reduces the feature set by over 22 features on average and over 20 on median
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Figure 6.3: Development of theR2 score of all models on the test set when the feature set is reduced.
The black line represents the median, and the gray area represents the 95% confidence
interval.

(19 in Diffusion, 32 in Lithography), leaving the models with 20 input features on
average, compared to 42 features initially (52% reduction).

As depicted in Figure 6.4, the feature set used in different production areas of the
fab can differ. Nevertheless, it can be observed that all features are relevant for a
significant fraction of operations in our data. Even the least used featurew is used
in over 34% (34% in Diffusion, 36% in Lithography) of the models. This reflects
not only the complexity of the HMLV fab, but also the heterogenity of inputs
needed to make accurate predictions. However, some noticeable differences in
feature importance can be observed when comparing the two production areas in
our study. It is remarkable that three of the four most used features are wtdist|t0
(89% in Diffusion, 86% in Lithography), WIPdist (81% in Diffusion, 86% in
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Figure 6.4: Feature usage in percent by production area of the operation. All new features are marked
with bold.
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Lithography) and pmqueue (80% in Diffusion, 71% in Lithography), which are
newly introduced features.

Finally, it is remarkable that P (39% in Diffusion, 36% in Lithography) has a
relatively low feature importance, compared with their importance both in past
publications and production planning processes. While this feature is important
for the overall fab performance, our results suggest that it lacks information
relevant for predicting single operation waiting time.

We also studied the difference in feature usage by production area. We consider
difference in feature usage significant if the usage differs by more than 10%
between production areas. The following explanations for those differences were
developed in collaboration with line experts. The complete list of those significant
differences is provided in Table 6.5. As can be observed, those features can be
distinguished by the production area where the feature is more important.

The features more relevant in Diffusion are time-related features, providing inputs
on the waiting (min(wtpre3,min(wtpre10, wtpre1, µ(wtpre3), σ2(wtpre10) and
σ2(wtpre3)), the processing (µ(ptpre10)) and the arrival (IApre1) and departure
times (dt). Their relative importance stems from higher range of processing times
in Diffusion due to batch building, which increases their impact.

Lithography operations react more directly to WIP-related features such asWIP

and wipp. Lithography is the central work center in the fab, which comes along
with a higher connectivity to all other fab production areas. Hence, models
in Lithography will be more sensitive to a feature providing details about the
overall product mix in the fab. Additionally, features indicating the position
of the lot in the process, such as L and Stcur, seem to be of greater interest
in this production area. Since more advanced planning tools are used within
Lithography, the system intends to optimize the throughput. Hence, the position
of a lot within its own completion process is used by the dispatching system,
which results in a greater importance of those features within Lithography. In
summary, reasonable qualitative explanations for most observed differences in
feature importance between the two production areas could be found.
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Table 6.5: Difference in feature usage by production area

Production Area Feature Difference
D
iff
us
io
n

min(wtpre3) 20%
min(wtpre10) 18%
wtpre1 17%
IApre1 16%
dt 16%
µ(ptpre10) 14%
µ(wtpre3) 14%
σ2(wtpre10) 12%
σ2(wtpre3) 10%

Li
th
og
ra
ph
y L 32%

Stcur 27%
WIP 24%
wipp 19%

6.4 Discussion

The purpose of this study is to analyze possible features influencing the waiting
times in a HMLV fab. To the best of our knowledge, this is the first analysis of this
kind yet. The originality of our study lies mainly in the following three points:
First, real operational data from a HMLV wafer fab has been used to examine the
feature importance. Second, a large selection of features gathered from a thorough
review of previous studies has been applied and expanded with features derived
from operational experience. Third, feature selection methods were investigated
and a framework is proposed that allows to train performant models for different
products and operations without the need of manual feature selection. By studying
feature importance down to the level of product-operation-combination, we are
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able to show that feature importance differs between operations and work centers.
1 It could be shown that a variety of features is needed to make accurate waiting
time predictions in a HMLV fab, including features which were first introduced
in this study. We hope to provide the scientific community with features that will
also prove useful in other studies.

While this study was conducted to the best of our knowledge, there are some
limitations to it, which need to be discussed. First, it has to be mentioned that
if we make a statement that a particular feature is not commonly used in our
models, it does not necessarily mean that this feature does not contain any useful
information for such a prediction. The applied feature reduction method filters –
apart from features that do not contain any information relevant for the prediction
– features that contain redundant information. In doing so, the feature information
of for example the lot priority could be included in other features already. Second,
the data set used in this study is from one particular wafer fab. Hence, the
influencing features could differ considering other fabs, especially when they
diverge in terms of automation, size and dispatching policies. Therefore, it would
be of great interest if the proposed methodology was used to evaluate feature
importance in a low mix fab and to compare those results. Another limitation
of this study is the generally low prediction accuracy of the developed models.
As described in Section 6.2.2.2, the models were eligible for further analysis if
their R2 score is higher than 0.3. One could argue that this is too low, leaving
room for interpretation whether the resulting feature importance is valid, but the
authors feel that the innate variability of the data does not allow for more accurate
predictions. It would be of interest to analyze the confidence intervals of thus
produced predictions, which could be a possible follow-up study.

Another limitation is due to the fact that we had to stick with the data available
in this specific use case environment. Hence, there are several features which

1 It is possible to predict total waiting times with one, monolithic model, as has been shown in
the literature. However, this would require much more complex methods to evaluate feature
importance between different products, operations and work centers, which is the main goal of
this publication.
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are quite obviously important, but cannot be taken into consideration. The two
main reasons for ommitting features are the sensitivity of personal information
like shift assignments and qualification and missing links in real world database
systems. Hence, information from the AMHS, as for example used in Wang et al.
(2020) are not present in the data.

While the methodology was designed to our best knowledge and delivers valuable
results, one can criticize their conception. This criticism can be distinguished
into three part. First, there are other options how to design the feature selection
method. Applying other feature selection methods and comparing them with our
approach is conceivable. Recently, Wang et al. (2020) reported that applying a
network based key factor identification approach to obtain the direct correlation
between influencing factors resulted in a higher predicting accuracy on cycle time
than a prediction model with all factors. It would be very interesting to obtain
the performance of this approach in our HMLV fab and compare it to the results
achieved in this publication. Second, the chosen focus on the mentioned modeling
technique can be criticized, since other statistical approaches such as Kernel Ridge
Regression, Bayesian Regression or Stochastic Gradient Descent may outperform
our models in terms of forecasting accuracy. It would be of great interest if the
appropriateness of our choice would be challenged in future publications. Third,
the training methods used in our methodology can be designed differently. We
tried another method in the setup phase of this study to observe whether random
and time-related splits perform differently. Nonetheless, it would be of interest to
conduct experiments about the impact of the train-test-validation split ratios. To
keep the focus of this study, we fixed those variables to common practice values,
but other configurations may lead to better results. Hence, again, this would be
of great interest to investigate in future publications.

Finally, as already mentioned in Section 6.3, the explanations provided for the
deviations in feature importance between the production areas are only qualitative
and lack measurability. It would be of great interest to enhance this methodology
to enable a standardized root cause analysis of the results. However, this is not
possible yet to our knowledge.
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6.5 Managerial Implications

The results of our study indicate not only the heterogenity of information ne-
cessities, but also the increasing needs for improved data quality and advanced
prediction features when controlling HMLV fabs. Scheduling decisions and cycle
time predictions which are based on the same feature sets as in low-mix fabs will
inevitably result in non-optimal fab utilization and consequently in cost inefficien-
cies and delayed supply. To our knowledge, the data required to compute the novel
features is already available. However, as the features themselves are computed in
normal operation, their subsequent calculation is complex and time-consuming.
Therefore, we encourage decision makers to invest in and maintain improved and
extensive data warehousing to facilitate employing the beforementioned and other
possible features for predictions.

6.6 Conclusion

The objective of this study is to provide a holistic overview of influencing features
on the waiting times in a HMLV semiconductor wafer fabrication and to analyze
those features regarding their importance. Three conclusions can be drawn from
this study. First, we were able to prove the importance of all features in the
context of our HMLV fab. We demonstrate that each feature is relevant for
waiting time prediction which highlights the extensive demand for information
when controlling HMLV fabs. At the same time, however, we show that feature
set reduction is beneficial for the precision of our prediction models. Second, our
results indicate that also the novel features introduced in this study have significant
impact on the waiting time predictions in the semiconductor wafer fabrication and
should therefore be included in future methodologies to predict cycle- and waiting
times. Third, we have shown that it is possible to include all features used in
the proposed methodology and find the optimal set of features for each product-
operation combination automatically. Nonetheless, regardless of the number of
features used or the model complexity, a prediction gap remains. The complexity
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of the semiconductor wafer fabrication with thousands of mechanical, human and
process-related influencing features can not be covered completely by a model
using the currently available data. Therefore, it will be of interest to see future
developments in this field, when the advancing application of industrial internet
of things (IIOT) will further increase data availability.

In future research it would be of great interest to challenge the limitations discussed
above. Therefore, the performance of the proposed system with other modeling
techniques and larger or different data sources is a valid next step for further
research. The ultimate goal is predicting lot cycle times. While the waiting times
are of interest for internal planning, the information relevant for customers is the
influence on the completion date. Hence, we will focus our next studies on the
connection of the models developed in this study to come up with a framework
for lot cycle time predictions.
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In the previous Chapter 6, we have developed and tunedmodels to estimate waiting
times of operations. Since the ultimate goal is to estimate waiting times – and
approximate processing times – with models for each operation along a route,
so that in the end those estimations can be summed for a cycle time estimation,
the next question is to identify the routes for a lot. As explained in Section 4.1,
the estimation of the route a lot will take is a non-trivial task. Unlike waiting
times, which – as shown in Chapter 6 – can be estimated using a set of influencing
features, route estimations depend on features which are not known yet. Thus, the
approach chosen in this thesis is to draw a route based on the route probabilities.
While it is a potential connection point for future research to develop a machine
learning based route approximation, this is not in the scope of this thesis. In order
to draw a route based on the route probabilities, we introduce a methodology to
identify the set of routes and the route probabilities.

As mentioned before, routes consist of a sequence of operations within a stage.
The goal is to identify all possible routes and quantify their probabilities. A route
probability is computed by calculating the fraction of lots of a product type that
have taken the route divided by all lots of a product type for a given time period,
using the lot traces in this time period. Thus, the probabilities of all routes sum up
to 1 for each stage. Two things have to taken into consideration for this calculation:

1. The eligible sequences of operations are constantly changing over time,
mostly due to the work of quality and product engineers that are working
on process and quality improvements. Their updating time is tracked in a
database. Therefore, when identifying routes and their probabilities, it is
not valid to use the complete history of operation sequences in a stage, as
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most of them are not possible anymore. Those routes that are possible at a
point in time are called active routes.

2. When deriving the route data the active routes are available for this time
point. Nonetheless, there is no history of active routes available in the given
use case. Consequently, it is not possible to know the active routes for each
time point, just for the snapshot when the data was acquired. Nonetheless,
the history of routes of past lots – which we call historic routes – is known.

To copewith these problems, we create a two-fold approach: One algorithmmakes
use of the currently active routes and is therefore intended to be used in operations.
This approach is introduced in the upcoming Section 7.1. Additionally, another
algorithm approximates the active routes for any given time point by using the
historic routes and is therefore used for the validation of the cycle time estimation
methodology, where cycle times from lots in the past are estimated and compared.
This approach is introduced in Section 7.2.
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Figure 7.1: ARA: Using active routes RARA,s, while the probabilities p(ractive) are calculated
based on the traces, filtering the lots within the traces by a time window twARA. This
time window is determined by the last route update of any route in the stage. The lot start
qt has then to be within this time window.

For operational use, we develop an algorithm to identify the currently active routes.
In the following, this algorithm is called "active route approximator" (ARA). Its
basic functionality of choosing the possible routes from a different source than
their probabilities is shown in Figure 7.1. It looks up all active routes and then
calculates the route probabilities within a given time window twARA. This time
window is determined by the aforementioned newest updating time of any route
in a stage. This time point ts is defined as follows, with ts(r) as the point in time
when the route ri out of R possible routes in stage s got its latest update:

ts = max(ts(r1), ts(r2), ..., ts(rR)) (7.1)
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The issue with ts is that all routes are equally important. Consequently, it could
happen that a route which occurs rarely could remove a majority of the lots from
the data set. Therefore, a threshold is introduced, on which routes are considered
to define ts. We evaluate three policies how to choose the route set for each stage:

• Top 5: For each stage, the five routes with the highest probability in
the considered time window are chosen. This sets an upper bound to the
calculation complexity for every stage, but could fail to cover a large amount
of routes that were taken by a significant fraction of lots in the considered
time window.

• 0.1% probability: For each stage, all routes are chosen which were used
for more than 0.1% of all lots in the data from the considered time window.
This policy removes those routes which are very unlikely to be followed.
Nevertheless, it is still possible that the route set has a high extent (leading
to higher calculation times) or the coverage is not sufficient, if the tail of
route probabilities is long.

