

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Training Quantized Neural Networks with ADMM Approach

Master’s Thesis

by

Xue Ma

Department of Informatics

Responsible Supervisor: Prof. Dr. Michael Beigl

Supervising Staff: Haibin Zhao

Project Period: 01.02.2023 - 01.08.2023

Institut für Telematik
Pervasive Computing Systems / TECO
Leiter: Prof. Dr.-Ing. Michael Beigl

Contents

1 Introduction 5

2 Background & Related Work 7

2.1 Neural network . 7
2.2 Convolutional neural network . 8

2.2.1 Basic convolutional neural network 8
2.2.2 ResNet . 10

2.3 Quantization of neural network . 14
2.4 Alternating Direction Method of Multipliers 16
2.5 FISTA algorithm . 16

3 Objective function and algorithm 19

3.1 Objective function of neural network 19
3.2 Objective function of quantized neural network 20
3.3 Algorithm of updating parameters . 21

4 Alternating minimization for neural networks 25

4.1 Update Wl . 25
4.2 Update Gl . 27
4.3 Update zl . 29
4.4 Update al . 31
4.5 Update zL . 32
4.6 Update Lagrangian Multiplier . 33

5 Layerwise Quantization with ADMM Approach 35

5.1 Quantization with ADMM approach 35
5.1.1 Update Wl . 36
5.1.2 Update Gl . 37
5.1.3 Update � . 38

5.2 Remaining non-quantized layers update 38

6 Evaluation 41

6.1 Experiment Setup . 41
6.1.1 Dataset . 41
6.1.2 Experiment Settings . 42

6.1.2.1 MLP pipeline . 42
6.1.2.2 CNN pipeline . 43

6.2 Experiment Result . 43
6.2.1 MLP pipeline . 43

ii Contents

6.2.1.1 Dataset Seeds . 43
6.2.1.2 Dataset Pendigits . 46
6.2.1.3 Dataset MNIST . 49

6.2.2 CNN pipeline . 53
6.2.2.1 Dataset CIFAR10 53
6.2.2.2 Dataset CIFAR100 56

6.3 Discussion . 59

7 Conclusion and Future Work 61

Bibliography 63

List of Figures

2.1 Example of a 3-layer neural network. 7

2.2 Illustration of a convolutional neural network with two convolution
operators and two max pool operators, followed by 2 fully connected
layers. 9

2.3 Illustration of the convolutional operator [1]. 9

2.4 Example of max pooling operation with stride = 2 and kernel = (2, 2). 10

2.5 A building block of residual block. 11

2.6 Residual block of ResNet20. 11

2.7 Downsampling block of ResNet20. 12

2.8 Illustration of the structure of ResNet20. It contains 7 residual blocks
(with total 14 convolutional layers) and 2 downsampling blocks (with
total 6 convolutional layers). 13

3.1 After introducing ↵l, the solution space of element of weight matrix
changes from points to lines. 20

3.2 The updating process of a 3-Layer Neural Network. 23

5.1 A L-layer neural network with l� 1 quantized layers and l-th will be
quantized with ADMM approach. 36

5.2 A L-layer neural network with l quantized layers and the remaining
non-quantized layers will be retrained. 39

6.1 The performance of di↵erent methods at 8 bits on dataset Seeds. . . . 44

6.2 The performance of di↵erent methods at 4 bits on dataset Seeds. . . . 45

6.3 The performance of di↵erent methods at 2 bits on dataset Seeds. . . . 45

6.4 The performance of di↵erent methods at 1 bit on dataset Seeds. . . . 46

6.5 The performance of di↵erent methods at 8 bits on dataset Pendigits. 47

6.6 The performance of di↵erent methods at 4 bits based on dataset
Pendigits. 48

6.7 The performance of di↵erent methods at 2 bits on dataset Pendigits. 48

iv List of Figures

6.8 The performance of di↵erent methods that neural network at 1 bit on
dataset Pendigits. 49

6.9 The performance of di↵erent methods at 8 bits on dataset MNIST. . 50

6.10 The performance of di↵erent methods at 4 bits on dataset MNIST. . 51

6.11 The performance of di↵erent methods at 2 bits on dataset MNIST. . 51

6.12 The performance of di↵erent methods that neural network at 1 bit
based on dataset MNIST. 52

6.13 The performance of di↵erent methods at 8 bits on dataset CIFAR10. 54

6.14 The performance of di↵erent methods at 4 bits on dataset CIFAR10. 54

6.15 The performance of di↵erent methods at 2 bits on dataset CIFAR10. 55

6.16 The performance of di↵erent methods at 1 bit on dataset CIFAR10. . 55

6.17 The performance of di↵erent methods at 8 bits on dataset CIFAR100. 56

6.18 The performance of di↵erent methods at 4 bits on dataset CIFAR100. 57

6.19 The performance of di↵erent methods at 2 bits based on dataset CI-
FAR100. 57

6.20 The performance of di↵erent methods at 1 bit on dataset CIFAR100. 58

List of Tables

1 Important notations and descriptions 3

2 Important notations and descriptions 4

6.1 Table of datasets . 42

6.2 Table of datasets and their topology of models for MLP 42

6.3 Table of accuracies among PTQ, QNN-STE, QNN-ADMM, LQ, DQ,
QAT, on dataset Seeds in the case of 8 bits, 4 bits, 2 bits and 1 bit.
PTQ is the abbreviation of Post training quantization. QNN-STE is
the abbreviation of training quantized neural network with Straight
through estimator. QNN-ADMM is the abbreviation of training quan-
tized neural network with ADMM. LQ is the abbreviation of layerwise
quantization using ADMM. DQ is the abbreviation of Dynamic Quan-
tization. QAT is the abbreviation of Quantization aware training. . . 44

6.4 Table of the accuracies on dataset Pendigits in the case of 8 bits, 4
bits, 2 bits, 1 bit. PTQ is the abbreviation of Post training quan-
tization. QNN-STE is the abbreviation of training quantized neural
network with Straight through estimator. QNN-ADMM is the ab-
breviation of training quantized neural network with ADMM. LQ is
the abbreviation of layerwise quantization using ADMM. DQ is the
abbreviation of Dynamic Quantization. QAT is the abbreviation of
Quantization aware training. 47

6.5 Table of the accuracy of dataset MNIST in the case of 8 bits, 4 bits,
2 bits, 1 bit. PTQ is the abbreviation of Post training quantization.
QNN-STE is the abbreviation of training quantized neural network
with Straight through estimator. QNN-ADMM is the abbreviation of
training quantized neural network with ADMM. LQ is the abbrevia-
tion of layerwise quantization using ADMM. DQ is the abbreviation
of Dynamic Quantization. QAT is the abbreviation of Quantization
aware training. 50

vi List of Tables

6.6 Table of the accuracies on dataset CIFAR10 in the case of 8 bits, 4
bits, 2 bits, 1 bit. PTQ is the abbreviation of Post training quan-
tization. QNN-STE is the abbreviation of training quantized neural
network with Straight through estimator. LDNQ is the abbreviation
of Deep Neural Network Quantization via Layer-wise Optimization
Using Limited Training Data. LQ is the abbreviation of layerwise
quantization using ADMM. SQ is the abbreviation of Static Quanti-
zation. QAT is the abbreviation of Quantization aware training. . . . 53

6.7 Table of the accuracies on dataset CIFAR100 in the case of 8 bits,
4 bits, 2 bits, 1 bit. QNN-STE is the abbreviation of training quan-
tized neural network with Straight through estimator. LDNQ is the
abbreviation of Deep Neural Network Quantization via Layer-wise
Optimization Using Limited Training Data. LQ is the abbreviation
of layerwise quantization using ADMM. SQ is the abbreviation of
Static Quantization. QAT is the abbreviation of Quantization aware
training. 56

Abstract

Deep learning models have achieved remarkable success in various learning tasks, but
their high computational costs pose challenges for deployment in resource-limited
scenarios. In this paper, we focus on addressing this issue by quantizing deep learning
models, where network weights are represented by a smaller number of bits. We
formulate this problem as a discrete optimization problem and draw inspiration
from the Alternating Direction Method of Multipliers to optimize the parameters in
a neural network. We introduce two approaches to quantize neural networks using
the Alternating Direction Method of Multipliers algorithm. The first approach is
a gradient-free optimization method for training the quantized neural network. It
avoids many problems of gradient descent, such as saturation e↵ects and saddle
points. In contrast, the second approach is a gradient-based method to quantize the
neural network layerwisely using Alternating Direction Method of Multipliers based
on a pre-trained neural network. After each layer is quantized, the parameters of
non-quantized layers are updated to compensate for the loss of accuracy.

2 List of Tables

Notation

In this chapter we show some important notations and their descriptions in the
following paper.

Notations Descriptions
al The output of the activation function for the l-th layer
akl The updated value of al in the k-th iteration
↵l The scaling factor that separated from the dequantized weight matrix Gl

� The penalty factor to control weight of constraints zl = Wlal�1

C The discrete set filled with integer values
Cl The discrete set in which dequantized weight matrix are constrained
F (·) The objective function for layerwise quantization
hl(·) The activation function for l-th layer
Gl The dequantized weight matrix for l-th layer
Ja(·) The objective function of the sub-problem al
Jw(·) The objective function of the sub-problem Wl

Jz(·) The objective function of the sub-problem zl
 The scaling factor in backtracking algorithm for updating Wl

k k-th iteration in complete parameters updating process
L(·) The Loss function of neural network about zL
⌘ The coe�cient of quadratic term for updating zL
Ql The quantized weight matrix for l-th layer
qijl The element of Ql in the i-th row and j-th column
⇢ The penalty factor in layerwise quantization
R The loss function about weight
� The penalty factor to control weight of constraints al = hl(zl)

S(·) The softmax function
⌧ The scaling factor in the backtracking algorithm for updating al
µ The penalty factor to control weight of constraints Wl = Gl in Chapter 4
�l The coe�cient of the quadratic term of (·)
Wl The weight matrix for the l-th layer
W k

l The updated value of Wl in the k-th iteration
wij

l The element of Wl in the i-th row and j-th column
W The already quantized weight matrix
y The desired output of the neural network

Table 1: Important notations and descriptions

4 List of Tables

Notations Descriptions
zl The output of linear operator for the l-th layer
ẑL The start point of each FISTA iteration
zij The element of the matrix zl in the i-th row and j-th column
✓l The coe�cient of the quadratic term of �(·)
� Lagrange multiplier
'(·) The approximated quadratic function for updating zl
 (·) The approximated quadratic function of Jw(·)
�(·) The approximated quadratic function of Ja(·)

Table 2: Important notations and descriptions

1. Introduction

In recent years, neural networks have achieved remarkable success in many emerging
fields, such as natural language processing [12] and computer vision [11]. This
success can be attributed to increasing larger model sizes and the corresponding
development of computing resources. However, large models impose a heavy storage
footprint due to the enormous amounts of network parameters. For example, the
16-layer VGG network has a storage footprint of 528 megabytes. This high cost can
be a significant barrier to deploying deep neural networks on edge devices, whose
memory or computing resources are limited. As a result, there is a growing interest in
compressing deep models to reduce their computational cost and memory footprint.

Neural network quantization [21] is widely used to reduce the precision of weights
and activations in a deep neural network to lower memory and computational costs.
By representing weights and activations with fewer bits, model quantization can
significantly reduce the model size with little loss of accuracy. This technique has
been shown to be highly e↵ective in achieving both memory and computational
e�ciency in deep neural networks, making it a popular choice for deploying artificial
intelligence applications in resource-constrained environments [31, 19, 5]. However,
after model quantization, the weights and activation values are often discretized
into fixed numbers of bits, that are no longer continuously di↵erentiable. Since the
training of neural networks is based on the gradient descent algorithm, calculating
the gradients of quantized network during backpropagation becomes a challenge.

