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Molecular dynamics (MD) simulations have been widely used to study flow at molecular scales. Most of
this work is devoted to study the departure from continuum fluid mechanics as the confining dimension
decreases. Here, we present MD results under conditions where hydrodynamic descriptions typically apply,
but focus on the influence of in-plane wavelengths. Probing the long wavelength limit in thermodynamic
equilibrium, we observed anomalous relaxation of the density and longitudinal momentum fluctuations.
The limiting behavior can be described by an effective continuum theory that describes a transition to
overdamped sound relaxation for compressible fluids.
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Nanofluidic systems have recently gained increased
attention due to progress in fabrication processes [1–3],
that allow exploration of the sub-nanometer confinement
regime. While continuum theories have been proven robust
down to the nanometer scale [4], the discrete nature of
particles and even the electronic structure of the confining
walls cannot be neglected at smaller scales [5,6]. The effect
of the confining dimension and fluid-wall interaction has
been of primary interest in numerous equilibrium [7–10] or
nonequilibrium molecular dynamics (MD) simulations
[11–13].
Past MD simulations of confined fluids have used

simulation setups, in which the lateral box size is on the
same order as the gap height. Conversely, continuum
theories (such as the Reynolds equation [14]) often assume
that the gap height is small compared to the lateral size.
This assumption is then used to reduce the dimensionality
of the governing equations by averaging over the gap, but it
is clearly violated in most MD studies.
Here, we report equilibrium MD simulations that explic-

itly probe the long wavelength behavior of confined simple
fluids. We compare the spectral behavior of transport
coefficients in confined fluids to equivalent bulk systems,
and derive explicit expressions for them by means of
an effective continuum theory. In contrast to bulk fluids,
the propagation of sound modes becomes wavelength

dependent, leading to a critical transition to overdamped
sound relaxation at wavelengths which scale with the
square of the effective gap height. We show how to describe
this overdamped, diffusive sound regime in a continuum
formulation.
In our molecular simulations, fluid atoms of mass m

interact through a Lennard-Jones (LJ) potential, UðrijÞ ¼
4ϵ½ðσ=rijÞ12 − ðσ=rijÞ6�, where rij ¼ jr⃗i − r⃗jj is the pair-
wise atomic distance. We use a shifted potential [15], where
the shift in energy is given by the interaction energy at the
cutoff radius rc ¼ 2.5σ. The simulations are performed both
in a supercritical and a liquid state. The walls consist of two
rigid layers of fcc atoms with lattice constant a ¼ 1.2σ,
where the f111g plane is in contact with the fluid. Fluid-wall
interactions are likewise modeled using a LJ potential with
parameters σwf ¼ 0.875σ and ϵwf ¼ 1.5ϵ. All simulations
are in the microcanonical ensemble.
We explicitly probe the long wavelength limit of density

and momentum relaxations through a simulation box with

LJ fluid
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FIG. 1. Molecular dynamics simulation setup of a Lennard-
Jones fluid confined between rigid walls. One of the lateral
dimensions of the system is much larger than the gap height.
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extreme aspect ratios, i.e., where one lateral dimension is
much larger than the gap height. An exemplary setup is
shown in Fig. 1. The gap height h and the box size in the y
direction are 14.7σ, and the largest system is approximately
100 times longer with Lx ¼ 1410.9σ.
Fluctuations of the collective density variables (mass and

momentum) with wave vectors k⃗ are extracted using a
discrete spatial Fourier transform, e.g., for mass density
ρðk⃗; tÞ ¼ mV−1PN

i¼1 expð−ik⃗ · r⃗iðtÞÞ, where V is the over-
all volume of the system. Here, we chose k⃗ parallel to the x
direction and compute the normalized autocorrelation
function Cρðk; tÞ ¼ hρ�ðk; 0Þρðk; tÞi=hjρðk; 0Þj2i at indi-

vidual wave numbers k ¼ jk⃗j, where angular brackets
denote an average over initial conditions, and the star is
the complex conjugate. Similarly, we compute the auto-
correlation functions of momentum density j⃗ in longi-

tudinal (jk ¼ j⃗ · ˆk⃗) and transverse direction (j⃗⊥ ¼ j⃗ − jk
ˆk⃗),

with ˆk⃗ ¼ k⃗=jk⃗j. In practice, we calculated the autocorrela-
tion functions from a single long trajectory.
Figure 2 shows the normalized time autocorrelation

functions of the three largest wavelengths for mass density
Cρðk; tÞ and longitudinal momentum density Ckðk; tÞ in a
supercritical statewithT ¼ 2.0ϵ=kB and ρ ¼ 0.452m=σ3. In
both cases, oscillations in the autocorrelation function are
absent, which are usually observed in bulk systems as a
signature of propagating acoustic modes due to pressure
fluctuations at constant entropy. The long time behavior of
the density autocorrelation in bulk fluids is shown as a dotted
line in the inset of Fig. 2 for comparison. Density correla-
tions additionally contain a purely diffusive mode arising

