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Abstract. We consider Kerr frequency combs in a dual-pumped microresonator as time-periodic and spatially 2π-periodic
traveling wave solutions of a variant of the Lugiato–Lefever equation, which is a damped, detuned and driven nonlinear
Schrödinger equation given by iaτ = (ζ − i)a − daxx − |a|2a + if0 + if1ei(k1x−ν1τ). The main new feature of the problem is

the specific form of the source term f0 + f1ei(k1x−ν1τ) which describes the simultaneous pumping of two different modes
with mode indices k0 = 0 and k1 ∈ N. We prove existence and uniqueness theorems for these traveling waves based on
a-priori bounds and fixed point theorems. Moreover, by using the implicit function theorem and bifurcation theory, we show
how non-degenerate solutions from the 1-mode case, i.e., f1 = 0, can be continued into the range f1 �= 0. Our analytical
findings apply both for anomalous (d > 0) and normal (d < 0) dispersion, and they are illustrated by numerical simulations.
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1. Introduction

Optical frequency comb devices are extremely promising in many applications such as, e.g., optical fre-
quency metrology [30], spectroscopy [25,32], ultrafast optical ranging [29] and high capacity optical
communications [19]. For many of these applications, the Kerr soliton combs1 are generated by using a
monochromatic pump. However, recently new pump schemes have been discussed, where more than one
resonator mode is pumped, cf. [28]. The pumping of two modes can have a number of important advan-
tages. In particular, 1-solitons arising from a dual-pump scheme can be spectrally broader and spatially
more localized than 1-solitons arising from a monochromatic pump, cf. [10] for a comprehensive discussion
of the theoretical advantages. Mathematically, Kerr comb dynamics are described by the Lugiato–Lefever
equation (LLE), a damped, driven and detuned nonlinear Schrödinger equation [12,17,21]. Our analysis
relies on a variant of the LLE which is modified for two-mode pumping, cf. [28] and [10] for a derivation.
Using dimensionless, normalized quantities this equation takes the form

iaτ = (ζ − i)a − daxx − |a|2a + if0 + if1ei(k1x−ν1τ), a 2π-periodic in x. (1)

Here, a(τ, x) represents the optical intracavity field as a function of normalized time τ = κ
2 t and angular

position x ∈ [0, 2π] within the ring resonator. The constant κ > 0 describes the cavity decay rate and
d = 2

κd2 quantifies the dispersion in the system (where ωk = ω0 + d1k + d2k
2 is the cavity dispersion

relation between the resonant frequencies ωk and the relative indices k ∈ Z). Here, the case d < 0 amounts

1Here, we use the word soliton as it is used in the cited literature: as a synonym for a spatially strongly localized
stationary solution of (1) that is spatially periodic with period according to the circumference L of the ring resonator. Up to
rescaling of (1), we may assume L = 2π. Solutions with n strongly localized bumps are called n-solitons. The word soliton
comb arises from the Fourier transform of a 2π-periodic soliton solution.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-023-02060-3&domain=pdf
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to normal and the case d > 0 to anomalous dispersion. The resonant modes in the cavity are numbered
by k ∈ Z with k0 = 0 being the first and k1 ∈ N the second pumped mode. With f0, f1, we describe
the normalized power of the two input pumps and ωp0 , ωp1 denote the frequencies of the two pumps.
Since there are now two pumped modes, there are also two normalized detuning parameters denoted by
ζ = 2

κ (ω0 − ωp0) and ζ1 = 2
κ (ωk1 − ωp1). They describe the offsets of the input pump frequencies ωp0

and ωp1 to the closest resonance frequency ω0 and ωk1 of the microresonator. The particular form of the
pump term if0 + if1ei(k1x−ν1τ) with ν1 = ζ − ζ1 + dk2

1 suggests to change into a moving coordinate frame
and to study solutions of (1) of the form a(τ, x) = u(s) with s = x − ωτ and ω = ν1

k1
. These traveling

wave solutions propagate with speed ω in the resonator and their profiles u solve the ordinary differential
equation

− du′′ + iωu′ + (ζ − i)u − |u|2u + if0 + if1eik1s = 0, u 2π-periodic. (2)

In the case f1 = 0, equation (1) amounts to the case of pumping only one mode. This case has been
thoroughly studied. For example, the method of spatial dynamics and center manifold reduction has been
utilized in [11,12,20] to prove existence and bifurcation of stationary solutions. Here, the 2π-periodicity is
relaxed and a detailed normal form analysis of the real four-dimensional first-order system corresponding
to (2) is performed to track periodic, quasiperiodic and homoclinic orbits near the curve of constant
solutions. A similar approach has been taken in [21–23] for anomalous, normal and even third-order dis-
persion, where numerical continuation methods revealed snaking behavior of bifurcation curves as well
as solitary structures far from the curve of trivial solutions, cf. also [24] for the prediction of periodicity
changes along bifurcation curves. A different point of view based on the 2π-periodic boundary conditions
and the bifurcation theory of Crandall–Rabinowitz was taken in [8,18] where additionally global bifurca-
tion pictures allowed parameter studies concerning quality measures such as comb bandwidth and power
conversion efficiency. Both points of view (spatial dynamics, boundary value problem) have been used in
[9,20] for (2) on the entire real line shadowing the results for localized solutions on finite intervals.

Also dynamical questions for (2) in the case f1 = 0 have been considered. Using again bifurcation
theory and spatial dynamics, the stability or instability of spatially periodic stationary solutions with
respect to co-periodic or subharmonic perturbations is shown in [6,7,13]. Alternatively, assuming spectral
stability with a simple zero eigenvalue and the rest of the spectrum bounded away from the imaginary
axis the authors of [27] showed asymptotic stability based on the Gearhart–Greiner–Prüss Theorem.
The first result allowing to transfer spectral stability to nonlinear stability with respect to just localized
perturbations for stationary solutions on the real line appeared in [14].

In this paper, we are interested in the case f1 �= 0. Since the specific form of the forcing term is not
essential for many of our results, we allow in the following for more general forcing terms

f(s) = f0 + f1e(s)

with a 2π-periodic (not necessarily continuous) function e : R → C and f0, f1 ∈ R. Hence, we consider
the LLE

− du′′ + iωu′ + (ζ − i)u − |u|2u + if(s) = 0, u 2π-periodic. (3)

Our main results on the existence of solutions to (3) are stated in Sect. 2. In Sect. 3, we illustrate our main
analytical results by numerical simulations. The proofs of the main results are given in Sect. 4 (a-priori
bounds), Sect. 5 (existence and uniqueness), and Sect. 6 (continuation results). The appendix contains a
technical result and a consideration of the case where in (2) the value k1 is not an integer but close to
an integer. Let us finally mention that our existence results are concerned with 2π-periodic solutions. We
do not claim any solitary character. Finding solitary solutions is another task that has been pursued in
the recent work [10] from an applied point of view.



ZAMP Global continua of solutions Page 3 of 31 168

2. Main results

In the following, we state our main results. We distinguish between trivial and non-trivial solutions of (3).
The former means a constant solution and the latter a non-constant solution. Trivial (constant) solutions
of (3) only exist in the case when f1 = 0 or e is constant. Moreover, we also distinguish between results
on one-sided and two-sided continuation. The distinction arises since in some results the information on
continua2 of solution pairs (f1, u) can only be given for f1 ≥ 0 or f1 ≤ 0 (one-sided continuation), whereas
in other results (requiring further assumptions) we can provide information on continua of solution pairs
(f1, u) without sign restriction on f1 (two-sided continuation).

Existence and uniqueness: Theorem 1 provides existence of at least one solution of (3) for any choice of
the parameters and any choice of f . Theorem 7 in Sect. 5 is a corresponding uniqueness result, which
applies whenever |ζ| � 1 is sufficiently large or (essentially) ‖f‖2 	 1 is sufficiently small.

Continuation of trivial solutions: Theorem 2 and Corollary 1 describe how trivial (constant) solutions
from the special case f1 = 0 can be continued into non-trivial solutions for f1 �= 0.

Continuation of non-trivial solutions: Theorem 3 and Corollary 2 show how a non-trivial solution from
the case f1 = 0 can be continued to f1 �= 0.

Two-sided continuations: The previous continuation results were one-sided. In Sect. 2.3, we exploit un-
derlying symmetries of the forcing term and provide results on two-sided continuations. In particular, in
Theorem 4 we provide additional information on the local shape of the two-sided continuation of trivial
solutions.

We will use the following Sobolev spaces. For k ∈ N, the space Hk(0, 2π) consists of all square-
integrable functions on (0, 2π) whose weak derivatives up to order k exist and are square-integrable on
(0, 2π). By Hk

per(0, 2π), we denote all locally square-integrable 2π-periodic functions on R whose weak
derivatives up to order k exist and are locally square-integrable on R. In both spaces, the norm is
given by ‖u‖ =

(∑k
j=0 ‖( d

ds )ju‖2L2(0,2π)

)1/2. Clearly Hk
per(0, 2π) is a proper subspace of Hk(0, 2π) since

u ∈ Hk
per(0, 2π) implies that ( d

ds )ju(0) = ( d
ds )ju(2π) for j = 0, . . . , k − 1. Unless otherwise stated, all

of the above Hilbert spaces are spaces of complex-valued functions over the field R. In particular, for
v, w ∈ L2(0, 2π) we use the inner product 〈v, w〉2:= Re

∫ 2π

0
vw ds. The induced norm is denoted by ‖ · ‖2.

Our first theorem, which ensures the existence of a solution of (3) in the general case where f1 does
not need to vanish, is based on a-priori bounds and a variant of Schauder’s fixed point theorem known
as Schaefer’s fixed point theorem, cf. Theorem 6. A corresponding uniqueness result based on Banach’s
contraction mapping theorem is given in Theorem 7 in Sect. 5.

Theorem 1. Equation (3) has at least one solution u ∈ H2
per(0, 2π) for any choice of the parameters

d ∈ R\{0}, ζ, ω ∈ R and any choice of f ∈ H2(0, 2π).

Next we address the question whether a known solution u0 of (3) for f1 = 0 can be continued into the
regime f1 �= 0. This continuation will be done differently depending on whether u0 is constant (trivial)
or non-constant (non-trivial). Moreover, we first concentrate on one-sided continuations for f1 > 0 (or
f1 < 0). Two-sided continuations will be discussed in Sect. 2.3.

2.1. One-sided continuation of trivial solutions

In the special case f1 = 0, there are trivial (constant) solutions u0 ∈ C of (3) satisfying the algebraic
equation

(ζ − i)u0 − |u0|2u0 + if0 = 0. (4)

2A continuum is a closed and connected set.
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Fig. 1. Curve of squared L2-norm of all constant solutions of (3) for f1 = 0 and f0 = 1 (green), f0 = 2
√
2

4√27
(red) and f0 = 2

(blue) when ζ ∈ [−1, 5]. Turning points (if they exist) are marked with a cross

From [18, Lemma 2.1], we know that for given f0 ∈ R the curve of constant solutions can be parameterized
by

ζ(t) = (1 − t2)f2
0 +

t√
1 − t2

, u0(t) = (1 − t2)f0 − if0t
√

1 − t2, t ∈ (−1, 1). (5)

In Fig. 1, we show the curve of the squared L2-norm of all constant solutions of (3) for f1 = 0 and f0 = 1,
f0 = 2

√
2

4√27
and f0 = 2. The curve may or may not have turning points which are characterized by ζ ′(t) = 0.