• >99% coverage: For each stage, we add the routes in descending order of
their rate of occurrence to the route set, until a coverage of 99% is reached.
This policy installs a lower bound to the coverage, but can result in big route
sets, which ultimately leads to long calculation times.

The route reduction policy is implemented in the methodology as a parameter,
but since the ARA is of limited use for the validation of the cycle time estimation
methodology, we are not covering a numerical analysis of the route selection policy
within this thesis. Nevertheless, the coverage of routes using the different policies
is shown in Figure A.1, showing that even with the Top 5 approach, over 90% of
all lots are covered for our dataset. Thus, we propose to apply this policy during
operational use, since if leaves the most lots in the data set and therefore increases
the accuracy of the route probabilities at the expense of ignoring infrequent routes.
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Figure 7.2: HRA: Using the possible route set RHRA,s as well as their probabilities p(rhistoric)
based on the traces, which are filtered based on a time window twHRA. twHRA is a
free parameter and has to be set.

Since the active routes are not known for any given time point, a methodology is
needed to approximate them. For the purpose of the analysis of the cycle time
estimation of the proposed methodology, which is done based on past lot cycle
times – and therefore also past and possibly outdated routes – we establish another
algorithm, which approximates the possible routes and their probabilities at any
given time. This algorithm is called "historic route approximator" (HRA). Its
basic functionality is visualized in Figure 7.2. It approximates all active routes
and their probabilities purely based on their occurrence in a time window twHRA
right before the lot start, which enables route estimations at any point in time.
Nonetheless, it has to be highlighted that this approach is only an approximation
for the actually available routes at any given time. It is possible that major route
changes occur within this time window and therefore routes are chosen that are
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not available anymore. For HRA, we can not use route updating times to estimate
the time window, because they are not known for non-active routes. Therefore,
the goal is to find an optimal time window twHRA, for which we propose a
methodology in the following.

To determine the time window twHRA, we compare the route probabilities of
ARA p(rARA) for the time point where the data set was extracted with the route
probabilities for the same time point using the HRA – with time window twHRA
– p(rHRA|twHRA). Thus, we check the deviation of HRA from ARA and try
to minimize this deviation by choosing a time window. This is the only point in
time where the actually active routes are known. This results in the difference
∆(p|twHRA)s. Hence, we use the probabilities from the ARA from this point in
time to compare them with the probabilities of the HRA, using a time window
twHRA. This process is shown in Figure 7.3.
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Figure 7.3: Determining the probability difference ∆(p|twHRA)s of ARA and HRA for a given
time window twHRA in a stage s by calculating the mean deviations of the probabilities
of ARA (p(rARA)) and the probabilities of HRA (p(rHRA|twHRA)) for every route
ri ∈ RARA,s ∪RHRA,s.
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Since the route sets from both the ARA and the HRA are combined, probabilities
of 0 for some routes can occur for both methodologies. We now choose twHRA so
that the difference∆(p|twHRA)s gets minimal. This is done by applying different
values for the twHRA and calculating the corresponding difference.

It has to be underlined that the definition of the optimal time window for the HRA
is a free parameter, which can affect the performance of the method. Since the
active routes are only available for the time point when the data was acquired –
and therefore no history of active routes is available – there is only one time point
where those two approaches can be compared. The optimality of the resulting
time window is therefore not provable given our available data and cannot be
generalized. It is possible to collect the active routes over a longer period of time
and therefore create the foundation for a more detailed analysis of the optimal
time window for the HRA, but this is not in the scope of this thesis. This can
be a connection point for future research, since it would enable the proof of the
generalization capability of the HRA.

While the HRA is a necessity to evaluate the given case, it is recommended to
use ARA when deploying the proposed methodology. The approximation of the
optimal time window for HRA in the given case is executed in Chapter 9.

We have now introduced all aspects of the methodology. Before the method-
ology can be applied to real operational data, the issue has to be resolved that
feature values are not known at any point in time, which was assumed in Chap-
ter 6. Therefore, we introduce techniques to deal with feature uncertainty in the
following.
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In the two previous chapters, methods to estimate waiting times and to estimate the
route of a lot were presented. In this chapter, we will introduce ways to estimate
feature values under uncertainty, which is necessary for waiting time estimations
along a route. In Chapter 6 a broad variety of features has been introduced and is
further considered for estimation. The impact of those features on the estimation
capabilities of models has been evaluated under the assumption that the value of
each feature is known for every point in time. While this is true for the past –
which made it possible to train models on it – this assumption does not hold for
estimations in the future. If a lot is started at t = 0, features are measurable
for this time point. Afterwards, they can only be estimated. Different strategies
for feature estimation are needed, depending on the data source for the features
and their types. We present in Section 8.1 how the features are are grouped by
type and what needs to be considered for each of those groups. Afterwards, we
propose several feature estimation methods for the future in Section 8.2.

8.1 Feature types

Features are distinguished into four groups: route-based features, lot history-
dependent features, equipment-group history dependent features and fab history-
dependent features. Those feature groups are presented in the following. The
features which belong in each group are named and highlighted, while their
definitions were presented in Chapter 6. Unless noted otherwise, the definition
and computation of those features has not been changed compared with Chapter 6.
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The features, their categorization and the corresponding estimation method are
summarized in Table 8.1.

Table 8.1: Features, their categorization in Deterministic (1), Lot history-dependent (2), Equipment
group history-dependent (3) and fab history-dependent, as well as the corresponding esti-
mation method.

Feature Categorization Estimation method
Priority 1
WIP in fab 4 Section 8.2
WIP in queue (prod./non-prod.) 3 Section 8.2
Job Arrival Time 2 Lookup
Inter-Arrival-Time 3 Section 8.2
Inter-Departure-Time 3 Section 8.2
Machine (group) utilization 3 Section 8.2
Machine (group) availability 3 Section 8.2
Prev. (1/3/10) waiting time 3 Section 8.2
Prev. (1/3/10) processing time 3 Section 8.2
Nbr. of operation loops 1
Product mix in fab 4 Section 8.2
Product mix in queue 3 Section 8.2
Nbr. of different products in the queue 3 Section 8.2
Time since last departure 3 Section 8.2
WIP profile 4 Section 8.2
Similar operations waiting 3 Section 8.2
Waiting times at t0 in queue 3 Section 8.2
Level of completion of lot at t0 1
Shift 2 Lookup
Weekend 2 Lookup
Holidays 2 Lookup
Previous operation 1
Layer 1
Stage 1
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8.1.1 Deterministic features

A feature is perceived as deterministic, if it is known a priori or once the route is
drawn. As described in Chapter 7, each lot will take a route option. While the
route is not known beforehand, some features are known at the time point when
the route is drawn, because it is determined by the route. The previous operation
of an operation is determined by the route, as well as the level of completion of
a lot at any given time point. Furthermore, the number of operation loops is
known once the route is drawn. Additionally, we use features whose values are
deterministic anyway. The Stage and the Layer are always known, irrelevant of
the chosen route. Features belonging in this group do not need further uncertainty
handling, because they can be assumed to be known. Thus, we treat those features
accordingly.

8.1.1.1 A special case: The lot priority

The lot priority is a special case of an impact factor. This feature is the main
leverage point for line controllers in SC manufacturing environments. In theory,
the priority gets assigned a priori before lot execution starts, whichwouldmake the
priority a route-based feature, as described in Section 8.1.1. During lot execution,
the priority can be changed. The most common reason is an upcoming demand
due date, which consequently triggers a priority increase by a line controller. This
is numerically analyzed and displayed in the Appendix (Figure A.2), using the
data to be used in Chapter 9. While there are changes in the priority during the
lot execution, it is not in the scope of this thesis to include them in the model.
Consequently, the lot priority is handled as a route-based feature, assuming that
the priority is not adjusted during lot execution. Hence, we do not try to estimate
interventions by production control within this thesis. Hence, it is used as a
connecting point for future research.
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8.1.2 Lot history-dependent features

The second group of features depend on the lot history. Unlike route-based
features, lot history-dependent features are not known once the route is drawn,
but are assumed to be exactly determined when all calculations before this point
were correct. For example, the time point when a lot enters a certain queue and
the job arrival time are deterministic, if all previous waiting and processing time
estimations are correct. If so, the shift in which an operation is executed is also
known. Similarly, whether the operation enters the queue on a weekend and/or
on national holidays is known.

We decide to look these features up at the point in time when all previous pre-
dictions of this scenario indicate it to be, because it seems to be the most valid
guesser. A further randomization of these features is not expected to be beneficial.
Hence, the optimal strategy to cope with uncertainty for those features is to look
them up at the point in time where the lot history indicates them to be executed.

8.1.3 Equipment-group history-dependent features

The third group of features depend on the equipment-group history. Unlike the
first two feature groups, features which are equipment-group history dependent are
not dependent on the lot for which the estimation is made, but on the equipments
capable of executing an operation at a certain time point. The features are
calculated for every full hour of the data set. Thus, arrival times of lots are binned
for the lookup. These features reflect the past behavior of these equipments. It
includes all previouswaiting time and previous processing time features, as well
as all features related to inter-arrival time and inter-departure time (including
time since last departure), as well as all features describing the queue (product
mix in the queue,waiting time distribution in the queue andWIP in the queue)
and the utilization of equipments. Since these features are highly variable over
time, an estimation within a simulation is fairly complicated and detracts from one
advantage of the proposed methodology: its calculation speed. Consequently, it
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is tested within this thesis whether those features can be approximated by (rolling)
averages over the past, or by random draws from their historical distribution.
These distribution is flat in time, since the feature values are calculated per full
hour. Another question to investigate is whether those feature values shall be
drawn independently from each other, or all together, in order to avoid impossible
combinations of feature values.

8.1.4 Fab history-dependent features

The fourth group of features depend on the fab history, describing the overall fab
status. Features that belong in this group are the WIP in the fab, the product
mix in the fab, as well as theWIP profile. They are accumulations of the status
of each equipment-group and are measured for set time intervals – in our case full
hours.

Similarly to equipment-group history-dependent features, those features are ap-
proximated with different uncertainty handling techniques in the course of this
study. For operational usage, we assume that it is possible to receive the expected
values of such features from other entities, since they are solely dependent on pro-
duction start planning. The exact movement of lots through the fab is irrelevant
for the estimation of those features, so that they should be known in a short-term
time window of weeks and at least possible to approximate for mid-term time
windows of months.

8.2 Feature estimation strategies

Since it is not possible to know all features at all time points, strategies have
to be developed to estimate them at any given time point. As described before,
the features can be distinguished by their dependencies, resulting in a need for
such a strategy for equipment group history-dependent and fab history-dependent
features. We discuss four possible strategies. We will apply those strategies
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afterwards in Chapter 9 to evaluate their impact on the predictive capability.
From this evaluation we derive a proposal for the preferred strategy.

All strategies have in common that they intend to approximate feature values at
any time point by past (and therefore known) values, using either the median,
or a random draw within a chosen time window. Additionally, the features are
either approximated from the lot start time point (fixed time window), or from
each operation start time point (rolling time window). Thus, the strategies can be
split up along these parameters, as shown in Table 8.2.

Table 8.2: Overview of the uncertainty handling strategies

picking strategy
median draw

tim
e

w
in
do
w fixed Section 8.2.1 Section 8.2.3

rolling Section 8.2.2 Section 8.2.4

We discuss these approaches in more detail in the following.

8.2.1 Median feature values in fixed time windows at lot
start

Since all feature values after the queue entering time qt are assumed to be un-
known, the first strategy is to fix those values to the level they had before this
time point. Within this time window, an aggregation method can be chosen for
each feature to determine an overall feature value in a given time window. Thus,
the longer the time window, the heavier the smoothing. This strategy is shown in
Figure 8.1.

The most intuitive aggregation method is the sample mean over the time window
x. As described before, most feature distributions have a tail towards high values,
which induces a bias towards higher values when using the mean as the estimator
for a given time window. Due to the absence of a dedicated outlier removal
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Figure 8.1: Feature approximation approach, which uses an aggregation method in a time window
before the lot start qt to estimate the feature values for any operation o1, ..., oN along a
route.

methodology for features, the median x̃ instead of the mean is used here as the
estimator within a given time window.

Before comparing this method with other methods, the time window has to be
defined. Since it is unclear how the choice of time interval impacts the estimation
accuracy, several time windows are compared by MAE of the final cycle time
prediction to choose the time window with the lowest resulting value. The details
of how we arrive at this choice are given in Section 9.6.1.