To address this problem, we focus on training quantized neural networks using the
gradient-free optimization method, Alternating Direction Method of Multiplier, also
known as ADMM. By introducing the augmented Lagrangian, we can decompose
the large neural network into smaller optimization problems which are easier to
be solved with global optimum. It obviates multiple drawbacks of gradient-based
optimization methods, such as saddle points and vanishing gradients.

We begin in Chapter 2 by providing background about neural networks, convolu-
tional neural networks, and some optimization algorithms, such as ADMM and fast
iterative shrinkage-thresholding algorithm. Chapter 3 proposes the mathematical
notation context and the algorithm for training the quantized neural network with

6 1. Introduction

ADMM approach. Chapter 4 describes the optimization approach of parameters in
the quantized neural network.

Moreover, we also propose a method, layerwise quantization for neural networks
using ADMM. Chapter 5 introduces the algorithm to quantize the neural network
layer by layer.

2. Background & Related Work

2.1 Neural network

A neural network is a model that contains a series of operations that aims to identify
underlying relationships in a given dataset by assembling the functionality of the
human brain. However, unlike the human brain, the artificial neural network is is
simplified to a layered structure. A typical neural network is composed of multiple

input layer

hidden layer

output layer

Figure 2.1: Example of a 3-layer neural network.

layers, including an input layer, an output layer, and some hidden layers. Each
layer consists of multiple neurons. The neurons in a layer receive output from the
neurons in the previous layer, perform a linear transformation followed by a non-
linear activation function, and pass its output to the neurons in the next layer.
This kind of neural network is also known as Multilayer Perceptron (MLP) [26].
Figure 2.1 shows the structure of a 3-layer neural network. Now, we suppose that
the neural network has L layers. We denote the linear operator of the l-th layer as
Wl and the non-linear activation function of the l-th layer as hl(·). Wl is also known
as the weight for l-th layer of the neural network. Given a vector of input activations
al�1, a single layer computes and outputs the non-linear function al = hl(Wlal�1).
A network is formed by layering these units together in a nested fashion to compute
a composite function [29]. For instance, in the 3-layer case, this would be

f(W) = W3(h2(W2h1(W1a0))), (2.1)

8 2. Background & Related Work

where W = {Wl, l = 1, 2, 3, . . . , L} denotes the set of weight matrices, and a0 con-
tains input activations for every training sample.

During training, the weights of the connections between neurons are adjusted to
minimize the error between the network’s output f(W) and the desired output y,
which is generally the label provided by the target dataset. Using the loss function
L(·), the training process can be modeled as an optimization problem:

minimize
W

L(f(W), y). (2.2)

The loss function computes the error between the current output of the neural
network and the desired output. By minimizing this error, the network can give the
output that is closest to the desired output.

To solve Equation 2.2, gradient-based approaches, such as gradient descent (GD),
are usually adopted. The basic idea behind gradient descent is to iteratively up-
date the model parameters in the direction of the steepest descent of the objective
function until convergence or a predetermined number of iterations. Di↵erent vari-
ants of gradient descent vary in the way that the gradient is computed and how
the parameters are updated. These variants, like batch gradient descent, stochastic
gradient descent, and mini-batch gradient descent, are applied to optimize Equa-
tion 2.2. But the convergence of all gradient methods su↵ers from the problem, such
as saturation e↵ects and saddle points. To mitigate the drawbacks in gradient-based
methods, Gavin Taylor proposed a method that uses alternating direction methods
and Bregman iteration to train the networks without gradient descent steps [29].
This method exhibits good scalability. Although ADMM is a powerful optimization
framework that can be applied to large-scale deep learning applications, it usually
converges slowly to high accuracy, even for simple examples [8]. It is often the case
that ADMM becomes trapped in a modest solution and hence performs worse than
stochastic gradient descent [30]. To overcome this problem, Wang et al. proposed
a novel and e�cient dlADMM algorithm to handle the fully-connected deep neu-
ral networks problem and improve the accuracy of the model when training neural
networks based on the ADMM approach [30].

2.2 Convolutional neural network

2.2.1 Basic convolutional neural network

Multilayer Perception performs poorly when it comes to handling image problems.
For high-resolution images, Multilayer Perception with fully connected layers flatten
the image into a long vector, disregarding the spatial relationships between pixels.
This can prevent the model from capturing local features and spatial structures, thus
impacting its performance. It can also result in a high number of parameters. This
increases computational and storage requirements, leading to longer training and
inference time. In addition, traditional neural networks are sensitive to changes in
the position of objects in the image. To overcome these problems, the convolutional
neural network is proposed [22].

Convolutional neural network (CNN) is inspired by the visual system in biological
organisms, particularly the working principle of neurons in the visual cortex [18].

2.2. Convolutional neural network 9

Compared to Multilayer Perception, the advantages of CNN, such as local connec-
tivity, parameter sharing, hierarchical feature extraction, and spatial pooling, make
them particularly e↵ective at handling grid-like structured data like images, enabling
them to achieve state-of-the-art performance in various computer vision tasks.

The core idea of CNN is to extract features from input images through multiple
layers of convolution and pooling operations, followed by fully connected layers.

1. Introduction

In recent years, neural networks have achieved remarkable success in many emerging
fields, such as natural language processing and computer vision. This success can
be attributed to the rapid development of computing resources. However, most
deep learning models are trained on high-end GPUs or CPU clusters, which can be
prohibitively expensive in terms of both computational and storage requirements.
For example, the 16-layer VGG network has a storage footprint of 528 megabytes.
This high cost can be a significant barrier to deploying deep neural networks in
scenarios where memory or computing resources are limited. As a result, there is a
growing interest in compressing deep models to reduce their computational cost and
memory footprint.

Model quantization is a widely-used model compression technique that reduces the
precision of weights and activations in a deep neural network to lower memory
and computational costs. By representing weights and activations with fewer bits,
model quantization can significantly reduce the model size with very little loss of
accuracy. This technique has been shown to be highly e↵ective in achieving both
memory and computational e�ciency in deep neural networks, making it a popular
choice for deploying AI applications in resource-constrained environments. However,
after model quantization, the weights and activation values are often discretized into

convolution max pool convolution max pool

1@128x128
6@128x128

6@64x64
12@64x64

12@16x16

1x256

1x128

Figure 1.1: Caption of the image
Figure 2.2: Illustration of a convolutional neural network with two convolution op-
erators and two max pool operators, followed by 2 fully connected layers.

The convolutional layer applies a set of convolutional kernels to perform convolu-
tional operations on the input image. The kernels scan the input image with a sliding
window in a local receptive field and extract features by element-wise multiplica-
tion and summation. Convolutional operations e↵ectively capture local features of
the input image by sharing the same filter weights at di↵erent positions. Figure 2.3
shows how convolutional layer works.

Figure 2.3: Illustration of the convolutional operator [1].

Pooling operations are used to reduce the spatial dimensions of feature maps and de-
crease computational complexity in subsequent layers. Common pooling operations
include max pooling and average pooling, which select the maximum or average
value within a local receptive field as the output. By performing pooling operations,
CNNs can exhibit invariance to spatial and scale variations, improving the model’s
robustness. Figure 2.4 shows how max pooling layer works.

10 2. Background & Related Work

29 15 184 28

0 100 70 38

12 12

12 12

7 2

45 6

100 184

12 45

Figure 2.4: Example of max pooling operation with stride = 2 and kernel = (2, 2).

In a CNN, multiple convolutional and pooling layers are stacked together, gradu-
ally learning higher-level feature representations. The final layer is usually a fully
connected layer, which maps the high-level features to the desired classification or
regression output.

2.2.2 ResNet

In traditional convolutional neural networks, information flows through the layers,
and each layer learns to map the input to the output. However, as the network
becomes deeper, the gradients tend to vanish during backpropagation, making the
network di�cult to train. Additionally, the problem of model degradation occurs,
where increasing the network depth does not necessarily lead to better performance
and may even lead to worse performance.

To overcome these issues, the residual network was introduced in 2015 by Kaiming
He et al. to address the problems of vanishing gradients and model degradation
during the training of deep networks [15]. Residual networks introduce residual
connections. Residual connections create “residual blocks” (as shown in Figure 2.5)
by connecting the input signal directly to the output through skip connections. This
allows the network to learn residual mappings, i.e., learning to transform the input
residual into the output residual. Since residual learning is easier than learning the
full mapping, the network can more easily optimize the residual part without being
a↵ected by vanishing gradients and degradation problems.

In a residual network, each residual block typically consists of two or three convolu-
tional layers and a residual connection from the input. Additionally, to reduce the
feature map size while increasing the network depth, convolutional or pooling layers
with a stride of 2 are used for downsampling. The entire network is composed of
multiple residual blocks, where the depth and width can be adjusted based on the
specific task.

The residual networks have achieved significant performance improvements in var-
ious computer vision tasks such as image classification [23], object detection [3],
and image segmentation [25]. Furthermore, the concept of residual networks has
been widely applied to other deep learning tasks in di↵erent domains, providing an
e↵ective solution to the challenges of training deep networks.

2.2. Convolutional neural network 11

weight layer

weight layer

+

x

F(x ReLU)

F(x)+x

x

ReLU

Figure 2.5: A building block of residual block.

In our experiment, we use the model ResNet20, which contains 20 convolutional
layers in residual blocks. It is specifically designed for the CIFAR datasets. The
architecture of ResNet20 can be divided into several key components. It starts
with a convolutional layer, followed by batch normalization and the rectified linear
unit (ReLU) activation function. The network then consists of a sequence of resid-
ual blocks, each containing two convolutional layers with batch normalization and
ReLU activation. Figure 2.6 shows the structure of the residual block of ResNet20.
These residual blocks help to capture and learn increasingly complex features as the
network deepens.

convolution
layer

batch
normalization

convolution
layer

batch
normalization

ReLU

+

residual bloc

ReLU

k

Figure 2.6: Residual block of ResNet20.

12 2. Background & Related Work

ResNet20 also includes downsampling blocks, which reduce the spatial dimensions
of the feature maps while increasing the number of filters. This downsampling is
typically achieved through convolutional layers with a stride of 2, which reduces
the width and height of the feature maps. The downsampling blocks allow the
network to learn both low-level and high-level features e�ciently. Figure 2.7 shows
the structure of residual block of ResNet20.

convolution
layer

batch
normalization

convolution
layer

batch
normalization

ReLU

+
ReLU

convolution
layer with
stride=2

batch
normalization

Figure 2.7: Downsampling block of ResNet20.

Finally, ResNet20 ends with an average pooling layer, which reduces the spatial
dimensions of the feature maps to a fixed size, and a fully connected layer for clas-
sification. The output of the fully connected layer represents the predicted class
probabilities. Figure 2.8 shows the network structure of ResNet20.

2.2. Convolutional neural network 13

convolutional layer

batch normalization

residual block

residual block

residual block

residual block with downsample

residual block

residual block

residual block with downsample

residual block

residual block

averagepool2D

fully connected layer

softmax

ReLU

Figure 2.8: Illustration of the structure of ResNet20. It contains 7 residual blocks
(with total 14 convolutional layers) and 2 downsampling blocks (with total 6 con-
volutional layers).