This condition can be formulated independently of t by the equivalent condition ζ2−4|u0|2ζ+1+3|u0|4 =
0.

By a straightforward analysis, one can show that with f∗ = 2
√
2

4√27
, we have

• no turning point for |f0| < f∗ (cf. Fig. 1 green curve),
• exactly one (degenerate) turning point for |f0| = f∗ (cf. Fig. 1 red curve),
• exactly two turning points for |f0| > f∗ (cf. Fig. 1 blue curve).

Note that for |f0| > f∗, as a consequence of the existence of two turning points, three different constant
solutions exist for certain values of ζ.

Starting from f1 = 0, we use a kind of global implicit function theorem (cf. Theorem 8) to continue
a constant solution u0 ∈ C of (3) with respect to f1. This procedure is analyzed in Theorem 2. The
continuation works if the constant solution u0 ∈ C is non-degenerate in the following sense.

Definition 1. A solution u ∈ H2
per(0, 2π) of (3) for f1 = 0 is called non-degenerate if the kernel of the

linearized operator

Luϕ:= − dϕ′′ + iωϕ′ + (ζ − i − 2|u|2)ϕ − u2ϕ, ϕ ∈ H2
per(0, 2π)

consists only of span{u′}.

Remark 1. Note that Lu : H2
per(0, 2π) → L2(0, 2π) is a compact perturbation of the isomorphism −d d2

dx2 +
sign(d) : H2

per(0, 2π) → L2(0, 2π) and hence an index-zero Fredholm operator. Notice also that span{u′}
always belongs to the kernel of Lu as can be seen from differentiating (3) for f1 = 0 w.r.t. s. Non-
degeneracy means that except for the obvious candidate u′ (and its real multiples), there is no other
element of the kernel of Lu. Notice also that a solution u0 is non-degenerate if the linearized operator
Lu0 is injective, and, as a consequence, invertible in suitable spaces.

Non-degeneracy of trivial solutions is discussed in the next lemma and the subsequent remark. Non-
degeneracy of non-trivial solutions has been proven for a particular class of solutions in certain parameter
regimes in [7].

Lemma 1. A trivial solution u0 ∈ C of (3) for f1 = 0 is non-degenerate if and only if
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(a) Case ω �= 0:

ζ2 − 4|u0|2ζ + 1 + 3|u0|4 �= 0.

(b) Case ω = 0:

(ζ + dm2)2 − 4|u0|2(ζ + dm2) + 1 + 3|u0|4 �= 0 for all m ∈ N0.

Proof. Let ϕ ∈ H2
per(0, 2π) be in the kernel of the linearized operator, i.e.,

−dϕ′′ + iωϕ′ + (ζ − i − 2|u0|2)ϕ − u2
0ϕ = 0.

This implies that the Fourier coefficients ϕm of the Fourier series ϕ =
∑

m∈Z
ϕmeims have the property

that

(dm2 − ωm + ζ − i − 2|u0|2)ϕm − u2
0ϕ−m = 0

for all m ∈ Z. If we also write down the complex conjugate of this equation

−u0
2ϕm + (dm2 + ωm + ζ + i − 2|u0|2)ϕ−m = 0

then we see that non-degeneracy of u0 is equivalent to the nonvanishing of the determinant for this
two-by-two system in the variables ϕm, ϕ−m for all m ∈ N0. Computing the determinant, we obtain the
condition

(ζ + dm2)2 − 4|u0|2(ζ + dm2) + 1 + 3|u0|4 − ω2m2 − 2iωm �= 0 for all m ∈ N0. (6)

In the case ω �= 0, this is trivially satisfied for all m �= 0 (because then the imaginary part is nonzero)
and for m = 0 by assumption (a) of the lemma. In the case ω = 0, condition (6) can only be guaranteed
by assumption (b). �

Remark 2. Trivial solutions of (3) for f1 = 0 are determined by (4). For ω �= 0, all trivial solutions u0 of
(3) for f1 = 0 are non-degenerate except those at the turning points described above. In the case ω = 0, all
trivial solutions u0 of (3) for f1 = 0 are non-degenerate except those at the (potential) bifurcation points
and the turning points. This is true (up to additional conditions ensuring transversality and simplicity
of kernels) because the necessary condition for bifurcation w.r.t. ζ from the curve of trivial solutions is
fulfilled if and only if the expression in (b) vanishes for at least one m ∈ N, cf. [8,18].

Theorem 2. Let d ∈ R\{0}, ζ, ω, f0 ∈ R and e ∈ H2(0, 2π) be fixed. Let furthermore u0 ∈ C be a constant
non-degenerate solution of (3) for f1 = 0. Then, the maximal continuum3 C+ ⊂ [0,∞) × H2

per(0, 2π) of
solutions (f1, u) of (3) with (0, u0) ∈ C+ has the following properties:
(i) locally near (0, u0) the set C+ is the graph of a smooth curve f1 �→ (f1, u(f1)),
(ii) C+ ∩ [0,M ] × H2

per(0, 2π) is bounded for any M > 0.
Moreover, if pr1(C+) denotes the projection of C+ onto the f1-parameter component, then at least one of
the following properties hold:
(a) pr1(C+) = [0,∞),

or
(b) ∃u+

0 �= u0 : (0, u+
0 ) ∈ C+.

A maximal continuum C− ⊂ (−∞, 0] × H2
per(0, 2π) with corresponding properties also exists.

Remark 3. If property (a) of Theorem 2 holds, then C+ is unbounded in the direction of the parameter
f1 ∈ [0,∞), and hence, this is an existence result for all f1 ∈ [0,∞). Property (b) means that the
continuum C+ returns to the f1 = 0 line at a point u+

0 �= u0.

Corollary 1. Property (a) in Theorem 2 holds in any of the following three cases,

3A continuum is a closed and connected set.
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(i) sign(d)ζ < −C(d, f0)21d<0 − 27
(

1 +
πf2

0 |ω|
|d| +

π2f4
0

|d|
)

C(d, f0)6,

(ii) sign(d)ζ > 3C(d, f0)2 +
ω2

4|d| ,
(iii)

√
3C(d, f0) < 1,

where

C(d, f0) = |f0|(1 + 2π2f2
0 |d|−1).

In particular |ζ| � 1 or |f0| 	 1 is sufficient.

2.2. One-sided continuation of non-trivial solutions

One can ask the question whether also non-trivial (non-constant) solutions at f1 = 0 may be continued
into the regime of f1 > 0. This depends on two issues: existence and non-degeneracy of a non-trivial
solution of (3) for f1 = 0. First we note that for ω = 0, there is a plethora of non-trivial solutions, cf. [8],
[18]. For ω �= 0, we do not know whether non-trivial solutions exist for f1 = 0. Note that for ω �= 0, there
are no bifurcations from the curve of trivial solutions, since bifurcation requires degeneracy of trivial
solutions other than the turning points. However, this is impossible by Lemma 1(a). Moreover, the recent
paper [3] shows that the continuation of non-trivial solutions for ω = 0 into the regime ω �= 0 typically
fails. This strongly indicates (but does not prove) that for ω �= 0 there may be no solutions other than
the trivial ones. Although by the current state of understanding the hypotheses of Theorem 3 (see below)
can only be fulfilled for ω = 0, we allow in the following for general ω ∈ R.

In order to describe the continuation from a non-degenerate non-trivial solution, let us first state some
properties of (3) for f1 = 0: if u0 solves (3) for f1 = 0 and if we denote its shifts by uσ(s):=u0(s − σ),
then uσ also solves (3) for f1 = 0. Hence,

S :
{

R → R × H2
per(0, 2π),

σ �→ (0, uσ)

describes a trivial curve of solutions of (3) from which we wish to bifurcate at some point (0, uσ0). The
bifurcation will be achieved by applying the Crandall–Rabinowitz theorem on bifurcation from a simple
eigenvalue, cf. Theorem 9, with σ being the bifurcation parameter. The bifurcating local curve will be
reparametrized with f1 as a new parameter and then globally continued by the already introduced global
version of the implicit function theorem, cf. Theorem 8.

Recall also from non-degeneracy that ker Luσ
= span{u′

σ}. Since L∗
uσ

also has an one-dimensional
kernel, there exists φ∗

σ ∈ H2
per(0, 2π) such that ker L∗

uσ
= span{φ∗

σ}. Notice that φ∗
σ(s) = φ∗

0(s − σ).
Finally, σ0 will be determined in such a way that there exists a unique solution ξσ0 ∈ H2

per(0, 2π) of

Lu0ξσ0 = −ie(· + σ0)

with the property that ξσ0 ⊥L2 u′
0. Details of the construction of σ0 and ξσ0 will be given in Lemma 2.

Theorem 3. Let d ∈ R\{0}, ζ, ω, f0 ∈ R and e ∈ H2(0, 2π) be fixed. Let furthermore u0 ∈ H2
per(0, 2π) be

a non-trivial non-degenerate solution of (3) for f1 = 0. If σ0 ∈ R satisfies

Im

2π∫

0

e(s + σ0)φ∗
0(s) ds = 0 (7)

and

Im

2π∫

0

e′(s + σ0)φ∗
0(s) ds �= 0 (8)
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then the maximal continuum C+ ⊂ [0,∞) × H2
per(0, 2π) of solutions (f1, u) of (3) with (0, u0) ∈ C+ has

the following properties:
(i) there exists a smooth curve C : [0, δ) → C+ with C(t) = (f1(t), u(t)), ḟ1(0) = 1, C(0) = (0, uσ0)

such that locally near (0, uσ0) all solutions (f1, u) of (3) with f1 ≥ 0 lie on the curve S or on the
curve C,

(ii) C+ ∩ [0,M ] × H2
per(0, 2π) is bounded for any M > 0.

Moreover, if zero is an algebraically simple eigenvalue of Lu0 then there exists a connected set C+
∗ ⊂ C+

with pr1(C+
∗ ) ⊂ (0,∞) and (0, uσ0) ∈ C+∗ which satisfies at least one of the following properties:

(a) pr1(C+
∗ ) = (0,∞),

or
(b) ∃u+

0 �= uσ0 : (0, u+
0 ) ∈ C+∗ .

A maximal continuum C− ⊂ (−∞, 0] × H2
per(0, 2π) with corresponding properties also exists.

Remark 4. (α) It follows from the implicit function theorem that (7) is a necessary condition for bifur-
cation (non-trivial kernel of the linearization). Assumption (8) amounts to the transversality condition.
Both (7) and (8) together mean that the map σ �→ Im

∫ 2π

0
e(s + σ)φ∗

0(s) ds has a simple zero σ0. This
map generically has 2k1 simple sign-changes if we assume e(s + π

k1
) = −e(s) for some k1 ∈ N as for the

prototypical case e(s) = eik1s. More on the determination of σ0 in the prototypical case can be found in
the subsequent Corollary 2 and Remark 5.
(β) Note that in property (b), we exclude that u+

0 = uσ0 but we do not exclude that u+
0 coincides with

a shift of u0 different from uσ0 .

For the special choice e(s) = eik1s, Theorem 3 takes the following form.

Corollary 2. Let k1 ∈ N, e(s) = eik1s and d, ζ, ω, f0, u0 be as in Theorem 3. Assume that
2π∫

0

eik1sφ∗
0(s) ds �= 0 (9)

and that σ0 ∈ R satisfies

tan(k1σ0) =

∫ 2π

0
cos(k1s) Im φ∗

0(s) − sin(k1s)Re φ∗
0(s) ds

∫ 2π

0
sin(k1s) Im φ∗

0(s) + cos(k1s)Re φ∗
0(s) ds

. (10)

Then, the conditions (7) and (8) of Theorem 3 hold.