from entropy fluctuations at constant pressure, a. k. a. the
Rayleigh process describing thermal transport. Here, mo-
mentum perturbations decay rapidly, and the characteristic
decay time does not show a strong dependence on longi-
tudinal wavelength. In contrast, the decay time of the mass
density autocorrelation functions depends on wavelength.
Diffusive processes in bulk systems typically yield

decay rates that scale with the square of the wave number,
where the constant of proportionality is the corresponding
diffusivity, e.g., the kinematic viscosity ν ¼ η=ρ for
shear modes, or the sound absorption coefficient Γ ¼
ðγ − 1ÞDT=2þ νL=2 for sound modes, containing both
thermal diffusivity DT ¼ κT=cP and kinematic longitudinal
viscosity νL ¼ ð4η=3þ ζÞ=ρ. Here, γ ¼ cP=cV denotes the
ratio of specific heats, κT is the heat conductivity, and η and
ζ are shear and bulk viscosities, respectively [16]. The
observed mass density relaxation times are approximately 2
orders of magnitude lower than in the bulk.
To describe the deviations from bulk behavior, we

consider isothermal conditions by setting γ ¼ 1, thereby
deliberately ignoring the Rayleigh process. Thus, height-
averaged mass and momentum balance equations [17] are
given by

∂q̄
∂t

¼ −
∂f̄x
∂x

−
∂f̄y
∂y

−
fzjz¼h − fzjz¼0

h|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
≕ s

; ð1Þ

where q̄≡ q̄ðr⃗; tÞ ¼ h−1
R
h
0 qðr⃗; tÞdz is the height average

of the density vector of conserved variables, here expressed
though the joint vector qðr⃗; tÞ ¼ ðρðr⃗; tÞ; j⃗ðr⃗; tÞÞ⊤, with
j⃗ ¼ ðjx; jyÞ⊤. Thus, the momentum component in the z
direction vanishes in the reduced system. The correspond-
ing fluxes fi ≡ fiðr⃗; tÞ and their height averages f̄i are
defined by constitutive relations, and the last term s
accounts for additional dissipation relative to a laboratory
system due to the confinement

f̄i ¼

0
BB@

ji
pδxi − τ̄xi

p̄δyi − τ̄yi

1
CCA; s¼ 1

h

0
BB@

0

τxzjz¼h − τxzjz¼0

τyzjz¼h − τyzjz¼0

1
CCA; ð2Þ

where we neglect convective acceleration terms. We ob-
tain a linearized system for a compressible Newtonian
fluid with viscous stress tensor τ ¼ η½∇j⃗þ ð∇j⃗Þ⊤�þ
ðζ − 2η=3Þð∇ · j⃗Þ1, and a barotropic equation of state
pðρÞ ¼ c2Tρ, with isothermal speed of sound cT. Spatial
Fourier transform in the x and y coordinates allows us to
rewrite Eq. (1) as a system of ordinary differential equa-
tions for the coefficients q̃ðk; tÞ given by

dq̃ðk; tÞ
dt

¼ H · q̃ðk; tÞ; ð3Þ

FIG. 2. Autocorrelation functions of density and longitudinal
momentum fluctuations in a supercritical fluid for three modes,
with the largest wavelength corresponding to k1σ ¼ 4.45 × 10−3.
The inset shows the long-time behavior of density correlations on
a logarithmic axis as well as the theoretical expression for the k1
mode of an equivalent bulk fluid (dotted line).

PHYSICAL REVIEW LETTERS 131, 084001 (2023)

084001-2



with the hydrodynamic matrix

H¼−

2
64

0 ik 0

ic2Tk νLk2þ 12ν=ðh2κÞ 0

0 0 νk2þ 12ν=ðh2κÞ

3
75; ð4Þ

where κ denotes a permeability factor, which accounts for
deviations from the no-slip boundary condition at the top
and bottom interface. In a geometry with identical top and
bottom walls κ ¼ 1þ 6b=h, with Navier [18] slip length b
quantifying the velocity mismatch between the wall and the
outermost fluid layer. The source term in Eq. (1) vanishes
only for infinitely large slip lengths where Galilean invari-
ance is restored and the system describes a “true” bulk two-
dimensional system.
The hydrodynamic matrixH is diagonalized with eigen-

values μ⊥ ¼ −νk2 − 12ν=h2κ corresponding to transverse
modes, and μk ¼ −νLk2=2 − 6ν=h2κ � isTk correspon-
ding to longitudinal modes. The phase velocity of longi-
tudinal modes is given by the dispersion relation

sTðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2T − 1=ðτkkÞ2

q
shown in Fig. 3, where τk ¼

ðReμkÞ−1. At small wavelengths λ ¼ 2π=k, sound propa-
gation under confinement is similar to a bulk fluid, showing
no dispersion, but with increasing wavelength the negative
term in the discriminant takes over. For wavelengths much
larger than the gap height (hk ≪ 1) the phase velocity is
approximately

sTðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2T − ð6ν=h2κkÞ2

q
: ð5Þ

Thus, longitudinal modes become critically damped at
kcrit¼6ν=h2κcT with diverging group velocity dðsTkÞ=dk.
Consequently, sT is imaginary for k < kcrit and H has only
real eigenvalues. This leads to a bifurcation in the relaxation
of soundmodes, leading to the two distinct behaviors shown
in Fig. 2. In this overdamped regime, one can easily show
that density fluctuations decay with a rate∝ k2, whereas the
relaxation time of longitudinal momentum fluctuations
converges ðlimk→0τj;k ¼ τ⊥Þ.
The real part of the solution to Eq. (3) for arbitrary initial

conditions q̃ðk;0Þ¼½ρ̃ðk;0Þ;j̃kðk;0Þ;j̃⊥ðk;0Þ�⊤ is given by

ρ̃ðk; tÞ
ρ̃ðk; 0Þ ¼ e−t=τk

�
cosðsTktÞ þ

1

sTkτk
sinðsTktÞ

�
; ð6aÞ

j̃kðk; tÞ
j̃kðk; 0Þ

¼ e−t=τk
�
cosðsTktÞ −

1

sTkτk
sinðsTktÞ

�
; ð6bÞ

j̃⊥ðk; tÞ
j̃⊥ðk; 0Þ

¼ e−t=τ⊥ ; ð6cÞ

with characteristic relaxation times

τ⊥ðkÞ ¼ ðνk2 þ 12ν=h2κÞ−1; ð7aÞ

τkðkÞ ¼ ðνLk2=2þ 6ν=h2κÞ−1: ð7bÞ

Note, that these expressions have the same functional form
as in the bulk case [16], but characteristic times describing
the decay and oscillations differ. Furthermore, in the case of
confined fluids, Eqs. (6) remain valid when sT becomes
purely imaginary and the trigonometric functions turn into
their hyperbolic counterparts, which is not observed in
the bulk.
We proceeded by testing Eqs. (6) using MD simulations

of a LJ liquid with T ¼ 0.8ϵ=kB and ρ ¼ 0.845m=σ3 for a
wide range of wavelengths. Figures 4(a) and 4(b) show the
autocorrelation functions of longitudinal momentum fluc-
tuations for both bulk and slab systems for λ ¼ 188.1σ and
λ ¼ 470.3σ, respectively. We obtain the angular frequency
of the oscillations and the decay rate of the amplitude from
a least-squares fit to the theoretical expressions.
Figure 4(c) plots the phase velocity over the wavelength

for both bulk and confined liquids. To show the appli-
cability of the isothermal, height-averaged continuum
theory, we compute the viscosity, speed of sound and slip
length in separate MD simulations and predict the phase
velocity using Eq. (5). Our predictions are in good agree-
ment with the speed of sound obtained from the fits to
the autocorrelation functions as shown in Fig. 4(c). The
predicted critical wavelength λcrit ¼ 914.3σ is below the
size of the domain and seems to slightly underestimate
the MD data.

FIG. 3. Dispersion relation for a height-averaged continuum
formulation of confined fluids. Solid and dotted lines describe the
angular frequency using the magnitude of the phase velocity with
[Eq. (5)] and without long wavelength approximation, respec-
tively. The dashed line describes the bulk reference. The wave
number is normalized by kcrit ¼ 6ν=h2κcT and the angular
frequency is normalized by the characteristic relaxation time
of longitudinal modes in the underdamped limit limk→kcrit τk ¼
h2κ=6ν. The critical transition from underdamped to overdamped
dynamics occurs with diverging group velocity.
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Figure 4(d) plots relaxation times of longitudinal modes
over the wavelength. Our prediction based on Eq. (7b) with
viscosities and slip length obtained from equilibrium
Green-Kubo (GK) and nonequilibrium Couette flow simu-
lations (see Table I), respectively, agrees with the relaxation
time obtained from fits to the autocorrelation functions. At
small wavelengths, the prediction can be improved by
considering the thermal contribution to the sound absorp-
tion naturally included in our MD setup, where we used

thermophysical data for argon from NIST [19] to obtain the
additional parameters γ and DT. Yet, the isothermal theory
captures the long-wavelength effects sufficiently well.
Remaining deviations at small wavelengths are due to
layering effects in the confined system with strong wall
fluid interactions, which may lead to higher viscosities than
in the bulk GK simulations. Lowering the interfacial
interaction energy leads to quantitative agreement also at
small wavelengths.
Hydrodynamic theory adequately describes the relaxa-

tion behavior of confined fluids, as shown for the liquid LJ
system, but all considered wavelengths were below the
transition to overdamped relaxation. Figure 5 shows the
sound relaxation times for the supercritical fluid. Note that
the supercritical state here and in Fig. 2 was chosen for
practical purposes, since it allows probing the overdamped
regime at lower computational cost than in the liquid state.
For the confined system and wavelengths in the under-
damped regime, Eq. (7b) describes the transition from
quadratic wavelength dependence to constant relaxation
times analogously to the LJ liquid described above. The
expected critical transition based on bulk equilibrium and