14 2. Background & Related Work

2.3 Quantization of neural network

In recent years, the significance of large neural networks has grown tremendously
alongside the advancement of neural networks. However, the utilization of such large
models often leads to significant storage requirements and demands substantial com-
putational resources. But in reality, computing resources are often constrained. In
order to address the increasing demand for deploying models on resource-constrained
devices and improving inference speed, various approaches to model compression
have been proposed.

Neural network prunning: One e↵ective strategy to decrease the memory footprint
and computational cost of neural networks is to apply pruning [28]. The essential
concept behind pruning is to remove redundant or less significant parameters from
the network. By pruning neurons with low saliency, a sparse computational graph
is created [14]. However, pruning is a non-trivial task and requires careful consider-
ation. Pruning methods should balance the removal of redundant components with
preserving the network’s representational capacity. Furthermore, strategies such as
regularization and fine-tuning after pruning can be employed to mitigate the poten-
tial loss of performance due to pruning.

Knowledge distillation: Another method for model compression is knowledge dis-
tillation [16]. It involves training a large model and then using it to generate the
target label for training a more compact model (like a teacher teaching students) [2].
Despite the extensive research on distillation, a significant challenge lies in achieving
high compression ratios through distillation alone [14]. Compared to pruning, which
can maintain performance with compression ratios of at least 4 times, knowledge dis-
tillation methods often experience noticeable accuracy degradation, especially when
aggressively compressed [14]. However, the combination of knowledge distillation
with other techniques, such as quantization and pruning, has shown remarkable
success in overcoming this limitation [27].

Neural network quantization: Neural network quantization aims to address this
problem from another perspective, namely to reduce the memory cost for each pa-
rameter by reducing their underlying bits. Because neural networks typically use
32-bit floating point numbers (FP32) to represent weights and activations, which
consume significant memory and computational resources. By means of quantiza-
tion, the network parameters can be represented with fewer bits. This reduces the
model size and saves computational resources. Related to neural networks, quanti-
zation is work in neuroscience that suggests that the human brain stores information
in a discrete/quantized form, rather than in a continuous form [24]. A popular ra-
tionale for this idea is that information stored in continuous form will inevitably get
corrupted by noise (which is always present in the physical environment, including
our brains, and which can be induced by thermal, sensory, external, synaptic noise,
etc.) [9]. However, discrete signal representations can be more robust to such low-
level noise [20]. Neural networks mimic the working principle of the human brain.
Therefore, this theory is applied to artificial Neural Networks.

There are di↵erent approaches to quantization. Post training quantization is a
common method in that the pre-trained neural network is quantized after it has been
trained using standard techniques like backpropagation. However, given a trained
model, Post training quantization may introduce a perturbation to the trained model

2.3. Quantization of neural network 15

parameters, and this pushes the model away from the point to which it had converged
when it was trained with floating point precision [14]. This result in loss of accuracy.

Another popular approach is to use Quantization aware training (QAT). Unlike Post
training quantization, which quantizes a network after training, QAT incorporates
the quantization process during the training phase. The forward and backward
passes are executed on the floating-point quantized model, but the model parame-
ters are quantized in the forward pass [13]. However, the gradient of the quantization
operator is either zero or infinity, i.e., the parameters can not be updated through
gradient-based methods. In order to solve this problem, the Straight through estima-
tor (STE) [7] is introduced. STE approximates the gradients of the non-di↵erentiable
function using continuous relaxation. During the forward pass, the STE applies the
non-di↵erentiable operation to the input, obtaining a continuous relaxation of the
discrete variable. During the backward pass, instead of applying the derivative of
the non-di↵erentiable function, the gradients are directly passed through as if the
operation were di↵erentiable [32]. However, the target use cases of STE are strongly
limited. Firstly, STE performs badly for ultra low-precision quantization, such as
binary quantization [4]. Secondly, the relaxed problem may have a di↵erent optimal
solution than the actual problem, especially for large, deep networks.

We propose to use ADMM, which is a gradient-free optimization method, to easily
integrate quantization into the training process.

Then we propose a layerwise quantization approach using ADMM. For each layer
of the neural network, we quantize the parameters through the ADMM approach,
followed by training parameters of non-quantized layers.

16 2. Background & Related Work

2.4 Alternating Direction Method of Multipliers

Alternating direction method of multipliers (ADMM) is an algorithm that is in-
tended to blend the decomposability of dual ascent with the superior convergence
properties of the method of multipliers [20]. The algorithm solves problems in the
form:

minimize f(x) + g(z)

subject to Ax + Bz = c,
(2.3)

with variables x 2 Rn and z 2 Rm, where A 2 Rp⇥n, A 2 Rp⇥m, and c 2 Rp. We
form the augmented Lagrangian:

L(x, z,�) = f(x) + g(z) +
!

2
kAx + Bz � ck22 + �(Ax + Bz � c), (2.4)

where � is Lagrangian multiplier, ! is the penalty factor, and L(·) is the objective
function.

To solve this problem, the variables can be optimized iteratively and alternatively

xk+1 := arg min
x

L(x, zk,�k), (2.5)

zk+1 := arg min
z

L(xk+1, z,�k), (2.6)

�k+1 := �k + !(Axk+1 + Bzk+1 � c). (2.7)

2.5 FISTA algorithm

Fast iterative shrinkage-thresholding algorithm (FISTA) is an iterative optimization
method used for solving sparse regularization problems [6]. It is particularly e↵ective
in dealing with data that exhibit sparse structures. Suppose that the optimization
problem with regularization terms is defined as

minimize{F(x) = f(x) + g(x)}, (2.8)

where the function g(x) denotes the regularization term.

Gradient descent algorithm is a general optimization algorithm. But for optimiza-
tion problems with penalty terms, gradient descent algorithms may require more
iterations to handle sparsity.

Then fast iterative shrinkage-thresholding algorithm (FISTA) has been proposed to
improve the e�ciency of training [6]. FISTA is based on the idea of gradient descent,
but the starting point of each iteration is chosen more intelligently in the iterative
process to achieve a faster iteration speed.

A quadratic approximation model is generally used to solve the optimization prob-
lem Equation 2.8. The Equation 2.8 is approximated at point y. The quadratic
approximation function of Equation 2.8 is given by

Q(x, y) = f(y) + hx� y,rfyi+
⇣

2
kx� yk22 + g(x). (2.9)

2.5. FISTA algorithm 17

Ignoring its constant term f(y) and rfy, Equation 2.9 can be simplified as

Q(x, y) =
⇣

2
kx� y +

1

⇣
rfyk22 + g(x). (2.10)

The minimum of Equation 2.10 is

P (y) = arg min
x

Q(x, y)

= arg min
x

⇣

2
kx� y +

1

⇣
rfyk22 + g(x),

(2.11)

where P is the proximal operator of Equation 2.10.

Algorithm 1 FISTA Algorithm

Initialize: t1 = 1, y1 = x0, k = 1
while not converged do

Update: xk = P (yk)

Update: tk+1
1+
p

1+4tk2

2
Update: yk+1 xk + (tk�1

tk
)(xk � xk�1)

Update: k k + 1
end while

18 2. Background & Related Work

3. Objective function and algorithm

3.1 Objective function of neural network

Our approach revolves around decoupling the model into a series of individual sub-
problems. While passing the output of linear operator Wl through activation func-
tion hl, we use a new variable zl = Wlal to store the output of linear operator and the
output of activation function is denoted as al = hl(zl). And The loss function of our
neural network is denoted as L(·). Then we could regard the original optimization
problem as the following objective function:

minimize
{Wl},{al},{zl}

L(zL, y)

subject to zl = Wlal�1, for l = 1, 2, . . . L

al = hl(zl), for l = 1, 2, . . . L� 1.

(3.1)

To solve Equation 3.1 we relax the constraints by adding penalty functions to the
objective function. The Problem can then be converted to unconstrained problem:

minimize
{Wl},{al},{zl}

L(zL, y) +
�

2
kzL �WLaL�1k22

+
L�1X

l=1

[
�

2
kzl �Wlal�1k22 +

�

2
kal � hl(zl)k22],

(3.2)

where � and � are constants which control the weight of constraints. To obtain
the exact solution, we also need to add a Lagrange multiplier term to Equation 3.2.
Then the equation is

minimize
{Wl},{al},{zl}

L(zL, y) + hzL �WLaL�1,�i+
�

2
kzL �WLaL�1k22

+
L�1X

l=1

[
�

2
kzl �Wlal�1k22 +

�

2
kal � hl(zl)k22],

(3.3)

where � is a vector of Lagrange multiplier. � has same dimensions as zL.

20 3. Objective function and algorithm

Because the proposed method scheme involves more than two coupled blocks and a
non-smooth penalty function, it lies outside the scope of known convergence results
for ADMM [29]. If ADMM is applied to Equation 3.2 in a conventional way, each
constraint needs one separate Lagrange multiplier vector. This method is highly
unstable because of the destabilizing e↵ect of numerous coupled non-smooth, non-
convex terms [29]. Taylor proposed that this problem can be solved with the help of
Bregman Iteration, which only requires a Lagrange Multiplier [29]. So we only add
one Lagrange multiplier for variable zL. Then we found the objective function with
only one Lagrange multiplier is more stable than the classical ADMM.

3.2 Objective function of quantized neural network

In order to quantize the neural network, we restrict the weight to be integer. We de-
note C as a set of these integers, where C = {�(2N�1), ...,�3,�2,�1, 0, 1, 2, 3, ..., 2N�
1}. N represents the number of bits. We also introduce a scaling factor ↵. ↵
is always positive and could be di↵erent in various layers. ↵l denotes the scal-
ing factor of l-th layer. The entries of the matrix Wl are constrained into the set
Cl = {�(2N � 1)↵l, ... � 3↵l,�2↵l,↵l, 0,↵l, 2↵l, 3↵l... + (2N � 1)↵l}. As Figure 3.1
shows, taking the case of 1 bit as an example, by introducing scaling factors ↵l, the
solution space for every entry of the weight matrix changes from points to lines.

-1 0 1

-1 0 1

Figure 3.1: After introducing ↵l, the solution space of element of weight matrix
changes from points to lines.

So we add some new constraints Wl 2 Cl on the objective function to represent the
quantized neural network. The objective function of quantized neural network is

minimize
{Wl},{al},{zl}

L(zL, y) + hzL �WLaL�1,�i+
�

2
kzL �WLaL�1k22

+
L�1X

l=1

[
�

2
kzl �Wlal�1k22 +

�

2
kal � hl(zl)k22]

subject to Wl 2 Cl for l = 1, 2, . . . L.

(3.4)

3.3. Algorithm of updating parameters 21

This optimization problem is an integer programming problem. It is very complex to
solve it using traditional integer programming method, such as branch and bound,
especially for the large model with huge solution space. Inspired by Huang et al.
[17], we introduce an additional auxiliary variable G which is subject to the discrete
set. The objective function can be rewritten as:

minimize
{Wl},{al},{zl}

L(zL, y) + hzL �WLaL�1,�i+
�

2
kzL �WLaL�1k22

+
L�1X

l=1

[
�

2
kzl �Wlal�1k22 +

�

2
kal � hl(zl)k22]

subject to Wl = Gl for l = 1, 2, . . . L,

(3.5)

where Gl is the dequantized weight of the l-th layer.

Then we add the penalty term on the objective function

minimize
{Wl},{al},{zl}

L(zL, y) + hzL �WLaL�1,�i+
�

2
kzL �WLaL�1k22

+
L�1X

l=1

[
�

2
kzl �Wlal�1k22 +

�

2
kal � hl(zl)k22]

+
LX

l=1

µ

2
kWl �Glk22

subject to Gl 2 Cl,

(3.6)

where µ is the penalty factor of constraints Wl = Gl. The parameters al, zl and Wl

can be optimized in continuous space. Then the Wl is projected into discrete space
after optimizing in continuous space.