Remark 5. (α) If (9) is satisfied then assumption (10) is a necessary condition for bifurcation.
(β) Assumption (9) in Corollary 2 guarantees that the numerator and the denominator of the right-hand
side of (10) do not vanish simultaneously. In the case where the denominator vanishes, Equation (10) is
to be read as cos(k1σ0) = 0. In the interval [0, π

k1
) equation (10) has a unique solution σ0 ∈ [0, π

k1
). All

solutions of (10) in [0, 2π) are then given by σ0 + j π
k1

for j = 0, . . . , 2k1 − 1. This can result in up to
2k1 bifurcation points. Smaller periodicities of u0 may reduce the actual number of different bifurcation
points. For example, if k1 ≥ 2 and if u0 has smallest period 2π

k1
then only two bifurcation points exist.

(γ) Let j ∈ N not be a divisor of k1 and u0 be 2π
j -periodic. Then, assumption (9) is not satisfied since φ∗

0

inherits the periodicity of u0. We will say more about this case in the Appendix.
(δ) The non-trivial solutions u0 of (3) for f1 = 0 and ω = 0 constructed in [8,18] are even around s = 0.
For such u0, the value of σ0 in Corollary 2 is determined by the simpler expression

tan(k1σ0) = −
∫ 2π

0
sin(k1s)Re φ∗

0(s) ds
∫ 2π

0
sin(k1s) Im φ∗

0(s) ds
.
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It is an open problem if (3) admits solutions for f1 = 0 and ω = 0 which (up to a shift) are not even
around s = 0.

2.3. Two-sided continuations

Here, we explain how we can use the results of Theorems 2 and 3, as well as Corollary 2 for the continua
C+ and C− in order to obtain two-sided continua w.r.t. the parameter component f1.

As a first trivial observation, we can construct a two-sided continuum in the following way both for
the setting of Theorems 2 and 3: let C ⊂ R × H2

per(0, 2π) be the maximal continuum of solutions (f1, u)
of (3) with (0, u0) ∈ C. Then, C contains both C+ and C−.

Next we assume that the generalized forcing term f(s) = f0 + f1e(s) satisfies the symmetry condition
that e

(
s+ π

k1

)
= −e(s) for some k1 ∈ N. This symmetry condition is motivated by (2) where e(s) = eik1s.

If we denote by R the reflection operator which acts on solution pairs and is given by

R : (f1, u) �→ (−f1, u
(· + π

k1

))

then, again both for the setting of Theorems 2 and 3, the continuum C has the following property:

(f1, u) ∈ C ⇔ R(f1, u) ∈ C.

This shows that globally the solution sets for positive and negative f1 only differ by a phase shift. The
following global structure result is a consequence of this symmetry.

Proposition 1. Let d ∈ R\{0}, ζ, ω, f0 ∈ R and e ∈ H2(0, 2π) be such that e
(
s + π

k1

)
= −e(s) for some

k1 ∈ N. Let furthermore u0 be a solution of (3) for f1 = 0. Then, the maximal continua C+, C− and C
containing (0, u0) satisfy C− = R(C+) and C ⊃ C+ ∪ C−.

Proof. It is obvious that C ⊃ C+ ∪ C−. Now we prove that C− = R(C+). Clearly, C+ and R(C+) contain
all shifts {(0, uσ) : σ ∈ R}. Since additionally R(C+) ⊂ (−∞, 0] × H2

per(0, 2π) is connected we find that
R(C+) ⊂ C−. If we assume that R(C+) � C− then we obtain C+

� R−1(C−), which contradicts the
maximality of C+. �

As another consequence, we have that either pr1(C) = (−∞,∞) or pr1(C) is bounded from above and
below. In the latter case, we call C a loop.

Our final result builds upon Theorem 2 and the resulting two-sided continuation of a trivial solution
u0. It describes the shape of the L2-projection of the continuum C locally near (0, u0). In particular, local
convexity or concavity can be read from this result. In Sect. 3, we will put this result into perspective
with numerical simulations of the f1-continuation of trivial solutions.

Theorem 4. Assume that the assumptions of Theorem 2 are satisfied and that additionally e(s) = eik1s is
fixed for a k1 ∈ N. Then, we can determine the local shape of the curve f1 �→ ‖u(f1)‖22 as follows:

d

df1
‖u(f1)‖22 |f1=0= 0,

d2

df2
1

‖u(f1)‖22 |f1=0= 4π(Re(u0ε) + |α|2 + |β|2)
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Fig. 2. Continua of solutions (f1, u) of (2) for selected values of the detuning ζ. The other parameters were set to d = −0.1,
f0 = 2, k1 = 1, and ω = 1

with

α =
−i(dk2

1 + k1ω + ζ + i − 2|u0|2)
(ζ + dk2

1 − 2|u0|2)2 − (ωk1 + i)2 − |u0|4 ,

β =
iu2

0

(ζ + dk2
1 − 2|u0|2)2 − (ωk1 − i)2 − |u0|4 ,

x = ζ − i − 2|u0|2,
y = −u2

0,

z = 4u0(|α|2 + |β|2) + 4u0αβ,

ε =
−zy + zx

|x|2 − |y|2 .

3. Numerical illustration of the analytical results

In this section, we restrict ourselves to equation (2), i.e., we fix e(s) = eik1s. For this choice, we know from
Sect. 2.3 that the one-sided continua C+ and C− are related by C− = R(C+). The following numerical
examples were computed with d = −0.1, f0 = 2, k1 = 1 and ω = 1.

Figure 2 illustrates some of the two-sided continua C+∪C− obtained by continuation of trivial solutions
for different values of the detuning ζ. Every point on the black and colored curves corresponds to a solution
u of (2), but for the sake of visualization in a three-dimensional image every solution has to be represented
by a single number. In Fig. 2, the quantity 1

2π ‖u‖22 was used for this purpose.
The black curve corresponds to spatially constant solutions of (2) obtained for f1 = 0 and ζ ∈ [2.4, 4.3].

The colored curves represent (parts of) the continua associated to these solutions. Every trivial solution



168 Page 10 of 31 E. Gasmi et al. ZAMP

Fig. 3. Same situation as in Fig. 2. Zoom to the region close to the threshold where the continua change connectivity

(possibly except the ones at turning points) has an associated continuum, but for the sake of visualization
these continua are only shown for selected values of ζ, namely ζ ∈ {2.4, 2.6, . . . , 4.0, 4.2}. The picture
is symmetric with symmetry plane {(ζ, 0, z) : ζ ∈ R, z ∈ R}. This is an immediate consequence of the
relation C− = R(C+) and the fact that shifting u does not change ‖u‖2.

For ζ ∈ {2.4, 2.6, 4.2}, there is only one trivial solution, and for these three values Fig. 2 shows
a part of the associated two-sided continuum C+ ∪ C−. Although f1 was restricted to [−2, 2], each of
these continua appears to be global in f1, i.e., we conjecture that the continua continue for all values
f1 ∈ (−∞,∞). This corresponds to case (a) in Theorem 2.

For ζ ∈ {2.8, 3.0, . . . , 4.0}, however, there are three trivial solutions. For these values of ζ, there
is one colored loop which connects two solutions, and one continuum which seems to continue for all
values of f1. The former corresponds to case (b) in Theorem 2, the latter to case (a). For ζ ∈ {2.8, 3.0},
the “lower” two solutions are connected, whereas for ζ ∈ {3.2, . . . , 4.0} it is the “upper” two solutions
which are connected. Hence, there seems to be a threshold value ζ∗ that determines which of the two
scenarios occurs. Computations with more values of ζ show that this threshold value ζ∗ lies between
3.1344 and 3.1359; cf. Fig. 3. The union of the continua for ζ-values close to the threshold ζ∗ (i.e., for
ζ = 3.1344 and ζ = 3.1359) is nearly the same, and the two continua nearly meet in two points.4 The
mathematical mechanisms which cause this qualitative change are not yet understood. One could expect
that the connectivity threshold coincides with the value where the square of the L2-norm of the solutions
as a function of f1 changes from being locally convex to locally concave. However, Theorem 4 shows that
this is not true.

Figure 4 illustrates the same application, but depicted from a different angle and with more values of
ζ. Repeating the simulation with d = 0.1 (anomalous dispersion) instead of d = −0.1 (normal dispersion)

4As mentioned earlier, only the L2-norm of solutions can be visualized in Figs. 2, 3 and all other plots. The fact that
two functions have (nearly) the same norm does, of course, not imply that the functions themselves are (nearly) identical.
It can be checked, however, that the two solutions which correspond to the two points where the distance between the two
continua is minimal are indeed very similar (data not shown).
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Fig. 4. Same situation as in Fig. 2, but depicted from a different angle and with more values of ζ

Fig. 5. Sign of the second derivative of f1 �→ ‖u(f1)‖22 at f1 = 0; blue=positive, red=negative

did not change the picture essentially. Figures 2, 3 and 4 were generated by discretizing (2) with central
finite differences (1000 grid points), and by applying the classical continuation method as described in,
e.g., [1], to the discretized system.

The result of Theorem 4 can be interpreted as follows: each point on the trivial curve is a local
extremum of the squared L2-norm of the solution curve f1 �→ u(f1). The type of local extremum is
described by the sign of the second derivative d2

df2
1
‖u(f1)‖22 |f1=0. We visualize this by an example for

d = −0.1, f0 = 2, k1 = 1, ω = 1. By using the parameterization t �→ ζ(t), t �→ u0(t) for t ∈ (−1, 1)
from (5) we can illustrate the sign-changes of the second derivative. In Fig. 5, we are plotting the curve
t �→ (ζ(t), |u0(t)|2) and indicate at each point on the curve the sign of 4π(Re(u0(t)ε̄(t))+ |α(t)|2+ |β(t)|2),
where ε(t), α(t), β(t) are taken from Theorem 4 with ζ = ζ(t) and u0 = u0(t).

In this particular example, as we run through the curve of trivial solutions from left to right a first sign-
change of d2

df2
1
‖u(f1)‖22 |f1=0 occurs at ζ ≈ 0.8533. A second sign-change (in fact a singularity changing

from −∞ to +∞) occurs at the first turning point. Then, the next sign-change occurs on the part of the
branch between the two turning points at ζ ≈ 3.34. Finally, the second turning point generates the last
sign-change from −∞ to +∞. Clearly, the changes in the nature of the local extremum of f1 �→ ‖u(f1)‖22
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Fig. 6. Continua of solutions (f1, u) of (2) for selected values of the detuning ζ. The other parameters were set to d = −0.1,
f0 = 2, k1 = 1, and ω = 0

at f1 = 0 do not correspond to the topology changes of the solution continua which occur near the
threshold value ζ∗ ∈ (3.1344, 3.1359).