8.2.2 Median feature values in rolling time window

Another feature estimation method is the usage of rolling time windows when
calculating aggregation values of features for all predictions, as it is shown in
Figure 8.2. It is expected that this methodology provides more flexibility and
more accurate approximations of the feature values for data sets that span a long
time period. The calculation of an aggregation value follows the same procedure
as for fixed time windows. In the following, the median is used. Similar to the
previous approach, the time window has to be investigated. A study of this is
presented in Section 9.6.2.
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Figure 8.2: Feature approximation approach, which uses an aggregation method in a time window
before the operation start to estimate the feature values for any operation o1, ..., oN along
a route.

It has to be mentioned that a cycle time estimation at lot start is not possible
with this approach, because it requires inputs that are not known at this time
point. Nonetheless, this approach can be used when the predictions are constantly
refreshed, which is of interest for example in dispatching or operation completion
estimation. Additionally, this approach provides insights on the solution quality,
if the cycle time estimation was connected to a simulation that predicts the feature
values. To follow this approach, only a rough estimation of those feature values
is needed since this approach uses aggregated instead of exact feature values.

8.2.3 Draw of feature values in fixed time window

Feature values can be drawn from their own historical distributions in a given
time window, which is shown in Figure 8.3. Each feature f is represented by a
distribution function obtained from histogramming historical feature values per
lot. This results in a distribution discrete values distribution function p(x) =

P (x ∈ S), where S = {x1, x2, ..., xk} with xk as possible feature values. S
therefore represents all possible feature values for f . If these values are sorted
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Figure 8.3: Feature approximation approach, which uses a random draw in a time window before the
lot start qt to estimate the feature values for any operation o1, ..., oN along a route.

in ascending order, the cumulative distribution function (CDF) F (xj) of feature
value xj is defined as follows:

F (xj) =
∑
i≤j

p(xi) (8.1)

By slicing the interval (0, 1) into sub-intervals (partitions) the draw is done based
on the CDF-value of the variables:

(0, F (x1), ..., F (xk−1), 1) (8.2)

Subsequently, a random variable U = Uniform(0, 1) is drawn, and it is ob-
served, in which partition it is located. Similar to the approaches described in
Section 8.2.1 and Section 8.2.2, the time window of the value draw is up to further
evaluation. A detailed numerical analysis on finding the optimal time window for
this purpose is conducted in Section 9.6.3.

Another option is to draw a lot from the past and take the feature values from
it, instead of drawing the values independently from each other. This avoids
impossible combinations of values while limiting the randomness of the approach.
This approach is also evaluated in Section 9.6.3.
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8.2.4 Draw of feature values in rolling time window

Ultimately, it is also possible to use the rolling approach in combination with a
draw of the feature values, as shown in Figure 8.4. Its mathematical foundation
is the same as explained in Section 8.2.3. Within this approach, a value is drawn
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Figure 8.4: Feature approximation approach, which uses a random draw in a time window before each
operation start to estimate the feature values for any operation o1, ..., oN along a route.

not in the fixed time window before qt, but in a time window before the queue
time of every operation. Again, the optimal time window has to be found, which
is performed in Section 9.6.4.

Also, as for the approach described in Section 8.2.3, it is an option to draw the
feature values based on a lot from the past instead of independently choosing
them, as this possibly avoids impossible combinations of feature values. This
approach is also evaluated in Section 9.6.4.
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We have elaborated a methodology to train and optimize models for each oper-
ation, a methodology to identify the route the lot will take, and several method-
ologies to estimate feature values. If waiting times, in combination with approxi-
mated processing times are accumulated along a route, entire cycle times can be
estimated, which results in the methodology described in Section 6.2.

In the following, in Section 9.1, we provide a set of experiments to evaluate the
impact of multiple facets proposed methodology:

• The waiting time estimation, as presented in Chapter 6.

• The route estimation, as presented in Chapter 7.

• The feature estimation, as presented in Chapter 8. This again splits up in
the different estimation methods presented in this Chapter.

Subsequently, in Section 9.2, we present the data set, which is used for the anal-
ysis. Then, in Section 9.3, we investigate the choice of a time window for the
route approximation. Afterwards, we present and analyze the experiments intro-
duced in Section 9.1. This includes both a detailed analysis of each experiment
(Section 9.4-Section 9.6), as well as a comparative analysis of results, leading to
an optimal configuration of the methodology depending on the considered use
case. Even though the goal of this methodology is to enable the estimation of
entire cycle times, there are still other use cases, such as mid- or short-term plan-
ning or just-in-time predictions, which could make use of other configurations
than the ones using both the feature and the route estimation. The chapter is
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concluded by a comparative analysis of the methodology (in its chosen configu-
ration) with industrial standard approaches in Section 9.7, which were introduced
in Section 4.2.

9.1 Design of experiments

Table 9.1: Set of experiments conducted within this thesis.

Experiment Route Features Time window Section
0 known lookup – Section 9.4
1 draw lookup – Section 9.5
2 draw median fixed Section 9.6.1
3 draw median rolling Section 9.6.2
4 draw draw fixed Section 9.6.3
5 draw draw rolling Section 9.6.4

Within this section, we conduct a set of experiments to evaluate the performance
of the developed methodology for total cycle time estimation and to analyze
potential future areas for improvement. All experiments are analyzed based on
the KPIs introduced in Section 2.4. We conduct these KPIs not only for all lots
within the validation data set, but also for all lots within this set, which result
in a cycle time of less than 35 days (low cycle time), as well as all lots within
this set with a resulting cycle time of more than 48 days (high cycle time). With
that, we intend to analyze the estimation capability of the methodology for lots
deviating from mean cycle times. We consider two degrees of freedom in this
methodology: First, whether the route is known. If not, the route approximation
algorithm developed in Chapter 7 is applied. Second, whether the feature set is
known. If not, the feature approximation algorithms developed in Chapter 8 are
applied.
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We set up a baseline model, where both degrees of freedom are fixed and the
start time of each stage is known. In doing so, an estimation based solely on
historical data is made. For simplicity, this baseline model is called Experiment
0 from now on. Afterwards, we analyze the impact of the route approximation
by including the route approximation algorithm (Experiment 1) and analyzing
the effect of route uncertainty on the estimation quality compared to the baseline
model. In the remaining set of experiments, we evaluate the impact of the feature
approximation algorithm, using median feature values in a fixed time window
(Experiment 2), median feature values in a rolling time window (Experiment
3), draw of feature values in a fixed time window (Experiment 4) and a draw of
feature values in a rolling time window (Experiment 5). For each experiment we
conduct the aforementioned two-sided t-test to evaluate whether the estimation
is significantly biased. Thus, the null hypothesis for every Experiment x is as
follows:

H0: The distribution mean of Experiment x equals the distribution mean of the
actual cycle time.

We reject the null hypothesis with a significance α = 0.05, representing that, if
the null hypothesis is correct, random draws from both distributions share the
same distribution mean.

Afterwards, we compare these approaches with each other to identify the optimal
strategy and with Experiment 0 and 1 to evaluate the impact of the feature approx-
imation. Within this step, we apply a one-sided t-test to the residual distribution
of each experiment x and the residual distribution of each other experiment y
to investigate whether the mean absolute estimation error of one experiment is
significantly higher than from another experiment. Therefore, the null hypothesis
is formulated as follows:

H0: The mean absolute error distribution Experiment x is greater or equal than
the mean absolute error distribution of Experiment y.
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We reject the null hypothesis with a significance α = 0.05, representing that, if
the null hypothesis is correct, random draws from the residuals of Experiment x
result in a significantly higherMAE than from Experiment y.

Ultimately, we validate it based on the industrial standard approaches introduced
in Section 4.2. We give an overview of all experiments in Table 9.1. Also here,
we use the one-sided t-test to validate our findings.

We provide the analysis of each experiment in the following sections. While we
indicate the aforementioned KPIs and hypothesis tests that are relevant for each
section within the section, we give a complete tabular overview of all KPIs and
t-test results for all conducted experiments in Appendix D.

9.2 Data Set
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Figure 9.1: (a): Average cycle time per month of the chosen product over time and the interval of the
5-95% percentiles separated by the data subsets. (b): Density histogram of cycle times
for the chosen product separated by the data subsets.
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9.3 Route time window determination

For the numerical evaluation, we use operational data from a SC wafer fab of
the Robert Bosch GmbH, as in Chapter 6, using also the same input features.
Thus, the input feature definition and calculation has not changed. The only
difference is that the following analysis is performed only on one high-runner
product, whereas the analysis in Chapter 6 was done on 30 high-runner products.
The data is comprised of the feature values, waiting and processing times for all
operations as well as timestamps when these operations occurred. These data are
collected for all lots starting between December 2018 until March 2021. All lots
executed and finished within this time frame are randomly split into three groups:
First, 60 % of the lots are taken to build the training set, with which all models
are trained, as explained in Section 6.2.2.1. Second, 20 % of the lots are used to
build the test set, with which hyper-parameter tuning and the feature set reduction
explained in Section 6.2.2.3 are executed. The remaining 20 % of the lots are
used for the numerical evaluation. By doing so, we avoid including lots in the
performance analysis that the models have already seen in training.

The average cycle time of the chosen product is shown in Figure 9.1 (a). It becomes
clear that – despite a constant heavy variation – the average cycle time is prone
to underlying trends during some time spans within the data set, for example a
decreasing period during the first nine months. Thus, we use a random split of lots
to avoid that a data subset only covers parts of that trend. Additionally, it can be
observed that the average cycle time in all three data sets vary similarly, indicating
that the positional parameters of the sets are comparable. The distribution of
cycle time within all three data subset is shown in Figure 9.1 (b). No significant
difference in the distribution is visible.

9.3 Route time window determination

As mentioned in Chapter 7, the optimal time window for the route approximation
algorithm has to be defined. To limit the scope of this analysis, we fix the time
window for ARA twARA to 120 days, and only optimize the time window for
HRA twHRA.
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Figure 9.2: Stage-wise deviation of the route probabilities for different time windows

Figure 9.2 visualizes the deviations between the route probabilities of the active
routes and the historical routes with several time windows. As visible, there
are several stages where deviation is constantly 1, irrelevant of the time window.
These stages are the oneswhere the operation set has recently been changed. Thus,
no similarity in the routes from ARA and HRA in these stages are observed. The
mean squared errors (MSE), as well as the sum, squared errors (SSE) for each time
window are visualized in Table 9.2. The differences in deviation due to different
time window choices are negligible (all time windows between 60 and 240 days
result in similar MSE-values), and – as already mentioned – the methodology
does not result in a global optimum, since it can only use one time point (the point
where the data is acquired). Nevertheless, we choose a route time window of 60
days based on theMSE and SSE value comparison.
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9.4 Experiment 0: Baseline estimation on historical data

Table 9.2:Mean squared error (MSE) and Sum of squared errors (SSE) of the different time
windows for the route approximation methodology.

tw [d] 14 30 60 90 120 150 180 210 240
MSE 0.75 0.32 0.21 0.22 0.23 0.22 0.22 0.22 0.22
SSE 43.30 18.30 12.29 12.78 13.53 12.68 12.35 12.60 12.61

9.4 Experiment 0: Baseline estimation on
historical data

To evaluate the capability of a network of models while all degrees of freedom
are perfectly determined, a baseline estimation is introduced. In this baseline
prediction, which is called Experiment 0 in the following, the route as well as
the feature set at each time point are known. Additionally, to avoid a systematical
shift in the look ups, we also assume that the stage start times are known. Hence,
deviations in the predicted sojourn times will not sum up to a mismatch. Apart
from providing a baseline for the evaluation of all other experiments, this set up
is applicable if the goal is to estimate cycle times historically, or to do just-in-time
estimations of individual waiting times. The histogram of the predicted and the
actual cycle time of the validation lots is presented in Figure 9.3. It is distinguished
in absolute values (figure a) and error values (figure b).

Table 9.3: Key performance metrics for Experiment 0 for all validation lots.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
0 45.75 44.33 0.36 8.33 9.47 0.0 4.76 6.38 8.45

As visible in Table 9.3 an MAE of 6.38 days is observed, meaning an average
deviation of approximately a week. The ME of 4.76, representing the bias
of the estimation, indicates that a positive systematical error is included in the
deviation. This is underlined by the p-value of the two-sided t-test, indicating
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9 Numerical evaluation

that the hypothesis that the means from Experiment 0 and actual are identical can
be neglected. This is also visible in the histograms. Thus, a δ(MAE) of 75%
indicates that 75% of the variance can be explained with the systematical error,
while 25% is due to unexplained variance.
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Figure 9.3: Distribution of predictions for Experiment 0

The development of the cycle time using Experiment 0 compared to the actual
cycle time development is visualized in Figure 9.4. The seasonal and overall trends
are similar in both lines, even though the mean of Experiment 0 is nearly all the
time higher than the mean of the actual values, indicating the systematical error
mentioned before. Nevertheless, it is observable that the error of the estimation
is significantly higher in 2019 and 2020 than afterwards. This is also underlined
by the study of KPIs for lots in 2021 shown in Table D.7. Thus, it is possible that
the observed correlations between the input features and the waiting times in this
time span were different than the ones afterwards, leading to the question whether
a reduction of the time span could significantly reduce the estimation error. We
discuss this question in Section 10.1.
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9.4 Experiment 0: Baseline estimation on historical data
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Figure 9.4: Average cycle time over time for Experiment 0 and the actual cycle time.