3.3 Algorithm of updating parameters

In order to overcome the problem that ADMM becomes trapped in a modest solu-
tion, we adopt the method in [30]. Wang et al. proposed: “If the parameters are
updated only from the first layer to final layer, the parameters in the final layer are
subject to the parameter update in the first layer. But, the parameters in the final
layer contain important information that can be transmitted towards the previous
layer to speed up convergence.” [30]. According to the method in [30], we update
the parameters first in a backward direction and then in a forward direction and use
some quadratic approximation to replace the matrix inversion and accelerate the
training process. However, as the auxiliary variable, Gl always updates after Wl. It
means that we first optimize the Wl in the continuous space and then optimize Gl

in the discrete space.

There are two steps involved in updating parameters. The first step is backward
updating, where we start updating from the L-th layer and move backward toward
the first layer. Within the same layer, the parameters are updated in the following
order: al ! zl ! Wl ! Gl. The second step is forward updating, where we
initiate the update process from the first layer and proceed backward toward the
L-th layer. Within the same layer, the parameters are updated in the following
order: Wl ! Gl ! zl ! al. Figure 3.2 shows the updating process in the case of a
3-layer neural network.

22 3. Objective function and algorithm

Algorithm 2 Training quantized Neural Network with ADMM approach

Ensure: {al}L�1
l=1 , {Wl}Ll=1, {zl}Ll=1, {Gl}Ll=1

Require: training features {a0} and labels {y}
Initialize k = 0
while {W k+1

l }Ll=1, {Gk+1
l }Ll=1, {zk+1

l }Ll=1, {ak+1
l }Ll=1 not converged do

for l=L to 1 do

if l  L then

update ak+1
l

update zk+1
l

update W k+1
l

update Gk+1
l

else

update zk+1
l

update W k+1
l

update Gk+1
l

end if

end for

for l=1 to L do

if l  L then

update W k+1
l

update Gk+1
l

update zk+1
l

update ak+1
l

else

update W k+1
l

update Gk+1
l

update zk+1
l

end if

end for

update �k+1

k k + 1
end while

3.3. Algorithm of updating parameters 23

input layer

hidden layer

output layer

1.backward update
z3→w3→G3→a2→z2→w2→G2→a1→z1→w1→G1

w1→G1→z1→a1→w2→G2→z2→a2→w3→G3→z3

2.forward update

Figure 3.2: The updating process of a 3-Layer Neural Network.

24 3. Objective function and algorithm

4. Alternating minimization for neural

networks

4.1 Update Wl

With the help of ADMM, the original problem can be decoupled into some sub-
problems. Firstly, we describe how to minimize the parameter Wl. In the sub-
problem of Wl, we consider Wl as the only variable. It means, that zl, Gl and al�1

are considered to be constants. The sub-problem about Wl is to minimize

Jw(Wl) =
�

2
kzl �Wlal�1k22 +

µ

2
kWl �Glk22, (4.1)

where Jw(·) denotes the objective function of the sub-problem of parameter Wl.

We can observe that the function Jw(·) is convex. The minimum of Wl must satisfy
the optimality condition:

dJw(Wl)

dWl
= 0. (4.2)

So the derivative of Equation 4.1 should be zero. We can obtain that Wl must satisfy

��(zl �Wlal�1)a
T
l�1 + µ(Wl �Gl) = 0. (4.3)

Then we obtain the update of Wl:

Wl (µGl + �zla
T
l�1)(�al�1a

T
l�1 + µI)�1. (4.4)

We found there is matrix inversion in Equation 4.4. The computation of matrix
inversion needs further sub-iterations, produces high time complexity, and leads to
a large amount of computing time. Inspired by Wang et al. [30], we use quadratic
function and backtracking techniques to approximate the Jw(Wl).

We approximate the Jw(Wl) at the point W k
l , where W k

l represents the value of Wl

in the k-th iteration. We define (Wl, �l) as the quadratic approximation of Jw(Wl).
The function Jw(Wl) could be reformulated as

 (Wl, �l) = Jw(W k
l) + (rWk

l
Jw)T (Wl �W k

l) +
�l
2
kWl �W k

l k22, (4.5)

26 4. Alternating minimization for neural networks

where �l denotes the coe�cient of quadratic term and (rWk
l
Jw) is the gradient of

Jw(·) at the point W k
l . �l > 0 is a scalar. Instead of minimizing Equation 4.1, we

solve the following problem:

W k+1
l arg min

Wl

 (Wl, �l). (4.6)

The function (Wl, �l) also must satisfy:

@

@Wl
= 0. (4.7)

The partial derivative of (·) to Wl is

@

@Wl
= rWk

l
Jw + �l(Wl �W k

l). (4.8)

So the solution can be obtained by

Wl
k+1 W k

l �rWk
l
Jw/�l, (4.9)

where the gradient of Jw(Wl) at the point W k
l is

rWk
l
Jw = ��(zl �W k

l al�1)a
T
l�1 + µ(W k

l �Gl). (4.10)

Now, the key problem is how to choose an appropriate parameter �l. We use the
backtracking algorithm. The Algorithm 3 shows pseudocode of updating W k+1

l ,
where W k+1

l denotes the value of Wl in (k + 1)-th iteration. We set  as the scaling
factor for the backtracking algorithm and  is always greater than one. Then We
set up a loop that stops until condition Jw(Wl

k+1)  (Wl
k+1, �l). Because  > 1,

the �l becomes larger and larger as the number of iterations increases. The W k+1
l

is getting close to W k
l . As (Wl

k, �l) = Jw(W k
l), the point W k

l satisfy the stopping
condition. This prevents Algorithm 3 from falling into an infinite loop.

Algorithm 3 The Backtracking Algorithm to update W k+1
l

Ensure: �l, W
k+1
l

Require: zl, al�1, Gl, W k
l , �, µ

Initialize �l and choose  > 1
Wl

k+1 W k
l �rWk

l
L/�l

while Jw(Wl
k+1) > (Wl

k+1, �l) do

�l �l
Wl

k+1 W k
l �rWk

l
Jw/�l

end while

Output Wl
k+1

Output �l

4.2. Update Gl 27

4.2 Update Gl

After optimizing Wl in continuous space, we need to optimize the discrete values Gl.
The update for Gl requires minimizing

JG(Gl) =
µ

2
kWl �Glk22

subject to Gl 2 Cl,
(4.11)

where Cl is the set {0,±↵l,±2↵l, ...,±(2N�1)↵l} and JG(·) is the objective function
of sub-problem Gl. We could observe that all parameters in Equation 4.11 are
decoupled. So its solution does not contain any matrix inversion. We could solve it
directly. First, We introduce an auxiliary variable Ql for each layer. Ql has same
dimension as Wl. And Ql is constrained in the discrete set C = {0,±1,±2, ...,±(2N�
1)}. Then the Equation 4.11 can be reformulated as following equation:

JG(Ql,↵l) =
µ

2
kWl � ↵lQlk22

subject to Ql 2 C.
(4.12)

We use an iterative approach to alternatively optimize these two variables. It means
we fix one variable and optimize another variable. Firstly, we consider Ql as constant
and optimize ↵l. As the penalty factor µ does not a↵ect the result of the optimiza-
tion, it can be ignored. We take a two-dimensional Wl matrix as an example. We
assume that the size of Wl is c and d. wij

l represents the entry of the matrix Wl in
the i-th row and j-th column. qijl represents the entry of the matrix Ql in the i-th
row and j-th column. We can rewrite Equation 4.12 as

JG(Ql,↵l) = kWl � ↵lQlk22

=
cX

i=1

dX

j=1

((wij
l)2 + ↵2

l (q
ij
l)2 � 2↵l(w

ij
l)(qijl))

subject to Ql 2 {�(2N � 1), ...,�2,�1, 0, 1, 2, ..., (2N � 1)}.

(4.13)

If Ql is fixed, the function JG(·) is convex. And ↵l is continuous. To minimize Equa-
tion 4.13, it must satisfy the optimality condition:

@JG
@↵l

= 0. (4.14)

The derivative of JG(·) with respect to ↵l is

@JG
@↵l

=
cX

i=1

dX

j=1

(2↵l(q
ij
l)2 � 2wij

l q
ij
l) = 0. (4.15)

Then we obtain the update of ↵l

↵l
Pc

i=1

Pd
j=1 w

ij
l q

ij
lPc

i=1

Pd
j=1(q

ij
l)2

. (4.16)

Secondly, we optimize the parameter Ql. Now ↵l is considered as constant. All
entries of Ql must be integers, so the function JG(·) is not di↵erentiable. Therefore,

28 4. Alternating minimization for neural networks

the optimality condition is not suitable for optimizing Ql. The optimal Ql can be
obtained by projection of Wl

↵l

Ql = ⇧{0,±1,±2,...,±(2N�1)}(
Wl

↵l
), (4.17)

where ⇧ represents the projection operator. The projection onto a discrete set
corresponds to finding the point within the set that is nearest to the given point.

Algorithm 4 shows the pseudocode of updating Gl. We adopt the early stop to stop
the loop.

Algorithm 4 The Algorithm to update Ql and ↵l

Ensure: Ql, ↵l

Require: Wl

Initialize Ql and ↵l, maximum patience, best loss =1, patience = 0
while the maximum iteration is not reached do

↵l
Pc

i=1

Pd
j=1 w

ij
l qijlPc

i=1

Pd
j=1(q

ij
l)2

Ql = ⇧{0,±1,±2,...,±2N�1}(
Wl
↵l

)

if kWl � ↵lQlk22 < best loss then

best loss = kWl � ↵lQlk22
patience = 0

else

patience = patience + 1
end if

if patience � maximium patience then

break

end if

end while

Gl = ↵lQl

Output Gl

4.3. Update zl 29

4.3 Update zl
The update for zl (l < L) requires minimizing

Jz(zl) =
�

2
kzl �Wlal�1k22 +

�

2
kal � hl(zl)k22. (4.18)

This problem exhibits non-convexity and non-quadratic behaviour due to the pres-
ence of the non-linear term h(·). So the optimality condition can not be used to
optimize the zl. However, a notable advantage is that the non-linearity h(·) oper-
ates element-wise on its argument, allowing the individual entries in zl to be treated
independently. Solving Equation 4.18 is easy when h(·) is a piecewise linear function,
as it can be solved in close form; common piecewise linear choices for h(·) include
rectified linear units and non-di↵erentiable sigmoid functions [29]. The rectified
linear units function is

h(x) =

(
x, if x > 0

0, otherwise.
(4.19)

The non-di↵erentiable sigmoid equation is

h(x) =

8
><

>:

1, if x � 1

x, if 0 < x < 1

0, otherwise.

(4.20)

For more sophistical choices of h(·), including smooth sigmoid curves, the problem
can be solved quickly with a lookup table of pre-computed solutions [29].

We define the entry of matrix zl as zijl . Taking rectified linear units as an example,
suppose zl > 0 (all entries of zl are greater than 0), the hl(zl) is equal to zl. If zl > 0,
the objective function of optimizing zl is

minimize
zl

�

2
kzl �Wlal�1k22 +

�

2
kal � zlk22. (4.21)

To satisfy optimality condition, the derivative of the objective equation of updating
zl must be equal to zero:

�(zl �Wlal�1)� �(al � zl) = 0. (4.22)

The solution of Equation 4.22 is obtained by

zl =
�Wlal�1 + �al

� + �
. (4.23)

After updating zl, we must check if the precondition zijl > 0 for each element is
satisfied. We keep the matrix entries that satisfy the precondition.

