
Evaluating Architectural
Safeguards for Uncertain
AI Black-Box Components

Max Scheerer

The Karlsruhe Series on
Software Design

and Quality

39

Max Scheerer

Evaluating Architectural Safeguards
for Uncertain AI Black-Box Components

The Karlsruhe Series on Software Design and Quality
Volume 39

Dependability of Software-intensive Systems group
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Evaluating Architectural Safeguards
for Uncertain AI Black-Box Components

by
Max Scheerer

Print on Demand 2023 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 1867-0067
ISBN 978-3-7315-1320-9
DOI: 10.5445/KSP/1000161585

This document – excluding parts marked otherwise, the cover, pictures and graphs –
is licensed under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Karlsruher Institut für Technologie
KASTEL – Institut für Informationssicherheit und Verlässlichkeit

Evaluating Architectural Safeguards
for Uncertain AI Black-Box Components

Zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation

von Max Scheerer

Tag der mündlichen Prüfung: 9. Mai 2023
Erster Gutachter: Prof. Dr. Ralf Reussner
Zweiter Gutachter: Prof. Dr. J. Marius Zöllner

Abstract

There have been enormous achievements in the field of Artificial Intelligence
(AI) which has attracted a lot of attention. Especially, Deep Learning (a sub-

field of AI) employs so-called Deep Neural Networks (DNNs) that have been
successfully applied to various complex learning tasks, e.g. autonomous

driving or human-robot-interaction. However, the tremendous data depen-

dency and complexity of DNNs revealed significant vulnerabilities. More

specifically, DNNs react sensitively to particular environmental factors (e.g.

brightness or contrast variations in input images) which can result in in-

correct predictions. However, since AI (and especially DNNs) is applied in

safety-critical systems, such erroneous behaviour may result in physical

or economical damage. As a result, research branches have emerged that

approach the unreliable nature of AI.

One of the major issues of AI models is that they reached a high complexity

which makes it either impossible to understand their internals or to explain

why particular predictions have been made. Thus, they are also referred to

as Black-Boxes. Existing works address this problem by runtime approaches

that can detect either potentially malicious input data or wrong predictions

made by the AI model. Although such approaches enable the detection of

possible unsafe states, they do not discuss any countermeasures. Conse-

quently, several approaches at the architectural or system level have been

elaborated that deal with the unreliable or uncertain nature of AI (e.g. N-
Version Programming Pattern or Simplex Architectures). Moreover, there is a

growing requirement for AI-enabled systems to adapt at runtime in order to

deal with changing environmental conditions. Systems with such capabilities

are known as Self-Adaptive Systems. We denote such architectural or system-

level approaches (e.g. n-version programming or self-adaptive systems) as

Architectural Safeguards. Software engineers are now facing the challenge

to identify the architectural safeguard that satisfies the non-functional re-

quirements best. Each architectural safeguard, however, impacts the quality

i

Abstract

attributes of the system differently. It is crucial to resolve such design deci-

sions as early as possible in the development process (i.e. at design-time) to

avoid changes after the system has been implemented as they are associated

with high costs. In addition, safety-critical systems in particular must satisfy

strict (quality) requirements that need to be addressed at the architecture

level of the software system.

This thesis presents amodel-based approach that supports software engineers

in the development of AI-enabled systems. More specifically, the approach

allows the evaluation of architectural design decisions specifically dealing

with AI-induced uncertainties (i.e. architectural safeguards). In particular, an

approach for reliability prediction of AI-enabled systems based on established

model-based techniques is presented. In the next step, we describe how the

reliability prediction approach is generalised to self-adaptive systems. The

core of the approach is an environment model to describe (𝑖) AI-specific
uncertainties and (𝑖𝑖) the operating environment of a self-adaptive system.

Finally, a classification structure or taxonomy is presented which, based on

various dimensions, classifies AI-enabled systems into four possible classes.

Each class is associated with a certain degree of dependability assurance that

can be made for the given system.

The thesis encompasses four central contributions:

1. Domain-agnostic modelling of AI-specific environments: In
this contribution, a metamodel was elaborated for the modelling of

AI-specific uncertainties and their temporal expansion which form

the operative environment of a self-adaptive system.

2. Reliability prediction of AI-enabled systems: The presented ap-

proach extends an existing Architectural Description Language (namely

the Palladio Component Model) for modelling component-based soft-

ware architectures and an associated reliability prediction tool (for

classical software systems). The problem of the black-box property of

an AI component is addressed by a sensitivity model that, depending

on various uncertainty factors, models the Predictive Uncertainty of

an AI component.

3. Evaluation of self-adaptive systems: This contribution presents a

framework for evaluating self-adaptive systems that act as architec-

tural safeguards, i.e. they safeguard an AI component. The concepts

ii

Abstract

presented in this contribution generalises the concepts of contribution

2.

4. Classes of architectural dependability assurance: The contribu-
tion describes a classification structure that describes the extent to

which assurances (w.r.t. a dependability-related system-level property)

can be made for a given AI-enabled system.

Contribution 2 was validated in the context of a case study from automated

driving. More precisely, we validated whether our reliability prediction

approach preserves plausibility assertions that can be observed in the case

study. Moreover, we demonstrated the general possibility to evaluate design

decisions at design-time. For the validation of contribution 3, plausibility

assertions were validated in the context of the aforementioned case study

and a case study from the field of human-robot-interaction. In addition, two

further community case studies have been considered, in which (based on

simulators) quality attributes of self-adaptive systems were evaluated and

compared with the results of our framework. In both cases, it could be shown

that on the one hand all plausibility assertions are preserved and on the

other hand, our approach produces the same results as the domain-specific

simulators. Furthermore, we could demonstrate that our approach supports

software engineers in evaluating design decisions that are relevant when

developing self-adaptive systems. Contribution 1 was implicitly validated

with contribution 2 and 3. For the fourth contribution, the classification

structure is applied to well-known and representative AI systems. We were

able to classify each AI system into one of the classes such that the general

applicability of the classification structure was shown.

iii

Zusammenfassung

Künstliche Intelligenz (KI) hat in den vergangenen Jahren große Erfolge erzielt
und ist immer stärker in den Fokus geraten. Insbesondere Methoden des Deep
Learning (ein Teilgebiet der KI), in dem Tiefe Neuronale Netze (TNN) zum Ein-

satz kommen, haben beeindruckende Ergebnisse erzielt, z.B. im autonomen

Fahren oder der Mensch-Roboter-Interaktion. Die immense Datenabhängig-

keit und Komplexität von TNN haben jedoch gravierende Schwachstellen

offenbart. So reagieren TNN sensitiv auf bestimmte Einflussfaktoren der

Umwelt (z.B. Helligkeits- oder Kontraständerungen in Bildern) und führen zu

falschen Vorhersagen. Da KI (und insbesondere TNN) in sicherheitskritischen

Systemen eingesetzt werden, kann solch ein Verhalten zu lebensbedrohli-

chen Situationen führen. Folglich haben sich neue Forschungspotenziale

entwickelt, die sich explizit der Absicherung von KI-Verfahren widmen.

Ein wesentliches Problem bei vielen KI-Verfahren besteht darin, dass ihr

Verhalten oder Vorhersagen auf Grund ihrer hohen Komplexität nicht erklärt

bzw. nachvollzogen werden können. Solche KI-Modelle werden auch als

Black-Box bezeichnet. Bestehende Arbeiten adressieren dieses Problem, in

dem zur Laufzeit “bösartige” Eingabedaten identifiziert oder auf Basis von Ein-

und Ausgaben potenziell falsche Vorhersagen erkannt werden. Arbeiten in

diesem Bereich erlauben es zwar potenziell unsichere Zustände zu erkennen,

machen allerdings keine Aussagen, inwiefern mit solchen Situationen umzu-

gehen ist. Somit haben sich eine Reihe von Ansätzen auf Architektur- bzw.

Systemebene etabliert, um mit KI-induzierten Unsicherheiten umzugehen

(z.B. N-Version-Programming-Muster oder Simplex Architekturen). Darüber
hinaus wächst die Anforderung an KI-basierte Systeme sich zur Laufzeit

anzupassen, um mit sich verändernden Bedingungen der Umwelt umgehen

zu können. Systeme mit solchen Fähigkeiten sind bekannt als Selbst-Adaptive
Systeme. Software-Ingenieure stehen nun vor der Herausforderung, aus einer

Menge von Architekturellen Sicherheitsmechanismen, den Ansatz zu identifi-

zieren, der die nicht-funktionalen Anforderungen bestmöglich erfüllt. Jeder

Ansatz hat jedoch unterschiedliche Auswirkungen auf die Qualitätsattribute

v

Zusammenfassung

des Systems. Architekturelle Entwurfsentscheidungen gilt es so früh wie

möglich (d.h. zur Entwurfszeit) aufzulösen, um nach der Implementierung

des Systems Änderungen zu vermeiden, die mit hohen Kosten verbunden

sind. Darüber hinaus müssen insbesondere sicherheitskritische Systeme

den strengen (Qualitäts-) Anforderungen gerecht werden, die bereits auf

Architektur-Ebene des Software-Systems adressiert werden müssen.

Diese Arbeit befasst sich mit einem modellbasierten Ansatz, der Software-

Ingenieure bei der Entwicklung von KI-basierten System unterstützt, um

architekturelle Entwurfsentscheidungen (bzw. architekturellen Sicherheits-

mechanismen) zum Umgang mit KI-induzierten Unsicherheiten zu bewerten.

Insbesondere wird eine Methode zur Zuverlässigkeitsvorhersage von KI-

basierten Systemen auf Basis von etablierten modellbasierten Techniken

erforscht. In einem weiteren Schritt wird die Erweiterbarkeit/Verallgemei-

nerbarkeit der Zuverlässigkeitsvorhersage für Selbst-Adaptive Systeme be-

trachtet. Der Kern beider Ansätze ist ein Umweltmodell zur Modellierung

(𝑖) von KI-spezifischen Unsicherheiten und (𝑖𝑖) der operativen Umwelt des

Selbst-Adaptiven Systems. Zuletzt wird eine Klassifikationsstruktur bzw.

Taxonomie vorgestellt, welche, auf Basis von verschiedenen Dimensionen,

KI-basierte Systeme in unterschiedliche Klassen einteilt. Jede Klasse ist mit

einem bestimmten Grad an Verlässlichkeitszusicherungen assoziiert, die für

das gegebene System gemacht werden können.

Die Dissertation umfasst vier zentrale Beiträge.

1. Domänenunabhängige Modellierung von KI-spezifischen Um-
welten: In diesem Beitrag wurde ein Metamodell zur Modellierung

von KI-spezifischen Unsicherheiten und ihrer zeitlichen Ausdehnung

entwickelt, welche die operative Umgebung eines selbstadaptiven

Systems bilden.

2. Zuverlässigkeitsvorhersage von KI-basierten Systemen: Der vor-
gestellte Ansatz erweitert eine existierende Architekturbeschreibungs-

sprache (genauer: Palladio Component Model) zur Modellierung von

Komponenten-basierten Software-Architekturen sowie einem dazu-

gehörigen Werkzeug zur Zuverlässigkeitsvorhersage (für klassische

Software-Systeme). Das Problem der Black-Box-Eigenschaft einer KI-

Komponente wird durch ein Sensitivitätsmodell adressiert, das, in

Abhängigkeit zu verschiedenen Unsicherheitsfaktoren, die Prädektive
Unsicherheit einer KI-Komponente modelliert.

vi

Zusammenfassung

3. Evaluation von Selbst-Adaptiven Systemen:Dieser Beitrag befasst
sich mit einem Rahmenwerk für die Evaluation von Selbst-Adaptiven

Systemen, welche für die Absicherung von KI-Komponenten vorgese-

hen sind. Die Arbeiten zu diesem Beitrag verallgemeinern/erweitern

die Konzepte von Beitrag 2 für Selbst-Adaptive Systeme.

4. Klassen derVerlässlichkeitszusicherungen:Der Beitrag beschreibt
eine Klassifikationsstruktur, die den Grad der Zusicherung (in Bezug

auf bestimmte Systemeigenschaften) eines KI-basierten Systems be-

wertet.

Der zweite Beitrag wurde im Rahmen einer Fallstudie aus dem Bereich des

Autonomen Fahrens validiert. Es wurde geprüft, ob Plausibilitätseigenschaf-

ten bei der Zuverlässigkeitsvorhersage erhalten bleiben. Hierbei konnte nicht

nur die Plausibilität des Ansatzes nachgewiesen werden sondern auch die ge-

nerelle Möglichkeit Entwurfsentscheidungen zur Entwurfszeit zu bewerten.

Für die Validierung des dritten Beitrags wurden ebenfalls Plausibilitätsei-

genschaften geprüft (im Rahmen der eben genannten Fallstudie und einer

Fallstudie aus dem Bereich der Mensch-Roboter-Interaktion). Darüber hinaus

wurden zwei weitere Community-Fallstudien betrachtet, bei denen (auf Basis

von Simulatoren) Selbst-Adaptive Systeme bewertet und mit den Ergebnis-

sen unseres Ansatzes verglichen wurden. In beiden Fällen konnte gezeigt

werden, dass zum einen alle Plausibilitätseigenschaft erhalten werden und

zum anderen, der Ansatz die selben Ergebnisse erzeugt, wie die Domänen-

spezifischen Simulatoren. Darüber hinaus konnten wir zeigen, dass unser

Ansatz Software-Ingenieure bzgl. der Bewertung von Entwurfsentscheidun-

gen, die für die Entwicklung von Selbst-Adaptiven Systemen relevant sind,

unterstützt. Der erste Beitrag wurde implizit mit Beitrag 2 und mit 3 vali-

diert. Für den vierten Beitrag wurde die Klassifikationsstruktur auf bekannte

und repräsentative KI-Systeme angewandt und diskutiert. Es konnte jedes

KI-System in eine der Klassen eingeordnet werden, so dass die generelle

Anwendbarkeit der Klassifikationsstruktur gezeigt wurde.

vii

Danksagungen

Im Laufe meiner Dissertation haben mich viele Menschen begleitet und

unterstützt. An dieser Stelle möchte ich die Gelegenheit nutzen, um meine

Dankbarkeit auszudrücken.

Zu Beginn möchte ich mich bei meinem Doktorvater Prof. Dr. Ralf Reussner

bedanken, der mir es nicht nur ermöglicht hat diese Dissertation zu verfassen,

sondern mich auch während meiner ganzen Zeit fachlich und vor allem men-

tal unterstützt hat. Insbesondere seine freundliche, offene und empathische

Art hat maßgeblich zum Erfolg dieser Dissertation beigetragen. Ebenfalls

möchte ich mich bei Herrn Prof. Dr. J. Marius Zöllner für die Übernahme

des Korreferats meiner Arbeit bedanken. Sein konstruktives Feedback hat

mir dabei sehr geholfen, meine Arbeit aus einer anderen Perspektive zu

betrachten.

DesWeiteren möchte ich Axel Busch für die tolle Betreuung meiner Masterar-

beit und Emre Taspolatoglu für die Betreuung während meiner Zeit als Hiwi

am FZI Forschungszentrum Informatik danken. Beide haben mein Interesse

am wissenschaftlichen Arbeiten geweckt und letztlich dazu beigetragen, dass

ich die Promotion begonnen habe.

Ein großes Dankeschön geht an meine Kolleginnen und Kollegen am FZI

sowie an den Lehrstuhl Software Design and Quality für die gute Zusam-

menarbeit über die Jahre. Insbesondere möchte ich hierbei vom FZI Jonas

Klamroth, Martina Rapp und Sebastian Weber danken, die mich durch Ih-

re zahlreichen Anmerkungen zu dieser Arbeit unterstützt haben. Ebenfalls

möchte ich mich bei den von mir betreuten Student Dennis Bäuml bedanken

für seine Unterstützung bei verschiedenen Implementierungsarbeiten. Ich

möchte auch meinem Abteilungsleiter Jörg Henß und meinem Bereichsleiter

Oliver Denninger meinen Dank aussprechen. Sie haben es mir ermöglicht,

während meiner Arbeitszeit am FZI Raum für meine Dissertation zu schaf-

fen.

ix

Danksagungen

Mein größter Dank gilt meiner Familie. Meinen Eltern Sybille und Heinz dan-

ke ich für ihre unermessliche Unterstützung und Liebe. Schließlich möchte

ich meiner Ehefrau Michaela danken, die mir in meinem Leben (und insbe-

sondere im Laufe der Dissertation) so viel Kraft, Liebe und Stabilität gibt.

Ohne euch wäre ich niemals an dem Punkt in meinem Leben angelangt, an

dem ich jetzt stehe; ich bin unendlich dankbar, euch in meinem Leben zu

haben.

x

Contents

Abstract . i

Zusammenfassung . v

Danksagungen . ix

List of Figures . xvii

List of Tables . xxi

List of Listings . xxiii

Notations . xxv

I. Prologue 1

1. Introduction . 3
1.1. Motivation . 3

1.2. Research Gaps . 8

1.3. Challenges and Research Questions 11

1.3.1. Modelling and Simulating Adaptation Strategies of

Self-Adaptive Systems 11

1.3.2. Evaluation of Architectural Safeguards Regarding

Reliability Attributes 13

1.3.3. Dependability Assurance of AI-enabled Systems . . . 15

1.4. Contributions . 16

1.5. Example Systems . 19

1.5.1. Load Balancer . 20

1.5.2. DeltaIoT . 20

1.5.3. Human-Robot-Interaction 23

1.6. Outline . 26

xi

Contents

II. Foundations and Related Work 29

2. Foundations . 31
2.1. Self-Adaptive Software Systems 31

2.2. Model-driven Software Development 32

2.2.1. Models and Metamodels 33

2.2.2. Model Transformation 34

2.2.3. EMF Profiles . 35

2.3. The Palladio Approach . 35

2.3.1. Modelling Component-based Software Architectures 36

2.3.2. Simulating Component-based Software Architectures 41

2.4. Markov Models . 43

2.4.1. Discrete-time Markov Chain 44

2.4.2. Markov Decision Process 44

2.4.3. Partially Observable Markov Decision Process 46

2.5. Dynamic Programming . 47

2.5.1. Policy Evaluation . 48

2.5.2. Monte Carlo Prediction 48

2.6. Probabilistic Graphical Models 50

2.6.1. Bayesian Networks 51

2.6.2. Dynamic Bayesian Networks 52

2.6.3. Template-based Probabilistic Models 54

2.7. A Brief Introduction to Artificial Intelligence 58

2.7.1. Machine Learning 58

2.7.2. Deep Learning . 60

2.8. Validation Preliminaries . 63

2.8.1. Goal-Question-Metric Approach 63

2.8.2. Validation Levels . 65

2.8.3. Bhattacharyya Distance 65

3. Related Work . 67
3.1. Dealing with AI-induced Uncertainty 67

3.1.1. Algorithmic Approaches 67

3.1.2. System-level Approaches 74

3.2. Quality Assurance of AI-enabled Systems 80

3.2.1. Engineering Processes 80

3.2.2. Classifying AI-enabled Systems 82

3.3. Analysing Self-Adaptive Systems 83

3.3.1. Using Markov Models for Decision-Making 83

xii

Contents

3.3.2. Model-based Analysis of Self-Adaptive Systems . . . 84

III. Design-time Evaluation of Self-Adaptive System 91

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective 93
4.1. Environmental Dynamics . 94

4.2. The Deterministic Adaptation Process 96

4.3. Considering Self-Adaptive Systems as Stochastic Processes . 99

4.3.1. Mapping Self-Adaptive Systems to Markov Decision

Processes . 99

4.3.2. The Interdependency of Software Architecture and

Environment . 102

4.4. Problem Statement . 109

4.4.1. State Space Complexity 109

4.4.2. The Engineering Problem of Self-Adaptive Systems . 112

4.5. Assumptions . 114

4.6. Summary . 115

5. Using Bayesian Modelling to Capture the Environmental Dynamics 117
5.1. Requirements . 119

5.2. The Environmental Dynamics Metamodel 122

5.2.1. Representing Environmental DynamicswithDynamic

Bayesian Networks 122

5.2.2. Overview of the Metamodel 124

5.2.3. Modelling Domain-Independent Template Variables

and Template Factors 125

5.2.4. Modelling the Static Environment 134

5.2.5. Modelling the Dynamic Environment 140

5.2.6. Modelling Probability Distributions 145

5.2.7. Discussion . 149

5.3. Instantiating Environmental Dynamics in Domain-Specific

Contexts . 152

5.3.1. Instantiation of Template-based Structures 153

5.3.2. Semi-Automated Generation of the Structural Envi-

ronment Model by Annotation-based Instantiation . 154

5.4. Implementation . 159

5.5. Assumptions and Limitations 161

5.6. Summary . 162

xiii

Contents

6. Evaluating Self-Adaptive Systems by Simulating Experience: The
SimExp Method . 165
6.1. Evaluating Adaptation Strategies at Design-time 167

6.2. A Formal Framework for Evaluating Adaptation Strategies . 171

6.2.1. UsingDynamic Programming to Evaluate Adaptation

Strategies . 171

6.2.2. Using Monte-Carlo-Methods to Generate Simulated

Experience . 175

6.3. Simulating Experience by Model-based Quality Analysis . . 176

6.3.1. Modelling Self-Adaptive Systems 176

6.3.2. Evaluating Adaptation Strategies by Generating Sim-

ulated Experience . 179

6.4. Implementation . 189

6.5. Assumptions and Limitations 190

6.6. Summary . 192

IV. Safeguarding Uncertain AI Black-Box Components 193

7. Reliability Prediction of Architectural Safeguards for AI-enabled
Systems . 195
7.1. Engineering Reliable AI-Enabled Systems in the Presence of

Uncertainty . 198

7.1.1. Represention of Architectural Safeguards with Ar-

chitectural Templates 200

7.1.2. Sensitivity Analysis of AI Components 207

7.1.3. Reliability Prediction of AI-Enabled Systems 210

7.2. Engineering Self-Adaptive Systems to Safeguard AI Compo-

nents . 228

7.2.1. Problem Statement 228

7.2.2. Decoupling of the Observation Process 230

7.2.3. Analysing the Monitorable Space 234

7.2.4. Evaluating Adaptation Strategies 236

7.3. Implementation . 239

7.4. Assumptions and Limitations 240

7.5. Summary . 242

xiv

Contents

8. Classes of Architectural Dependability Assurance for AI-Enabled
Systems . 245
8.1. Classes of Architectural Dependability Assurance 247

8.1.1. Static Analysability 249

8.1.2. Monitor Analysability 250

8.1.3. A-posteriori Analysability 252

8.1.4. Non-Analysability 253

8.2. Classification Structure . 253

8.2.1. Classification Dimensions 253

8.2.2. Overview of the Classification Structure 263

8.2.3. Deriving Dependability Assurance Cases 266

8.3. Classifying AI-enabled Systems 269

8.3.1. AI-supported Assistance in Automated Driving . . . 269

8.3.2. Human-Robot-Interaction Systems 282

8.3.3. Aircraft Collision Avoidance Systems 285

8.3.4. Discussion . 288

8.4. Summary . 291

V. Validation 293

9. Validation . 295
9.1. Overview . 295

9.1.1. Validation Goals, Questions and Metrics 296

9.1.2. Case Study Systems 303

9.1.3. Validation Process 304

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems . 311

9.2.1. DeltaIoT . 311

9.2.2. Load Balancing . 331

9.3. Reliability Analysis of AI-enabled Systems 341

9.3.1. Udacity Self-Driving Car Challenge 341

9.3.2. A Generic Software Architecture for Self-Driving Cars 343

9.3.3. Sensitivity Model and Analysis 346

9.3.4. Generating Synthetic Data 351

9.3.5. Experiment Setup . 352

9.3.6. Experiment Results 355

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components 364

9.4.1. Udacity Self-Driving Car Challenge 364

9.4.2. Human-Robot-Interaction 370

xv

Contents

9.5. Discussion of Results and Research Questions 379

9.5.1. Goal Achievement 379

9.5.2. Answering the Research Questions 384

9.5.3. Threats to Validity 390

VI. Epilogue 393

10. Conclusion . 395
10.1. Summary . 395

10.2. Central Limitations and Assumptions 401

10.3. Future Work . 404

Bibliography . 407

A. Results of Architectural Configurations Predicted by SimExp for the
DeltaIoT System . 427

xvi

List of Figures

1.1. The load balancer system . 21

1.2. The DeltaIoT System . 22

1.3. The human-robot-interaction system 24

2.1. The MAPE-K feedback loop . 31

2.2. The various meta-levels . 34

2.3. Example of a Bayesian network 51

2.4. Example of a dynamic Bayesian network 53

2.5. Plate model encoding . 57

2.6. Schematic structure of a convolutional neural network 62

2.7. Example structure of a recurrent neural network 63

2.8. The goal-question-metric approach 64

5.1. Overview of the EnvDyn metamodel packages 124

5.2. The template package of the EnvDyn metamodel 126

5.3. Plate model representation of the environmental variables of

the DeltaIoT system . 131

5.4. An excerpt of the TemplateVariableDefinitions-instance of

the template metamodel package applied to the DeltaIoT system 132

5.5. The two-time-slice structure of the dynamic Bayesian network

representing the environmental variables of the DeltaIoT system 133

5.6. The static package of the EnvDyn metamodel 134

5.7. An excerpt of the ground Bayesian network model of the static

metamodel package applied to the DeltaIoT system. 139

5.8. The dynamic package of the EnvDyn metamodel 141

5.9. An example structure of a two-time-slice Bayesian network. . . 142

5.10. An excerpt of the dynamic environment model of the dynamic

metamodel package applied to the DeltaIoT system. 144

5.11. Overview of the ProbDist metamodel. 146

5.12. An example Bayesian network with tabular-based parameter

representation . 149

xvii

List of Figures

5.13. The InstantiationTag stereotype 155

5.14. Dependency graph of the EnvDyn components 160

6.1. The SimExp framework . 170

6.2. An example trajectory sampled from SimExp 183

6.3. The generalised model transformation of the environment- and

architecture model . 187

6.4. Dependency graph of the SimExp components 189

7.1. Overview of the reliability prediction approach for AI-enabled

systems . 199

7.2. The pipe and filter architectural pattern 202

7.3. The n-version programming pattern 202

7.4. The EMF profile of the filtering pattern 204

7.5. The action of the filtering pattern completion 204

7.6. The EMF-profile of the n-version programming pattern 205

7.7. The action of the n-version programming pattern completion . 206

7.8. The probabilistic structure of the sensitivity model 207

7.9. The oracle approximation of AI black-box components 208

7.10. The sensitivity model of the HRI example system 209

7.11. Uncertainty-based extension of PCM-Rel 211

7.12. Metamodel of the uncertainty-induced failure types 213

7.13. The sensitivity model of the HRI example system after applying

the filtering pattern . 218

7.14. Activity diagram of the prediction process 220

7.15. Pruning process of the uncertainty model 222

7.16. The MAPE-phases when considering the missing at random

assumption . 234

7.17. Illustration of the internal simulation process of SimExp when

evaluating adaptation strategies for safeguarding AI components 238

7.18. Dependency graph of the components of the reliability predic-

tion approach . 239

8.1. The classic formal verification process 248

8.2. The adapted dependability assurance process 249

8.3. The adapted dependability assurance process for partial analysis 251

8.4. Dynamic Bayesian network representation of a Markov decision

process . 256

8.5. Overview of the analytic capacity and its dimensions 261

xviii

List of Figures

8.6. Overview of the classification structure 264

8.7. Illustration of a dependability assurance case 267

8.8. Overview of the AI-enabled automatic emergency braking system270

9.1. The essential environmental variables of the DeltaIoT system . 314

9.2. Comparison of the packet loss results of DeltaIoT and SimExp . 324

9.3. Comparison of the energy consumption results of DeltaIoT and

SimExp . 326

9.4. Comparison of the accumulated rewards of DeltaIoT and SimExp 327
9.5. Comparison of DeltaIoT and SimExp results of the quality-based

strategy taking into account the bounds 𝛽− , 𝛽 and 𝛽+ 328

9.6. The environmental variable of the load balancer system 333

9.7. Comparison of the usage evolutions in SimuLizar and SimExp . 336

9.8. Comparison of SimuLizar and SimExp results 338

9.9. Comparison of the accumulated rewards of SimuLizar and SimExp 340
9.10. An excerpt of the generic software architecture of a self-driving

car . 345

9.11. The sensitivity model of the steering angle prediction models . 346

9.12. Comparison of the sensitivity model of the Chauffeur steering

angle predictor with the reliability predictions 358

9.13. Comparison of the sensitivity model of the Rambo steering angle

predictor with the reliability predictions 358

9.14. Comparison of the sensitivity model of the n-version steering

angle predictor with the reliability predictions 359

9.15. Comparison of the sensitivity model of the perfect steering angle

predictor with the reliability predictions 359

9.16. Comparing the success probabilities of the sensitivity models

and reliability predictions . 362

9.17. The SimExp evaluation results of each adaptation strategy safe-

guarding distinct AI models in the udacity self-driving car case

study . 368

9.18. The SimExp evaluation results of each adaptation strategy safe-

guarding distinct AI models in the human-robot-interaction case

study . 376

9.19. The SimExp evaluation results of each adaptation strategy safe-

guarding distinct AI models in the human-robot-interaction case

study considering multiple quality attributes 377

xix

List of Tables

2.1. An example of a formulated goal of the goal-question-metric

approach . 64

8.1. Classification result of the automatic emergency braking system 274

8.2. Classification result of the automatic emergency braking system

in terms of reliability . 276

8.3. Classification result of a perception system of a self-driving vehicle 278

8.4. Classification result of an AI-based steering angle prediction

system of an autonomously driving vehicle in terms of reliability 280

8.5. Classification result of a robotic system for manipulation tasks

in human environments . 283

8.6. Classification result of the HRI example system in terms of

reliability . 285

8.7. Classification result of an aircraft collision avoidance system . . 288

9.1. Overview of the assignment of validation level to question of

goal 1 . 304

9.2. Overview of the assignment of validation level to question of

goal 2 . 305

9.3. Overview of the assignment of validation level to question of

goal 3 . 307

9.4. Overview of the assignment of validation level to question of

goal 4 . 309

9.5. Initial architectural configuration of the DeltaIoT system 312

9.6. Overview of the individual mote activations 314

9.7. Overview of the individual SNR and wireless interference prob-

abilities . 315

9.8. Overview of the parameter setting for the DeltaIoT case study

system . 323

9.9. Overview of the different thresholds used in the evaluation of

the quality-based strategy . 326

xxi

List of Tables

9.10. Overview of the expected rewards of the DeltaIoT case study . 327

9.11. Overview of the parameter setting for the load balancer case

study system . 337

9.12. Overview of the parameter setting for the Udacity self-driving

car case study system . 353

9.13. An overview of the steering angle prediction models, their sen-

sitivity models and root-mean-square error values 356

9.14. Comparison of the steering angle prediction models with the

reliability predictions . 357

9.15. Comparing the similarity of the success probabilities of the

sensitivity models and the reliability predictions 361

9.16. Overview of the expected and total rewards of the Udacity self-

driving car case study . 369

9.17. The sensitivity models of the human-robot-interaction case study 374

9.18. Overview of the parameter setting for the human-robot-interaction

case study system . 375

9.19. Overview of the expected and total rewards of the human-robot-

interaction case study . 377

A.1. Comparing the average architectural configurations of DeltaIoT

and SimExp considering strategy 𝜋𝐷 428

A.2. Comparing the average architectural configurations of DeltaIoT

and SimExp considering strategy 𝜋𝑄 429

xxii

List of Listings

6.1. The adaptation strategy interface 178

6.2. The reward function interface 179

9.1. Default adaptation strategy 𝜋𝐷 316

9.2. Quality-based adaptation strategy 𝜋𝑄 320

9.3. Adaptation logic of strategy 𝜋𝑅𝑒𝑙 372

xxiii

Notations

This section gives an overview of the most common notations used in this

thesis. In some places, we deviate from the notations to introduce context-

specific notations.

Set Theory

𝐴 or A Capitalised letters denote a set of elements

{𝑎, 𝑏, 𝑐} A set consisting of the elements 𝑎,𝑏 and 𝑐

|𝑋 | The cardinality of set 𝑋 , e.g. |{𝑎, 𝑏, 𝑐}| = 3

𝐼𝑁 The set of natural numbers

Z The set of natural numbers

𝐼𝑅 The set of real numbers

[𝑎, 𝑏] The real interval: {𝑥 ∈ 𝐼𝑅 | 𝑎 ≤ 𝑥 ≤ 𝑏}

{𝑥 | Φ(𝑥)} Set-builder notation: the set of all values of 𝑥

that satisfy predicate Φ(𝑥)

(𝑥1, ..., 𝑥𝑛) A tuple consisting of 𝑛 elements

∼ Equivalence relation

[𝑥]∼ Equivalence class of 𝑥 ∈ 𝑋 , i.e. {𝑦 ∈ 𝑋 | 𝑦 ∼ 𝑥}

𝑋/∼ Quotient set, i.e. {[𝑥]∼ | 𝑥 ∈ 𝑋 }

Model & Graph Theory

xxv

Notations

G A graph

𝑀 Capitalised m denotes a model

𝑀𝑋 Model-based representation of the set 𝑋

MM(𝑀) Defines the metamodel of model𝑀

Probability Theory

𝑋 A random variable (always written with a cap-

ital x)

X := {𝑋1, ..., 𝑋𝑛} Bold 𝑋 defines a set of random variables

𝑋𝐴 Relates a set 𝐴 with a random variable such

that 𝑉𝑎𝑙 (𝑋𝐴) = 𝑉𝑎𝑙 (𝐴)

𝑋𝐴 ⊥⊥ 𝑋𝐵 The random variables 𝑋𝐴 and 𝑋𝐵 are indepen-

dent

(𝑋𝐴 ⊥⊥ 𝑋𝐵 | 𝑋𝐶) The random variables𝑋𝐴 and𝑋𝐵 are condition-

ally independent given 𝑋𝐶

𝑃𝑟 (𝑋𝐴 = 𝑎) The probability of event 𝑎

𝑃𝑟 (𝑋𝐴 = 𝑎 | 𝑋𝐵 = 𝑏) The conditional probability of event 𝑎 given 𝑏

𝑃 (𝑋𝐴) A probability distribution over a discrete ran-

dom variable 𝑋𝐴

𝑃 (𝑋𝐴 | 𝑋𝐵) A conditional probability distribution over the

discrete random variables 𝑋𝐴 and 𝑋𝐵

𝐼𝐸 [𝑋] The expected value of a random variable 𝑋

(𝑋𝑡)𝑡 ∈𝐼𝑁 A stochastic process for a family of random

variables

𝑥 ∼ 𝑃 (𝑋) Indicates that value 𝑥 is generated or sampled

from probability distribution 𝑃 defined over

random variable 𝑋

xxvi

Notations

𝑃 |= G Indicates that distribution 𝑃 satisfies the inde-

pendence assumptions encoded by graph G

Miscellaneous

1𝑐 The indicator function evaluates to 1 if condi-

tion 𝑐 is true, 0 otherwise

𝑉𝑎𝑙 (·) Returns the value space of a function or set

𝑚𝑎𝑥
𝑥∈𝑋

𝑓 (𝑥) Returns the value of 𝑓 (𝑥) maximizing function

𝑓

argmax

𝑥∈𝑋
𝑓 (𝑥) Returns the argument 𝑥 ∈ 𝑋 maximizing 𝑓 (𝑥)

∃=1 Restricts the existential quantifier ∃ to exactly

one element

𝑚𝑎𝑥 (𝑎, 𝑏) Returns 𝑎 if 𝑎 ≥ 𝑏 and 𝑏 otherwise.

(𝑓 ◦ 𝑔) (𝑥) Function composition, i.e. (𝑓 ◦𝑔) (𝑥) = 𝑓 (𝑔(𝑥))

xxvii

Part I.

Prologue

1. Introduction

This thesis presents an approach to evaluate Architectural Safeguards for deal-
ing with uncertainty induced by Artificial Intelligence (AI). With AI-induced

uncertainty, we primarily mean Predictive Uncertainty, i.e. the confidence
associated with a prediction of an AI component itself [89]. Moreover, we

consider architectural or system-level approaches (e.g. architectural patterns

or self-adaptive systems) that aim to reduce the predictive uncertainty of AI

components as architectural safeguards. Our approach supports software en-

gineers in the decision-making process of selecting appropriate architectural

safeguards for AI-enabled systems w.r.t. non-functional requirements (e.g.

reliability and performance). AI-enabled systems refer to software systems

that, in addition to classic software components, include AI components that

have been trained for specific tasks (e.g. object detection). In this chapter, we

motivate the importance of safeguarding AI components and the capability

of assessing and comparing architectural safeguards in early development

stages. We provide a broad overview of the current state of research in this

area before discussing the research gap we have identified. Furthermore,

we enumerate several challenges one must take into consideration to close

this gap and formulate the research questions of this thesis accordingly. On

this basis, we provide an overview of our contributions. Before presenting

the outline of this work, we discuss some example systems that we use as

running examples in this thesis.

1.1. Motivation

In the past years, AI made tremendous progress. Especially, methods from

the field of Machine Learning/Deep Learning (a subfield of AI) gained much

attention and opened a multitude of application scenarios. Deep learning

methods employ so-called Deep Neural Networks (DNNs) that learn various

3

1. Introduction

concepts or tasks based on training examples. For example, there is success-

ful work on the application of AI in autonomous driving (e.g. [43]), robot

manipulation (e.g. [74]), or smart manufacturing (e.g. [196]).

AI (and ML in particular) is often used to learn complex behaviours or to

approximate functions that are difficult to program explicitly using large

datasets of training examples. Depending on the learning scenario, the

function to be approximated becomes very complex (e.g. in self-driving cars

or robot manipulation scenarios). Consequently, the capacity of the learned

AI models goes hand in hand with increasing complexity. However, this

has serious consequences and comes at the expense of the interpretability

and transparency of the AI models. As a result, the internal behaviour of

an AI model can neither be understood nor can it be explained why certain

predictions were made. For this reason, AI models with high complexity are

also considered Black-Boxes [76].

Moreover, the increased complexity of AI models demands more training

data to learn specific concepts accurately. In practice, it is quite difficult

to obtain large datasets that are of high quality, e.g. including represen-

tative examples (i.e. cover sufficient training examples that represent the

concepts to be learned). However, the quality of datasets is crucial because it

strongly correlates with the accuracy of the trained AI models. Consequently,

the inherent dependency of AI models on training data, coupled with their

high complexity and black-box nature, can potentially lead to undesirable

behaviours. For instance, so-called adversarial examples exploit small varia-

tions of the input space along the decision boundary of an AI model to force

misclassification, while appearing unmodified to human observers [135, 71].

According to Hanif et al. [79] small errors of individual weights (simulated

by injected bit flips) in the first layer of a DNN can result in unacceptable

accuracy loss. Moreover, it has also been observed that AI models make

wrong predictions for certain input data but are still fairly confident in their

prediction [89]. Tian et al. [186] have shown that artificially inserting dif-

ferent environmental conditions (such as changes in brightness or harsh

weather conditions) into images that were correctly classified before may

drastically change the prediction result.

The unreliable nature of AI components is of particular concern in safety-

critical applications. Tian et al. [186] enumerate three reported incidents in

automated driving that resulted in crashes due to incorrect predictions of

DNNs. One of the incidents even ended fatally because the AI component

4

1.1. Motivation

used was unable to recognise a white truck in a scene with bright contrast

[210]. A promising approach is therefore to verify or certify AI components

by applying formal verification approaches. However, providing formal

guarantees for AI components is challenging and hardly scales for complex

AI models [99]. Although various approaches aim to improve properties

such as safety (e.g. [195]) or robustness (e.g. [99]) of AI models, it is arguably

challenging to fully verify AI models due to their inherently probabilistic

and nonlinear nature.

To deal with AI-related uncertainties, various approaches have been devel-

oped in the past years. For example, [99, 100, 172] represent approaches

for verifying properties in DNNs (e.g. robustness properties) to deal with

adversarial examples. [76] describes a class of approaches that generate

explanations for predictions made by an AI component. The explanations,

for example, can be checked against some formal constraints at runtime

and suitable countermeasures can be taken in case of violation. In [1, 81]

out-of-distribution approaches are presented that determine whether a new

input data (observed at runtime) is likely to be generated by the same prob-

ability distribution as the training data. If this is not the case, the input

potentially leads to wrong predictions. Similarly, Cheng et al. [46] introduce

an approach to monitor neuron activation patterns of neural networks at

runtime. Activation patterns for newly arriving input data are generated.

The patterns are compared to the ones generated from the training data (by

an upstream pattern generation process). Thus, input for which no similarity

exists is considered to be potentially malicious. What all these approaches

have in common is that they provide means to detect potentially unsafe

states of AI components but do not define what to do in case of detection,

i.e. no countermeasures are discussed. Additionally, in the context of ML

testing (see Zhang et al. [213] which provides a comprehensive overview

of machine learning testing approaches) several methods are discussed that

try to identify corner cases for which ML models tend to produce wrong

predictions. However, although ML testing methods provide insights to

specifically retrain the ML model, they still do not guarantee that the model

operates reliably.

Therefore, new research directions emerged in the field of software engi-

neering that focused on applying or adopting established methods to deal

with AI-induced uncertainties at the architecture or system level. Work in

this line of research does not only describe countermeasures or architec-

tural safeguards in general but also approaches that incorporate methods

5

1. Introduction

outlined before (e.g. neuron activation patterns or out-of-distribution ap-

proaches to detect unsafe states). For instance, Shafaei et al. [167] outline

an architectural pattern that relies on an input checker component to de-

tect potentially malicious inputs. The input checker can be implemented

according to one of the approaches described above. Moreover, [77, 211, 119]

adopt the N-Version Programming pattern to reduce predictive uncertainty,

i.e. 𝑁 distinct AI models are used, and a more reliable output is generated by

combining the 𝑁 results (e.g. majority voting). Another example is provided

by Musau et al. [131], that adopt Simplex Architectures to deal with unreliable

AI models. In AI-enabled systems, however, not only the requirement to

deal with AI-related uncertainties at the architectural level emerged but also

the requirement of self-adaptation [114, 216, 11, 128, 41]. More specifically,

so-called Self-Adaptive Systems provide an established software engineering

approach that is primarily concerned with maintaining quality objectives

(or non-functional requirements such as performance or reliability) [153].

Self-adaptive systems generalise traditional static software systems in that

they allow the structure or behaviour of a system to be adapted at runtime in

response to environmental conditions that the current system configuration

cannot cope with. This makes them predestined safeguarding mechanisms

for AI components, as they can intervene in safety-critical states at run-

time, e.g. by transitioning the system into a fail-safe mode or switching

the AI component with a more conservative but functionally equivalent

component.

When engineering AI-enabled systems, however, software engineers are

facing various design options related to architectural safeguards, which are

preferably resolved at design time, i.e. before the system is implemented. In

concrete terms, different design decisions have to be compared and evaluated

in the decision-making process. For example, should one use a self-adaptive

system as an architectural safeguard or is there an architectural pattern that

meets the requirements just as well? Although self-adaptive systems are quite

powerful in terms of their adaptive capabilities, they are also more complex

compared to static software systems because they are associated with more

uncertainties [57] and their temporal evolution corresponds to stochastic

processes (see e.g. [126, 40]). Therefore, software engineers are better advised

with static architectural safeguards. At design-time, however, it is hard to

assess whether for a given application context a self-adaptive system or a

non-adaptive solution is more advisable. Assuming the software engineers

have chosen a static solution, there are still numerous decisions and options

6

1.1. Motivation

to consider. For example, shall one use an n-version programming pattern

or rather consider a simplex architecture? Both solutions affect the quality

attributes of the system differently. The n-version programming pattern

arguably improves the reliability of the system but degrades performance

attributes at the same time. In some application contexts, the performance

loss might be not acceptable such that n-version programming is not ap-

plicable (e.g. autonomous driving). For software engineers, however, this

is hard to assess at design-time because quality attributes are usually only

observable at runtime. The same applies to self-adaptive systems in which

various design decisions exist, each of which effecting the quality attributes

differently.

The lack of tools to evaluate design decisions of software architectures is not

a new problem in software engineering and has already been addressed in

some domains by using techniques of Model-driven Software Development
(MDSD). In performance engineering, for example, Reussner et al. [149]

describe a model-based approach in which component-based software archi-

tectures are modelled and simulated to predict performance attributes (e.g.

response time). Based on the predictions, design decisions can be evaluated

and compared at design-time. The goal of this thesis follows the same un-

derlying concern, i.e. to support software engineers in the decision-making

process by evaluating and comparing architectural safeguards w.r.t. their

impact on system-level quality attributes. Moreover, we provide a model-

based reliability prediction approach for AI-enabled software systems which

accounts for the predictive uncertainty of an AI component. Our approach

can be complemented by existing prediction approaches (e.g. [149]) to assess

architectural safeguards under the perspective of multiple quality attributes.

Additionally, we generalise the approach to self-adaptive systems. More

precisely, software engineers can evaluate (𝑖) whether self-adaptation is

necessary at all (as opposed to a static solution), (𝑖𝑖) design decisions within

an adaptation strategy family and (𝑖𝑖𝑖) distinct adaptation strategies. Com-

plementing our tool support, we present a classification structure that allows

software engineers to assess the level of assurance that can be assigned to

an AI-enabled system w.r.t. a specific system-level property. The assess-

ment takes place prior to the design and development of the system and not

only provides intuition about the engineering and domain problem itself

but also indicates whether systems can be realistically engineered given the

system-level property under consideration.

7

1. Introduction

1.2. Research Gaps

We have identified four research gaps that are not addressed at all or not

sufficiently by the current state of research. With this thesis, we contribute

to the current state of research by addressing the following research gaps:

Analysing the impact of architectural safeguards on reliability attributes
considering the predictive uncertainty of AI components: Architectural

safeguards have various manifestations, e.g. n-version programming pattern,

simplex architecture, filtering methods, self-adaptive systems, etc. What

they have in common is that they aim to reduce the predictive uncertainty

of an AI component. Predictive uncertainty in turn is affected by other

uncertainty factors or environmental variables, e.g. brightness variations in

images (or disturbances in input data in general), lack of knowledge of the AI

model (due to insufficient training data), etc. Depending on the application

context, some architectural safeguards are better suited than others (e.g.

filtering approaches to reduce input disturbances or n-version programming

to compensate for the lack of knowledge of an AI model). At design-time,

however, it is hard to determine which safeguard is better suited in a given

context. In the current research, there is currently no approach that connects

the impact of architectural safeguards to predictive uncertainty. Thus, it is

not even hard to determine how an architectural safeguard acts on predictive

uncertainty but also how it impacts the overall reliability of the AI-enabled

system, i.e. a system which includes an AI component with high predictive

uncertainty is arguably operating less reliably.

Decision support regarding the use of self-adaptive or static software systems:
Complementary to the first research gap, the question arises if a self-adaptive

system or, say, an architectural pattern (and thus a non-adaptive solution)

should be used as an architectural safeguard. The great advantage of self-

adaptive systems is (in case of quality objective violation) to dynamically

change the system configurations whenever the system cannot deal with

the current state of the operating environment (harsh weather conditions,

sensor noise, hardware failure and so forth). On the other hand, self-adaptive

systems are more complex compared to static software systems (due to

the temporal aspect). Therefore, software engineers tend to prefer static

software systems. If software engineers opt for a static system solution,

8

1.2. Research Gaps

they implicitly assume that there must be a single system configuration (or

software architecture) for the given operating environment that meets all non-

functional (or quality) requirements. At design-time, this is difficult to assess,

and the assumption needs to be well justified. For example, if one decides to

implement a self-adaptive system, it must be convincingly demonstrated that

there is no static solution that performs comparably and whether the self-

adaptive system performs significantly better (in terms of quality objectives)

such that the higher effort is justified. However, such decisions are crucial

and, if taken incorrectly, can lead to a massive waste of human resources

or costs. Moreover, it seems fairly challenging to compare the two types

of systems which are inherently different. To the best of our knowledge,

no work supports software engineers in making such well-informed design

decisions which in turn is of great importance when engineering software

systems.

Evaluation of MAPE-K-based adaptation strategies at design-time: In addi-

tion to the second research gap, there remains the challenge to evaluate the

quality of adaptation strategies when software engineers have decided to

deploy self-adaptive systems as an architectural safeguard. In this thesis, we

focus on so-called MAPE-K-based self-adaptive systems. In section 2.1 we

discuss the general framework of MAPE-K feedback loops; for the moment,

however, it is sufficient to know that MAPE-K-based self-adaptive systems

decompose the adaptation process into the phases Monitor, Analyse, Plan
and Execute, which are continuously run through. After each cycle either

an adaptation is made or not. Although there are approaches that allow

for design-time evaluation of self-adaptive systems, they tend to focus on

evaluating specific scenarios for a given domain (e.g. [15]), the impact of

adaptations itself (e.g. [38]), synthesise adaptation strategy repertoires at

design-time (e.g. [39]) or do not aim to evaluate MAPE-K-based adaptation

strategies (e.g. [20]). However, there are no approaches that evaluate adap-

tation strategies more comprehensively. More specifically, the dynamics of

self-adaptive systems induce a multitude of different state sequences, each of

which represents a particular trajectory of how a self-adaptive system moves

through the space w.r.t. the operating environment and the adaptations made

by the strategy. Analysing the distinct trajectories, however, is crucial to

determine the quality of the adaptation logic which is implemented by the

adaptation strategy.

9

1. Introduction

Moreover, according to Esfahani and Malek [57], self-adaptive systems must

account for the uncertainty Parameter over time which relates to the uncer-

tainty of adaptation impact in the long-term. To evaluate the quality of an

adaptation strategy, it is crucial to do so in terms of Parameter over time
because strategies that select adaptations that seem to work well in a given

state may perform poorly in the long run.

Cross-domain analysis of architectural safeguards: In practice, AI models

are applied in various domains. The used AI models or components vary in

their predictive uncertainty (e.g. due to the amount and quality of available

training data) in each domain. Moreover, also the environmental variables

(which affect predictive uncertainty) are different, e.g. in some domains harsh

weather conditions are jeopardizing the prediction accuracy; other domains

may indicate various levels of sensor noise. From an analytical point of view,

the cross-domain application of AI is challenging because the environmental

variables of each domain are different. Therefore, a domain-independent

approach is required to analyse architectural safeguards independent of the

application context and to causally relate domain-specific environmental

variables to the predictive uncertainty of an AI component. With such a

modelling approach, it is possible to analyse how an architectural safeguard

impacts predictive uncertainty. Furthermore, as we consider self-adaptive

systems as architectural safeguards, we also need to consider a temporal

component. That is, the modelling approach must not only take into ac-

count the causal relationships of the environmental variables and predictive

uncertainty but also how the variables evolve. Modelling and describing

the temporal evolution of the environmental variables is crucial to analyse

how the adaptation strategy responds to different environmental states. To

the best of our knowledge, there exists no modelling approach that allows

for the description of environmental variables, their impact on predictive

uncertainty and their temporal expansion. Although several approaches in

the literature allow modelling the operating environment of self-adaptive

systems in general, they are either applicable to a specific domain or not

suitable for modelling environmental state spaces flexibly and compactly.

Addressing this research gap must be seen as a prerequisite for addressing

the research gaps mentioned above.