It is also possible to analyze the behavior when the stage start times are not known.
By doing this, we extract the impact of the knowledge of the start times for the
estimation quality. We call this sub-experimentExperiment 0*. We expect that if
stage start times are not known the estimation accuracy decreases, because errors
over time sum up, leading to more incorrect lookups of feature values for later
operations. The corresponding histograms are visualized in Figure 9.5. The cycle
time development comparison of those Experiments would exceed the scope of
this thesis, but is shown in Appendix C.
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Figure 9.5: Distribution of predictions for Experiment 0 and Experiment 0 without the knowledge of
the stage start times (Experiment 0*)

As visible in Table 9.4, without the information about the stage start times, the
MAE increases to 8.42, and the ME to 7.61, which indicates that the absolute
error mainly derives from a systematical error. Accordingly, the null hypothesis
of the corresponding two-sided t-test can be rejected.

Table 9.4: Key performance metrics for Experiment 0 and 0* for all validation lots.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
0 45.75 44.33 0.36 8.33 9.47 0.0 4.76 6.38 8.45
0* 48.6 47.17 0.39 9.04 14.49 0.0 7.61 8.42 10.86

9.5 Experiment 1: Impact of route uncertainty

The objective of Experiment 1 is the extraction of the impact of the route estimation
algorithm developed in Chapter 7. Therefore, the route is unknown, while all
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9.5 Experiment 1: Impact of route uncertainty

feature values are assumed to be known. By comparing with Experiment 0,
the impact of the route parameter and the performance of the route estimation
algorithm are analyzed.

40 60 80 100
ct [d]

0

10

20

30

40

50

60

C
ou

nt

experiment
1
actual

(a) Absolute

20 0 20 40
(ct)[d]

0

10

20

30

40

50

60

70

80

C
ou

nt

experiment
1

(b) Relative

Figure 9.6: Distribution of predictions for Experiment 1

As visible in Figure 9.6, a similar behavior as in Experiment 0 can be observed.
Again, the predicted cycle times seem to be slightly higher than the actual cycle
times. The development of the estimated cycle times using Experiment 1 com-
pared to actual cycle times is visualized in Figure 9.7. The same conclusions as
for Experiment 0 can be drawn.

Table 9.5: Key performance metrics for Experiment 1 (and 1*) for all validation lots.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
1 48.5 46.26 0.44 10.15 13.35 0.0 7.51 8.76 11.83
1* 45.73 44.51 0.35 8.09 9.57 0.0 4.74 6.8 9.04
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The KPIs for Experiment 1 are shown in Table 9.5. Again, a systemic overes-
timation is observed (ME = 7.69), which is covered by the two-sided t-test.
Additionally, a poorer performance in 2019 compared to the remaining data set
is observed. The comparison of Experiment 0* and 1 (Figure 9.9) unveils that
the decrease in estimation accuracy when the route is drawn is negligible, since
the MAE only increases by 0.52 (Experiment 0*: 8.42). This is explainable
with the characteristics of the routes, as shown in Chapter 7. Since in most cases
the most used route is used more than 90% of the time, deviations from this
route are unlikely. It is worth mentioning that the comparison of Experiment 0*
(known route) with Experiment 1 (route draw) also functions as a comparison of
the route approximators ARA (active routes) with HRA (historic routes). Thus,
we conclude that the route characteristics in the given case allow us to use HRA
without harming the estimation accuracy.

When adding the knowledge of the stage start times – which is expressed through
Experiment 0 – the MAE is reduced from 8.94 for Experiment 1 to 6.44 for
Experiment 0, which is a drop of nearly 28%. This knowledge helps to prevent a
sum up of estimation errors, leading to shifted operation start times and therefore
incorrect look ups of feature values.
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Figure 9.7: Average cycle time over time for Experiment 1 and the actual cycle time.
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9.5 Experiment 1: Impact of route uncertainty

Similar to Experiment 0, it is possible to adjust Experiment 1 so that the stage
start times are known, which we call Experiment 1*. This enriches the analysis
with the impact of the route methodology on the performance of the methodology.
First, Experiment 1 and 1* are compared as visualized in Figure 9.8.
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Figure 9.8: Distribution of predictions for Experiment 1 and Experiment 1 when the stage start times
are known (Experiment 1*)

Similar to Experiment 0, we observe a reduction of the residual variability when
including the knowledge of the stage start times. This is to be expected, since
known stage start times reduce the probability of increased start time deviations
for operations at the end of the route, leading to heavier sum ups of estimation
errors.

Especially the performance of Experiment 1* for lots with high cycle time, as
shown in Table D.5, is worth mentioning, as the RMSE is the lowest of all
experiments. Hence, the error of outlier lots in this experiment is rather low, and
its mean (52.92) nearly exactly matches the actual mean (X̄ = 52.94), resulting in
anME of only -0.02. This finding is underlined by p = 0.9883, which indicates
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that the hypothesis that Experiment 1* and the actual cycle time distribution share
the same mean for lots with high cycle times can not be rejected.
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Figure 9.9: Distribution of predictions for Experiment 0* and 1.

9.6 Experiments 2-5: Impact of feature
uncertainty

By including feature estimation, these experiments conclusively evaluate how the
methodology performs under the effect of input feature estimation uncertainty.
The strategies developed in Section 6.2.2 are used in the following.

9.6.1 Experiment 2: Median feature values in a fixed
time window at lot start

The design of the experiment for this setting is presented in Figure 8.1.
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9.6 Experiments 2-5: Impact of feature uncertainty

As mentioned, the time window which is taken for the median calculation can
have an effect on the performance. Therefore, the calculation of cycle times is
executed with different time windows. The performance measures introduced in
Section 2.4 are calculated for several time windows, as shown in Table 9.6. A
time window of four months is chosen, because the resulting MAE (7.57) and
RMSE (10.42) are the lowest and it’sME is close to 0, which indicates no heavy
systematical shift in the predictions.

Table 9.6: Key performance indicators for time window comparison for experiment 2 in days.

time window X̄ X̃ σ̂X̄ σX ME MAE RMSE

10 hours 43.71 41.72 0.41 9.33 2.72 8.66 11.63
1 week 46.12 40.45 1.38 31.7 5.13 12.28 32.96
2 weeks 51.13 40.61 1.94 44.41 10.15 17.24 46.32
1 month 44.12 40.76 0.58 13.22 3.13 10.29 15.53
2 months 41.94 39.92 0.4 9.11 0.95 8.00 11.3
3 months 41.14 39.81 0.35 8.11 0.15 7.66 10.47
4 months 41.03 39.53 0.37 8.46 0.04 7.57 10.42
5 months 41.02 39.12 0.39 8.85 0.03 8.13 11.11
6 months 41.30 39.03 0.42 9.51 0.31 8.69 11.92
1 year 41.75 39.15 0.40 9.08 0.77 9.10 12.10
2 years 42.88 40.23 0.57 13.02 1.89 9.82 15.58
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Figure 9.10: Comparison of cycle time predictions for Experiment 2

Table 9.7: Key performance metrics for Experiment 2 for all validation lots.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
2 40.71 39.05 0.37 8.5 -0.55 0.58 -0.28 7.37 10.26

Table 9.8: Key performance metrics for Experiment 2 for all validation lots with a cycle time lower
than 35 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 31.18 31.35 0.23 2.53
2 36.34 35.41 0.52 5.78 9.15 0.0 5.16 5.5 7.77

116



9.6 Experiments 2-5: Impact of feature uncertainty

Table 9.9: Key performance metrics for Experiment 2 for all validation lots with a cycle time higher
than 48 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 52.94 51.24 0.58 5.63
2 41.73 38.95 1.29 12.53 -7.91 0.0 -11.21 14.96 17.58

With the chosen time window, the distribution of predicted cycle times is visual-
ized in Figure 9.10. As shown in Table 9.7, with anMAE of 7.57 and anME

of 0.04, nearly no systematical bias is observed. Consequently, the resulting p
of the two-sided t-test is significantly higher than for all previous experiments,
and the hypothesis that Experiment 2 and the actual cycle times share the same
mean can not be neglected. As expected, the width of the distribution is more
narrow compared to the actual distribution, since the feature estimation is based
on the average from a fixed time window, which does not allow feature variation
throughout the lot execution. Interestingly, there are still predictions with cycle
times over 80 days. We investigate the route choices from these lots and observe
that they have taken unusual routes, indicating a much longer stay in the fab than
actually realized. In reality, such lots can be accelerated by being given a higher
priority when they are late, but since this is not covered in this methodology, as
explained in Section 6.2.2, those long cycle time predictions occur.

Analyzing lotswith cycle times off themean, as shown inTable 9.8 andTable 9.9, it
shows that the configuration of Experiment 2 (low cycle time lots: MAE = 6.09;
high cycle time lots: MAE = 14.96) improves the accuracy of prediction for
lots with low cycle times (it is the only experiment where MAE is reduced to
6.09 compared to the overallMAE of 7.57), while it heavily underestimates the
lots with high cycle times. The ME for lots with high cycle times is -11.21,
indicating a systematical error of over 11 days. Consequently, the configuration
in Experiment 2 seems to be unable to identify outlier lots properly. This can
be explained with the characteristics of Experiment 2, since the median feature
usage in a fixed time window does not allow strong variation in the input features.
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Figure 9.11: Average cycle time over time for Experiment 2 and the actual cycle time.

The development of the estimated cycle time compared to the actual cycle time is
shown in Figure 9.11. Especially compared to Experiment 0, the estimations do
not follow seasonal and overall trends comparably, but have a tendency to be closer
to the mean, which is again explainable by the mechanics of this experiment.

9.6.2 Experiment 3: Median feature values in rolling
time window

As in Experiment 2, the first target is to define the time window, which also
remains true when a rolling average approach is used. Therefore, the experiment
is executed with the same time windows. The detailed optimization of the time
window is explained in Appendix B. The optimal time window seems to be –
like in Experiment 2 – four months. This is expected since the time window
mechanism is similar. Experiment 3 is more accurate but the general relationship
between the length of the time window and the performance remains the same.
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Table 9.10: Key performance metrics for Experiment 3 for all validation lots.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
3 40.82 39.99 0.31 7.01 -0.35 0.72 -0.16 5.27 7.59

Table 9.11: Key performance metrics for Experiment 3 for all validation lots with a cycle time lower
than 35 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 31.18 31.35 0.23 2.53
3 35.64 35.51 0.32 3.59 11.34 0.0 4.46 4.61 5.63

Table 9.12: Key performance metrics for Experiment 3 for all validation lots with a cycle time higher
than 48 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 52.94 51.24 0.58 5.63
3 46.29 44.93 0.74 7.15 -7.08 0.0 -6.65 8.48 11.0

With the chosen time window, the distribution of predicted cycle times is visual-
ized in Figure 9.12, while the resulting KPIs are shown in Table 9.10. The null
hypothesis that the underlying distribution mean of Experiment 3 and the actual
cycle time distribution are identical, can not be rejected. Thus, the estimation
has no significant bias, which is also reflected in the mean error (ME = −0.29).
Experiment 3 results in a MAE of 5.15, which is worth noticing since this is
even lower than the observedMAE of the benchmark (Experiment 0: 6.44). It is
additionally notable that Experiment 3 seems to perform similarly well for outlier
lots. For lots with low cycle time anMAE of 5.49 is observed (see Table 9.11),
which is the lowest value of all experiments. Also for lots with high cycle time,
as shown in Table 9.12, anMAE of 8.42 is the best result.

119



9 Numerical evaluation

40 60 80
ct [d]

0

10

20

30

40

50

60

70

C
ou

nt

experiment
3
actual

(a) Absolute

20 0 20 40
(ct)[d]

0

10

20

30

40

50

60

70

C
ou

nt

experiment
3

(b) Relative

Figure 9.12: Comparison of cycle time predictions for Experiment 3

The time-related development of the cycle time using Experiment 3 compared to
the actual cycle time development is visualized in Figure 9.13. The experiment is
capable to follow the seasonal and overall trends better than Experiment 2. The
comparison of both experiments regarding cycle time development would exceed
the scope of this thesis, but is done in Appendix C. The visualization shows that
the methodology also in the configuration of Experiment 3 underestimates the
cycle time in phases of high average cycle time, and overestimates it in phases of
low average cycle time. Since the given data set covers more phases of low cycle
time instead of high cycle time, theME is positive.
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Figure 9.13: Average cycle time over time for Experiment 3 and the actual cycle time.