Suppose zl < 0 (all elements of zl are smaller than 0), the hl(zl) is equal to zero.
The objective function of optimizing zl is

minimize
zl

�

2
kzl �Wlal�1k22 +

�

2
kalk22. (4.24)

30 4. Alternating minimization for neural networks

Through optimality condition, we can obtain the update of zl

zl = Wlal�1. (4.25)

Same as the case where zl is greater than zero, we have to check if the precondition
zijl < 0 for each element is satisfied. We keep the matrix elements that satisfy the
precondition.

It is worth noting that there are some special values of entries in the matrix zl. The
first special case is: When these entries are assumed to be greater than zero, the
update result is less than zero; when they are assumed to be less than zero, the
update result is greater than zero. Both preconditions are not satisfied. In this case,
we make these entries equal to the critical value 0. The second special case is: When
these entries are assumed to be greater than zero, the update result is greater than
zero; when they are assumed to be less than zero, the update result is less than zero.
It means two preconditions are satisfied at the same time. In this case, we have to
compare which update result has a smaller target value and choose the better one.

Algorithm 5 shows the pseudocode of updating zl. z̃1 is the solution of Equation 4.21,
if we suppose zl > 0. z̃2 is the solution of Equation 4.24 if we suppose zl < 0. z̃1

ij

and z̃2
ij are the elements of z̃1 and z̃2.

Algorithm 5 The Algorithm to update zl
Ensure: zl
Require: al, al�1, Wl, �, �
z̃1 = �Wlal�1+�al

�+�
z̃2 = Wlal�1

for each element z̃1
ij in z̃1 do

if z̃1
ij  0 then

z̃1
ij = 0

end if

end for

for each element z̃2
ij in z̃2 do

if z̃2
ij � 0 then

z̃2
ij = 0

end if

end for

for each elements z̃1
ij , z̃2

ij in z̃1,z̃2 do

if z̃1
ij > 0 and z̃2

ij < 0 then

e1 = �
2kz̃1

ij � wij
l · aijl�1k22 + �

2ka
ij
l � hl(z̃1

ij)k22
e2 = �

2kz̃2
ij � wij

l · aijl�1k22 + �
2ka

ij
l � hl(z̃2

ij)k22
if e1 < e2 then

zijl = z̃1
ij

else

zijl = z̃2
ij

end if

end if

end for

4.4. Update al 31

4.4 Update al
The update for al requires minimizing

Ja(al) =
�

2
kzl+1 �Wl+1alk22 +

�

2
kal � hl(zl)k22. (4.26)

where Ja(·) denotes the objective function of sub-problem of al. When the optimality
condition is satisfied, we obtain the update for al

al (�W T
l+1Wl+1 + �I)�1(�W T

l+1zl+1 + �hl(zl)). (4.27)

There is still the inversion in Equation 4.27. Same as the process of updating Wl,
we use quadratic function and backtracking techniques to approximate the Equa-
tion 4.26. .

We approximate the Ja(al) at the point akl , where akl represents the value of al in
the k-th iteration. We define �(al, ✓l) as the quadratic approximation of Ja(al). The
Ja(al) could be reformulated as

�(al, ✓l) = Ja(a
k
l) + (rakl

Ja)
T (al � akl) +

✓l
2
kal � akl k22, (4.28)

where ✓l > 0 is the coe�cient of quadratic term of �(·) and (rakl
Ja) is the gradient

of Ja(·) at the point akl . Instead of minimizing the Equation 4.26, we solve the
following problem:

ak+1
l arg min

al

�(al, ✓l). (4.29)

The function �(·) is a convex function. When al locates at position of minimum,
the function �(al, ✓l) must satisfy:

@�

@al
= 0. (4.30)

The partial derivative of �(·) to al is

@�

@al
= rakl

Ja + ✓l(al � akl). (4.31)

The solution of Equation 4.29 can be obtained by

ak+1
l akl �rakl

Ja/✓l, (4.32)

where the gradient of Ja(al) at the point akl is

rakl
Ja = ��W T

l+1(zl+1 �Wl+1a
k
l) + �(akl � hl(zl)). (4.33)

Same as updating Wl, we use the backtracking algorithm to choose suitable parame-
ter ✓l. The Algorithm 6 shows pseudocode for updating ak+1

l . We set ⌧ as the scaling
factor for the backtracking algorithm and ⌧ is always greater than one. Then We
set up a loop that stops until condition Ja(alk+1)  �(alk+1, ✓l).

32 4. Alternating minimization for neural networks

Algorithm 6 The Backtracking Algorithm to update ak+1
l

Ensure: ✓l, a
k+1
l

Require: zl, Wl+1, zl+1, akl , �, �
Initialize ✓l and choose ⌧ > 1
alk+1 akl �rakl

JG/✓l
while Ja(alk+1) > �(ãl

k+1, ✓l) do

✓l ⌧✓l
alk+1 akl �rakl

J/✓l
end while

Output alk+1

Output ✓l

4.5 Update zL
Compared with updating zl, there is an additional term in the equation for updating
zL:

minimize
zL

L(zL, y) +
�

2
kzL �WLaL�1k22 + hzL �WLaL�1,�i. (4.34)

FISTA Algorithm is applied to optimize zL. We define

f(zL) = L(zL, y) + hzL �WLaL�1,�i. (4.35)

Then we approximate the Equation 4.34 at the point ẑL. The approximate function
' is

'(zL, ẑL) =
⌘

2
kzL � ẑL +

1

⌘
rfẑLk22 +

�

2
kzL �WLaL�1k22, (4.36)

where ⌘ denotes coe�cient of quadratic term of the function '(·). The minimum of
Equation 4.36 is

P (ẑL) = arg min
zL

'(zl, ẑL), (4.37)

where P (·) denotes the proximal operator.

To obtain the solution of Equation 4.37, the optimal solution must satisfy the opti-
mality condition:

@'

@zL
= 0. (4.38)

Then we obtain the update for zL

zL
⌘ẑL + �WLaL�1 �rfẑL

⌘ + �
. (4.39)

Now, the key question is how to choose the starting point ẑL for each iteration of
the update. The Algorithm 7 shows how to update zL and choose ẑL.

In our project, we adopt the cross-entropy function with softmax as the loss function.
The gradient of f at point ẑL is

rfẑL = S(zL)� y + � (4.40)

where S(·) denotes the softmax function.

4.6. Update Lagrangian Multiplier 33

Algorithm 7 FISTA Algorithm for updating zL

Initialize: t1 = 1,ẑ1L = z0L,s = 1
while not converged do

Update: zsL
⌘ẑL+�WLaL�1�rfẑL

⌘+�

Update: ts+1 1+
p
1+4ts2

2
Update: ẑs+1

L zsL + (t
s�1
ts)(zsL � zs�1

L)
Update: s s + 1

end while

4.6 Update Lagrangian Multiplier

In ADMM, the Lagrange multiplier update is gradient ascent in the dual space.
There is only one Lagrange multiplier in the objective function. It can be updated
through the function:

� �+ �(zL �WLaL�1). (4.41)

34 4. Alternating minimization for neural networks

5. Layerwise Quantization with

ADMM Approach

We also propose a method to quantize neural networks layer by layer. There are
two main steps to quantize each layer of the neural network:
(1) quantize the parameter with ADMM approach
(2) update the parameters of remaining non-quantized layers

5.1 Quantization with ADMM approach

Suppose a pre-trained neural network with L layers is given, the loss function of the
pre-trained neural network is denoted by R(·). In our method, the parameters of
quantized layers are used as the input for quantizing the subsequent layer. As shown
in Figure 5.1, suppose one has quantized the pre-trained network up to the (l�1)-th
layer. Then to quantize l-th layer, we consider the W [1,2,. . . ,l�1] = {W 1,W 2, ...,W l�1}
as input, where the W represents the quantized parameters. The set W[l+1,. . . ,L]

denotes the remaining non-quantized layers.
The loss function of the partially quantized neural network is given by

minimize
Wl

R(W [1,2,. . . ,l�1],Wl,W[l+1,. . . ,L]). (5.1)

Then we introduce an auxiliary variable Gl. To quantize the parameter Wl, Gl is
constrained in a discrete set Cl = {�(2N � 1)↵l, ...,�2↵l,�↵l, 0,↵l, 2↵l, ..., (2N �
1)↵l}. In order to quantize l-th layer, We define

F (Wl, Gl,�) = R(W [1,2,. . . ,l�1],Wl,W[l+1,. . . ,L])

+
⇢

2
kWl �Glk22 + hWl �Gl,�i,

(5.2)

where ⇢ > 0 denotes the penalty factor and F (·) denotes the objective function.

The objective function should be

36 5. Layerwise Quantization with ADMM Approach

…… ……

quantized layer

1st layer
（l-1)-th layer

l-th layer

(l+1)-th layer
L-th layer

the layer will
be quantized

non-quantized layer

Figure 5.1: A L-layer neural network with l � 1 quantized layers and l-th will be
quantized with ADMM approach.

minimize
Wl,Gl

F (Wl, Gl,�)

subject to Gl 2 Cl

(5.3)

Using ADMM, the Equation 5.3 could be split into 3 sub-problems:

Wl arg min
Wl

F (Wl, Gl,�) (5.4)

Gl arg min
Gl

F (Wl, Gl,�) (5.5)

� �+ ⇢(Wl �Gl). (5.6)

5.1.1 Update Wl

Equation 5.2 could be reformulated as

F (Wl, Gl,�) =R(W [1,2,. . . ,l�1],Wl,W[l+1,. . . ,L])

+
⇢

2
kWl �Gl +

�

⇢
k22 �

1

2⇢
k�k22.

(5.7)

Since � and ⇢ are constants when updating Wl, they do not a↵ect the objective
value. So the constant term 1

2⇢k�k
2
2 can be omitted. The objective function of the

sub-problem for updating Wl could be simplified as

minimize
Wl

R(W [1,2,. . . ,l�1],Wl,W[l+1,. . . ,L])

+
⇢

2
kWl �Gl +

�

⇢
k22.

(5.8)

Wl can be optimized simply by a gradient descent algorithm.

5.1. Quantization with ADMM approach 37

5.1.2 Update Gl

The sub-problem of Gl is

minimize
Gl

⇢

2
kWl +

�

⇢
�Glk22

subject to Gl 2 Cl,
(5.9)

where Cl = {�(2N � 1)↵l, ...,�2↵l,�↵l, 0,↵l, 2↵l, ..., (2N � 1)↵l}. For convenience,
we denote Wl +

�
⇢ as Vl. The projection of Vl onto Cl can be formulated as

minimize
Gl

⇢

2
kVl �Glk22

subject to Gl 2 Cl.
(5.10)

Separating the scaling factor from the constraints, the objective function can be
equivalently formulated as:

minimize
Ql,↵l

⇢

2
kVl � ↵lQlk22

subject to Ql 2 C,
(5.11)

where C = {�(2N � 1), ...,�2,�1, 0, 1, 2, ..., 2N � 1}. Ql is a matrix whose all
elements are integers. Ql has same dimension as Wl. ↵l > 0 is scaling factor. We
iteratively optimize ↵l and Ql. Firstly, we fix the Ql and update ↵l. We take a
two-dimensional Wl matrix as an example. We suppose that the size of Vl is c and
d. vijl represents the element of the matrix Vl in the i-th row and j-th column. qijl
represents the element of the matrix Ql in the i-th row and j-th column. We can
rewrite Equation 5.11 as

minimize
Ql,↵l

cX

i=1

dX

j=1

((vijl)2 + ↵2
l (q

ij
l)2 � 2↵l(v

ij
l)(qijl))

subject to Ql 2 {�(2N � 1), ...,�2,�, 0, , 2↵, ...(2N � 1)}.