10

1.3. Challenges and Research Questions

1.3. Challenges and Research Questions

To support software engineers in evaluating distinct architectural safeguards

at design-time and to address the research gaps outlined in section 1.2, we

identified three challenges. In the following, we discuss the challenges and

the related research questions.

1.3.1. Modelling and Simulating Adaptation Strategies of
Self-Adaptive Systems

As we already pointed out in section 1.2, there are currently no approaches

that evaluate adaptation strategies of MAPE-K-based self-adaptive system

sufficiently, i.e. in terms of multiple quality objectives and the uncertainty

Parameter over time. Note, however, that we aim to evaluate three aspects

when considering self-adaptive systems as architectural safeguards, namely

(𝑖) design decisions within adaptation strategies, (𝑖𝑖) the quality of distinct

adaptation strategies for comparison, and (𝑖𝑖𝑖) the potential advantage/dis-
advantage of using self-adaptive systems as opposed to static architectural

safeguards. Therefore, the first challenge that emerges relates to the mod-

elling and simulation of self-adaptive systems w.r.t. several quality objectives.

We formulate the first main research question as follows:

Research Question 1: How to evaluate adaptation strategies of

self-adaptive systems at design-time regarding the ability to meet

quality objectives?

To answer research question RQ1, several sub-questions need to be consid-

ered which, if answered individually, will allow RQ1 to be answered.

Self-adaptive systems operate in dynamic environments that transition into

states the system is not able to deal with or for which the current system

configuration violates the quality objectives (e.g. the response time of the

system exceeds a given threshold). Thus, it is essential to model the operating

environment to simulate and evaluate adaptation strategies. Moreover, as

we discussed in section 1.2, there is a requirement for cross-domain analysis.

More specifically, the environments of self-adaptive systems differ depending

on the application context, e.g. in some applications hardware failures and

11

1. Introduction

the number of user requests determine the main variables of the environment,

while others are characterised by sensor noise or harsh weather conditions.

Consequently, the dynamics of the operating environment must be modelled

domain-independently:

Research Question 1.1: How can environmental dynamics be

formalised domain-independently at design-time?

A second issue refers to the potential complexity of such environments. In ad-

dition to the temporal aspect that must be described, environments may also

exhibit large state spaces that must be modelled flexibly and compactly:

Research Question 1.2: What is an appropriate level of abstraction

to represent the environmental dynamics domain independently? By

appropriateness, we mean that

• adaptation strategies can be analysed at design-time with suf-

ficient accuracy.

• environmental state spaces can be described flexibly and com-

pactly.

Finally, the question of an appropriate analytical model arises which serves

as a foundation to evaluate adaptation strategies. For example, Reussner

et al. [149] transform architecture models to Queuing Networks to predict

performance attributes. Finding proper analytical models for self-adaptive

systems, however, is especially challenging because the analytical model

must capture the adaptation process (i.e. the various changes of the system

configuration), account for the uncertainty Parameter over time and the

inclusion of multiple quality objectives as basis of quality assessment:

Research Question 1.3: What is an appropriate analytical model

to enable design-time analyses of self-adaptive systems?

Research Question 1.4: Are the predictions sufficiently accurate

to yield plausible results?

12

1.3. Challenges and Research Questions

Note that we have deliberately formulated research question RQ1 (and its as-
sociated sub-questions) in general terms. More precisely, we have formulated

the questions independently of the actual intention to evaluate self-adaptive

systems as architectural safeguards. Suppose there is an approach that allows

the evaluation of self-adaptive systems as architectural safeguards, how far

is this approach from being a generic method for evaluating any type of

self-adaptive system (or its strategy) regardless of its actual intended use?

Therefore, answering the research questions not only provides the founda-

tion for evaluating self-adaptive systems as architectural safeguards but also

examines how such an approach can be generalised.

1.3.2. Evaluation of Architectural Safeguards Regarding
Reliability Attributes

The next central challenge relates to the evaluation of architectural safe-

guards. Because we focus in this thesis on the evaluation of reliability at-

tributes, we aim to predict reliability for AI-enabled systems. We formulate

the corresponding research question as follows:

Research Question 2: How can software systems that contain AI

black-box components be evaluated in terms of meeting reliability

attributes at design-time?

There already exist approaches that enable reliability prediction of modelled

software systems at design-time, e.g. Brosch [33]. However, there is no

approach taking into account systems with uncertain AI black-box compo-

nents and their predictive uncertainties. The systematic consideration of AI

components in reliability prediction is associated with two sub-challenges.

The first challenge refers to the black-box property of AI components them-

selves. Not knowing the true state of an AI component is not only an issue

at runtime but also at design-time because without being able to determine

whether the AI component exhibits erroneous behaviour, we cannot draw

any conclusions about predictive uncertainty. In the further course of this

work, we refer to the problem of not being able to determine the true state

of an AI component (induced by the black-box property) as the Hidden State
Problem. We consider the following sub-question:

13

1. Introduction

Research Question 2.1: How to deal with the hidden state problem

of AI black-box components?

The second challenge refers to the systematic consideration of environmen-

tal variables that are correlated with the predictive uncertainty of an AI

component in the reliability prediction process. Seshia et al. [165] enumer-

ate several challenges to achieving formally-verified AI-enabled systems.

Hereby, the authors pointed out that the modelling of the AI system and its

operating environment is challenging due to potentially large input spaces

AI components may encounter (e.g. the pixel space). However, this applies

not only to verification but to any model-based analysis, since both concepts

must be taken into account to some extent in reliability prediction. We tackle

this problem by abstracting away the irrelevant details and focusing only on

the variables in the environment which are causally related to the predictive

uncertainty of an AI component. Eventually, these correlations must be

systematically integrated into the reliability prediction. We consider the

following sub-questions:

Research Question 2.2: How to systematically consider the influ-

ence of predictive uncertainty and causally related environmental

variables in the reliability prediction?

Finally, the last research question of this section is about how to evaluate self-

adaptive systems for safeguarding uncertain AI components at design-time

and generalises the reliability prediction approach of RQ2 to self-adaptive

systems:

Research Question 3: How can adaptation strategies of self-

adaptive systems that safeguard uncertain AI black-box components

be evaluated in terms of reliability at design-time?

In principle, however, the research question is mainly concerned with how

the insights gained from RQ2 (and its sub-questions) can be combined with

the results of RQ1 from section 1.3.1.

14

1.3. Challenges and Research Questions

1.3.3. Dependability Assurance of AI-enabled Systems

Our research focus is on the evaluation of architectural safeguards. In do-

ing so, we consider reliability (more precisely, the success probability of

the system) as system-level property. Nonetheless, there are other system

properties of AI-enabled systems for which software engineers would like to

give assurances. More generally, software dependability encompasses a wide

range of system-level properties. According to Sommerville [173], depend-

ability encompasses four principle dimensions, namely Safety, Reliability,
Security and Availability. However, is it always possible to give assurances

for any system property? And at which level can they be given? Clearly, it is

desirable to provide assurances at design-time so that we can ensure that the

modelled software architecture of the AI-enabled system satisfies the system

property. However, this seems difficult to achieve in practice, as there might

be various possible system-level properties which are more or less difficult

to assure. Instead, it seems to make more sense that some properties can be

assured at design-time, while others can only be assured at runtime and still

others cannot be assured at all.

The last challenge and research focus of this thesis address exactly the previ-

ous discussion. More specifically, the idea is to assess an AI-enabled system,

its operating environment, used AI component and other factors to rea-

son about the extent of assurances that can be given regarding a particular

dependability-related system-level property:

Research Question 4: How to assess the extent to which depend-

ability assurances can be given for an AI-enabled system?

Before that, however, there must be classes into which an AI-enabled sys-

tem can be classified. We call these Classes of Architectural Dependability
Assurance because each of which determines whether assurances can be

given at design-time, runtime or not at all w.r.t. a system-level dependability

property:

Research Question 4.1: What are appropriate classes of architec-

tural dependability assurances?

15

1. Introduction

There are various possible factors one can take into account to assess an

AI-enabled system. However, these factors may also vary depending on

the considered application context. Therefore, appropriate classification

dimensions need to be identified which are sufficiently generic to classify a

broad class of AI systems but also concise enough to allow classification into

one of the classes of architectural dependability assurance:

Research Question 4.2: What are the suitable dimensions for

classification?

In summary, the result of RQ4 is a classification structure which classifies AI-

enabled systems w.r.t. a system-level property. The classification is conducted

by considering the dimensions of RQ4.2 based on which an AI system is

assigned to a particular class of architectural dependability assurance from

RQ4.1.

1.4. Contributions

The contribution of this thesis results directly from the identified research

gaps. We make four contributions to the current state of research:

Contribution 1: Domain-agnostic instantiation of probabilistic environment
models. Recall that AI is applicable in many contexts or use cases. Con-

sequently, our approaches must be applicable regardless of the domain. To

describe the architecture of a software system, we use the Palladio Compo-
nent Model (PCM) as modelling language from Reussner et al. [149]. PCM

is a very powerful and expressive formal language for component-based

software architectures which allows modelling a broad class of cross-domain

systems and which we consider sufficient for our purposes. When evaluating

architectural safeguards, the most crucial aspect that makes the application

domain-specific is, on the one hand, the environmental variables that affect

the predictive uncertainty of an AI component and, on the other hand, the

operating environment if we consider a self-adaptive system as an architec-

tural safeguard. In terms of self-adaptive systems, however, the operating

environment is strongly connected to the environmental variables that affect

the predictive uncertainty. In effect, they describe the same concept with the

16

1.4. Contributions

difference that their temporal expansion must be added to fully describe the

operating environment.

To model and instantiate environmental variables (that form the operating

environment) in a domain-agnostic way, we provide a metamodel of a formal

modelling language. The modelling language unifies the requirements of

describing environmental variables and operating environments of a self-

adaptive system into a single environment model which can be instantiated

in any domain. We consider a probabilistic relationship between the en-

vironmental variables and the predictive uncertainty of an AI component.

We employ Probabilistic Graphical Models (see section 2.6) to describe the

relationship by a network of connected discrete random variables (repre-

senting the environmental variables and predictive uncertainty) and a set of

multinomial probability distributions. Again, we reuse probabilistic graphical

models to describe how the variables probabilistically evolve. The temporal

expansion allows the modelling of the Environmental Dynamics a system
encounters and represents what we consider to be the operating environment

of a self-adaptive system. Finally, to account for the domain-independent

application, the formal semantics of our modelling language build upon the

formal semantics of Template-based Probabilistic Models (see section 2.6.3)

which describe a general framework to instantiate probabilistic structures

domain-independently.

Contribution 2: Reliability prediction of AI-enabled systems at design-time.
Our next contribution refers to the design-time support for software en-

gineers to make well-informed design decisions when choosing between

multiple architectural safeguards. Therefore, we introduce an approach

which allows predicting reliability attributes of an AI-enabled system such

that multiple variants of the system (each including a different architectural

design choice) can be evaluated and compared. In this contribution, we focus

on static software systems but describe in the next contribution how the

approach is generalised to self-adaptive systems.

Predicting quality attributes at design-time is, in fact, not new in research.

There are various approaches (e.g. [149, 15, 33, 106]) that make use of model-

based techniques to abstract the software system and to predict quality

attributes such as performance, reliability or costs. Therefore, we build upon

these concepts and work that exists so far in research. More specifically, our

reliability prediction approach extends an existing approach from Brosch

17

1. Introduction

[33] for predicting reliability attributes of software systems not including AI

components. The approach of Brosch builds upon PCM, i.e. the formal lan-

guage that we mentioned in the first contribution to model component-based

software architectures. In our extension, we represent an AI component by a

sensitivity model which is obtained by an upstream sensitivity analysis. The

environment model of our first contribution provides the required means to

model such sensitivity models. Based on the sensitivity model, the reliability

of the system is evaluated by considering different manifestations of the

environmental variables (which affect predictive uncertainty).

Contribution 3: Evaluation of adaptation strategies of self-adaptive systems
at design-time. The third contribution of this thesis is twofold: The first part

of the contribution generalises the concepts from the second contribution

to self-adaptive systems; the second part relates to the general ability to

evaluate adaptation strategies for any type of self-adaptive systems (not only

considering AI safeguards). The foundation forms the environment model

from the first contribution that allows modelling the stochastic dynamics of

the operating environment. We consider a self-adaptive system as an Agent
responding to changes in the environment. More specifically, we define a

self-adaptive system as Markov Decision Process (MDP) which is a prevalent

theoretical concept to view self-adaptive systems more formally (e.g. [126, 40,

55]). In simple terms, MDPs are stochastic processes satisfying the Markov
Assumption (see section 2.4). The mathematical framework of MDPs provides

the necessary building blocks for evaluating adaptation strategies. More

precisely, we employDynamic Programming andMonte Carlo Methods (which
builds upon MDPs) to evaluate adaptation strategies.

In the first part of the contribution, we investigate whether there is a general

approach for evaluating adaptation strategies of any type of self-adaptive

system in any domain. The second part of the contribution integrates the

concepts of our reliability prediction approach of the second contribution to

evaluate adaptation strategies that are specifically engineered to safeguard AI

components. In doing so, we embed the reliability prediction into the reward

function (which resembles a utility function for evaluating decisions made

by the adaptation strategy) of the MDP to account for reliability attributes in

the overall assessment of a strategy.

18

1.5. Example Systems

Contribution 4: Classification structure to assess AI-enabled systems regard-
ing assurances that can be given for system-level dependability properties.
The last contribution of this thesis relates to the classes of architectural

dependability assurance and its corresponding classification structure. The

contribution supplements the other contributions by assessing AI-enabled

systems (that are to be engineered) before the design and implementation

w.r.t. a particular system-level property. The classification structure not only

provides an initial intuition about the problem domain and the assurances

that can be given but also guides software engineers in system design and

during the assurance process.

We elaborated four classes of architectural dependability assurance into

which a system can be classified. Moreover, we identified several classifica-

tion dimensions to classify (self-adaptive and static) AI-enabled systems into

one of the classes. However, it should be mentioned here that the classes

are highly subjective. Therefore, we could not fully evaluate their appropri-

ateness. Considering the amount of work that has been done in the other

contributions, a comprehensive evaluation of the classes was not possible.

Therefore, a more comprehensive evaluation is planned for future work.

1.5. Example Systems

In this thesis, we illustrate complex and theoretical concepts with examples

to make them more amenable. Therefore, this section presents the example

systems that we refer to repeatedly in this work. We consider several exam-

ple systems because a single example system is not sufficient to support all

concepts with illustrations. Moreover, some example systems are classical

software systems (i.e. without AI components), which might seem somewhat

contradictory concerning our planned contributions. However, some parts

of the first and third contributions are not limited to AI-enabled systems

(in particular, in the third contribution we investigate how the approach

of evaluating adaptation strategies can be generalised to arbitrary applica-

tion contexts). Therefore, we also consider software systems without AI

components, which are more suitable for other concepts of our approach.

19

1. Introduction

1.5.1. Load Balancer

As the first running example, we consider the Znn.com system [48] which is

a prevalent exemplar in the self-adaptive system research community. As

shown in Figure 1.1 the system comprises three components, namely a load

balancer component deployed on a web server node and two application

server components deployed on two application server nodes. In principle,

the system is exposed to varying amounts of user requests. Consequently,

the system might experience overload scenarios in which the number of

user requests cannot be handled by the system, i.e. the performance of

the system (measured by the response time) degrades. However, the load

balancer component controls the distribution factor (i.e. the factor which

is responsible for distributing the incoming load on the available servers;

see 𝛼 ∈ [0, 1] in Figure 1.1) which can be adjusted by a self-adaptive system.

Besides overload scenarios, hardware failures can arise, e.g. a server node is

temporarily not available.

In the case of the Znn.com system, we consider a self-adaptive system which

adapts the system configuration by varying the distribution factor of the

load balancer component. That is, the self-adaptive system can distribute

the incoming load evenly in terms of high-load scenarios or to a single node

if the other server node is not available. More specifically, the adaptation

problem is to keep the system responsive in the presence of high user loads

and potential hardware failures while minimising the number of utilised

servers over time.

1.5.2. DeltaIoT

The DeltaIoT system [92, 168] is a widely used case study in the self-adaptive

system community and originates from the Internet of Things (IoT) domain.

The DeltaIoT system is a multi-hop network consisting of 15 motes. The

system is deployed at the Department of Computer Science at KU Leuven in

Belgium. The motes are distributed in various buildings and communicate

with each other based on LoRa communication, a low-power wide area

network modulation technique suitable for low-power devices such as those

found in IoT networks. Each mote is equipped with a single sensor where

three sensor types are considered: RFID sensor to provide access control to

the labs, passive infrared sensor to monitor the occupancy status of buildings

20

1.5. Example Systems

LoadBalancer

AppServer1

Application Server 2

CPU

User

<<ExternalCall>>

AppServer1

<<calls>>

#Replicas = 1

Processing
rate = 1000

Request/s = 4

<<implements>>

<<allocated>>
Usage Model

Deployment Model

Intra-Component Behaviour Model

System Model

Application Server 1

CPU

Web Server

CPU

<<allocated>>

AppServer2

<<allocated>>

<<ExternalCall>>

AppServer2

Figure 1.1.: PCM instance of the load balancer system in a UML-based notation (taken from

[158]).

and temperature sensor to sense the temperature. The emitted sensor data of

the motes are transmitted to a central gateway where the data is aggregated

and made available. Thus, actions can be taken by the Campus security

personnel in case of unusual behaviour. The DeltaIoT system is depicted on

Figure 1.2.

As shown in Figure 1.2, some motes cannot directly send their data to the

central gateway but send the data to an intermediate or adjacent mote;

also known as multi-hop communication. Hereby, the communication is

considered to be unicast. Thus, for each mote, there has to be at least one

path (via some adjacent motes) to the gateway. This means that a mote might

have more than one adjacent mote and thus the possibility to send a data

packet towards the gateway.

21

1. Introduction

[14]

[12]

[10]

[6]

[17]

[5]

[7]

[11]

[8]

[4]

[1]

[2]

[3]

[8]

[13]

[16]

[15]

Legend:

[1]...[17]

Movement
sensor

Temperature

sensor

RFID
sensor

Gateway Wireless
link

Mote ID

Figure 1.2.: Network topology of the DeltaIoT system (roughly sketched from [168]).

A mote is individually configurable. More specifically, a mote is associated

with an adaptable transmission power. The higher the transmission power

the lower the probability of packet loss, but at the cost of higher energy

consumption. Moreover, the proportion for motes with more than one option

to send data can be adapted as well. Thus, traffic can be sent to motes with

lower packet loss potential, taking into account their transmission power to

balance the energy consumption. The challenge now is to find an optimal

configuration of the motes such that packet losses and energy consumption

are minimised.

However, some uncertainties make it difficult for static systems to find an

individual system configuration such that the reliability of the system in

terms of packet loss and energy consumption is maintained at the same

time. These uncertainties refer to fluctuations in traffic load and wireless

interference. Fluctuations in traffic loads emerge from the varying number

22

1.5. Example Systems

of data packets that can be emitted by a mote. Each sensor deployed on a

mote emits a certain number of data packets in equidistant time cycles; more

specifically, between 0 and 10 data packets per cycle. The probability that

a mote produces data packets during a cycle is captured by its activation

probability, e.g. if the activation probability of a mote is 0.6, 6 data packets are

produced and sent within a cycle. Fluctuations in traffic loads are dependent

on the type of sensor. For instance, while temperature sensors produce

sensor data in equidistant time steps, passive infrared and RFID sensors are

more active during the daytime operation of the university and thus more

frequently emitting sensor data.

Wireless interference refers to disturbances in the environment or rather

during the communication between motes that can cause a failure in the

transmission of data packets and increases the overall packet loss of the

system. More specifically, the packet loss depends on the Signal-to-Noise
Ratio (SNR) of a wireless link, i.e. the communication link between two

motes. SNR is defined as the ratio between the level of a mote’s signal

when sending data and the level of a noise signal from the environment

(e.g. wireless interference). The SNR of a wireless link is increased when the

transmission power of a mote is increased; that is, the higher the SNR the

lower the probability of packet loss and vice versa.

Fluctuation in traffic load and wireless interference are two variables that

change over time and make it quite challenging to adjust the configurations

of the individual motes to maintain a certain level of packet loss and en-

ergy consumption. Especially for IoT networks such as DeltaIoT where the

network topology encompasses a lot of configurable motes. Therefore, self-

adaptive capabilities are required to compensate for such uncertainties. More

specifically, the adaptation problem is to adapt the transmission power and

data distribution of motes to maintain packet loss and energy consumption

in the presence of wireless interference and fluctuations in the traffic load.

1.5.3. Human-Robot-Interaction

The last example system is taken from the domain ofHuman-Robot-Interaction
(HRI) and is based on the work of Timmermann et al. [188]. The HRI system

23

1. Introduction

Build-
SequenceLogic

MaskR-
CNN

Object-
Localistion

Trajectory-
Planner

Robot-
ControlCamera Image-

Preprocessing

Resource Container

CPUSensor

<<InternalAction>>

ComputeTrajectory

<<EmitEventAction>>

PublishTrajectoryMsg

<<calls>>

Resource
demand = 50
Failure prob. = 0.1MTTF = 150h

MTTR = 8hRequest/s = 1

<<implements>><<allocated>>

Usage Model Deployment Model Intra-Component Behaviour Model

System Model

Figure 1.3.: PCM instance of the HRI system [188] in a UML-based notation (taken from [159]).

was designed as part of the CyberProtect-project1 in which parts of this thesis

were also elaborated.

It represents a robot system that controls a robot arm which is attached

to a camera to recognise and assemble object parts. Figure 1.3 shows the

simplified architecture of the HRI system. It builds upon the Robot Operating
System (ROS) [142] and thus follows a message-based communication. We

assume that the system perceives one image per second from the camera.

The central part of the system forms the ObjectLocalisation component

(to which the image is forwarded). In the HRI example, object localisation is

implemented by a hybrid approach where computer vision and deep learning

techniques are combined to achieve a fast and robust object localisation.

More specifically, the deep learning part of the approach encompasses a

DNN which detects all object parts within an image; so-called MaskR-CNN’s

have been used [80, 2]. The results of the MaskR-CNN are used by a computer

vision component for object localisation to determine further information

such as the orientation or the exact position of the object parts. Based on

the localised objects, the BuildSequenceLogic component determines the

1
https://www.cyberprotect-bw.de/

24

1.5. Example Systems

assembling order. Finally, the trajectory of the robot is planned and translated

into control signals.

Because the use case involves human interaction (human workers may op-

erate in the same workspace as the robot arm or directly interact with the

system), a specific level of safety must be maintained, e.g. a collision with

the robot arm can cause injuries such as squeezing. However, the safety of

human workers is highly dependent on the reliable detection of the object

parts by the AI model (i.e. the MaskR-CNN). For example, if a body part is

not detected while assembling object parts, the system computes a trajectory

which can directly collide with the human worker. Therefore, it is paramount

that the AI model is working accurately and reliably.

For the sake of illustration, we consider two external factors which we assume

to have a direct influence on the predictive uncertainty of the AI model,

namely brightness variations and sensor noise. Originally, Timmermann

et al. [188] used as an AI model a pre-trained MaskR-CNN which they re-

trained based on a limited training dataset of the object parts. Therefore, we

assume that not sufficient data examples are included in the dataset which

covers data examples under various brightness conditions or sensor noise

levels. Consequently, the AI model is likely to produce wrong predictions in

scenes with varying brightness conditions or sensor noise.

To ensure safety, however, an architectural or system-level approach is sup-

posed to be considered. For the HRI system, we consider the use of a self-

adaptive system as an architectural safeguard. Note that also non-adaptive

solutions could be taken into consideration; however, due to illustration pur-

poses, we consider a self-adaptive system which can apply two adaptations.

The first adaptation activates (or deactivates) an additional preprocessing

component to deal with sensor noise. For instance, in Figure 1.3 the Image-

Preprocessing component can be activated or deactivated. For the second

adaptation, we assume (in addition to the MaskR-CNN) another AI model

which is more robust but computationally expensive. Thus, the self-adaptive

system can switch between the two AI models at runtime. However, both

adaptations degrade the performance of the system to some extent, i.e. a

particular execution time can not be guaranteed, and the system is no longer

able to react to new events in time. Thus, the challenge or adaptation problem

of the self-adaptive system is to adapt the system in such a way that the

performance and reliability of the system are balanced as well as possible, i.e.

preventing unsafe states while keeping the system responsive.

25

1. Introduction

1.6. Outline

Before briefly outlining the individual chapters of this thesis, we would like to

point out that the structure of the thesis does not directly follow the order of

the enumerated contributions. Although we build upon existing model-based

approaches, further model-based approaches had to be developed, which are

necessary for a design-time evaluation of architectural safeguards. In par-

ticular, this concerns the evaluation of adaptation strategies of self-adaptive

systems (acting as designated architectural safeguards) and the probabilistic

modelling of environments (i.e. the environmental dynamics). Therefore,

the contribution-related chapters (i.e. chapters 4-8) are divided into two

parts. The first part (i.e. chapters 4-6) generally presents the fundamental

concepts and approaches that are independent of the evaluation and analysis

of AI-related architectural safeguards. This includes the formal or mathe-

matical framework on which this thesis is based and which runs through all

chapters, the domain-agnostic environment model and our SimExp method

for design-time evaluation of adaptation strategies. The second part (i.e.

chapters 7 and 8) takes these concepts and extends them for the evaluation

of architectural safeguards of AI components. That being said, we structured

the thesis as follows:

In Chapter 2, we introduce all relevant foundations necessary to understand
the concepts and terminology of this thesis.

In Chapter 3, we review and distinguish ourselves from numerous scientific

works related to our research.

In Chapter 4 we discuss the formal framework of our approach, namely

MDPs. More specifically, we present the basic concepts and building blocks

which map directly to equivalent concepts in MDPs and on which the subse-

quent approaches are based. In addition, based on the semantics of MDPs, we

prove that self-adaptive systems follow a dynamic behaviour under certain

assumptions.

In Chapter 5, we present the metamodel of our environment model. For

the sake of generality, we discuss the environment (or the environmental

dynamics) from the perspective of self-adaptive systems. At its core, however,

the metamodel is based on the concepts of Dynamic Bayesian Networks
that extends Bayesian Networks. We use Bayesian networks to describe the

26

1.6. Outline

relationships between environmental variables and the predictive uncertainty

of an AI component.

In Chapter 6, we present our SimExp method. The SimExp method en-

compasses a framework one can use to evaluate adaptation strategies of

any self-adaptive system in any domain. SimExp, however, represents not a
ready-to-use tool but rather a method (or framework) one must instantiate

and, if necessary, complement with domain-specific elements.

In Chapter 7, we expand the concepts elaborated in the previous chapters to

evaluate architectural safeguards. Hereby, we start to present our reliability

prediction approach for AI-enabled systems. Afterwards, we discuss how to

evaluate self-adaptive systems as architectural safeguards for AI components

by combining our reliability prediction approach with the SimExp method

presented in chapter 6.

In Chapter 8, we introduce our classification structure for assessing AI-

enabled systems in terms of making assurances for a particular system-level

property. First, we start to discuss our classes of architectural dependability

assurance and the classification dimensions we identified. Finally, we apply

the structure to a representative set of AI systems and discuss the results

afterwards.

We validate our approaches in Chapter 9. Our validation is driven by the

Goal-Question-Metric approach that we present in the beginning. We validate

our approaches by considering four case study systems. In the end, we

discuss the results and answer the research questions.

Finally, we conclude the thesis in Chapter 10 by providing a summary and

discussion of future work.

27

Part II.

Foundations and Related Work

2. Foundations

In this section, we review all relevant foundations that are needed to under-

stand the concepts presented in this thesis.

2.1. Self-Adaptive Software Systems

Opposed to static software systems, self-adaptive systems adapt their struc-

ture and behaviour at runtime. Thus, self-adaptive systems can operate in

dynamic environments where a static software system is not able to satisfy

the quality requirements of the system. In this thesis, we focus on self-

adaptive systems that follow the MAPE-K paradigm [101]. The MAPE-K

paradigm follows a feedback loop. Figure 2.1 depicts the main elements or

generic structure of a MAPE-K feedback loop.

Basically, the MAPE-K paradigm distinguishes between Managed Elements
and the Autonomic Manager. The former corresponds to the elements of a

software system which are adapted at runtime. The autonomic manager in

Managed Element

Plan

ExecuteMonitor

Analyze

Knowledge

Autonomic Manager

Figure 2.1.: Basic structure of the MAPE-K feedback loop based on [101].

31

2. Foundations

turn is responsible for adapting the managed elements. Both together form a

self-adaptive system.

More specifically, the autonomic manager defines four phases: Monitor, Anal-
yse, Plan and Execute (this explains the first four letters of the acronymMAPE).

In the monitor-phase, the autonomic manager gathers data on the environ-

ment or system variables which are necessary for determining the state of the

system. Moreover, it serves as a basis for the next phase. The analyse-phase

checks based on the collected data of the monitor-phase whether an adap-

tion of the system is necessary, e.g. by checking whether quality objectives

are not satisfied anymore. If so, the analyse-phase triggers the plan-phase.

The plan-phase determines a specific adaptation to cope with the current

situation and to restore a stable system state. Finally, the execute-phase

applies the planned adaptation to the managed elements. Note that we use

the term quality objectives in the context of a self-adaptive system to refer

to a set of non-functional (or quality) requirements that are maintained by a

self-adaptive system.

The concept of the Knowledge refers to a knowledge base that encompasses

information on the system structure, domain information, assumptions, etc.

necessary for the individual MAPE phases. The MAPE phases as well as the

knowledge base constitute a MAPE-K feedback loop.

2.2. Model-driven Software Development

Model-Driven Software Development (MDSD) [198] defines a collection of

techniques and methods centred around models. A model provides an ab-

stract point of view of a software system. Thus, the complexity is reduced

and provides developers with good means for communication, discussion

and documentation. Strongly related to MDSD is an approach known as

Model-Driven Architecture (MDA) [103] which was introduced by the Object
Management Group (OMG). The very basic idea of MDA is to use models

gradually refined with more details in later development stages. In the begin-

ning, a Platform Independent Model (PIM) is generated which is exclusively

concerned with platform-independent system operations. Based on the PIM,

the Platform Specific Model (PSM) is developed to complement the PIM with

platform-specific information. Based on the PSM model, code can be gener-

ated. Essentially, MDA is about using abstraction at the early development

32

2.2. Model-driven Software Development

stages of a software product which is iteratively refined as soon as more

requirements and information are getting more concrete.

2.2.1. Models and Metamodels

In this section, we discuss the foundations of Models and Metamodels as both
concepts are of paramount importance for this thesis. The central element of

MDSD is a model. Therefore, the concept of a model must be defined, which

we will do in the following based on the work of Stachowiak [175] on general

model theory:

Definition 1 (Model based on Stachowiak [175]). A model is a formal repre-
sentation of real-world entities and their relationships in which

• only the details relevant for understanding are captured (abstraction)

• a certain correspondence is maintained (homomorphism)

• a specific intention is to be illustrated (pragmatics)

A model is associated with a set of rules that define how a model is to be

created, i.e. which elements the model contains and how the elements relate

to each other. Such structure-defining rules are defined within a so-called

metamodel. In terms of metamodels, we reuse the definition provided by

Koziolek [106, P.43] which is based on Stahl and Völter [176].

Definition 2 (Metamodel). “A metamodel is a formal model that describes the
possible models for a domain by defining the constructs of a modelling language
and their relationships (abstract syntax) as well as constraints and modelling
rules (static semantics).” [106, P.43] (adapted from Stahl and Völter [176]).

Amodel is considered to be an instance of its corresponding metamodel. Also,

a metamodel may have a metametamodel while this can again be described

by a metametametamodel. Thus, from a theoretical point of view, there

exist infinite meta-levels. In practice, however, only a few meta-levels are

considered. More concretely, the Object Management Facility (OMG) and

their Meta Object Facility (MOF) consider four meta-levels (see Figure 2.2).

33

2. Foundations

M3: Metametamodel

M2: Metamodel

M1: Model

M0: Instance

defines

defines

defines

defines

instance of

instance of

instance of

instance of

Figure 2.2.: The meta-levels in models adopted from [176].

The idea of MOF is to provide a standardised metametamodel. Based on

the standardised metametamodel at meta-level 𝑀3, metamodels (𝑀2) can

be created which in turn allow the instantiation of models (𝑀1) capturing

real-world entities and their relationships (𝑀0).

2.2.2. Model Transformation

In this section, we explain Model Transformations which we mainly use

within this thesis to abstract adaptations of self-adaptive systems. Infor-

mally, a model transformation transforms a model into another model, e.g. it

transforms a state machine model into a Petri-Net model. However, this re-

quires that both models have common semantics, otherwise a transformation

would not be possible. Transformations of this kind are calledModel-to-Model
Transformations.

Definition 3 (Model-to-Model Transformation). A model-to-model transfor-
mation defines a set of rules that map elements from a source metamodel to a
target metamodel. [198]

34

2.3. The Palladio Approach

Generally, there is a distinction between Exogenous and Endogenous transfor-
mations. Transformations that transform models from one metamodel into

another are called exogenous. More formally, let𝑀 and𝑀 ′ be two models

whereMM(𝑀) corresponds to the source andMM(𝑀 ′) to the target meta-

model, a transformation is exogenous, if and only ifMM(𝑀) ≠MM(𝑀 ′).
On the contrary, a model transformation is called endogenous or in-place
model transformation, ifMM(𝑀) =MM(𝑀 ′) holds. In the context of this

thesis, we are mainly concerned with endogenous or in-place transforma-

tions.

2.2.3. EMF Profiles

Metamodels can be very expressive and grow over time. To some extent, the

extension of a complex and large metamodel requires a lot of effort. For this

reason, a new extension method has been established that applies so-called

Profiles at metamodel level to the respective metaclasses to be extended.

Profiles define additional attributes or references for which the metaclass

is to be extended. In the context of the Unified Modeling Language (UML)

[133], for example, UML Profiles have been established. In this work, however,
we consider EMF Profiles that correspond to the equivalent concept to UML

profiles in the context of the Eclipse Modeling Framework (EMF) [177]. EMF

provides a framework to developmetamodels based on the Ecore notation and

is fully integrated into the Eclipse development environment. The presented

concepts of this thesis are mainly implemented in EMF. Therefore, we also

make use of EMF profiles. However, we are not using EMF profiles to extend

existing metamodels but to annotate them. In later chapters, we will see

that using EMF profiles as annotations enable us to apply our approach

independent of the considered modelling language for describing software

architectures.

2.3. The Palladio Approach

In this section, we introduce the Palladio approach [149]. The Palladio

approach provides an ADL (architectural description language) to model

component-based software architectures, namely the Palladio Component

35

2. Foundations

Model (PCM) (see section 2.3.1). Complementary to PCM, the Palladio ap-

proach provides a collection of simulation and analysis tools which can be

used to predict quality attributes based on the modelled PCM instances (see

section 2.3.2). However, before we delve into the details of PCM and its

simulation/analysis tools, we introduce two more definitions which are of

paramount importance, namely the concept of Software Architecture and Soft-
ware Component. In literature, there are many definitions and understandings

of both concepts. For clarification, however, we introduce the respective

definitions of what we define as software architecture and software compo-

nents.

In this thesis, we focus on component-based software architectures, where

software components are the central building blocks. Therefore, we first

define software components from Reussner et al. [149]:

Definition 4 (Software Component). “A software component is a contractually
specified building block for software, which can be composed, deployed and
adapted without understanding its internals.” [149, P.47]

Based on the definition, the software architecture is defined by Reussner et

al. [149] as follows:

Definition 5 (Software Architecture). “A software architecture is the result of
a set of design decisions relating to the structure of a system with components
and their relationships as well as their mapping to execution environments.”
[149]

2.3.1. Modelling Component-based Software Architectures

In this section, we describe the PCM. The PCM is an ADL for component-

based software architectures which we use in the context of this thesis as

modelling language to describe software architectures. In the following, we

introduce the main elements of the language. Moreover, we describe the

template language Architectural Templates (ATs) which is based on the PCM.

ATs describe a language to model architectural knowledge (e.g. architectural

patterns or reference architectures). Because we use ATs in this thesis to

describe architectural patterns, we introduce the main concepts as well.

36

2.3. The Palladio Approach

2.3.1.1. The Palladio Component Model

In principle, the PCM comprises a collection of distinct models where each of

which describes a specific view or aspect of the entire software architecture.

There are three viewpoints within the PCM, namely Structural Viewpoint,
Behavioural Viewpoint and Deployment Viewpoint. Each viewpoint is associ-

ated with a set of models. All models together form a PCM model instance

that describes the architecture of a software system.

Structural Viewpoint The structural viewpoint is associated with two mod-

els, namely the Repository Model and System model. The repository model

describes all Software Components of a software system (which form the main

building blocks of the software architecture) and their dependency structure.

Each component can provide and require an Interface. An interface describes

a set of services which is either provided or required by a component. A

service is represented by its service or function signature which encom-

passes the service name, input arguments and the corresponding output

value. The requiring and providing semantics connect components where

one component provides an interface which is required by another compo-

nent. Moreover, it also dictates synchronous communication between two

components, e.g. consider the load balancing system where the load balancer

component is synchronously communicating with the application server. In

some scenarios, however, software systems rather follow a different type of

communication, i.e. event-based communication. Recall, for example, the

HRI system using the ROS (robot operating system) which dictates message-

based communication. In such settings, there is no direct communication

between components, only an event channel where events are published and

consumed by other components. In event-based communication, compo-

nents are not connected by interfaces but by Event Groups, which in turn do

not specify function signatures but event types. Each event type can define a

set of input arguments. In contrast to providing and requiring components,

one component can act as a source (i.e. an event-producing component),

while another component acts as a sink (i.e. event-consuming component).

The system model defines the runtime model. More specifically, it defines a

set of Assembly Contexts which instantiates components of the repository

model. Consequently, not every component of the repository model must be

instantiated in the system model but only a subset. For example, if there exist

37

2. Foundations

several components providing the same interface (i.e. design or implementa-

tion options), only one is eventually selected and considered in the system

model. Furthermore, the system model describes the concrete connection

of components based on the providing/requiring or source/sink semantics

(which depends on the type of communication technology). More precisely,

one may connect components by creating so-called Assembly Connectors. All
assembly contexts and connectors are maintained within a System which

represents the whole software system. A system provides one or more inter-

faces that are visible to the environment in which the system operates, i.e.

they describe the services that the system provides and that can be requested

by users.

Behavioural Viewpoint The behavioural viewpoint comprises two models,

namely the Service Effect Specification (SEFF) and Usage Model.

In PCM, the intracomponent and intercomponent behaviour is distinguished.

The intracomponent behaviour refers to the internal behaviour of the com-

ponent itself which is modelled by the SEFF. More specifically, for each

component operation or service, there exists a SEFF describing the internals

of the component when invoking the respective operation provided by the

component. SEFFs define Abstract Actions which models the control flow of

a component based on finite state machines. An abstract action can have

different subtypes. For example, an Internal Action represents a processing

task which is associated with a certain resource demand. External Call Ac-
tions model external service calls of a requiring component to a providing

component. An Emit Event Action is the counterpart of an external call action

in terms of event-based communication. Moreover, there are further actions

such as Branch Actions and Loop Actions to model the abstract control flow

of a component. On the contrary, intercomponent behaviour models the in-

teraction between models. However, because the intercomponent behaviour

is implicitly modelled by the system model and the external calls of the

intracomponent behaviour, there is no dedicated model.

The usage model captures the usage behaviour of the users interacting with

the system. The usage model allows domain experts to model so-called

Usage Scenarios. In a usage scenario, the user’s interaction with the system is

captured in a way that resembles activity diagrams. In this context, a domain

expert must model aWorkload specification. There are two kinds of workload:
Open Workloads and Closed Workload. Closed workloads models a population

38

2.3. The Palladio Approach

of users (i.e. a fixed number of users) that circulate in the system (i.e. who are

repeatedly interacting with the system). In contrast, open workloads capture

the frequency with which the system is requested by a user. Hereby, either

the Arrival Rate (i.e. the number of requests per time unit) or Interarrival
time (i.e. the time between user arrival which is derived by the arrival rate:

1/𝐴𝑟𝑟𝑖𝑣𝑎𝑙𝑅𝑎𝑡𝑒) of the system can be modelled. Finally, a domain expert can

model the distribution defined over the distinct interarrival times to capture

the user behaviour more accurately.

Deployment Viewpoint The deployment viewpoint subsumes all models

which provide information about the deployment of the system components.

More specifically, two models include deployment information, namely the

Allocation Model and Resource Environment.

The resource model defines the available Resource Containers (e.g. physical
nodes such as servers) on which software components can be deployed. A

resource container consists of several processing resources (e.g. CPU or

HDD) which can be requested by the software components (and which have

a tremendous effect on the system performance). Moreover, the resource

environment models Linking Resources (i.e. network connection such as LAN

or WAN) between the distinct resource containers.

Based on the resource environment, the allocation model describes the alloca-

tion structure of the assembly contexts of the systemmodel. More specifically,

it models the mapping of an assembly context to a specific resource con-

tainer.

2.3.1.2. Architectural Templates

In this section, we present the Architectural Template (AT) approach of Lehrig

[113] for templating Architectural Knowledge. Architectural knowledge is
defined by Kruchten et al. [108] as design decisions and the design of the

software architecture, i.e. not only the design but also the involved design

decisions. In some domains, however, gained architectural knowledge is

transferable to related domains which face comparable design problems.

Therefore, it is of tremendous importance to document architectural knowl-

edge to make them reusable in various application contexts. Examples of

reusable architectural knowledge are Architectural Patterns, Architectural

39

2. Foundations

Styles and Reference Architectures. In this thesis, we focus on architectural

patterns which are defined as follows:

Definition 6 (Architectural Pattern). “An architectural pattern is a named
collection of architectural design decisions that are applicable to a recurring
design problem, parametrized to account for different software development
contexts in which that problem appears.” [122, P.73]

Lehrig’s AT approach accommodates the reuse of architectural knowledge by

providing a formal modelling language for describing ATs, i.e. for modelling

architectural patterns, architectural styles and reference architectures. The

approach has been initially implemented in the context of Palladio and PCM;

thus, it is fully compatible with PCM. The definition of an AT involves three

steps. First, an ATmust be defined and added to a centralArchitectural Catalog
that can be browsed by a software engineer and contains all applicable ATs.

An AT itself contains a set of AT Roles and a Quality Completion. The AT roles

correspond to EMF profiles which are applied to annotate the elements of the

architecturemodel (or PCMmodel) that are affected by the AT.More precisely,

the roles specify the place or part of the architecture to which the AT is to

be applied. In addition, they can also introduce architectural constraints that

must not be violated. For example, in a three-tier architecture, components

assigned to one of the tiers (i.e. presentation, application and data access

tiers) may only request components from lower tiers. Finally, to evaluate

the effect of an AT on the quality attributes, a quality completion must be

implemented. Quality completion refers to an in-place model transformation

that completes the PCM model with AT-specific elements. Recall the load

balancer example system from section 1.5.1. The concept of a load balancer

can also be modelled as an architectural pattern (see [113]). In this case,

the corresponding model elements of the PCM model (concerning the load

balancing system of the AppServer) have to be annotated in such a way that

the quality completion transforms the model by inserting the load balancer

component and replications of the AppServer. Depending on the AT used,

the quality completions are different. In this thesis, we use ATs to model

architectural patterns to safeguard or improve the reliability of AI-enabled

software systems.

40

2.3. The Palladio Approach

2.3.2. Simulating Component-based Software Architectures

In this section, we briefly provide an overview of the simulation and analysis

capabilities of the Palladio framework.

2.3.2.1. Predicting Software Quality Attributes

Originally, the idea of the Palladio approach was to predict performance

attributes of modelled PCM instances. This idea was generalised by allowing

the prediction of other quality attributes (e.g. reliability) and not only perfor-

mance. In the process, the PCM was extended by further concepts to enable

the prediction of further quality attributes. Thus, the Palladio approach

defines an overall procedure that can be extended by further simulation and

analysis tools to predict a whole range of quality attributes.

In the context of this thesis, wewill reuse the performance simulator SimuLizar
([16, 17]) to predict performance attributes (more specifically, the response

time of the system). We reuse, however, SimuLizar not as part of our ap-

proach but as a tool to quantify a system state. In addition to SimuLizar, there

is also the PCM-Rel analysis tool [33] to predict reliability attributes of PCM

instances, which we extend in this work to enable the prediction of reliability

attributes for AI-enabled software systems. Since the internals and semantics

of PCM-Rel are of greater importance, PCM-Rel is discussed in more detail in

the next section. Note, however, that there are more simulation and analysis

tools (we refer to reference [149] for more details).

2.3.2.2. Architecture-based Software Reliability Prediction

Before we explain the details of the PCM-Rel approach for predicting the

reliability attributes of a PCM model, we first define what we consider under

the term software reliability. Therefore, we consider the IEEE 1633 standard

in which software reliability is defined as follows:

“The probability that software will not cause the failure of a

system for a specified time under specified conditions.” [90]

41

2. Foundations

Based on this definition, we present the PCM-Rel approach [33, 34].

In essence, PCM-Rel enables the prediction of the success probability of a

PCM-modelled software system. More specifically, the success probability is

determined for the execution of a service. The service execution depends on

the execution paths induced by the intra- and intercomponent behaviour of

the distinct components of the software architecture. Moreover, the success

probability depends on the given usage behaviour, i.e. the sequences of

service calls modelled by a usage scenario.

PCM-Rel extends the PCM by annotating particular model elements with

failure types. More specifically, there are three distinct failure types, namely

Software-, Hardware- and Network Failure Type. Software failure types de-
scribe the failure potential due to faults in the implementation of software

components. In terms of PCM, internal action elements are annotated by

failure probabilities because they refer to internal processing units (i.e. im-

plemented code). Hardware failure types represent the failure potential of

observing hardware failures of hardware resources (i.e. the probability that

at a certain time instance a server is unavailable). In the context of PCM,

resource containers are annotated by Mean-Time-To-Failure (MTTF) and

Mean-Time-To-Repair (MTTR). Based on the MTTF and MTTR specifications,

the availability of a resource container 𝑖 is calculated as follows:

𝐴𝑣 (𝑖) = 𝑀𝑇𝑇𝐹𝑖

𝑀𝑇𝑇𝐹𝑖 +𝑀𝑇𝑇𝑅𝑖
(2.1)

Let 𝑋𝑖 denote the random variable describing the state of a resource con-

tainer 𝑖 which is either available (𝑂𝐾) or not available (𝑁𝐴), i.e. 𝑉𝑎𝑙 (𝑋𝑖) =
{𝑂𝐾, 𝑁𝐴}. The probability of failure/success of resource container 𝑖 is equiv-
alent to the probability of having 𝑖 either in state 𝑂𝐾 or 𝑁𝐴:

𝑃𝑟 (𝑋𝑖 = 𝑂𝐾) = 𝐴𝑣 (𝑖)
𝑃𝑟 (𝑋𝑖 = 𝑁𝐴) = 1 −𝐴𝑣 (𝑖)

(2.2)

Finally, a network failure type refers to the failure probability observed during

the communication of components (i.e. intercomponent behaviour). In this

case, a linking resource of the PCM model is annotated with a corresponding

failure probability.

Recall that the resource environment of PCM models all resource containers.

Whenever we use multiple resource containers on which software compo-

nents are allocated, we also observe distinct resource failure patterns. For

42

2.4. Markov Models

instance, for two resource containers, four different failure situations are pos-

sible. More generally, for 𝑙 available resource containers, 2𝑙 different resource

failure patterns are possible. Based on the hardware failure annotations all

possible Physical System States (i.e. the distinct resource failure patterns) are
determined. The probability of observing a particular pattern of physical

states 𝜓 ∈ Ψ := {𝑂𝐾, 𝑁𝐴}𝑙 is 𝑃𝑟 (𝑋Ψ = 𝜓) = 𝑃𝑟 (𝑋1 = 𝜓1, ..., 𝑋𝑙 = 𝜓𝑙). More-

over, it is assumed that the individual resource failures are stochastically

independent, i.e. 𝑃𝑟 (𝑋1 = 𝜓1, ..., 𝑋𝑙 = 𝜓𝑙) =
∏𝑙

𝑖=1 𝑃𝑟 (𝑋𝑖 = 𝜓𝑖). The main rea-

son why we consider different physical state patterns𝜓 is that each of which

has a different effect on the system’s success probability 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠).
Recall that each usage model𝑈 defines a set of usage scenarios. Each usage

scenario is associated with a different user behaviour (i.e. different interac-

tion with the system) that results in different execution or service invocation

paths. For a given physical state pattern, the service invocation path may

contain services that are provided only on available and functioning servers.

If, on the other hand, the path of service invocations contains services that

are provided on non-functioning servers, a system failure is observed. There-

fore, the effect of 𝜓 on 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠) is evaluated w.r.t. 𝑈 . Without

going into too much detail, this is achieved by generating and evaluating an

absorbing Discrete-Time Markov Chain (DTMC) (see section 2.4.1). For each

𝜓 a DTMC is generated w.r.t. the internal software failure of the intracom-

ponent behaviour and failures of intercomponent behaviour descriptions

(i.e. network failures). Finally, the overall system’s success probability is

evaluated by determining all physical states and their weighted effect on the

system’s success probability:

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) =
∑︁
𝜓 ∈Ψ

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋𝑈) · 𝑃𝑟 (𝑋Ψ = 𝜓) (2.3)

In chapter 7, we will discuss how we extend PCM-Rel (based on equation

(2.3)) to predict the reliability attributes of AI-enabled software systems.

2.4. Markov Models

In this section, we introduce Markovian Processes or Markov models. More

specifically, we discuss three well-known Markov models, namely Discrete-
timeMarkov Chains (DTMCs),Markov Decision Processes (MDPs) and Partially
Observable Markov Decision Processes (POMDPs).

43

2. Foundations

2.4.1. Discrete-time Markov Chain

The most basic Markov model forms Markov Chains. Markov chains are

stochastic processes where the Markov Assumption applies:

Definition 7 (Markov Chain). A Markov chain is defined by a family of
random variables (𝑋𝑡)𝑡 ∈N where the Markov assumption applies:

𝑃𝑟 (𝑋𝑡+1 = 𝑥𝑡+1 | 𝑋𝑡 = 𝑥𝑡 , . . . , 𝑋1 = 𝑥1, 𝑋0 = 𝑥0) = 𝑃𝑟 (𝑋𝑡+1 = 𝑥𝑡+1 | 𝑋𝑡 = 𝑥𝑡)
(2.4)

In other words, the Markov assumption states that the probability of transi-

tioning to a state 𝑥𝑡+1 at time 𝑡 + 1 depends exclusively on the last state 𝑥𝑡
at time 𝑡 but not on the entire history, i.e. 𝑥0, . . . , 𝑥𝑡 . Generally, it is distin-

guished between Discrete-time Markov Chains (DTMCs) and Continuous-time
Markov Chains. For DTMCs, discrete-time instances 𝑡 are considered in which

the stochastic process evolves. On the contrary, continuous-time Markov

chains move in continuous time through the state space. In the context of this

work, however, we only focus on DTMCs. Moreover, we consider DTMCs

where the Stationary Assumption [105, P. 202] (also called homogeneous or

time-invariant) holds:

∀𝑡, 𝑡 ′ ∈ {0, 1, . . . ,𝑇 } :
𝑃𝑟 (𝑋𝑡+1 = 𝑥 𝑗 | 𝑋𝑡 = 𝑥𝑖) = 𝑃𝑟 (𝑋𝑡 ′+1 = 𝑥 𝑗 | 𝑋𝑡 ′ = 𝑥𝑖)

(2.5)

That is, the probability of evaluating how the system transitions from 𝑥𝑖 to

𝑥 𝑗 is independent of the current time instance.