9.6.3 Experiment 4: Draw of feature values in a fixed
time window

While the methodology configurations used in Experiment 2 and 3 provide are
expected to suffer from underestimating variations, due to averaging in the input
feature estimation, the draw of feature values from their distribution induces
more randomness to the input parameters. This can even be increased when the
features are allowed to be drawn from any time point (setting the time window to
the duration of the entire data set). Since the cycle time varies significantly in the
given data set, a random draw of values potentially leads to a bias in cycle time
estimation. Therefore, a time window is introduced, in which the algorithm is
allowed to draw values. Similar to Experiment 2 and 3, we evaluate the optimal
time window, using the same methodology. We provide a more detailed analysis
in Appendix B. A very short time window such as 10 hours is chosen. Hence, this
will be used to evaluate the methodology in the following. It is worth noticing
that a small time window seems to be optimal. A possible explanation could
be that feature draws in long time windows open the possibility for impossible
feature combinations as well as a bias of feature values near the overall mean.
When a short time window is chosen, only a few lots and fab situations are
taken into consideration, which possibly reduces this risk, while the risk of not
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including enough comparable lots is increased. Since it is expected that cycle
times of lots are autocorrelated with their predecessors, this risk seems to be
negligible. When applied, the distribution visible in Figure 9.14 can be realized,
while the KPIs are shown in Table 9.13. It gets visible that the methodology with
the configuration of Experiment 4 tends to systematically overestimate the cycle
time, which is indicated by an ME of 4.51. Accordingly, the null hypothesis
of identical distribution means of Experiment 4 and the actual cycle time can be
rejected, either for all validation lots as well as for lots with low or high cycle
time. An explanation for this behavior is that this configuration comes along
with a higher risk to draw a high outlier than a low outlier, because of the long
right tail of the cycle time distribution. Additionally, the variance of the estimated
distribution σX is significantly higher than the actual distribution, which indicates
that a randomdrawof feature values induces toomuch randomness into the system.
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Figure 9.14: Comparison of cycle time predictions for Experiment 4 and 4*.
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9.6 Experiments 2-5: Impact of feature uncertainty

Table 9.13: Key performance metrics for Experiment 4 (and 4*) for all validation lots.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
4 45.31 43.41 0.45 10.24 7.65 0.0 4.33 9.35 13.11
4* 47.7 44.03 0.6 13.63 9.74 0.0 6.71 12.03 17.08

Table 9.14: Key performance metrics for Experiment 4 (and 4*) for all validation lots with a cycle
time lower than 35 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 31.18 31.35 0.23 2.53
4 42.65 40.12 1.01 11.33 11.04 0.0 11.47 11.51 16.25
4* 44.33 40.65 1.02 11.46 12.53 0.0 13.15 13.27 17.1

Table 9.15: Key performance metrics for Experiment 4 (and 4*) for all validation lots with a cycle
time higher than 48 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 52.94 51.24 0.58 5.63
4 44.2 42.07 1.3 12.62 -6.13 0.0 -8.74 11.92 15.97
4* 43.42 41.88 1.34 12.97 -6.52 0.0 -9.51 12.93 16.32
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Figure 9.15: Average cycle time over time for Experiment 4 and the actual cycle time.

The comparison of the average estimated cycle time using Experiment 4 and the
actual cycle time development is visualized in Figure 9.15. It demonstrates that
Experiment 4 tends to produce outliers in some weeks, combined with a tendency
not to follow trends in the data very well, which can again be explained with the
problems of random feature value draws mentioned before.

As mentioned previously, it is also possible to draw feature values all together,
by drawing example lots and using their feature vector to ensure sensible feature
combinations. The optimal time window for this configuration, which we call
Experiment 4* is again examined using the methodology introduced for Experi-
ment 2. Its details are also shown in Appendix B. The resulting time window is
again 10 hours, which we use in the following.

As shown in Table 9.13, Table 9.14 and Table 9.15, the methodology in the
configuration of Experiment 4* does not perform any better than Experiment
4. While the estimations for lots with low cycle time are on average two days
more accurately, estimations for all validation lots are on average 2.5 days and for
lots with high cycle time on average 1 day less accurately. Therefore, the draw
of feature values all together does not seem to have a beneficial impact on the
estimation accuracy.
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9.6 Experiments 2-5: Impact of feature uncertainty

9.6.4 Experiment 5: The draw of feature values in a
rolling time window

The final experiment aims to reveal the performance when a feature value is drawn
in a rolling timewindow. As for all realistic experiments, the optimal timewindow
has to be identified first, which is again executed according to the methodology
explained in detail for Experiment 2. The details of the time window optimization
for this experiment are visible in Appendix B. Again, a time window of 10 hours
is used in the following.
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Figure 9.16: Comparison of cycle time predictions for Experiment 5 and 5*.
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Figure 9.17: Average cycle time over time for Experiment 5, 5* and the actual cycle time.

With the chosen time window, the distributions visible in Figure 9.16 are real-
ized. The corresponding KPIs are shown in Table 9.16, Table 9.17 and Table 9.18.
Again, the null hypothesis of identical distribution means for Experiment 5 and
actual can be rejected. It can be observed that the predictions have an underly-
ing systematic positive shift in the estimated cycle time compared to the actual
distribution, since aME of 8.16 is realized. It is worth mentioning that the null
hypothesis of similar distribution means for Experiment 5 and the actual cycle
time is rejected, which is also reflected by a positiveME (6.35) for lots with high
cycle time. Consequently, the predictions tend to be slightly overestimated. The
comparison of the average estimated cycle time using Experiment 5 and the actual
cycle time development is shown in Figure 9.17. As visible, Experiment 5 tends
to generally overestimate the average cycle time.

Table 9.16: Key performance metrics for Experiment 5 for all validation lots.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
5 49.29 47.13 0.49 11.15 13.89 0.0 8.31 9.47 12.95
5* 56.19 50.94 0.83 18.98 16.92 0.0 15.21 16.18 24.09
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9.6 Experiments 2-5: Impact of feature uncertainty

Table 9.17: Key performance metrics for Experiment 5 (and 5*) for all validation lots with a cycle
time lower than 35 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 31.18 31.35 0.23 2.53
5 42.38 39.6 0.71 7.97 14.96 0.0 11.19 11.19 13.87
5* 45.73 42.04 1.24 13.86 11.55 0.0 14.55 14.55 19.72

Table 9.18: Key performance metrics for Experiment 5 (and 5*) for all validation lots with a cycle
time higher than 48 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 52.94 51.24 0.58 5.63
5 59.28 58.97 0.98 9.54 5.55 0.0 6.35 9.98 12.58
5* 58.91 56.61 1.13 10.91 4.72 0.0 5.98 8.97 12.87

As already mentioned, it is also possible to draw the feature values all together, by
iteratively choosing a lot in a defined time window and taking the feature values
from this time point. The optimal time window for this configuration, which we
callExperiment 5*, is also 10 hours, which is again determined using the process
explained in detail for Experiment 2. The detailed analysis exceeds the scope of
this thesis, but is provided in Appendix B.

As shown in Table 9.16, Experiment 5* performs similarly compared to Experi-
ment 5. While it seems to estimate lots with high cycle times on average approx.
1.3 days more accurate, as shown in Table 9.18, its estimations for all validation
lots are less accurate both for all validation lots and for lots with low cycle times,
as shown in Table 9.17.
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9.6.5 Comparison of Experiment 2-5

Table 9.19: Key performance metrics for Experiments 0, 1, 2, 3, 4 and 5 for all validation lots.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
0 45.75 44.33 0.36 8.33 9.47 0.0 4.76 6.38 8.45
0* 48.6 47.17 0.39 9.04 14.49 0.0 7.61 8.42 10.86
1 48.5 46.26 0.44 10.15 13.35 0.0 7.51 8.76 11.83
1* 45.73 44.51 0.35 8.09 9.57 0.0 4.74 6.8 9.04
2 40.71 39.05 0.37 8.5 -0.55 0.58 -0.28 7.37 10.26
3 40.82 39.99 0.31 7.01 -0.35 0.72 -0.16 5.27 7.59
4 45.31 43.41 0.45 10.24 7.65 0.0 4.33 9.35 13.11
4* 47.7 44.03 0.6 13.63 9.74 0.0 6.71 12.03 17.08
5 49.29 47.13 0.49 11.15 13.89 0.0 8.31 9.47 12.95
5* 56.19 50.94 0.83 18.98 16.92 0.0 15.21 16.18 24.09

128



9.6 Experiments 2-5: Impact of feature uncertainty

Table 9.20: p-values of one-sided t-test for Experiments 0, 1, 2, 3, 4 and 5 with each other with H0:
MAE of Experiment x is greater or equal theMAE of Experiment y for all validation
lots.

y

0 0* 1 1* 2 3 4 4* 5 5*

x

0 0.5 0 0 0.12 0.01 1 0 0 0 0
0* 1 0.5 0.23 1 0.99 1 0.03 0 0.02 0
1 1 0.77 0.5 1 1 1 0.13 0 0.09 0
1* 0.88 0 0 0.5 0.08 1 0 0 0 0
2 0.99 0.01 0 0.92 0.5 1 0 0 0 0
3 0 0 0 0 0 0.5 0 0 0 0
4 1 0.97 0.87 1 1 1 0.5 0 0.41 0
4* 1 1 1 1 1 1 1 0.5 1 0
5 1 0.98 0.91 1 1 1 0.59 0 0.5 0
5* 1 1 1 1 1 1 1 1 1 0.5

Figure 9.18 shows the histograms of cycle times for Experiment 2 to 5, while
Table 9.19 shows the corresponding KPIs. The comparison of the average cycle
time estimation over time for those experiments is shown in Appendix C for the
interested reader. The methodology with the configurations of Experiment 4 and
5 result in higherME andMAE than of Experiment 2 and 3. Additionally, the
p-values for the one-sided t-test for every combination of experiments are shown
in Table 9.20. The corresponding test statistic values are shown in Table D.2 for
the interested reader. As visible, the null hypothesis of higher or equal MAE

of Experiment 3 (x) can be rejected for all other experiments. Additionally, the
same hypothesis can be rejected for Experiment 2 when comparing to all other
Experiment with all degrees of freedom (4, 4*, 5, 5*). Thus, a certain amount of
input feature smoothing seems to be beneficial for the estimation quality.

Furthermore, it is notable that the configuration of the methodology as in Exper-
iment 3 performs as well as in Experiment 0 and 1. Even though its MAE is
even lower than the MAE of Experiment 0 and 1, and also the one-sided t-test
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indicates a significantly reduced MAE, it is not valid to conclude a superiority
of Experiment 3 over Experiment 0 and 1. The rejection of the two-sided t-test
null hypothesis for Experiment 0 and 1 compared to the fact that the null hy-
pothesis could not be rejected for Experiment 3 indicate that the lower MAE

mainly stems from a reduced bias. The tendency to underestimate is immanent
in the configurations of Experiment 2 and 3, because the feature input smoothing
reduces the impact of outliers. Thus, those configurations seem to profit from the
nature of the given data set with several heavy outliers, while Experiment 0 and 1
incorporate those outliers more. Hence, it seems that the estimation with median
values is beneficial for the given case, which can not be generalized for other data
sets. These findings suggest that improvement of the feature set that the models
may use will have higher impact on estimation performance than the observed
difference in feature or route estimation methods.
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Figure 9.18: Absolute and relative density approximation of the histogram of cycle time for all
experiments that include both route and feature uncertainty.

In summary, the methodology in the configuration of Experiment 3 provides the
best results in terms of the MAE and RMSE. Additionally, the findings of
the t-test suggest that Experiment 3 is the only Experiment with no significant
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9.7 Comparison of optimal configuration of methodology with industrial standard approaches

bias. Therefore, it is further used in the following comparison with the standard
approaches commonly in use in industry applications. Nonetheless, since – as
mentioned in Section 8.2.2 – a connection of a fab simulation is needed for the
execution of the configuration of Experiment 3, also Experiment 2 will be further
analyzed.

9.7 Comparison of optimal configuration of
methodology with industrial standard
approaches
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Figure 9.19: Absolute and relative density approximation of the histogram of cycle time of Experiment
2, 3 and the industrial standard approaches. In Subfigure (a) the fixed approach was
removed to increase the visibility.

The approaches for long-term estimations commonly used in the industry are
described in Section 4.2. We replicate these approaches and apply them to
the data set described in Section 9.2. Two approaches are replicated: First a
fixed mean, and second a rolling mean. In the following, we compare them to
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the methodology developed in this thesis. Since we focus on a comparison of
models that are usable with unknown routes and feature values, we only compare
the results from Experiment 2 and 3 with the ones from the commonly used
approaches in industry. Their distribution and the actual distribution is shown
in Figure 9.19 (in Figure 9.19 (a) we remove the "fixed" approach, because it
contains by definition no variation and therefore deteriorates the visibility of all
other distributions within the plot).

Table 9.21: Key performance metrics for Experiment 2 and 3 and the industrial standard approaches
for all validation lots (t-test of the fixed mean approach is not indicated, because the
values are not normally distributed, which is an underlying assumption for the correct
application of the test).