(5.12)

When Ql is fixed, Equation 5.11 is a convex function. And ↵l is continuous. To
optimize ↵l, the optimality condition must be satisfied by

cX

i=1

dX

j=1

(2↵l(q
ij
l)2 � 2vijl q

ij
l) = 0. (5.13)

Then we obtain the update of ↵l

↵l
Pc

i=1

Pd
j=1 v

ij
l q

ij
lPc

i=1

Pd
j=1(q

ij
l)2

. (5.14)

Secondly, we fix ↵l. All entries of Ql must be integers, the objective function of
the sub-problem for updating Ql is not di↵erentiable. Therefore, the optimality
condition can not be used. The optimal Ql can be obtained by projection of Vl

↵l

Ql = ⇧{0,±1,±2,...,±2N�1}(
Vl

↵l
), (5.15)

where ⇧ represents the projection operator. The projection onto a discrete set
corresponds to finding the point within the set that is nearest to the given point.

Algorithm 8 shows the pseudocode of updating Gl. We adopt the early stop to stop
the loop.

38 5. Layerwise Quantization with ADMM Approach

Algorithm 8 The Algorithm to update Ql and ↵l

Ensure: Ql, ↵l

Require: Wl, �, ⇢
Initialize Ql and ↵l, maximum patience , best loss =1, patience = 0
Vl = Wl +

�
⇢

while the maximum iteration is not reached do

↵l
Pc

i=1

Pd
j=1 v

ij
l qijlPc

i=1

Pd
j=1(q

ij
l)2

Ql = ⇧{0,±1,±2,...,±2N�1}
Vl
↵l

if kVl � ↵lQlk22 < best loss then

best loss = kVl � ↵lQlk22
patience = 0

else

patience+ = 1
end if

if patience � maximium patience then

break

end if

end while

Gl = ↵lQl

Output Gl

5.1.3 Update �

After updating Wl and Gl, the � is updated using following rule:

� �+ ⇢(Wl �Gl). (5.16)

5.2 Remaining non-quantized layers update

As shown in Figure 5.2, after the l-th layer is quantized, we obtain the network
where the previous l layers are quantized while the remaining ones are not. Next,
we need to retrain the non-quantized layers of the neural network. Therefore, the
parameters of the remaining non-quantized layers can be adjusted to accommodate
the changes in the quantized layers.
The loss function is still the function R(·). The input is quantized parameters
W [1,2,...,l]. The objective function is given by

minimize
W[l+1,...,L]

R(W [1,2,. . . ,l],W[l+1,. . . ,L]). (5.17)

5.2. Remaining non-quantized layers update 39

…… ……

quantized layer

1st layer
（l-1)-th layer

l-th layer

(l+1)-th layer
L-th layer

non-quantized layer that
should be retrained

Figure 5.2: A L-layer neural network with l quantized layers and the remaining
non-quantized layers will be retrained.

40 5. Layerwise Quantization with ADMM Approach

6. Evaluation

6.1 Experiment Setup

In this section, we present experimental results that compare the performance of
two ADMM approaches to other approaches.

6.1.1 Dataset

In our experiment, we use 5 datasets to evaluate the performance of di↵erent ap-
proaches. Below, we describe these five datasets.

The first dataset is Seeds. The dataset Seeds holds data on area, perimeter, com-
paction, seed length, seed width, asymmetry coe�cient, seed ventral groove length,
and category data for di↵erent varieties of wheat seeds. The dataset has a total of
210 records, 7 features, and one label, and the labels are divided into 3 categories.

The second dataset is Pendigits. The dataset Pendigits is a multiclass classification
dataset with 16 integer attributes and 10 classes. The digit database is created by
collecting 250 samples from 44 writers. The samples written by 30 writers are used
for training, cross-validation, and writer-dependent testing, and the digits written
by the other 14 are used for writer-independent testing. In this dataset, all classes
have equal frequencies.

The third dataset is MNIST. MNIST is a dataset of images of handwritten digits
that counts a total of 250 images of handwritten digits from 250 di↵erent people. It
comprises approximately 70,000 greyscale images of handwritten digits, each mea-
suring 28⇥28 pixels. The images represent the digits 0 to 9. The dataset is divided
into 60,000 training samples and 10,000 testing samples.

The fourth dataset is CIFAR10. The dataset CIFAR10 is a widely used benchmark
dataset in the field of computer vision and machine learning. It is composed of a
collection of 60,000 color images belonging to 10 di↵erent classes. Each image in
the dataset CIFAR10 is a 32⇥32-pixel RGB image, which means it has three color
channels (red, green, and blue). The dataset is divided into 50,000 training images
and 10,000 testing images. The training set is further subdivided into five equal
parts, known as “training batches”, each containing 10,000 images.

42 6. Evaluation

The fifth dataset is CIFAR100. The dataset CIFAR100 is an extension of the dataset
CIFAR10 and is designed to be even more challenging. It contains 60,000 color
images divided into 100 fine-grained classes, with 600 images per class. Each image
in CIFAR100 is a 32⇥32-pixel RGB image, similar to CIFAR10. The dataset is split
into 50,000 training images and 10,000 testing images. Like CIFAR10, the training
set is further divided into five training batches, each containing 10,000 images.

Table 6.1 shows the number of features (input neurons in neural networks) and
classes (output neurons) of di↵erent datasets.

dataset the number of features and classes
Seeds 7 features and 3 classes

Pendigits 16 features and 10 classes
MNIST 28⇥28 features and 10 classes

CIFAR10 32⇥32⇥3 features and 10 classes
CIFAR100 32⇥32⇥3 features and 10 classes

Table 6.1: Table of datasets

6.1.2 Experiment Settings

In this experiment, five benchmark datasets were used for performance evaluation:
Seeds, Pendigits, MNIST, CIFAR10, and CIFAR100. We design two pipelines for
our experiments: Multilayer Perceptron (MLP) and convolutional neural network
(CNN). Datasets Seeds, Pendigits, and MNIST are used for MLP pipeline, while
CIFAR10 and CIFAR100 are used for CNN pipeline.

6.1.2.1 MLP pipeline

For di↵erent datasets, we design the models with di↵erent topologies. For example,
for Seeds, the model has 3 layers. The input layer has 7 neurons. Each hidden layer
has 5 neurons. The output layer has 3 neurons. Table 6.2 shows the topologies of
models in MLP pipeline.

dataset topology
Seeds [7,5,5,3]

Pendigits [16,12,12,10]
MNIST [784,200,200,10]

Table 6.2: Table of datasets and their topology of models for MLP

In the MLP pipeline, we compare our two methods:
(1) training quantized neural network with ADMM approach (QNN-ADMM)
(2) layerwise quantization for the neural network using ADMM approach (LQ)
with the methods“Post training quantization”(PTQ) and“training quantized neural
network with Straight through estimator” (QNN-STE). We compare their accuracies
in the cases of 8 bits, 4 bits, 2 bits, and 1 bit, respectively.

PyTorch int8 neural network is the real-world state-of-art of model quantization. Py-
Torch is a popular deep learning framework. It supports the training and deployment

6.2. Experiment Result 43

of neural networks using int8 data types (8-bit integers). PyTorch o↵ers three meth-
ods: Dynamic Quantization, Static Quantization, and Quantization aware training.
As Dynamic Quantization only support the MLP. So, We compare our methods
with Dynamic quantization (DQ) and Quantization aware training (QAT) in MLP
pipeline. Static Quantization supports the CNN. Therefore, the Static Quantization
and Quantization aware training are chosen as the comparison methods. Note that
we are only comparing the 8-bit case here.

6.1.2.2 CNN pipeline

In the CNN pipeline, we choose ResNet20 as the model. The experimental setup
is similar to the MLP pipeline. But there is one more comparison method: Deep
Neural Network Quantization via Layer-wise Optimization Using Limited Training
Data (LDNQ) [10]. LDNQ also uses the ADMM approach to quantize the neural
network layer by layer. However, the ground truth is not the label in the dataset
but the pre-trained model. As the QNN-ADMM is only available for MLPs, we do
not compare it with other methods in the CNN pipeline.

6.2 Experiment Result

6.2.1 MLP pipeline

6.2.1.1 Dataset Seeds

First, we obtain the results on small dataset: Seeds. Table 6.3 shows the accuracies
of di↵erent methods, when the model is respectively quantized to 8 bits, 4 bits, 2
bits, and 1 bit.

We can observe that QNN-ADMM performs worse than other methods in the case
of 8 bits. And QNN-ADMM has a large standard deviation in accuracy at 8 bits.
But in the case of 2 bits, QNN-ADMM does not have a significant loss of precision.
In the case of 1 bit, QNN-ADMM performs best among all methods. LQ performs
well in the case of 8 bits, 4 bits and 2 bits. At 1 bit, LQ is second only to ADMM.

We then show the box plot respectively at 8 bits, 4 bits, 2 bits, and 1 bit. There are
five most important values in the box plot. They are median, maximum, minimum,
upper quartile and lower quartile. The black horizontal line in the graph represents
the median. The two light blue horizontal lines represent the maximum and mini-
mum values. The top and bottom edges of the coloured blocks represent the upper
and lower quartiles. For all box plots in MLP pipeline, the red block denotes Post
training Quantization. The yellow block denotes training quantized neural network
with Straight through estimator. The blue block denotes training quantized neural
network with ADMM. The dark green block denotes the layerwise quantization with
ADMM. The pink block denotes Dynamic quantization. The orange block denotes
Quantization aware training.

44 6. Evaluation

full precision 93.25% ± 2.84%

nbits
method

PTQ QNN-STE QNN-ADMM LQ DQ QAT

8 bits
93.25% 93.25% 82.56% 93.72% 93.72% 94.65%
±2.84% ±2.84% ±9.32% ±2.34% ±2.95% ±2.95%

4 bits
86.74% 89.77% 91.16% 92.56% - -
±4.03% ±1.86% ±3.72%% ±3.09%

2 bits
63.26% 87.67% 88.61% 89.07% - -
±22.49% ±4.17% ±3.95% ±4.99%

1 bit
33.52% 38.14% 66.51% 55.81% - -
±13.36% ±18.70% ±18.49% ±22.09%

Table 6.3: Table of accuracies among PTQ, QNN-STE, QNN-ADMM, LQ, DQ,
QAT, on dataset Seeds in the case of 8 bits, 4 bits, 2 bits and 1 bit. PTQ is
the abbreviation of Post training quantization. QNN-STE is the abbreviation of
training quantized neural network with Straight through estimator. QNN-ADMM
is the abbreviation of training quantized neural network with ADMM. LQ is the
abbreviation of layerwise quantization using ADMM. DQ is the abbreviation of
Dynamic Quantization. QAT is the abbreviation of Quantization aware training.

Figure 6.1 shows the accuracies of the quantized neural network of di↵erent methods
at 8 bits. We can observe that the result of QNN-ADMM is obviously worse than
other methods.

Figure 6.1: The performance of di↵erent methods at 8 bits on dataset Seeds.

6.2. Experiment Result 45

Figure 6.2 shows the accuracies of the quantized neural network of di↵erent methods
at 4 bits. LQ performs the best among all methods.