Throughout this work, we consider a DTMC as tuple (𝑆, 𝑆0, 𝑡) consisting of
three elements, namely state space 𝑆 , initial distribution 𝑆0 and transition

function 𝑡 : 𝑆 × 𝑆 → [0, 1]. Hereby, the transition function 𝑡 refers to the

probability distribution of transitioning from state 𝑠 at time 𝑡 to state 𝑠′ at
time 𝑡 + 1, i.e. (𝑠, 𝑠′) ↦→ 𝑃𝑟 (𝑋𝑡+1 = 𝑠′ | 𝑋𝑡 = 𝑠). Finally, the set 𝑆0 ⊆ 𝑆 defines

the set of initial states (following a particular probability distribution) in

which a DTMC may start.

2.4.2. Markov Decision Process

This section introduces Markov Decision Processes (MDPs), which form an

elementary concept of this thesis. In section 2.4.1, we introduced DTMCs, i.e.

44

2.4. Markov Models

stochastic processes where the Markov assumption applies. MDPs extend

DTMC (or Markov chains in general) by taking into account two further

concepts: Actions and Rewards. In the following, we briefly discuss the main

elements of MDPs but refer to [180, P.37] for more details.

MDPs are commonly explained by an agent that interacts with an environ-

ment. More specifically, at some point in time 𝑡 , the agent receives the current

state 𝑠𝑡 ∈ 𝑆 of the environment and selects an action 𝑎𝑡 ∈ 𝐴 from an action

set𝐴w.r.t. 𝑠𝑡 . Afterwards, at time 𝑡 +1, the agent receives a new state 𝑠𝑡+1 and
a reward 𝑟𝑡+1 ∈ 𝑅 evaluating the decision of selecting action 𝑎𝑡 in state 𝑠𝑡 . As

a result of the interaction between agent and environment, one can observe

a Trajectory (also referred to as Episode) that has the following form:

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2, . . . (2.6)

The trajectory illustrates how stochastic processes described by MDPs are

different from DTMCs. The state transitions are additionally affected by

the choice of an action selected at time 𝑡 . Probabilistically speaking, this is

expressed by the transition function 𝑡 : 𝑆 × 𝐴 × 𝑆 → [0, 1], i.e. (𝑠, 𝑎, 𝑠′) ↦→
𝑃𝑟 (𝑋𝑆𝑡+1 = 𝑠

′ | 𝑋𝑆𝑡 = 𝑠, 𝑋𝐴𝑡
= 𝑎). Each decision of selecting an action in a

given state is evaluated by a reward 𝑟 ∈ 𝑅 which is a numerical value, i.e.

𝑅 ⊂ 𝐼𝑅. This idea is captured by the reward function 𝑟 : 𝑆 ×𝐴 × 𝑆 → 𝑅 that

determines the expected reward, i.e. (𝑠, 𝑎, 𝑠′) ↦→ 𝐼𝐸 [𝑋𝑅𝑡+1 | 𝑋𝑆𝑡 = 𝑠′, 𝑋𝐴𝑡
=

𝑎,𝑋𝑆𝑡 = 𝑠]. In summary, an MDP is defined as follows:

Definition 8 (Markov Decision Process). A Markov decision process (MDP)
is defined by the tuple 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) where

• 𝑆 is a finite set of states.

• 𝐴 is a finite set of actions.

• 𝑡 is a conditional probability distribution determining the probability of
transitioning to state 𝑠′ at time 𝑡 + 1 given the current state 𝑠 and the
selected action 𝑎 at time 𝑡 .

• 𝑟 is the reward function determining the expected reward after transi-
tioning from state 𝑠 w.r.t. action 𝑎 at time 𝑡 to 𝑠′ at time 𝑡 + 1.

The last concept related to MDPs is the so-called Policy. A policy implements

the decision procedure that determines the action to be taken in a given

45

2. Foundations

state. More formally, a policy 𝜋 : 𝐴 × 𝑆 → [0, 1] is a conditional probability
distribution (𝑠, 𝑎) ↦→ 𝜋 (𝑎 | 𝑠) = 𝑃𝑟 (𝑋𝐴 = 𝑠 | 𝑋𝑆 = 𝑠) that evaluates the
probability of selecting an action in a given state. The primary objective in

MDPs is to develop such a decision procedure or policy 𝜋 that maximises the

expected reward over time. This idea is captured by so-called Value Functions
𝑣𝜋 (𝑠) which are defined to be the expected reward when starting in state 𝑠

and following policy 𝜋 (taken from [180, P.46]):

∀𝑠 ∈ 𝑆 : 𝑣𝜋 (𝑠) = 𝐼𝐸𝜋 [𝑋𝐺𝑡
| 𝑋𝑆𝑡 = 𝑠] = 𝐼𝐸𝜋

[𝑇∑︁
𝑘=0

𝛾𝑘𝑋𝑅𝑡+𝑘+1

���𝑋𝑆𝑡 = 𝑠

]
(2.7)

𝑋𝐺𝑡
is used as a notation to abbreviate the accumulated reward over time, i.e.

𝑋𝐺𝑡
:=

∑𝑇
𝑘=0

𝛾𝑘𝑋𝑅𝑡+𝑘+1 . Hereby, 𝑇 denotes the final time step. The parameter

𝛾 , 0 ≤ 𝛾 ≤ 1, is called Discount Rate and has two main purposes. First, it

ensures that in situations where𝑇 = ∞ the accumulated reward is not infinite

(when 𝛾 < 1). Second, it determines how strong future rewards are taken into

account. For instance, for values of 𝛾 close to 0, future rewards are considered

less strongly (as 𝛾𝑘 decreases for increasing 𝑘’s). On the contrary, for values

of 𝛾 close to 1, future rewards are taken into account more strongly.

2.4.3. Partially Observable Markov Decision Process

An even more general family of Markov models are so-called Partially Ob-
servable Markov Decision Processes (POMDPs) which expand MDPs. In MDPs,

it is implicitly assumed that each state 𝑠 is fully observable. However, this

might not be true in some settings where the state is hidden, i.e. state 𝑠 can

not directly be observed. In such situations, POMDPs are considered which

expand MDPs 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) by a set of observations Ω and an observation

model 𝑜 : 𝑆 ×Ω → [0, 1] which evaluates the probability to observe𝜔 ∈ Ω in

state 𝑠 . Note that in many other POMDP definitions the observation model

also considers the last action. However, the last action is directly reflected

by the resulting state such that it can be excluded by the observation model

[174].

Definition 9 (Partially Observable Markov Decision Process). A partially
observable Markov decision process (POMDP) is defined as a tuple (𝜆,Ω, 𝑜):

• 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) describes a Markov decision process.

46

2.5. Dynamic Programming

• Ω is a set of observations.

• 𝑜 is a probability distribution determining the probability of observing
𝜔 ∈ Ω in state 𝑠 ∈ 𝑆 at some time instance 𝑡 , i.e. (𝑠, 𝜔) ↦→ 𝑃𝑟 (𝑋Ω = 𝜔 |
𝑋𝑆 = 𝑠).

We use POMDPs in later chapters to formalise the hidden state problem

induced by AI black-box components.

2.5. Dynamic Programming

In this section, we briefly discuss Dynamic Programming (DP). For more

details on DP, we refer to [19, 180] (notations are reused from [180]).

Recall from section 2.4.2 the concept of MDPs 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) and policies

that need to be implemented in a way that maximises the cumulative reward

over time. DP refers to a set of algorithms that enable computing an optimal

policy 𝜋 given a perfect model of the environment represented as an MDP.

However, before finding an optimal policy, one has to define when a policy 𝜋

is considered to be better than any other policy 𝜋 ′. Hereby, the value function
of equation (2.7) is used which induces a partial ordering over policies:

𝜋 ≥ 𝜋 ′ ⇔ ∀𝑠 ∈ 𝑆 : 𝑣𝜋 (𝑠) ≥ 𝑣𝜋 ′ (𝑠) (2.8)

Roughly speaking, DP can be seen as an iterative process that repeatedly goes

through two sub-processes to find optimal policies. The first sub-process is

called Policy Evaluation and computes the value function 𝑣𝜋 (𝑠) of a policy 𝜋 .
The second sub-process is called Policy Improvement and identifies individual
changes of a policy 𝜋 that lead to a better policy 𝜋 ′ (according to (2.8)).

Policy evaluation and improvement are constantly repeated until the process

converges to an optimal policy; this whole iteration process is called policy
iteration. However, the main focus of this paper is evaluation rather than

optimisation. Therefore, the concept of policy evaluation in DP is briefly

discussed.

47

2. Foundations

2.5.1. Policy Evaluation

Policy evaluation computes the value function 𝑣𝜋 (𝑠) of a policy 𝜋 ; this is also
referred to as the Prediction Problem. The core of policy evaluation forms an

iterative update approach of a set of equations that are known as Bellman
Equations (taken from [180, P.47]):

∀𝑠 ∈ 𝑆 : 𝑣𝜋 (𝑠) =𝐼𝐸𝜋 [𝑋𝐺𝑡
| 𝑋𝑆𝑡 = 𝑠]

=𝐼𝐸𝜋 [𝑋𝑅𝑡+1 + 𝛾𝑋𝐺𝑡
| 𝑋𝑆𝑡 = 𝑠]

=
∑︁
𝑎

𝜋 (𝑎 | 𝑠)
∑︁
𝑠′

∑︁
𝑟

𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)

·
(
𝑟 + 𝛾𝐼𝐸𝜋 [𝑋𝑅𝑡+1 + 𝛾𝑋𝐺𝑡+1 | 𝑋𝑆𝑡+1 = 𝑠

′]
)

=
∑︁
𝑎

𝜋 (𝑎 | 𝑠)
∑︁
𝑠′,𝑟

𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)
(
𝑟 + 𝛾𝑣𝜋 (𝑠′)

)
(2.9)

Note that function 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) is used to abbreviate the conditional probability
of observing state 𝑠′ and reward 𝑟 at time 𝑡 + 1 given state 𝑠 and action 𝑎

at time 𝑡 , i.e. 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) := 𝑃𝑟 (𝑋𝑆𝑡+1 = 𝑠
′, 𝑋𝑅𝑡+1 = 𝑟 | 𝑋𝑆𝑡 = 𝑠, 𝑋𝐴𝑡

= 𝑎). The
existence and uniqueness of value function 𝑣𝜋 (𝑠) of policy 𝜋 is guaranteed if

𝛾 < 1 or termination is guaranteed (i.e. the final time step 𝑇 from the value

function (2.7) is finite 𝑇 < ∞). An update rule for a given state 𝑠 is defined

as follows (taken from [180, P.60]):

𝑣𝑘+1 (𝑠) = 𝐼𝐸𝜋 [𝑋𝑅𝑡+1 + 𝛾𝑣𝑘 (𝑋𝑆𝑡+1) | 𝑋𝑆𝑡 = 𝑠]

=
∑︁
𝑎

𝜋 (𝑎 | 𝑠)
∑︁
𝑠′,𝑟

𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)
(
𝑟 + 𝛾𝑣𝑘 (𝑠′)

)
The update rules are implemented w.r.t. the Bellman equations, where 𝑣𝑘
denotes the last updated value; such updates are also denoted as Expected Up-
dates. The iterative policy evaluation algorithm is shown in algorithm 2.1.

2.5.2. Monte Carlo Prediction

Generally, Monte Carlo Methods refer to a collection of estimation methods

that involve probabilistic sampling from a distribution. Regarding MDPs,

Monte Carlo methods are commonly used to randomly sample trajectories

from the actual or simulated environment which are (e.g.) used to estimate

48

2.5. Dynamic Programming

Algorithm 2.1: The iterative policy evaluation algorithm adopted

from [180, P.61]

Input: The policy to be evaluated 𝜋

Output: Value function 𝑉 ≈ 𝑣𝜋
1 𝑉 (𝑠) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒 () // e.g. ∀𝑠 ∈ 𝑆 : 𝑉 (𝑠) = 0

2 repeat
3 Δ← 0

4 foreach 𝑠 ∈ 𝑆 do
5 𝑣 ← 𝑉 (𝑠)
6 𝑉 (𝑠) ← ∑

𝑎 𝜋 (𝑎 | 𝑠)
∑

𝑠′,𝑟 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)
(
𝑟 + 𝛾𝑉 (𝑠′)

)
7 Δ←𝑚𝑎𝑥 (Δ, |𝑣 −𝑉 (𝑠) |)
8 end
9 until Δ < 𝜖 ∈ 𝐼𝑅>0

the value function 𝑣𝜋 (𝑠). One problem with DP is that it requires complete

knowledge of the dynamics of the environment (i.e. 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)), which,
however, might not be known in advance. In some cases, it is possible to

draw samples from 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎) without knowing the distribution which

is sufficient to compute value functions 𝑣𝜋 (𝑠). This is where Monte Carlo
Prediction comes in, which estimates value functions 𝑣𝜋 (𝑠) by sampling

from the environment and following the policy 𝜋 (as dictated by the Bellman

equation). If the interaction with the environment is simulated, the generated

samples are called Simulated Experience.

Monte Carlo prediction is a quite simple approach as it generates trajectories

by repeatedly drawing samples from 𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎) and following 𝜋 until

termination. Now recall that the value of a state 𝑠 corresponds to the expected

reward (or rather expected accumulated and discounted reward) by starting

from 𝑠 and following 𝜋 . For each generated trajectory, the value of a state 𝑠

can be estimated by averaging the expected reward observed after the first

visit of 𝑠 . The more trajectories are sampled, the more the estimated value

for each state converges towards its true value.

There are two Monte Carlo prediction approaches, namely the First-Visit
Monte Carlo Method and Every-Visit Monte Carlo Method. Generally, when
traversing over a trajectory, one encounters several states 𝑠 which is denoted

as a visit to 𝑠 . The first-visit Monte Carlomethod estimates 𝑣𝜋 (𝑠) by averaging

49

2. Foundations

the accumulated rewards observed after the first visit of 𝑠 in each trajectory.

In contrast, the every-visit Monte Carlo method averages the accumulated

rewards following all visits of 𝑠 in each trajectory. The first-visit Monte Carlo

prediction algorithm is illustrated in algorithm 2.2.

Algorithm 2.2: The first-visit Monte Carlo prediction algorithm based

on [180, P.76]

Input: The policy to be evaluated 𝜋

Output: Estimated value function 𝑉 ≈ 𝑣𝜋
1 𝑉 (𝑠) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑉 () // e.g. ∀𝑠 ∈ 𝑆 : 𝑉 (𝑠) = 0

2 𝑅(𝑠) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑅() // an empty list, for all 𝑠 ∈ 𝑆
3 repeat
4 𝜏 ← 𝑠𝑎𝑚𝑝𝑙𝑒 () // Generates a trajectory w.r.t 𝜋

5 foreach 𝑠 ∈ 𝑆 do
6 if 𝑠 ∈ 𝜏 then
7 𝐺 ← 𝑎𝑐𝑐 (𝑠, 𝜏) // The accumulated reward that

follows after first occurence of 𝑠

8 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑅(𝑠),𝐺) // Appends 𝐺 to 𝑅(𝑠)
9 𝑉 (𝑠) ← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑅(𝑠)) // Averages the returns of 𝑠

10 end
11 end

2.6. Probabilistic Graphical Models

In this section, we discuss the framework of Probabilistic Graphical Models
that describe graph-based probabilistic structures. Basically, probabilistic

graphical models are used to describe large and complex probability spaces

which adhere to or encode specific properties in a graph-based way, e.g.

Bayesian Models or Markov Random Fields. The framework encompasses

entire families of probabilistic models; in this section, however, we discuss

Bayesianmodels (i.e. Bayesian Networks (BN) andDynamic Bayesian Networks
(DBN) and Template-based Probabilistic Models. Template-based probabilistic

models provide a generic framework which generalises Bayesian models by

defining templates of random variables.

50

2.6. Probabilistic Graphical Models

𝑊 𝑋

𝑌

𝑍

Figure 2.3.: Example Bayesian network consisting of the random variables𝑊 , 𝑋 , 𝑌 and 𝑍 .

In this section, only the concepts necessary for the understanding of this

work are explained. For further details, we refer to the reference [105] on

which this section is based. Also, all definitions and notations are based on

[105].

2.6.1. Bayesian Networks

A BN consists of a set of random variables {𝑋1, ..., 𝑋𝑛}. The network encodes
conditional independence assumptions of the random variables by a Directed
Acyclic Graph (DAG)G. The nodes of graphG represent the random variables

of the network; the edges represent the direct effect of one random variable

on another random variable. For example, consider Figure 2.3 which depicts

an example BN including four random variables: {𝑊,𝑋,𝑌, 𝑍 }.

The resulting graph includes four nodes (i.e. {𝑊,𝑋,𝑌, 𝑍 }) and the edges

𝑊 → 𝑌 , 𝑋 → 𝑌 , 𝑌 → 𝑍 . The semantics of an edge (e.g.) 𝑌 → 𝑍 is

to be understood as node 𝑍 depends solely on its parent 𝑌 . In principle,

however, an edge indicates conditional independence, e.g. (𝑍 ⊥⊥𝑊,𝑋 | 𝑌).
Additionally, nodes of a graph G that have no parents are stochastically

independent, e.g. (𝑊 ⊥⊥ 𝑋) and (𝑋 ⊥⊥ 𝑊). This encoding of conditional

independence assumptions can be generalised for any G. Let 𝑃𝑎G (𝑋𝑖) denote
the parents of 𝑋𝑖 in G and 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 (𝑋𝑖) denotes the variables in G
that are non descendants of 𝑋𝑖 . A DAG G representing the structure of

51

2. Foundations

a BN with nodes (or random variables) {𝑋1, ..., 𝑋𝑛} encodes the following
independence assumptions:

∀𝑖 ∈ {1, ..., 𝑛} : (𝑋𝑖 ⊥⊥ 𝑁𝑜𝑛𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠 (𝑋𝑖) | 𝑃𝑎G (𝑋𝑖)). (2.10)

Conditional independence assumptions have favourable ramifications on the

joint distribution 𝑃 (𝑋1, ..., 𝑋𝑛). More specifically, if distribution 𝑃 satisfies

the conditional independence assumptions encoded by G and according

to equation (2.10) (which we write 𝑃 |= G), then it can be shown that 𝑃

factorises over G (see [105, P. 62]):

𝑃 (𝑋1, ..., 𝑋𝑛) =
𝑛∏
𝑖=1

𝑃 (𝑋𝑖 | 𝑃𝑎G (𝑋𝑖)) . (2.11)

The individual Conditional Probability Distributions (CPDs) 𝑃 (𝑋𝑖 | 𝑃𝑎G (𝑋𝑖))
complements the structure of a BN. This factorisation property is called De-
composability. Decomposability not only allows estimating each 𝑃 (𝑋𝑖 |𝑃𝑎𝑋𝑖

)
individually but also reduces the complexity of the joint distribution. In terms

of the example BN in Figure 2.3, the distribution 𝑃 (𝑊,𝑋,𝑌, 𝑍) factorises as
follows:

𝑃 (𝑊,𝑋,𝑌, 𝑍) =𝑃 (𝑊) · 𝑃 (𝑋 |𝑊) · 𝑃 (𝑌 |𝑊,𝑋) · 𝑃 (𝑍 |𝑊,𝑋,𝑌)
=𝑃 (𝑊) · 𝑃 (𝑋) · 𝑃 (𝑌 |𝑊,𝑋) · 𝑃 (𝑍 | 𝑌).

Finally, BNs are defined as follows:

Definition 10 (Bayesian Network). A Bayesian network B is a tuple B :=

(G, 𝑃) where probability distribution 𝑃 factorises over G, i.e. 𝑃 |= G.

2.6.2. Dynamic Bayesian Networks

While BNs enable the representation of compact joined distributions 𝑃 (X)
with X := {𝑋1, ..., 𝑋𝑛}, DBNs describe the stochastic evolution of X by a tran-

sition model. If the Markov and stationary assumptions hold, the transition

model forms a CPD: 𝑃 (X’ | X). DBNs are thus a specialisation of Markov

processes.

Roughly speaking, DBNs are temporal extensions of BNs where the temporal

extension refers to the transition model 𝑃 (X’ | X). Such transition models

are represented by so-called 2-Time-Slice Bayesian Network (2-TBN).

52

2.6. Probabilistic Graphical Models

𝑋

𝑌

𝑡 = 0

(a) Initial BN B0

𝑋 𝑋 ′

𝑌 ′

𝑡 𝑡 + 1

(b) 2-TBN B→

𝑋

𝑌

𝑋 ′

𝑌 ′

𝑋 ′′

𝑌 ′′

𝑡 = 0 𝑡 = 1 𝑡 = 2

(c) Unrolled DBN

Figure 2.4.: Example DBN: (a) represents the initial BN B0, (b) depicts the 2-TBN B→ and (c)

shows the resulting DBN unrolled over 3 steps.

Definition 11 (2-Time-Slice Bayesian Network). A 2-time-slice Bayesian
network B→ for a process over X, is a CPD 𝑃 (X’ | XI) where XI ⊆ X.

The set XI is denoted as Interface Variables and refers to the set of random

variables that have a direct effect on the random variables in X’. Just as in
BNs, this dependency is characterised by an edge in a DAG G. Figure 2.4b
illustrates a simple 2-TBN.

In the example, the interface variables of the 2-TBN include only 𝑋 , i.e.

XI = {𝑋 }. Therefore, 𝑋 is the only variable that has a direct effect at time 𝑡

on X = {𝑋,𝑌 } at time 𝑡 + 1. In 2-TBNs, edges between time slice 𝑡 and 𝑡 + 1
are denoted as Inter-Time-Slice Edge, e.g. 𝑋 → 𝑋 ′ and 𝑋 → 𝑌 ′. Additionally,
there might be edges within a time slice that are denoted as Intra-Time-Slice
Edge. Intra-time-slice edges indicate dependencies between random variables

that have an immediate effect, i.e. much shorter than one would observe

between variables that are connected by an inter-time-slice edge. Inter-time-

slice edges of the form 𝑋 → 𝑋 ′ are denoted as Persistence Edges. A random

variable𝑋 for which there exists a persistence edge tends to persist over time

with high probability. Just like BNs, 2-TBNs factorises w.r.t. a dependency

structure encoded by a DAG G.

𝑃 (X’ | XI) =
𝑛∏
𝑖=1

𝑃 (𝑋 ′𝑖 | 𝑃𝑎G (𝑋 ′𝑖)) where 𝑃𝑎G (𝑋 ′𝑖) ⊆ XI. (2.12)

A DBN consists of a BN that forms the initial distribution and a 2-TBN that

inductively describes how states are dynamically changing over time (see

53

2. Foundations

Figure 2.4). DBNs are unrolled to generate a trajectory of any length. The

Markov and stationary assumptions allow a compact representation of the

distribution 𝑃 (X0,X1, . . . ,X𝑇) for any 𝑇 :

𝑃 (X0,X1, . . . ,X𝑇) = 𝑃 (X0)
𝑇−1∏
𝑡=0

𝑃 (X𝑡+1 | X𝑡) (2.13)

Figure 2.4c depicts and unrolled DBN over three time slices. Finally, we

conclude this section by formally defining a DBN.

Definition 12 (Dynamic Bayesian Network). A dynamic Bayesian network
is a tuple (B0,B→) which consists of a Bayesian network B0 and a 2-time-slice
Bayesian network B→. B0 defines the initial distribution over the state space;
B→ inductively defines the transition model.

2.6.3. Template-based Probabilistic Models

Template-based probabilistic models (or simply template models) provide a

generic framework to model and instantiate probability spaces for arbitrary

object-relational domains. The concepts of template-based models serve as a

basis to develop rich languages. In this section, we give a brief overview of

template-based models and their fundamental building blocks.

One of the key concepts of template models is Template Variables (or template

attributes). Template variables encode random variables that have common

(domain-specific) semantics and share the same value space. Applying a

template variable to an object of a particular domain is to be considered

as an instantiation of the template and turns the template into a random

variable. Thus, template variables are defined at the type level while random

variables are defined at the instance level. Domains, in which templates are

supposed to be instantiated, are viewed as being composed of a set of objects.

Objects are divided into a set of mutually exclusive classes Q = 𝑄1, ..., 𝑄𝑛 ,

i.e. equivalence classes. Template variables have a tuple of Arguments where
each argument is associated with a specific class 𝑄𝑖 . The arguments of a

template restrict the set of objects for which the template can be instantiated

(w.r.t. to the class membership of each argument).

54

2.6. Probabilistic Graphical Models

Definition 13 (Template Variable). A template variable V(𝑈1, ...,𝑈𝑛) is a
function with some range 𝑉𝑎𝑙 (V). Each argument𝑈𝑖 ofV is a typed logical
variable where 𝑄 [𝑈𝑖] ∈ Q.

The tuple (𝑈1, ...,𝑈𝑛) is denoted as the Argument Signature ofV , and abbre-

viated by 𝛼 (V).

Template variables generate probability spaces within the domains in which

they are instantiated. The probability spaces are induced by a set of objects

considered for instantiating the templates. The objects can be divided into

mutually exclusive sets (w.r.t. the equivalence classes Q.) and forms an Object
Skeleton. More formally, let denote O𝜅 [𝑄] the finite set of objects associated
with class𝑄 included in object skeleton𝜅 . Template variables are instantiated

to the objects considered in skeleton𝜅 by applying them to objects that can be

assigned to the logical variables of the argument signature ofV . Therefore,

the set of possible assignments for a templateV with 𝛼 (V) = (𝑈1, ...,𝑈𝑛) is
defined as follows:

O𝜅 [(𝑈1, ...,𝑈𝑛)] = O𝜅 [𝑄 [𝑈1]] × · · · × O𝜅 [𝑄 [𝑈𝑛]] . (2.14)

In some domains, however, specific assignments are not legal. Therefore,

Γ𝜅 [V] ⊆ O𝜅 [𝛼 (𝑈)] defines the set of all valid assignments for templateV .

Based on the previous definitions, for an object skeleton 𝜅 and a set ℵ of

template variables over Q, the set of instantiations of template variables

𝜒
𝜅 [ℵ] is defined as follows:

𝜒
𝜅 [ℵ] =

⋃
V∈ℵ
{V(𝛾) |𝛾 ∈ Γ𝜅 [V]}. (2.15)

The notationV(𝛾) indicates an assignment of object tuple (𝑢1, ..., 𝑢𝑛) to a

templateV w.r.t. the argument signature 𝛼 (V), i.e. 𝛾 = (𝑈1 ↦→ 𝑢1, . . . ,𝑈𝑘 ↦→
𝑢𝑘). An instantiated template variable is also denoted as Ground Random
Variable.

The second key concept of template models forms Template Factors. Template

factors complement template variables by a probabilistic specification, i.e.

the type of distribution such as multinomial distributions. Just as Template

variables, template factors are defined at type-level over a set of template

variables. When the set of template variables is instantiated, the template

factors can be instantiated to specify the concrete distribution of the ground

random variables.

55

2. Foundations

Definition 14 (Template Factor). A template factor 𝜉 : 𝑉𝑎𝑙 (V1) × · · · ×
𝑉𝑎𝑙 (V𝑙) → 𝐼𝑅 is a function defined over template variables (V1, . . . ,V𝑙).
Given a tuple of ground random variables (𝑋1, ..., 𝑋𝑙), if ∀𝑖 ∈ {1, ..., 𝑙} :

𝑉𝑎𝑙 (𝑋𝑖) = 𝑉𝑎𝑙 (V𝑖) holds true, then 𝜉 (𝑋1, ..., 𝑋𝑙) defines the instantiated factor
from 𝑋1, ..., 𝑋𝑙 to 𝐼𝑅 w.r.t. (V1, ...,V𝑙).

2.6.3.1. Plate Models

In this section, we briefly discuss a template-based language for probabilistic

models, called Plate Models. Plate models reuse the key concepts presented

in the last section to encode probabilistic structures. The formal semantics

of plate models goes beyond the pure template-based concepts and are not

in the scope of this work. Therefore, we refer again to reference [105] that

discusses plate models in more detail. In the following, we introduce basic

concepts of plate models (which we reuse in later chapters) and how they

are used in modelling Bayesian networks.

In plate models, object types are characterised by Plates. Such object types

or classes correspond to the equivalence classes Q = 𝑄1, . . . , 𝑄𝑛 . More

specifically, each plate describes a class 𝑄𝑖 . The graphical notation of a plate

encloses a random variable with a box. For instance, consider Figure 2.5a

which specifies a plate of some object class A for a random variable 𝑋 . The

graphical representation encodes the fact that there are multiple random

variables of 𝑋 in which all share the same templateV𝑋 and are instantiated

for several objects of class A.

The example of Figure 2.5a is very simple and can be expanded for multiple

random variables and overlapping plates. For instance, the plate structure

in Figure 2.5b indicates a Nested plate structure. Hereby, the plate of object

class B for random variable 𝑌 is nested within the plate of object class A.

Nested plate structures encode that the template for 𝑌 can be instantiated

for object pairs of class A and B (as B is embedded in plate A). For each pair,

however, there has to be an individual instantiation ofV𝑋 representing the

parent of 𝑌 .

A third plate structure describes the Intersection of plates as depicted in

Figure 2.5c. In this case, the template for random variable 𝑍 is instantiated

for object pairs of class A and B. Similarly to nested plates, for each pair the

56

2.6. Probabilistic Graphical Models

𝑋

Class A

(a) Simple plate

𝑋

𝑌

Class A

Class B

(b) Nested plate

𝑋 𝑌

𝑍

Class A Class B

(c) Intersected plate

Figure 2.5.: Plate model encoding according to [105, P. 219]: (a) represents a simple plate

structure, (b) shows a nested plate structure and (c) depicts an intersected plate structure.

corresponding parent random variables must be instantiated as well, i.e. V𝑋

andV𝑌 , respectively.

Plate models describe probabilistic models with repeated structure and shared

parameters. Based on the notion of template variables, plate models induce

BNs instantiated in domains with certain object structures. As explained

earlier, a set of plates and their associated object classes are semantically

the same as the equivalence classes Q that typify the argument signature of

a template. Thus, any template variable that is embedded in several plates

𝑄1, ..., 𝑄𝑛 possesses an argument signature 𝑈1, ...,𝑈𝑛 matching the plate’s

object class structure, i.e. 𝑄 [𝑈𝑖] = 𝑄𝑖 .

Finally, the only missing concept that completes a plate model is the depen-

dency structure of template variables. In plate models, template variables

embedded in overlapping plates can depend on template variables in any of

these plates. Based on these semantics, the plate model can now be formally

defined.

Definition 15 (Plate Model). For a set of template variables V ∈ ℵ with
argument signature 𝛼 (V) = 𝑈1, ...,𝑈𝑛 , let 𝐵𝑖 (Ui) denote the variables of the
argument signature of parent 𝐵𝑖 . A plate model𝑀𝑃𝑙𝑎𝑡𝑒 defines for each template:

• A set of template parents 𝑃𝑎(V) := {𝐵1 (U1), ..., 𝐵𝑘 (Uk)} in which
∀𝑖 ∈ {1, ..., 𝑘} : 𝐵𝑖 (Ui) ⇒ Ui ⊆ {𝑈1, ...,𝑈𝑛}.

• A template CPD 𝑃 (V | 𝑃𝑎(V)).

57

2. Foundations

Finally, a plate model𝑀𝑃𝑙𝑎𝑡𝑒 and object skeleton𝜅 generate aGround Bayesian
Network:

Definition 16 (Ground Bayesian Network). A Ground Bayesian Network
B𝑀𝑃𝑙𝑎𝑡𝑒
𝜅 is generated by a plate model𝑀𝑃𝑙𝑎𝑡𝑒 and object skeleton 𝜅 as follows:

∀V(𝑈1, ...,𝑈𝑛) ∈ ℵ,∀𝛾 ∈ Γ𝜅 [V] : ∃=1V(𝛾) ∈ 𝜒𝜅 [ℵ] (2.16)

where 𝛾 := (𝑈1 ↦→ 𝑢1, . . . ,𝑈𝑛 ↦→ 𝑢𝑛) and for all template parents V𝑃𝑎 ∈
𝑃𝑎(V) of ground random variable V(𝛾) there exist an instantiated CPD:
𝑃 (V(𝛾) | V𝑃𝑎1 (𝛾), . . . ,V𝑃𝑎𝑘 (𝛾)).

Note that V𝑃𝑎 (𝛾) is a shorthand notation for ground random variables of

template parents which argument signature is only a subset of V(𝛾) so
that the parent template is only instantiated for a subset of tuple 𝛾 . The

ground Bayesian network B𝑀𝑃𝑙𝑎𝑡𝑒
𝜅 forms a joint distribution over

𝜒
𝜅 [ℵ] (see

(2.15)).

2.7. A Brief Introduction to Artificial Intelligence

In this section, we provide a brief overview of the broad field of AI (artificial

intelligence). More specifically, we give a brief overview of the subfields of AI,

namely machine learning and deep learning (a subfield of machine learning).

It is worth noting, that AI is a fairly large field that goes beyond machine

learning and deep learning, e.g. propositional logic or first-order predicate

logic (see [56] for a broader introduction). However, machine learning and

deep learning are currently the most popular methods associated with AI

and embody the current state of the art. In particular, DNNs (deep neural

networks) and their inherent complexity lead to today’s challenges and the

need to safeguard AI. Although our presented concepts generalise to all types

of AI models, we briefly introduce the notion of machine learning and some

well-known DNNs below.

2.7.1. Machine Learning

Goodfellow, Bengio and Courville [69] provide a brief introduction to ma-

chine learning based on the definition of Mitchell [124, P.2]: “A computer

58

2.7. A Brief Introduction to Artificial Intelligence

program is said to learn from experience 𝐸 with respect to some class of

tasks 𝑇 and performance measure 𝑃 , if its performance at tasks in 𝑇 , as mea-

sured by 𝑃 , improves with experience 𝐸.” For more detailed introductions to

machine learning, we refer to [129, 24].

The abstract definition of a task𝑇 refers to the learning task particular to the

given domainwhere amachine learning system is applied. For example, a task

might simply refer to face recognition, object detection or more complicated

tasks in robotics (such as navigating through space). According to Good-

fellow et al. [69], most machine learning tasks are generally classified into

the following task types: Classification, classification with missing inputs,

regression, transcription, machine translation, structured output, anomaly

detection, synthesis and sampling, imputation of missing values, denoising

and density or probability mass function estimation. The most common

tasks are classification and regression. In classification, the task is to classify

input values 𝑥 of some input space X to some set of categories 1, . . . , 𝑘 by

learning a function 𝑓 : 𝐼𝑅𝑛 → {1, . . . , 𝑘}. For example, object detection is a

quite familiar example for classification tasks. In general, machine learning is

intended to approximate functions of the form 𝑓 : X → Y based on a dataset

𝐷 (discussed later) that contains the relationships to be learned. Regarding

classification, X refers to 𝐼𝑅𝑛 (e.g. pixel space) and Y refers to the distinct

categories {1, . . . , 𝑘}. In terms of regression, the function to be learned or

approximated is of the form 𝑓 : 𝐼𝑅𝑛 → 𝐼𝑅. In such cases, control signals need

to be learned for robot navigation or real estate price prediction.

The performance measure 𝑃 evaluates the extent to which a task 𝑇 is ac-

complished. The effectively used performance measure depends on the

considered domain. In many cases (and also in the context of this work),

however, the accuracy of an AI model is measured. A fairly popular mea-

sure in terms of AI model accuracy forms the Mean-Squared-Error (MSE) or

Root-Mean-Squared-Error (RMSE).

𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸

(2.17)

Hereby, 𝑦𝑖 refers to the predictions produced by an AI model and 𝑦𝑖 to

the actual output. Moreover, 𝑁 refers to the number of test data included

in a Test Dataset 𝐷𝑇𝑒𝑠𝑡 . Such datasets are commonly used to measure the

59

2. Foundations

performance of an AI model. A test dataset consists of labelled example data

of the form (𝑥,𝑦) where 𝑥 describes some input data and𝑦 the corresponding

(and correct) output. For instance, in classification tasks, 𝑦 refers to one of

the correct categories {1, . . . , 𝑘}.

Finally, experience 𝐸 refers to Training Datasets from which specific patterns

or behaviours are to be learned, i.e. based on training examples that have

the same form as the test data. Training datasets form the source of what

is considered as experience 𝐸. In classification tasks, labelled input data

serves as experience to generate a learner 𝑓 for classifying arbitrary input

data. However, machine learning is divided into three categories, namely

Supervised Learning, Unsupervised Learning and Reinforcement Learning. De-
pending on the category, the way how experience is incorporated into the

learning process is different. In simple terms, supervised learning is about

approximating or learning a function w.r.t. the training dataset such that for

new inputs (not included in the training dataset) precise predictions or clas-

sifications are made. Hereby, the training dataset includes data annotated by

labels or targets which serves as the foundation for the learning process. On

the contrary, unsupervised learning considered unlabeled training datasets

from which structures (e.g. clustering) or probability distributions (e.g. den-

sity or probability mass function estimation) are to be learned. The third

category refers to reinforcement learning which is based on a trial-and-error

approach. In reinforcement learning, the idea is to learn or train an agent

that can take actions and interact with an environment. Based on the taken

actions and observed responses of the environment, the agent learns how to

deal with the environment. Reinforcement learning is often used in robotic

tasks or games (e.g. [125]). All three categories have in common that they

are highly dependent on the quality of the training datasets. If the concepts

(to be learned) are not sufficiently represented in the training datasets, the

learned AI model is likely to perform poorly; this induces one of the main

problems concerned with machine learning.

2.7.2. Deep Learning

When people talk about AI today, it is usually about deep learning. Nearly

any AI-enabled system integrates a DNN. Deep learning is a subfield of

machine learning and, in simplified terms, deals with Neural Networks with
a deeper layer structure. In principle, a neural network defines three layers,

60

2.7. A Brief Introduction to Artificial Intelligence

namely the Input, Hidden and Output layer. Each layer consists of a set of

neurons which are connected with neurons of adjacent layers. Each layer can

be viewed as a function 𝑓 (𝑖) which (when composing the individual layers)

transforms input data 𝑥 into output data by forwarding the results to the

next layer, i.e. (𝑓 (3) ◦ 𝑓 (2) ◦ 𝑓 (1)) (𝑥) (see [69]). The most common types of

neural networks refer to Feedforward Networks where no data is fed back

into some previous layers. Neural networks with higher depths (i.e. many

layers or increased length of composed functions) are called DNNs (deep

neural networks). Similarly to neural networks, DNNs are mainly used to

approximate some function 𝑓 : X → Y which is to be learned by a training

dataset 𝐷 including examples of 𝑥 ∈ X annotated by labels or targets.

The learning or training process can be viewed as an optimisation problem

where the main target is to estimate a set of parameters 𝜃 which is responsible

for determining the prediction results of approximated function 𝑓 (𝑥) (com-

monly written 𝑓 (𝑥 ;𝜃)). A widely used optimisation or training algorithm

is Back-Propagation which refers to a gradient-based training method. The

main idea is to propagate the error back to the parameters 𝜃 that caused a

high deviation w.r.t. a loss function (i.e. a function that measures the devia-

tion of the predictions made and the training data) that is to be minimised.

In the following, we consider two types of DNNs, namely Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Both DNNs

are widely used and also serve as the main object of investigation in the

validation part of this work. Again, we refer to reference [69] which discusses

both DNNs in more detail.

2.7.2.1. Convolutional Neural Networks

Before CNNs gained more attention, software engineers hand-crafted local

filters which were applied to extract features from images used for classifi-

cation. However, hand-crafted features are vulnerable to particular image

transformations (e.g. rotation). In CNNs, the entire feature engineering pro-

cess is part of the learning process in which so-called Kernels (representing
filters) are learned. In principle, CNNs introduce convolution operations

where the input image is convolved by the kernel. The output is denoted as a

feature map. The structure of a CNN consists of several convolutional layers

followed by a fully-connected layer (see Figure 2.6). The convolutional layers

extract features from the input image and are eventually passed on to the

61

2. Foundations

...
...

Input Image feature maps fully-connected layers

convolution

Figure 2.6.: Schematic structure of a CNN adopted from [112].

fully-connected layer, which is responsible for the actual classification task.

Unlike fully connected DNNs, in CNNs some neurons of the convolutional

layer are connected to some neurons of the next layer. Moreover, weights or

parameters to be learned (i.e. the elements of the kernel) are shared which

reduces the number of learned parameters drastically.

The functionality of CNNs is inspired by neuroscience or rather by the visual

cortex of the human brain. More specifically, convolutional layers close to

the input layer are extracting low-level features (e.g. edges), which become

more abstract higher-level features in deeper convolutional layers (i.e. closer

to the output layer). Finally, note that CNNs are not only applicable to image

data but any kind of data where convolution is applicable (e.g. time-series

data).

2.7.2.2. Recurrent Neural Networks

In contrast to feedforward DNNs (which can be viewed graphically as directed

acyclic graphs), RNNs allow for feedback or loop-like structures. This means,

that outputs or predictions of some layers may be fed back to previous layers

(see Figure 2.7). While CNNs are considered to work on image data, RNNs are

rather applied to sequential data. An example application of RNNs is machine

translation in which sequences of words (i.e. sentences) are translated from

one language to another; also image captioning and action recognition are

popular examples.

RNNs are also trained by using the gradient-based back-propagation learning

algorithm. However, when unfolding over many time steps, the gradient is

62

2.8. Validation Preliminaries

𝑥

ℎ

𝑦

(a) Recurrent structure of an RNN.

𝑥𝑡−1

ℎ𝑡−1. . .

𝑦𝑡−1

𝑥𝑡

ℎ𝑡

𝑦𝑡

𝑥𝑡+1

ℎ𝑡+1

𝑦𝑡+1

. . .

(b) RNN unfolded for several time steps.

Figure 2.7.: Example structure of an RNN (based on [69, P.378]) in which 𝑥 refers to the input, ℎ

represents the hidden layers and 𝑦 the output.

also propagated over many time points, which leads to long-term dependen-

cies. In such situations, the gradient can either vanish or explode, affecting

the learning process negatively. To circumvent such long-term dependen-

cies, Long Short-Term Memories (LSTMs) [84] are leveraged which deal with

the problem of observing vanishing or exploding gradients in the learning

process.

2.8. Validation Preliminaries

Finally, this section briefly discusses the basic building blocks essential for

validation.

2.8.1. Goal-Question-Metric Approach

In the validation chapter of this thesis (see chapter 9), we leverage the so-

called Goal-Question-Metric (GQM) approach or plan that guides our val-

idation process. The GQM approach was originally introduced by Basili,

Caldiera and Rombach [36].

63

2. Foundations

goal Purpose Improve

Issue the timeliness of

Object change request processing

Viewpoint from the project manager’s viewpoint

Table 2.1.: Example of a formulated goal taken from [36].

Goal 1 ...

Question 1.1 Question 1.x Question N.1 Question N.y

Metric 1

Goal N

Metric 2 Metric 3 Metric 4 Metric M

... ...

...

Conceptual
level

Operational
level

Quantitative
level

Figure 2.8.: Overview of the GQM approach adapted from [36].

The idea of a GQM plan is to structure the validation or evaluation process

by three distinct levels, namely the conceptual level (goals), the operational

level (questions) and the quantitative level (metrics). The conceptual level

defines the distinct goals, one has to define within the validation or evaluation

process.

A goal is formulated for a particular purpose of measurement (e.g. to improve

or analyse something), issue (e.g. efficiency or applicability) and object (e.g.

software product, modelling language or process) to be measured and w.r.t. to

a certain viewpoint (e.g. from the perspective of a user or software engineer).

More specifically, a goal is structured by the very same components, i.e.

purpose, issue, object and viewpoint. An example of a formulated goal is

shown in Table 2.1.

On the operational level, questions are defined that determine or characterize

how the validation is conducted to achieve or assess the goal. Therefore, a

goal is associated with a set of questions. Finally, on the quantitative level,

metrics are defined. Each question is related to a set of metrics. Metrics

define in a quantitative way how measurements can be derived to answer

a particular question. An overview of the GQM approach as well as the

relationships between the distinct levels is depicted on Figure 2.8.

64

2.8. Validation Preliminaries

2.8.2. Validation Levels

Böhme and Reussner [28] define three validation levels to validate analytical

metrics. In terms of this work, we assign our validation goals to the validation

levels presented below.

An analytical metric is defined as a prediction made for a quality property of a

system, e.g. a predictive model. The validation of analytical metrics, however,

is more challenging since the predictionsmust be comparedwith observations

or measurements of actual outcomes. In this context, the authors presented

three levels of validation at which an analytical metric can be validated:

• Level I (metric validation): A level I validation refers to the situation

where predictions of an analytical metric are compared with observa-

tions or measurements. However, Böhme and Reussner [28] point out

that this requires the implementation of the analytical metric and the

computability of the metric.

• Level II (applicability validation): A level II validation is concerned

with the applicability of an analytical metric and prediction approach.

Level II validation is about whether the input data can be collected

reliably and whether the predictions made can be interpreted mean-

ingfully (e.g. to assess design decisions).

• Level III (benefit validation): A level III validation relates to validating

the benefit of an analytical metric or prediction approach as part of

a systematic process (e.g. the selection of design options). In such

settings, the analytical metric must be compared with competing

approaches to validate the benefits. However, level III validation

usually involves a lot of effort [28].

2.8.3. Bhattacharyya Distance

In the validation chapter of this thesis, we use the Bhattacharyya Distance
[22] to measure the similarity of two probability distributions. In order

to calculate the Bhattacharyya distance 𝐷𝐵 , one has to calculate the Bhat-

tacharyya coefficient 𝐵𝐶 (𝑃, 𝑃 ′). Let 𝑃 and 𝑃 ′ be two probability distributions

65

2. Foundations

defined over the random variable 𝑋 , the Bhattacharyya coefficient 𝐵𝐶 (𝑃, 𝑃 ′)
is defined as follows:

𝐵𝐶 (𝑃, 𝑃 ′) =
∑︁

𝑥∈𝑉𝑎𝑙 (𝑋)

√︁
𝑃 (𝑋 = 𝑥) · 𝑃 ′ (𝑋 = 𝑥) (2.18)

Based on the Bhattacharyya coefficient, the Bhattacharyya distance can be

derived.

𝐷𝐵 = −𝑙𝑛(𝐵𝐶 (𝑃, 𝑃 ′)) (2.19)

Note that we formalized the Bhattacharyya coefficient and distance in terms

of discrete probability distributions.

66

3. Related Work

In this chapter, we review related work. We structure related work into

three areas. In section 3.1, we first distinguish ourselves from approaches

that are dealing with AI-induced uncertainties. In section 3.2, we discuss

engineering processes that facilitate quality assurance of AI-enabled systems

and review existing taxonomies that classify AI systems. Finally, section 3.3

discusses the whole branch of research analysing self-adaptive systems by

either employing MDPs (which also include runtime approaches) or using

other model-based approaches for design-time analysis.

3.1. Dealing with AI-induced Uncertainty

In this section, we give an overview of related work that deals either with

AI-induced uncertainty at the algorithmic or system level. Especially, on the

algorithmic level, there are numerous approaches one can take into account,

e.g. approaches that allow identifying vulnerabilities in AI models or proving

safety properties. We refer to [86, 58, 195] which provide a broad overview of

safety-related algorithmic approaches. In section 3.1.1, we explain how our

approach differs from pure algorithmic approaches. In addition, we present

several approaches regarding runtime monitoring of AI components as an

additional safeguarding mechanism. Afterwards, we present in section 3.1.2

related work of system-level approaches.

3.1.1. Algorithmic Approaches

In this section, we give a brief overview of purely algorithmic approaches.

Although all approaches are strongly related to our work (as they aim to deal

with AI-specific uncertainty), they differ in that they are purely algorithmic.

On the contrary, our approach is based on the architecture or system level and

67

3. Related Work

supports software engineers (using models) in the development of reliable

AI-enabled software systems. Our approach is rather to be understood as

complementary to the approaches at the algorithmic level. On the one hand,

algorithmic approaches enable the improvement of AI models by identifying

vulnerabilities or data examples for which the AI model does not provide

good predictions. However, it is unlikely to obtain an AI model acting

perfectly accurately. Therefore, architectural or system-level approaches

should be considered as additional safeguards. Such architectural approaches

are systematically evaluated using the concepts presented in this work and

support software engineers in decision-making. On the other hand, various

approaches suggest runtime monitoring, i.e. to detect potential malicious

inputs or potential erroneous predictions of AI components. Such approaches

differ from our work in that they provide building blocks for architecture- or

system-level approaches in which they are embedded. For example, there

are architectural patterns that implement measures to deal with potentially

unsafe states but require a monitoring procedure to detect such states; our

approach enables the evaluation of such architectural patterns.

3.1.1.1. Verification of AI

Great efforts have been made in providing formal guarantees for the be-

haviour of DNNs (deep neural networks), e.g. robustness properties [13]. In

addition, DNNs have been observed to be sensitive to so-called Adversarial
Examples [71] where inputs (known to produce correct outputs by the DNN)

are slightly altered (e.g. by modifying some pixels of the input image) and

force the DNN to produce incorrect outputs. Therefore, several verification

techniques have been developed to prove robustness or to compute regions

of the input space for which one can prove that the DNN produces correct

results.

Katz et al. [99] present Reluplex, an SMT (satisfiability modulo theories)

solver for verifying DNNs. More specifically, Reluplex allows the verification

of certain properties such as robustness properties [13]. Another example for

verifying properties in DNNs is provided by the Marabou framework [100]

or by the work of Wang et al. [201]. Singh et al. [172] provide an approach

to verify the robustness properties of neural networks for more complex

perturbations of the input data (e.g. image rotations). The approach allows

verifying whether a neural network produces correct predictions for so-called

68

3.1. Dealing with AI-induced Uncertainty

adversarial regions (constructed by considering slight modifications of the

original image that are still close to the original image depending on a certain

distance norm). Such adversarial regions can also be leveraged at runtime to

verify whether new input data are contained in such an adversarial region

for which the neural network has been shown to provide correct predictions.

Another interesting approach is by Cohen, Rosenfeld and Kolter [50], who

use randomised smoothing to generate adversarial robustness of DNNs.

However, the problem with verification techniques is that they lack efficiency

because DNNs are large, non-linear and non-convex [99]. Therefore, they

tend to be practically inapplicable in situations that require fast reactions,

e.g. calculating whether input data belongs to an adversarial region might be

too time-consuming in autonomous driving. Therefore, they are more likely

to be used at design-time or in offline experiments to enhance the overall

robustness of DNNs.

3.1.1.2. Interpretable and Explainable AI

As AI has become more advanced and widely applicable, the challenges it

entails have also become apparent. The black-box nature of AI makes the use

of AI models in safety-critical applications very difficult due to the lack of

comprehensibility and interpretability of their internal behaviour. Therefore,

the requirement to understand and interpret the internal behaviour of AI

models becomes an interesting branch of research to deal with AI-induced

uncertainty.