FIG. 4. Comparison of longitudinal momentum fluctuations in
bulk and confined LJ liquids. Sound frequency and attenuation
constants are obtained from a fit to autocorrelation functions at
various wavelengths, e.g., as shown in panel (a) and (b). The
sound velocities (c) and relaxation times (d) are then compared to
the theoretical predictions from Eqs. (5) and (7b), respectively.
Viscosity and speed of sound are computed from separate bulk
equilibrium simulations, and nonequilibrium MD simulations
have been performed to obtain the slip length. The continuum
model describes the MD data reasonably well. Deviations
between the model and the data at small wavelengths are due
to effective viscosity enhancement in the confined system
compared to the bulk. Lowering wall-fluid interaction energies
leads to a better agreement in the low wavelength regime, as
shown by the open diamonds in panel (d). Transition to over-
damped behavior is expected for wavelengths larger than 914.3σ.
Note that the speed of sound measured from MD is adiabatic (cs)
rather than isothermal (cT).

TABLE I. Viscosities and slip lengths of the considered LJ
systems obtained from separate MD simulations.

Liquida Supercriticalb Units

Shear viscosity η 3.077 0.550
ffiffiffiffiffiffi
mϵ

p
=σ2

Bulk viscosity ζ 1.077 0.351
ffiffiffiffiffiffi
mϵ

p
=σ2

Slip lengthc b 3.741 0.608 σ
aρ ¼ 0.845m=σ3, T ¼ 0.8ϵ=kB.
bρ ¼ 0.452m=σ3, T ¼ 2.0ϵ=kB.
cCouette flow, mean of runs with wall velocityU∈ ½10;20�m=s.

FIG. 5. Sound relaxation times obtained from fits to the
autocorrelation functions of longitudinal momentum and density
fluctuations in the supercritical LJ fluid. Bulk and underdamped
behavior is similarly described as in Fig. 4(d), but the lower
critical wavelength (λcrit ¼ 689.3σ) allows easier exploration of
the overdamped regime. Upwards and downwards pointing
triangles are fitted density and longitudinal momentum relaxation
times, respectively.

PHYSICAL REVIEW LETTERS 131, 084001 (2023)

084001-4



Couette flow simulations occurs at λcrit ¼ 689.3σ.
Exponential decay rates from fits to both longitudinal
momentum and density correlation functions beyond λcrit
converge towards the continuum prediction in the long
wavelength limit.
The transition from underdamped to overdamped sound

transport has first been addressed by Ramaswamy and
Mazenko [20], who discussed the influence of friction on
the dynamics of adsorbates. However, they do so without
further quantification of the underlying friction term that
interpolates between hydrodynamic and diffusive behavior.
Later, anomalous, algebraic long-time tails of velocity
autocorrelation functions of suspended particles under
confinement, which were observed in lattice-Boltzmann
simulations, have been explained by the same effect
[21,22]. A rigorous mathematical treatment of the problem
was then given by Felderhof [23]. Here, we showed that a
simplified gap-averaged treatment of the fluid film accu-
rately describes the long wavelength behavior as confirmed
by our MD simulations.
The critical transition scales quadratically with an

effective gap height h
ffiffiffi
κ

p
. Because of this scaling relation,

overdamped sound does not play a role on macroscopic
length scales, but may become important when the con-
fining dimension is reduced to microscales or nano scales,
e.g., the critical wavelength of ambient water in a circular
channel is approximately 230 km for a radius R ¼ 1 cm,
but only 230 nm at R ¼ 10 nm (assuming no slip). Hence,
lateral dimensions can substantially influence mass trans-
port at small scales. Channels with lengths greater than the
critical wavelength are dominated by diffusion and may
show disproportionately slower mass transport than shorter
channels of the same gap height. Experimental evidence of
the transition to diffusive dynamics might be provided
either by measuring flow characteristics in different chan-
nel geometries, or—in the spirit of the presented results on
collective fluctuations—through Brillouin light scattering
techniques. With increasing technological relevance of
single-digit nanofluidic devices, the effect might play an
important role in tailoring transport properties therein.

All MD simulations were performed with LAMMPS [24].
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