Figure 6.2: The performance of di↵erent methods at 4 bits on dataset Seeds.

Figure 6.3 shows the accuracies of the quantized neural network of di↵erent methods
at 2 bits. Except for PTQ, all other three methods perform well.

Figure 6.3: The performance of di↵erent methods at 2 bits on dataset Seeds.

Figure 6.4 shows the accuracies of the quantized neural network of di↵erent methods
at 1 bit. QNN-ADMM and LQ perform much better than the other two methods.

46 6. Evaluation

Figure 6.4: The performance of di↵erent methods at 1 bit on dataset Seeds.

6.2.1.2 Dataset Pendigits

Second, we obtain the results on datasets Pendigits. Table 6.4 shows the accuracies
of di↵erent methods, when the model is respectively quantized to 8 bits, 4 bits, 2
bits, and 1 bit. We can observe that QNN-ADMM has a significant loss of accuracy
at 8 bits and 4 bits, but performs best at 2 bits and 1 bit. The accuracy of LQ is
second to QNN-ADMM at 2 bits and 1 bit. And At 8 bits, the average accuracy of
LQ is just a little lower than QAT, but it has a smaller standard deviation. This
indicates that LQ performs more stalely.

Figure 6.5 shows the accuracies of the quantized neural network of di↵erent methods
at 8 bits on dataset Pendigits. Almost all the methods have accuracies around 98%
except QNN-ADMM. QNN-ADMM performs the worst and has a wide range of
variations in accuracy.

6.2. Experiment Result 47

full precision accuracy 98.32% ± 0.25%

nbits
method

PTQ QNN-STE QNN-ADMM LQ DQ QAT

8 bits
97.99% 97.89% 85.01% 98.15% 98.07% 98.17%
±0.36% ±0.43% ±1.88% ±0.2% ±0.23% ±2.92%

4 bits
67.04% 92.76% 81.93% 91.54% - -
±14.21% ±1.68% ±4.33%% ±4.29%

2 bits
25.17% 45.80% 53.32% 53.08% - -
±8.60% ±14.65% ±11.62% ±8.79%

1 bit
9.89% 16.52% 35.73% 31.12% - -
±0.25% ±4.32% ±9.21% ±10.12%

Table 6.4: Table of the accuracies on dataset Pendigits in the case of 8 bits, 4
bits, 2 bits, 1 bit. PTQ is the abbreviation of Post training quantization. QNN-
STE is the abbreviation of training quantized neural network with Straight through
estimator. QNN-ADMM is the abbreviation of training quantized neural network
with ADMM. LQ is the abbreviation of layerwise quantization using ADMM. DQ is
the abbreviation of Dynamic Quantization. QAT is the abbreviation of Quantization
aware training.

Figure 6.5: The performance of di↵erent methods at 8 bits on dataset Pendigits.

Figure 6.6 shows the accuracies of the quantized neural network of di↵erent methods
at 4 bits on dataset Pendigits. The accuracy of QNN-STE has the highest median
and a small range of variation. LQ also has high accuracy, but has a larger range of
variation than QNN-STE.

48 6. Evaluation

Figure 6.6: The performance of di↵erent methods at 4 bits based on dataset Pendig-
its.

Figure 6.7 shows the accuracies of the quantized neural networks among di↵erent
methods at 2 bits on dataset Pendigits. QNN-ADMM and LQ perform better than
PTQ and QNN-STE. Even though the median accuracy of LQ is lower than that of
QNN-ADMM, LQ is more stable.

Figure 6.7: The performance of di↵erent methods at 2 bits on dataset Pendigits.

Figure 6.8 shows the accuracies of the quantized neural network of di↵erent methods
at 1 bit on dataset Pendigits. QNN-ADMM and LQ perform much better than the

6.2. Experiment Result 49

other two methods. Even though their accuracies have a wide range of variability,
their worst accuracy is still better than the other methods.

Figure 6.8: The performance of di↵erent methods that neural network at 1 bit on
dataset Pendigits.

6.2.1.3 Dataset MNIST

The images of dataset MNIST have 28⇥28 pixels. We flatten these images into
column vector which can be used as input for MLP. The results on dataset MNIST
are shown in Table 6.5. LQ performs best at 8 bits, 4 bits, 2 bits. At 1 bit, LQ
has high mean accuracy but also has a large standard deviation. It means it is not
stable at 1 bit. The results of QNN-ADMM are similar to the other two datasets.
It is obvious that its accuracies are lower than other methods at 8 bits. However, it
exhibits excellent performance at 4 bits, 2 bits and 1 bit.

50 6. Evaluation

full precision accuracy 95.33% ± 0.27%

nbits
method

PTQ QNN-STE QNN-ADMM LQ DQ QAT

8 bits
94.31% 95.27% 86.28% 97.26% 97.22% 95.55%
±1.32% ±0.93% ±0.74% ±0.09% ±0.08% ±0.65%

4 bits
39.37% 85.99% 86.08% 97.09% - -
±21.21% ±1.3% ±0.75% ±0.16%

2 bits
10.53% 16.19% 81.26% 82.61% - -
±1.11% ±5.98% ±2.06% ±23.69%

1 bit
9.74% 10.65% 67.12% 23.07% - -
±0.89% ±1.58% ±5.11% ±23.62%

Table 6.5: Table of the accuracy of dataset MNIST in the case of 8 bits, 4 bits, 2
bits, 1 bit. PTQ is the abbreviation of Post training quantization. QNN-STE is
the abbreviation of training quantized neural network with Straight through esti-
mator. QNN-ADMM is the abbreviation of training quantized neural network with
ADMM. LQ is the abbreviation of layerwise quantization using ADMM. DQ is the
abbreviation of Dynamic Quantization. QAT is the abbreviation of Quantization
aware training.

Figure 6.9 shows the accuracies of the quantized neural network of di↵erent methods
at 8 bits in dataset MNIST. We can clearly observe that the accuracy of QNN-
ADMM is far lower than other methods. Even the maximum accuracy of QNN-
ADMM is still lower than other methods. And LQ performs best and consistently.

Figure 6.9: The performance of di↵erent methods at 8 bits on dataset MNIST.

6.2. Experiment Result 51

Figure 6.10 shows the accuracies of the quantized neural network of di↵erent methods
at 4 bits. LQ performs far better than other methods. The QNN-STE has higher
medians than QNN-ADMM, but QNN-ADMM shows more stability.

Figure 6.10: The performance of di↵erent methods at 4 bits on dataset MNIST.

Figure 6.11 shows the accuracies of the quantized neural network of di↵erent methods
at 2 bits on dataset MNIST. The accuracy rank is LQ, QNN-ADMM, QNN-STE,
PTQ.

Figure 6.11: The performance of di↵erent methods at 2 bits on dataset MNIST.

52 6. Evaluation

Figure 6.12 shows the accuracies of the quantized neural network of di↵erent methods
at 1 bit on dataset MNIST. The accuracy rank is QNN-ADMM, LQ, QNN-STE,
PTQ.

Figure 6.12: The performance of di↵erent methods that neural network at 1 bit
based on dataset MNIST.

6.2. Experiment Result 53

6.2.2 CNN pipeline

6.2.2.1 Dataset CIFAR10

Table 6.6 shows the results on dataset CIFAR10. We can observe that the LQ has
the highest accuracy at 4 bits and second-highest accuracy at 8 bits and 2 bits. In
particular, the accuracy of LQ improves by around 4% compared to the full-precision
model in the 8-bit and 4-bit cases. Due to batch normalization, these methods still
show good performance at 1 bit. But at 1 bit, the LQ does not perform as well as
QNN-STE and LDNQ.

full precision accuracy 84.23% ± 1.01%

nbits
method

PTQ QNN-STE LDNQ LQ SQ QAT

8 bits
84.27% 84.68% 86.10% 88.11% 84.40% 88.61%
±0.99% ±0.97% ±0.37% ±0.45% ±0.73% ±0.31%

4 bits
83.24% 84.03% 86.01% 88.05% - -
±1.21% ±1.18% ±0.41% ±0.38%

2 bits
44.19% 81.64% 85.75% 84.37% - -
±4.75% ±1.23% ±0.36% ±1.28%

1 bit
9.91% 80.56% 80.41% 74.20% - -
±0.24% ±1.09% ±0.43% ±1.77%

Table 6.6: Table of the accuracies on dataset CIFAR10 in the case of 8 bits, 4 bits, 2
bits, 1 bit. PTQ is the abbreviation of Post training quantization. QNN-STE is the
abbreviation of training quantized neural network with Straight through estimator.
LDNQ is the abbreviation of Deep Neural Network Quantization via Layer-wise
Optimization Using Limited Training Data. LQ is the abbreviation of layerwise
quantization using ADMM. SQ is the abbreviation of Static Quantization. QAT is
the abbreviation of Quantization aware training.

Now, we show the results through box plots. For all box plots in CNN pipeline, the
red block denotes Post training Quantization. The yellow block denotes training
quantized neural network with Straight through estimator. The light green block
denotes Deep Neural Network Quantization via Layer-wise Optimization Using Lim-
ited Training Data. The dark green block denotes the layerwise quantization with
ADMM. The orange block denotes Static Quantization. The light red block denotes
Quantization aware training.

Figure 6.13 shows the accuracies of the quantized neural network of di↵erent methods
at 8 bits on dataset CIFAR10. We can clearly observe that the accuracy of LQ rank
second at 8 bits but still much better than PTQ, QNN-STE, LDNQ.

54 6. Evaluation

Figure 6.13: The performance of di↵erent methods at 8 bits on dataset CIFAR10.

Figure 6.14 shows the accuracies of the quantized neural network of di↵erent methods
at 4 bits on dataset CIFAR10. The rank of accuracy of di↵erent methods is: LQ,
LDNQ, QNN-STE, PTQ.

Figure 6.14: The performance of di↵erent methods at 4 bits on dataset CIFAR10.

Figure 6.15 shows the accuracies of the quantized neural network of di↵erent methods
at 2 bits on dataset CIFAR10. We can see the accuracy of LQ is a little lower than
LDNQ.

6.2. Experiment Result 55

Figure 6.15: The performance of di↵erent methods at 2 bits on dataset CIFAR10.

Figure 6.14 shows the accuracies of the quantized neural network of di↵erent methods
at 1 bit on dataset CIFAR10. LQ does not perform as well as QNN-STE and LDNQ.

Figure 6.16: The performance of di↵erent methods at 1 bit on dataset CIFAR10.

56 6. Evaluation

6.2.2.2 Dataset CIFAR100

Table 6.7 shows the results of dataset CIFAR100. The regular is similar to CIFAR10.
We can see that LQ has large accuracy gains at 8 bits and 4 bits compared to the
full precision model. And LQ is second best at 4 bits and does not perform well at
1 bit.

full precision accuracy 52.28% ± 1.61%

nbits
method

PTQ QNN-STE LDNQ LQ SQ QAT

8 bits
52.30% 52.10% 52.75% 59.57% 54.11% 59.22%
±1.29% ±0.76% ±0.85% ±0.78% ±1.18% ±0.86%

4 bits
49.67% 50.82% 52.70% 57.55% - -
±1.01% ±9.55% ±0.81% ±0.38%

2 bits
28.17% 41.60% 51.38% 46.94% - -
±2.60% ±1.29% ±1.03% ±1.79%

1 bit
1.09% 35.80% 32.88% 27.25% - -
±0.27% ±2.66% ±1.61% ±2.82%

Table 6.7: Table of the accuracies on dataset CIFAR100 in the case of 8 bits, 4 bits,
2 bits, 1 bit. QNN-STE is the abbreviation of training quantized neural network
with Straight through estimator. LDNQ is the abbreviation of Deep Neural Network
Quantization via Layer-wise Optimization Using Limited Training Data. LQ is the
abbreviation of layerwise quantization using ADMM. SQ is the abbreviation of Static
Quantization. QAT is the abbreviation of Quantization aware training.