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
2 40.71 39.05 0.37 8.5 -0.55 0.58 -0.28 7.37 10.26
3 40.82 39.99 0.31 7.01 -0.35 0.72 -0.16 5.27 7.59

fixed 41.3 41.3 0.0 0.0 0.31 6.24 7.93
rolling 41.46 41.09 0.43 9.89 0.85 0.4 0.47 8.16 12.38

The industrial standard approaches visibly tend to estimate values around the
mean (the fixed mean approach always uses the observed mean over a recent
time window as a prediction), while the variation of the cycle time is not covered
appropriately. This is to be expected since these approaches does not cover the
route variation or any elaborated version of feature dependency on the cycle time,
as underlined by the KPIs in Table 9.21. Note that X̄ of the actual distribution
does not equal X̄ of the fixedmean, because the fixedmean approach considers all
lots, while the actual distribution only considers validation lots. This also implies
that – as visualized in Figure 9.20 – the industrial standard approach "rolling"
does not follow the actual development with a defined latency. Nevertheless, it
has to be mentioned that the "rolling" approach does follow the trends in the data,
but is prone to outliers, which results in heavy variation in some parts of the plot.
As expected, the "fixed" approach does not vary at all.
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Figure 9.20: Average cycle time of validation lots over time for the industrial benchmark approaches
and the actual cycle time. The deviations of the rolling mean approach from the true
values stem from the train-test-validation split. Thus, those high deviations are due to
the inclusion of all lots in the rolling mean approach (as in reality).

Table 9.22: p-values of one-sided t-test for Experiments 2, 3 and the industrial standard approaches
with each other withH0: MAE of Experiment/approach x is greater or equal theMAE
of Experiment/approach y for all validation lots.

y

2 3 fixed rolling

x

2 0.5 1 1 0.06
3 0 0.5 0 0

fixed 0 1 0.5 0
rolling 0.94 1 1 0.5

The p-values of the one-sided t-test, as shown in Table 9.22 (test statistic shown
in Table D.10), indicates that the hypothesis of higher or equal MAE values in
Experiment 3 compared to the industrial standard approaches can be rejected,
while higher MAE values of Experiment 2 compared to the fixed mean have
to be assumed. Nonetheless, when looking at the KPIs, it is remarkable that
there is no significant improvement of MAE of Experiment 3 compared to the
industrial standard approaches. This is expectable, since the industrial standard
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approaches are by definition a proper way to estimate mean values. Hence, in the
mean, lots are predicted well using those approaches. This is especially notable
for the "fixed" mean approach, which is performing nearly as well as Experiment
3. The performance difference between the industrial standard approaches and
Experiments 2 and 3 becomes more significant when focusing on those lots which
deviate from the mean. This analysis is presented in the following.

Table 9.23: Key performance metrics for Experiment 2 and 3 and the industrial standard approaches
for all validation lots with a cycle time lower than 35 days (t-test of the fixed mean
approach is not indicated, because the values are not normally distributed, which is an
underlying assumption for the correct application of the test).

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 31.18 31.35 0.23 2.53
2 36.34 35.41 0.52 5.78 9.15 0.0 5.16 5.5 7.77
3 35.64 35.51 0.32 3.59 11.34 0.0 4.46 4.61 5.63

fixed 41.3 41.3 0.0 0.0 10.11 10.11 10.42
rolling 40.3 35.96 1.2 13.43 7.46 0.0 9.12 9.61 15.89

Table 9.24: p-values of one-sided t-test for Experiments 2, 3 and the industrial standard approaches
with each other withH0: MAE of Experiment/approach x is greater or equal theMAE
of Experiment/approach y for all validation lots with a cycle time lower than 35 days.

y

2 3 fixed rolling

x

2 0.5 0.94 0 0
3 0.06 0.5 0 0

fixed 1 1 0.5 0.67
rolling 1 1 0.33 0.5

For this analysis, the KPIs are calculated for outlier lots. In this case, outlier
means lots with very low cycle times (≤ 35 days) as well as lots with very high
cycle times (≥ 48 days). The results for all lots with low cycle times are shown
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9.7 Comparison of optimal configuration of methodology with industrial standard approaches

in Table 9.23. The corresponding p-values of the one-sided t-test are obtained
in Table 9.24 (test statistic shown in Table D.10). In contrast to the industrial
standard approaches, the performance of the methodology in the configurations
of the experiments hardly deteriorates. TheMAE of the rolling mean approach
is doubled for those lots compared to all lots, which indicates the problem of such
simple approaches: They are not designed to cover strong deviations from the
mean. Also the fixed mean approach performs significantly worse for this group
of lots. All these findings are covered by the results of the one-sided t-test. The
hypothesis that the MAE of one of the industrial standard approaches is equal
or higher than the MAE of Experiment 2 or 3 can not be rejected. Therefore
we conclude those experiments are superior. This observation is made for any
subset of lots. Nonetheless, it is worth mentioning that the fixed mean approach
provides a lowerMAE than the rolling mean approach. Initially, it was assumed
that the rolling mean approach introduces a better variability estimation compared
to the fixed mean approach. This assumption was made based on an expected
development of the cycle time over a product life cycle, but the real development,
which has been shown in Figure 9.1, does not show this expected behavior. This is
due to strong variations in cycle time, which have taken place in the course of this
data set. Hence, the rolling approach is not capable of coping with the complex
and often abrupt cycle time development, while the fixed approach provides in
comparison a relatively reliable estimator. It must be noted that this cycle time
development is not necessarily typical, since only one data set from one fab
is considered. Therefore, the rolling approach is still valid to use as an easy-to-
implement method, but it is an interesting outcome of this thesis that this common
approach can be outperformed by fixed mean estimation in the current context of
serious disruptions in the semiconductor industry.
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Table 9.25: Key performancemetrics for all experiments for all validation lots with a cycle time higher
than 48 days (t-test of the fixed mean approach is not indicated, because the values are
not normally distributed, which is an underlying assumption for the correct application
of the test).

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 52.94 51.24 0.58 5.63
2 41.73 38.95 1.29 12.53 -7.91 0.0 -11.21 14.96 17.58
3 46.29 44.93 0.74 7.15 -7.08 0.0 -6.65 8.48 11.0

fixed 41.3 41.3 0.0 0.0 -11.64 11.64 12.91
rolling 39.09 38.96 1.04 10.07 -11.64 0.0 -13.85 15.56 17.44

Table 9.26: p-values of one-sided t-test for Experiments 2, 3 and the industrial standard approaches
with each other withH0: MAE of Experiment/approach x is greater or equal theMAE
of Experiment/approach y for all validation lots with a cycle time higher than 48 days.

y

2 3 fixed rolling

x

2 0.5 1 1 0.32
3 0 0.5 0 0

fixed 0 1 0.5 0
rolling 0.68 1 1 0.5

While this performance gap also can be observed for lots with high cycle times –
as shown in Table 9.25 – it becomes clear that also the proposed experiments have
bigger problems to estimate the high outliers. Seemingly, those lots are harder to
identify based on the input data, which is in line with the struggles production
planners have in foreseeing those lots. Nevertheless, Experiment 3 provides a
lower MAE than the benchmark approaches, which again is underlined by the
p values of the one-sided t-tests. This underlines once more the main advantage
of the proposed system, compared to common approaches: It estimates outliers
more accurately. In contrast, Experiment 2 provides largerMAE than the fixed
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Figure 9.21: Development of the cycle time over all realistic experiments, both industrial standard
approaches and the actual development

approach for those lots, which is also indicated by the result of the one-sided
t-test.

The development of the cycle time with the different approaches is shown in
Figure 9.21. It can be observed that – while the fixed mean approach does not
vary at all – the rolling mean approach seems to overestimate certain trends
in the cycle time, leading to heavy over- and underestimations in some weeks.
Especially Experiment 3 seems to be more robust against such behavior, and is
therefore the recommended model configuration. This proofs that the estimating
models function, because they are not behaving as a mean approximator in all
cases.

Additionally, it can be qualitatively estimated that the proposed methodology has
advantages compared to discrete-event-simulation, since it outperforms it in the
two areas of disadvantage of simulations described in Section 4.2. First, the
proposed method is easier to build and to maintain. Since the methodology is
data-driven, every model and sub-methodology works without hard-coding the
production processes in it. Additionally, the maintenance is easy to manage,
because every operation is modeled independently. Hence, flags can be included
in the system, triggering retraining when an operation is adjusted by an engineer,
or a certain amount of time has passed. Second, the system is faster than a
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simulation. Since no inter-dependencies in queues (except through features such
asWIP or queue composition) must be considered, a lot can be calculated without
approximating the behavior of all other lots currently in the fab. Hence, calculation
times can be drastically decreased from hours to minutes. Since quantitative
comparison with a simulation is not in the scope of this thesis, an exact analysis
of the calculation time improvement is not conducted.
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10 Summary and Outlook

We have developed a concatenated route- and feature-approximating machine
learning methodology to estimate cycle times in SC fabs. We have validated this
methodology using real operational data from a SC wafer fab of the Robert Bosch
GmbH.Wehave shown that themethodology is capable of outperforming common
cycle time estimation approaches such as fixed or rolling means, especially for
cycle times deviating from the mean cycle time.

The results of this thesis are achieved through the following three activities, during
which additional insights were gained. First, we trained and tunedmodels for each
operation, including an extensive study on the impacting features on operational
waiting time. We showed that a variety of features – also newly introduced features
that have not been used yet – are necessary to accurately model the full variety of
operations, while each operation is only using a fraction of all features.

Second, we implemented route extraction and studied the effect of route variability
on our prediction using different route selection methods. Our results indicate
that the influence of variable routes on cycle time prediction is smaller than the
influence of the other two studied effects, namely the choice and prediction of
input variables

Third, we elaborated several approaches dealing with feature uncertainty for
estimations in the future. It became evident that a certain amount of input feature
smoothing is beneficial for the estimation accuracy. This indicates that future
research should rather focus on exceeding and improving the input feature set
than improving the uncertainty handling strategies. Additionally, we have shown
that a rolling approach – as it could be enabled through the inclusion of a feature
simulation – improves the estimation accuracy significantly.
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10 Summary and Outlook

10.1 Discussion

The proposed methodology, which estimates cycle times by concatenating opera-
tional sojourn time predictions along a chosen route, shows major advantages to
the current state of the art solutions, as described in Section 9.7.

While the development of the methodology as well as the numerical evaluation
has shown significant improvement compared to the status quo, we have found
some indications that our method is not yet optimal. Thus, we point out aspects
where it is still worthwhile to invest further development work in the following.
They are discussed for the general methodology as well as for the numerical
evaluation separately.

10.1.1 Limitations of the methodology

The developed methodology is a construction of random forests on the base of
a chosen route and an estimation of the feature values. Possible areas of im-
provement are discussed separately for the models themselves, the route selection
policy and the feature prediction policy.

Limitations of the waiting time estimation models

The first possible change to discuss is the chosen method. This thesis focuses on
random forests, ignoring other options like back propagation networks (BPN) or
recurrent neural networks (RNN). We have chosen this modeling technique after
an initial analysis, demonstrating that other techniques do not provide better results
for the underlying problem. Additionally, the implementation of random forests
using the python package sklearn is easy to maintain and therefore reusable in
future years. While this is negligible from a scientific perspective, it is considered
to be a decision factor, because of the practical background of this thesis. The
second area of study is the feature selection. To our knowledge, we have used
the most comprehensive feature set for operational waiting time estimation in
the literature yet, but we also considered other features which were not available
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10.1 Discussion

in our current data set. Especially all features related to transportation time
(e.g. utilization of the automated material handling system, distance to the next
equipment group) were not available for our data set, but can be expected to
improve the prediction power of ourmodels. The third choiceworthy of discussion
is the scope of the models. Here, we have chosen to build a model for each
operation, since this is the smallest entity in the production process. Nevertheless,
it could be argued that one model per layer is also a valid option, since they do not
have to copewith the route selection problem covered in Chapter 7. If doing so, the
feature set must be adapted, since it would include several operations at once. The
issue with higher-scope models (stages, layers, the complete cycle time at once)
is that all possible features lose impact in long time scopes. Additionally, the
modularity of the methodology is lost because retraining is needed for every route
and operation change. For this to be worthwhile, higher-granularity models would
have to prove that they predict better per process, which may be an interesting
study for future research, but is not included in this thesis. Hence, we have chosen
a finer granularity in combination with feature estimation strategies.

Limitations of the route selection policy

The introduced route selectionmethodology contains twomajor limitations. First,
the data driven route identification approach is an approximation of the actual
routes. The actual route set is a complex system that follows an if/else logic based
on quality and process parameters. A historical data-driven route approximation
can only roughly cover the complexity, but is an intentionally chosen simplifica-
tion, because it is easier to maintain and reduces the complexity of the developed
methodology. Second, since no history of active routes is collected in the current
use case, the performance of the system in operational use cannot be exactly
measured. Therefore, it is currently impossible to tune the route approximation
algorithm appropriately. For any further work in this context, it is highly recom-
mended to build a database of active routes, so future solutions can make use of
this information. Nonetheless, the set of active routes are available at the point
of model execution. Thus, for operational usage instead of historic performance
measure, the impact of this limitation is reduced to the point that only the model
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10 Summary and Outlook

training is impacted by it. Therefore, online reinforcement learning techniques
are thinkable in the given use case.