In terms of interpretable and explainable AI, the survey of Guidotti et al.

[76] provides an excellent overview. In their work, they classify black-box

explanation approaches into three classes, namely model explanation, out-

come explanation and model inspection. Model explanation is about finding

an interpretable global predictor for a black-box AI model which generates

for each input an explanation. The explanations are used to comprehend

the prediction or decision made by the AI model and serve as a basis to

determine whether the prediction is correct or not. Outcome explanation is

about finding an interpretable local predictor, i.e. for generating explanations

for only a subset of the input space. Examples for model explanation are

[107, 82]; examples for outcome explanation are [150, 217]. The model in-

spection problem classifies approaches which are concerned with identifying

properties or features of the input space that greatly impact the outcome

69

3. Related Work

of an AI model, e.g. a sensitivity analysis. Examples of model inspections

provide [179, 171]. However, for a complete overview of all approaches, we

refer again to [76].

3.1.1.3. Safe Reinforcement Learning

In supervised and unsupervised learning tasks, a machine learning model

learns based on data (either labelled or unlabeled). Reinforcement learning

constitutes the third branch into which a machine learning approach can

be classified. In contrast to supervised and unsupervised learning, an agent

learns how to operate in an environment. Technically speaking, reinforce-

ment learning builds on MDPs, where the main learning task is to learn a

strategy 𝜋 that selects from a set of actions the best possible action by con-

sidering its effect on the environment. For example, reinforcement learning

is a widely used machine learning approach to motion control in robotics. To

learn an optimal policy, the agent must explore possible actions to observe

how the environment reacts to them. However, this can cause the agent to

enter an unsafe state, which is particularly problematic for safety-critical

applications.

Therefore, several works expanded the framework of reinforcement learning

by introducing safeguarding mechanisms. For instance, Alshiekh et al.[4]

introduce so-called shields which are additionally considered while learning

policies. A shield monitors the actions taken by the agent and corrects them

whenever safety constraints (expressed in temporal logic) are violated. More-

over, Wachi and Sui [200] propose a safe reinforcement learning approach

by considering Constrained Markov Decision Processes. In this approach, the

agent learns safety constraints by successively expanding a safe state space

region. After expansion, the agent learns the policy within the safe region.

We refer to [63], which provides an overview of further safe reinforcement

learning approaches.

3.1.1.4. Runtime Monitoring of AI components

Runtime Monitoring constitutes another research area for dealing with the

uncertain nature of AI components. The basic idea is to enrich an AI-enabled

system with additional monitors specifically designed to monitor the prop-

erties of an AI component or model. The observed properties can either

70

3.1. Dealing with AI-induced Uncertainty

be used to determine whether the AI component may be making incorrect

predictions or to ensure that the individual predictions do not violate certain

safety constraints. In principle, some approaches presented earlier can be

employed in the context of runtime monitoring. For example, AI model

explainers can be leveraged to generate explanations for a prediction. The

explanations in turn serve as the basis for checking whether certain safety

constraints are maintained.

Salay and Czarnecki [151] propose requirements and types of properties

that are important for a partial specification language of AI models. More

specifically, one of the main reasons why verification is difficult to apply

to AI models is the lack of specification of properties to be verified. There-

fore, the authors propose the use of partial specification languages that

formalise some types of properties, e.g. pre- and post-conditions or invari-

ance properties. Furthermore, the languages are not only used to specify

safety constraints or requirements but also to use formalised specifications

for runtime monitoring.

Kang et al. [98] propose so-called model assertions that one can use for

runtime monitoring. A model assertion is a function (specifically designed

for an AI model to be monitored) that is defined over the input and output

space of an AI model. A possible implementation of a model assertion returns

a Boolean value indicating that a possible fault might occur. For example, if

an AI-based object recognition quickly changes its class in a video.

Another variant of runtime monitoring is proposed by the work of Cheng

et al. [46], who describes a runtime monitoring technique based on neuron

activation patterns of neural networks. The idea is to construct a runtime

monitor based on the trained neural network and the training dataset used.

In this process, the training data is fed back to the neural network and (ab-

stract) neural activation patterns are generated and stored in the monitor. At

runtime, activation patterns for newly arriving input data are generated and

the similarity with the patterns obtained from the training data is compared

(using a distance measure). Input data for which the monitor has not stored

a similar pattern is potentially malicious and could cause the AI model to

behave incorrectly.

Finally, Langford and Cheng [111] describe an approach that allows the

learned behaviour of an AI component to be predicted in the presence of un-

certainty. Based on such predictive capabilities, one can anticipate potentially

erroneous behaviour at runtime and take appropriate countermeasures.

71

3. Related Work

3.1.1.5. Machine Learning Testing

To assure some level of quality of machine learning models,Machine Learning
Testing has become an interesting research branch. Testing machine learning

models, however, poses greater challenges than testing conventional software

[213], e.g. the oracle problem [12]. We refer to Zhang et al. [213]who provides

a comprehensive overview of machine learning testing approaches. In the

following, however, we enumerate a view testing approaches.

In the work of Thian et al. [186], the authors present the DNN testing

tool DeepTest which is specifically designed to test DNN-based self-driving

cars. DeepTest leverages neuron coverage to detect input data for which

the DNN produces incorrect outputs. More specifically, the tool generates

synthetic input data (i.e. synthetic images) based on a set of uncertainties

(e.g. raindrops in the image, image blur or various brightness conditions).

The generated images are fed back to the DNN, and the neuron coverage

is observed (input data which activates only a small amount of neurons

of the DNN are likely to cause wrong predictions). In the context of the

Udacity self-driving car challenge [192], the DeepTest tool identified several

input images for which several DNN-based steering angle prediction models

produced wrong predictions. Also in this line of research is the work of [187]

which also employs neuron coverage metrics to detect confusion and bias

errors in DNN-based visual recognition models for image classification.

Pei, Cao, Yang and Jana propose the DNN testing tool DeepXplore [136] for

white-box testing. Similarly to DeepTest, DeepXplore detects input data for

which DNNs produce wrong outputs. They make use of neuron coverage

to measure the extent to which the internal logic of a DNN has been tested.

Moreover, the authors leverage multiple DNNs as cross-referencing oracles

to detect incorrect predictions of a single DNN.

Finally, DeepRoad [214]) constitutes another testing tool for DNN-based

autonomous driving systems. In contrast to the previously presented testing

tools, DeepRoad makes use of a Generative Adversarial Network [70] to

synthesise driving scenes. This circumvents problems related to synthetic

data generated by image transformations, e.g. lack of diversity of driving

scenes [214]. Finally, DeepRoad implements an input validation component

which detects inconsistent behaviours of the tested DNNs.

72

3.1. Dealing with AI-induced Uncertainty

3.1.1.6. Using Training Data to Deal with Uncertainty

This section enumerates approaches that make use of training data to (𝑖)
identify sub-input spaces for which an AI model may produce incorrect

predictions or (𝑖𝑖) to determine whether new input data was generated

by the same data generation process as the training data. However, what

both have in common is that they identify input data that is not sufficiently

represented by the training dataset.

Gu and Easwaran [75] present an approach that partitions the input or feature

space of an AI model into several subspaces. Based on the training dataset,

the approach identifies those partitions that are not sufficiently represented

by training samples. Thus, one can either collect new training data to retrain

the AI model or use it at runtime to identify inputs that are included in one

of the safety-critical partitions.

Other approaches such as, for example, [1, 81] detect input data which does

not belong to the training data distribution of a classifier. Such examples

are denoted out-of-distribution inputs which must be detected to prevent

potential misclassifications. According to [167], another method to detect

out-of-distribution samples provides a family of algorithms that are known

as variational inference [26].

3.1.1.7. Safety Assurance of AI Models

In this section, we summarise several methods and approaches for the safety

assurance of AI models.

In their survey [161], Schwalbe and Schels enumerate various methods for

safety assurance along the lifecycle of a machine learning model. Hereby,

the authors discuss distinct safety requirements one must take into consider-

ation during requirements engineering (such as safety-related performance

requirements). Moreover, the authors highlight the importance of making

well-informed design decisions and enumerate a list of quality criteria and

other aspects (such as the inclusion of expert knowledge) software engi-

neers have to account for in the decision-making process. In the end, the

authors discuss methods for verifying (e.g. satisfiability modulo theory) and

validating (e.g. data validation by using fuzzy testing) AI models.

73

3. Related Work

Burton, Gauerhof and Heinzemann discuss in their work [35] how assurance

cases can be used to argue in terms of the safety of machine learningmodels in

the context of autonomous driving. In addition, they present several methods

and techniques to substantiate claims made in the assurance case, namely

training data coverage, explainability of the learned function, uncertainty

calculation, black-box testing and runtime measures. The latter comprises

runtime monitoring techniques to observe assumptions made or to check

the plausibility of the produced outputs.

Finally, Varshney et al. [195] discuss three strategies for achieving safety

in machine learning. The first strategy discusses how machine learning

models can be inherently safely designed. According to the authors, an

inherently safe designed system excludes potential hazards. In terms of

machine learning, such hazards might be the exclusion of features that

are not causally related to the outputs of a learned model. The second

strategy presents safety reserves. Such safety reserves define safety margins

which may, for example, address uncertainty resulting from label noise in

classification problems. Finally, the third strategy refers to fail-safe states.

Hereby, in situations where a system encounters erroneous behaviour, the

system may fail safely. In terms of machine learning, fail-safe states can

be realized by using reject options. For example, when the confidence of

a prediction made by the machine learning model is not sufficiently high

enough, the output is rejected and the system transitions into a fail-safe state,

e.g. a human operator takes over control.

3.1.2. System-level Approaches

Now, we give an overview of the approaches that safeguard AI models at the

architectural or system level. First, we list approaches that provide architec-

tural knowledge for AI-enabled systems (i.e. architectural patterns, styles or

reference architectures). Afterwards, we present model-based approaches

similar to the presented approach of this work but different in that we aim to

predict the reliability properties of AI-enabled systems. Finally, we present

and distinguish ourselves from approaches that make use of self-adaptive

systems for safeguarding AI black-box components.

74

3.1. Dealing with AI-induced Uncertainty

3.1.2.1. Architectural Knowledge for AI-based Systems

There are numerous works which propose various architectural means to

deal with AI-induced uncertainties. In the following, we review some of

them. Also, we discuss architectural patterns from related domains which are

potentially applicable to AI-enabled systems. Note that although our work is

about addressing AI-induced uncertainty at the architectural level (i.e. by

applying architectural patterns), we do not aim to develop novel architectural

patterns but rather provide the means to evaluate existing ones. This forms

the main difference between our approach to the approaches presented in

this section.

Using architectural means to deal with uncertainty primarily induced by

ML (machine learning) components is not new in research. Serban [164],

for example, argues that ML-induced uncertainty can be mitigated by ar-

chitectural patterns. More specifically, Serban argues that using already

known architectural patterns from the safety domain (e.g. triple modular

redundancy) could be a considerable way to approach uncertainties caused

by ML.

In terms of architectural patterns several works apply the well-known N-
Version Programming pattern to deal with possible false predictions of an

AI model, e.g. see [77, 211, 119]. In principle, the idea is to use 𝑁 distinct

AI models for which a newly arriving input is fed into each of the models

such that one obtains 𝑁 outputs. Eventually, the results are used to syn-

thesise a more qualitative output, e.g. by calculating a mean value (in the

context of control signal prediction) or by making a majority vote (in terms

of classification tasks).

In the context of autonomous driving, Shafaei et al. [167] present four

cases to deal with uncertainties related to ML models. For example, one

pattern describes the use of variational methods (i.e. variational inference)

to filter anomalous inputs. Hereby, the pattern discusses an input checker

component (based on variational methods). Whenever the input checker

detects potentially malicious inputs, the system transitions into a fail-safe

mode. Otherwise, the input is simply forwarded to the ML model.

Biondi et al. [23] propose a novel software architecture for integrating DNN

components such that safety, security and time predictability are addressed.

75

3. Related Work

The authors suggest the use of hypervisors to isolate the security and safety-

critical components. Moreover, the software architecture incorporates redun-

dancy and diversity mechanisms to enhance robustness and fault tolerance.

Also, digital twin technologies are discussed for predictive fault detection

and fault recovery mechanisms (such as switching the safety-critical compo-

nents with more conservative components in terms of failure occurrence) are

enumerated as well. Finally, a predictable DNN inference engine is discussed

for dealing with distinct execution rates of several concurrent DNNs.

Also in that line of research, the work of Cheng, Gulati and Yan [45] outline

three architectural approaches for architecting dependable AI-enabled sys-

tems (focusing on the autonomous driving domain). The first architectural

approach is Diverse Redundancy and refers to using diverse algorithms or

paradigms. The second approach is Information Fusion, i.e. by using several

homogeneous or heterogeneous sources and merging them to gain more

qualitative information. The third approach discusses Runtime Monitoring
by using additional monitors to detect potential erroneous behaviour.

Originally, Salay and Czarnecki discussed in [151] a partial specification lan-

guage for enhanced safety assurance of AI components. However, because

the authors also consider the language in combination with runtime monitor-

ing, they discuss three architectural patterns on can take into account when

performing runtime monitoring. The first pattern simply describes a fail-safe

architecture, i.e. the system enters a fail-safe mode as soon as a monitor

signals that the output of an ML component violates a property (specified by

their proposed language). The second pattern puts the ML component in a

pipeline so that only inputs that cannot be classified in advance are passed to

the ML component. Finally, the widely known simplex architecture approach

[166] is adopted. In simplex architectures, the idea is to supplement a given

algorithm with another, more conservative but verifiable safe algorithm

(providing the same functionality) that serves as a backup if the primary

algorithm is not trusted for certain outputs. In this case, the ML component

is considered the primary algorithm and the specification language serves as

the basis to decide when switching to the conservative algorithm. Another

example of an approach where simplex architectures are employed for the

safety assurance of ML components is provided by Musau et al. [131]. In

[152] (also authored by Salay and Czarnecki), the list of architectural patterns

is extended by considering three more fault tolerance patterns: Ensemble

methods, safety envelope and data harvesting.

76

3.1. Dealing with AI-induced Uncertainty

In general, there are architectural patterns which are not directly designed

to deal with uncertain AI components but are nevertheless applicable in that

context. For example, Luo et al. [118] describe a safety channel pattern for

automated driving applications which can be potentially adapted to deal

with uncertainty in AI components. Also in the domain of safety-critical

embedded systems (see [10] for more details) there are plenty of patterns (e.g.

voting techniques or recovery block patterns) potentially considerable for

safeguarding AI components. Finally, architectural patterns for fault-tolerant

systems [52] should be mentioned here as well since they provide great

means to handle erroneous behaviour caused by AI components. In fact, we

have already discussed approaches that make use of fault-tolerant patterns

at the beginning of this section (e.g. [211]).

While not directly related to architectural approaches for dealing with AI-

induced uncertainty, approaches (such as [212, 162, 181, 203]) that deal with

maintenance issues caused by AI components are still related to this work.

Improving the maintenance of AI systems is not only relevant for addressing

operational stability [212] but is also of considerable importance when the

system structure needs to be revised or redesigned by integrating new (e.g.

fault-tolerant) architectural mechanisms. Finally, Lewis, Ozkaya and Xu

[115] discuss the challenges and role of software architecture when dealing

with model maintenance and evolution.

3.1.2.2. Model-based Approaches

To our knowledge, there is little to no scientific work that uses model-based

approaches to analyse AI-enabled software systems at design-time. We found

two model-based approaches for design-time analysis.

Dreossi et al. [54] introduce a compositional falsification framework for

cyber-physical systems with ML components. The framework identifies

inputs for which a modelled cyber-physical system with ML components

produces false executions in which a property 𝜑 of the system to be falsifying

are formalised in signal temporal logic. Specifically, they investigated an

Advanced Emergency Braking System (AEBS) as a representative of a cyber-

physical system that relies on the predictions of an AI-based image classifier

for object detection. Simulink models are used to simulate the AEBS (in

conjunction with the image classifier) to determine whether the 𝜑 property

is violated. To identify false executions, two extremes of an image classifier

77

3. Related Work

are considered: A perfect classifier (which always makes correct predictions)

and an extremely poor classifier (which always makes incorrect predictions).

Based on the Simulink simulation, both classifiers are simulated to extract

an uncertainty region, i.e. a subspace of the input space for which only

the correctness of the classifier’s prediction result determines whether a

crash is about to happen. From the subspace, inputs are identified (based on

sampling techniques) for which the system property 𝜑 is violated. Dreossi et

al. enable software engineers to identify situations in which the system (and

especially the image classifier) behaves unreliable. In contrast to our work,

we analyse reliability attributes of modelled software architectures which also

guides software engineering during the decision-making process, i.e. finding

proper architectural countermeasures to deal with AI-induced uncertainties.

Furthermore, we have generalised our approach to self-adaptive systems,

which cannot be studied with the falsification framework of Dreossi et al.

Serban, Poll and Visser introduce in their work [163] a method Modeling
Uncertainty During Design for software architecture evaluation by taking

into account the uncertainty of ML components. Their approach enables

the evaluation of design decisions (e.g. architectural patterns) to mitigate

ML-induced uncertainty. The presented method annotates existing soft-

ware architectures (or rather the included software components) by the two

ML-specific uncertainty types: epistemic and stochastic (or aleatoric) uncer-

tainty. Starting from the annotated components, a BN (Bayesian network)

is generated. The annotated components and their annotated uncertainties

correspond to the nodes (i.e. the random variables) in the graph of the BN; the

connections between the nodes can be interpreted as a kind of control flow

that includes all software components to which the uncertainty could propa-

gate. The individual probability distributions of the BN can be investigated by

a domain expert or simulation. Afterwards, the overall effect of ML-specific

uncertainties can be determined and their impact on particular architectural

patterns analysed. Similarly to our approach, the approach of Serban et al.

allows design-time evaluation of software architectures. However, we focus

on the reliability prediction of the overall system; that is, we do not focus on

the individual components that might be affected by ML uncertainties but

analyse the system-level effects. Moreover, we do not consider epistemic and

stochastic uncertainty as such, but concrete instances or manifestations of

uncertainty in the environment that could have an impact on predictive un-

certainty. As we will see in later sections, our approach allows us to analyse

architectural patterns such as the n-version programming or filtering pattern

78

3.1. Dealing with AI-induced Uncertainty

that either limit the impact of incorrect predictions or contain the occurrence

of uncertainty. This is in contrast to the method presented by the authors,

where only the sensitivity in terms of uncertainty propagation for specific

architecture patterns or styles is analysed. Since our approach is embedded

in the Palladio framework, we can also use other simulation and prediction

tools to compare design decisions not only in terms of reliability but also in

terms of performance, leading to well-informed design decisions.

3.1.2.3. Self-Adaptive Systems to Safeguard AI components

To the best of our knowledge, there is little work using self-adaptive systems

as architectural safeguards.

De Lemos and Grzes envisioned the self-adaptive AI approach [114] which

discusses the idea of using transparency and interpretation methods of AI to

generate explanations that serve as the basis for the self-adaptive system to

change the AI model, e.g. via direct manipulation of the model parameters.

The authors motivated the idea of self-adaptive AI in terms of dealing with

concept drift (i.e. the situation where the distribution of the data changes).

While the core idea is the same as what we present in this paper, the authors

present a vision rather than an implementation of their approach.

The work of Aniculaesei et al. [7] and Weiss et al. [204] present concepts

where self-adaptation is used as the primary means to deal with uncertain

AI components. The former presents a holistic approach to engineering

dependable autonomous systems which might include AI components. The

latter work discusses so-called self-adaptation envelopes which are used to

integrate and manage undependable components or subsystems. Both of

these works are related to our approach in that self-adaptation is leveraged to

deal with unreliable subsystems (which refer in our case to AI black-box com-

ponents). Overall, however, both approaches are rather considered to either

support software engineers in the engineering process (i.e. [7] by proposing

a holistic software system engineering approach for dependable autonomous

systems) or by providing a concept to integrate undependable self-adaptive

systems in safety-critical environments. In contrast, the approach presented

in this thesis provides an implemented design-time approach to predict the

reliability attributes of AI-enabled software systems.

79

3. Related Work

Another example of a runtime adaptation approach is provided by Zhu et

al. [216] that outline approaches where multiple AI-based controllers (for

planning tasks in autonomous systems) are employed. The controllers are

considered to be diverse, i.e. each controller might be designed by a different

team or according to different design methodologies. Due to diversity, some

controllers might have advantages (e.g. acting more robust) while having

disadvantages (e.g. less efficient). Runtime adaptation is used to switch

between the controllers to deal with various system states. A similar approach

is described by [128].

3.2. Quality Assurance of AI-enabled Systems

In this section on related work, we review and distinguish ourselves from

approaches to quality assurance of AI-enabled systems. Strictly speaking,

the approaches listed in section 3.1 are also quality assurance approaches,

but directly at the algorithmic or system level. In the following, approaches

are discussed (complementary to the approaches from the last sections) that

deal with the quality assurance of AI systems by looking at the life cycle

of an AI component. Therefore, in section 3.2.1 we provide an overview of

approaches that propose or discuss engineering processes around the life

cycle of an AI component. Afterwards, we discuss in section 3.2.2 existing

classifications for AI-enabled systems and how they are different from our

classes of architectural dependability assurance.

3.2.1. Engineering Processes

There are a lot of works that describe how engineering approaches must

be adapted to engineer AI or (more specifically) ML systems. Similarly, our

assurance classes provide support for assessing an AI-enabled system and

its domain (e.g. operating environment). Thus, they also guide the devel-

opment of the system. Nonetheless, the approaches are rather suggesting

further methods or activities that must be considered during all phases of

development (e.g. requirement, training or deployment phase). In contrast,

our classes give a first intuition of the system and the level of assurance that

can be achieved. Based on the classification into one of the classes, a soft-

ware engineer can take appropriate actions by considering the methods and

80

3.2. Quality Assurance of AI-enabled Systems

activities proposed in the work, which we summarise below. Also, we refer

to [67] which conducted a systematic literature review on the state-of-the-art

of software engineering research for engineering ML-based systems.

In terms of addressing safety issues during the ML lifecycle, Pereira and

Thomas [137] discuss safety hazards that can occur during the lifecycle of

ML-based cyber-physical systems that potentially impact safety, e.g. incor-

rect objective function definition during requirements elicitation. Also in this

context, the work of Santhanam et al. [154] introduce and discuss the notion

of AI engineering which is about building reliable deep learning-based soft-

ware systems. In particular, the authors discuss the impact of deep learning

components on the traditional software lifecycle and highlight challenges

that need to be addressed such as the requirement to measure the correct-

ness of a deep learning model across its lifecycle. Ashmore, Calinescu and

Paterson [11] provide a survey which discusses state-of-the-art methods that

provide proper evidence for assuring ML models at distinct stages of the

ML lifecycle. Hereby, the authors considered the stages Data Management,
Model Learning, Model Verification and Model Deployment. For each phase,

the corresponding activities are discussed (e.g. data management includes

activities such as data collection and pre-processing), assurance desiderata

and the methods to achieve assurance.

Besides adapting traditional software development processes in terms of AI-

specific activities to assure safety, some approaches discuss general processes

for engineering AI applications. For example, Amershi et al. [5] describe

a study for building AI applications based on the experience of several Mi-

crosoft software teams. Moreover, they present a nine-step workflow process

for developing AI applications which is integrated into agile-like software

engineering processes. Also, the authors extracted best practices one can

account for when developing AI systems. Finally, Hesenius et al. [83] repre-

sent a further work which proposes a software engineering process for ML

systems (or data-driven applications).

In addition to approaches that focus purely on the engineering process and

the lifecycle of AI-enabled systems, some approaches focus on specific phases

within the process, such as requirements engineering [85, 197, 144] or testing

[32].

81

3. Related Work

3.2.2. Classifying AI-enabled Systems

In this section, we discuss scientific works (similarly to our classes of depend-

ability assurances) that classify AI-enabled systems w.r.t. some classification

structure or taxonomy. To our knowledge, however, no work classifies AI-

enabled systems according to the extent to which assurances can be made

either at design-time or at runtime. Nonetheless, we discuss some works that

propose classification structures, but for a different purpose.

In [199], a taxonomy is established that classifies ML in terms of the types of

knowledge used to train the respective ML models. Therefore, the authors

introduce the term Informed Machine Learning, which refers to the idea of

incorporating knowledge gained (e.g. from domain experts) into the training

process. For example, knowledge graphs can be used to provide certain

relationships between concepts in the domain to be learned. The proposed

taxonomy classifies ML approaches based on three categories: The type of

knowledge integrated (e.g. domain expert or process flows), the representa-

tion of the knowledge (e.g. rules, knowledge graphs or differential equations)

and the location where the knowledge is integrated (e.g. training data or

hypothesis space). In contrast, our classes of dependability assurance are

rather designed to classify ML systems regarding assurance levels. Moreover,

the taxonomy presented by the authors aims to classify research activities.

Feldt et al. [59] present the AI in Software Engineering Application Levels
(AI-SEAL) taxonomy that classifies applications w.r.t. three dimensions. The

first dimension is the Point of Application and refers to the point in time

or location the AI technology is applied, i.e. during execution (runtime),

at the process level (during software engineering process) or directly in

the product. The second dimension refers to the Type of AI, e.g. Bayesian
models. The last dimension or facet corresponds to the level of automation,

i.e. the extent of human intervention. The authors argue that engineers or

software companies can analyse the associated risks and opportunities when

applying AI based on the taxonomy. Although this is fairly similar to our

classification structure, we reason about the assurance level one can make

when engineering AI-enabled systems. Furthermore, we aim to support

software engineers to develop reliable systems with AI components.

82

3.3. Analysing Self-Adaptive Systems

3.3. Analysing Self-Adaptive Systems

In this section, we provide an overview and distinguish ourselves from related

work that (just like us) uses Markov models to analyse self-adaptive systems

in terms of decision-making. Note that although we will describe extensively

how MDPs are instantiated in the domain of self-adaptive systems, we do

not aim to provide a formalism describing the fundamental notion of self-

adaptivity (e.g. Petrovska et al. [138]), but use MDPs to predict the quality of

an adaptation strategy. We conclude this section by reviewing model-based

approaches for analysing self-adaptive systems at design-time and discuss

how they differ from our approach.

3.3.1. Using Markov Models for Decision-Making

The use of Markov models in terms of self-adaptive systems is a widely used

method. For example, Moreno et al. [126] employMDPs to determine the best

possible adaptation or adaptation tactic from a given set of options. Hereby,

the interaction of the environment and the system is translated into an MDP

such that different adaptations can be evaluated by applying (e.g.) probabilis-

tic model checking to the MDP. Thus, the best possible adaptation can be

determined. Also in this line of research, Camilli, Mirandola and Scandurra

[40] employ MDPs to capture self-adaptive systems and their uncertainties

mainly induced by the environment and verify whether the system maintains

an acceptable behaviour. In this work, we use MDPs as well to simulate the

interaction between the environment and the system. However, we conduct

a full simulation of the MDP to evaluate entire adaptation strategies (as

opposed to analysing individual adaptation options). Moreover, the above

approaches are applicable only at runtime, whereas our approach aims to

analyse adaptation strategies at design-time. Also, Elrakaiby et al. [55] make

use MDPs to formalise self-adaptive systems for the sake of optimisation.

The authors provide a framework for model-based (and requirements-driven)

synthesis of optimal adaptation strategies for autonomous systems at design-

time. Besides the difference that we evaluate adaptation strategies and do

not optimise them, the authors focus on behavioural optimisation (i.e. on

functional requirements), which is in contrast to our approach that deals

exclusively with non-functional requirements.

83

3. Related Work

DTMCs (discrete-time Markov chains) represent Markov models that are

also frequently used to model self-adaptive systems and their stochastic

dynamics, e.g. [66, 38, 60, 37, 61]. In [38], for example, the authors use

DTMCs to describe the impact of adaptations. Based on the DTMC, the

impact of adaptation is analysed and the best possible adaptation is selected.

Further, Filieri et al. [60] use DTMCs to model different behavioural variants

of a self-adaptive system and use control theory approaches to maintain

the reliability properties. Equivalently, Cámara and de Lemos [37] employ

DTMCs to model self-adaptive systems and to check resilience properties.

The resilience properties are specified by using probabilistic computation

tree logic. In the last step, the authors apply probabilistic model checking to

verify whether the properties are satisfied. Finally, Franco et al. [61] translate

individual system configurations into DTMCs to predict reliability properties.

At runtime, the prediction results are used to find optimal adaptations to

which the current configuration of the system can transition. As with MDP-

based approaches, the same reasoning applies to the distinction with our

work: All approaches are used at runtime to support decision-making (e.g.

selecting the best possible adaptation) or to verify certain properties when

transitioning to another state. In this work, however, we focus entirely on

design-time analysis, i.e. we enable the evaluation of design decisions before

a single line of code of the system is implemented. Moreover, we evaluate

entire adaptation strategies.

3.3.2. Model-based Analysis of Self-Adaptive Systems

In this section, we review related work that is either purely model-based or

heavily build upon model-based techniques.

3.3.2.1. Architecture-based Self-Adaptation

Architecture-based self-adaptation [64] refers to a research area in which

models (abstracting the managed system) are used at runtime to evaluate

changes made to the managed system using model-based analysis techniques.

In such settings, abstract models of the system are complemented by data

monitored at runtime. Afterwards, analysis techniques are applied to the

complemented models in order to predict or analyse system properties such

as the response time. Based on the predicted properties, adaptations can be

84

3.3. Analysing Self-Adaptive Systems

triggered, or they are used to determine the effects of some adaptations. In

this section, we give a brief overview of some approaches using architecture-

based self-adaptation. However, the difference between architecture-based

self-adaptation approaches and our approach is always the same. While

architecture-based self-adaptation uses models at runtime (for decision-

making), we use models at design-time for the analysis of self-adaptive

systems (e.g. the evaluation design decisions).

Cámara et al. [38] use DTMCs to abstract the managed system and to predict

quality attributes. The prediction results are used to determine at runtime

the effects of particular adaptations; that is, for a set of adaptations, the

individual impacts are evaluated such that the best possible adaptation is

selected.

In [87], the authors present a model-based approach using the Descartes Mod-
eling Language (DML). DML is an architecture-level modelling language for

online performance and resource management in self-adaptive systems. The

approach allows the prediction of performance attributes of the system such

that adaptation can be planned proactively w.r.t. the predicted performance

attributes.

Finally, Weyns and Iftikhar [208] present an approach for model-based simu-

lation at runtime. Hereby, stochastic timed automata are used to abstract the

managed system and the environment. At runtime, the models are first com-

plemented with runtime data and then simulated. Based on the simulation

results, the adaptation (from a set of adaptations) that best meets the quality

objectives can be determined.

3.3.2.2. Formal Verification of Functional Correctness

Model-based approaches are also leveraged in terms of showing the cor-

rectness of the adaptation logic itself. In this context, MAPE-K-based self-

adaptive systems are analysed (based on models such as state machines) to

verify the correctness of the adaptation behaviour, e.g. [8, 91]. Although

such approaches aim to ensure the adaptation behaviour at design-time,

our model-based approach is concerned with evaluating the quality or ef-

fectiveness of a strategy. That is to say, our approach supports software

engineers during the design of an adaptation strategy, i.e. to evaluate distinct

adaptation strategies or design decisions within a strategy family. Once an

85

3. Related Work

appropriate adaptation strategy has been identified and designed (in terms

of the different quality objectives), the approaches to verify the correctness

of the strategy can be applied afterwards.

3.3.2.3. Model-based Testing

Model-based testing [193] is a widely used approach to generate test cases

or input data for a system under test. In the context of self-adaptive systems,

there are also several approaches which make use of models to generate test

cases to validate the adaptation logic, e.g. [141, 9]. For example, Arcaini

et al. [8] uses a domain-specific modelling language called MAPE Specifi-
cation Language and abstract state machines (to represent the adaptation

logic) to generate test cases for which the resulting MAPE-K feedback loop

implementation can be tested.

In contrast to our approach, however, we do not aim to test adaptation logic,

but to evaluate the quality of an adaptation strategy w.r.t. various quality

objectives. More specifically, we address the uncertainty Parameter over
time, which is arguably difficult to tackle by using model-based testing. We

also aim to compare distinct strategies or design decisions within families

of strategies. In summary, our approach can be seen as a starting point for

developing an appropriate strategy. Afterwards, model-based testing can be

used to test the adaptation logic and avoid implementation errors.

3.3.2.4. Scenario-based Analysis

In this section, we review several approaches which we consider to be

scenario-based, i.e. the adaptation logic or adaptation strategy is explic-

itly validated or tested against certain scenarios. However, scenario-based

analysis is not suitable for evaluating a general quality measure of a strategy;

this forms the main difference to our approach. We will see in chapter 4 that

it is necessary to analyse the trajectory space of a self-adaptive system to

determine the quality of its adaptation strategy. Scenario-based approaches

focus only on evaluating specific trajectories of the space. For instance, let

𝜋, 𝜋 ′ be two strategies, scenario-based analysis evaluates 𝜋 > 𝜋 ′ based on a

single (or a few) trajectories (or scenarios). However, it does not ensure the

86

3.3. Analysing Self-Adaptive Systems

general case, i.e. whether 𝜋 outperforms 𝜋 ′ when considering all trajecto-

ries. Finally, scenario-based analysis neglects the uncertainty Parameter over
time.

An example of a scenario-based approach is the performance simulator

called SimuLizar [16, 15]. SimuLizar enables the simulation of performance

attributes of self-adaptive systems by simulating distinct workload scenarios.

More specifically, by using an approach called Usage Evolution [31], one can

model the evolution of the workload over time which is used as a foundation

to analyse the adaptive behaviour (represented by model transformations)

w.r.t. performance attributes. There are also extensions for SimuLizar that

addresses the consideration of other quality attributes, e.g. energy efficiency

[178].

Another example of a scenario-based analysis approach is SLAstic.SIM [121]

for performance simulation of reconfigurable component-based software

systems. Similarly to SimuLizar, SLAstic.SIM uses PCM to represent the

managed system. In addition, the simulation is driven by workload traces

(either recorded or generated) that represent distinct scenarios against which

the adaptation logic is evaluated.

3.3.2.5. Evaluating Adaptation Strategies

In the following, we review approaches similar to our approach to enable

the evaluation of adaptation strategies at design-time.

Berardinelli et al. [20] provide an approach which models the context of

an adaptive system by using continuous-time Markov chains. Based on the

continuous-time Markov chain it can be determined how well an adaptive

system satisfies certain quality attributes. In contrast to our approach, how-

ever, Berardinelli et al. do not focus on MAPE-K-based self-adaptive systems.

Moreover, since we make use of MDPs, we can encode multiple quality

attributes within a reward; thus, we can compare strategies w.r.t. various

quality attributes.

Grassi, Mirandola and Sabetta [72] discuss a model-based approach of per-

formability analysis for dynamically reconfigurable component-based sys-

tems. Just like our approach, the work is applicable at design-time to evaluate

dynamically acting systems. However, there are several differences. First, the

approach of Grassi et al. is domain-specific, i.e. it deals with the analysis of

87

3. Related Work

performability properties. Second, although the approach enables evaluating

dynamically reconfigurable systems, they do not focus on MAPE-K-based

self-adaptive systems (which is contrary to our work). Thus, they do not

analyse what we define as an adaptation strategy. Third, the approach of

Grassi et al. requires that the state space (or all possible system configura-

tions) can be completely unfolded. However, due to state space explosion,

this is not always possible and addressed in our approach by using Monte

Carlo methods.

Cámara et al. [39] describe an approach for offline (i.e. design-time) synthesis

of adaptation strategy repertoires w.r.t. a utility profile (system qualities).

More specifically, the authors use a discrete abstraction of the state space,

MDPs and probabilistic model checking techniques to synthesise a repertoire

of adaptation strategies used at runtime. In particular, the offline synthesis

identifies those strategies that are more suitable for certain regions of the

state space. Based on the offline analysis, the runtime overhead of the online

synthesis process is eliminated and near-optimal solutions are provided. To

our understanding, however, the term adaptation strategy is treated differ-

ently by Cámara et al. More precisely, they define an adaptation strategy as a

set of tactics representing a primitive or atomic adaptation step within a strat-

egy. As we will see later, the term adaptation strategy is defined differently in

this thesis. In our definition, an adaptation strategy includes all activities that

influence the decision to select a particular action in a given state (including

activities of all MAPE phases). That is, we evaluate the adaptation logic more

comprehensively. Furthermore, our main intention is to evaluate adaptation

strategies in order to support software engineers in decision-making, i.e.

comparing strategies or design decisions within strategy families.

3.3.2.6. Environmental Modelling

In terms of environment modelling, there are two works [104, 169] which

conducted literature research on modelling the environment of self-adaptive

systems. According to the results, various modelling approaches capture the

environment in which self-adaptive systems operate, e.g. state machines,

DTMCs, MDPs, and UML (unified modelling language) class diagrams. The

selection of the concrete model type highly depends on the purpose of the

environment model. The environment models, for example, reviewed in [104]

88

3.3. Analysing Self-Adaptive Systems

are considered from the perspective of requirements engineering. The envi-

ronment models discussed in [169] are mainly intended to support runtime

decision-making or for model-based testing, which is different from what

we want to achieve, i.e. design-time evaluation of adaptation strategies.

When reviewing the various model-based approaches for analysing self-

adaptive systems, we also noticed that different representations have been

used to capture the environment, ranging from stochastic timed automata to

Markov models to traces of recorded data. In virtually every approach, the

purpose of the environment model is distinct from our approach. Moreover,

most design-time approaches are applicable in a domain-specific way. Thus,

we can barely compare our environmental modelling approach with other

approaches.

However, we found at least one approach which supports desing-time analy-

sis by using an environment model representing the context of an adaptive

system domain independently. Berardinelli et al. [20] present a state machine-

based Context Evolution Model which captures the context of an adaptive

system. More specifically, the authors define so-called Context Attributes
(CA) that represent what we consider to be an environmental variable. Each

CA consists of a finite set of values and is described by an individual state

machine. A set of CA is transformed into an overall state machine by com-

posing the individual CAs. Interestingly, a context evolution model can be

instantiated domain independently (just as our environmental modelling

approach as we will see in chapter 5). However, the algorithm compos-

ing the single CAs suffers from scalability and memory limitations because

the number of composed states grows exponentially. We circumvent this

problem by compactly encoding the state space by using Bayesian models.

Finally, we argue that the modelling of complex state spaces and complex

stochastic dependencies is rather hard to conduct with a state machine-based

model because for each CA a state machine must be described and also the

dependencies between the distinct state machines. In contrast, our approach

allows the modelling of state spaces flexibly and compactly by using discrete

Bayesian networks. Again, we defer the discussion to chapter 5.

89

Part III.

Design-time Evaluation of
Self-Adaptive System

4. The Dynamics of Self-Adaptive
Systems: A Theoretical
Perspective

We consider self-adaptive systems as architectural safeguards that we aim

to evaluate at design-time. For design-time analysis, however, an analytical

model is required that abstracts the behaviour of a real system and that

provides the fundamental means to predict quality attributes. In this chapter,

we discuss the theoretical framework or model that underlies the approaches

of chapter 6 and section 7.2 and that forms the basis for evaluating adaptation

strategies of self-adaptive systems at design-time. More specifically, we for-

malise the stochastic dynamics of self-adaptive systems. Stochastic dynamics

refer to the various states that a self-adaptive system can potentially tran-

sition to over time. We consider the process of how a self-adaptive system

moves through the state space as a stochastic process which is induced by

two components, namely the Environmental Dynamics and the Deterministic
Adaptation Process. Environmental dynamics refers to the stochastic evolu-

tion of the environment that must be taken into account by a self-adaptive

system to maintain quality objectives. The deterministic adaptation process

describes adaptations of system configurations in response to changes in

the environment. Based on these concepts, we map the formal elements

of a self-adaptive system into the domain of MDPs (Markov decision pro-

cesses) which we consider as the underlying analytical model of self-adaptive

systems. We use MDPs to formulate the challenges and problems arising

when engineering self-adaptive systems from the perspective of a software

engineer.

Using MDPs as the theoretical foundation has several advantages:

93

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

• MDPs are prevalent models in the self-adaptive system community

and have proven to be successful as theoretical foundation to capture

and analyse self-adaptive systems (e.g. [6, 127, 215]).

• Using MDPs as an underlying framework shows the formal semantics

of our presented approach.

• Many other mathematical methods (e.g. dynamic programming, rein-

forcement learning [180] or stochastic stability analyses [123]) build

upon MDPs and offer approaches to deal with the challenges this

work addresses. For instance, we discuss in chapter 6 how we make

use of dynamic programming to evaluate and assess the quality of an

adaptation strategy.

This chapter is structured as follows: Section 4.1 introduces the environmen-

tal dynamics. Section 4.2 describes the deterministic adaptation process. The

concepts presented in the latter two sections are brought together in sec-

tion 4.3 to formalise self-adaptive systems as MDPs. Having established the

formal apparatus of self-adaptive systems, we formalise in section 4.4 what

we consider to be the Engineering Problem concerning self-adaptive systems,

namely the design of an adaptation strategy for maintaining various quality

objectives of a system. Finally, we discuss made assumptions in section 4.5

and summarise the chapter in section 4.6.

4.1. Environmental Dynamics

Self-adaptive systems are expected to maintain quality objectives under

changing conditions or Uncertainties [206, p. 1]. Uncertainties are an impor-

tant concept, as they are the source of adaptation. In literature, however,

there are various definitions and understandings. For instance, Weyns [206,

p. 1] enumerates changes in the operational environment, dynamic resource

availability and variations of user goals as possible uncertain conditions.

Salehie and Tahvildari [153] consider changes in the Self and Context of a
software system as the main reason for adaptation. The term Self refers

to the whole body of the software and Context includes everything in the

operational environment that affects system properties and behaviour. As

the last example, Oreizy et al. [134] consider the operating environment as

the source of adaptation in which the operating environment is considered

94

4.1. Environmental Dynamics

as anything that can be observed by the system (e.g. user input), sensor data

or hardware devices. We agree with all of these definitions. In this thesis,

however, we generalise the concept of changing conditions or uncertainties

(w.r.t. the definitions) and define it from a quality-oriented perspective.

More specifically, we denote the source of adaptation as Environment. Before
defining the environment more formally, we introduce Environmental States
that make up the environment.

Definition 17 (Environmental State). An environmental state encompasses
all variables or factors whose behaviour cannot be controlled directly but have
an impact on the quality objectives of a software system. More formally, an
environmental state 𝐸 := (𝑒1, ..., 𝑒𝑛) is a tuple consisting of instances of the
aforementioned variables.

To limit the effects of the state space explosion problem, we assume that

each 𝑒𝑖 ∈ 𝐸 is discrete. Based on the definition of environmental states, the

environment E is defined as follows:

Definition 18 (Environment). The environment E := {𝐸1, ..., 𝐸𝑚} is a set of
discrete environmental states. More specifically, E is spanned by all the variable
realizations or instances of each environmental state 𝐸𝑖 .

The definition of discrete environmental states 𝐸 follows from the assumption

that each 𝐸 consists of discrete variables.

Note how definitions 17 and 18 abstract from the definitions enumerated

at the beginning of this section. An environmental state 𝐸 includes all

variables 𝑒1, ..., 𝑒𝑛 that affect quality objectives which subsumes (depending

on the domain) variables like resource availability/failures or harsh weather

conditions. More specifically, no distinction is made between intrinsic (e.g.

resource availability) or extrinsic (e.g. harsh weather conditions) variables,

as only their effect on quality objectives is of relevance. The main concern

of this thesis is how quality objectives (w.r.t. the quality requirements)

are affected in the presence of certain environmental states and how self-

adaptation compensates for these effects. The concrete classification or

meta-information of the environmental state itself is therefore of secondary

importance but only their effect on quality objectives matters. Self-adaptation

95

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

is highly related to quality requirements and meeting them is the primary

trigger for adaptation [153].

The distinct states of the environment evolve; that is, for each time instance

𝑡 , we observe the environment to be in a particular state 𝐸𝑡 . We denote the

evolution of the environmental states as Environmental Dynamics which we

consider as stochastic process (𝑋E𝑡)𝑡 ∈𝐼𝑁 . In addition, we assume that the

Markov assumption (see section 2.4.1) applies to (𝑋E𝑡)𝑡 ∈𝐼𝑁 .

Definition 19 (Environmental Dynamics). The environmental dynamics are
a stochastic process (𝑋E𝑡)𝑡 ∈𝐼𝑁 for which the Markov assumption holds. More
precisely, the environmental dynamics are described as stationary Discrete-Time
Markov Chain (E, E0, 𝑡E) where

• E corresponds to the set of environmental states.

• E0 corresponds to the set of initial environmental states: E0 ⊆ E

• 𝑡E : E ×E → [0, 1] corresponds to the transition function that evaluates
the probability to transition to state 𝐸𝑖 given 𝐸 𝑗 , i.e. 𝑃𝑟 (𝑋E𝑡+1 = 𝐸𝑖 |
𝑋E𝑡 = 𝐸 𝑗).

We consider the stochastic process of environmental dynamics to be discrete

(which follows from the definition of discrete environmental states).

The use of DTMCs or Markov models is an accepted and widely used ap-

proach in the self-adaptive system community. For example, many works

(e.g. [127, 55, 37]) use Markov models to capture the stochastic nature of

self-adaptive systems. In contrast to our work, we generalise the concept

of the environment and consider it as the source or trigger of adaptation.

The dynamics of the environment (see definition 19) is represented by a

DTMC and is considered the main component responsible for the stochastic

behaviour of self-adaptive systems.

4.2. The Deterministic Adaptation Process

In the last section, the concept of the environment and its dynamics was

introduced. Whenever the environment transitions to a state that can no

longer be handled by the current configuration of the software system (due to

96

4.2. The Deterministic Adaptation Process

violations of the quality objectives), an adaptation is triggered. The goal is to

adapt the system to compensate for changes in the environment to maintain

quality objectives. The process of adapting the system from a configuration

𝐶𝑖 to 𝐶 𝑗 is called Adaptation Process and is explained in more detail in the

following section.

Before formally defining the adaptation process, we introduce basic termi-

nology. We consider adaptation from an architecture-driven perspective.

That is to say, adaptations and system configurations are described at the

architectural level.

Definition 20 (Architectural Configuration). An architectural configuration
𝐶 includes all structural, behavioural and deployment-specific elements as
well as their relationships to describe the software architecture (according to
definition 5) of the system at a given time instance.

We intentionally do not specify the concrete structure of an architectural

configuration 𝐶 to emphasise that no assumptions are made and to maintain

generality. It is only required that the effect of adaptations to configurations

are represented in 𝐶 . Similarly to the definition of system configurations,

adaptations are also defined from an architectural perspective.

Definition 21 (Architectural Adaptation). An architectural adaptation 𝛿 ∈ Δ
(where Δ refers to the set of available adaptations) is applied to an architectural
configuration of a system to change its structure or behaviour.

The set of available adaptations Δ includes at least one adaptation 𝛿∅ which
we denote as the Empty Adaptation. The empty adaptation applied to a config-

uration does not change the configuration and indicates that the self-adaptive

system has not taken any action at all, i.e. applying 𝛿∅ to an architectural con-

figuration𝐶 results in𝐶 again. For the sake of completeness, the architectural

configuration space is defined as follows:

Definition 22 (Architectural Configuration Space). The architectural config-
uration space C consists of all architectural configurations that are reachable
from an initial architectural configuration 𝐶0 by applying a sequence of adap-
tations (𝛿1, ..., 𝛿𝑛).

97

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

Based on the previous definitions, the adaptation process can be defined. The

adaptation process refers to the transition of an architectural configuration

𝐶𝑖 to 𝐶 𝑗 by applying an architectural adaptation 𝛿 .

Definition 23 (The Deterministic Adaptation Process). The deterministic
adaptation process is described by the function 𝜙 : C × Δ→ C that uniquely
maps an architectural configuration 𝐶𝑖 and adaptation 𝛿 to an architectural
configuration 𝐶 𝑗 , i.e. 𝜙 (𝐶𝑖 , 𝛿) = 𝐶 𝑗 .

Based on the definition of the deterministic adaptation process, we now

catch up with the formalisation of the empty adaptation property introduced

earlier.

Property 1. The empty adaptation 𝛿∅ applied to any architectural configura-
tion 𝐶 results always in 𝐶 :

∀𝐶 ∈ C : 𝜙 (𝐶, 𝛿∅) = 𝐶 (4.1)

Additionally, we require that 𝜙 satisfies the following property:

Property 2. For any pair of architectural configurations 𝐶 and 𝐶′ for which
there exist an adaptation 𝛿 (i.e. 𝜙 (𝐶, 𝛿) = 𝐶′), the adaptation 𝛿 is unique:

∀𝛿, 𝛿 ′ ∈ Δ : 𝜙 (𝐶, 𝛿) = 𝜙 (𝐶, 𝛿 ′) = 𝐶′ ⇔ 𝛿 = 𝛿 ′ (4.2)

Basically, the property states that an adaptation 𝛿 is derived uniquely from𝐶

and 𝐶′, if 𝜙 (𝐶, 𝛿) = 𝐶′ applies. The properties 1 and 2 play an essential role

in section 4.3.2, which is why we have formalised them explicitly.

The mechanism governing the adaptation process is the adaptation strategy.

The strategy implements the decision logic that determines which adaptation

should be executed. The selected adaptation is passed to the adaptation

process to apply the adaptation. We assume that the adaptation strategy

does not select adaptations leading to invalid architectural configurations.

For example, consider adaptations adjusting parameters by adding values or

incrementing the parameter itself. When the parameter reaches themaximum

value, increasing the value again will result in an invalid configuration.

Ensuring the correctness of MAPE-K-based self-adaptive systems can be

achieved by using approaches such as [8, 91]. We will not formally introduce

98

4.3. Considering Self-Adaptive Systems as Stochastic Processes

here what we consider an adaptation strategy; however, this is made up for

in chapter 6. For the remainder of this chapter, it is sufficient to think of an

adaptation strategy as a function that determines the next adaptation given

the current state.

4.3. Considering Self-Adaptive Systems as
Stochastic Processes

As discussed at the beginning of this chapter, we consider the dynamics of

a self-adaptive system as a stochastic process induced by two components,

namely the environmental dynamics and the deterministic adaptation process.

Both were introduced in section 4.1 and 4.2, respectively. In this section, we

discuss how environmental dynamics and the deterministic adaptation pro-

cess are correlated and mapped onto MDPs (Markov decision processes).

4.3.1. Mapping Self-Adaptive Systems to Markov Decision
Processes

In this section, we describe how the mathematical framework of MDPs is

instantiated in the domain of self-adaptive systems. For this, the elements

that make up a self-adaptive system (i.e. the self-adaptive system state

space, adaptation space, self-adaptive system dynamics, quality objectives

and adaptation strategy) are mapped to the basic elements of an MDP, namely

the set of states 𝑆 , set of actions 𝐴, transition function 𝑡 and reward function

𝑟 : 𝜆 := (𝑆,𝐴, 𝑡, 𝑟) (see section 2.4.2). Before we define the mapping, we need

to introduce the concepts of Self-Adaptive System State and Self-Adaptive
System State Space.