Next, we keep the parameters d = −0.1, f0 = 2, k1 = 1 but choose ω = 0 instead of ω = 1. Recall
that for ω = 0 there is a plethora of non-trivial solutions of (2) for f1 = 0, cf. [8,18]. In fact, this time we
find additional primary and secondary bifurcation branches for f1 = 0 which are illustrated in Fig. 6 in
gray and brown, respectively. Bifurcation points are shown as gray dots. The bifurcation branches consist
of non-trivial solutions. Further, some numerical approximations of the two-sided maximal continua C
obtained by continuation of trivial or non-trivial solutions for different values of the detuning ζ are shown.
If we start from a constant solution at f1 = 0, then C± are described by Theorem 2. Likewise, if we start
from a non-constant solution at f1 = 0 which has no smaller period than 2π, then C± are described by
Theorem 3. In both cases, C ⊃ C+ ∪ C− by Proposition 1, but in all examples below we observe in fact
equality. If we expect a maximal continuum to contain two or more (non-trivial) different simple closed
curves, then we illustrate the latter ones with different colors. Let us look at some particular values of ζ
where different phenomena occur.

At ζ = 2.7, we see exactly one solution for f1 = 0. This solution is constant and its continuation
appears to be global in f1. For ζ = 3.9 and f1 = 0, we see three constant solutions but also one non-
constant solution (up to shifts) which lies on one of the gray bifurcation branches. The continuation of
the constant solution with smallest magnitude again appears to be global in f1, while the other three
solutions lie on the same eight-shaped maximal continuum which we will denote as figure eight continuum.
Note that the latter continuum contains all shifts of the non-trivial solution for f1 = 0.

The figure eight can be interpreted as an outcome of Theorem 2 applied to one of the constant solutions
on the figure eight. Here, case (b) of the theorem applies. However, the figure eight can also be interpreted
as an outcome of Theorem 3 applied to the non-constant solution u0 at f1 = 0. Again, case (b) of the
theorem applies. A plot (which we omit) of the non-trivial solution u0 at f1 = 0 shows that u0 has no
smaller period than 2π. Thus, according to Remark 5.(β) exactly two shifts of it, which differ by π, are
bifurcation points. To sum up, we observe that the figure eight continuum in fact contains a simple closed
figure eight curve which exactly goes through two shifts of u0 (which differ by π) in the point where the
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Fig. 7. Zoom at ζ = 3.6

orange lines intersect the gray line of non-trivial solutions. The two shifts cannot be distinguished in the
picture, because a shift does not change the L2-norm.

To illustrate the different continua for ζ = 3.6, we provide a zoom in Fig. 7. We obtain again an un-
bounded continuum and a figure eight continuum. However, here we also find a third maximal continuum
which cannot be found by simply continuing one of the constant solutions. This continuum consists of
the blue and the light blue simple closed curve connected to each other by shifts at f1 = 0. The parts of
the blue and the light blue curve in the region f1 ≥ 0 are described by case (b) of Theorem 3 applied
to one of the non-trivial solutions u0 at f1 = 0 on it. They have no smaller period than 2π (plots not
shown). Going from the blue part to the light blue part is a consequence of reflection. At f1 = 0, the blue
curve intersects the gray line at exactly two points. The light blue curve does the same, but at π-shifts
of these points.

For ζ = 3.3, the situation is more complicated, see the zoom in Fig. 8. In this case, we see three constant
solutions for f1 = 0 but also seven non-constant ones. The continuation of the upper constant solution
(orange) appears to be unbounded. We observe that the blue, the red and the green simple closed curve in
fact form a single maximal continuum, since all curves are connected by shifts of non-constant solutions
at f1 = 0. Viewed from top to bottom, we find (plots not shown) that the first, the third and the last one
are π-periodic while the remaining ones have smallest period 2π. All together, we observe that exactly
two shifts of every non-constant solution at f1 = 0 are bifurcation points. For the solutions which have no
smaller period than 2π, this is a direct consequence of Theorem 3, cf. Remark 5.(β). However, at the three
remaining π-periodic solutions at f1 = 0 Theorem 3 does not apply, cf. Remark 5.(γ). Nevertheless, we
observe continuations from these points. Interestingly, these points seem to be characterized by horizontal
tangents, at least in this example.

For ζ = 3, we see three constant solutions and four non-constant ones at f1 = 0. Again, the contin-
uation of the upper constant solution is unbounded. We provide a more general investigation in Fig. 9,
where we also depict several of the continued solutions u of (2) for f1 �= 0. Since u is complex valued,
we use the quantity |u(s)|2 for illustration purposes and plot it against s ∈ [−π, π]. In Fig. 9a, we show a
bounded continuum consisting of the light blue and the red simple closed curve connected to each other
by shifts at f1 = 0. Starting from the constant solution on the light blue curve and proceeding first into
the f1 > 0 direction, Fig. 9b, c shows plots of functions corresponding to colored triangles. In Fig. 9d–f,
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Fig. 8. Zoom at ζ = 3.3

functions corresponding to colored dots on the red curve are shown, where we start again at the constant
solution and initially proceed in the f1 > 0 direction. We observe that both curves cross the (π-periodic)
non-constant solution with second largest norm, but at two different shifts: the leftmost dark-red curves
in (c) and (f) only coincide after a nonzero shift. Continuations from π-periodic solutions at f1 = 0 are
not covered by Theorem 3. Nevertheless, they are observed in the numerical experiments, again with
horizontal tangents. The explanation of these continuations remains open, cf. the Appendix for further
discussion.

4. Proof of a-priori bounds

We use the notation r+ = max{0, r} to denote the positive part of any real number r ∈ R and also 1d<0

to denote (as a function of d ∈ R) the characteristic function of the interval (−∞, 0). We write ‖ · ‖p for
the standard norm on Lp(0, 2π) for p ∈ [1,∞]. A continuous map between two Banach spaces is said to
be compact if it maps bounded sets into relatively compact sets.

Theorem 5. Let d ∈ R\{0}, ζ, ω ∈ R and f ∈ H2(0, 2π). Then for every solution u ∈ H2
per(0, 2π) of (3),

the a-priori bounds

‖u‖2 ≤ F, (11)

‖u′‖2 ≤ B‖u‖ 1
4
2 ≤ BF

1
4 , (12)

‖u‖∞ ≤ C (13)
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Fig. 9. Zoom at ζ = 3 and illustration of selected functions

hold, where

F = F (f) = ‖f‖2,

B = B(d, f) =
F

11
4

2|d| + 2‖f ′‖∞F
1
4 +

√

‖f ′′‖2F 1
2 + 2‖f ′‖∞

(√
F

2π
+ 1

)
,

C = C(d, f) =
F√
2π

+
√

2πBF
1
4 .

For ζ sign(d) 	 −C21d<0, these bounds can be improved to

‖u‖2 ≤ D, ‖u‖∞ ≤
(

F
3
4√

2π
+

√
2πB

)
D

1
4 ,

where

D = D(d, f, ω, ζ) =
(

F
3
2 + |ω|BF

3
4 + |d|B2

(−ζ sign(d) − C21d<0)+

) 2
3

.

Remark 6. The improvement in the second part of the theorem lies in the fact that the bound D becomes
small when the detuning ζ is such that ζ sign(d) is very negative.

Proof. The proof is divided into five steps.
Step 1. We first prove the L2 estimate

‖u‖2 ≤ F = ‖f‖2. (14)

To this end we multiply the differential equation (3) with ū to obtain

− du′′ū + iωu′ū + (ζ − i)|u|2 − |u|4 + ifū = 0. (15)

Taking the imaginary part yields

− d Im(u′′ū) + ω Re(u′ū) − |u|2 + Re(fū) = 0. (16)
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Let h:=|u|2 − Re(fū), H:= − d Im(u′ū) + ω
2 |u|2. Then, H ′ = h by equation (16) and H(0) = H(2π) by

the periodicity of u. Hence,

0 = H(2π) − H(0) =

2π∫

0

h ds =

2π∫

0

|u|2 − Re(fū) ds

which implies

‖u‖22 =

2π∫

0

Re(fū) ds ≤ ‖f‖2‖u‖2 = F‖u‖2.

Step 2. Next we prove

‖u′‖2 ≤ B‖u‖ 1
4
2 ≤ BF

1
4 . (17)

From (3), we may isolate the linear term u and insert its derivative u′ into the following calculation for
‖u′‖22:

‖u′‖22 =Re

2π∫

0

u′ū′ ds
(3)
=Re

2π∫

0

(idu′′ + ωu′ − iζu + i|u|2u + f)′ū′ ds

=Re

2π∫

0

idu′′′ū′ + ωu′′ū′ − iζ|u′|2 + i(|u|2u)′ū′ + f ′ū′ ds

=

2π∫

0

−d(Im(u′′ū′))′ +
(ω

2
|u′|2

)′
ds − Im

2π∫

0

(|u|2u)′ū′ ds + Re

2π∫

0

f ′ū′ ds

=

2π∫

0

(|u|2)′Im(ūu′) − Re(f ′′ū) ds + Ref ′ū
∣
∣2π

0

≤
2π∫

0

1
d
(|u|2)′

(ω

2
|u|2 − H

)
ds + ‖f ′′‖2‖u‖2 + 2‖f ′‖∞‖u‖∞

=

2π∫

0

ω

4d
(|u|4)′ − 1

d
(|u|2)′H ds + ‖f ′′‖2‖u‖2 + 2‖f ′‖∞‖u‖∞

=

2π∫

0

−1
d
(|u|2)′(H − H(0))ds + ‖f ′′‖2‖u‖2 + 2‖f ′‖∞‖u‖∞.

Next notice the pointwise estimate

h = |u|2 − Re(fū) ≥ |u|2 − |f ||u| ≥ −1
4
|f |2
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from which we deduce the following two-sided estimate for H − H(0):

H(s) − H(0) =

s∫

0

h(r) dr ≥ −1
4
‖f‖22 (s ∈ [0, 2π]) and

H(s) − H(0) = H(s) − H(2π) = −
2π∫

s

h(r) dr ≤ 1
4
‖f‖22 (s ∈ [0, 2π]).

Continuing the above inequality for ‖u′‖22, we conclude

‖u′‖22 ≤ ‖f‖22
2|d| ‖u‖2‖u′‖2 + ‖f ′′‖2‖u‖2 + 2‖f ′‖∞‖u‖∞.

Next we want to get rid of the ‖u‖∞ term. For that we note that there exists s0 ∈ [0, 2π] satisfying
|u2(s0)| ≤ 1

2π ‖u‖22. We use this in the following way,

‖u‖2∞ ≤ |u2(s0)| + sup
s∈[0,2π]

|u2(s) − u2(s0)| ≤ 1
2π

‖u‖22 +

2π∫

0

2|u||u′| ds

≤ 1
2π

‖u‖22 + 2‖u‖2‖u′‖2
(14)
≤ F

2π
‖u‖2 + 2‖u‖2‖u′‖2

≤ ‖u‖2
(

F

2π
+ 1 + ‖u′‖22

)
,

from where we find

‖u‖∞ ≤ ‖u‖ 1
2
2

(√
F

2π
+ 1 + ‖u′‖2

)
.

In total, we have

‖u′‖22 ≤ ‖f‖22
2|d| ‖u‖2‖u′‖2 + ‖f ′′‖2‖u‖2 + 2‖f ′‖∞‖u‖ 1

2
2

(√
F

2π
+ 1 + ‖u′‖2

)

(14)
≤ F

11
4

2|d| ‖u‖ 1
4
2 ‖u′‖2 + ‖f ′′‖2F 1

2 ‖u‖ 1
2
2 + 2‖f ′‖∞‖u‖ 1

2
2

(√
F

2π
+ 1

)
+ 2‖f ′‖∞F

1
4 ‖u‖ 1

4
2 ‖u′‖2

=
(

F
11
4

2|d| + 2‖f ′‖∞F
1
4

)
‖u‖ 1

4
2 ‖u′‖2 +

(
‖f ′′‖2F 1

2 + 2‖f ′‖∞

(√
F

2π
+ 1

))
‖u‖ 1

2
2

=: A1‖u‖ 1
4
2 ‖u′‖2 + A2

2‖u‖ 1
2
2 .