Figure 6.17 shows the accuracies of the quantized neural network of di↵erent methods
at 8 bits on dataset CIFAR100. LQ and QAT are better than others.

Figure 6.17: The performance of di↵erent methods at 8 bits on dataset CIFAR100.

6.2. Experiment Result 57

Figure 6.18 shows the accuracies of the quantized neural network of di↵erent methods
at 4 bits on dataset CIFAR100. The rank of the method is: LQ, LDNQ, QNN-STE,
PTQ.

Figure 6.18: The performance of di↵erent methods at 4 bits on dataset CIFAR100.

Figure 6.19 shows the accuracies of the quantized neural network of di↵erent methods
at 2 bits on dataset CIFAR100. LDNQ has the highest accuracy. And LQ has
second-highest accuracy.

Figure 6.19: The performance of di↵erent methods at 2 bits based on dataset CI-
FAR100.

58 6. Evaluation

Figure 6.20 shows the accuracies of the quantized neural network of di↵erent methods
at 1 bit on dataset CIFAR100. We can observe that QNN-STE performs best among
all methods at 1 bit.

Figure 6.20: The performance of di↵erent methods at 1 bit on dataset CIFAR100.

6.3. Discussion 59

6.3 Discussion

We can find a regular about QNN-ADMM: QNN-ADMM always performs poorly
at 8 bits and 4 bits. But it always performs well at 2 bits and 1 bit. QNN-ADMM
only adds a Lagrange multiplier to the sub-problem of the neural network’s output
zL. There are no Lagrange multipliers on the sub-problems of other parameters.
The constraints of these sub-problems are not strictly fulfilled. So the obtained
minimum of the sub-problems without adding Lagrange multipliers are not the exact
solution. This means that there are errors in each layer of the neural network.
When these errors are accumulated, the accuracy becomes lower. However, it will
become unstable if Lagrange multipliers are added to all sub-problems. QNN-STE
performs well at 8 bits and 4 bits, as it approximates the gradient well. However,
the di↵erence between the approximated backward gradient using QNN-STE and
the true backward gradient is much larger at 2 bits and 1 bit, so QNN-STE does
not perform well at 2 bits and 1 bit. Although in the QNN-ADMM approach,
there are errors in each layer, which leads to a loss of accuracy. However, it does not
require gradient in the optimization process, which makes it show good performance.
In MLP pipelines, we found LQ performs well on 3 datasets and at four kinds
of bits. In CNN pipeline, the performance of LQ ranks top 2 except the 1-bit
case. We found that LQ is more suitable for MLP. We also observe, whether in the
CNN pipeline or the MLP pipeline, the accuracy of the quantized model sometimes
increases compared to the full precision model at 8 bits, instead of decreasing. We
guess that LQ can help the model to escape from the local minimum and exhibit
improved performance.

60 6. Evaluation

7. Conclusion and Future Work

In this thesis, we focus on quantization of neural network to reduce the memory
footprint and computational complexity of deep learning models while maintaining
their performance.

We propose to quantize the neural network using ADMM approach. In Chapter 3
and Chapter 4 we present a method to train quantized neural networks without
gradient. Borrowing the idea from ADMM, the training process of a neural network
can be decomposed into the update process of each parameter within the neural
network. By optimizing each parameter under its relevant constraints, the quantized
neural network can be trained without gradients. In Chapter 5, we propose another
method to quantize a pre-trained neural network layerwisely with ADMM approach.
After each layer is quantized, the remaining non-quantized layers must be updated
to compensate the loss of accuracy that the quantization results in.

In Chapter 6, we compare the mean value and standard variation of accuracy among
di↵erent methods at di↵erent bits on 5 datasets. we found, that the model has
higher accuracy at 2 bits and 1 bit when the quantized network is trained using
ADMM approach. The method, layerwise quantization with ADMM approach, has
higher accuracy compared to other comparison methods. And it is more suitable to
Multilayer Perceptron than convolutional neural networks.

62 7. Conclusion and Future Work

Bibliography

[1] https://mlnotebook.github.io/post/CNN1/.

[2] Sungsoo Ahn et al. “Variational Information Distillation for Knowledge Trans-
fer”. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 9163–9171.

[3] Yali Amit, Pedro Felzenszwalb, and Ross Girshick. “Object Detection”. In:
Computer Vision: A Reference Guide (2020), pp. 1–9.

[4] Yu Bai, Yu-Xiang Wang, and Edo Liberty. “Proxquant: Quantized Neural Net-
works via Proximal Operators”. In: arXiv preprint arXiv:1810.00861 (2018).

[5] Ron Banner, Yury Nahshan, and Daniel Soudry. “Post Training 4-Bit Quan-
tization of Convolutional Networks for Rapid-deployment”. In: Advances in
Neural Information Processing Systems 32 (2019).

[6] Amir Beck and Marc Teboulle. “A Fast Iterative Shrinkage-Thresholding Al-
gorithm for Linear Inverse Problems”. In: SIAM journal on imaging sciences
2.1 (2009), pp. 183–202.

[7] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. “Estimating or Prop-
agating Gradients through Stochastic Neurons for Conditional Computation”.
In: arXiv preprint arXiv:1308.3432 (2013).

[8] Stephen Boyd et al.“Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers”. In: Foundations and Trends®
in Machine learning 3.1 (2011), pp. 1–122.

[9] Rishidev Chaudhuri and Ila Fiete. “Computational Principles of Memory”. In:
Nature neuroscience 19.3 (2016), pp. 394–403.

[10] Shangyu Chen, Wenya Wang, and Sinno Jialin Pan. “Deep Neural Network
Quantization via Layer-wise Optimization Using Limited Training Data”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01.
2019, pp. 3329–3336.

[11] Dan Claudiu Ciresan et al. “Flexible, High Performance Convolutional Neu-
ral Networks for Image Classification”. In: Twenty-second international joint
conference on artificial intelligence. Citeseer. 2011.

[12] Ronan Collobert and Jason Weston. “A Unified Architecture for Natural Lan-
guage Processing: Deep Neural Networks with Multitask Learning”. In: Pro-
ceedings of the 25th international conference on Machine learning. 2008, pp. 160–
167.

https://mlnotebook.github.io/post/CNN1/

64 Bibliography

[13] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Binarycon-
nect: Training Deep Neural Networks with Binary Weights during Propaga-
tions”. In: Advances in neural information processing systems 28 (2015).

[14] Amir Gholami et al. “A Survey of Quantization Methods for E�cient Neural
Network Inference”. In: arXiv preprint arXiv:2103.13630 (2021).

[15] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[16] Geo↵rey Hinton, Oriol Vinyals, and Je↵ Dean. “Distilling the Knowledge in a
Neural Network”. In: arXiv preprint arXiv:1503.02531 (2015).

[17] Tianjian Huang et al. “Alternating Direction Method of Multipliers for Quan-
tization”. In: International Conference on Artificial Intelligence and Statistics.
PMLR. 2021, pp. 208–216.

[18] David H Hubel and Torsten N Wiesel. “Receptive Fields, Binocular Interaction
and Functional Architecture in the Cat’s Visual Cortex”. In: The Journal of
physiology 160.1 (1962), p. 106.

[19] Benoit Jacob et al.“Quantization and Training of Neural Networks for E�cient
Integer-arithmetic-only Inference”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, pp. 2704–2713.

[20] Mel Win Khaw, Luminita Stevens, and Michael Woodford. “Discrete Adjust-
ment to a Changing Environment: Experimental Evidence”. In: Journal of
Monetary Economics 91 (2017), pp. 88–103.

[21] Raghuraman Krishnamoorthi. “Quantizing Deep Convolutional Networks for
E�cient Inference: A Whitepaper”. In: arXiv preprint arXiv:1806.08342 (2018).

[22] Yann LeCun et al.“Backpropagation Applied to Handwritten Zip Code Recog-
nition”. In: Neural computation 1.4 (1989), pp. 541–551.

[23] Dengsheng Lu and Qihao Weng. “A Survey of Image Classification Methods
and Techniques for Improving Classification Performance”. In: International
journal of Remote sensing 28.5 (2007), pp. 823–870.

[24] Warren S McCulloch and Walter Pitts. “A Logical Calculus of the Ideas Im-
manent in Nervous Activity”. In: The bulletin of mathematical biophysics 5
(1943), pp. 115–133.

[25] Shervin Minaee et al. “Image Segmentation Using Deep Learning: A Sur-
vey”. In: IEEE transactions on pattern analysis and machine intelligence 44.7
(2021), pp. 3523–3542.

[26] Leonardo Noriega. “Multilayer Perceptron Tutorial”. In: School of Computing.
Sta↵ordshire University 4.5 (2005), p. 444.

[27] Antonio Polino, Razvan Pascanu, and Dan Alistarh. “Model Compression via
Distillation and Quantization”. In: arXiv preprint arXiv:1802.05668 (2018).

[28] Russell Reed.“Pruning Algorithms-a Survey”. In: IEEE transactions on Neural
Networks 4.5 (1993), pp. 740–747.

[29] Gavin Taylor et al. “Training Neural Networks Without Gradients: A Scalable
ADMM Approach”. In: International conference on machine learning. PMLR.
2016, pp. 2722–2731.

Bibliography 65

[30] Junxiang Wang et al. “ADMM for E�cient Deep Learning with Global Con-
vergence”. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2019, pp. 111–119.

[31] Hao Wu et al. “Integer Quantization for Deep Learning Inference: Principles
and Empirical Evaluation”. In: arXiv preprint arXiv:2004.09602 (2020).

[32] Penghang Yin et al. “Understanding Straight-through Estimator in Train-
ing Activation Quantized Neural Nets”. In: arXiv preprint arXiv:1903.05662
(2019).

	Contents
	1 Introduction
	2 Background & Related Work
	2.1 Neural network
	2.2 Convolutional neural network
	2.2.1 Basic convolutional neural network
	2.2.2 ResNet

	2.3 Quantization of neural network
	2.4 Alternating Direction Method of Multipliers
	2.5 FISTA algorithm

	3 Objective function and algorithm
	3.1 Objective function of neural network
	3.2 Objective function of quantized neural network
	3.3 Algorithm of updating parameters

	4 Alternating minimization for neural networks
	4.1 Update Wl
	4.2 Update Gl
	4.3 Update zl
	4.4 Update al
	4.5 Update zL
	4.6 Update Lagrangian Multiplier

	5 Layerwise Quantization with ADMM Approach
	5.1 Quantization with ADMM approach
	5.1.1 Update Wl
	5.1.2 Update Gl
	5.1.3 Update

	5.2 Remaining non-quantized layers update

	6 Evaluation
	6.1 Experiment Setup
	6.1.1 Dataset
	6.1.2 Experiment Settings
	6.1.2.1 MLP pipeline
	6.1.2.2 CNN pipeline

	6.2 Experiment Result
	6.2.1 MLP pipeline
	6.2.1.1 Dataset Seeds
	6.2.1.2 Dataset Pendigits
	6.2.1.3 Dataset MNIST

	6.2.2 CNN pipeline
	6.2.2.1 Dataset CIFAR10
	6.2.2.2 Dataset CIFAR100

	6.3 Discussion

	7 Conclusion and Future Work
	Bibliography