Whenever the environment transitions to a state that cannot be handled by

the current system configuration, an adaptation is triggered to adapt the sys-

tem accordingly. As described in section 4.1, we assume that environmental

states are discrete.

Definition 24 (Self-Adaptive System State). A self-adaptive system state 𝑆
consists of an architectural configuration 𝐶 ∈ C and an environmental state
𝐸 ∈ E, described by the tuple: 𝑆 := (𝐶, 𝐸).

99

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

The combination of an environmental state and architectural configuration

defines a self-adaptive system state. The state changes over time, e.g. when

an adaptation is made or the environment transitions to a different state. For

completeness, the self-adaptive system state space is defined as follows:

Definition 25 (Self-Adaptive System State Space). The self-adaptive system
state space S is a set that encompasses all self-adaptive system states, i.e.
S := C × E.

Based on definitions 24 and 25, the mapping of the elements of a self-adaptive

system to the elements of an MDP can now be discussed.

As described at the beginning of this section, anMDP comprises four elements

captured by the tuple 𝜆 := (𝑆,𝐴, 𝑡, 𝑟). In the remainder of this section, we

refer to the set of states 𝑆 of an MDP as 𝑆𝜆 to distinguish the set from a

self-adaptive system state 𝑆 := (𝐶, 𝐸). The most trivial mappings refer to the

self-adaptive system space S which represents 𝑆𝜆 and the adaptation space

Δ which corresponds to the set of actions 𝐴 in the context of MDPs.

In MDPs, the transition function 𝑡 determines how states transition over

time, i.e. it captures the dynamics. Therefore, we consider 𝑡S as an in-

stantiated version of 𝑡 that captures the transition function or stochastic

dynamics of a self-adaptive system. More precisely, we define the func-

tion 𝑡S : S × Δ × S → [0, 1] as the equivalent concept to 𝑡 from MDPs.

Equally, to 𝑡 , 𝑡S determines the probability distribution to transition to state

𝑆 𝑗 given the present state 𝑆𝑖 and adaptation 𝛿 , i.e. 𝑡S = 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 , 𝑋Δ𝑡
),

(𝑆 𝑗 , 𝑆𝑖 , 𝛿) ↦→ 𝑃𝑟 (𝑋S𝑡+1 = 𝑆 𝑗 | 𝑋S𝑡 = 𝑆𝑖 , 𝑋Δ𝑡
= 𝛿). Additionally, 𝑡S specifies

the correlation of the environmental dynamics and the adaptation process.

More specifically, let (𝑋S𝑡)𝑡 ∈𝐼𝑁 be a stochastic process (where the Markov

assumption applies) describing the stochastic dynamics of a self-adaptive

system. 𝑡S encodes all information necessary to determine all possible state

sequences of (𝑋S𝑡)𝑡 ∈𝐼𝑁 :

𝑋S0 = 𝑆0 → · · · → 𝑋S𝑡 = 𝑆𝑖
𝑡S (𝑆𝑖 ,𝛿,𝑆 𝑗)−→ 𝑋S𝑡+1 = 𝑆 𝑗 → · · · → 𝑋S∞ = 𝑆𝑘 (4.3)

· · · → 𝑋S𝑡 = 𝑆𝑖 := (𝐶, 𝐸)
𝑡S (𝑆𝑖 ,𝛿,𝑆 𝑗)−→ 𝑋S𝑡+1 = 𝑆 𝑗 := (𝐶′, 𝐸′) → · · · (4.4)

Hereby, 𝑋S𝑡 = 𝑆𝑖
𝑡S (𝑆𝑖 ,𝛿,𝑆 𝑗)−→ 𝑋S𝑡+1 = 𝑆 𝑗 denotes a specific transition from state

𝑆𝑖 and 𝛿 to 𝑆 𝑗 w.r.t. 𝑡S (𝑆𝑖 , 𝛿, 𝑆 𝑗). As shown in sequence 4.4, a state 𝑆 := (𝐶, 𝐸)

100

4.3. Considering Self-Adaptive Systems as Stochastic Processes

consists of an architectural configuration 𝐶 and environmental state 𝐸. Both

components underlie a change process: the deterministic adaptation process

and the stochastic environmental dynamics. Intuitively, one would think that

the adaptation process is mainly driven by the environmental dynamics; that

is, whenever the environmental dynamics transitions from state 𝐸 at time 𝑡

to state 𝐸′ at time 𝑡 + 1 and the current configuration 𝐶 is not able to satisfy

quality objectives in state 𝐸′, a new configuration is observed at time 𝑡 + 2.
However, this is not necessarily the case because the environmental dynamics

may also change during the adaptation process (e.g. in the sequence from

𝑡 + 1 to 𝑡 + 2). In principle, there are four ways in which 𝑡S can transition to a

particular self-adaptive system state which are mainly due to environmental

changes, changes in architectural configuration, both or no changes. More

formally, let 𝑆𝑖 := (𝐶, 𝐸) be a state and 𝑆 𝑗 := (𝐶′, 𝐸′) be the state after the
transition w.r.t. 𝑡S , the four possible transitions are as follows:

𝑆 𝑗 =


(𝜙 (𝐶, 𝛿), 𝐸), 𝛿 ≠ 𝛿∅ ∧ 𝐸 = 𝐸′

(𝐶, 𝐸), 𝛿 = 𝛿∅ ∧ 𝐸 = 𝐸′

(𝜙 (𝐶, 𝛿), 𝐸′), 𝛿 ≠ 𝛿∅ ∧ 𝐸 ≠ 𝐸′

(𝐶, 𝐸′), 𝛿 = 𝛿∅ ∧ 𝐸 ≠ 𝐸′

(4.5)

Recall from section 2.4.2 function 𝑟 of anMDP referring to the reward function

that evaluates the decision of selecting an action in a given state considering

the state after the transition. In self-adaptive systems, the reward function

is represented by the quality objectives or utility functions that must be

maintained by adaptation strategies. Therefore, the reward function 𝑟S : S ×
Δ × S → 𝐼𝑅 in self-adaptive systems reflects exactly these quality objectives.

The quality objectives (and preferences of particular quality attributes, if

any) are encoded in the resulting rewards generated for each decision that a

self-adaptive system makes (i.e. by applying adaptations). Although in later

chapters implementations are presented, we do not focus on the best possible

way to implement a reward function. While this is an important topic, it is

highly domain and application-dependent. Note that the reward function

𝑟S is not limited to represent solely quality objectives. It is also possible

to encode other qualities in the reward function (e.g. stability properties).

For example, each time an adaptation is triggered, a negative reward can be

added to the resulting reward to punish strategies that frequently adapt the

system. In this thesis, however, we solely focus on reward functions that

reflect quality objectives.

101

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

Finally, the last concept of MDPs that must be mapped to a corresponding

concept in self-adaptive systems is the policy 𝜋 . Recall that a policy 𝜋

determines the action to be taken in a given state. In self-adaptive systems,

the policy 𝜋 is represented by the adaptation strategy that decides whether

an adaptation is triggered or not and governs the adaptation process. We

are not going into more detail in this section as the concept of adaptation

strategies and their role in MDPs is discussed in chapter 6.

As a last remark, note that the definitions of the reward function 𝑟S and policy
𝜋 (i.e. the adaptation strategy) deviate from the definitions in the literature.

For instance, Sutton and Barto [180] define the reward function as the ex-

pected reward for a given state-action pair, i.e. 𝐼𝐸 [𝑋𝑅𝑡+1 | 𝑋𝑆𝜆𝑡
= 𝑠, 𝑋𝐴𝑡

= 𝑎];
the policy 𝜋 (𝑎 |𝑠) is defined as a conditional probability distribution of select-

ing an action in a given state, i.e. 𝜋 (𝑎 |𝑠) = 𝑃 (𝑋𝐴𝑡
| 𝑋𝑆𝜆𝑡

). We deviate from the

literature because the underlying concern is different. In the work of Sutton

and Barto, the underlying concern of MDPs is optimisation in the context of

reinforcement learning. More specifically, the primary goal is to learn the dis-

tribution 𝜋 (𝑎 |𝑠). From the moment 𝜋 (𝑎 |𝑠) is learned the resulting mechanism

selects an action by querying the learned policy, i.e. 𝜋∗ := argmax 𝑎∈𝐴 𝜋 (𝑎 |𝑠).
Based on the probabilistic definition of 𝜋 , the reward function is also defined

from a probabilistic perspective, as the policy must be learned in a way that

maximises the expected reward. In the context of this thesis, however, the

underlying concern is the evaluation of adaptation strategies. That is, the

policy, or rather the adaptation strategy, is a fixed and non-probabilistic

function 𝜋 : 𝑆 → 𝐴, which is plugged into the MDP framework to assess the

quality of the strategy by observing the reward generated. Consequently,

there is no need to define the reward function from a probabilistic point of

view because sequences of states are simulated/sampled and evaluated by

the reward function. Based on the generated rewards of each sequence, the

expected reward could be computed anyway.

4.3.2. The Interdependency of Software Architecture and
Environment

In this section, we discuss the interdependency of the software architecture

(i.e. the various architectural configurations) and the environment. With

the term interdependency, we refer to the mutual interaction of the two

concepts, i.e. the effect of the environment on the software architecture and

102

4.3. Considering Self-Adaptive Systems as Stochastic Processes

vice versa. Intuitively, one may argue that there is only a unidirectional

dependency where only the environment forces changes in the architec-

tural configuration. However, there are also cases in which the architec-

tural configuration of the system affects how the environment evolves. The

interdependency of architecture and environment now refers to whether

the environment drives the stochastic process of a self-adaptive system

solely or whether the architecture configuration also has a non-negligible

effect on the environment and thus on the entire process. Let 𝑆 := (𝐶, 𝐸,),
𝑆 ′ := (𝐶′, 𝐸′,) be self-adaptive system states at time 𝑡 and 𝑡 + 1, respectively.
The probability of transitioning to 𝑆 ′ given 𝑆 is 𝑃𝑟 (𝑋S𝑡+1 = 𝑆 ′ | 𝑋S𝑡 = 𝑆) or
𝑃𝑟 (𝑋C𝑡+1 = 𝐶′, 𝑋E𝑡+1 = 𝐸′ | 𝑋C𝑡 = 𝐶,𝑋E𝑡 = 𝐸). From a formal perspective,

the interdependency of architecture and environment is about the stochas-

tic (in-)dependencies of the random variables 𝑋C𝑡+1 , 𝑋E𝑡+1 , 𝑋C𝑡 and 𝑋E𝑡 . By
knowing the dependency structure of the random variables, the distribu-

tion 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) may factorise to a product of eligible distributions that

provides a better understanding of the stochastic process itself. In addition,

the knowledge of how a self-adaptive system moves through the state space

(encoded by 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡)) is of paramount importance for analysis and

decision-making at runtime and design-time.

Example 1. Before discussing the interdependency of architecture and

environment in more detail, we provide an example of a real use case in which

the software architecture affects the environment. Consider the DeltaIoT

example system presented in section 1.5.2. The system consists of a set

of motes where a single mote transmits data packets to other motes over

unidirectional communication channels. The probability that a data packet

will be lost during transmission depends on the current SNR (signal-to-noise)

level of the environment. For the sake of illustration, we neglect the activation

probability and focus only on a single mote of the network. The SNR level

is dependent on the current wireless interference level, i.e. the higher the

wireless interference the higher the probability of packet loss. In addition, the

SNR level is also dependent on the current transmission power of the given

mote, i.e. the higher the transmission power the lower the probability of

packet loss. The transmission power, however, is not part of the environment

but of the architecture; each architectural configuration indicates different

transmission powers. That is, an architectural configuration has an indirect

effect on the SNR level which is part of the environment. Roughly speaking,

the probability that a high SNR level is observed is lower if the current

architectural configuration has a high transmission power. Furthermore,

103

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

the probability that a high SNR level is observed is higher if the current

architectural configuration has a low transmission power. This correlation

applies as well as for the case of low SNR levels and low/high transmission

powers of the corresponding configurations. Therefore, the knowledge of the

current configuration (with corresponding transmission power) enables one

to determine how the environment (i.e. SNR level) changes. The DeltaIoT

example illustrates a scenario where the architecture and environment are

interdependent. ■

In the following, we show how the transition function 𝑡S of a self-adaptive

system factorises to a product of distributions. More specifically, we prove

that 𝑡S provides an enhanced understanding of the stochastic process of a

self-adaptive system itself. Additionally, it shows the interdependency of

architecture and environment that primarily determines how a self-adaptive

system moves through the state space. This is of paramount importance

and needs to be considered for analysis at design-time or runtime. Before

we mathematically derive the factorisation of 𝑡S , we need to introduce one

further assumption and property.

We assume that an architectural configuration𝐶′ and environmental state 𝐸′

at a specific time have no direct effect on each other. That is, the configuration

𝐶′ at time 𝑡 + 1 does not affect the current value of 𝐸′ and vice versa. 𝐶′

and 𝐸′ are exclusively affected by the architectural configuration 𝐶 and

environmental state 𝐸 at time 𝑡 :

(𝑋C𝑡+1 ⊥⊥ 𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) (4.6)

In other words, whenever the states 𝑋C𝑡 , 𝑋E𝑡 are known at time 𝑡 , the states

𝑋C𝑡+1 , 𝑋E𝑡+1 are independent such that the knowledge of 𝑋C𝑡+1 (given 𝑋C𝑡 ,
𝑋E𝑡) does not provide any information about the value of 𝑋E𝑡+1 and vice

versa. This might seem to contradict what we defined as the interdependency

of system and environment; however, what assumption (4.6) states is that the

effect of the mutual interaction of system and environment is not immediate

(i.e. at a particular time instance 𝑡) but temporal (i.e. between time instances 𝑡

and 𝑡 +1). For example, if an adaptation 𝛿 is applied to configuration𝐶 at time

𝑡 such that we observe 𝜙 (𝐶, 𝛿) at time 𝑡 + 1 the corresponding environmental

state 𝐸 at 𝑡 +1 is not directly affected by 𝜙 (𝐶, 𝛿) but solely by𝐶 at 𝑡 . However,

the environmental state 𝐸 at 𝑡 + 2 is possibly affected by 𝜙 (𝐶, 𝛿) observed at

𝑡 + 1.

104

4.3. Considering Self-Adaptive Systems as Stochastic Processes

Recall from section 4.2 the deterministic property of 𝜙 . Each deterministic

function can be written as a probability distribution by using the indicator

function:

Property 3. The deterministic adaptation process in conjunction with property
2 implies the following equalities:

𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋Δ𝑡
) = 𝑃 (𝑋Δ𝑡

| 𝑋C𝑡+1 , 𝑋C𝑡) = 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1 (4.7)

Note that we abuse notations here in which C𝑡 , Δ𝑡 and C𝑡+1 are placeholders
for concrete variable realizations in the indicator function which evaluates

to 1 if 1𝜙 (𝐶𝑡 ,𝛿𝑡)=𝐶𝑡+1 holds for a given triple (𝐶𝑡 , 𝛿𝑡 ,𝐶𝑡+1) and returns 0 other-

wise.

Property 3 is very important for the following lemma:

Lemma 4.3.1. Given the deterministic property of 𝜙 , the following equality
holds:
𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) = 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) where

𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) =
{
𝑃 (𝑋Δ𝑡

= 𝛿∗ | 𝑋C𝑡 , 𝑋E𝑡), ∃=1𝛿∗ ∈ Δ : 𝜙 (C𝑡 , 𝛿∗) = C𝑡+1
0, otherwise

Proof.

𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) =
∑︁
𝛿∈Δ

𝑃 (𝑋C𝑡+1 , 𝑋Δ𝑡
= 𝛿 | 𝑋C𝑡 , 𝑋E𝑡)

=
∑︁
𝛿∈Δ

𝑃 (𝑋Δ𝑡
= 𝛿 | 𝑋C𝑡 , 𝑋E𝑡) · 𝑃 (𝑋C𝑡+1 | 𝑋Δ𝑡

= 𝛿, 𝑋C𝑡 , 𝑋E𝑡)

Whenever 𝑋Δ𝑡
, 𝑋C𝑡 are known 𝑋C𝑡+1 can be uniquely derived so that the en-

vironmental state 𝑋E𝑡 does not affect the probability 𝑃 (𝑋C𝑡+1 | 𝑋Δ𝑡
, 𝑋C𝑡 , 𝑋E𝑡)

and can be omitted.

=
∑︁
𝛿∈Δ

𝑃 (𝑋Δ𝑡
= 𝛿 | 𝑋C𝑡 , 𝑋E𝑡) · 𝑃 (𝑋C𝑡+1 | 𝑋Δ𝑡

= 𝛿, 𝑋C𝑡)

According to property 3:

=
∑︁
𝛿∈Δ

𝑃 (𝑋Δ𝑡
= 𝛿 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡=𝛿)=C𝑡+1

105

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

According to property 2:

=

{
𝑃 (𝑋Δ𝑡

= 𝛿∗ | 𝑋C𝑡 , 𝑋E𝑡), ∃=1𝛿∗ ∈ Δ : 𝜙 (C𝑡 , 𝛿∗) = C𝑡+1
0, otherwise

=𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1)

Basically, lemma 4.3.1 proves that distribution 𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) is equal
to 𝑃 (𝑋Δ𝑡

= 𝛿∗ | 𝑋C𝑡 , 𝑋E𝑡) if and only if there is an adaptation 𝛿∗ such that

𝜙 (𝐶, 𝛿∗) = 𝐶′. Hereby, 𝐶 and 𝐶′ correspond to the configurations for which

𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) is queried. Otherwise, the distribution returns 0.

Based on lemma 4.3.1, the following corollary can be derived:

Corollary 4.3.1. 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1)

Proof.

Recall that a self-adaptive system state consists of an architectural con-

figuration and environmental state (i.e. 𝑆 := (𝐶, 𝐸)). Thus, distribution

𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) can be written as a conditional joined distribution over four

random variables:

𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) =𝑃 (𝑋C𝑡+1 , 𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡)

According to the independence assumption of 4.6:

=𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝑃 (𝑋C𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡)

According to lemma 4.3.1:

=𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1)

Finally, w.r.t. theorem 4.3.1, it can be shown that transition function 𝑡S
factorises to a product of two distributions:

106

4.3. Considering Self-Adaptive Systems as Stochastic Processes

Theorem 4.3.1. The transition function 𝑡S of a self-adaptive system factorises
to 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 , 𝑋Δ𝑡

) = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

Proof.

𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 ,𝑋Δ𝑡
) =

𝑃 (𝑋S𝑡 , 𝑋S𝑡+1 , 𝑋Δ𝑡
)

𝑃 (𝑋S𝑡 , 𝑋Δ𝑡
)

=
𝑃 (𝑋S𝑡) · 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) · 𝑃 (𝑋Δ𝑡

| 𝑋S𝑡+1 , 𝑋S𝑡)
𝑃 (𝑋S𝑡) · 𝑃 (𝑋Δ𝑡

| 𝑋S𝑡)

According to property 3:

=
𝑃 (𝑋S𝑡) · 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

𝑃 (𝑋S𝑡) · 𝑃 (𝑋Δ𝑡
| 𝑋S𝑡)

According to corollary 4.3.1:

=
𝑃 (𝑋S𝑡) · 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

𝑃 (𝑋S𝑡) · 𝑃 (𝑋Δ𝑡
| 𝑋S𝑡)

=
𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

𝑃 (𝑋Δ𝑡
| 𝑋S𝑡)

Let 𝑆 := (𝐶, 𝐸), 𝑆 ′ := (𝐶′, 𝐸′) and 𝛿 be the self-adaptive system states and

selected adaptation for which 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 , 𝑋Δ𝑡
) is queried, i.e. 𝑃𝑟 (𝑋S𝑡+1 =

𝑆 ′ | 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿). At this point two cases can occur: 𝜙 (𝐶, 𝛿) = 𝐶′ or

𝜙 (𝐶, 𝛿) ≠ 𝐶′

𝜙 (𝐶, 𝛿) ≠ 𝐶′:

=
𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝜒𝛿∗ (C𝑡 , E𝑡 , C𝑡+1) · 0

𝑃 (𝑋Δ𝑡
| 𝑋S𝑡)

= 0

𝜙 (𝐶, 𝛿) = 𝐶′:

=
𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 𝑃 (𝑋Δ𝑡

= 𝛿∗ | 𝑋S𝑡)
𝑃 (𝑋Δ𝑡

| 𝑋S𝑡)

107

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

From property 2 follows 𝜙 (𝐶, 𝛿) = 𝐶′ ⇒ 𝛿 = 𝛿∗. This in turn means that the

distribution in the denominator and 𝑃 (𝑋Δ𝑡
= 𝛿∗ | 𝑋S𝑡) are equal and can be

truncated.

=𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡)

Taking both cases into account, we canwrite 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 , 𝑋Δ𝑡
) equivalently:

=𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

Theorem 4.3.1 shows that 𝑡S and thus the stochastic dynamics of a self-

adaptive system factorises to two terms. The term 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1 refers to
the deterministic adaptation process that ensures that the architectural con-

figurations of two states 𝑆 and 𝑆 ′ are linked by an adaptation. Otherwise,

there is no chance that the system transitions from 𝑆 to 𝑆 ′, i.e. 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1
and thus 𝑡S evaluates to 0. The second term 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) refers to the

environmental dynamics. Intuitively, one would assume that the evolution

of the environment is an independent process responsible for changes in

the system configuration. However, theorem 4.3.1 showed that it cannot

be ruled out whether the system (or configurations of the system) affects

the stochastic evolution of the environment. In the case of the DeltaIoT

system, we illustrated a scenario in which the environmental dynamics are

not evolving independently but are influenced by the system configurations

(i.e. the configured transmission power of each configuration). However,

there are possibly other scenarios in which the environment evolves com-

pletely independently (or where the system has a negligible effect on the

environmental dynamics). Ultimately, the theorem embodies what we denote

as the interdependency of the architecture and environment.

As discussed at the beginning of this section, an integral part of this thesis

is about evaluating self-adaptive systems (or their adaptation strategies) at

design-time. Thus, the dynamics of a self-adaptive system must be taken into

account to simulate the dynamic behaviour. However, because they strongly

depend on the interdependency of the architecture and environment, it is

crucial to make appropriate assumptions. More specifically, if the assump-

tions do not reflect the true dynamics that would be observed at runtime, the

evaluation results at design-time are likely to be inaccurate. We will revisit

the interdependency of the architecture and environment in chapter 6.

108

4.4. Problem Statement

4.4. Problem Statement

After we have mapped the formal semantics of self-adaptive systems onto

MDPs (see section 4.3.1) and discussed the dynamics (i.e. the transition

function, see section 4.3.2), we are now able to fully describe a self-adaptive

system as an MDP. Based on this formalisation, we can also explain how

adaptation strategies fit into this picture. More specifically, we consider

the development of adaptation strategies as the engineering challenge or

problem faced by a software engineer. We formalise the engineering problem

based on MDPs which is to be understood as the problem statement this

work aims to address. In the following, we start to discuss the state space

complexity of a self-adaptive system in section 4.4.1 and introduce afterwards

the engineering problem of engineering a self-adaptive system in section

4.4.2.

4.4.1. State Space Complexity

In section 4.3.1, we formally introduced the self-adaptive system state space

S as the Cartesian product of the set of architectural configurations C and

environment E, i.e. S := C × E. In the context of non-adaptive systems, the

architectural configuration space is comparable to the concept of the Design
Space introduced by the work of [120]. The design space corresponds to the

various system configurations induced by Design Options. Design options

are comparable to adaptations and determine the variation points of an

architecture that can be changed (e.g. changing component implementation).

In terms of non-adaptive systems, a software architect needs to explore the

design space to find the system configuration that satisfies the non-functional

requirements of the software system. We consider the complexity of a space

or set (such as the architectural configuration space C) to be the cardinality

or the number of elements contained in the set (e.g. |C|). The complexity

of the design space, for example, is the Cartesian product of the design

option sets and can become very large with an increasing number of options.

Since the design space (spanned by the distinct design options) and the

architectural configuration space (spanned by the distinct adaptations) are

closely connected concepts, we assume the size of the configuration space to

be comparatively large.

109

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

Recall from section 4.1 that the environment E consists of a set of envi-

ronmental states 𝐸. An environmental state is structured by a sequence of

atomic and discrete environmental variables 𝐸 := (𝑒1, ..., 𝑒𝑛). Let 𝑉𝑎𝑙 (𝑒𝑖) be
the value space of each environmental variable 𝑒𝑖 with |𝑉𝑎𝑙 (𝑒𝑖) | ≥ 2. The

upper and lower bound of the complexity of the environment is estimated as

follows:

|E | =
𝑛∏
𝑖=1

|𝑉𝑎𝑙 (𝑒𝑖) |

≤
𝑛∏
𝑖=1

𝑣𝑚𝑎𝑥 = 𝑣𝑛𝑚𝑎𝑥 with 𝑣𝑚𝑎𝑥 =𝑚𝑎𝑥
𝑒∈𝐸
|𝑉𝑎𝑙 (𝑒) |

⇒ 2
𝑛 ≤ |E| ≤ 𝑣𝑛𝑚𝑎𝑥 (4.8)

From formula (4.8) follows that the upper and lower bounds of the com-

plexity of E are 𝑣𝑛𝑚𝑎𝑥 and 2
𝑛
, respectively. Consequently, the complexity of

E is exponential in the number of environmental variables 𝑛 that form an

environmental state 𝐸.

Note that the same complexity estimation of 𝐸 can be applied to the above-

mentioned design space and corresponding design options. Considering

these findings, we can conclude that the state space of the self-adaptive

system S is spanned by two spaces, each of which has exponential size.

In non-adaptive systems, it is sufficient to explore the design space of pos-

sible architectural candidates which is comparable to what we denote as

architectural configuration space C. More precisely, it is assumed that there

is an architectural configuration that sufficiently satisfies the quality require-

ments in any environmental state. In the context of self-adaptive systems,

however, this is not sufficient because the aspect of time (that causes different

architectural configurations) cannot be neglected. According to Esfahani

and Malek [57], engineering self-adaptive systems is associated with several

uncertainties. One of these uncertainties is known as Parameter over time.
The uncertainty Parameter over time primarily argues that the future be-

haviour of the system and environment must be considered to select optimal

adaptations. For example, consider a chess game in which two players must

make their moves. A player who makes moves based on the current state of

the chessboard (i.e. the arrangement of pieces on the chessboard) performs

worse compared to moves that take into account how the opponent possibly

reacts or how the state of the chess game possibly evolves. This analogy

110

4.4. Problem Statement

perfectly explains the uncertainty Parameter over time because an adaptation

that seems to fit well in a given situation may have positive effects only in

the short run, but may perform poorly in the long run.

Unfortunately, the uncertainty Parameter over time has drastic implications

on the state space complexity of self-adaptive systems. Since the uncer-

tainty implies that the temporal aspect must be taken into account when

selecting an adaptation, it is not sufficient to explore the architectural con-

figuration space and select the configuration (by applying an adaptation)

that seems to be the best solution exclusively for the current state. Instead,

the adaptation that achieves the best results (i.e. satisfies quality objectives)

in the long run must be selected. In terms of MDPs, the adaptation that

achieves the best possible accumulated reward over time is the most pre-

ferred solution regarding Parameter over time. More formally, selecting an

adaptation 𝛿𝑡 in a self-adaptive system state 𝑆𝑡 at time 𝑡 has an effect on

the future behaviour 𝑆𝑡+1, . . . , 𝑆𝑇−1, 𝑆𝑇 and thus on the accumulated reward,

i.e.

∑𝑇−1
𝑖=𝑡 𝑟S (𝑆𝑖 , 𝛿𝑖 , 𝑆𝑖+1). Equivalently, an adaptation strategy 𝜋 has to be

engineered considering exactly these effects. Recall from section 4.3.1 that

the adaptation strategy is the equivalent concept to a policy in MDPs.

To formally define the state space complexity, we must account for the

temporal nature of self-adaptive systems and the uncertainty Parameter
over time. This means that the state space complexity is defined by the

sequences of states a self-adaptive system generates by changing the system

configuration in response to environmental changes. We denote such a

sequence as Trajectory.

Definition 26 (Trajectory). A trajectory 𝜏 is a sequence of self-adaptive system
states 𝜏 := (𝑆0, 𝑆1, ..., 𝑆𝑇) where state 𝑆0 corresponds to the initial state and 𝑆𝑇
corresponds to the state where the self-adaptive system terminates with 𝑇 ∈ 𝐼𝑁 .

A trajectory represents a possible path through the state space S that a

self-adaptive system can experience when starting at an initial state 𝑆0 and

terminating at 𝑆𝑇 at time𝑇 . We denote𝑇 as Horizon. Because we consider the
dynamics of a self-adaptive system as a stochastic process (i.e. as MDP), there

exist a multitude of possible trajectories that form the Trajectory Space.

Definition 27 (Trajectory Space). The trajectory space T encompasses all
possible trajectories a self-adaptive system can traverse. More formally, as a

111

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

trajectory 𝜏 ∈ T defines a possible path through the self-adaptive system state
space S, the trajectory space is spanned by the Cartesian product of all states
up to horizon 𝑇 :

T := S0 × S1 × · · · × S𝑇 (4.9)

The trajectory space T is of paramount importance because T encompasses

all possible trajectories (of length 𝑇) a self-adaptive system can theoretically

traverse. Thus, T constitutes the central object for evaluating adaptation

strategies considering the uncertainty Parameter over time. Based on the

definition of the trajectory space, the state space complexity is the cardinality

of the trajectory space |T |:

|T | = |S0 × S1 × · · · × S𝑇 | =
∏

𝑖∈{0,...,𝑇 }
|S𝑖 | = |S|𝑇 (4.10)

Equation (4.10) shows that the state space complexity grows exponentially

in horizon 𝑇 . Moreover, as discussed at the beginning of this section, the

state space S is of exponential complexity. The state space complexity of

self-adaptive systems is more complex compared to non-adaptive systems

and poses significant challenges to software engineers.

Finally, it is important to note that adaptation strategies to some extent govern

how the self-adaptive systems move through the state space. Therefore,

certain trajectories 𝜏 of the trajectory space are probably never observed

at runtime. The subset of trajectories T𝜋 ⊆ T a self-adaptive system is

traversing by following strategy 𝜋 should be those that generate the highest

possible rewards. However, T𝜋 is unknown when engineering strategy 𝜋

at design-time and has to be analysed. The complexity of T (see equation

(4.10)) is an additional complicating factor that is infeasible to be analysed

manually. The state space complexity again highlights the importance of

automated analysis at design-time andmodel-based approaches. Model-based

approaches introduce abstraction to deal with the complexity of T which is

crucial to evaluating and designing adaptation strategies at design-time.

4.4.2. The Engineering Problem of Self-Adaptive Systems

In the previous sections, we introduced all the necessary concepts to for-

mulate the engineering problem. Moreover, we catch up with the formal

112

4.4. Problem Statement

definition of a self-adaptive system as an MDP that we deliberately omitted

in section 4.3.1.

In the previous sections, we introduced the environmental dynamics (de-

scribed by a Markov chain) and the deterministic adaptation process (trig-

gered by an adaptation strategy). In combination, both concepts induce

a stochastic process capturing the dynamics of self-adaptive systems. As

discussed in section 4.3.1, the stochastic process corresponds to an MDP. We

have discussed how MDPs are instantiated in the domain of self-adaptive sys-

tems but have not introduced a concrete definition of self-adaptive systems

as MDPs. We make up for this, taking into account the theoretical discussion

and findings of section 4.3.2.

Definition 28 (Stochastic Dynamics of Self-Adaptive Systems). The dynam-
ics of a self-adaptive system is a stochastic process (𝑋S𝑡)𝑡 ∈𝐼𝑁 for which the
Markov assumption holds. More precisely, the stochastic process is captured by
a Markov decision process 𝜆𝑆𝐴𝑆 := (S,Δ, 𝑡S, 𝑟S) where

• S corresponds to the set of self-adaptive system states.

• Δ corresponds to the set of adaptations.

• 𝑡S : S × Δ × S → [0, 1] corresponds to the transition function where
𝑡S = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1 (according to theorem 4.3.1).

• 𝑟S : S×Δ×S → 𝐼𝑅 corresponds to the reward function encoding quality
objectives.

The major challenge of MDPs is to develop a policy 𝜋 that determines what

action to execute in a given state. As discussed in section 4.3.1, the policy 𝜋

corresponds to the adaptation strategy of a self-adaptive system. Therefore,

we consider the engineering problem of self-adaptive systems in developing

an adaptation strategy taking into account various quality objectives (cap-

tured by the reward function) and the exponential state space complexity

(i.e. the trajectory space T) discussed in section 4.4.1. When developing

adaptation strategies, a software engineer must ensure that the required qual-

ity objectives (reflected by 𝑟S) are maintained over time by considering the

implications of the uncertainty Parameter over time. That is, a strategy must

be developed such that not only short-term effects but also long-term effects

are considered. Consequently, the possible trajectories of the trajectory space

of a self-adaptive system must be considered to evaluate a strategy regarding

113

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

the uncertainty Parameter over time. Because adaptation strategies generate

subspaces T𝜋 ⊆ T , not all trajectories have to be analysed to determine the

effectiveness of 𝜋 . Nonetheless, it is still challenging to deal with such spaces

compared to static software systems.

The engineering problem again emphasises the significant importance of

design-time analysis in the development of adaptation strategies. Each strat-

egy involves numerous design decisions, each of which has a different impact

on the quality objectives. The specific impact on quality objectives cannot be

foreseen at design-time without automated tool support. One may argue that

there are several approaches for optimising adaptation strategies at runtime

(e.g. [78]), or approaches that use models at runtime for decision-making (e.g.

[209]). However, there remains the challenge of first designing a strategy as

a starting point. Moreover, optimisation approaches and formal verification

can benefit from design-time analyses. For optimisation, an increased conver-

gence behaviour can be expected; in terms of formal verification, scalability

is addressed by a constraint search space as a result of the pre-explored

trajectory space.

4.5. Assumptions

In section 4.1, we assume a discrete set of environmental states. The assump-

tion of discretising the environment to a set of environmental states is well

established in the research community of self-adaptive systems (e.g. [182]).

The discretisation of the environment has the advantage of drastically reduc-

ing the number of environmental states (compared to continuous spaces) and

tackles the state space explosion problem. Moreover, it is a common approach

for design-time analysis to abstract and simplify real-world concepts.

In section 4.2, we introduced the deterministic adaptation process 𝜙 . Without

explicitly stating it, the adaptation process implies that adaptations are always

applied successfully, i.e. the adaptation process does not fail. One reason for

this assumption is that it is not known to which state the system transitions

in case of an adaptation failure: Does the system remain in the state before

the adaptation? Does the system go into a dedicated error state? Ultimately,

it is again a simplifying assumption to address real-world problems and

justified as a starting point to analyse self-adaptive systems at design-time.

114

4.6. Summary

In future work, however, the assumption can be relaxed, and our approach

extended both theoretically and practically.

In section 4.3.2, we assumed conditional independence of observing an en-

vironmental state 𝐸𝑡+1 and architectural configuration 𝐶𝑡+1 given the last

state, i.e. (𝐶𝑡 , E𝑡) (see formula (4.6)). The assumption states that the current

architecture configuration and the environmental state have no immediate

influence on each other. This assumption may be too strong if the considered

time difference Δ𝑡 between two states is too large. However, the assumption

can be sufficiently approximated if Δ𝑡 is chosen precisely, e.g., by a domain

expert.

Finally, an MDP is associated with several assumptions, namely the Markov

assumption and the assumption of a fully observable state. As discussed at the

beginning of this chapter, MDPs constitute a widely used framework in the

self-adaptive system community. Their successful use strongly suggests that

the assumptions associated with MDPs are reasonable. In addition, according

to Koller and Friedman [105, p. 201], the Markov assumption can always be

sufficiently approximated by considering a reach state description (we revisit

this in the next section). Indeed, the assumption of a fully observable state is

not always appropriate. In chapter 7, we discuss how this assumption can be

relaxed by considering Partially Observable Markov Decision Processes which
generalise MDPs.

4.6. Summary

In this chapter, we formally described the dynamics of self-adaptive systems.

More specifically, we defined a self-adaptive system as a stochastic process

that can be described as an MDP. We instantiated the framework of MDPs

in the domain of self-adaptive systems. We mapped the abstract concepts

of MDPs to the equivalent concepts in the domain of self-adaptive systems

which we formally introduced earlier. Afterwards, we have proven a specific

probabilistic behaviour of self-adaptive systems which is induced by the

interdependency of the architecture and environment. We discussed the

exponential complexity of the state space as a result of a self-adaptive system-

specific uncertainty known as Parameter over time. Based on the definition

of the state space complexity and the MDP-based semantics of self-adaptive

115

4. The Dynamics of Self-Adaptive Systems: A Theoretical Perspective

systems, we formulated the engineering problem or challenge. Finally, we

discussed the assumptions we made.

116

5. Using Bayesian Modelling to
Capture the Environmental
Dynamics

In this chapter, we present our metamodel for describing the environmental

dynamics of self-adaptive systems. The metamodel is discussed exclusively

from the perspective of modelling the environmental dynamics (i.e. the

operating environment) of self-adaptive systems; it does not discuss the mod-

elling of sensitivity models of AI components. The modelling capabilities of

the metamodel go beyond modelling static probabilistic structures, as these

form only one aspect of the metamodel required to capture the temporal

behaviour of the environmental dynamics. For a better separation and under-

standing, however, we concentrate the discussion of the metamodel in this

chapter solely on the environmental dynamics and discuss the modelling of

sensitivity models in the section provided for this purpose (more precisely

section 7.1) and then revisit the corresponding part of the metamodel. The

contribution, presented in this chapter, is based on the publication [158].

There are three key aspects that our formal modelling language must address.

The first aspect results from the requirement of domain-independent applica-

bility and refers to the Level of Abstraction. Intuitively, the level of abstraction
of a modelling language increases with the requirement of cross-domain

applicability. A high level of abstraction purposefully omits domain-specific

information or knowledge to allow for domain independence. This can lead

to a loss of Accuracy in the analysis of adaptation strategies and corresponds

to the second key aspect. That is, the aspects of level of abstraction and

accuracy compete. However, both aspects need to be balanced in such a way

that the level of abstraction is sufficient to achieve domain independence, but

with an acceptable loss of accuracy to enable design-time analysis. Finally,

the last aspect refers to the Representation of the environmental dynamics.

As discussed in section 4.1, we consider the environmental dynamics as a

117

5. Using Bayesian Modelling to Capture the Environmental Dynamics

DTMC (discrete-time Markov chain). Recall that the state space of a DTMC

refers to the environment E consisting of environmental states 𝐸 ∈ E. Repre-
senting environmental dynamics appropriately is challenging due to the state

space explosion problem. For instance, one may argue that as we consider

environmental dynamics as DTMC, we can also represent them by state

machine-based models. However, this requires the modelling of each state

separately which is impractical as well as infeasible for large state spaces.

Additionally, an environmental state 𝐸 is considered as a tuple consisting of

atomic variables, i.e. 𝐸 := (𝑒1, ..., 𝑒𝑛). The variables 𝑒𝑖 might be stochastically

correlated such that 𝑃 (𝑋𝑒𝑖 , 𝑋𝑒 𝑗) ≠ 𝑃 (𝑋𝑒𝑖) · 𝑃 (𝑋𝑒 𝑗); that is, they form a net-

work of variables with certain dependencies. Such correlations cannot be

adequately captured by state machine-based models.

In this chapter, we mainly address the sub-research questions RQ1.1 and

RQ1.2, which bring us one step closer to answering the main research

question RQ1. The previously discussed key aspects are reflected in RQ1.1
and RQ1.2. For the sake of completeness, we restate the research question

and its sub-questions (omitting RQ1.3 and RQ1.4):

Research Question 1: How to evaluate adaptation strategies of

self-adaptive systems at design-time regarding the ability to meet

quality objectives?

Research Question 1.1: How can environmental dynamics be

formalised domain-independently at design-time?

Research Question 1.2: What is an appropriate level of abstraction

to represent the environmental dynamics domain independently? By

appropriateness, we mean that

• adaptation strategies can be analysed at design-time with suf-

ficient accuracy.

• environmental state spaces can be described flexibly and com-

pactly.

118

5.1. Requirements

In the following of this chapter, we present the environmental dynamics

metamodel based on Dynamic Bayesian Networks (DBNs). DBNs are compact

encodings of DTMCs and therefore fit perfectly into our definition of environ-

mental dynamics (see definition 19 on page 96). Their human-understandable

nature makes them easy to use, but yet powerful enough to model complex

structured environments. Furthermore, DBNs are part of a broader frame-

work called Template-based Probabilistic Models. Template-based models not

only generalise DBNs but define a concept of domain-independent type-level

descriptions that can be instantiated in domain-specific contexts to instan-

tiate probabilistic structures (such as DBNs). We reuse these semantics of

template-based models in the environmental dynamics metamodel to achieve

domain independence.

This chapter is organised as follows: First, in section 5.1 we discuss require-

ments that the environmental dynamics metamodel must satisfy such that

self-adaptive systems (or rather the adaptation strategy) are evaluated. Af-

terwards, we present the environmental dynamics metamodel in section 5.2.

In section 5.3 we show how the model instances of the metamodel must

be associated with the architecture model to instantiate domain-specific

probabilistic structures capturing the environmental dynamics of a given

domain. In section 5.4 we give a brief overview of the implementation of the

metamodel. Finally, we discuss assumptions and limitations in section 5.5

and conclude the chapter with a summary in section 5.6.

5.1. Requirements

At the beginning of this chapter, we already discussed three key aspects

that have to be addressed by our modelling language, namely the level of

abstraction, accuracy and representation. In this section, we break down the

key aspects and enumerate the requirements our modelling language must

satisfy. The requirements can be assigned to one of the key aspects.

Domain independence Domain independence is linked to the level of ab-

straction aspect and is the most important requirement for cross-domain

analysis. One of the central goals of this thesis is to evaluate the effect

of architectural safeguards on the reliability of a system by considering

non-adaptive and self-adaptive approaches. In both cases, the modelling of

119

5. Using Bayesian Modelling to Capture the Environmental Dynamics

environmental factors or variables that impact the predictive uncertainty

of an AI component is domain-specific. Therefore, the metamodel for de-

scribing such environments must not make any assumptions about structure

or characteristics. Instead, they should be flexibly modelled and related to

elements captured by a different model, e.g. the architecture model.

Architecture description language agnostic The approach presented in this

thesis is based on architecture models to describe the fundamental structure

of a software system. Therefore, the architecture model is assumed to be

the main source of containing domain-specific elements. The environment

model (based on our metamodel) is expected to supplement the architecture

model. More specifically, the modelled environment has to be instantiated

in the architecture model, i.e. by relating environmental variables to the

domain-specific elements captured by the architecture model. However,

there are several ADLs (architecture description languages) for describing

architecture models, e.g. [149, 87, 73, 21]. Some of them are rather generally

applicable (e.g. ADL for component-based software architectures [149]) while

others are more domain-specific (e.g. embedded systems [21]). Therefore,

the metamodel should be ADL-agnostic such that environment models can

be instantiated in any architectural model. Modelling environments inde-

pendent of the used ADL facilitates domain independence and contributes to

the key aspect level of abstraction.

Stochastic dynamics From a theoretical perspective, we consider the envi-

ronmental dynamics as a stochastic process or DTMC as the environmental

state changes over time. More specifically, the goal is to sample sequences

or trajectories from the DTMC capturing the stochastic dynamics of the

environment. The trajectories are important for analysing the quality of an

adaptation strategy. As discussed at the beginning of this chapter, one may

argue to use state machine-based models to capture the stochastic dynamics

of a DTMC. However, this is impractical in terms of modelling large state

spaces. Therefore, the metamodel must represent the stochastic dynamics

or DTMC in such a way that trajectories of environmental states can be

generated from the model, taking into account a low modelling effort. This

requirement refers to the key aspect of representation.

120

5.1. Requirements

Stochastic correlations An environmental state comprises environmental

variables, i.e. 𝐸 := (𝑒1, ..., 𝑒𝑛). The variables might correlate with each other.

For instance, let us consider a web-based software system in which a state

consists of two variables 𝐸 := (𝑒𝑊 , 𝑒𝑆). The first variable 𝑒𝑊 describes the

current workload of the system; the second variable 𝑒𝑆 describes the state

of the server, i.e. available or not available. For the sake of illustration,

we assume a single server. The variable 𝑒𝑆 is dependent on 𝑒𝑊 because the

probability of observing a server failure increases with an increased workload

of 𝑒𝑊 . Therefore, if we want to sample a trajectory of environmental states

the direct effect of 𝑒𝑊 at time 𝑡 to 𝑒′
𝑆
at time 𝑡 + 1 has to be captured (for all

𝑡):

𝐸1, 𝐸2, . . . , 𝐸𝑡 := (𝑒𝑊 , 𝑒𝑆)𝑡 , 𝐸𝑡+1 := (𝑒′𝑊 , 𝑒′𝑆)𝑡+1, . . . , 𝐸𝑇
Such correlations have to be represented by the metamodel and form another

requirement that can be assigned to the key aspect representation.

Compactness State machine-based models are impractical to describe the

DTMC due to large state spaces. This is true not only for modelling the states

and transitions (i.e. the structure of the DTMC) but also for specifying 𝑡E . In
state machine-based models, 𝑡E is represented by a transition matrix. The

number of matrix entries grows quadratically with the number of states. The

manual creation of the transition matrix is costly even for medium-sized

state spaces. Therefore, the metamodel has to reduce the effort of modelling

𝑡E . The requirement of compactness is strongly related to the stochastic

dynamics requirement and thus contributes as well to the key aspect of

representation.

Discretisation level Finally, the discretisation level constitutes the last re-

quirement. As discussed in section 4.1, an environmental state consists of a

tuple of discrete variables such that the state itself is discrete. Discretisation,

however, can be either fine-grained or course-grained. For instance, a con-

tinuous variable with a range [0, 100] can be discretised by a resolution of

10 (i.e. 10, 20, 30, ..., 100) or 5 or 1 and so on. The finer the resolution, the

more adequately reality is captured; at the cost of enlarged state space. The

choice of a suitable discretisation level is up to the software developer (or

domain expert) and should be flexibly configurable by the metamodel. The

discretisation level belongs to the key aspect of accuracy because it directly

affects the accuracy of the analysis of adaptation strategies.

121

5. Using Bayesian Modelling to Capture the Environmental Dynamics

5.2. The Environmental Dynamics Metamodel

In this section, we introduce the environmental dynamics metamodel, which

we abbreviate as EnvDyn in the following. The formal modelling language

integrates concepts to describe and instantiate probability spaces domain

independently. However, before we introduce the main concepts and formal

semantics of our metamodel, we first discuss how to use DBNs to repre-

sent the environmental dynamics and how it fits in our formal framework

presented in chapter 4.

5.2.1. Representing Environmental Dynamics with Dynamic
Bayesian Networks

In section 4.1, we formally described the environmental dynamics as DTMCs.

The reason for considering environmental dynamics as DTMCs is to show

(𝑖) how they fit into a broader mathematical framework (i.e. considering

self-adaptive systems as MDPs) and (𝑖𝑖) for generalisation. DTMCs (and

other state machine-based representations), however, are not appropriate to

model large and complex structured stochastic environments. Instead, an

alternative approach needs to be taken into account which maintains the

semantics and assumptions associated with DTMCs.

Such an approach or formal framework provides DBNs. DBNs are prob-

abilistic graphical models (recall from section 2.6) that comprise a family

of probabilistic models. Probabilistic graphical models provide a powerful

framework for representing complex probability distributions in a manage-

able way. As introduced in section 2.6.2, DBNs are specialisations of DTMCs.

That is, w.l.o.g. we can represent the environmental dynamics as DBNs

without violating the formal semantics of chapter 4.

Using DBNs, however, is not only promising to maintain mathematical con-

sistency but also for practical reasons. Formally, a DBN is a tuple (B0,B→)
where B0 is a BN (Bayesian network) describing the initial distribution over

the states and B→ is a 2-TBN inductively describing the dynamic evolution

of the states. The core of the DBN forms the probabilistic structure encoded

by B0 (which from now on we simply refer to as B). The BN B consti-

tutes a graph that enables the specification of probabilistic relations. The

graph-based representation provides an intuitive and human-understandable

122

5.2. The Environmental Dynamics Metamodel

structure for modelling complex probability spaces. In addition, the decom-

posability (see section 2.6.1) property factorises the BN into a set of local

CPDs (conditional probability distributions); each CPD is associated with a

node in the graph and can be manually estimated by a domain expert. The

human understandable nature and the decomposability property of Bayesian

models provide a foundation to incorporate domain knowledge. Domain ex-

perts can model the probabilistic structure with a very familiar and intuitive

graph structure. Even in the absence of domain experts, the structure and

parameters (of the local CPDs) of BNs and DBNs can be learned from data,

e.g. [105, 130, 129]. Finally, the initially modelled BN B is complemented by

a temporal or dynamic extension captured by 2-TBN B→. Similarly to BNs,

2-TBNs are described in a graph-based structure and local CPDs. Moreover,

the Markov and stationary assumption (see section 2.4.1) empower DBNs to

compactly represent entire trajectory spaces. This allows DBNs to sample

environmental states and perfectly satisfies the requirement of representing

the stochastic nature of the environmental dynamics. Capturing the environ-

mental dynamics with DBNs constitutes one of the key aspects of this work

to evaluate adaptation strategies of self-adaptive systems.

Therefore, the key idea of this chapter is to present a metamodel for de-

scribing the environmental dynamics based on the semantics of DBNs. The

generic and probabilistic structure of the environmental variables of an envi-

ronmental state 𝐸 := (𝑒1, ..., 𝑒𝑛) are initially modelled with BNs. The graph

G associated with B captures the stochastic correlations of the variables

and describes the initial distribution. Recall definition 19 on page 96 of the

environmental dynamics and the set of initial states E0. The modelled BN

represents the initial distribution over E0 based on G and the local CPDs,

which we call Static Environment. The transition function 𝑡E includes the

knowledge about the evolution of the environmental states and is captured

by the 2-TBN B→. Roughly speaking, a DBN (B,B→) describes the static
environment E by the non-dynamic BN B and the Dynamic Environment or
Environmental Dynamics by the 2-TBN B→, i.e. (B,B→) compactly encodes

the DTMC (E, E0, 𝑡E) from definition 19.

Finally, note that DTMCs induce a set of discrete states; regarding the envi-

ronmental dynamics, the set relates to E. BNs and DBNs are structured as

a network of random variables according to some graph G encoding a set

of local CPDs. The random variables over which the CPDs are defined are

potentially continuous (and thus the CPD itself) and violate the discrete state

property. Therefore, we assume all random variables of a DBN describing

123

5. Using Bayesian Modelling to Capture the Environmental Dynamics

EnvDyn

ProbDist

template static

dynamic

distributiontype distributionfunction

template variables
and template factors static environment

environmental
dynamics

type-level probability
distributions probability distributions

uses

instantiates

extends
uses

instantiates

uses

instantiates

Figure 5.1.: Overview of the EnvDyn metamodel packages (including the ProbDist metamodel

packages).

the environmental dynamics as discrete. Moreover, we assume that all local

CPDs are multinomial distributed such that the discrete state property is

maintained. We defer the discussion of the assumption to section 5.5. The

multinomial assumption drastically reduces the state space. Thus, the state

space explosion problem is addressed and facilitates design-time analysis of

adaptation strategies.