This is a quadratic inequality in ‖u′‖2 which implies

‖u′‖2 ≤ A1‖u‖ 1
4
2 +

√
A2

1‖u‖ 1
2
2 + 4A2

2‖u‖ 1
2
2

2
≤ A1‖u‖ 1

4
2 + A2‖u‖ 1

4
2 = B‖u‖ 1

4
2

as claimed.
Step 3. Here, we prove

‖u‖∞ ≤ C. (18)
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There exists s1 ∈ [0, 2π] satisfying |u(s1)| ≤ ‖u‖2√
2π

. The claim now follows from

‖u‖∞ ≤|u(s1)| + sup
s∈[0,2π]

|u(s) − u(s1)| ≤ ‖u‖2√
2π

+ ‖u′‖1 ≤ ‖u‖2√
2π

+
√

2π‖u′‖2

(14),(17)
≤

(
F

3
4√

2π
+

√
2πB

)

‖u‖ 1
4
2

(14)
≤ C.

Step 4. Next we show in the case ζ sign(d) < −C21d<0 the additional L2-bound

‖u‖2 ≤ D. (19)

After integrating (15) over [0, 2π] and taking the real part of the resulting equation, we get

d‖u′‖22 = ω

2π∫

0

Im(u′ū) ds − ζ‖u‖22 + ‖u‖44 + Im

2π∫

0

fū ds.

In order to prove (19), we first suppose d > 0. Then, we have on one hand

d‖u′‖22
(17)
≤ dB2‖u‖ 1

2
2 (20)

and on the other hand

ω

2π∫

0

Im(u′ū) ds − ζ‖u‖22 + ‖u‖44 + Im

2π∫

0

fū ds ≥ −|ω|‖u‖2‖u′‖2 − ζ‖u‖22 − F‖u‖2

(17)
≥ −|ω|B‖u‖ 5

4
2 − ζ‖u‖22 − F‖u‖2

(14)
≥ −|ω|BF

3
4 ‖u‖ 1

2
2 − ζ‖u‖22 − F

3
2 ‖u‖ 1

2
2 .

(21)

Combining the two estimates (20), (21) and grouping quadratic terms and terms of power 1
2 of ‖u‖2 on

separate sides of the inequality, we get

−ζ‖u‖22 ≤
(
F

3
2 + |ω|BF

3
4 + dB2

)
‖u‖ 1

2
2

which finally implies ‖u‖2 ≤ D whenever ζ < 0. Assuming now d < 0 the estimate (20) becomes

d‖u′‖22 ≥ −|d|B2‖u‖ 1
2
2 (22)

whereas in (21) the term ‖u‖44, which was previously dropped, now has to be estimated by ‖u‖44 ≤
‖u‖2∞‖u‖22 ≤ C2‖u‖22. The estimate (21) now becomes

ω

2π∫

0

Im(u′ū) ds − ζ‖u‖22 + ‖u‖44 + Im

2π∫

0

fū ds ≤ |ω|BF
3
4 ‖u‖ 1

2
2 + (C2 − ζ)‖u‖22 + F

3
2 ‖u‖ 1

2
2 . (23)

The combination of (22) and (23) leads to

(ζ − C2)‖u‖22 ≤
(
F

3
2 + |ω|BF

3
4 + |d|B2

)
‖u‖ 1

2
2

which again implies ‖u‖2 ≤ D whenever −ζ < −C2.

Step 5. Finally, we prove

‖u‖∞ ≤
(

F
3
4√

2π
+

√
2πB

)
D

1
4 (24)
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whenever ζ sign(d) < −C21d<0. For this we repeat Step 3 and use in the final estimate that ‖u‖2 ≤ D.
�

5. Proof of existence (Theorem 1) and uniqueness (Theorem 7) statements

Let us consider the operator L : H2
per(0, 2π) → L2(0, 2π) with Lu = L0u− iu and L0u = −du′′ +iωu′ +ζu.

Since L0 : H2
per(0, 2π) → L2(0, 2π) is self-adjoint its spectrum is real and we see that L has spectrum on

the line −i + R. In particular, L is invertible and L−1 : L2(0, 2π) → H2
per(0, 2π) is bounded. By using the

compact embedding H2
per(0, 2π) ↪→ H1

per(0, 2π) we see that

L−1 : L2(0, 2π) → H1
per(0, 2π) is compact.

Since moreover H1
per(0, 2π) is a Banach algebra we can rewrite (3) as a fixed point problem u = Φ(u),

where Φ denotes the compact map

Φ : H1
per(0, 2π) → H1

per(0, 2π), Φ(u) = L−1
(|u|2u − if(s)

)
.

In order to prove our first existence result from Theorem 1, let us recall Schaefer’s fixed point theorem
([5, Corollary 8.1]).

Theorem 6. (Schaefer’s fixed point theorem) Let X be a Banach space and Φ : X → X be compact.
Suppose that the set

{x ∈ X : x = λΦ(x) for some λ ∈ (0, 1)}
is bounded. Then, Φ has a fixed point.

Proof of Theorem 1. Let u ∈ H1
per(0, 2π) and u = λΦ(u) for some λ ∈ (0, 1). Then, u ∈ H2

per(0, 2π) and

−du′′ + iωu′ + (ζ − i)u − λ|u|2u + iλf(s) = 0.

Let us now define v ∈ H2
per(0, 2π) by v(s) =

√
λu(s). Then

−dv′′ + iωv′ + (ζ − i)v − |v|2v + if̃(s) = 0

with f̃ = λ
3
2 f . Estimate (11) of Theorem 5 with F̃ = F (λ

3
2 f) = λ

3
2 F implies

‖u‖2 =
1√
λ

‖v‖2 ≤ 1√
λ

F̃ = λF ≤ F.

Using (12) from Theorem 5 with B̃ = B(d, λ
3
2 f), we also find

‖u′‖2 =
1√
λ

‖v′‖2 ≤ 1√
λ

B̃F̃
1
4

= λ4 F 3

2|d| + 2λ
7
4 ‖f ′‖∞F

1
2 +

√

λ2‖f ′′‖2F + 2λ
5
4 ‖f ′‖∞

(
λ

3
4 F√
2π

+
√

F

)

≤ F 3

2|d| + 2‖f ′‖∞F
1
2 +

√

‖f ′′‖2F + 2‖f ′‖∞

(
F√
2π

+
√

F

)
= BF

1
4 .

The assertion now follows from Theorem 6. �

For the next uniqueness result, cf. Theorem 7, let us rewrite the constant D from Theorem 5 as

D = D(d, f, ω, ζ) =
(

D̃

(−ζ sign(d) − C21d<0)+

) 2
3
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with

D̃ = D̃(d, f, ω) = F
3
2 + |ω|BF

3
4 + |d|B2.

Our result complements the existence statement provided in Theorem 1 by a uniqueness statement. It
consists of three cases: (i) and (ii) cover the case where |ζ| � 1 is sufficiently large, whereas (iii) builds
upon ‖f‖ 	 1 measured in a suitable norm ‖ · ‖ such that the constant C = C(d, f) becomes small. This
is the case, e.g., if ‖f‖2 	 1 and ‖f ′′‖2 remains bounded.

Theorem 7. Let d ∈ R\{0}, ζ, ω ∈ R and f ∈ H2(0, 2π). Then, (3) has a unique solution u ∈ H2
per(0, 2π)

in the following three cases,

(i)

sign(d)ζ < ζ∗,

(ii)

sign(d)ζ > ζ∗,

(iii)
√

3C < 1,

where ζ∗ ≤ 0 ≤ ζ∗ are given by

ζ∗ = ζ∗(d, f, ω) = −C21d<0 − 27(F
3
4 + 2πB)6D̃

8π3
,

ζ∗ = ζ∗(d, f, ω) = 3C2 +
ω2

4|d| ,

and F = F (f), B = B(d, f), C = C(d, f) are the constants from Theorem 5.

Proof. It suffices to consider the case f �= 0. By Theorem 1 we know that (3) has at least one solution
u1 ∈ H2

per(0, 2π). Now let u2 ∈ H2
per(0, 2π) denote an additional solution and define

R = R(d, f, ω, ζ) =

⎧
⎨

⎩
min

{
C,

(
F

3
4√
2π

+
√

2πB

)
D

1
4

}
, ζ sign(d) + C21d<0 < 0,

C, ζ sign(d) + C21d<0 ≥ 0.

Then ‖uj‖∞ ≤ R for j = 1, 2 by Theorem 5, which easily implies
∥
∥|u1|2u1 − |u2|2u2

∥
∥
2

≤ 3R2‖u1 − u2‖2.
Since uj , j = 1, 2 solves the fixed point problem uj = Φ(uj) we obtain

‖u1 − u2‖2 = ‖Φ(u1) − Φ(u2)‖2 ≤ 3R2‖L−1‖‖u1 − u2‖2,
where ‖L−1‖ = supv∈L2(0,2π),‖v‖2=1 ‖L−1v‖2. Next we show 3R2‖L−1‖ < 1 which implies u1 = u2 and
thus finishes the proof. To this end we decompose a function v ∈ L2(0, 2π) into its Fourier series, i.e.,
v =

∑
m∈Z

vmeims so that

L−1v =
∑

m∈Z

vm

dm2 − ωm + ζ − i
eims.

On one hand we get ‖L−1‖ ≤ 1 since

‖L−1v‖22 = 2π
∑

m∈Z

|vm|2
1 + (dm2 − ωm + ζ)2

≤ 2π
∑

m∈Z

|vm|2 = ‖v‖22.
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On the other hand, if sign(d)
(
ζ − ω2

4d

)
> 0, we get

‖L−1v‖22 = 2π
∑

m∈Z

|vm|2
1 + (dm2 − ωm + ζ)2

= 2π
∑

m∈Z

|vm|2

1 +
(
d
(
m − ω

2d

)2 + ζ − ω2

4d

)2

≤ 2π
∑

m∈Z

|vm|2
(
ζ − ω2

4d

)2 =
1

(
ζ − ω2

4d

)2 ‖v‖22,

i.e., ‖L−1‖ ≤ sign(d)
(
ζ − ω2

4d

)−1.
In case (i) where sign(d)ζ < ζ∗ < −C21d<0 ≤ 0, we use ‖L−1‖ ≤ 1 and find by the definition of R

and ζ∗ that

3R2‖L−1‖ ≤ 3
(F

3
4 + 2πB)2

2π
D

1
2

= 3
(F

3
4 + 2πB)2

2π

(
D̃

−ζ sign(d) − C21d<0

) 1
3

< 3
(F

3
4 + 2πB)2

2π

(
D̃

−ζ∗ − C21d<0

) 1
3

= 1.

In case (ii) where sign(d)ζ > ζ∗ > ω2

4|d| ≥ 0, we use ‖L−1‖ ≤ sign(d)
(
ζ − ω2

4d

)−1 and get by the choice
of ζ∗

3R2‖L−1‖ ≤ 3C2

sign(d)(ζ − ω2

4d )
<

3C2

ζ∗ − ω2

4|d|
= 1.

In case (iii) where
√

3C < 1, we use ‖L−1‖ ≤ 1 to conclude

3R2‖L−1‖ ≤ 3C2 < 1.