Limitations of the feature prediction policies

While the proposed feature approximation strategies provide several options re-
garding this source of uncertainty, they are by no means a complete set of options.
Additionally, it is up to discussion how useful Experiment 3 for the given case
actually is, since a simulation is required to estimate feature values on a rolling
basis. Since Experiment 3 performs as well as Experiment 0 and 1, the simulation
does not necessarily have to be provided with exact feature values, because we
showed that smoothing is beneficial. When a fab simulation cannot be provided,
it is still preferable to smooth the input features over a median (Experiment 2).
This again underlines the immense variability in the input data, which has to be
erased partially for accurate predictions. The combination with a simulation has
not been further investigated, since it is not in the scope of this thesis. Building
a simulation model for a SC fab is a complex and time-intensive task. In com-
parison, the exploration of machine learning methods as performed in this thesis
would have been a minor part. Therefore, we decided to ignore the simulative ap-
proach and focus on machine learning, even if our experiments have indicated that
a combination of both would be well worth studying to further improve prediction
results, as indicated in Experiment 3.

10.1.2 Limitations of the numerical evaluation

We have evaluated the methodology numerically with real operational data of
the SC wafer fab from Robert Bosch GmbH, which is by definition realistic.
Nevertheless, the considered data set includes a major drop in the demand (2019),
a global pandemic (2020), and a sudden and global increase in demand (2021).
Even though this increases the value of the data, since it improves the robustness
of the system, it is valid to say that the variations in the data set contradict many
literature assumptions on the time-development of product cycle times. Since the
time frame of this thesis was fixed, there was no real alternative to use the given
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10.1 Discussion

data set. Nonetheless, a comparison with other data sets is a worthy direction for
future research. Additionally, it has to be mentioned that only one product was
used for the evaluation, in order to reduce the dimensionality of the final analysis.
Nevertheless, all statements made are not proven to be valid for all products,
even if it is likely, since products go through the same production environment,
while differing in terms of layers and operations. It is of interest to analyze the
performance of the methodology for products with different types or numbers of
layers and operations. We expect that a higher number of layers increases the
potential variability of the cycle time leading to a competitive advantage of the
methodology. By focusing on one high-runner product, another point of criticism
can be derived, because the methodology has not been validated with ramp-up
products. Thus, it is unknown if estimations for this kind of products are similarly
accurate in environments with continuous improvements, which is of potential
interest in the future. Asmentioned in Section 9.4, the estimations derived in 2019
were significantly less accurate than for 2020 and 2021. Thus, it is a possibility
to erase 2019 from the data set, which would likely reduce the estimation error.
For machine learning models in operational use, it is common to implement
a measurement cycle, where the estimation error is constantly measured and
if the error exceeds a certain threshold, retraining with an adjusted data set is
triggered. Since the goal of this thesis is to create the methodology for cycle time
estimation, such a cycle was not included. Nevertheless, it may be beneficial for
the performance and is therefore a potential connection point to further improve
the methodology in the future. Finally, one could criticize that the authors have
chose a relatively simple set of hypothesis tests, while ignoring other test options
such as variance tests (e.g. F-test, Levene-test) or distribution tests (Kolmogorov-
Smirnov-test). This limitation was accepted on purpose to keep the analysis
intuitive for the interested reader and to not exceed the scope of this thesis.
Nonetheless, such tests would contribute to the numerical evaluation and could
also be a potential connection point for future research.
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10.2 Outlook

The proposed methodology contains two directions for further improvement.
First, it is possible to improve the models to estimate the waiting times of op-
erations. This could be done by improving the input data with new or better
features or by applying more advanced modeling techniques. As mentioned in
Section 9.6.5, exceeding or improving the input feature set seems to be the most
promising approach to further improve the results of the methodology. Since this
methodology includes automatic feature set reduction, our method is expected
to deal well with increasing feature sets, even when redundancies are induced.
Second, it is possible to improve the predictability of the features in the future.
This could be realized by replacing the proposed and simplified uncertainty han-
dling strategies with a discrete-event simulation. As the experiments have shown,
even a simple approximation of the feature values – for example averaging on a
weekly basis – improves the performance significantly. Therefore, it is desirable
to validate this hypothesis in combination with a simulation. Apart from that,
it is desirable to investigate the performance of this methodology in other use
cases than a SC wafer fab, as it should be in principle applicable to any possible
production configuration, as long as waiting times play a major role in estimating
the cycle time. Thus, a study concerning the performance of this methodology for
example in SC back ends, automotive or pharmaceutical production environments
is of great interest.
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A Estimation methods

A.1 Route estimation
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Figure A.1: Impact of the route selection policy on (a) the routes covered, (b) the lots included and
(c) the probabilities covered
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A.2 Feature estimation
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Figure A.2: Entry and Transition probabilities of lot priorities using the data set of the given use case.
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B Time Window Experiments

B.1 Experiment 3

As visible in Table B.1, the same tendency of a reduction in the average cycle
time estimation can be observed.

Table B.1: Key performance indicators for time window comparison for experiment 3 in days.

time window X̄ X̃ σ̂X̄ σX ME MAE RMSE

10 hours 46.80 44.88 0.40 9.09 5.81 7.42 10.04
1 week 45.10 42.97 0.38 8.67 4.11 6.37 8.58
2 weeks 44.77 42.28 0.39 8.96 3.79 6.44 8.65
1 month 43.53 42.00 0.33 7.51 2.54 5.95 7.97
2 months 41.89 40.95 0.28 6.47 0.90 5.40 7.53
3 months 40.98 40.42 0.24 5.54 -0.01 5.23 6.97
4 months 40.69 40.26 0.24 5.57 -0.29 5.15 6.77
5 months 40.88 40.48 0.26 5.9 -0.11 5.35 6.99
6 months 40.75 39.96 0.26 6.01 -0.24 5.79 7.69
1 year 41.72 40.52 0.3 6.91 0.73 6.72 8.97
2 years 42.73 41.25 0.29 6.53 1.74 7.03 9.28
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B Time Window Experiments

B.2 Experiment 4

Table B.2: Key performance indicators for time window comparison for experiment 4 in days.

time window X̄ X̃ σ̂X̄ σX ME MAE RMSE

10 hours 45.50 43.37 0.46 10.53 4.51 9.55 13.54
1 week 49.92 43.97 1.15 26.39 8.93 13.36 28.89
2 weeks 55.38 45.14 1.53 35.01 14.39 18.55 38.81
1 month 60.05 46.91 1.43 32.70 19.06 22.86 38.59
2 months 61.39 53.64 1.02 23.26 20.4 22.58 31.67
3 months 62.06 60.64 0.85 19.56 21.08 22.57 29.23
4 months 61.85 58.97 0.78 17.94 20.86 21.98 27.59
5 months 62.07 60.51 0.76 17.49 21.08 22.12 27.60
6 months 63.16 60.06 0.78 17.90 22.17 23.26 28.96
1 year 62.34 59.24 0.58 13.28 21.35 22.10 26.19
2 years 61.50 60.08 0.47 10.68 20.51 20.97 24.13

As shown in Table B.2, the width of the errors as well as the mean error corre-
late with the time window length but stagnate at a time window length of two
months. Thus, it seems that the smallestMAE, as well as the least shifted error
distribution, can be realized using a short time window like 10 hours.

B.2.1 Experiment 4*

The time window calculation for this sub-experiment is depicted in Table B.3.
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B.2 Experiment 4

Table B.3: Key performance indicators for time window comparison for experiment 4* in days.

time window X̄ X̃ σ̂X̄ σX ME MAE RMSE

10 hours 44.63 42.99 0.52 9.78 3.8 10.44 13.33
1 week 48.35 43.01 1.21 22.6 7.52 14.08 25.97
2 weeks 54.57 44.34 1.7 31.9 13.74 19.73 36.54
1 month 58.48 47.21 1.46 27.21 17.69 22.97 34.19
2 months 60.52 55.28 1.17 21.87 19.73 22.61 30.92
3 months 59.7 57.25 0.95 17.72 18.9 21.13 26.88
4 months 58.3 57.61 0.83 15.58 17.5 19.57 24.3
5 months 58.41 57.39 0.9 16.8 17.62 19.55 25.38
6 months 55.8 54.07 0.71 13.29 15.01 17.43 22.0
1 year 56.74 55.13 0.75 14.05 15.96 18.08 23.44
2 years 60.0 58.42 0.6 11.21 19.21 20.42 24.69

Since a time window of 10 hours results in the lowestME andMAE, it is further
used.
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B Time Window Experiments

B.3 Experiment 5

Table B.4: Key performance indicators for time window comparison for experiment 5 in days.

time window X̄ X̃ σ̂X̄ σX ME MAE RMSE

10 hours 50.42 49.62 0.61 11.35 9.63 10.56 13.69
1 week 51.06 49.29 0.63 11.76 10.26 11.42 14.57
2 weeks 52.59 49.86 0.68 12.74 11.79 12.64 15.38
1 month 54.8 51.5 0.78 14.56 13.99 14.76 17.83
2 months 58.58 55.77 0.84 15.64 17.78 18.5 22.74
3 months 62.77 61.16 0.99 18.45 21.96 22.64 28.1
4 months 62.59 62.06 0.95 17.76 21.79 22.23 27.16
5 months 60.81 58.04 0.91 16.96 20.01 20.98 25.93
6 months 59.9 57.02 0.83 15.4 19.1 19.66 23.96
1 year 59.11 57.36 0.65 12.09 18.3 19.38 22.97
2 years 61.84 60.14 0.58 10.71 21.04 21.53 24.74

As depicted in Table B.4, the same time window with 10 hours as for Experiment
4 is optimal. Again, this is expected since the calculation method within the time
window is identical and therefore the overall mechanic remains the same.

B.3.1 Experiment 5*

The KPIs for the time window determination for Experiment 5* is depicted in
Table B.5).
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B.3 Experiment 5

Table B.5: Key performance indicators for time window comparison for experiment 5* in days.

time window X̄ X̃ σ̂X̄ σX ME MAE RMSE

10 hours 49.14 47.17 0.46 10.51 8.16 9.37 12.46
1 week 49.60 47.21 0.43 9.75 8.61 9.5 12.23
2 weeks 50.74 47.87 0.48 10.88 9.75 10.56 13.36
1 month 53.22 49.09 0.61 13.86 12.23 13.17 16.70
2 months 57.20 55.03 0.66 15.11 16.21 16.87 21.37
3 months 60.56 59.09 0.78 17.77 19.57 20.23 26.00
4 months 61.36 59.51 0.71 16.28 20.38 20.76 25.67
5 months 61.76 60.64 0.65 14.96 20.77 21.03 25.08
6 months 62.71 61.30 0.63 14.46 21.73 22.10 25.84
1 year 64.38 62.62 0.50 11.44 23.39 23.67 26.43
2 years 62.40 60.46 0.41 9.35 21.41 21.53 24.03

As visible, a time window of 10 hours minimizes the ME and MAE, and is
therefore chosen.

151





C Cycle Time developments

C.1 Experiment 0
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Figure C.1: Average cycle time over time for experiments 0 and 0* and the actual cycle time.
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C Cycle Time developments

C.2 Experiment 1
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Figure C.2: Average cycle time over time for experiment 1* and the actual cycle time.
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Figure C.3: Average cycle time over time for experiments 0 and 1 and the actual cycle time.
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C.3 Experiments 2-5
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Figure C.4: Average cycle time over time for experiments 0* and 1* and the actual cycle time.

C.3 Experiments 2-5
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Figure C.5: Average cycle time over time for experiments 2 and 3 and the actual cycle time.
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Figure C.6: Average cycle time over time for experiments 4 and 5 and the actual cycle time.
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Figure C.7: Average cycle time over time for experiments 4 and 4* and the actual cycle time.
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C.3 Experiments 2-5
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Figure C.8: Average cycle time over time for experiments 5 and 5* and the actual cycle time.
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D Numerical evaluation of lots

In the following, all numeric results of the experiments are collected.