5.2.2. Overview of the Metamodel

Before we present the individual concepts of the EnvDyn metamodel, we

first provide an overview. Therefore, consider Figure 5.1 which depicts the

metamodel.

The metamodel is divided into three packages, namely template, static

and dynamic. Roughly speaking, the template package allows the modelling

of random variables and their distributions at the type level. The package

defines template variables and template factors based on the concepts of

template-based probabilistic models (see section 2.6.3).

The static package includes the metamodel elements for describing BNs

and thus the non-temporal or static environment E, i.e. the probabilistic
structure of the environmental variables. Therefore, the defined template

variables and factors of the template package are instantiated to generate

124

5.2. The Environmental Dynamics Metamodel

random variables. The BN is generated w.r.t. the dependency structure of

the templates. Based on the concepts of template-based models from section

2.6.3, we connect each ground random variable to a particular domain object

in the architecture model to complete the instantiation process. It may seem

contradictory that we use the term “instantiate” within the same meta-level 𝑖

as the term is rather used to describe instances at meta-level 𝑖 − 1. However,
in Multi-Level Modelling it is common to describe instances ontologically

(i.e. at the same meta-level) because it circumvents constraints of strict

meta-modelling [49].

The dynamics package complements the metamodel by modelling dynamic

and temporal behaviour. As we consider DBNs as environmental dynamics,

this part of the metamodel encompasses metamodel elements for specify-

ing the stochastic evolution, i.e. B→. The semantics of 2-TBNs complete

the metamodel such that the created models describe DBNs of the form

(B0,B→).

Finally, Figure 5.1 depicts a fourth metamodel for modelling probability dis-

tributions; we call the metamodel ProbDist. The metamodel enables the mod-

elling of probability distributions at type- and instance-level. The packages

template, static and dynamic provide the required semantics to represent

probabilistic structures (Bayesian models) but do not specify elements for

defining probability distributions. This gap is addressed by the ProbDist
metamodel. In the EnvDyn metamodel, only multinomial distributions are

considered and represent one of many distribution types that can be modelled

with the ProbDist metamodel. Therefore, we extracted the metamodel as a

standalone modelling tool for specifying arbitrary probability distributions

that can be reused in different contexts or metamodels.

5.2.3. Modelling Domain-Independent Template Variables and
Template Factors

In this section, we present the template package in more detail. We start to

explain all the elements and formal semantics of the metamodel. Afterwards,

we illustrate the application of the metamodel package by applying it to the

DeltaIoT example system from section 1.5.2. The package is depicted on

Figure 5.2. For illustrative purposes, we have omitted descriptive attributes

such as name or ID to provide a clear overview of the metaclasses and their

relationships.

125

5. Using Bayesian Modelling to Capture the Environmental Dynamics

TemplateVariable
Definitions

<<abstract>>
TemplateFactor

 temporal: Boolean

TemplateVariable

Argument

LogicalVariable

Probabilistic
TemplateFactor

TemplateVariable
Group

<<abstract>>
Relation

<<abstract>>
TemporalRelation

DependenceRelation

type: DependenceType
contingent: Boolean

PersistenceRelation TimeSliceRelation

<<enumeration>>
DependenceType

 DIRECTED
UNDIRECTED

[0...*] factors

[0...*] variables

[0...*] arguments

[1...1] argument

[1...*] signature

[0...*] relations

[0...*] templateGroups

[1...*] grouped-
Templates

[1...*] scope

[0...1] refines

[1...1] source

[1...1] target

[1...1] source
[1...1] target

[1...1] interfaceVariable

Probability
DistributionSkeleton[1...1] distribution-

Family

Meta class A template meta classes

Meta class B probdist meta classes

Legend:

Figure 5.2.: The template package of the metamodel for modelling type-level random variables.

5.2.3.1. Formal Semantics

As discussed in previous sections, our metamodel reuses concepts of template-

based probabilistic models. The two main building blocks in template-based

models are template variables and template factors which play a central role

in this part of the metamodel.

The root element of the template package forms the TemplateVariableDefi-

nitions. It defines the starting point for modelling TemplateVariables, Tem-

plateFactors, Relations, Arguments and TemplateVariableGroups. Start-

ing from TemplateVariableDefinitions, TemplateVariables and Arguments

can be created. Recall from section 2.6.3 that template variables describe

random variables at the type level. In our metamodel, a template variable

is represented by the entity TemplateVariable. An Argument-entity is in-

directly linked to a TemplateVariable by a LogicalVariable. Thus, a Tem-

plateVariableDefinitions instance can include a set of Argument instances.

126

5.2. The Environmental Dynamics Metamodel

Additionally, TemplateVariables possess a set of LogicalVariables where

each LogicalVariable is uniquely associated with an Argument. The set of

LogicalVariables of a TemplateVariable forms its argument signature. The

entities TemplateVariables, Argument and LogicalVariable and their rela-

tionships are semantically equal to the formal definition of template variables.

For better readability, we give the definition again:

Definition 13 (Template Variable). A template variable V(𝑈1, ...,𝑈𝑛) is a
function with some range 𝑉𝑎𝑙 (V). Each argument𝑈𝑖 ofV is a typed logical
variable where 𝑄 [𝑈𝑖] ∈ Q.

More specifically, a template variable V is represented by the entity Tem-

plateVariables. The argument signature 𝛼 (V) = (𝑈1, ...,𝑈𝑛) of a template

corresponds to the set of LogicalVariables contained in TemplateVariable.

Because each 𝑈𝑖 is associated with a specific class 𝑄 ∈ Q (i.e. 𝑄 [𝑈𝑖]), each
LogicalVariable is typed by a single Argument representing a class 𝑄 .

The second key concept of template-based models refers to template factors.

As before, we start to give the definition again:

Definition 14 (Template Factor). A template factor 𝜉 : 𝑉𝑎𝑙 (V1) × · · · ×
𝑉𝑎𝑙 (V𝑙) → 𝐼𝑅 is a function defined over template variables (V1, . . . ,V𝑙).
Given a tuple of ground random variables (𝑋1, ..., 𝑋𝑙), if ∀𝑖 ∈ {1, ..., 𝑙} :

𝑉𝑎𝑙 (𝑋𝑖) = 𝑉𝑎𝑙 (V𝑖) holds true, then 𝜉 (𝑋1, ..., 𝑋𝑙) defines the instantiated factor
from 𝑋1, ..., 𝑋𝑙 to 𝐼𝑅 w.r.t. (V1, ...,V𝑙).

Recall from section 2.6.3 that template factors are (just as template variables)

a type-level construct to describe probabilistic properties. A template factor

is defined over a set of template variablesV1, . . . ,V𝑙 that denotes the scope

of factor 𝜉 . In terms of our metamodel, template factors are represented by

the entity TemplateFactor. To satisfy the formal semantics of definition 14,

TemplateFactor is referencing a set of TemplateVariables which define the

scope of the factor. The metaclass TemplateFactor is abstract to facilitate

the extendability of the metamodel. Template-based formalisms are not only

suitable for modelling probability structures based on directed graphs (e.g.

BNs and DBNs), but also for structures based on undirected graphs (e.g.

Markov random fields). Currently, TemplateFactor is only extended with

the entity ProbabilisticTemplateFactor to model probability distributions

but could be extended for other types of factors (e.g. factors of Markov

127

5. Using Bayesian Modelling to Capture the Environmental Dynamics

random fields). ProbabilisticTemplateFactor are referencing exactly one

ProbabilityDistributionSkeletonwhich is part of the prodistmetamodel.

We discuss the metamodel in section 5.2.6 in more detail. At this point, it is

sufficient to know that ProbabilityDistributionSkeleton describes types

or families of probability distributions such as multinomial, exponential or

uniform distributions. In summary, a TemplateFactor-entity is defined over

a set of TemplateVariables which forms the scope of the factor. It also

specifies a distribution family (e.g. multinomial) so that the distribution

parameters must be specified after each instantiation of a factor.

In addition to template variables and factors, the template package of the

metamodel has a third concept that allows the specification of Relations
between template variables. The central entity here is Relation. Basically,

Relations define relationships between template variables and thus induce

the graph-based structure of BNs and DBNs after instantiation. Relation

is abstract and extended by the metaclasses TemporalRelation and Depen-

denceRelation. A DependenceRelation defines a relation between two tem-

plate variables by specifying a source and target. DependenceRelations

have a type that refers to an enumeration called DependenceType with the

constants DIRECTED and UNDIRECTED. Note that (just as for template factors)

we facilitate extendability by allowing the specification of undirected graphs,

e.g. to model Markov random fields. Throughout this work, however, we fo-

cus only on BNs and DBNs and thus consider only directed graph structures.

Therefore, an DependenceRelation instance of type DIRECTED describes a

parent-child relationship between two template variables where source at-

tribute refers to the parent and the target attribute refers to the child. While

DependenceRelation is primarily used to encode stochastic dependencies for

static probability structures (i.e. BNs), TemporalRelation specifies dynamic

dependencies of DBNs. TemporalRelation is also abstract and extended by

PersistenceRelation and TimeSliceRelation. PersistenceRelation and

TimeSliceRelation are DBN-specific relations based on the semantics of

persistence edges and inter-time-slice edges known from DBNs. Recall from

section 2.6.2 that in DBNs time-slice edges define the dependency between

two random variables between two time slices, i.e. 𝑋𝑡 → 𝑌𝑡+1 from time

𝑡 to 𝑡 + 1. Persistence edges are a special kind of time-slice edges where

the two random variables between two time slices are equal, i.e. 𝑋𝑡 → 𝑌𝑡+1
where 𝑋 = 𝑌 . In the template package of the metamodel, however, we dis-

tinguish between PersistenceRelation and TimeSliceRelation, although

the former is a special case of the latter. The main reason for that is (𝑖) a

128

5.2. The Environmental Dynamics Metamodel

clear separation of concepts and (𝑖𝑖) a simplified modelling process, as a

PersistenceRelation is associated with a single TemplateVariable. TimeS-

liceRelation defines temporal relations of TemplateVariables that are not

equal.

Finally, the entity TemplateVariableGroup groups a set of templates form-

ing a BN. Such template groups can be instantiated multiple times; this is

discussed in more detail in section 5.3.

Based on the semantics of Relations, TemplateVariables and Template-

Factors, we can describe plate models from section 2.6.3.1. The generic

framework of plate models are based on template-based probabilistic models

and thus share the same semantics in terms of template variablesV , template

factors 𝜉 , logical variables 𝑈1, . . . ,𝑈𝑛 and object classes Q. Plate models are

well-established probabilistic graphical models that are commonly used in

practice [105, P. 216]. Although plate models provide much more concepts

than discussed in this work, we only consider the formal definition of plate

models. In this way, we show that our metamodel is in conformance with

the semantics of plate models, as they provide the fundamental concepts

for instantiating ground Bayesian networks in arbitrary domains; this is

discussed in the section 5.2.4.1. Here again, we repeat the formal definition

of plate models from section 2.6.3.1:

Definition 15 (Plate Model). For a set of template variables V ∈ ℵ with
argument signature 𝛼 (V) = 𝑈1, ...,𝑈𝑛 , let 𝐵𝑖 (Ui) denote the variables of the
argument signature of parent 𝐵𝑖 . A plate model𝑀𝑃𝑙𝑎𝑡𝑒 defines for each template:

• A set of template parents 𝑃𝑎(V) := {𝐵1 (U1), ..., 𝐵𝑘 (Uk)} in which
∀𝑖 ∈ {1, ..., 𝑘} : 𝐵𝑖 (Ui) ⇒ Ui ⊆ {𝑈1, ...,𝑈𝑛}.

• A template CPD 𝑃 (V | 𝑃𝑎(V)).

The set of template variablesℵ is captured by TemplateVariableDefinitions.
We already discussed how template variables and their argument signatures

are captured by the metamodel, i.e. TemplateVariable, LogicalVariable,

Argument. Template conditional probability distributions 𝑃 (V | 𝑃𝑎(V)) are
represented by TemplateFactors. The parent structure for each templateV
is induced by the Relation instances. Thus, for eachV , the corresponding

template parents 𝑃𝑎(V) are determined by browsing themodelled Relations.

Requirements, such as enumerated in definition 15, i.e. ∀𝑖 ∈ {1, ..., 𝑘} :

129

5. Using Bayesian Modelling to Capture the Environmental Dynamics

𝐵𝑖 (Ui) ⇒ Ui ⊆ {𝑈1, ...,𝑈𝑛} and ∀V ∈ ℵ, ∃𝜉 ∈ Ξ : 𝜉 = 𝑃 (V | 𝑃𝑎(V)), can
be enforced by defining OCL constraints at metamodel-level.

The template package adheres to the formal semantics of template variables

and template factors which are the two main building blocks in template-

based models for defining probability models with reoccurring structures.

Furthermore, the package is complemented with the concept of relations to

express dependencies for static and dynamic probabilistic models. Based on

template variables, template factors and relations, we are now able to describe

probabilistic structures at the type level. These probabilistic structures induce

BNs that can be instantiated in several domains. The instantiation of template

variables and factors is discussed in section 5.2.4.

5.2.3.2. Applying Template Variables and Template Factors

In this section, we give an illustrative example of how the template meta-

model package can be applied. In doing so, we define a set of template

variables for the DeltaIoT example system that we presented in section

1.5.2.

Recall that there are several uncertainties in the DeltaIoT system, namely

wireless interference, SNR (signal-to-noise ratio) and fluctuations in traffic

load. All these factors have a direct influence on the quality attributes of

the system, i.e. packet loss and energy consumption. Because wireless

interference, SNR and fluctuations in traffic load fit into our definition of an

environmental state, they are considered environmental variables, each of

which is represented by an environmental variable, say𝑊𝐼 for the wireless

interference variable, 𝑆𝑁𝑅 for the SNR variable and 𝑀𝐴 for the variation

in traffic load w.r.t. mote activation. It is important to note, however, that

the environmental state of the DeltaIoT system does not only consist of

the three variables. For example, wireless interference occurs whenever

there is a wireless link between two communicating motes. Accordingly,

there are different SNR values for each wireless link and different traffic

fluctuations for different motes. Therefore, the variables𝑊𝐼 , 𝑆𝑁𝑅 and𝑀𝐴

represent template variables that have to be instantiated for each wireless

link and mote. As a result, the environmental state of the DeltaIoT system

encompasses a set of environmental variables that represent ground random

variables instantiating𝑊𝐼 , 𝑆𝑁𝑅 and 𝑀𝐴. Figure 5.3 shows the template

130

5.2. The Environmental Dynamics Metamodel

𝑀𝐴

Mote

(a) Plate model of mote activation

𝑊𝐼

𝑆𝑁𝑅

Wireless link

(b) Plate model of wireless interference and SNR

Figure 5.3.: Plate model representation of the template variables and object classes of the

environmental variables of the DeltaIoT system: (a) represents the mote activation variable, (b)

shows the wireless interference and SNR variables.

variables and their corresponding object class 𝑄 in the plate model notation

(see section 2.6.3.1).

It can be seen from Figure 5.3b that the 𝑆𝑁𝑅 template depends on the𝑊𝐼

variable. This results from the fact that the SNR value represents the ratio of

the level of a mote’s signal and the level of a noise signal that refers to the

wireless interference variable𝑊𝐼 . Both the𝑊𝐼 and 𝑆𝑁𝑅 template share the

same object class Wireless Link (abbreviated as 𝑄𝑊𝐿). That is, they can only

be instantiated in the architecture model for objects that are considered to

be instances of object class 𝑄𝑊𝐿 . Similarly, the template𝑀𝐴 has object class

Mote (abbreviated as 𝑄𝑀𝑜𝑡𝑒) indicating that𝑀𝐴 can only be instantiated for

objects that correspond to class 𝑄𝑀𝑜𝑡𝑒 .

Based on the template variables𝑊𝐼 , 𝑆𝑁𝑅 and𝑀𝐴 a TemplateVariableDef-

initions instance of the template metamodel package is created to model

the templates. Figure 5.4 depicts an excerpt of the TemplateVariableDefini-

tions instance that specifies the template variables𝑊𝐼 , 𝑆𝑁𝑅 of the DeltaIoT

system.

For illustrative purposes, we only show the template variables𝑊𝐼 and 𝑆𝑁𝑅,

their argument signatures (i.e. 𝛼 (𝑊𝐼), 𝛼 (𝑆𝑁𝑅)), their temporal and non-

temporal relationships and their respective template factors; otherwise, the

131

5. Using Bayesian Modelling to Capture the Environmental Dynamics

WirelessInterference:
TemplateVariable

SNR: TemplateVariable

DynamicalWIFactor:
ProbabilisticTemplateFactor

temporal = true

DynamicalWI_SNRFactor:
ProbabilisticTemplateFactor

temporal = true

WI_SNRFactor:
ProbabilisticTemplateFactor

temporal = false DependenceRelation

contingent = false
Type = DIRECTED

WIPersistence:
PersistenceRelation

WI_SNRTimeSlice:
TimeSliceRelation

WirelessLink:
Argument

LogicalVariable
signature

argument

LogicalVariable
signature argument

scope

scope

scope

interface
Variable

source

target

source

target

WIFactor:Probabilistic
TemplateFactor

temporal = false
scope

Figure 5.4.: An excerpt of the TemplateVariableDefinitions-instance of the template meta-

model package applied to the DeltaIoT system. Note that the different appearances of the arrows

have no semantic meaning but merely serve the purpose to distinguish between the references

of the model elements.

illustration would lack clarity due to the multiple relationships between the

model elements. It can be seen that the template variables𝑊𝐼 and 𝑆𝑁𝑅

are modelled by two TemplateVariable instances with name WirelessIn-

terference and SNR. Both share the same argument signature; each of them

has a single LogicalVariable instance referencing the same Argument Wire-

lessLink, i.e. object class 𝑄𝑊𝐿 .

The dependency structure given by𝑊𝐼 and 𝑆𝑁𝑅 is modelled by a Dependen-

cyRelation object where the source is pointing to the WirelessInterfer-

ence TemplateVariable and target is associated with the SNR TemplateVari-

able as shown in Figure 5.3b. So far, the structural elements of type-level

template variables and their relationships have been modelled, which only

need to be complemented by the probabilistic specifications, i.e. the template

factors. Regarding𝑊𝐼 and 𝑆𝑁𝑅, there are two template factors (captured

by a respective ProbabilisticTemplateFactor): The WIFactor describing

𝜉𝑊𝐼 = 𝑃 (𝑊𝐼) and WI_SNRFactor describing 𝜉𝑆𝑁𝑅 = 𝑃 (𝑆𝑁𝑅 |𝑊𝐼). Template

factors are defined over a set of template variables, i.e. the scope. The scope

of WIFactor is a single template variable (namely WirelessInterference).

In contrast, the scope of WI_SNRFactor is defined over two template variables

(namely WirelessInterference and SNR) as it described a CPD with Wire-

lessInterference as the conditional variable. Note that these type-level

constructs refer to the static part (i.e. B0) of the environmental dynamics

(B0,B→). Thus, the attribute temporal is set to false accordingly. As dis-

132

5.2. The Environmental Dynamics Metamodel

𝑊𝐼 𝑊 𝐼 ′

𝑆𝑁𝑅′

𝑡 + 1𝑡

Figure 5.5.: 2-TBN B→ of template variables𝑊𝐼 and 𝑆𝑁𝑅

cussed in the last section, each ProbabilisticTemplateFactor is referencing

a single distribution type of the probdist metamodel package which is, how-

ever, note depicted on Figure 5.4. For the sake of illustration, we omitted the

reference. Because we assume multinomial distributions, each Probabilis-

ticTemplateFactor refers to a corresponding probdist instance indicating

that the distribution belongs to the family of the multinomial distribution.

For the dynamic part B→, two more relations and template factors are mod-

elled. There are two temporal relations, namely PersistenceRelation WIPer-

sistence and TimeSliceRelation WI_SNRTimeSlice. WIPersistence is ref-

erencing the template variable WirelessInterference and indicates that the

template variable has a persistent behaviour over time. The TimeSliceRela-

tion WI_SNRTimeSlice models the temporal dependency of𝑊𝐼 at time 𝑡 on

𝑆𝑁𝑅′ at time 𝑡+1. Note that the WI_SNRTimeSlice is not a persistence relation
as it does not exhibit persistent behaviour over time, but is primarily driven

by the wireless interference of the environment. Suppose the wireless inter-

ference is non-existent, the SNR value of a wireless link would be constant

(w.r.t. the transmission power of the respective mote). The corresponding

2-TBN B→ of𝑊𝐼 and 𝑆𝑁𝑅 would look as depicted on Figure 5.5.

The template instance is completed by the temporal template factors, each

of which is modelled by a ProbabilisticTemplateFactor instance with at-

tribute temporal set to true. DynamicalWIFactor models the template fac-

tor 𝜉𝑊𝐼 ′ = 𝑃 (𝑊𝐼 ′ | 𝑊𝐼). Although the 𝜉𝑊𝐼 ′ is defined over two template

variables (i.e.𝑊𝐼 ,𝑊𝐼 ′) the scope encompasses only the template variable

WirelessInterference. To simplify modelling, there is no need to refer-

133

5. Using Bayesian Modelling to Capture the Environmental Dynamics

ProbabilisticModel
Repository

Ground
ProbabilisticNetwork[0...*] models

Local
ProbabilisticModel

LocalProbabilistic
Network

Ground
RandomVariable

[1...*] localModels

[1...*]
groundRandomVariables

[1...*] localNetworks [1...1] localModel

Meta class A static meta classes

Meta class B probdist meta classes

Legend:

TemplateFactor[1...1] instantiatedFactor

ProbabilityDistribution

[1...1] distribution

TemplateVariable
[1...1]

instantiatedTemplate

Dependence
Relation

[0...*] dependence
Structure

EObject[1...*] appliedObjects

Meta class C template meta classes

Meta class D ecore meta classes

Figure 5.6.: The static package of the metamodel for modelling Bayesian networks.

ence the same template variable two times as it can be derived by the

temporal attribute of the ProbabilisticTemplateFactor and the Persis-

tenceRelation. Finally, the DynamicalWI_SNRFactor describes template fac-

tor 𝜉𝑆𝑁𝑅′ = 𝑃 (𝑆𝑁𝑅′ | 𝑊𝐼) where the scope is defined over the template

variables WirelessInterference and SNR.

5.2.4. Modelling the Static Environment

In this section, we discuss the static package of the EnvDyn metamodel.

The static package encompasses all concepts relevant to model the static

environment with BNs, i.e. the B0 part of the environmental dynamics

(B0,B→). More specifically, it instantiates template variables and factors

modelled with the template package. Note again that template variables

and factors are type-level descriptions of random variables and probability

distribution families. Therefore, the static package contains the entities for

instantiating template variables and factors of the template package. The

static package of the metamodel is depicted in Figure 5.6.

134

5.2. The Environmental Dynamics Metamodel

5.2.4.1. Formal Semantics

In this section, we present the formal semantics of the static package of

the EnvDyn metamodel. The package provides all modelling concepts to

instantiate type-level template variables and factors. Themodelled relations

from section 5.2.3 specify parent-child relationships between templates and

induce probabilistic structures, i.e. BNs. Recall from section 2.6.3.1 that a

plate model 𝑀𝑃𝑙𝑎𝑡𝑒 and an object skeleton 𝜅 generate a ground Bayesian

network. The object skeleton 𝜅 specifies for each class 𝑄 ∈ Q a finite set

of objects for which template variables can be instantiated. In section 5.2.3,

we formally described how plate models can be generated by the entities of

the template package. In this section, we present how BNs are instantiated

based on an object skeleton 𝜅 and modelled template variables and factors

that adhere to the formal semantics of plate models. However, we start by

introducing the metaclasses of the static package and then formally describe

how they induce ground Bayesian networks.

The root element of the static package corresponds to ProbabilisticMod-

elRepository. A ProbabilisticModelRepository contains a set of Ground-

ProbabilisticNetworks that represent instantiated BNs.

Each GroundProbabilisticNetwork references a set of LocalProbabilistic-

Networks. LocalProbabilisticNetworks consist of GroundRandomVariables

and describe local probabilistic structures of the BN. One would expect that

GroundProbabilisticNetwork refers only to a single LocalProbabilistic-

Network. However, this is generally not the case; this is illustrated in section

5.2.4.2. Each GroundRandomVariable is associated with exactly one Template-

Variable of the template package, i.e. to indicate that the TemplateVariable

is instantiated by the GroundRandomVariable. Recall that each template vari-

able is instantiated for a set of objects included in object skeleton 𝜅 , i.e. V(𝛾)
where 𝛾 = (𝑈1 ↦→ 𝑢1, . . . ,𝑈𝑘 ↦→ 𝑢𝑘). Therefore, a GroundRandomVariable

is associated with a set of EObjects. Technically, we realised the EnvDyn
metamodel in the Eclipse Modelling Framework [177], which allows the design
and construction of metamodels. The EnvDynmetamodel is realised with the

EMF, where EObject corresponds to the root of each model object (equivalent

to java.lang.Object in the Java programming language). Thus, a GroundRan-

domVariable can be associated with any kind of EMF-based model object.

Since the PCM is also implemented in the context of EMF, a GroundRan-

domVariable references a TemplateVariable that is instantiated for a set of

135

5. Using Bayesian Modelling to Capture the Environmental Dynamics

model objects (i.e. PCM-specific model objects); we revisit the topic in section

5.3. Finally, each GroundRandomVariable might have parents described by

DependenceRelations of the template package. Thus, a GroundRandomVari-

able is referencing a set of DependenceRelations indicating the parents or

dependence structure of the random variable. Based on the relations and

EObjects (i.e. the objects for which the random variable is instantiated), the

parent GroundRandomVariables are resolved.

Principally, a BN consists of a structural (i.e. G) and a parametric part (i.e. a

set of CPDs associated with G). The structural part is captured by the pre-

viously introduced entities, namely GroundProbabilisticNetworks, Local-

ProbabilisticNetworks and GroundRandomVariables. The parametric part

is captured by the entity LocalProbabilisticModel which (𝑖) instantiates
TemplateFactors of the template package and (𝑖𝑖) describes the concrete
probability distribution of a GroundRandomVariable. Thus, each GroundRan-

domVariable refers to exactly one LocalProbabilisticModel where each

model describes the corresponding distribution. Furthermore, each Local-

ProbabilisticModel refers to a single TemplateFactor that models the in-

stantiation of said factor. Recall from definition 13 that a template factor

is a function defined over a set of template variables; that is, the scope of

TemplateFactor. Thus, a TemplateFactor (or more specifically a Probabilis-

ticTemplateFactor) is properly instantiated by a LocalProbabilisticModel

if the scope of the TemplateFactor encompasses the instantiated Templat-

eVariable of the associated GroundRandomVariable and the TemplateVari-

ables of the parents, if any. LocalProbabilisticModels are also contained

in GroundProbabilisticNetworks and correspond to their parametric part.

Recall that template factors describe probability distribution families at the

type level. Distribution families form a set of distributions of the same type

(e.g. normal distribution) but different parameter values (e.g. mean and stan-

dard deviation). Regarding LocalProbabilisticModel, an instantiated Tem-

plateFactor is complemented by a ProbabilityDistribution-entity. The

ProbabilityDistribution is part of the ProbDist metamodel (discussed in

section 5.2.6) and corresponds to a distribution with fixed parameter values.

Roughly speaking, a LocalProbabilisticModel instantiates a TemplateFac-

tor by connecting the factor with a probability distribution of the same

distribution type with fixed parameter values.

Recall formula (2.15) from page 55 that defines
𝜒
𝜅 [ℵ] as the set of all ground

random variablesV(𝛾) w.r.t. some object skeleton 𝜅 . A ground random vari-

able V(𝛾) is captured in our metamodel by GroundRandomVariable where

136

5.2. The Environmental Dynamics Metamodel

TemplateVariable corresponds to the instantiated templateV and the set of

referenced EObjects correspond to the applied objects 𝛾 . By iterating over

all LocalProbabilisticNetworks that are contained in GroundProbabilis-

ticNetwork, we obtain
𝜒
𝜅 [ℵ] by considering all GroundRandomVariables

referenced by LocalProbabilisticNetworks. Thus, we adhere to the formal

semantics of ground Bayesian networks. For better readability, we repeat the

definition 16 of a ground Bayesian network:

Definition 16 (Ground Bayesian Network). A Ground Bayesian Network
B𝑀𝑃𝑙𝑎𝑡𝑒
𝜅 is generated by a plate model𝑀𝑃𝑙𝑎𝑡𝑒 and object skeleton 𝜅 as follows:

∀V(𝑈1, ...,𝑈𝑛) ∈ ℵ,∀𝛾 ∈ Γ𝜅 [V] : ∃=1V(𝛾) ∈ 𝜒𝜅 [ℵ] (2.16)

where 𝛾 := (𝑈1 ↦→ 𝑢1, . . . ,𝑈𝑛 ↦→ 𝑢𝑛) and for all template parents V𝑃𝑎 ∈
𝑃𝑎(V) of ground random variable V(𝛾) there exist an instantiated CPD:
𝑃 (V(𝛾) | V𝑃𝑎1 (𝛾), . . . ,V𝑃𝑎𝑘 (𝛾)).

The basic semantics of a plate model are captured by the template package.

We discuss in section 5.3 howwe use the architecture model (i.e. PCMmodels)

to represent the object skeleton 𝜅. Finally, TemplateFactors (or in this case

ProbabilisticTemplateFactors) and ProbabilityDistributions describe

the instantiated CPDs 𝑃 (V(𝛾) | V𝑃𝑎1 (𝛾), . . . ,V𝑃𝑎𝑘 (𝛾)). The requirement

of complete CPD instantiations and the requirement of formula (2.16) can

be enforced by OCL constraints at the meta-level (as discussed in section

5.2.3.1).

5.2.4.2. Applying the Static Environment Model

In this section, we illustrate how to model an instance of the static meta-

model package to capture the static environment. Again, we use the DeltaIoT

example system as a use case for which we have already described how to

model template variables and template factors (see section 5.2.3.2). Now, we

illustrate how the modelled template variables and template factors are in-

stantiated in a model of the static metamodel package. The resulting model

represents the static environment, i.e. B0 of the environmental dynamics

(B0,B→).

Suppose we have an architecture model that describes the DeltaIoT system as

depicted on Figure 1.2 of section 1.5.2. The role of the architecture model in

137

5. Using Bayesian Modelling to Capture the Environmental Dynamics

conjunction with the instantiation process of template variables and template

factors is discussed in section 5.3. For simplicity, we therefore assume that

the architecture model of DeltaIoT contains the objects of the respective

object classes of the template variables, namely Mote andWirelessLink (see

Figure 5.3).

Recall from section 5.2.3.2 that we defined three template variables that

represent the environmental variables of the DeltaIoT system, namely mote

activation 𝑀𝐴, wireless interference𝑊𝐼 and the SNR 𝑆𝑁𝑅. Each template

variable is instantiated multiple times in the DeltaIoT architecture model.

For example, the𝑀𝐴 template variable is instantiated 17 times because there

are 17 motes. Similarly,𝑊𝐼 and 𝑆𝑁𝑅 templates are instantiated for each

wireless link. Consequently, this results in a large ground Bayesian network

describing the static environment of the DeltaIoT system. Therefore, consider

Figure 5.7 which depicts only an excerpt of the ground Bayesian network.

For the sake of illustration, the ground Bayesian network depicts only the

instantiation of the template variable 𝑀𝐴 of a single mote (mote 10 of the

DeltaIoT system which is equipped with a passive infrared sensor, see Fig-

ure 1.2) and template variables𝑊𝐼 and 𝑆𝑁𝑅 for a single wireless link (the

wireless link which connects mote 10 and mote 5, see Figure 1.2). It can

be seen that the model consists of the root element BasicDistributionRepo

ProbabilisticModelRepository which contains a single ground Bayesian

network, namely the GroundNetwork instantiating a GroundProbabilistic-

Network. The GroundNetwork-object encompasses the instantiated template

variables (i.e. the ground random variables) and the set of instantiated tem-

plate factors characterising the distribution of each ground random vari-

able.

The ground random variables are grouped into LocalProbabilisticNet-

works. For instance, each ground random variable instantiating the template

variable 𝑀𝐴 forms an individual local network such that for each of them

there is a corresponding LocalProbabilisticNetwork-object. Similarly, for

each instantiation of template variables𝑊𝐼 and 𝑆𝑁𝑅, there is a correspond-

ing LocalProbabilisticNetwork-object. Since𝑊𝐼 and 𝑆𝑁𝑅 are stochasti-

cally correlated, they form a local probabilistic network and are grouped

for this reason. Each ground random variable refers to the instantiated

template variable, the set of applied objects and the dependency structure,

if any. For example, the Mote10_MA GroundRandomVariable instantiates the

template variable𝑀𝐴. It also references the corresponding mote object (i.e.

138

5.2. The Environmental Dynamics Metamodel

BasicDistributionRepo:
ProbabilisticModel

Repository GroundNetwork:Ground
ProbabilisticNetwork

LocalProbabilistic
Network

Link10to5_WI_Model:
LocalProbabilisticModel

LocalProbabilistic
Network

Link10to5_WI:
GroundRandomVariable

Link10to5_SNR:
GroundRandomVariable

Mote10_MA:
GroundRandomVariable

WirelessInterference:
TemplateVariable

SNR:TemplateVariable

MoteActivation:
TemplateVariable

WirelessLink10to5:
EObject

Mote10:EObject

DependenceRelation

contingent = false
Type = DIRECTED

Link10to5_SNR_Model:
LocalProbabilisticModel

Mote10_MA_Model:
LocalProbabilisticModel

WIFactor:Probabilistic
TemplateFactor

Link10to5_WI_Dist:
ProbabilityDistribution

WI_SNRFactor:Probabilistic
TemplateFactor

Link10to5_WI_SNR_Dist:
ProbabilityDistribution

MAFactor:Probabilistic
TemplateFactor

Mote10_MA_Dist:
ProbabilityDistribution

instantiated
Factor

distribution

localModel

instantiated
Template

appliedObjects

instantiated
Template

dependenceStructure

instantiated
Template

appliedObjects

instantiated
Factor

distribution

instantiated
Factor

distribution

localModel

localModel

models

...

localModelslocalNetworks
...

Object A static object Object B probdist object

Legend:

Object C template object ecore object

appliedObjects

Object D

gr
ou

nd
R

an
do

m
Va

ria
bl

es

ground
Random
Variables

Figure 5.7.:An excerpt of the ground Bayesian network model of the staticmetamodel package

applied to the DeltaIoT system.

mote 10 of the DeltaIoT system) in the architectural model for which the

𝑀𝐴 is instantiated. Equivalently, the Link10to5_WI GroundRandomVariable

and Link10to5_SNR GroundRandomVariable-objects instantiate the template

variables𝑊𝐼 and 𝑆𝑁𝑅, respectively. Both refer to the WiressLink-EObject

139

5. Using Bayesian Modelling to Capture the Environmental Dynamics

because both template variables are instantiated together for the same ob-

ject. However, note that the Link10to5_SNR GroundRandomVariable is also

referencing DependenceRelation-object that forms its dependency structure

as 𝑆𝑁𝑅 depends on𝑊𝐼 .

Finally, each ground random variable references a LocalProbabilisticModel-

object that instantiates a template factor. Recall from section 5.2.3.2 that

regarding the DeltaIoT system we have three template factors, namely 𝜉𝑀𝐴,

𝜉𝑊𝐼 and 𝜉𝑆𝑁𝑅 , each of which is instantiated multiple times. For example,

in Figure 5.7 there are three LocalProbabilisticModel-objects instantiat-

ing 𝜉𝑀𝐴, 𝜉𝑊𝐼 and 𝜉𝑆𝑁𝑅 . Furthermore, each LocalProbabilisticModel-object

refers to a ProbabilityDistribution-object that is part of the ProbDist meta-

model (more precisely, the distributionfunction package). Recall that

template factors specify a distribution family (e.g. the multinomial distri-

bution family), which must be concretised as soon as they are instantiated

by a LocalProbabilisticModel. This concretisation is done by the respec-

tive ProbabilityDistribution-object, i.e. by determining the parameters.

The representation of ProbabilityDistribution-objects are discussed in

section 5.2.6. As mentioned earlier, each LocalProbabilisticModel is asso-

ciated with a ground random variable and models its concrete probability

distribution.

5.2.5. Modelling the Dynamic Environment

So far we discussed how to model type-level descriptions of random variables

(i.e. template variables and factors) and how they can be instantiated to

generate ground Bayesian networks which form the static environment of the

system, i.e. the B→ part of the environmental dynamics (B0,B→). However,
the primary objective of this thesis is to evaluate adaptation strategies of

self-adaptive systems in environments that indicate stochastic and temporal

behaviour. This section discusses the part of EnvDyn that adds dynamic

modelling capabilities to the metamodel. The dynamic package contains the

corresponding metaclasses and is depicted on Figure 5.8.

5.2.5.1. Formal Semantics

The root of the dynamic package forms the DynamicBehaviourRepository

that consists of a set of DynamicBehaviourExtensions. Recall that BNs form

140

5.2. The Environmental Dynamics Metamodel

DynamicBehaviour
Respository

<<abstract>>
DynamicBehaviour

[0...*] extensions

TemporalDynamic

InductiveDynamic
Behaviour

<<abstract>>
TimeSliceInduction

[1...*] localModels

[1...*]
timeSliceInductions

[1...1] localModel

GroundProbabilistic
Network

[1...1] groundNetwork

ProbabilityDistribution

[1...1] distribution

GroundRandom
Variable

[1...1]
appliedGroundVariable

Dependence
Relation

[1...*] dependenceStructure

Temporal
Relation

DynamicBehaviour
Extension[1...1] behaviour

InterTime
SliceInduction

IntraTime
SliceInduction

[1...*] temporalStructure

TemplateFactor[1...1] instantiatedFactor

Meta class A dynamic meta classes

Meta class B probdist meta classes

Legend:

Meta class C template meta classes

Meta class D static meta classes

Figure 5.8.: The dynamic package of the metamodel for modelling dynamic Bayesian networks.

joint probability distributions over a set of random variables. Each Dynam-

icBehaviourExtensions is associated with a single GroundProbabilistic-

Network to indicate that the (static) ground Bayesian network is extended

to a DBN. Consider the definition of a DBN (B0,B→) that is defined as a

tuple consisting of an initial BN B0 and 2-TBN B→. Semantically, the en-

tity DynamicBehaviourExtension refers to a 2-TBN, where the referenced

GroundProbabilisticNetwork corresponds to B0, i.e. the BN to be extended.

The specific behaviour description is captured by the abstract metaclass

DynamicBehaviour which is referenced by DynamicBehaviourExtension.

DynamicBehaviour is abstract to keep the metamodel extensible for other

types of behaviour. Currently, there is only a single extension: Inductive-

DynamicBehaviour. The InductiveDynamicBehaviour-entity refers to a set

of TimeSliceInductions which is an abstract metaclass. TimeSliceInduc-

tions establish a temporal dependency between two random variables (or

GroundRandomVariables) and describe inductively from time instance 𝑡 to

𝑡 + 1 how they stochastically evolve. There are two types of TimeSliceInduc-

tions, namely InterTimeSliceInductions and IntraTimeSliceInductions.

The metaclass TimeSliceInduction references a single GroundRandomVari-

able which is either complemented by DependenceRelations (if the sub-

141

5. Using Bayesian Modelling to Capture the Environmental Dynamics

𝑋

𝑌

𝑋 ′

𝑡 + 1𝑡

Figure 5.9.: An example structure of a two-time-slice Bayesian network.

metaclass corresponds to IntraTimeSliceInduction) or TemporalRelations

(if the sub-metaclass corresponds to InterTimeSliceInduction). Regarding

InterTimeSliceInductions, the GroundRandomVariable (referenced by the

super-metaclass) is complemented by a set of TemporalRelations (i.e. ei-

ther PersistenceRelation or TimeSliceRelation) where the target of each

relation is referencing the same TemplateVariable as instantiated by the

GroundRandomVariable.

Example 2. Consider Figure 5.9 where a simple 2-TBN is shown. In this

case, a InterTimeSliceInduction is associated with a GroundRandomVari-

able (i.e. 𝑋 ′) and refers to a PersistenceRelation (i.e. 𝑋 → 𝑋 ′) and a

TimeSliceRelation (i.e. 𝑌 → 𝑋 ′). In terms of IntraTimeSliceInductions,

the GroundRandomVariable is complemented by a set of (non-temporal) De-

pendenceRelations where the target of each relation references the same

TemplateVariable as instantiated by GroundRandomVariable (just as for In-

terTimeSliceInductions). ■

The semantics of InterTimeSliceInductions and IntraTimeSliceInductions

are equivalent to the semantics of inter-time-slice edges and intra-time-slice

edges in DBNs. In the dynamic package, persistence edges are considered

as special cases of inter-stime-slice edges in which the source and target

random variables are the same.

We have deliberately reserved the discussion of TemporalDynamic-entities

as they complement TimeSliceInductions with probabilistic models. Tempo-

ralDynamics are comparable to LocalProbabilisticModels from the static

142

5.2. The Environmental Dynamics Metamodel

package as they describe the probability distributions of TimeSliceInduc-

tions (e.g. 𝑃 (𝑋 ′ | 𝑋,𝑌) from the example 2-TBN shown in Figure 5.9).

Therefore, they instantiate a type-level TemplateFactor from the template

package complemented by a ProbabilityDistribution instance with fixed

parameter values (just as LocalProbabilisticModels).

In summary, the formal semantics of the dynamic package are based on the

notion of 2-TBNs where existing BNs are extended to DBNs. The semantics of

inter-time-slice, intra-time-slice and persistence edges are reused to establish

the temporal connection between random variables. Equivalently to the

static package, template factors are instantiated to inductively describe the

probability distributions of how random variables change over time.

5.2.5.2. Applying the Dynamic Environment Model

In this section, we illustrate the application of the dynamic metamodel pack-

age. Again, we use the DeltaIoT system as an example system and add the

dynamic environment model to the model instances of sections 5.2.3.2 and

5.2.4.2 presented so far. All three model instances form the environmental

dynamics (B0,B→).

Since the environment of the DeltaIoT system is quite complex, we have

again only presented an excerpt from the dynamic environment model for

the sake of clarity. We also discuss the temporal extensions (described by

the dynamic environment model) for the same ground random variables of

the DeltaIoT system presented in section 5.2.4.2. The excerpt of the model is

depicted on Figure 5.10.

The model consists of the root object BasicDynamicsRepo and defines a set

of extensions that refer to DynamicBehaviourExtensions. In this case, there

is only a single DynamicBehvaiourExtension-object, namely Extension. Re-

call that DynamicBehvaiourExtensions are associated with a single ground

Bayesian network that is to be extended to include dynamic behaviour (in

our case, this is the ground Bayesian network of the DeltaIoT system from

section 5.2.4.2).

To relate the ground Bayesian network with its respective dynamic behaviour

extension, the Extension-object references an InductiveDynamicBehaviour-

object that models the concrete dynamic behaviour extensions. More specifi-

cally, InductiveDynamicBehaviour references a set of TimeSliceInductions

143

5. Using Bayesian Modelling to Capture the Environmental Dynamics

BasicDynamicsRepo:
DynamicBehaviour

Repository Extension:Dynamic
BehaviourExtension

InductiveDynamic
Behaviour

Link10to5_WI_DynamicModel:
TemporalDynamic

InterTimeSliceInduction

Link10to5_WI:
GroundRandomVariable

WIPersistence:
PersistenceRelation

Link10to5_SNR_DynamicalModel:
TemporalDynamic

DynamicalWIFactor:
ProbabilisticTemplateFactor

Link10to5_WI_DynamicDist:
ProbabilityDistribution

DynamicalWI_SNRFactor:
ProbabilisticTemplateFactor

Link10to5_WI_SNR_DynamicalDist:
ProbabilityDistribution

instantiated
Factor

distribution

localModel

applied
GroundVariable

temporalStructure

instantiated
Factor

distribution

extensions

localNetworks

Object A dynamic object Object B probdist object

Legend:

Object C template object static objectObject D

tim
eS

lic
eI

nd
uc

tio
ns

GroundNetwork:Ground
ProbabilisticNetwork

groundNetwork

Link10to5_SNR:
GroundRandomVariable

WI_SNR_Relation:
TimeSliceRelation

applied
GroundVariable

temporalStructure

InterTimeSliceInduction

InterTimeSliceInduction

Mote10_MA:
GroundRandomVariable

MAPersistence:
PersistenceRelation

applied
GroundVariable

temporalStructure

...

localModel

Mote10_MA_DynamicModel:
TemporalDynamic

DynamicalMAFactor:
ProbabilisticTemplateFactor

Mote10_MA_DynamicDist:
ProbabilityDistribution

localModel

localModels

...

Figure 5.10.: An excerpt of the dynamic environment model of the dynamic metamodel package

applied to the DeltaIoT system.

(i.e. attribute timeSliceInductions) and a set of TemporalDynamics (see at-

tribute localModels). The former specifies the ground random variables of

the GroundNetwork-object indicating dynamic behaviour; the latter models

the probability distribution that describes the stochastic evolution, i.e. the

probabilistic description of the dynamic behaviour. This structural split is

similar to what we have seen for objects of GroundProbabilisticNetworks

where a set of GroundRandomVariables specify the instantiated template vari-

ables and a set of LocalProbabilisticModels determine their probability

distributions.

144

5.2. The Environmental Dynamics Metamodel

Each TimeSliceInduction refers to a single GroundRandomVariable that is

to be extended and, depending on the type of TimeSliceInductions, the re-

spective Relation-object from the templatemetamodel package. In terms of

the DeltaIoT system there are no IntraTimeSliceInductions but only Inter-

TimeSliceInductions. For example, in Figure 5.10 there is an InterTimeSli-

ceInduction that is applied to GroundRandomVariable-object Link10to5_WI.

Moreover, the InterTimeSliceInductions-object refers to the PersistenceRe-

lation-object WIPersistence indicating the temporal structure (see attribute

temporalStructure). Thismeans that the basic randomvariable Link10to5_WI

evolves probabilistically and persistently, i.e. there is a stochastic correlation

between the ground random variable 𝑋𝐿𝑖𝑛𝑘10𝑡𝑜5_𝑊𝐼 at time 𝑡 and the basic

random variable 𝑋 ′
𝐿𝑖𝑛𝑘10𝑡𝑜5_𝑊𝐼

at time 𝑡 + 1. As another example, there is an

InterTimeSliceInduction that is applied to GroundRandomVariable-object

Link10to5_SNR. In this case, the temporalStructure is given by the TimeS-

liceRelation-object WI_SNR_Relation indicating that the ground random

variable Link10to5_SNR has no persistent behaviour but is stochastically de-

pendent on ground random variable Link10to5_WI; that is, there is a stochas-

tic correlation between the ground random variable 𝑋𝐿𝑖𝑛𝑘10𝑡𝑜5_𝑊𝐼 at time 𝑡

and the basic random variable 𝑋 ′
𝐿𝑖𝑛𝑘10𝑡𝑜5_𝑆𝑁𝑅

at time 𝑡 + 1.

Just as InterTimeSliceInductions describe stochastic correlations of ground

random variables inductively from 𝑡 to 𝑡 + 1, the concrete probability dis-

tribution of such correlations is modelled by TemporalDynamic-objects. For

instance, consider the TemporalDynamic-object Link10to5_WI_DynamicModel

which is related to (see the localModel attribute of InterTimeSliceInduc-

tion-objects) the InterTimeSliceInduction-object extending the ground

randomvariable Link10to5_WI. The object Link10to5_WI_DynamicModel refers

to the template factor it instantiates (i.e. DynamicalWIFactor) and is comple-

mented by an instance of ProbabilityDistribution (i.e. the object Link10to5-
_WI_DynamicDist) of the metamodel package distributionfunction, which

specifies the concrete probability distribution. Effectively, this is equivalent

to the concept of LocalProbabilisticModels discussed in section 5.2.4.1 and

illustrated in section 5.2.4.2.

5.2.6. Modelling Probability Distributions

This section discusses the ProbDist metamodel, which is not explicitly part of

the EnvDynmetamodel but provides the modelling concepts to describe prob-

145

5. Using Bayesian Modelling to Capture the Environmental Dynamics

distributionfunction

distributiontype

ProbabilityDistribution
Repository

ProbabilityDistributionSkeleton

type: ProbabilityDistributionType

ParameterSignature <<enumeration>>
ProbabilityDistributionType

 DISCRETE
CONTINUOUS

[0...*] parameters

[0...*]
distributionFamilies

[1...*]
paramStructures

ProbabilityDistribution
FunctionRepository

Parameter

<<abstract>>
AbstractProbability

Distribution

ProbabilityDistribution

[1...*] params

[0...*] distributions

[1...*] params

RandomVariable

valueSpace: Domain
[1...*]

randomVariables

<<enumeration>>
Domain

 NATURAL
INTEGER
REAL
CATEGORY

<<enumeration>>
ParameterType

 SCALAR
VECTOR
MATRIX
SAMPLESPACE

[1...1] instantiated
[1...1] instantiated

<<abstract>>
ParamRepresentation

SimpleParameter

type: ParameterType

value: String

ComplexParameterTabularCPD

TabularCPDEntry

conditionals: String

[1...*] cpdEntries

[1...1] entry

[1...1]
representation

Figure 5.11.: Overview of the ProbDist metamodel.

ability distributions. The metamodel is divided into two packages, namely

distributiontype and distributionfunction. An overview of the entire

metamodel is depicted in Figure 5.11.

The distributiontype package provides modelling concepts to describe

probability distributions at type-level; the distributionfunction package

instantiates modelling entities of the distributiontype package to describe

manifestations of probability distributions. Note that, just as in the EnvDyn
metamodel, we have omitted attributes such as name or ID in Figure 5.11.

146

5.2. The Environmental Dynamics Metamodel

5.2.6.1. Type-Level Probability Distributions

The core entities of the distributiontype package form the ProbabilityDis-

tributionSkeleton and ParameterSignature. Instances of both metaclasses

are collected in the ProbabilityDistributionRepository metaclass which

corresponds to the root of the package. ProbabilityDistributionSkeletons

model distribution families (e.g. exponential, uniform ormultinomial distribu-

tions) that are distinguished by their names. Additionally, the type attribute

refers to an enumeration called ProbabilityDistributionType. Probabili-

tyDistributionType enumerates two constants, namely DISCRETE and CON-

TINUOUS. Therefore, a ProbabilityDistributionSkeleton instance is char-

acterised as being either continuous or discrete; that is, the value space of the

considered random variables is either discrete or continuous. Each Probabil-

ityDistributionSkeletons references one or many ParameterSignatures

that parameterise the distribution.

Instances of ParameterSignature describe parameters such as the mean,

standard deviation or covariance matrix without specifying the actual value.

Based on these modelling concepts, type-level distribution can be modelled.

For example, a family of normal distributions is modelled by creating an

instance of ProbabilityDistributionSkeleton named (say) "normal distri-

bution" and type CONTINUOUS referencing two instances of ParameterSigna-

ture. One instance of parametersignature describes the mean and another

instance of parametersignature describes the standard deviation (assuming

a one-dimensional distribution).