�

6. Proof of the continuation results

In this section, we continue to use the notion for the operator L : H2
per(0, 2π) → L2(0, 2π) from Sect. 4.

We also use that L−1 : L2(0, 2π) → H2
per(0, 2π) is bounded and that L−1 : L2(0, 2π) → H1

per(0, 2π)
is compact. We first consider continuation from a trivial solution. In order to prove Theorem 2, let us
provide the following global continuation theorem.

Theorem 8. Let X be a real Banach space and K ∈ C1(R × X,X) be compact. We consider the problem

T (λ, x):=x − K(λ, x) = 0. (25)

Assume that T (λ0, x0) = 0 and that ∂xT (λ0, x0) is invertible. Then, there exists a connected and closed
set (=continuum) C+ ⊂ [λ0,∞) × X of solutions of (25) with (λ0, x0) ∈ C+. For C+, one of the following
alternatives holds:

(a) C+ is unbounded, or
(b) ∃x+

0 ∈ X \ {x0} : (λ0, x
+
0 ) ∈ C+.

If one chooses C+ to be maximally connected then there is no more a strict alternative between (a) and
(b) and instead at least one of the two (possibly both) properties holds.
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Remark 7. (α) The theorem follows from [2, Theorem 3.3] or [26, Theorem 1.3.2] because the invertibility
of ∂xT (λ0, x0) implies that deg(T (λ0, ·), Bε(x0), 0) = deg(∂xT (λ0, x0), Bε(0), 0) �= 0.
(β) There exists also a continuum C− ⊂ (−∞, λ0] × X of solutions of (25) with (λ0, x0) ∈ C− satisfying
one of the alternatives of the theorem.
(γ) Alternative (a) of Theorem 8 means that C+ is unbounded either in the Banach space direction X or
in the parameter direction [λ0,∞) or in both. If unboundedness in the Banach space direction is excluded
on compact intervals [λ0,Λ], e.g., by a-priori bounds, then unboundedness in the parameter direction
follows, i.e., the projection of C+ onto [λ0,∞) denoted by pr1(C+) must coincide with [λ0,∞). This is an
existence result for all λ ≥ λ0 which is one aspect of Theorem 2.
(δ) Alternative (b) of Theorem 8 means that the continuum C+ returns to the λ = λ0 line at a point
x+
0 �= x0.

Proof of Theorem 2. We define the map K : R × H1
per(0, 2π) → H1

per(0, 2π) as K(f1, u):=L−1(|u|2u −
if0 − if1e(s)) and set T (f1, u):=u − K(f1, u). Then, as explained before Theorem 6, K is compact and

T (0, u0) = u0 − L−1(|u0|2u0 − if0)
(4)
= u0 − L−1

(
(ζ − i)u0

)
= u0 − u0 = 0.

Next we show that ∂uT (0, u0) is invertible. To this end note that

∂uT (0, u0)ϕ = ϕ − L−1(2|u0|2ϕ + u2
0ϕ) for ϕ ∈ H1

per(0, 2π)

and hence, as a compact perturbation of the identity, ∂uT (0, u0) is invertible if it is injective. Since u0 is
constant this amounts exactly to the characterization of non-degeneracy of u0 as described in Lemma 1.

Now assertion (i) follows from the classical implicit function theorem and Theorem 8 yields that the
maximal continuum C+ ⊂ [0,∞) × H1

per(0, 2π) of solutions (f1, u) of (3) with (0, u0) ∈ C+ is unbounded
or returns to another solution at f1 = 0. The continuum C+ in fact belongs to [0,∞) × H2

per(0, 2π) and
persists as a connected and closed set in the stronger topology of [0,∞)×H2

per(0, 2π). Next we show that
the unboundedness of C+ coincides with pr1(C+) = [0,∞). According to Remark 7.(γ), we need to show
that unboundedness in the Banach space direction H1

per(0, 2π) is excluded for f1 in bounded intervals. To
see this suppose that 0 ≤ f1 ≤ M for all (f1, u) ∈ C+ and some constant M > 0. Then, by the a-priori
bounds (11) and (12) from Theorem 5 we get

‖u‖2 ≤ ‖f0 + f1e(s)‖2 ≤
√

2π|f0| + M‖e‖2 =: N = N(f0,M, e)

and

‖u′‖2 ≤ N3

2|d| + 2M‖e′‖∞N
1
2 +

√

M‖e′′‖2N + 2M‖e′‖∞

(
N√
2π

+
√

N

)

for all (f1, u) ∈ C+. Hence, C+ is bounded in the Banach space direction. Assertion (ii) follows in a similar
way by using the a-priori bounds of Theorem 5 and the fact that by (3) the bounds for ‖u‖2, ‖u′‖2 and
‖u‖∞ translate into a bound for ‖u′′‖2.

According to Remark 7.(β), the above line of arguments also yields that the maximal continuum
C− ⊂ (−∞, 0] × H2

per(0, 2π) of solutions of (3) with (0, u0) ∈ C− satisfies pr1(C−) = (−∞, 0] or returns
to another solution at f1 = 0. This finishes the proof. �

Proof of Corollary 1. The result follows from a combination of Theorems 2 and 7. For f1 = 0, i.e.,
f(s) = f0, the abbreviations F,B,C from Theorem 5 and D̃ from Theorem 7 reduce to

F (f0) =
√

2π|f0|, B(d, f0) = 2
3
8 π

11
8 |f0| 11

4 |d|−1,

C(d, f0) = |f0|(1 + 2π2f2
0 |d|−1),

D̃(d, f0, ω) = (2π)
3
4 |f0| 3

2 (|d| + πf2
0 |ω| + π2f4

0 )|d|−1.
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Hence, the constants ζ∗, ζ∗ from Theorem 7 take the form

ζ∗(d, f0, ω) = −C2(d, f0)1d<0 − 27
(

1 +
πf2

0 |ω|
|d| +

π2f4
0

|d|
)

C(d, f0)6,

ζ∗(d, f0, ω) = 3C(d, f0)2 +
ω2

4|d| .

Finally, the conditions (i), (ii), (iii) from the uniqueness result of Theorem 7 translate into the conditions
(i), (ii), (iii) from Corollary 1. �

Now we turn to continuation from a non-trivial solution. Theorem 3 will follow from the theorem of
Crandall–Rabinowitz on bifurcation from a simple eigenvalue, which we recall next.

Theorem 9. (Crandall–Rabinowitz [4,16]) Let I ⊂ R be an open interval, X,Y Banach spaces and let
F : I × X → Y be twice continuously differentiable such that F (λ, 0) = 0 for all λ ∈ I and ∂xF (λ0, 0) :
X → Y is an index-zero Fredholm operator for λ0 ∈ I. Moreover assume:
(H1) there is φ ∈ X,φ �= 0 such that ker ∂xF (λ0, 0) = span{φ},
(H2) ∂2

x,λF (λ0, 0)[φ] �∈ range ∂xF (λ0, 0).
Then, there exists ε > 0 and a continuously differentiable curve (λ, x) : (−ε, ε) → I × X with λ(0) = λ0,
x(0) = 0, ẋ(0) = φ and x(t) �= 0 for 0 < |t| < ε and F (λ(t), x(t)) = 0 for all t ∈ (−ε, ε). Moreover, there
exists a neighborhood J × U ⊂ I × X of (λ0, 0) such that all non-trivial solutions in J × U of F (λ, x) = 0
lie on the curve. Finally,

λ̇(0) = −1
2

〈∂2
xxF (λ0, 0)[φ, φ], φ∗〉

〈∂2
x,λF (λ0, 0)[φ], φ∗〉 ,

where span{φ∗} = ker ∂xF (λ0, 0)∗ and 〈·, ·〉 is the duality pairing between Y and its dual Y ∗.

Next we provide the functional analytic setup. Fix the values of d, ω, ζ, f0 and the function e. If
u0 ∈ H2

per(0, 2π) is the non-trivial non-degenerate solution of (3) for f1 = 0 (as assumed in Theorem 3)
then for σ ∈ R we denote by uσ(s):=u0(s − σ) its shifted copy, which is also a solution of (3) for f1 = 0.
Consider the mapping

G :
{

R × H2
per(0,2π) → L2(0, 2π),
(f1, u) �→ −du′′ + iωu′ + (ζ − i)u − |u|2u + if0 + if1e(s).

Then, G is twice continuously differentiable. The linearized operator ∂(f1,u)G(0, uσ) = (ie, Luσ
) with Luσ

as in Definition 1 is a Fredholm operator with the property that (0, u′
σ) ∈ ker ∂(f1,u)G(0, uσ). As we shall

see there may be more elements in the kernel. Next we fix the value σ0 (its precise value will be given
later) and decompose H2

per(0, 2π) = span{u′
σ0

} ⊕ Z where, e.g.,

Z:=H2
per(0, 2π) ∩ span{u′

σ0
}⊥L2 =

{
ϕ − 〈ϕ, u′

σ0
〉L2

〈u′
σ0

, u′
σ0

〉L2
u′

σ0
: ϕ ∈ H2

per(0, 2π)
}

.

It will be more convenient to rewrite u = uσ + v with v ∈ Z. In order to justify this, note also that the
map (σ, v) �→ uσ +v defines a diffeomorphism of a neighborhood of (σ0, 0) ∈ R×Z onto a neighborhood of
uσ0 ∈ H2

per(0, 2π) since the derivative at (σ0, 0) is given by (λ, ψ) �→ −λu′
σ0

+ ψ which is an isomorphism
from R × Z onto H2

per(0, 2π). Now we define

F :
{

R × R × Z → L2(0, 2π),
(σ, f1, v) �→ G(f1, uσ + v)

which is also twice continuously differentiable and where ∂(f1,v)F (σ0, 0, 0) is a Fredholm operator with
index zero. Our goal will be to solve

F (σ, f1, v) = 0 (26)
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by means of bifurcation theory, where σ ∈ R is the bifurcation parameter. Notice that F (σ, 0, 0) = 0 for
all σ ∈ R, i.e., (f1, v) = (0, 0) is a trivial solution of (26).

Next we show (H1) of Theorem 9.

Lemma 2. Suppose that σ0 ∈ R satisfies (7), i.e., Im
∫ 2π

0
e(s + σ0)φ∗

0(s) ds = 0. Then, we have that
dim ker ∂(f1,v)F (σ0, 0, 0) = 1 and range ∂(f1,v)F (σ0, 0, 0) = span{φ∗

σ0
}⊥L2 .

Proof. The fact that ∂(f1,v)F (σ0, 0, 0) is a Fredholm operator follows from Remark 1. For (α,ψσ0) ∈ R×Z
being non-trivial and belonging to the kernel of ∂(f1,v)F (σ0, 0, 0), we have

∂(f1,v)F (σ0, 0, 0)[α,ψσ0 ] = Luσ0
ψσ0 + iαe = 0. (27)

If α = 0 then by non-degeneracy we find ψσ0 ∈ span{u′
σ0

}∩Z = {0}, which is impossible. Hence, we may
assume w.l.o.g. that α = 1 and ψσ0 has to solve

Luσ0
ψσ0 = −ie (28)

which, by setting ψσ0(s) = ξσ0(s − σ0), is equivalent to

Lu0ξσ0 = −ie(· + σ0). (29)

By the Fredholm alternative, this is possible if and only if −ie(· + σ0) ⊥L2 φ∗
0. If this L2-orthogonality

holds then there exists ψσ0 ∈ H2
per(0, 2π) solving (28) and ψσ0 is unique up to adding a multiple of u′

σ0
.