Table D.1: Key performance metrics for all experiments for all validation lots.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 40.99 40.59 0.35 7.94
0 45.75 44.33 0.36 8.33 9.47 0.0 4.76 6.38 8.45
0* 48.6 47.17 0.39 9.04 14.49 0.0 7.61 8.42 10.86
1 48.5 46.26 0.44 10.15 13.35 0.0 7.51 8.76 11.83
1* 45.73 44.51 0.35 8.09 9.57 0.0 4.74 6.8 9.04
2 40.71 39.05 0.37 8.5 -0.55 0.58 -0.28 7.37 10.26
3 40.82 39.99 0.31 7.01 -0.35 0.72 -0.16 5.27 7.59
4 45.31 43.41 0.45 10.24 7.65 0.0 4.33 9.35 13.11
4* 47.7 44.03 0.6 13.63 9.74 0.0 6.71 12.03 17.08
5 49.29 47.13 0.49 11.15 13.89 0.0 8.31 9.47 12.95
5* 56.19 50.94 0.83 18.98 16.92 0.0 15.21 16.18 24.09
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D Numerical evaluation of lots

Table D.2: Test statistic of one-sided t-test for Experiments 0, 1, 2, 3, 4 and 5 with each other withH0:
MAE of Experiment x is greater or equal theMAE of Experiment y for all validation
lots.

y

0 0* 1 1* 2 3 4 4* 5 5*

x

0 0 -4.31 -3.92 -1.69 3.48 5.9 -3.21 -5.01 -3.8 -5.19
0* 4.31 0 0.15 2.69 7.09 9.31 -0.08 -1.58 0.22 -2.29
1 3.92 -0.15 0 2.41 6.58 8.53 -0.2 -1.66 0.07 -2.35
1* 1.69 -2.69 -2.41 0 4.9 7.31 -2.08 -3.77 -2.31 -4.16
2 -3.48 -7.09 -6.58 -4.9 0 1.57 -5.27 -7.15 -6.43 -7
3 -5.9 -9.31 -8.53 -7.31 -1.57 0 -6.46 -8.57 -8.33 -8.08
4 3.21 0.08 0.2 2.08 5.27 6.46 0 -1.24 0.25 -1.92
4* 5.01 1.58 1.66 3.77 7.15 8.57 1.24 0 1.71 -0.83
5 3.8 -0.22 -0.07 2.31 6.43 8.33 -0.25 -1.71 0 -2.39
5* 5.19 2.29 2.35 4.16 7 8.08 1.92 0.83 2.39 0

Table D.3: Key performance metrics for all experiments for all validation lots with a cycle time lower
than 35 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 31.18 31.35 0.23 2.53
0 39.05 37.96 0.47 5.22 15.15 0.0 7.87 7.88 9.46
0* 42.59 40.06 0.66 7.39 16.34 0.0 11.41 11.41 13.64
1 42.43 40.48 0.71 7.97 15.04 0.0 11.25 11.26 13.85
1* 40.27 38.7 0.54 5.98 15.63 0.0 9.09 9.09 10.9
2 36.34 35.41 0.52 5.78 9.15 0.0 5.16 5.5 7.77
3 35.64 35.51 0.32 3.59 11.34 0.0 4.46 4.61 5.63
4 42.65 40.12 1.01 11.33 11.04 0.0 11.47 11.51 16.25
4* 44.33 40.65 1.02 11.46 12.53 0.0 13.15 13.27 17.1
5 42.38 39.6 0.71 7.97 14.96 0.0 11.19 11.19 13.87
5* 45.73 42.04 1.24 13.86 11.55 0.0 14.55 14.55 19.72
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D Numerical evaluation of lots

Table D.4: Test statistic of one-sided t-test for Experiments 0, 1, 2, 3, 4 and 5 with each other withH0:
MAE of Experiment x is greater or equal theMAE of Experiment y for all validation
lots with a cycle time lower than 35 days.

y

0 0* 1 1* 2 3 4 4* 5 5*

x

0 0 -4.31 -3.92 -1.69 3.48 5.9 -3.21 -5.01 -3.8 -5.19
0* 4.31 0 0.15 2.69 7.09 9.31 -0.08 -1.58 0.22 -2.29
1 3.92 -0.15 0 2.41 6.58 8.53 -0.2 -1.66 0.07 -2.35
1* 1.69 -2.69 -2.41 0 4.9 7.31 -2.08 -3.77 -2.31 -4.16
2 -3.48 -7.09 -6.58 -4.9 0 1.57 -5.27 -7.15 -6.43 -7
3 -5.9 -9.31 -8.53 -7.31 -1.57 0 -6.46 -8.57 -8.33 -8.08
4 3.21 0.08 0.2 2.08 5.27 6.46 0 -1.24 0.25 -1.92
4* 5.01 1.58 1.66 3.77 7.15 8.57 1.24 0 1.71 -0.83
5 3.8 -0.22 -0.07 2.31 6.43 8.33 -0.25 -1.71 0 -2.39
5* 5.19 2.29 2.35 4.16 7 8.08 1.92 0.83 2.39 0

Table D.5: Key performance metrics for all experiments for all validation lots with a cycle time higher
than 48 days.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 52.94 51.24 0.58 5.63
0 54.77 54.5 1.0 9.65 1.59 0.11 1.83 8.13 10.81
0* 58.77 58.34 0.79 7.64 5.96 0.0 5.83 8.5 10.87
1 58.33 58.4 0.9 8.74 5.03 0.0 5.39 9.5 11.87
1* 52.92 52.06 0.92 8.9 -0.01 0.99 -0.02 7.48 9.84
2 41.73 38.95 1.29 12.53 -7.91 0.0 -11.21 14.96 17.58
3 46.29 44.93 0.74 7.15 -7.08 0.0 -6.65 8.48 11.0
4 44.2 42.07 1.3 12.62 -6.13 0.0 -8.74 11.92 15.97
4* 43.42 41.88 1.34 12.97 -6.52 0.0 -9.51 12.93 16.32
5 59.28 58.97 0.98 9.54 5.55 0.0 6.35 9.98 12.58
5* 58.91 56.61 1.13 10.91 4.72 0.0 5.98 8.97 12.87
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D Numerical evaluation of lots

Table D.6: Test statistic of one-sided t-test for Experiments 0, 1, 2, 3, 4 and 5 with each other withH0:
MAE of Experiment x is greater or equal theMAE of Experiment y for all validation
lots with a cycle time higher than 48 days.

y

0 0* 1 1* 2 3 4 4* 5 5*

x

0 0 -0.36 -1.31 0.66 -5.65 -0.33 -2.86 -3.78 -1.7 -0.69
0* 0.36 0 -0.98 1.06 -5.44 0.03 -2.62 -3.54 -1.4 -0.39
1 1.31 0.98 0 2.04 -4.52 0.99 -1.83 -2.7 -0.44 0.44
1* -0.66 -1.06 -2.04 0 -6.43 -1.01 -3.46 -4.44 -2.42 -1.28
2 5.65 5.44 4.52 6.43 0 5.4 2.08 1.44 4 4.43
3 0.33 -0.03 -0.99 1.01 -5.4 0 -2.61 -3.52 -1.4 -0.41
4 2.86 2.62 1.83 3.46 -2.08 2.61 0 -0.67 1.43 2.02
4* 3.78 3.54 2.7 4.44 -1.44 3.52 0.67 0 2.26 2.81
5 1.7 1.4 0.44 2.42 -4 1.4 -1.43 -2.26 0 0.81
5* 0.69 0.39 -0.44 1.28 -4.43 0.41 -2.02 -2.81 -0.81 0
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Figure D.1: Histogram of the calculation times of all experiments in minutes.
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D Numerical evaluation of lots

Table D.7: Key performance metrics for all experiments for all validation lots with a lot start date in
2021.

Exp. X̄ X̃ σ̂X̄ σX t p ME MAE RMSE

actual 38.37 38.1 0.44 3.48
0 41.62 41.17 0.52 4.07 4.78 0.0 3.25 3.77 4.8
0* 43.49 42.03 0.7 5.52 6.18 0.0 5.12 5.37 7.51
1 42.22 41.2 0.78 6.16 4.28 0.0 3.85 4.54 7.1
1* 41.12 40.42 0.51 3.99 4.09 0.0 2.75 3.55 4.8
2 39.11 37.6 0.6 4.69 0.99 0.32 0.74 3.87 4.96
3 37.31 36.89 0.37 2.91 -1.83 0.07 -1.06 3.24 3.91
4 42.53 41.87 0.61 4.83 5.5 0.0 4.16 5.65 6.8
4* 63.84 61.9 2.52 19.88 9.94 0.0 25.47 25.94 32.31
5 43.06 42.6 0.68 5.38 5.76 0.0 4.69 5.48 7.49
5* 70.45 71.29 2.61 20.54 12.12 0.0 32.08 32.14 38.09
fixed 41.3 41.3 0.0 0.0 6.62 0.0 2.93 3.83 4.53
rolling 40.07 40.49 0.2 1.59 3.5 0.0 1.7 3.45 4.32
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D Numerical evaluation of lots

Table D.8: Test statistic of one-sided t-test for Experiments 0, 1, 2, 3, 4 and 5 with each other withH0:
MAE of Experiment x is greater or equal theMAE of Experiment y for all validation
lots with a lot start date in 2021.

y

0 0* 1 1* 2 3 4 4* 5 5* fixed rolling

x

0 0 -2.07 -0.96 0.4 -0.17 1.12 -3.05 -8.88 -2.25 -10.72 -0.12 0.64
0* 2.07 0 0.86 2.31 1.93 2.92 -0.34 -8.05 -0.12 -9.9 2.08 2.56
1 0.96 -0.86 0 1.21 0.83 1.71 -1.31 -8.35 -0.98 -10.18 0.92 1.4
1* -0.4 -2.31 -1.21 0 -0.55 0.61 -3.3 -8.95 -2.49 -10.78 -0.55 0.18
2 0.17 -1.93 -0.83 0.55 0 1.28 -2.85 -8.83 -2.11 -10.67 0.07 0.8
3 -1.12 -2.92 -1.71 -0.61 -1.28 0 -4.3 -9.14 -3.14 -10.97 -1.41 -0.48
4 3.05 0.34 1.31 3.3 2.85 4.3 0 -8.07 0.22 -9.94 3.17 3.75
4* 8.88 8.05 8.35 8.95 8.83 9.14 8.07 0 8.02 -1.72 8.89 9.03
5 2.25 0.12 0.98 2.49 2.11 3.14 -0.22 -8.02 0 -9.88 2.28 2.76
5* 10.72 9.9 10.18 10.78 10.67 10.97 9.94 1.72 9.88 0 10.73 10.87
fixed 0.12 -2.08 -0.92 0.55 -0.07 1.41 -3.17 -8.89 -2.28 -10.73 0 0.84
rolling -0.64 -2.56 -1.4 -0.18 -0.8 0.48 -3.75 -9.03 -2.76 -10.87 -0.84 0
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D Numerical evaluation of lots

Table D.9: p-value of one-sided t-test for Experiments 0, 1, 2, 3, 4 and 5 with each other with H0:
MAE of Experiment x is greater or equal theMAE of Experiment y for all validation
lots with a lot start date in 2021.

y

0 0* 1 1* 2 3 4 4* 5 5* fixed rolling

x

0 0.5 0.02 0.17 0.66 0.43 0.87 0 0 0.01 0 0.45 0.74
0* 0.98 0.5 0.8 0.99 0.97 1 0.37 0 0.45 0 0.98 0.99
1 0.83 0.2 0.5 0.89 0.8 0.95 0.1 0 0.16 0 0.82 0.92
1* 0.34 0.01 0.11 0.5 0.29 0.73 0 0 0.01 0 0.29 0.57
2 0.57 0.03 0.2 0.71 0.5 0.9 0 0 0.02 0 0.53 0.79
3 0.13 0 0.05 0.27 0.1 0.5 0 0 0 0 0.08 0.32
4 1 0.63 0.9 1 1 1 0.5 0 0.59 0 1 1
4* 1 1 1 1 1 1 1 0.5 1 0.04 1 1
5 0.99 0.55 0.84 0.99 0.98 1 0.41 0 0.5 0 0.99 1
5* 1 1 1 1 1 1 1 0.96 1 0.5 1 1
fixed 0.55 0.02 0.18 0.71 0.47 0.92 0 0 0.01 0 0.5 0.8
rolling 0.26 0.01 0.08 0.43 0.21 0.68 0 0 0 0 0.2 0.5

Table D.10: Test statistic of one-sided t-test for Experiments 2, 3 and industrial standard approaches
with each other with H0: MAE of Experiment x is greater or equal the MAE of
Experiment y for all validation lots (a), all validation lots with a cycle time smaller than
35 days (b) and all validation lots with a cycle time higher than 48 days (c)

y

all < 35 > 48

2 3 fixed rolling 2 3 fixed rolling 2 3 fixed rolling

x

2 0 5.34 2.98 -1.55 0 1.57 -8.5 -3.31 0 5.4 2.97 -0.48
3 -5.34 0 -3.02 -6.13 -1.57 0 -14.94 -4.26 -5.4 0 -3.4 -6.48

fixed -2.98 3.02 0 -4.19 8.5 14.94 0 0.44 -2.97 3.4 0 -3.92
rolling 1.55 6.13 4.19 0 3.31 4.26 -0.44 0 0.48 6.48 3.92 0
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