5.2.6.2. Instance-Level Probability Distributions

The distributionfunction package provides the modelling concepts to in-

stantiate type-level distributions by adding fixed values to the purely para-

metric descriptions (i.e. ParameterSignatures).

The root of the package forms the ProbabilityDistributionFunctionRepos-

itory that references a set of Parameters and ProbabilityDistributions.

Each ProbabilityDistribution references a set of RandomVariables over

which the distribution is defined. A RandomVariable is characterised by its

value space (see valueSpace attribute in Figure 5.11). A value space has a

domain captured by the enumeration Domainwith constants NATURAL (i.e. 𝐼𝑁),

147

5. Using Bayesian Modelling to Capture the Environmental Dynamics

INTEGER (i.e. Z), REAL (i.e. 𝐼𝑅) and CATEGORY. A ProbabilityDistribution en-

tity is associated with a particular ProbabilityDistributionSkeleton that

models an instantiation of the skeleton (or a manifestation of a particular

distribution w.r.t. a distribution family). To complement the type-level param-

eters of the instantiated distribution, a set of Parameters are referenced.

Just like ProbabilityDistributions instantiate ProbabilityDistribution-

Skeletons, Parameters instantiate and supplement ParameterSignatures

with fixed values. However, an instance of ParameterSignature can describe

parameters with different representations. Such representations range from

simple scalar values to matrices or tables (e.g. to describe higher-dimensional

multinomial distributions). Therefore, a Parameter has a representation

captured by ParamRepresentation

The abstract ParamRepresentationmetaclass has two sub-metaclasses, namely

SimpleParameter and ComplexParameter. The SimpleParameter entity has

a type and value attribute. Former, describes the ParameterType by an enu-

meration with constants SCALAR, VECTOR, MATRIX and SAMPLESPACE. The value

attribute of SimpleParameter corresponds to the string-based representation

of the value w.r.t. to its specified type (for each type a certain string pattern

is expected to parse the string value). For a value of type SAMPLESPACE, for

example, the string pattern refers to a set of pairs where each pair comprises a

categorical value and probability. The abstract metaclass ComplexParameter

describes more sophisticated representations. Currently, there is only one

ComplexParameter supported: TabularCPD. A TabularCPD-entity represents

table-like parameters (such as for higher-dimensional multinomial distri-

butions). Thus, a TabularCPD instance contains a set of TabularCPDEntries

where each entry defines a conditional (represented as a string) and refers

to exactly one SimpleParameter. The referenced SimpleParameter of each

entry indicates the distribution of some values given the conditional of the

entry. Because TabularCPD represents tables for higher-dimensional multi-

nomial distributions, the value space of the random variables over which the

distribution is defined is discrete. Thus, the type attribute of SimpleParame-

ter (referenced by each entry) must be SAMPLESPACE.

Example 3. Consider Figure 5.12 which depicts an example BN with a

tabular-based parameter representation.

It shows a BN that describes a multinomial joint distribution over the random

variables 𝑋 , 𝑌 and 𝑍 . Recall that the joint distribution of a BN factorises

148

5.2. The Environmental Dynamics Metamodel

𝑋 𝑌

𝑍

𝑃𝑟 (𝑋 = 𝑥1) 𝑃𝑟 (𝑋 = 𝑥2)
0.5 0.5

𝑃𝑟 (𝑌 = 𝑦1) 𝑃𝑟 (𝑌 = 𝑦2)
0.3 0.7

Con. 𝑃𝑟 (𝑍 = 𝑧1) 𝑃𝑟 (𝑍 = 𝑧2)
𝑥1, 𝑦1 0.8 0.2

𝑥1, 𝑦2 0.3 0.7

𝑥2, 𝑦1 0.5 0.5

𝑥2, 𝑦2 0.4 0.6

Figure 5.12.: Example BN with tabular-based parameter representation

w.r.t. some graph G. Thus, given the graph in Figure 5.12, the distribution

factorises to 𝑃 (𝑋,𝑌, 𝑍) = 𝑃 (𝑋) · 𝑃 (𝑌) · 𝑃 (𝑍 | 𝑋,𝑌). Based on the factori-

sation the distributions 𝑃 (𝑋) and 𝑃 (𝑌) are described individually, i.e. each

by a SimpleParameter instance of type SAMPLESPACE with (𝑥1, 0.5), (𝑥2, 0.5)
as value for 𝑃 (𝑋) and (𝑦1, 0.3), (𝑦2, 0.7) as value for 𝑃 (𝑌), respectively. The
distribution 𝑃 (𝑍 | 𝑋,𝑌) is represented by a ComplexParameter (or rather

TabularCPD) instance with four TabularCPDEntries where the condition-

als refer to (𝑥1, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦1) and (𝑥2, 𝑦2). Each TabularCPDEntry is

associated with a SimpleParameter describing the corresponding distribu-

tion, e.g. 𝑃 (𝑍 | 𝑋 = 𝑥1, 𝑌 = 𝑦1) with value (𝑧1, 0.8), (𝑧2, 0.2). ■

5.2.7. Discussion

In section 5.1, we enumerated several requirements that our metamodel

must provide. Now, we discuss how the EnvDyn metamodel addresses the

requirements.

149

5. Using Bayesian Modelling to Capture the Environmental Dynamics

Domain-Independence The rationale for the domain-independence require-

ment is based on the fact that AI components can be deployed in any domain,

so it is necessary to describe the environmental variables or factors that force

AI components to make erroneous predictions. The EnvDyn metamodel

addresses this requirement by integrating modelling concepts from the field

of probabilistic template-based models. Template variables and factors enable

the specification of type-level random variables that can be instantiated in

arbitrary domains. We have discussed in section 5.2.3 how the metamodel

EnvDyn conforms to the formal semantics of template variables and fac-

tors. Thus, the EnvDyn metamodel exhibits the same domain-independent

modelling capabilities that satisfy the domain independence requirement.

Architecture description language agnostic The EnvDyn metamodel is in-

tended to be applicable to any architecture model (w.r.t. a particular ADL), as

some architecture models are more suitable for some domains, i.e. enable the

modelling of more domain-specific characteristics that are more meaningful

in terms of the instantiation of the environmental dynamics. The EnvDyn
metamodel is ADL-agnostic because each template variable is associated with

a set of EObjects indicating the set of domain-specific objects for which the

template variable is instantiated (see section 5.2.4). An EObject in turn forms

the root of each model object in the EMF. Roughly speaking, the EnvDyn
metamodel can be applied to any Ecore-based ADL; that is, any ADL which

was developed in the context of EMF.

Stochastic dynamics Technically, the environmental dynamics are formally

considered as a DTMC to capture the probabilistic evolution of the envi-

ronmental states. However, modelling DTMCs conventionally (e.g. with

state machine-based models) can be quite tedious. In terms of the EnvDyn
metamodel, we represent the environmental dynamics as DBNs which (if

multinomial distributed) form DTMCs. In DBNs, the stationary and Markov

assumptions allow an inductive representation of the state changes over time.

This requires modelling only the initial distribution of the environmental

states (i.e. the distribution over E0, captured by a BN) and an inductive

transition step of the environmental states at time 𝑡 to 𝑡 + 1 (i.e. the transition
function 𝑡E , captured by a 2-TBN). In section 5.2.5, we discussed how we

integrated the semantics of DBNs in the EnvDyn metamodel to model the

stochastic dynamics of the environment with DBNs.

150

5.2. The Environmental Dynamics Metamodel

Stochastic correlations Recall that an environmental state is a tuple 𝐸 :=

(𝑒1, ..., 𝑒𝑛) consisting of environmental variables 𝑒𝑖 . Stochastic correlations

refer to stochastic dependencies between the environmental variables 𝑒𝑖 that

manifest themselves statically and dynamically. Such correlations are taken

into account in the metamodel EnvDyn through Bayesian modelling. In

Bayesian modelling, correlations (or (in-)dependence assumptions) between

random variables are expressed by DAGs that form the core of Bayesian mod-

els. Such DAGs can also be modelled in the EnvDyn metamodel (see section

5.2.3) and allow the representation of correlations between environmental

variables.

Compactness The compactness requirement refers to the compact mod-

elling of probabilities or their parameters. In DTMCs, for example, the

transition probabilities are captured in a probability transition matrix in

which each entry corresponds to the probability of transition to another

state given the current. From a modelling perspective, such matrix-based

representations are hard to manage as the size of entries grows quadrati-

cally in the size of the states. Thus, for large state spaces, such matrices

are intractable to model. The EnvDyn metamodel tackles the compactness

requirements by the decomposability property of Bayesian models, i.e. the

decomposition of the probability distribution of Bayesian models (accord-

ing to some DAG G) into local CPDs. For instance, let 𝑃 (𝑋1, . . . , 𝑋𝑛) be a
joint probability distribution over a set of random variables (𝑋1, ..., 𝑋𝑛). If
the distribution is multinomial distributed, the set of parameters to fully

describe 𝑃 (𝑋1, . . . , 𝑋𝑛) is 𝜃 = (∏𝑖∈{1,...,𝑛} |𝑉𝑎𝑙 (𝑋𝑖) |) − 1. If the distribution
is represented as BN and factorises to some graph G, the number of param-

eters to estimate corresponds to the sum of parameters of each local CPD

𝑃 (𝑋𝑖 | 𝑃𝑎G (𝑋𝑖)). Let 𝐶𝑃𝐷𝑖 be the number of required parameters of local

CPD 𝑃 (𝑋𝑖 | 𝑃𝑎G (𝑋𝑖)), then the number of parameters (to fully describe

𝑃 (𝑋1, . . . , 𝑋𝑛)) is 𝜃 =
∑

𝑖∈{1,...,𝑛} 𝐶𝑃𝐷𝑖 . Depending on the structure of graph

G, this can tremendously reduce the number of parameters to describe a

given probability distribution; this is illustrated in [105, P.5]. Because the

EnvDyn metamodel enables the modelling of BNs and DBNs over a set of

random variables, the decomposability property applies equally and allows

modelling parameters of local CPDs instead of the entire joint probability

distribution. For high-dimensional probability distributions, however, where

few (in)dependence assumptions can be made, the number of descriptive

parameters can still be high and hard to model. Nevertheless, this can be

151

5. Using Bayesian Modelling to Capture the Environmental Dynamics

tackled by more course-grained discretisation of the considered random

variables.

Discretisation level Finally, the discretisation level requires the flexible

modelling of discrete value spaces of random variables. We discussed in

section 5.2.6 how the EnvDyn metamodel integrates the ProbDist metamodel

to specify multinomial distributions (recall that we assume only multinomial

distributed BNs and DBNs, respectively). The ProbDist metamodels enable

the modelling of multinomial distributions where the value spaces of the

considered random variables are described by tabular-based parameters in

which the value spaces of random variables. More precisely, the value ranges

are described by a string in which the desired number of discrete states can

be specified.

5.3. Instantiating Environmental Dynamics in
Domain-Specific Contexts

In the last section, we presented the EnvDyn metamodel to model the en-

vironmental dynamics. One of the key concepts of the EnvDyn metamodel

is template variables that describe type-level random variables. Although

template variables describe random variables that share common semantics

(i.e. the value space and distribution family), it becomes more meaningful

after instantiation for a set of objects of a particular domain. After instantia-

tion, the template variable is complemented by the actual distribution of the

random variable (described by the instantiation of a corresponding template

factor). We briefly discussed the instantiation process in which template

variables are instantiated for an object skeleton 𝜅. We also mentioned that

𝜅 refers to the architecture model. More specifically, the objects of 𝜅 are

covered by the objects defined in the architecture model 𝑀C , i.e. 𝜅 ⊆ 𝑀C .
This again shows the importance of the selection of an appropriate ADL. The

architecture model must include all relevant objects from which an object

skeleton 𝜅 can be derived. Based on 𝜅 an EnvDyn instance or environment

model is generated.

In the following, we discuss in more detail how instances of the EnvDynmeta-

model are created w.r.t. an architecture model containing all relevant objects

152

5.3. Instantiating Environmental Dynamics in Domain-Specific Contexts

to capture 𝜅. We consider an EnvDyn instance as 𝑀E (i.e. 𝑀E = (B0,B→))
and an architecture model as𝑀C . An environment and architecture model

summarised by a tupleM := (𝑀C, 𝑀E) indicates that 𝑀E is generated by

𝑀C . Therefore, we start to present the general process where template vari-

ables and factors are instantiated in the architecture model. Afterwards, we

present a semi-automated approach for generating the probabilistic structure

of an environment model𝑀E induced by the instantiated template variables

and factors in the architecture model𝑀C . We present an annotation-based

approach for instantiating template variables based on so-called EMF Profiles
[110].

5.3.1. Instantiation of Template-based Structures

The most straightforward way to instantiate template variables is to create

the architecture model and template variables (or rather template variable

definitions, as discussed in section 5.2.3). When the template variables are

defined, they are instantiated in the architecture model (or based on the archi-

tecture model). Recall that after the template variables are modelled (see the

template package of EnvDyn), they can be instantiated in the static package
of the EnvDyn metamodel. Note that the term "instantiation" is ambiguous,

as template variables are instantiated in the static part of EnvDyn on the

one hand, and instantiated in the architectural model on the other; however,

it describes the same concept. The instantiation of a template variable is

a two-part process in which a ground random variable is first created to

indicate an instantiation of a given template variable in the static package

of EnvDyn. Afterwards, the ground random variable must be complemented

by a set of objects that indicate the domain-specific objects for which the

template is instantiated. Trivially, this can be achieved by manually adding

the corresponding objects of the architecture model to the ground random

variable. This is repeated for each template variable that is to be instantiated.

Finally, the remaining elements of the static and dynamic packages are

modelled to obtain the BN and DBN, respectively.

The manual instantiation of template variables is straightforward and directly

aligned with the modelling process of environment models. Depending on

the complexity of the environment model, however, the manual instantiation

process might be tedious and error-prone. Therefore, the question arises as

to which extent the manual instantiation process can be automated. In the

153

5. Using Bayesian Modelling to Capture the Environmental Dynamics

next section, we present a semi-automated approach where the structural

part of the environment model is automatically generated.

5.3.2. Semi-Automated Generation of the Structural
Environment Model by Annotation-based Instantiation

In the last section, we discussed the manual instantiation process of template

variables. Because the process might be time-consuming and error-prone,

we now present a semi-automated approach to generate the structural en-

vironment model. By structural environment model 𝑀−E := (B−,B−→), we
refer exclusively to the pure structure (not the parametric part) of the DBN

that captures the environment.

The approach follows an annotation-based instantiation process in which the

objects of an architecture model are annotated with template variable-related

attributes. More specifically, we implemented a Stereotype that allows the
annotation of objects of an architecture model in an ADL-agnostic way. The

stereotype is realised by using EMF Profiles [110] that implement the concept

of UML Profiles [62] in the context of EMF. In a nutshell, an EMF Profile is

applied to an EMF model such that stereotypes (defined within the profile)

can be applied to objects of the EMF model. Stereotypes extend metaclasses

of metamodels with additional attributes. That is, when a stereotype is

applied to a model object at the instance level, it enriches the object with

more attributes.

In our case, we use stereotypes to annotate model objects of the architectural

model. The annotation of an object with the stereotype indicates that one or

more templates are instantiated for the object. We denote the stereotype of

such an annotation as InstantiationTag. The InstantiationTag stereotype

is shown in Figure 5.13.

The InstantiationTag is referencing a TemplateVariable and a Template-

VariableGroup which specifies template variables that are to be instantiated.

Although the stereotype offers the possibility to reference both, it is expected

that either a TemplateVariable or a TemplateVariableGroup are specified;

only one of them can be instantiated but not both at the same time. An

InstantiationTag references exactly one Argument. Recall that an Argument-

object corresponds to a particular object class𝑄 . Thus, an InstantiationTag

associated with a particular Argument instance (i.e. 𝑄) must only be applied

154

5.3. Instantiating Environmental Dynamics in Domain-Specific Contexts

TemplateVariable

Argument

TemplateVariable
Group

Meta class A stereotype meta class

Legend:

Meta class B template meta classes Meta class C ADL meta class

<<stereotype>>
InstantiationTag

 taggedValue: String

ADL class

[1...1] argument

[0...1] templateGroups

[0...1] templates [1...1] extends

Figure 5.13.: InstantiationTag stereotype for annotating architecture models.

to model objects of the architecture model that are considered to be objects of

object class 𝑄 . Each stereotype can define a set of Tagged Values which form

the attributes of a stereotype or rather the attributes that enrich the extended

metaclass. Regarding InstantiationTag there is a single taggedValue at-

tribute of type string. Because the same template (or group of templates)

can be instantiated multiple times for model objects of the same object class,

the attribute taggedValue uniquely connects the template with the objects

for which it is instantiated. The taggedValue attribute is to be understood

as an ID for each applied InstantiationTag. Finally, a stereotype extends

one metaclass of another metamodel as depicted in Figure 5.13. In terms of

InstantiationTag, a metaclass of an ADL has to be extended to which the

stereotype can be applied. Ideally, the ADL-specific metaclass is a superclass

that is inherited by most other metaclasses such that InstantiationTag can

be applied to numerous objects at the instance level.

Example 4. Recall the DeltaIoT example system from section 1.5.2. Suppose

an architecture model representing the DeltaIoT system for which we want

to instantiate the template variables𝑀𝐴,𝑊𝐼 and 𝑆𝑁𝑅 from section 5.2.3.2

by annotating the corresponding objects (that are instances of object class

Mote or WirelessLink) with an InstantiationTag. Each mote object of the

architectural model is annotated by an InstantiationTag with a unique

taggedValue, a reference to the template variable𝑀𝐴 (not a template group)

and an argument referring to𝑄𝑀𝐴. Similarly, eachwireless link object shall be

annotated by an InstantiationTag with a unique taggedValue, a reference

155

5. Using Bayesian Modelling to Capture the Environmental Dynamics

to a TemplateVariableGroup-object (i.e.𝑊𝐼 and 𝑆𝑁𝑅) and a corresponding

argument of the wireless link. ■

When all model objects (for which templates are to be instantiated) are an-

notated with corresponding InstantiationTags, the structural environment

model can be generated. The algorithm for generating the structural en-

vironment model is depicted on algorithm 5.1. Note that the algorithm is

described from an abstract and formal perspective and reflects only the core

concepts; the details of the algorithm should be looked up in the code. The

algorithm inputs an architecture model𝑀C and a set of template variables

𝑀ℵ that represent a TemplateVariableDefinition-object. The templates de-

fined in𝑀ℵ must be instantiated in the architecture model𝑀C by following

the annotation-based approach (i.e. by applying InstantiationTags as de-

scribed before). Based on𝑀C and𝑀ℵ, the structural environment model𝑀−E
is generated and returned by the algorithm. In principle, the algorithm is

divided into five parts which we discuss in the following.

In terms of efficiency, only the third loop (the assignment of all 𝑜 to the

respective templateV) is worth mentioning. Ultimately, in the worst case,

the loop iterates over |𝑀ℵ | · |O𝜅
ℵ | elements. However, we argue that efficiency

is not a serious problem because the generation algorithm inputs human-

mademodels. In otherwords, it would take a software engineer a considerable

amount of time to construct a model, leading to serious efficiency problems.

In the first part of the algorithm all elements (denoted by the set O𝜅
ℵ) of

the architecture model𝑀C that are annotated by an InstantiationTag are

filtered, i.e. O𝜅
ℵ ⊆ 𝑀C . Theoretically, this is achieved by checking whether

for an architectural object 𝑜 ∈ 𝑀C there exists a template variableV ∈ 𝑀ℵ
such that object 𝑜 is a possible instantiation object ofV:

∃𝑈𝑖 ∈ 𝛼 (V) : 𝑜 ∈ O𝜅 [𝑄 [𝑈𝑖]] (5.1)

Practically, all elements 𝑜 ∈ 𝑀C are checked whether they are annotated with
an InstantiationTag. All instantiated template variables associated with the

corresponding InstantiationTag satisfy the requirement of formula (5.1).

The second part of algorithm 5.1 (starting at line 2) takes the filtered objects

O𝜅
ℵ and creates so-called Instantiation Contexts. Formally, an instantiation

context 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶 , 𝑜) is a tuple where 𝑖𝑑 and object class 𝑄 refer

to the taggedValue and Argument attributes of InstantiationTag applied

156

5.3. Instantiating Environmental Dynamics in Domain-Specific Contexts

Algorithm 5.1: The structural environment model generation algo-

rithm

Input: Architecture model𝑀C , template variable definitions𝑀ℵ
Output: Structural environment model𝑀−E
/* Filter all annotated elements from 𝑀C */

1 O𝜅
ℵ ← 𝑓 𝑖𝑙𝑡𝑒𝑟𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑀C)

/* Create instantiation contexts and equivalence classes */

2 𝐼𝐶 ← ∅
3 foreach 𝑜 ∈ O𝜅

ℵ do
4 𝑖𝑑,𝑄 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐼𝑑𝐴𝑛𝑑𝑂𝑏 𝑗𝑒𝑐𝑡𝐶𝑙𝑎𝑠𝑠 (𝑜)
5 V𝐼𝐶 ← ∅
6 𝐼𝐶 ← 𝐼𝐶 ∪ 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶 , 𝑜)
7 end
8 𝑃𝐼𝐶 ← {[𝑖𝑐]∼ ⊆ 𝐼𝐶 | [𝑖𝑐]∼ := {𝑖𝑐′ := (𝑖𝑑 ′, 𝑄 ′,V′𝐼𝐶 , 𝑜) ∈ 𝐼𝐶 | 𝑖𝑑 = 𝑖𝑑 ′}}

/* Assign each 𝑜 to V for which V is instantiated */

9 foreach [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 do
10 V[𝑖𝑐]∼ ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐶𝑜𝑚𝑚𝑜𝑛𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ([𝑖𝑐]∼)
11 foreachV ∈ V[𝑖𝑐]∼ do
12 foreach 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶 , 𝑜) ∈ [𝑖𝑐]∼ do
13 if ∃𝑈𝑖 ∈ 𝛼 (V) : 𝑄 [𝑈𝑖] = 𝑄 then
14 V𝐼𝐶 ←V𝐼𝐶 ∪V
15 end
16 end
17 end
18 end

/* Instantiate template variables to obtain 𝜒𝜅 [ℵ] */

19 𝜒𝜅 [ℵ] ← ∅
20 foreach [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 do
21 foreachV ∈ V[𝑖𝑐]∼ do
22 𝑂V ← {𝑜 ∈ 𝑖𝑐 | 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶 , 𝑜) ∈ [𝑖𝑐]∼ : V ∈ V𝐼𝐶 }
23 𝛾 ← 𝑎𝑠𝑇𝑢𝑝𝑙𝑒 (𝑂V , 𝛼 (V)) // i.e.

𝛾 := (𝑈1 ↦→ 𝑜1, ...,𝑈𝑛 ↦→ 𝑜𝑛)
24 𝜒

𝜅 [ℵ] ← 𝜒
𝜅 [ℵ] ∪ V(𝛾)

25 end
26 end
27 return 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝐵𝑁 (𝜒𝜅 [ℵ], 𝑀ℵ)

157

5. Using Bayesian Modelling to Capture the Environmental Dynamics

to object 𝑜 . The 𝑖𝑑 and object class 𝑄 are directly extracted from the ap-

plied InstantiationTag. The V𝐼𝐶 of an instantiation context 𝑖𝑐 refers to

a set of templates and is initially empty. For each object 𝑜 (with respec-

tive InstantiationTag) an instantiation context is created so that from set

O𝜅
ℵ a set of instantiation contexts 𝐼𝐶 is generated. The instantiation con-

texts 𝐼𝐶 are partitioned into equivalence classes 𝐼𝐶/∼ where the equiva-

lence relation ∼ is defined by the 𝑖𝑑 identity of instantiation contexts, i.e.

𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶 , 𝑜) ∼ 𝑖𝑐′ := (𝑖𝑑 ′, 𝑄 ′,V′𝐼𝐶 , 𝑜 ′) ⇔ 𝑖𝑑 = 𝑖𝑑 ′. The partitioned
sets of 𝐼𝐶 are denoted as 𝑃𝐼𝐶 , i.e. 𝑃𝐼𝐶 = 𝐼𝐶/∼.

After the creation of instantiation contexts and their partitioning into equiv-

alence classes, the next part of the algorithm (starting at line 9) complements

each instantiation context 𝑖𝑐 of a partition [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 with the concrete tem-

plate variables. Recall that an 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶 , 𝑜) contains a set of template

variablesV𝐼𝐶 which have been initially declared to be empty, i.e. V𝐼𝐶 = ∅. It
should also be noted that all InstantiationTags applied to the objects 𝑜 ∈ 𝑖𝑐
of an instantiation context 𝑖𝑐 ∈ [𝑖𝑐]∼ within a partition [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 have

the same template structure, i.e. the set of template variables referenced by

InstantiationTag and applied to 𝑜 . Thus, for each [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 the common

template structure (denoted asV[𝑖𝑐]∼) is extracted that refers precisely to the

template variables contained in all InstantiationTags applied to the object

𝑜 of each instantiation context 𝑖𝑐 of partition [𝑖𝑐]∼ ∈ 𝑃𝐼𝐶 . Each template

variableV ∈ V[𝑖𝑐]∼ is now added to the setV𝐼𝐶 of each instantiation con-

text if there exists a logical variable 𝑈𝑖 ∈ 𝛼 (V) such that the object class

𝑄 of an instantiation context matches object class 𝑄 [𝑈𝑖] of logical variable
𝑈𝑖 . Roughly speaking, the template variableV is added to all instantiation

contexts for whose object the template variable is instantiable. The objects

for which a template variable is instantiated are thus resolved in a reverse

manner.

Based on the complemented instantiation contexts, the template variables are

instantiated and become ground random variables in the penultimate part of

the algorithm (starting at line 19). This step iterates over all partitions [𝑖𝑐]∼ ∈
𝑃𝐼𝐶 . Moreover, for each template V ∈ V[𝑖𝑐]∼ in the respective template

structureV[𝑖𝑐]∼ a ground random variable is created. Before instantiating

template variableV , however, the objects for whichV is instantiated have

to be resolved. From the previous part of the algorithm, it is known that all

instantiation contexts are complemented by the template variables that are

instantiated for the objects contained in the instantiation contexts. Therefore,

for a templateV all objects 𝑂V of each instantiation context 𝑖𝑐 ∈ [𝑖𝑐]∼ are

158

5.4. Implementation

filtered where V is included, i.e. 𝑂V := {𝑜 ∈ 𝑖𝑐 | 𝑖𝑐 := (𝑖𝑑,𝑄,V𝐼𝐶 , 𝑜) ∈
[𝑖𝑐]∼ : V ∈ V𝐼𝐶 }. The set 𝑂V has to be transformed to a tuple 𝛾 w.r.t. the

argument signature of V , i.e. 𝛾 := (𝑈1 ↦→ 𝑜1, ...,𝑈𝑛 ↦→ 𝑜𝑛) w.r.t. 𝛼 (V).
Finally, the template is instantiated V(𝛾) and added to the set of ground

random variables
𝜒
𝜅 [ℵ].

In the last part of the algorithm (see line 27), the structural environmentmodel

(B−,B−→) is generated (w.r.t.
𝜒
𝜅 [ℵ] and the template variable definitions

𝑀ℵ) and returned. The function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝐵𝑁 (𝜒𝜅 [ℵ], 𝑀ℵ) abstracts away
the details of the remaining generation algorithm. We deliberately do not go

into the details as they involve the same steps we discussed in section 5.2.

The result of the algorithm is the structural environment model, which still

has to be complemented with the parametric information of the probability

distributions. The parametric part of the environment model cannot be

derived from the architecture model and the template variable definitions.

Instead, only the structural representation is generated automatically and

must be complemented manually with probability distributions in a final

step.

5.4. Implementation

In the previous sections, we presented the EnvDyn and ProbDist metamodels

as well as an approach for a semi-automated generation of the structural

environment model. However, the pure model instances of the EnvDyn and

ProbDist metamodel do not provide any functionality such as sampling or

evaluating the probability of certain events. Therefore, we implemented

additional components that provide such basic functionality. In this section,

we give a brief overview of the implemented components. The dependency

graph of the components is depicted on Figure 5.14. We have made the code

available at [155].

The EnvDyn and ProbDist metamodels are implemented based on the Eclipse

Modeling Framework (EMF). Thus, the metamodel and the generated meta-

model code are located in the components EnvDyn.Model and ProbDist.Model.

Note that EMF-basedmetamodels allow the generation of the respective meta-

model code to represent the metaclasses and make them accessible at the

code level.

159

5. Using Bayesian Modelling to Capture the Environmental Dynamics

EnvDyn.Model

EnvDyn.API

EnvDyn.Profile

ProbDist.Model

ProbDist.Model.Basic

ProbDist.API

Figure 5.14.: Dependency graph of the implemented EnvDyn components.

The ProbDist.API component provides the basic functionality of probability

distributions (i.e. evaluating probabilities and sampling) and depends on

the ProbDist.Model component. For instance, it takes an ProbDist model

instance and calculates the probabilities of certain events w.r.t. the specified

probability distribution of the model.

Recall from section 5.2.6.1 that probability distributions modelled with Prob-
Dist must contain type-level descriptions of the corresponding distribution,

e.g. distribution type (such as normal distribution) and parameter types (such

as mean and variance). Because such type-level distribution descriptions are

reused in any probability distribution, the ProbDist.Model.Basic provides

a model of the distributiontype package of ProbDist that already models

some basic distribution types and parameters. Thus, the component can be

reused in multiple contexts and reduces the modelling effort.

The EnvDyn.API component provides the basic functionality of Bayesian

models, i.e. it implements the core logic of BNs and DBNs. Just as the

ProbDist.API, it takes an EnvDyn model instance and returns either a BN

or DBN implementation. Because BNs and DBNs are complex structured

probability distributions, they provide the core functionalities of evaluating

the probability of certain events and sampling. In addition, the code for the

semi-automated generation of the structural environment model is included

in the component.

Finally, the EnvDyn.Profile component contains the stereotype implementa-

tion (i.e. the InstantiationTag stereotype introduced in section 5.3.2). Thus,

the component can be loaded and applied to any EMF-based architecture

model.

160

5.5. Assumptions and Limitations

5.5. Assumptions and Limitations

In this chapter, we discuss the made assumptions and limitations of the

environmental dynamics metamodel.

Assumptions To model the environmental dynamics of a self-adaptive sys-

tem in a compact form, we considered DBNs. However, the compact represen-

tation of DBNs results from two assumptions, namely theMarkov assumption

and the stationary assumption (see sections 2.4.1 and 2.6.2), which we need

to discuss. As discussed in chapter 4 several widely accepted approaches

employ the formal framework of DTMCs or MDPs to predict the future

behaviour of self-adaptive systems or to learn adaptation strategies based

on reinforcement learning. Because DBNs are specialisations of DTMCs, the

Markov and stationary assumptions also apply to DTMCs which have been

successfully used in connection with self-adaptive systems. Therefore, we

argue that the two assumptions are not too restrictive. Moreover, the Markov

assumption can be sufficiently approximated in terms of DBNs by adding

more random variables to the state description of a self-adaptive system that

makes the Markov assumption more reasonable [105, P.202].

Recall that a DBN is a network of random variables where each random

variable is associated with a probability distribution. If the random variables

are continuous, the resulting state space of the DBN is arguably difficult

to analyse. Therefore, we assumed the random variables to be discrete and

multinomial distributed to tackle the state space explosion problem. One may

argue that the multinomial distribution assumption or rather the discretisa-

tion of states is associated with information loss such that the resulting DBN

model might not accurately capture the environmental dynamics. However,

as discussed in chapter 4, in the self-adaptive system community it is widely

accepted to consider the environment as DTMC consisting of discrete states.

Moreover, as the EnvDyn metamodel satisfies the requirement Discretisation
Level (see section 5.2.7), one can adjust the resolution of the state description

to be more fine-grained (at the cost of state space explosion). Finally, in

the context of this work, the EnvDyn metamodel is used for design-time

analysis. At design-time, abstraction is exploited to eliminate details that

are not required for analysis. This simplifies the analysis process and allows

predictions of particular system attributes, e.g. performance or reliability.

161

5. Using Bayesian Modelling to Capture the Environmental Dynamics

Even if the result of the prediction does not perfectly reflect reality, it pro-

vides information on whether the initially designed system meets the quality

requirements. In summary, using abstraction is a widely used and accepted

method to predict system attributes using models that sufficiently reflect the

runtime behaviour.

Limitations Although the EnvDyn metamodel addresses the state space

explosion problem by discretising the states, the state space still grows

exponentially in the number of environmental variables (see section 4.4.1).

As a result, there might still be domains in which the modelled environment

indicates a large state space. In such domains, Monte-Carlo-Simulation [148]

or Importance Sampling [105, P.494] can be applied to explore the state

space for the most probable states. This does not examine the entire state

space, but at least the most probable environmental states, which should be

representative enough for design-time analysis.

Finally, one last limitation of the EnvDyn refers to the modelling process that

can be still cumbersome and error-prone for large and complex structured

environment models. For instance, consider an environmental variable 𝑒1
which depends on, say, three other environmental variables 𝑒2, 𝑒3, 𝑒4. In this

case, the corresponding random variable 𝑋𝑒1 of 𝑒1 forms a CPD with three

conditional random variables. In terms of the EnvDyn (or rather ProbDist)
metamodel, the CPD is represented by a table comprising |𝑉𝑎𝑙 (𝑒2)×𝑉𝑎𝑙 (𝑒3)×
𝑉𝑎𝑙 (𝑒4) | rows. Even for small numbers of 𝑉𝑎𝑙 (𝑒𝑖) with 𝑖 ∈ {2, 3, 4}, the
modelling effort is not negligible. However, there are still methods (e.g. [105,

P.157]) which tackle this significant disadvantage by considering different

CPD representations. Currently, such methods are not considered in the

EnvDyn metamodel but are the subject of future work.

5.6. Summary

In this chapter, we have introduced the EnvDyn metamodel that enables

the modelling of the stochastic environment in which self-adaptive systems

operate.

162

5.6. Summary

Therefore, we initially discussed in section 5.1 the requirements that the meta-

model must satisfy, namely domain independence, ADL-agnostic, stochastic

dynamics, stochastic correlations, compactness and discretisation level.

Before presenting the metamodel in section 5.2, we discussed why DBNs are

perfectly suited to represent the environmental dynamics of self-adaptive

systems. We then presented the EnvDyn metamodel that is divided into

three packages, namely the template, static and dynamic package. We

have indicated how each of the packages conforms to the formal semantics

of probabilistic template-based models (see section 2.6.3), which plays an

important role in enabling domain-independent application. The section

was concluded with a discussion on the fulfilment of the aforementioned

requirements for the metamodel.

In section 5.3, we outlined how an initially modelled EnvDyn instance is

instantiated into an architecture model which completes the environment

model. Hereby, we described a manual instantiation (e.g. performed by a

software engineer) and an annotation-based instantiation process. The latter

allows the annotation of specific objects in the architecture model for which

an EnvDyn model should be instantiated. Based on the annotated archi-

tectural model, we have presented a semi-automated approach to generate

the structural environment model, which only needs to be complemented

by a probabilistic description of the instantiated random variables of the

environment model.

Finally, we briefly presented the implementation of the EnvDyn metamodel

in section 5.4 and discussed the made assumptions in section 5.5.

163

6. Evaluating Self-Adaptive
Systems by Simulating
Experience: The SimExp Method

In this chapter, we present a model-based method for evaluating self-adaptive

systems (or rather adaptation strategies that self-adaptive systems pursue).

The contribution, presented in this chapter, is based on the publication

[158].

So far, in chapter 4, we have discussed the underlying mathematical frame-

work, i.e. MDPs. Subsequently, in chapter 5 we have discussed how a

particular concept of this mathematical framework, namely environmental

dynamics, is captured in a model-based way, i.e. by reusing concepts from the

field of probabilistic graphical models. In section 4.3.1 we already discussed

how the concepts of self-adaptive systems are mapped to concepts that con-

stitute an MDP. Now, we discuss how the concepts of self-adaptive systems

are mapped into the domain of Model-based Quality Analysis (MBQA), i.e. a

branch of MDSD (see section 2.2) that makes use of models to analyse system

attributes (e.g. performance or reliability). Based on MBQA, we simulate

the dynamics and evaluate adaptation strategies of self-adaptive systems

based on the formal framework of MDPs. More specifically, we use Dynamic
Programming (DP) (see section 2.5) which provides a collection of methods

for evaluating, improving or (in general) optimising policies in MDPs (recall

that an adaptation strategy reflects a policy 𝜋). Because our primary goal is

to evaluate adaptation strategies, we use a method of DP referred to as Policy
Evaluation (see section 2.5.1) to determine the quality of a strategy.

The result of this chapter is a method that we denote as SimExp method.

SimExp stands for simulated experience and originates from the field of

reinforcement learning where simulated experience is produced to learn

policies ([180, P.131]). Note that we deliberately use the term method instead

165

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

of approach because SimExp rather resembles a framework than a ready-to-

use tool. To be more specific, one main question that this work is concerned

with is generalisability, i.e. the evaluation of adaptation strategies domain-

independently and without a specific focus (e.g. safeguarding AI black-box

components). Technically, the generic nature ofMDPs allows such an analysis

at design-time, provided that we can adequately model the relevant elements

of a self-adaptive system. We will see, however, that the instantiation of the

SimExp method always requires domain-specific extensions. Therefore, we

present in this chapter a framework that implements the main building blocks

of the SimExpmethod that are extended or complemented by domain-specific

concepts for evaluating adaptation strategies.

This chapter addresses research question RQ1, which is:

Research Question 1: How to evaluate adaptation strategies of

self-adaptive systems at design-time regarding the ability to meet

quality objectives?

As presented in section 1.3, research question RQ1 breaks down into sub-

research questions that, when answered individually, allow the main research

question RQ1 to be answered. The sub-research questions RQ1.1 and RQ1.2
have already been dealt with in previous chapters. This chapter relates to

the sub-research question RQ1.3, which is:

Research Question 1.3: What is an appropriate analytical model

to enable design-time analyses of self-adaptive systems?

As an analytical model for analysing self-adaptive systems, we consider

MDPs and employ methods of DP to evaluate policies 𝜋 , i.e. adaptation

strategies.

The chapter is structured as follows: In section 6.1, we generally describe the

process of using model-based techniques to evaluate adaptation strategies.

In section 6.2, we formally describe how we make use of DP and Monte Carlo

methods to evaluate adaptation strategies. Afterwards, in section 6.3 we

present the SimExp method. In section 6.4 we briefly present implementation

details of the SimExp framework. Finally, in section 6.5 we discuss limitations

and assumptions and summarise the chapter in section 6.6.

166

6.1. Evaluating Adaptation Strategies at Design-time

6.1. Evaluating Adaptation Strategies at
Design-time

In this section, we give a brief overview of the formal components of SimExp
and their relation to each other. Furthermore, we have only associated an

adaptation strategy with the concept of a policy in MDPs, but have not

provided details on what we consider an adaptation strategy. We make

up for this in this section and start by defining an adaptation strategy for

MAPE-K-based self-adaptive systems.

In literature, the term adaptation strategy is often associated with the plan-

phase of MAPE-K-based self-adaptive systems (e.g. [38, 48]). In some ap-

proaches, adaptationmechanisms are hierarchically structured into Strategies,
Tactics and Actions (S/T/A). Moreover, (S/T/A) strategies consist of several

tactics where each tactic composes a set of actions (e.g. [47, 88]). However,

we treat the term adaptation strategy somewhat more broadly. In section 4.3.1

we introduced an adaptation strategy abstractly as a deterministic function 𝜋

that implements the decision procedure for choosing a particular adaptation

𝛿 in a given state without making any assumptions about the internals of the

strategy. However, we view any activity as part of an adaptation strategy

that influences the decision procedure in selecting an adaptation. In terms of

MAPE-K-based implementations, this includes the activities along the MAPE

phases. We argue that design decisions in all MAPE phases (and not only

in the plan-phase) might potentially determine whether an adaptation is

selected or not. Consequently, they must be considered as part of the strategy

that adheres to the semantics of policies 𝜋 in MDPs. The following example

illustrates our argument:

Example 5. Let us suppose two MAPE-K-based adaptation strategies 𝜋 ,

𝜋 ′. Let us assume also that 𝜋 ′ is identically implemented to 𝜋 , i.e. ∀𝑆 ∈
S : 𝜋 (𝑆) = 𝜋 ′ (𝑆). For simplicity, we consider 𝜋 and 𝜋 ′ as adaptation

strategies that monitor a single property, denoted as 𝜑 , in the monitor-phase

and determine in the analyse-phase whether an adaptation is planned by

evaluating the condition 𝜑 ≥ 𝜀 where 𝜀 is some threshold. If we change

𝜋 ′ slightly by adjusting the threshold 𝜀 to 𝜀′, we might run into a situation

where 𝜋 and 𝜋 ′ do not behave equally, i.e. ∃𝑆 ∈ S : 𝜋 (𝑆) ≠ 𝜋 ′ (𝑆). This
means that the mere change of threshold 𝜀′ in the monitor-phase of 𝜋 ′ alters
its behaviour at the same time. ■

167

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

Example 5 illustrates how activities of MAPE phases may influence the

decision of executing an adaptation. More generally, decisions made by one

phase can influence the actions of other phases. For example, the specific

decision onwhichmonitors to use to perceive the current state in themonitor-

phase directly affects the analyse-phase, as the monitored properties are

evaluated to determine whether an adaptation is planned or not. Furthermore,

the plan-phase can use themonitored properties to plan an adaptation. Taking

into account the previous discussion, we define an adaptation strategy as

follows:

Definition 29 (Adaptation Strategy). An adaptation strategy of a MAPE-K-
based self-adaptive system is a function 𝜋 : S → Δ that selects an adaptation
𝛿 ∈ Δ in a given state 𝑆 ∈ S. Moreover, it encompasses all activities along the
MAPE phases that affect the decision of selecting an adaptation.

After we defined an adaptation strategy, we now embed the evaluation of

such strategies in the context of MBQA by following the formal semantics of

MDPs and DP. Therefore, recall definition 28 that introduces the stochastic

dynamics of a self-adaptive system, which was:

Definition 28 (Stochastic Dynamics of Self-Adaptive Systems). The dynam-
ics of a self-adaptive system is a stochastic process (𝑋S𝑡)𝑡 ∈𝐼𝑁 for which the
Markov assumption holds. More precisely, the stochastic process is captured by
a Markov decision process 𝜆𝑆𝐴𝑆 := (S,Δ, 𝑡S, 𝑟S) where

• S corresponds to the set of self-adaptive system states.

• Δ corresponds to the set of adaptations.

• 𝑡S : S × Δ × S → [0, 1] corresponds to the transition function where
𝑡S = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1 (according to theorem 4.3.1).

• 𝑟S : S×Δ×S → 𝐼𝑅 corresponds to the reward function encoding quality
objectives.

Also, recall the engineering problem of section 4.4.2, which was, in summary,

to develop an adaptation strategy that maintains quality objectives over time

encoded by rewards. The idea of our approach is to evaluate adaptation

strategies using models to address the engineering problem at design-time.

This requires, however, that the concepts of definition 28 must be represented

168

6.1. Evaluating Adaptation Strategies at Design-time

in a model-based way, which are: The environmental dynamics, the architec-

ture of the managed system, adaptations and the adaptation process 𝜙 itself,

the adaptation strategy and the reward function.

In the last chapter, we already introduced the EnvDyn metamodel which

captures the environmental dynamics (recall that model instances of En-
vDyn are denoted as environment model 𝑀E). Recall also that the tuple

M := (𝑀C, 𝑀E) indicates that the environment model 𝑀E is generated by

the architecture model 𝑀C . The architecture model 𝑀C is modelled by an

ADL (architecture description language) representing the managed system.

Because the EnvDyn metamodel is ADL-agnostic, no further assumptions

need to be made about the architecture model (except that they must be

Ecore-based). Thus, we assume that the architecture model is given in terms

of an Ecore-based ADL (e.g. PCM). Adaptations and the adaptation process

are represented by using model transformations (see section 2.2.2). Each

adaptation is represented by an individual model transformation. The adap-

tation process is simulated by applying a transformation to the architectural

model𝑀C , as one obtains a new and adapted model𝑀 ′C .

These three ingredients, namely the architecture model, environment model

and model transformations, enable the implementation of a framework that

simulates the environment (i.e. by sampling trajectories from the environ-

ment model) and executing adaptations (i.e. applying model transformations)

to adapt the managed system (i.e. the architecture model), if required. Such

a framework only needs to be complemented by an adaptation strategy and

a reward function to evaluate the decisions made by the strategy. This is

realised by providing interfaces that need to be implemented to plug in an

adaptation strategy and reward function.

The engineering problem states that adaptation strategies must maintain

quality objectives over time. These quality objectives are encoded by re-

wards and serve as a basis for evaluating how well an adaptation strategy

satisfies these objectives. However, quality attributes (such as performance

or reliability) are traditionally observed at runtime. Therefore, we employ

simulation and analysis of models (i.e. MBQA) to predict quality attributes

at design-time. For example, the Palladio framework provides a repertoire of

analysis and simulation tools that can be applied to PCM instances to predict

quality attributes. The PCM-based tools allow predicting only a particular set

of quality attributes; however, there are potentially more prediction tools one

169

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

SimExp A B

Environment Model

Architecture Model

Model Transformation

Adaptation

Strategy

Reward
Function

Input

Output

User-specific

extension

Legend:

Figure 6.1.: Overview of the SimExp framework.

can take into consideration for design-time analysis (e.g. Prism [109]). Con-

sequently, the framework must provide extension points to provide an entire

repertoire of tools for implementing the reward function accordingly. The

outlined framework reflects the core idea of SimExp to evaluate adaptation

strategies. An overview of the method is depicted on Figure 6.1.

As mentioned in the beginning, simulating experience originates from the

field of reinforcement learning. Hereby, simulated experience is considered

as a tuple consisting of four elements, namely a state and selected action at

time 𝑡 and the next state and observed reward at time 𝑡 + 1. In the context of

MDPs, such tuples are produced by simulating the environment. Recall that

the dynamics of the environment are captured by the probability distribution

𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) that describes the probability of observing state 𝑠′ and reward

𝑟 at time 𝑡 + 1 given the current state 𝑠 and selected action 𝑎 at time 𝑡 (see

section 2.4.2). In principle, two kinds of models are considered to represent

𝑝 (𝑠′, 𝑟 |𝑠, 𝑎), namely distribution models (i.e. probability distributions that

hold all possible outcomes and their probabilities) and sample models (i.e.

models that produce individual samples from 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎)). Both models are

used to generate sequences or trajectories of states by repeatedly sampling

transitions 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) and applying 𝜋 in response to the new sampled state 𝑠′.
The simulated experience produced by this procedure enables the evaluation

and optimisation of policies 𝜋 .

In this work, we reuse the idea of simulated experience to evaluate adaptation

strategies 𝜋 . Moreover, 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) represents the stochastic dynamics of

self-adaptive systems (see definition 28) and is captured by a sample model to

produce simulated experience. We employ Monte Carlo methods to estimate

170

6.2. A Formal Framework for Evaluating Adaptation Strategies

the quality of an adaptation strategy 𝜋 w.r.t. the observed reward. Rewards

are determined by applying simulation and analysis techniques from MBQA.

As our primary concern is to evaluate adaptation strategies in terms of

maintaining quality objectives, MBQA is used to predict quality attributes

for a given state. That is, we integrate MBQA techniques in the reward

function implementation and use the quality attribute predictions to evaluate

decisions made by an adaptation strategy.

6.2. A Formal Framework for Evaluating Adaptation
Strategies

In this section, we present the formal framework that underlies the Sim-
Exp method. In the previous chapters, we discussed that we consider the

stochastic dynamics of self-adaptive systems as MDPs and explained how

the concepts of self-adaptive systems are mapped to the corresponding con-

cepts of MDPs. The advantage of this mapping is that methods applicable

to MDPs are similarly applicable to self-adaptive systems. In fact, DP (see

section 2.5) provides methods to evaluate or improve policies of MDPs which

we reuse in the context of this work. More accurately, we apply the policy

evaluation method of DP (see section 2.5.1) to evaluate adaptation strategies

of self-adaptive systems. In the following, we discuss how to apply policy

evaluation in the context of self-adaptive systems more formally.

6.2.1. Using Dynamic Programming to Evaluate Adaptation
Strategies

In section 2.5.1, we presented policy evaluation which is an approach of DP

to evaluate a policy 𝜋 . More specifically, the value function 𝑣𝜋 of a policy 𝜋

is computed. In the following, we discuss how we apply policy evaluation to

evaluate adaptation strategies.

171

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

6.2.1.1. Computing the Value Function of Adaptation Strategies

Algorithm 2.1 of section 2.5.1 illustrates the algorithm of policy evaluation.

The algorithm iteratively updates the value of a state w.r.t. the Bellman

equation. For the sake of clarity, we show the Bellman equation once again:

∀𝑠 ∈ 𝑆 : 𝑣𝜋 (𝑠) =
∑︁
𝑎

𝜋 (𝑎 | 𝑠)
∑︁
𝑠′,𝑟

𝑝 (𝑠′, 𝑟 | 𝑠, 𝑎)
(
𝑟 + 𝛾𝑣𝜋 (𝑠′)

)
(2.9)

Also, recall that 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) is a shorthand notation of the conditional proba-

bility of observing state 𝑠′ and reward 𝑟 at time 𝑡 + 1 given state 𝑠 and action

𝑎 at time 𝑡 , i.e. 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎) := 𝑃𝑟 (𝑋𝑆𝑡+1 = 𝑠
′, 𝑋𝑅𝑡+1 = 𝑟 | 𝑋𝑆𝑡 = 𝑠, 𝑋𝐴𝑡

= 𝑎).

The Bellman equation forms the core of policy evaluation and must be trans-

ferred into the domain of self-adaptive systems before using it to evaluate

adaptation strategies. First, the set of states 𝑠 ∈ 𝑆 and set of actions 𝑎 ∈ 𝐴
must be replaced by the self-adaptive system state space 𝑆 ∈ S and adaptation

space 𝛿 ∈ Δ (according to section 4.3.1). Moreover, we defined an adaptation

strategy 𝜋 as deterministic function; that is, the first sum of the equation

(2.9) (i.e.