Hence, there is a unique ψσ0 ∈ Z solving (28). The L2-orthogonality means

0 = −Re

2π∫

0

ie(s + σ0)φ∗
0(s) ds = Im

2π∫

0

e(s + σ0)φ∗
0(s) ds

which amounts to (7). Finally, it remains to determine the range of ∂(f1,v)F (σ0, 0, 0). Let φ̃ ∈ L2(0, 2π)
be such that φ̃ = ∂(f1,v)F (σ0, 0, 0)[α, ψ̃] with ψ̃ ∈ Z and α ∈ R. Thus,

Luσ0
ψ̃ + iαe = φ̃ (30)

and since ie ⊥L2 φ∗
σ0

by the definition of σ0, the Fredholm alternative says that a necessary and suf-
ficient condition for φ̃ to satisfy (30) is that φ̃ ∈ span{φ∗

σ0
}⊥L2 as claimed. Note that in this case

ψ̃ ∈ H2
per(0, 2π) = ker Luσ0

⊕Z and hence, for every given α ∈ R and φ̃ ∈ span{φ∗
σ0

}⊥L2 there is a unique
element ψ̃ ∈ Z that solves (30). �

Proof of Theorem 3. The proof is divided into three steps.

Step 1. We begin by verifying for (26) the conditions for the local bifurcation theorem of Crandall–
Rabinowitz, cf. Theorem 9. By Lemma 2, ∂(f1,v)F (σ0, 0, 0) : R×Z → L2(0, 2π) is an index-zero Fredholm
operator and it satisfies

ker ∂(f1,v)F (σ0, 0, 0) = span{(1, ψσ0)},

where ψσ0 denotes the unique element of Z which solves (28). Hence, (H1) is satisfied. To see (H2) note
that

∂2
(f1,v),σF (σ0, 0, 0)[1, ψσ0 ] = 2u′

σ0
uσ0ψσ0 + 2u′

σ0
uσ0ψσ0 + 2uσ0u

′
σ0

ψσ0 .

On the other hand, differentiation of (28) w.r.t. s yields

Luσ0
ψ′

σ0
= 2u′

σ0
uσ0ψσ0 + 2u′

σ0
uσ0ψσ0 + 2uσ0u

′
σ0

ψσ0 − ie′ (31)

so that

∂2
(f1,v),σF (σ0, 0, 0)[1, ψσ0 ] = Luσ0

ψ′
σ0

+ ie′. (32)
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Hence, the characterization of range ∂(f1,v)F (σ0, 0, 0) from Lemma 2 implies that the transversality con-
dition (H2) is satisfied if and only if Re

∫ 2π

0
ie′(s)φ∗

σ0
(s) ds �= 0 which amounts to assumption (8). This

already allows us to apply Theorem 9 and we obtain the existence of a local curve t �→ (σ(t), f1(t), v(t)),
ḟ1(0) = 1, f1(0) = 0, v(0) = 0, σ(0) = σ0 with F (σ(t), f1(t), v(t)) = 0. Assertion (i) is then satisfied with
u(t):=uσ(t) + v(t). Assertion (ii) follows like in the proof of Theorem 2.

Step 2. From here on let us additionally assume that zero is an algebraically simple eigenvalue of Lu0 ,
i.e., u′

0 /∈ range Lu0 . Next we want to show that Lu(t) is invertible for 0 < |t| < δ∗ and δ∗ sufficiently
small, i.e., that the critical zero eigenvalue of Lu(0) = Luσ0

moves away from zero when t evolves. Let us
define

H :
{

H2
per(0, 2π) × Z × R → L2(0, 2π),

(u, v, μ) �→ Lu(u′
σ0

+ v) − μ(u′
σ0

+ v).

Then, H(uσ0 , 0, 0) = 0 and

∂(v,μ)H(uσ0 , 0, 0) :
{

Z × R → L2(0, 2π),
(ψ, α) �→ Luσ0

ψ − αu′
σ0

clearly defines an isomorphism due to our assumption that u′
σ0

/∈ range Luσ0
. By the implicit function

theorem, we find neighborhoods U ⊂ H2
per(0, 2π) of uσ0 , V ⊂ Z of 0, J ⊂ R of 0 and continuously

differentiable functions v∗ : U → V , μ∗ : U → J such that v∗(uσ0) = 0, μ∗(uσ0) = 0 and

∀(u, v, μ) ∈ U × V × J : H(u, v, μ) = 0 ⇐⇒ v = v∗(u), μ = μ∗(u).

Thus, we find Lu(t)

(
u′

σ0
+v∗(u(t))

)
= μ∗(u(t))

(
u′

σ0
+v∗(u(t))

)
for |t| sufficiently small. With ϕ(t):=u′

σ0
+

v∗(u(t)) and μ(t):=μ∗(u(t)), we have ϕ(0) = u′
σ0

, μ(0) = 0 and

Lu(t)ϕ(t) = μ(t)ϕ(t) (33)

so that we have found a parameterization of the eigenvalue μ(t) nearby 0 with eigenfunction ϕ(t) of Lu(t).
Next we want to compute μ̇(0) and show that μ̇(0) �= 0 so that the critical zero eigenvalue moves away
from zero. Differentiating (33) w.r.t. t and evaluating at t = 0 we get

Luσ0
ϕ̇(0) − 2u̇(0)uσ0u

′
σ0

− 2uσ0 u̇(0)u′
σ0

− 2uσ0 u̇(0)u′
σ0

= μ̇(0)u′
σ0

.

Theorem 9 yields v̇(0) = ψσ0 from which we find u̇(0) = −u′
σ0

σ̇(0) + ψσ0 . Thus,

Luσ0
ϕ̇(0) − 2(ψσ0uσ0u

′
σ0

+ uσ0ψσ0u
′
σ0

+ uσ0ψσ0u
′
σ0

) + 2σ̇(0)u′
σ0

(uσ0u
′
σ0

+ 2uσ0u
′
σ0

) = μ̇(0)u′
σ0

.

Using (31), this gives

Luσ0
ϕ̇(0) − Luσ0

ψ′
σ0

− ie′ + 2σ̇(0)u′
σ0

(uσ0u
′
σ0

+ 2uσ0u
′
σ0

) = μ̇(0)u′
σ0

.

Testing this equation with φ∗
σ0

and using μ̇(0) ∈ R, we obtain

Re

2π∫

0

−ie′φ∗
σ0

+ 2σ̇(0)u′
σ0

(uσ0u
′
σ0

+ 2uσ0u
′
σ0

)φ∗
σ0

ds = μ̇(0)Re

2π∫

0

u′
σ0

φ∗
σ0

ds.

Further,

Re

2π∫

0

u′
σ0

(uσ0u
′
σ0

+ 2uσ0u
′
σ0

)φ∗
σ0

ds = 0

as can be seen by differentiating (3) for f1 = 0 twice w.r.t. s. Hence,

Re

2π∫

0

−ie′φ∗
σ0

ds = μ̇(0)Re

2π∫

0

u′
σ0

φ∗
σ0

ds.
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Due to u′
σ0

/∈ range Luσ0
, we have Re

∫ 2π

0
u′

σ0
φ∗

σ0
ds �= 0 so that

μ̇(0) =
Im

2π∫

0

e′(s + σ0)φ∗
0(s) ds

Re
∫ 2π

0
u′
0φ

∗
0 ds

and the condition μ̇(0) �= 0 amounts to assumption (8) of the theorem.
Finally, employing some arguments from spectral theory, we ensure that no other eigenvalue runs into

zero. For u = u1 + iu2 ∈ H2
per(0, 2π) let us define the C-linear operator

LC

u :

⎧
⎨

⎩

H2
per((0, 2π), C2) → L2((0, 2π), C2)(

ϕ1

ϕ2

)
�→

(−dϕ′′
1 − ωϕ′

2 + ζϕ1 + ϕ2 − 3u2
1ϕ1 − u2

2ϕ1 − 2u1u2ϕ2

−dϕ′′
2 + ωϕ′

1 + ζϕ2 − ϕ1 − u2
1ϕ2 − 3u2

2ϕ2 − 2u1u2ϕ1

)

which is constructed in such a way that

LC

u

(
ϕ1

ϕ2

)
=

(
Re Lu(ϕ1 + iϕ2)
Im Lu(ϕ1 + iϕ2)

)

whenever ϕ1, ϕ2 ∈ H2
per((0, 2π), R). Since LC

u is an index-zero Fredholm operator, its spectrum consists of
eigenvalues. The real part of these eigenvalues (weighted with sign(d)) is bounded from below by c ∈ R

which is chosen such that

Re
〈

sign(d)LC

u

(
ϕ1

ϕ2

)
,

(
ϕ1

ϕ2

)〉

L2((0,2π),C2)

≥ c

∥
∥
∥
∥

(
ϕ1

ϕ2

)∥
∥
∥
∥

2

L2((0,2π),C2)

holds. This implies that the resolvent set ρ(LC
u) is non-empty, and the compactness of the embedding

H2
per((0, 2π), C2) ↪→ L2((0, 2π), C2) ensures that LC

u has compact resolvent so that σ(LC
u) consists of

isolated eigenvalues. Now choose ε > 0 such that σ(LC

u(0)) ∩ BC
ε (0) = {0}. Using [15, Chapter Four,

Theorem 3.18] we find that σ(LC

u(t))∩BC
ε (0) exactly consists of one algebraically simple eigenvalue if |t| is

sufficiently small. If in addition |t| is chosen so small that μ(t) ∈ (−ε, ε) then this means σ(LC

u(t))∩BC
ε (0) =

{μ(t)}. But from μ̇(0) �= 0, we know that μ(t) �= 0 for small |t| > 0 which guarantees that 0 /∈ σ(LC

u(t))
for 0 < |t| < δ∗ and δ∗ sufficiently small. Finally, Lu(t) inherits the invertibility of LC

u(t).

Step 3. Due to ḟ1(0) = 1 and Step 2, there exists a local reparameterization (f̃1, u(f̃1)) of C(t) =
(f1(t), u(t)) such that Lu(f̃1)

is invertible for 0 < f̃1 < f∗
1 . Next we construct the connected set C+

∗ .
For this we want to apply Theorem 8 to the map T : R × H1

per(0, 2π) → H1
per(0, 2π) from the proof of

Theorem 2. Note that this theorem cannot be applied directly at the point (0, uσ0) since ∂uT (0, uσ0) is
not invertible. Instead, we apply it to the points (f̃1, u(f̃1)) with f̃1 ∈ (0, f∗

1 ) and obtain that the maximal
continuum C+(f̃1) ⊂ [f̃1,∞) × H1

per(0, 2π) of solutions of (3) with (f̃1, u(f̃1)) ∈ C+(f̃1) is unbounded or
returns to another solution u+(f̃1) �= u(f̃1) at f1 = f̃1. As in the proof of Theorem 2, we see that the
continuum C+(f̃1) persists as a connected and closed set in [f̃1,∞) × H2

per(0, 2π). Let us define

C+
∗ :=

⋃

f̃1∈(0,f∗
1 )

C+(f̃1) ⊂ C+.

Clearly, pr1(C+
∗ ) ⊂ (0,∞) and C+

∗ is connected since C+(f̃1) ⊂ C+(f̄1) for f̄1 < f̃1. Let us now suppose that
pr1(C+

∗ ) �= (0,∞) so that pr1(C+
∗ ) is bounded. By (ii), this implies that C+

∗ is bounded too. Hence, C+(f̃1)
is bounded for f̃1 ∈ (0, f∗

1 ) and contains the additional element (f̃1, u+(f̃1)). Let us take f̃1 = 1
n and

consider the two sequences of solutions ( 1
n , u( 1

n ))n and ( 1
n , u+( 1

n ))n. Using Theorem 5, we obtain uniform
C3-bounds for both sequences (u( 1

n ))n and (u+( 1
n ))n. Therefore, we can take convergent subsequences

(denoted by the same index) and obtain u( 1
n ) → uσ0 and u+( 1

n ) → u+
0 in C2([0, 2π]) as n → ∞. In
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particular (0, uσ0), (0, u+
0 ) ∈ C+∗ and the uniqueness property from (i) guarantees that u+

0 �= uσ0 . This
finishes the proof. �

Proof of Corollary 2. We first check assumption (7) of Theorem 3. For e(s) = eik1s we have

Im

2π∫

0

e(s + σ0)φ∗
0(s) ds = Im

2π∫

0

eik1(s+σ0)φ∗
0(s) ds

= cos(k1σ0) Im

2π∫

0

eik1sφ∗
0(s) ds + sin(k1σ0)Re

2π∫

0

eik1sφ∗
0(s) ds,

where

Im

2π∫

0

eik1sφ∗
0(s) ds =

2π∫

0

sin(k1s)Re φ∗
0(s) − cos(k1s) Im φ∗

0(s) ds,

Re

2π∫

0

eik1sφ∗
0(s) ds =

2π∫

0

cos(k1s)Re φ∗
0(s) + sin(k1s) Im φ∗

0(s) ds.

Since assumption (9) guarantees that Im
∫ 2π

0
eik1sφ∗

0(s) ds and Re
∫ 2π

0
eik1sφ∗

0(s) ds do not vanish simul-
taneously condition (10) ensures that assumption (7) of Theorem 3 is fulfilled.

Next we check that assumption (8) of Theorem 3 holds. For this we compute

Im

2π∫

0

e′(s + σ0)φ∗
0(s) ds = Im

2π∫

0

ik1eik1(s+σ0)φ∗
0(s) ds = k1 Re

2π∫

0

eik1(s+σ0)φ∗
0(s) ds. (34)

From (9) we know that
∫ 2π

0
eik1(s+σ0)φ∗

0(s) ds = eik1σ0
∫ 2π

0
eik1sφ∗

0(s) ds �= 0 and, moreover, we see that
Im

∫ 2π

0
eik1(s+σ0)φ∗

0(s) ds = 0 by the definition of σ0. Therefore, the expression in (34) does not vanish
and so assumption (8) of Theorem 3 holds. This is all we had to show. �

Proof of Theorem 4. Let us fix all parameters d, ω, ζ, k1 and f0 and consider u : f1 �→ u(f1) as a function
mapping the parameter f1 ∈ [−f∗

1 , f∗
1 ] to the uniquely defined solution of (2) in the neighborhood

of the trivial solution u0. The existence of such a smooth function follows from the implicit function
theorem applied to the equation T (f1, u) = 0, cf. proof of Theorem 2. Similarly we consider the functions
v : f1 �→ du(f1)

df1
and w : f1 �→ d2u(f1)

df2
1

. Then,

d

df1
‖u(f1)‖22 = 2

2π∫

0

Re(uv) ds,
d2

df2
1

‖u(f1)‖22 = 2

2π∫

0

Re(uw) + |v|2 ds (35)

and the differential equations for v, w at f1 = 0 are given by

− dv′′ + iωv′ + (ζ − i)v − 2|u0|2v − u2
0v + ieik1s = 0, (36)

−dw′′ + iωw′ + (ζ − i)w − 4u0|v|2 − 2u0v
2 − 2|u0|2w − u2

0w = 0 (37)

both equipped with 2π-periodic boundary conditions. The first equation (36) has a unique solution since
the homogeneous equation has a trivial kernel, cf. proof of Theorem 2. Thus, v(s) = αeik1s + βe−ik1s

where α, β ∈ C solve the linear system

(dk2
1 − k1ω + ζ − i − 2|u0|2)α − u2

0β + i = 0,

(dk2
1 + k1ω + ζ − i − 2|u0|2)β − u2

0α = 0.
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Solving for α, β leads to the formulae in the statement of the theorem. Since v is the sum of two 2π-
periodic complex exponentials and u0 is a constant we see from (35) that d

df1
‖u(f1)‖22 |f1=0= 0. Having

determined v, we can consider the second equation (37) as an inhomogeneous equation for w. It also has
a unique solution since the homogeneous equation is the same as in (36). Since the inhomogeneity is of
the form c1ei2k1s + c2e−i2k1s + c3 the solution has the form w(s) = γei2k1s + δe−i2k1s + ε. Moreover, for
the determination of d2

df2
1
‖u(f1)‖22 the values of γ, δ are irrelevant and only the value of ε matters. Using

|v|2 = |α|2 + |β|2 + 2Re(αβei2k1s), v2 = α2ei2k1s + β2e−i2k1s + 2αβ

we find from (37) that the equation determining ε is

(ζ − i)ε − 4u0(|α|2 + |β|2) − 4u0αβ − 2|u0|2ε − u2
0ε = 0.

Since this is an equation of the form xε+yε = z with x, y, z given in the statement of the theorem we find
the solution formula ε = −zy+zx

|x|2−|y|2 . Finally, only the constant contributions from w and |v|2 contribute to

the integral in the formula (35) for d2

df2
1
‖u(f1)‖22 and lead to the claimed statement of the theorem. �
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Appendix

Here, we raise the issue mentioned in Remark 5.(γ) that assumption (9) from Corollary 2 is not satisfied
if u0 is 2π

j -periodic and j ∈ N is not a divisor of k1. Let us first prove that φ∗
0 (spanning kerL∗

u0
) inherits

several properties from u′
0 (spanning kerLu0).

Proposition 2. Let u0 ∈ H2
per(0, 2π) be a non-constant non-degenerate solution of (3) for f1 = 0 and let

ker L∗
u0

= span{φ∗
0}. Then, the following holds:

(i) If u0 is 2π
j -periodic with j ∈ N then φ∗

0 is 2π
j -periodic.

(ii) If ω = 0 and if u0 is even then φ∗
0 is odd.

Proof. (i) By assumption we have that kerLu0 = span{u′
0} and u′

0 is a 2π
j -periodic function. Let us define

D:={ϕ ∈ H2
per(0, 2π) : ϕ is 2π

j − periodic} and similarly L2
j (0, 2π) = {ϕ ∈ L2(0, 2π) : ϕ is 2π

j − periodic}.
If we consider the restriction

L#
u0

:
{

D → L2
j (0, 2π),

ϕ �→ Lu0ϕ,

http://creativecommons.org/licenses/by/4.0/
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then L#
u0

is again an index-zero Fredholm operator with kerL#
u0

= span{u′
0}. Further we have (L#

u0
)∗ =

(L∗
u0

)# where

(L∗
u0

)# :
{

D → L2
j (0, 2π),

ϕ �→ L∗
u0

ϕ

is the restriction of the adjoint. But since 1 = dim ker(L∗
u0

)# = dim ker L∗
u0

it follows that ker(L∗
u0

)# =
ker L∗

u0
and hence φ∗

0 ∈ D as claimed.
The proof of (ii) is very similar. Due to the assumption ω = 0, we can restrict both the domain and

the codomain of Lu0 to odd functions and observe that it is still an index-zero Fredholm operator. �

Instead of k1 ∈ N, let us now consider a perturbation k1(ε) ∈ R\{k1} with limε→0 k1(ε) = k1. For
ε ≈ 0, one may have maximally connected continua C+

ε as described in Theorem 3. In a topological sense,
one can describe lim inf{C+

ε : ε−1 ∈ N} and lim sup{C+
ε : ε−1 ∈ N} as in [31]. However, having in mind

sequences of loops degenerating to one point, we do not intend to make any existence statement about
a bifurcating branch obtained through such a topological limiting procedure. Let us abbreviate by eε(s)
the periodic extension of [0, 2π) → C, s �→ eik1(ε)s onto R. Note that

Im

2π∫

0

eε(s + σ0,ε)φ∗
0(s) ds = Im

2π∫

0

eik1(ε)sφ∗
σ0,ε

(s) ds

= Im

2π−σ0,ε∫

−σ0,ε

eik1(ε)(s+σ0,ε)φ∗
0(s) ds

= cos(k1(ε)σ0,ε) Im

2π−σ0,ε∫

−σ0,ε

eik1(ε)sφ∗
0(s) ds

+ sin(k1(ε)σ0,ε)Re

2π−σ0,ε∫

−σ0,ε

eik1(ε)sφ∗
0(s) ds

so that assumption (7) from Theorem 3 becomes

tan(k1(ε)σ0,ε) =

∫ 2π−σ0,ε

−σ0,ε
cos(k1(ε)s) Im φ∗

0(s) − sin(k1(ε)s)Re φ∗
0(s) ds

∫ 2π−σ0,ε

−σ0,ε
sin(k1(ε)s) Im φ∗

0(s) + cos(k1(ε)s)Re φ∗
0(s) ds

.

One may expect that if (as a result of such a limiting procedure) a bifurcating branch at k1 = limε→0 k1(ε)
exists then it bifurcates at σ0 = limε→0 σ0,ε determined from

tan(k1σ0) = lim
ε→0

∫ 2π−σ0,ε

−σ0,ε
cos(k1(ε)s) Im φ∗

0(s) − sin(k1(ε)s)Re φ∗
0(s) ds

∫ 2π−σ0,ε

−σ0,ε
sin(k1(ε)s) Im φ∗

0(s) + cos(k1(ε)s)Re φ∗
0(s) ds

=

∫ 2π−σ0

−σ0
s sin(k1s) Im φ∗

0(s) + s cos(k1s)Re φ∗
0(s) ds

∫ 2π−σ0

−σ0
s sin(k1s)Re φ∗

0(s) − s cos(k1s) Im φ∗
0(s) ds

.

However, this is not supported by our numerical experiments and we have to leave the correct determi-
nation of σ0 in this case as an open question.



168 Page 30 of 31 E. Gasmi et al. ZAMP

References

[1] Allgower, E.L., Georg, K.: Numerical Continuation Methods. vol. 13 of Springer Series in Computational Mathematics.
Springer, Berlin. An introduction. (1990)https://doi.org/10.1007/978-3-642-61257-2

[2] Bandle, C., Reichel, W.: Solutions of quasilinear second-order elliptic boundary value problems via degree theory.
In: Stationary Partial Differential Equations. Vol. I, Handbook of Differential Equations, pp. 1–70. North-Holland,
Amsterdam (2004). https://doi.org/10.1016/S1874-5733(04)80003-2

[3] Bengel, L., Pelinovsky, D., Reichel, W.: Pinning in the extended Lugiato–Lefever equation (2023). arXiv:2302.00311
[4] Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

[5] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985). https://doi.org/10.1007/978-3-662-00547-7
[6] Delcey, L., Haragus, M.: Instabilities of periodic waves for the Lugiato–Lefever equation. Rev. Roumaine Math. Pures

Appl. 63(4), 377–399 (2018)
[7] Delcey, L., Haragus, M.: Periodic waves of the Lugiato–Lefever equation at the onset of Turing instability. Philos. Trans.

R. Soc. A 376(2117), 20170188 (2018). https://doi.org/10.1098/rsta.2017.0188
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