∑
𝑎 𝜋 (𝑎 | 𝑠)) is therefore omitted and the selected adaptation of 𝜋 is

directly transferred to the conditional part of 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎):

∀𝑆 ∈ S : 𝑣𝜋 (𝑆) =
∑︁
𝑆 ′,𝑟

𝑝 (𝑆 ′, 𝑟 | 𝑆, 𝜋 (𝑆))
(
𝑟 + 𝛾𝑣𝜋 (𝑆 ′)

)
(6.1)

In MDPs, the dynamics of the environment are captured by 𝑝 (𝑠′, 𝑟 |𝑠, 𝑎). Ap-
plied to self-adaptive systems, the function reflects the dynamics of self-

adaptive systems and factorises as follows:

𝑝 (𝑆 ′, 𝑟 |𝑆, 𝛿) :=𝑃𝑟 (𝑋S𝑡+1 = 𝑆 ′, 𝑋𝑅𝑡+1 = 𝑟 | 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)

=𝑃𝑟 (𝑋𝑅𝑡+1 = 𝑟 | 𝑋S𝑡+1 = 𝑆 ′, 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)

· 𝑃𝑟 (𝑋S𝑡+1 = 𝑆 ′ | 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)

=1𝑟S (𝑆,𝛿,𝑆 ′)=𝑟 · 𝑡S (𝑆, 𝛿, 𝑆
′)

(6.2)

Formula (6.2) shows that 𝑝 (𝑆 ′, 𝑟 |𝑆, 𝛿) factorises into two products. The first

product (i.e. 𝑃𝑟 (𝑋𝑅𝑡+1 = 𝑟 | 𝑋S𝑡+1 = 𝑆 ′, 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)) evaluates the

probability of observing a particular reward 𝑟 given states 𝑆 , 𝑆 ′ and adaptation
𝛿 . However, definition 28 states that the reward function is deterministic;

that is, one can deterministically compute the reward value with reward

172

6.2. A Formal Framework for Evaluating Adaptation Strategies

function 𝑟S (𝑆, 𝛿, 𝑆 ′). This deterministic property allows us to rewrite the

probability of the first product by using the indicator function. The second

product (i.e. 𝑃𝑟 (𝑋S𝑡+1 = 𝑆 ′ | 𝑋S𝑡 = 𝑆, 𝑋Δ𝑡
= 𝛿)) refers to the transition

function of definition 28.

If we substitute equation (6.2) in equation (6.1), we obtain a new equation

which looks as follows:

∀𝑆 ∈ S : 𝑣𝜋 (𝑆) =
∑︁
𝑆 ′,𝑟

1𝑟S (𝑆,𝜋 (𝑆),𝑆 ′)=𝑟 · 𝑡S (𝑆, 𝜋 (𝑆), 𝑆
′)
(
𝑟 + 𝛾𝑣𝜋 (𝑆 ′)

)
=
∑︁
𝑆 ′
𝑡S (𝑆, 𝜋 (𝑆), 𝑆 ′)

(
𝑟S (𝑆, 𝜋 (𝑆), 𝑆 ′) + 𝛾𝑣𝜋 (𝑆 ′)

) (6.3)

1𝑟S (𝑆,𝜋 (𝑆),𝑆 ′)=𝑟 cancels out all summands with 𝑟S (𝑆, 𝜋 (𝑆), 𝑆 ′) ≠ 𝑟 . Thus, the
equation simplifies to a single sum while the reward function is applied

directly to compute the reward for 𝑆 , 𝑆 ′ and 𝛿 .

Moreover, recall from section 2.4.2 that parameter𝛾 refers to the discount rate

which determines the extent to which future rewards are taken into account.

Also, recall that we aim to address the uncertainty Parameter over time which
is concerned with future effects caused by adaptations. Consequently, for

the rest of this thesis, we define the discount rate 𝛾 = 1. Thus, we maximally

account for future rewards and address the uncertainty Parameter over time
as well as possible. Note that since we define 𝑇 < ∞, the existence and

uniqueness of value function 𝑣𝜋 (𝑆) of policy 𝜋 is guaranteed (see section

2.5.1).

In summary, equation (6.3) corresponds to an adapted version of the Bell-

man equation by considering formal concepts of self-adaptive systems and

their stochastic dynamics. Now one might use DP (or more precisely policy

evaluation) to compute the value function of a particular adaptation strategy

by recursively evaluating the transition function 𝑡S and reward function 𝑟S .
However, in section 6.2.2, we will see that applying DP is practically not

feasible such that we make use of Monte Carlo methods.

6.2.1.2. Partial Ordering of Adaptation Strategies

In section 2.5, we presented formula (2.8) which induces a partial ordering

over the policy space of MDPs. For better readability, we present the formula

again, but apply it to the domain of self-adaptive systems, i.e. we take into

173

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

account the concepts of the self-adaptive system state space and adaptation

strategies.

𝜋 ≥ 𝜋 ′ ⇔ ∀𝑆 ∈ S : 𝑣𝜋 (𝑆) ≥ 𝑣𝜋 ′ (𝑆) (6.4)

However, formula (6.4) has a significant disadvantage. Suppose two distinct

adaptation strategies 𝜋 , 𝜋 ′ where there exist a subset S′ ⊂ S such that

∀𝑆 ∈ S′ : 𝑣𝜋 (𝑆) ≤ 𝑣𝜋 ′ (𝑆) and ∀𝑆 ∈ S \ S′ : 𝑣𝜋 (𝑆) ≥ 𝑣𝜋 ′ (𝑆). In other words,

𝜋 ′ produces a better expected reward for a given set of states (i.e. S′) while 𝜋
performs better for the remaining states (i.e. S \S′). Naturally, the questions
arise of which strategy is better. That is, formula (6.4) provides no way to

compare the two strategies. For optimisation, the formula is sufficient as it

holds for optimal strategies. However, the primary concern of this work is

the evaluation; thus, we must expand formula (6.4) such that any pairs of

strategies 𝜋 , 𝜋 ′ can be compared.

Recall that the value function for a strategy 𝜋 is the expected reward when

starting in state 𝑆 and following the respective strategy, i.e. 𝑣𝜋 (𝑆) := 𝐼𝐸𝜋 [𝑋𝐺𝑡
|

𝑋S𝑡 = 𝑆]. The fact that value function 𝑣𝜋 (𝑆) is conditioned on 𝑆 complicates

the comparison of any strategies 𝜋 , 𝜋 ′ and forms the main drawback of

formula (6.4). To overcome this drawback, one can get rid of this condition

by considering the overall expected reward of a strategy, i.e. 𝐼𝐸𝜋 [𝑋𝐺𝑡
]:

𝐼𝐸𝜋 [𝑋𝐺𝑡
] :=

∑︁
𝑆∈S

𝑃𝑟 (𝑋S𝑡 = 𝑆) · 𝐼𝐸𝜋 [𝑋𝐺𝑡
| 𝑋S𝑡 = 𝑆] =

∑︁
𝑆∈S

𝑃𝑟 (𝑋S𝑡 = 𝑆) · 𝑣𝜋 (𝑆)

(6.5)

In simple terms, the expected reward of a strategy 𝜋 is the sum of all value

functions 𝑣𝜋 (𝑆) weighted by the probability of observing 𝑆 at time 𝑡 . By

considering the overall expected reward, one can assign a value to each

strategy and makes it, in fact, possible to compare any strategies 𝜋 , 𝜋 ′. To
clarify this idea, we expand formula (6.4) by considering 𝐼𝐸𝜋 [𝑋𝐺𝑡

]:

(6.4)⇒ 𝐼𝐸𝜋 [𝑋𝐺𝑡
] ≥ 𝐼𝐸𝜋 ′ [𝑋𝐺𝑡

]

=
∑︁
𝑆∈S

𝑃𝑟 (𝑋S𝑡 = 𝑆) · 𝑣𝜋 (𝑆) ≥
∑︁
𝑆∈S

𝑃𝑟 (𝑋S𝑡 = 𝑆) · 𝑣𝜋 ′ (𝑆) (6.6)

Again, let us assume two strategies 𝜋 and 𝜋 ′ where 𝜋 ≥ 𝜋 ′ according to

formula (6.4). If this is true, then 𝐼𝐸𝜋 [𝑋𝐺𝑡
] ≥ 𝐼𝐸𝜋 ′ [𝑋𝐺𝑡

] must also hold. If

we expand 𝐼𝐸𝜋 [𝑋𝐺𝑡
] (and 𝐼𝐸𝜋 ′ [𝑋𝐺𝑡

], respectively) according to formula (6.5),

then we obtain an inequality with two sums adding the weighted value

functions of all states 𝑆 . As a result, to compare two strategies 𝜋 , 𝜋 ′, one

174

6.2. A Formal Framework for Evaluating Adaptation Strategies

merely needs to add the weighted value functions of each strategy. This is

shown in formula (6.6).

Note that although (6.6) preserves the optimality criterion (i.e. for an optimal

strategy: (6.6)⇒ (6.4)), this is not generally true for any pair of strategies

(i.e. for all 𝜋 , 𝜋 ′: (6.6)⇏ (6.4)). However, we argue that 𝐼𝐸𝜋 [𝑋𝐺𝑡
] is more

suitable in terms of evaluating and comparing strategies as we associate the

value of each state with the probability of observing said state. Thus, state

values 𝑣𝜋 (𝑆) with low probability 𝑃𝑟 (𝑋S𝑡 = 𝑆) are less affecting the overall
result and vice versa.

As a last remark, note that we could have simply used the total accumulated

reward generated by a strategy 𝜋 . However, when considering the total

reward, convergence is not guaranteed (unlike (6.6) where the value function

converges). This is especially an issue when comparing strategies because it

can not be ruled out that the total rewards for both strategies still change if

we sample more trajectories. Nonetheless, we would like to stress that the

total reward can still be used as a quality measure.

6.2.2. Using Monte-Carlo-Methods to Generate Simulated
Experience

In the last section, we discussed how to make use of DP (or policy evaluation)

to compute the value function 𝑣𝜋 . Based on the value function, one may

assign a real value to a strategy 𝜋 , inducing a partial ordering over the strategy

space that forms the basis for comparison and evaluation. The problem of

DP is that it requires complete knowledge of the probability distribution

capturing the dynamics of self-adaptive systems, i.e. 𝑝 (𝑆 ′, 𝑟 |𝑆, 𝛿) (recall from
equation (6.2)). Generally, this is not the case for self-adaptive systems; this

is discussed in more detail in section 6.3.2.

Therefore, we advocate the use of Monte Carlo methods. More specifically,

we apply Monte Carlo prediction (recall from section 2.5.2) to estimate the

value function 𝑣𝜋 . Monte Carlo prediction is an alternative approach to

policy evaluation of DP in terms of handling the prediction problem. The

great advantage of using Monte Carlo prediction is that it does not require

complete knowledge of 𝑝 (𝑆 ′, 𝑟 |𝑆, 𝛿). The key idea is to generate trajectories

by probabilistic sampling and estimating 𝑣𝜋 based on the samples; such

samples are denoted as Simulated Experience.

175

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

More accurately, Monte Carlo prediction generates trajectories by repeatedly

drawing samples from 𝑝 (𝑆 ′, 𝑟 |𝑆, 𝛿) (represented by a sample model) and

following strategy 𝜋 until termination:

𝑆0, 𝛿0, 𝑟1, 𝑆1, 𝛿1, 𝑟2, 𝑆2, . . . , 𝑟𝑇 , 𝑆𝑇 (6.7)

For the trajectory depicted on (6.7), for example, each 𝛿𝑖 is determined by

applying strategy 𝜋 ; each self-adaptive systems state 𝑆𝑖 is sampled from

𝑝 (𝑆 ′, 𝑟 |𝑆, 𝛿). For each generated trajectory, the value of a state 𝑆 (i.e. 𝑣𝜋 (𝑆))
can be estimated by averaging the expected reward observed after the first

visit of 𝑆 . The more trajectories are sampled, the more estimates are averaged

such that 𝑣𝜋 (𝑆) converges towards its true value.

6.3. Simulating Experience by Model-based Quality
Analysis

After we discussed the formal framework of SimExp in the last section,

we now discuss how we implement the formal concepts by using MBQA.

Therefore, we start by discussing how self-adaptive systems and their related

concepts are represented by employing models. Afterwards, we outline how

these models are simulated to produce experience by applying Monte Carlo

prediction.

6.3.1. Modelling Self-Adaptive Systems

In this section, we discuss how the most relevant concepts of self-adaptive

systems are represented by models, namely the environmental dynamics,

the managed system, the adaptations (and associated adaptation process),

the reward function and the adaptation strategy. Each of these is captured

by a dedicated concept in the SimExp framework which is discussed in the

following.

Modelling the Environmental Dynamics The model-based representation

of the environmental dynamics has been exhaustively discussed in chapter

5. Therefore, we do not go into detail here. For the sake of completeness,

176

6.3. Simulating Experience by Model-based Quality Analysis

however, we include this section to show that the EnvDyn metamodel is an

integral part of the SimExp framework and corresponds to the model-based

representation of the environmental dynamics.

Modelling the Software Architecture of the Managed System One of the

main concepts of self-adaptive systems is the managed system, i.e. the system

that is supposed to be adapted at runtime. At design-time, we represent

the managed system by using an ADL. More specifically, we use the PCM

(Palladio Component Model) [149] language as ADL. The reason for choosing

PCM is that it is (𝑖) mature and (𝑖𝑖) provides an expressive ADL to describe

component-based software architectures. Although we have implemented

the SimExp framework by first considering PCM instances, we would like to

emphasise that SimExp is generally not limited to PCM, but is ADL-agnostic

(similar to the EnvDyn metamodel). We discussed the PCM (or the Palladio

approach in general) in section 2.3.

Representation of Adaptations by Model Transformations We abstract an

adaptation 𝛿 by using model transformations (see section 2.2.2). Recall that

our approach depends on EMF and thus on Ecore-based ADLs. Therefore, we

must consider MTLs (model transformation languages) that apply to Ecore-

based models. Fortunately, EMF provides a set of MTLs that can be used to

define model transformations. More specifically, we consider in-place model

transformations, i.e. transformations that transform a model𝑀 to model𝑀 ′

where the metamodel of𝑀 and𝑀 ′ is the same. Thus, the result of a model

transformation, when applied to a PCM instance𝑀C , is a new PCM instance

𝑀 ′C representing the managed system after executing an adaptation.

Representation of the Adaptation Strategy The adaptation strategy imple-

ments the adaptation logic. Thus, it contains a sequence of control structures

to plan a concrete adaptation. Representing such adaptation logic with a dedi-

cated DSL is challenging, as one has to find a balance between expressiveness

and domain specificity. However, the development of such a language is not

in the scope of this work; therefore, we use a general-purpose language (e.g.

Java) to represent the adaptation strategy.

More specifically, the SimExp framework provides an entry point where

software engineers can plug in their strategy implementations. The excerpt

177

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

of the interface is depicted on listing 6.1. We do not go into the technical

details of the listing here, but rather into the interaction of the individual

methods. To implement the strategy, a software engineer must implement

a set of methods that refer to the monitor-, analyse-, and plan-phase and a

method which returns an empty adaptation 𝛿∅ (according to the semantics of

empty adaptations defined in property 1). One might miss the method that

represents the execution phase of a MAPE cycle; however, we do not consider

the execution of an adaptation as part of the adaptation strategy, which, in

fact, corresponds to the application of model transformations and is located

in a different part of the code. The main control flow is already implemented

in the select-method and is complemented by the concrete adaptation logic

contained in the remaining methods. Note that the excerpt from the listing

6.1 is a snapshot that may change over time (due to code refactorings).

1 public abstract class AdaptationStrategy<T> implements Policy<T>

{

2

3 ...

4

5 @Override

6 public T select(State source, Set<T> options) {

7 monitor(source, knowledge);

8 if (analyse(source, knowledge)) {

9 return plan(source, options, knowledge);

10 }

11 return emptyReconfiguration();

12 }

13

14 protected abstract void monitor(State source, SharedKnowledge

knowledge);

15

16 protected abstract boolean analyse(State source, SharedKnowledge

knowledge);

17

18 protected abstract T plan(State source, Set<T> options,

SharedKnowledge knowledge);

19

20 protected abstract T emptyAdaptation();

Listing 6.1: Adaptation strategy to be implemented.

178

6.3. Simulating Experience by Model-based Quality Analysis

Representation of the Reward Function Just like the adaptation strategy,

the reward function is represented at code level. In order to plug in a reward

function implementation into the SimExp framework, one must implement a

dedicated interface (see listing 6.2) consisting of a single method.

1 public interface RewardEvaluator {

2

3 public Reward<?> evaluate(StateQuantity quantifiedState);

4 }

Listing 6.2: Reward function to be implemented.

The evaluate-method includes a single argument containing the state quanti-

ties, i.e. the predicted quality attributes of the managed system provided by

Palladio (or rather its simulation and analysis tools) or provided by external

tools, e.g. Prism. Based on the predictions, a software engineer determines

the resulting reward, e.g. by checking quality objective violations. Also,

quality objective preferences can be encoded within the reward function

implementation. Similar to the adaptation strategy, note that the excerpt

from the listing 6.2 is a snapshot that possibly changes over time.

6.3.2. Evaluating Adaptation Strategies by Generating
Simulated Experience

In the last section, we outlined the (predominantly model-based) represen-

tation of the self-adaptive system concepts that are relevant for evaluating

adaptation strategies. In this section, we discuss in more detail how the indi-

vidual concepts are mutually interacting to generate trajectories or simulated

experience.

Therefore, consider algorithm 6.1 which shows the main procedure of the

SimExp framework, i.e. the procedure for probabilistically generating trajec-

tories. SimExp inputs the initial architecture model𝑀𝐶0
, environment model

𝑀E , a set of model transformations denoted as𝑀Δ, the implemented reward

function 𝑟S and adaptation strategy 𝜋 . Moreover, some configuration-specific

parameters are passed as well: The number of trajectories to sample (i.e. 𝑛)

and the horizon (i.e. the final step 𝑇 of a trajectory). First, a list (denoted

as T ∗𝜋) is initialised. The list maintains all sampled trajectories where each

trajectory is denoted as 𝜏 . Note that we reuse notations of section 4.4.1, i.e.

179

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

Algorithm 6.1: Core process of SimExp: probabilistic trajectory sam-

pling

Input: The policy to be evaluated 𝜋 ,

reward function 𝑟S ,
initial architecture model𝑀𝐶0

,

environment model𝑀E ,
model transformations𝑀Δ,

number of trajectories to sample 𝑛,

horizon 𝑇

Output: Estimated quality of strategy 𝜋 , i.e. 𝐼𝐸𝜋 [𝑋𝐺𝑡
]

1 T ∗𝜋 ← 𝑒𝑚𝑝𝑡𝑦𝐿𝑖𝑠𝑡 () // initialise with empty list

2 while number of trajectories 𝑛 is not reached do
3 𝜏 ← 𝑒𝑚𝑝𝑡𝑦𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 () // initialise with empty sequence

4 forall 𝑖 < 𝑇 do
5 if 𝑖 = 0 then
6 𝐸0 ← 𝑥 ∼ B0 ∈ 𝑀E // sampling of initial

environmental state from initial distribution B0
7 𝐶0 ← 𝑀𝐶0

8

9 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜏, (𝐸𝑖 ,𝐶𝑖))
10 end
11 else
12 𝐸𝑖−1,𝐶𝑖−1 ← 𝑙𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒 (𝜏) // i.e. 𝑆𝑖−1
13 𝛿𝑖−1 ← 𝜋 (𝑆𝑖−1) // w.r.t. 𝑀Δ

14 𝐶𝑖 ← 𝜙 (𝐶𝑖−1, 𝛿𝑖−1)
15 𝐸𝑖 ← 𝑠𝑎𝑚𝑝𝑙𝑒𝑁𝑒𝑥𝑡 (𝑆𝑖−1, 𝑀E)
16 𝑟𝑖 ← 𝑟𝑆 (𝑆𝑖−1, 𝛿𝑖−1, 𝑆𝑖) // 𝑆𝑖 := (𝐸𝑖 ,𝐶𝑖)
17

18 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜏, 𝛿𝑖−1)
19 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜏, 𝑟𝑖)
20 𝑎𝑝𝑝𝑒𝑛𝑑 (𝜏, 𝑆𝑖)
21 end
22 end
23 𝑎𝑝𝑝𝑒𝑛𝑑 (T ∗𝜋 , 𝜏) // appends sampled trajectory 𝜏

24 end
25 return 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(T𝜋)

180

6.3. Simulating Experience by Model-based Quality Analysis

T𝜋 that describes the subspace of the trajectory space T induced by a policy

𝜋 and a trajectory 𝜏 . In terms of algorithm 6.1, T ∗𝜋 ⊆ T𝜋 ; depending on the

size of 𝑛 not all trajectories might be sampled, but a representative subset

captured by T ∗𝜋 . Also, note that we originally defined a trajectory to be a

sequence of states; technically, however, we do not merely consider the states

but also the corresponding adaptations (applied in a given state) and the

achieved reward for taking said adaptation.

The algorithm contains two main loops, an outer and an inner loop. The

outer loop is controlled by parameter 𝑛 and executes the inner loop until

all trajectories are sampled (specified by 𝑛). The inner loop is controlled by

horizon𝑇 , i.e. the number of states to sample or the length of each trajectory.

Themain logic of the inner loop, however, is to generate simulated experience,

i.e. states, adaptations, state transitions and rewards.

Each trajectory starts with sampling the initial state. The initial state sam-

pling is captured by the code block following the if -statement when condition

𝑖 = 0 evaluates to true. Because a state consists of an architectural configura-

tion and environmental state, both variables must be generated (i.e. an initial

architectural configuration 𝐶0 and an initial environmental state 𝐸0). The

initial architectural configuration refers to the initial architecture model𝑀𝐶0

passed to the algorithm. The initial environmental state 𝐸0 is generated by

sampling from the initial distribution captured by the BN (Bayesian network)

B0 which is part of the environmental model 𝑀E . Both variables form the

initial state and are appended to 𝜏 (which has been initialised before).

In all other cases (i.e. 𝑖 > 0) the else-block of the inner loop is executed.

Hereby, the last state 𝑆𝑖−1 appended to 𝜏 is retrieved as it serves as a basis

to determine the adaptation, reward and next state. Thus, the adaptation

𝛿𝑖−1 is selected by triggering adaptation strategy 𝜋 w.r.t. 𝑆𝑖−1, i.e. by in-

voking the code which implements the interface shown in listing 6.1. After-

wards, the selected adaptation 𝛿𝑖−1 is applied by executing adaptation process
𝜙 (𝐶𝑖−1, 𝛿𝑖−1); that is, the model transformation representing 𝛿𝑖−1 is applied to
architectural model𝑀𝐶𝑖−1 . As a result, we obtain the next architectural con-

figuration𝐶𝑖 . The next environmental state 𝐸𝑖 is sampled w.r.t. 𝑆𝑖−1. For now,
we abstract the details by the sampleNext-method and defer the discussion

to section 6.3.2.1 because it relates to the interdependency of architecture

and environment that we discussed in section 4.3.2. After determining the

environmental state 𝐸𝑖 (which completes state 𝑆𝑖), one can compute the re-

ward 𝑟𝑖 by applying reward function 𝑟S . Adaptation 𝛿𝑖−1, reward 𝑟𝑖 and state

181

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

𝑆𝑖 are appended to 𝜏 which is appended to T ∗𝜋 after 𝑇 runs of the inner loop.

Finally, T ∗𝜋 is further analysed to estimate the expected reward of strategy

𝜋 . Again, we abstract the details by the estimateValueFunction-method and

defer the discussion to section 6.3.2.3.

Note that lines 12-16 of the algorithm reflects the logic of sampling re-

wards and states from distribution 𝑝 (𝑆 ′, 𝑟 |𝑆, 𝛿). Formula (6.2) indicates how

𝑝 (𝑆 ′, 𝑟 |𝑆, 𝛿) factorises into two products where it can be seen that only the

next state (w.r.t. 𝑡S) must be sampled as the reward function is deterministic.

More generally, the entire logic of the inner loop reflects the sampling process

of Monte Carlo prediction (as discussed in section 6.2.2 and illustrated by

(6.7)). The trajectories are sampled w.r.t. the decisions made by strategy 𝜋

and as dictated by the Bellman equation (6.3) (or their adjusted version for

self-adaptive systems).

Example 6. Consider the load balancer example system from section 1.5.1.

In the load balancer example system, the adaptation problem is about ad-

justing the distribution factor (which determines how the incoming load

is distributed onto two application servers) to keep the response time and

resource utilisation of the system as low as possible in the presence of un-

certainties such as varying workloads and resource failures. For simplicity,

we discretise the workload into three levels, namely low, medium, high. The
resource failure of a server is described as a binary random variable.

Suppose a predefined adaptation strategy 𝜋 that has been developed by a

software engineer and which is supposed to be evaluated by the SimExp
framework. In addition, let us assume that all required models are specified

and all required interfaces implemented. Now, consider Figure 6.2 which

depicts an example trajectory of the load balancer system following strategy

𝜋 sampled by the SimExp framework.

It shows a possible trajectory through the load balancer system state space

and illustrates two possible state transitions, i.e. from 𝑆𝑡−1 to 𝑆𝑡 and from

𝑆𝑡 to 𝑆𝑡+1. More precisely, 𝑆𝑡−1 to 𝑆𝑡 illustrates a transition where only the

environmental state is changing; that is, the system has not been adapted by

the adaptation strategy (𝜋 (𝑆𝑡−1) = 𝛿∅) at time 𝑡 − 1, but the environmental

state (or more specifically, the workload) has changed at time 𝑡 . The envi-

ronmental state change is determined by the sampleNext-method which we

discuss in section 6.3.2.1. From 𝑆𝑡 to 𝑆𝑡+1, one can observe an adaptation

of the architectural configuration. The environmental state transition from

182

6.3. Simulating Experience by Model-based Quality Analysis

, , ,

Load

Balancer

App

Server1

App

Server2

<<ExternalCall>>

AppServer1

<<ExternalCall>>

AppServer2

<<implements>>

Load

Balancer

App

Server1

App

Server2

<<ExternalCall>>

AppServer1

<<ExternalCall>>

AppServer2

<<implements>>

Figure 6.2.: A probabilistically sampled trajectory of the load balancer example system adopted

from [158].

time 𝑡 − 1 to 𝑡 could have resulted in a self-adaptive system state that violates

the quality objectives. As the workload variable increases to a higher level,

the response time of the system increases equally such that the strategy 𝜋

triggers an adaptation in response to the environmental change, i.e. by adapt-

ing the distribution factor. As the SimExp framework uses the prediction

tools of the Palladio framework, the increased workload is also noticeable in

the predicted response time of the system. When the adaptation strategy is

invoked again, the increased response time is detected and a corresponding

adaptation, i.e. a model transformation, is planned. The model transfor-

mation is carried out in such a way that a new architecture configuration

(represented by the transformed architecture or the PCM model) is created

that indicates an improvement in the predicted response times. ■

So far, we deliberately neglected detailed discussions about how the sam-
pleNext-method, estimateValueFunction-method of algorithm 6.1 are imple-

mented and how we make use of software quality prediction approaches to

compute rewards. This is done in the subsequent sections.

183

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

6.3.2.1. Encoding Interdependency Assumptions of Software Architecture
and Environment

In the last section, we presented the core process of the SimExp framework

(see algorithm 6.1). Hereby, we abstracted the details of the procedure for

sampling environmental states by the sampleNext-method. In this section, we

discuss the internals of said method and how it relates to the interdependency

of software architecture and the environment from section 4.3.2.

Therefore, recall theorem 4.3.1 on page 107 which states that the transition

function of a self-adaptive system factorises to:

𝑡S = 𝑃 (𝑋S𝑡+1 | 𝑋S𝑡 , 𝑋Δ𝑡
) = 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) · 1𝜙 (C𝑡 ,Δ𝑡)=C𝑡+1

Moreover, in the last section, we discussed how the core process of SimExp
follows the Bellman equations (with the difference that we sample from 𝑡S
instead of summing over all possible subsequent states). If we substituted

the transition function 𝑡S of the adjusted Bellman equations (6.3) from page

173, we obtain:

∀𝑆 := (𝐶, 𝐸) ∈ S : 𝑣𝜋 (𝑆) =
∑︁

𝑆 ′ :=(𝐶′,𝐸′)
𝑃𝑟 (𝑋E𝑡+1 = 𝐸′ | 𝑋C𝑡 = 𝐶,𝑋E𝑡 = 𝐸)

· 1𝜙 (𝐶,𝜋 (𝐶))=𝐶′
(
𝑟S (𝑆, 𝛿, 𝑆 ′) + 𝛾𝑣𝜋 (𝑆 ′)

)
(6.8)

As mentioned earlier, the core process of SimExp samples trajectories accord-

ing to the dynamics described by the Bellman equations or their adjusted

version (6.8). That is, it is not summed over all possible subsequent states 𝑆 ′

but sampled from 𝑡S which factorises into two products according to theorem
4.3.1. Hereby, the sampleNext-method implements the procedure of sampling

from 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡).

However, the dynamics of the distribution depend on the domain in which the

self-adaptive system operates. Furthermore, at design-time it may be unclear

what the exact distribution of 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) looks like. Therefore,

assumptions must be made. By default, it is assumed that the environment

is conditionally independent of the software architecture (or architectural

configuration) if the last environmental state is given:

(𝑋E𝑡+1 ⊥⊥ 𝑋C𝑡 | 𝑋E𝑡) (6.9)

184

6.3. Simulating Experience by Model-based Quality Analysis

Based on that assumption the distribution 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) simplifies

to 𝑃 (𝑋E𝑡+1 | 𝑋E𝑡). For the load balancer example system, this might be a

reasonable assumption because regardless of how the distribution factor is

adapted, it has probably no effect on how the workload and resource failure

variables evolve. In section 4.3.2, however, we discussed that assumption

(6.9) does not hold for the DeltaIoT system. Therefore, domain-specific

assumptions about the distribution must be encoded in some way to account

for them during the sampling process of the SimExp framework.

Currently, in the SimExp framework, domain-specific assumptions (i.e. do-

mains where (6.9) does not hold) are implemented by using a dedicated

interface. An alternative approach, however, would be to encode the interde-

pendency assumption directly in the environment model, i.e. 𝑀E . That is to
say, dedicated architectural template variables must be considered.

Recall from chapter 5 that the core of the EnvDyn metamodel are template

variables which encode the probabilistic structure of domains at the type

level. At this point, the template variables are extended by the architecture-

specific templates, which are related to the environment-specific template

variables on which they have an influence. Afterwards, the template vari-

ables are instantiated in the architecture model as usual and the respective

probability distributions are specified accordingly. Thus, changes in the

architecture model (triggered by model transformations) are considered by

the expanded environment model𝑀E , if the architectural change influences
the environment. Finally, 𝑃 (𝑋E𝑡+1 | 𝑋C𝑡 , 𝑋E𝑡) is evaluated by sampling from

the modelled distributions described by𝑀E .

Example 7. In the DeltaIoT system, an architecture-specific template might

refer to the transmission power as it directly affects the SNR (signal-to-

noise ratio) of a communication link. That is, a template variable associated

with the transmission power must be created and added to the existing

(and environmental-specific) template variables. Moreover, the transmission

power template must be related to the SNR template variable to indicate that

the transmission power influences the SNR. Subsequently, the templates are

instantiated in the architecture model as usual, i.e. the transmission power

template refers to the architectural elements that represent the transmission

power. Thus, adaptations (or model transformations) that adapt the trans-

mission power are considered by the expanded environment model such that

the next environmental state is determined w.r.t. the modelled probability

distributions (described by the ProbDist metamodel). ■

185

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

6.3.2.2. Using Software Quality Prediction to Determine Rewards

The quality of an adaptation strategy is determined by evaluating how good

quality objectives are maintained. For this purpose, at each time 𝑡 the reward

function 𝑟S evaluates the decisions made by the strategy. Afterwards, the

generated rewards are evaluated to estimate the expected reward of a strategy

(details follow in section 6.3.2.3). In this section, however, we discuss how

particular rewards are generated by using quality prediction tools (such as

those provided by the Palladio framework).

Based on predicted quality attributes, a reward signal or value is determined.

The calculation of a reward is context specific because it depends on (𝑖)
the quality objectives specific to that context and (𝑖𝑖) their prioritisation.
For instance, in the load balancer example system, the quality objectives

that must be dealt with are response time and resource utilisation. The

Palladio framework provides prediction tools to predict the response time

and resource utilisation of a modelled PCM instance. That is, for each state,

quality predictions are made which serve as a basis to generate a reward

signal. For example, a trivial reward generation procedure could simply

return a positive reward (e.g. +1) when all quality objectives are satisfied

or a negative reward signal (e.g. -1) whenever one of the predicted quality

attributes is violated. In some application contexts, however, a software

engineer prefers some quality attributes more than others. For example, in

terms of the load balancer system, one may prefer to keep the system rather

more responsive than economising resource utilisation. In this case, the

reward function can be adapted in the sense that +1 is returned when the

response time and resource utilisation attributes are satisfied, 0 if at least the

response time is satisfied and -1 otherwise. As a result, adaptation strategies

that keep the system responsive are likely to generate a larger expected

reward signal.

In this thesis, we use PCM as ADL to model software systems. Again, we

want to stress that our approach is not limited to PCM as ADL but is rather

ADL-agnostic. PCM (or the Palladio approach in general) provides a set of

prediction tools that can be used to predict certain quality attributes. How-

ever, the quality predictions are dependent on the current environmental

state, e.g. when the environmental variables of the load balancer example in-

dicate a high workload, the predicted response time is high as well (assuming

that the current architectural configuration is balancing the load not ideally).

186

6.3. Simulating Experience by Model-based Quality Analysis

Analytical

Model

M2M-, M2Text-
Transformation

,

Load

Balancer

App

Server1

App

Server2

<<ExternalCall>>

AppServer1

<<ExternalCall>>

AppServer2

<<implements>>

Prediction

Figure 6.3.: Transformation of the environment- and architecture model to an analytical model

for quality prediction and reward evaluation.

As the workload variable in PCM is associated with the usage model, the

current environmental state (or rather the variable that is associated with the

workload) must be synchronised with the current state of the usage model,

i.e. the model element that describes the workload. That is, whenever the

environmental variable of the workload takes a different value, the usage

model of the PCM must be synchronised with said variable (similarly, this

applies to resource failures). Therefore, there must be a procedure which

synchronises the current environmental state with the current PCM instance.

Thus, at each time step, the predicted quality attributes take into account

the current state of the environment. This synchronisation procedure can be

generalised as depicted on Figure 6.3.

Instead of thinking of a synchronisation procedure, one can consider a model

transformation procedure which takes as input the current environmental

state and architectural configuration (e.g. the PCM instance) and transforms

both models into an analytical model. Generally, speaking for each supported

ADL there might be a transformation procedure that transforms the architec-

ture and environment model. The transformed model forms the analytical

model (e.g. queuing networks, Petri nets or Prism specifications) which is

used by other tools (e.g. such as Prism) to predict quality attributes. For

example, in the DeltaIoT system, the considered quality attributes encompass

the consumed energy of the system and packet loss. Both quality attributes

cannot be predicted by the tools provided by Palladio. However, the PCM

instance and environment model can be transformed (by using an M2Text

transformation) into Prism specifications which are passed to the Prism tool

187

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

to predict the energy consumption and packet loss of the current state. Fi-

nally, the prediction of the quality attributes is passed to the reward function

(as discussed before) and forms the primary source to evaluate decisions

made by an adaptation strategy.

6.3.2.3. Analysing Generated Trajectories to Evaluate Adaptation strategies

In this section, we explain how the estimateValueFunction-method is imple-

mented. The sampled trajectories T ∗𝜋 serve as a basis to estimate the value

function 𝑣𝜋 and must be further evaluated. For this estimation, we make

use of the first-visit Monte Carlo method that we introduced in section 2.5.2.

The first-visit Monte Carlo method has been shown in algorithm 2.2. The

difference between algorithm 6.1 and algorithm 2.2 is that the trajectory sam-

pling is done beforehand, i.e. T ∗𝜋 contains all samples that can be evaluated

as usual by the first-visit method to estimate 𝑣𝜋 .

Moreover, for the final evaluation of an adaptation strategy, we use formula

(6.6) which we derived in section 6.2.1.2 for the partial ordering of strategies,

i.e. the expected reward of a strategy 𝜋 : 𝐼𝐸𝜋 [𝑋𝐺𝑡
]. More specifically, we

are interested in the expected reward of strategies starting at time 𝑡 = 0, i.e.

𝐼𝐸𝜋 [𝑋𝐺0
]. As a result, the expected reward is calculated by considering only

the initial states S0 ⊂ S which forms a subset of the entire state space of

self-adaptive systems (as there is only one initial architectural configuration).

That is, the expected reward of a strategy is calculated as follows:

𝐼𝐸𝜋 [𝑋𝐺0
] =

∑︁
𝑆∈S0

𝑃𝑟 (𝑋S0 = 𝑆) · 𝑣𝜋 (𝑆) (6.10)

Thus, only trajectories with probabilities greater than zero are considered.

This is reasonable because the expected reward of trajectories that start in

states 𝑆 ∉ S0 is zero (as they can never occur). It could be argued that this is

insufficient because only a subset of states is considered in the value function

and does not reflect the overall value of the strategy; however, the recursive

nature of the Bellman equations shows that other states are also visited such

that their values are implicitly considered. Moreover, it is the quality of a

strategy to move to states that generate a higher expected reward (in terms

of the value function).

Finally, note that although the estimateValueFunction-method specifically

estimates the value function 𝑣𝜋 of strategy 𝜋 w.r.t. its generated trajectories

188

6.4. Implementation

SimExp.Markovian

ProbDist.*

SimExp.Core

EnvDyn.*

SimExp.PCM.* PCM.*

SimExp.Workflow

Figure 6.4.: Dependency graph of the implemented SimExp components.

T ∗𝜋 , we can also generalise the method. More specifically, based on the

trajectory space, one can apply other quality measures to evaluate 𝜋 such as

the total accumulated reward generated by 𝜋 . Nonetheless, we use 𝐼𝐸𝜋 [𝑋𝐺0
]

as quality measure but would like to emphasise that the SimExp framework

is not restricted to 𝐼𝐸𝜋 [𝑋𝐺0
].

6.4. Implementation

In this section, we briefly provide an overview of the implementation details

of the SimExp framework. Therefore, consider Figure 6.4 which shows an

excerpt of the dependency graph of the implemented components of SimExp.
For clarity, however, note that Figure 6.4 provides only an excerpt with

a simplified view of the component structure; in fact, more components

are involved. Therefore, we aggregated related components into a single

component (e.g. SimExp.PCM.*).

Basically, the SimExp.Markovian component implements all relevant concepts

of MDPs which are reused in the SimExp.Core component. The SimExp.Core

component provides the basic and ADL-agnostic functionality (which encom-

passes the quality attribute-based reward function, Monte Carlo prediction,

189

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

representation of actions as model transformations, etc.) of the SimExp
framework. Therefore, the SimExp.PCM.* components provide the corre-

sponding implementations to use SimExp in conjunction with PCM as ADL.

Finally, the SimExp.Workflow component encapsulates the logic to structure

the execution of SimExp based on several job implementations.

6.5. Assumptions and Limitations

In the following, we discuss the assumptions and limitations of the SimExp
framework.

Assumptions In DP, there is the assumption of a perfect environment model

(i.e. the MDP). Although this is a strong assumption, the underlying concern

of DP is optimisation. The primary concern of our SimExp method, however,

is evaluation; that is, we are merely interested in deriving a quality value for

a strategy to give them an order of magnitude and to make them comparable.

As we evaluate at design-time, where inaccuracies are accepted anyway

due to abstraction, it is acceptable to assume imperfect models. In addition,

reinforcement learning methods greatly build upon DP without assuming

perfect models and yet are successfully used in various contexts.

In section 6.3.2.2, we discussed the general transformation procedure which

takes the current architecture model and environment model and transforms

them into an analytical model for predicting quality attributes. Hereby, we

assumed that the information provided by both models is sufficient to derive

a respective analytical model (e.g. Prism specifications). However, this is a

weak assumption because the SimExp method is conceptually ADL-agnostic.

That is, if one may use a particular quality prediction tool (say one that

cannot be derived by using PCM as ADL), a different ADL can be used which

contains the required information for the transformation procedure.

Limitations Currently, the reward function, adaptation strategy and inter-

dependency assumptions regarding the architecture and environment are

not represented by models but merely considered by implementing dedicated

interfaces. That is, a software engineer must be familiarised to some extent

with the implementation details. However, in future work, we plan to reuse

190

6.5. Assumptions and Limitations

existing models to represent also adaptation strategies, reward functions and

interdependency assumptions with models. For example, as our approach is

quality-driven, in the work of Becker [15, P.87] a metamodel for describing

service level objectives (e.g. tolerance ranges, violation ranges, etc.) is of

particular interest and can be potentially reused to model reward functions.

Regarding the interdependency assumptions, we already discussed in section

6.3.2.1 how the environment model can be expanded to encode such assump-

tions. Regarding the model-based description of adaptation strategies, we

have already envisioned a formal domain-specific language for describing

MAPE-K-based adaptation strategies [147], which is the subject of future

work.

Just as the environmental dynamics, the SimExp method suffers the state

space explosion problem as the architectural configuration space and the

state space of the environmental dynamics grow exponentially. We address

the state space explosion problem by using (𝑖) abstraction and (𝑖𝑖) Monte

Carlo methods. The former is addressed by using architecture models to

focus only on the necessary details (i.e. the architectural elements which

affect the quality of the system) which reduces the configuration space. In

addition, by discretising an environmental state to an arbitrary level, the

number of environmental states is reduced as well (recall the discretisation

level property of the EnvDyn metamodel from section 5). Finally, we employ

Monte Carlo methods to sample representative trajectories of the trajectory

space to estimate the overall quality of an adaptation strategy. By considering

the previously given arguments, we argue that for most of the domains the

state space explosion is sufficiently addressed. However, as there are no

guarantees there might be systems and domains that indicate such a high

degree of complexity which makes it impossible to deal with them at design-

time. We discuss how to deal with such domains in chapter 8.

In the work of Stier [178], so-called Transient Effects of self-adaptive systems

are described which relate to execution times and consumed resources of

applied adaptations. In other words, transient effects describe costs associated

with adaptations. Moreover, Stier presents an approach to how such transient

effects can be analysed at design-time. Our SimExp method, however, does

not yet consider transient effects because they are not in the scope of this

thesis but are subject to future work.

Finally, it is worth mentioning that the presented SimExp framework is

supposed to be considered as a method. That is, if the approach is instantiated

191

6. Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method

in a specific domain (e.g. IoT), some domain-specific extensions must be

done. For the DeltaIoT system, for instance, we had to extend the SimExp
framework to analyse the packet loss and energy consumption (as we will

see in chapter 9). However, as our primary concern is to evaluate adaptation

strategies that safeguard AI black-box components no more extensions as

the ones presented in this work are required.

6.6. Summary

In this chapter, we presented the SimExp method. First, we discussed in

section 6.1 how we generally evaluate adaptation strategies at design-time.

In section 6.2, we presented the formal semantics of the SimExp method.

Afterwards, we discussed in section 6.3 how the formal semantics are im-

plemented by using methods from MBQA. Hereby, we indicated how all

relevant concepts are represented by models (or at the code level) and how

they are interacting to sample trajectories for estimating the quality of an

adaptation strategy. In section 6.4, we discussed implementation details of

the SimExp framework. Finally, we discussed assumptions and limitations in

section 6.5.

192

Part IV.

Safeguarding Uncertain AI
Black-Box Components

7. Reliability Prediction of
Architectural Safeguards for
AI-enabled Systems

In this chapter, we discuss our reliability prediction approach to evaluate

architectural safeguards for AI-enabled systems at design-time. Within a

software system, an AI component has specific responsibilities (e.g. object

recognition) on which other components depend (and thus on the correct-

ness of the prediction results). Therefore, the consequences of an incorrect

prediction manifest themselves in other parts of the system and have global

effects. Furthermore, Dreossi et al. [54] pointed out that incorrect predictions

do not necessarily force the system to fail: In automatic braking systems, for

example, a sufficiently distant car that has not been correctly detected by

an AI-based object recognition component has no safety-critical impact at

that moment. Therefore, we focus on reliability attributes of the system as a

whole. For this purpose, we start to explain how the reliability approach is

applied to static software systems safeguarded by non-adaptive approaches

(e.g. architectural patterns) and generalise the approach to self-adaptive

systems afterwards. The contribution, presented in this chapter, is based on

the publication [160, 159]. In addition, section 7.1 is based on the Master’s

thesis of Dennis Marvin Bäuml [14] which was supervised by the author of

this thesis.

In the previous chapters, we discussed how to represent the environmental

dynamics and analysed self-adaptive systems by using model-based tech-

niques. Now, we focus on software systems with AI components where

self-adaptive systems are specifically considered as safeguards to deal with

potential erroneous behaviour to which AI components are susceptible. Thus,

the concepts presented in this chapter build strongly upon the concepts of

the previous chapters, i.e. SimExp framework and EnvDyn metamodel. More

195

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

specifically, we use the EnvDyn metamodel not only to represent the envi-

ronmental dynamics of the system but also to model the uncertainties or

environmental variables (which are, in fact, the same thing) that affect the

predictive uncertainty (i.e. the failure probability of the prediction) of the AI

component. Moreover, we instantiate the SimExp method from chapter 6 to

evaluate adaptation strategies that are supposed to safeguard AI black-box

components. For this purpose, however, we need to take a step back and

develop additional concepts for evaluating the reliability of AI-enabled static

software systems that complement the SimExp framework in the next step;

this refers to research question RQ2:

Research Question 2: How can software systems that contain AI

black-box components be evaluated in terms of meeting reliability

attributes at design-time?

One of the major problems in connection with safeguarding AI black-box

components is that we are not able to determine whether a prediction is

correct or not as we cannot observe the true state; we call this the Hidden
State Problem. However, the incorrect prediction is propagated to the other

components of the system which rely on the prediction. In the HRI example

system from section 1.5.3, for instance, the trajectory planning component

highly depends on the AI-based object detection component to avoid col-

lisions while computing the trajectory. This means that before analysing

adaptation strategies, one must first consider how to deal with the fact that

the state of the AI components is not observable. This directly refers to

research question RQ2.1:

Research Question 2.1: How to deal with the hidden state problem

of AI black-box components?

The black-box property of AI components makes it difficult not only to

safeguard them at runtime but also to analyse them at design-time. For

example, how can one analyse the reliability attributes of an AI-enabled

system when the true state of the AI component is hidden? How are AI

black-box components included in reliability prediction when the input data

for which they produce faulty behaviour is unknown? Moreover, Seshia et

al. [165] enumerated several challenges that make modelling AI-enabled

systems challenging. One of these challenges relates to high-dimensional

196

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

input spaces that one encounters when dealing with AI (or deep learning).

The input space is crucial for how reliably an AI component works and must

therefore be taken into account to some extent in the analysis. However,

high dimensional input spaces, such as the pixel space in perception tasks,

are way too large to be analysed. Dealing with the aforementioned problems

relates to research question RQ2.2:

Research Question 2.2: How to systematically consider the influ-

ence of predictive uncertainty and causally related environmental

variables in the reliability prediction?

After dealing with the problems of RQ2, we can generalise the concepts to

evaluate adaptation strategies of self-adaptive systems that are safeguarding

uncertain AI components and relates to research question RQ3:

Research Question 3: How can adaptation strategies of self-

adaptive systems that safeguard uncertain AI black-box components

be evaluated in terms of reliability at design-time?

When we speak of AI-induced uncertainty, we refer to predictive uncertainty

[89], i.e. potentially erroneous predictions of an AI component that could

remain undetected and propagate to the rest of the system. Moreover, we

consider predictive uncertainty as first-order uncertainty. Generally, uncer-

tainty of AI is classified into Epistemic and Aleatoric uncertainty [139, 89,

167, 163]. Epistemic uncertainty refers to the “lack of knowledge” of an AI

model which can be reduced by more training data; aleatoric uncertainty

relates to irreducible random phenomena in the input data of an AI model,

e.g. such as distinct weather conditions or noise. Therefore, we also consider

uncertainties that can be either epistemic or aleatoric, but which directly

affect predictive uncertainty, and refer to these as second-order uncertainties.

Such uncertainties possibly refer to factors observed in the environment or

derived from the input data which allow conclusions to be drawn about the

state of an AI component. To avoid confusion, we note that we use the terms

uncertainties and properties interchangeably. In section 7.1, we rather use

the term uncertainties and in section 7.2 we use the term properties. The

reason for this is that we begin to discuss architectural means for dealing

with AI-related uncertainties of second order in static software systems. We

then discuss how the concepts can be generalised to self-adaptive systems

197

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

(section 7.2). In this case, we observe properties to draw conclusions about

the state of an AI component and plan appropriate adaptations based on the

observations. However, both concepts describe the same thing but may differ

in the way we view them.

The chapter is organised as follows: In section 7.1, we present an approach

to predict reliability attributes of AI-enabled systems. Hereby, we apply

an upstream sensitivity analysis to capture the predictive uncertainty of

an AI component by the resulting sensitivity model. Additionally, we use

ATs (architectural templates) to model non-adaptive architectural safeguards

(i.e. architectural patterns) that one can consider dealing with AI-related

uncertainties. The effect of an AT on the reliability attributes of the system is

analysed by our provided prediction approach. In section 7.2, we generalise

the concepts to self-adaptive systems. We reused the concepts of the SimExp
method from chapter 6 and extended it to evaluate adaptation strategies

safeguarding uncertain AI components. In section 7.3, we briefly present

the implementation details of the approach. Finally, section 7.4 discusses the

assumptions and limitations of the approach, while section 7.5 summarises

the chapter.

7.1. Engineering Reliable AI-Enabled Systems in the
Presence of Uncertainty

In this section, we discuss a model-based approach to predict reliability at-

tributes of static AI-enabled software systems. To model static architectural

safeguards, we reuse a template method to describe reusable architectural pat-

terns or styles for reoccurring problems, e.g. safeguarding an AI component.

For this purpose, we reuse the formal language of ATs from Lehrig [113] (see

section 2.3.1.2). ATs are completely compatible with the Palladio framework,

i.e. they can be applied to PCM instances. That is, they are perfectly suited

in the context of this work to capture architectural patterns dealing with

AI-specific uncertainties. The overall approach is depicted on Figure 7.1. In

section 7.2, we generalise the presented concepts for self-adaptive systems.

The approach is essentially divided into three parts:

198

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

Com AI

AT
Name: Filter
Description:

Apply

selected ATAT catalogue

Architecture model

Com

 AI

Filter

...

AI model

Apply sensitivity
analysis

Sensitivity model

Apply

reliability
prediction

Architectural knowledge
representation and application

Sensitivity analysis

Reliability prediction of

AI-enabled systems

Results

1 2

1

2

Figure 7.1.:Overview of the reliability prediction approach for AI-enabled systems. The reliability

prediction inputs (𝑖) an architecture model (PCM model) enriched by an AT and (𝑖𝑖) the
sensitivity model of an AI component. Based on the inputs, the success and failure probabilities

of the system are predicted.

• Architectural knowledge representation: A collection of architec-

tural patterns described by a formal template language for specifying

architectural knowledge.

• Sensitivity analysis: An upstream sensitivity analysis to determine

a sensitivity model capturing the predictive uncertainty of an AI

component.

• Uncertainty-based reliability prediction: An approach for pre-

dicting reliability attributes of AI-enabled software systems by taking

into account AI-induced uncertainties.

As mentioned before, for the first part, we employ ATs to represent archi-

tectural knowledge, e.g. n-version programming pattern for deep neural

networks [211]. Based on a collection of architectural patterns (i.e. a cata-

logue of ATs), one can select an appropriate AT for the given application

context and apply it to the modelled architecture model, i.e. the PCM model.

In parallel, a sensitivity analysis of the AI model is performed. The sensitivity

analysis forms the second part of the approach and addresses the problem of

representing AI components in the reliability prediction process. The result

of the analysis is a sensitivity model represented by a probability distribution

that describes the likelihood of observing correct or incorrect predictions (i.e.

predictive uncertainty) of the AI model in the presence of uncertainties such

as increased illumination, bad weather conditions or blurring in perceptual

199

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

learning tasks. Based on the AT-enriched PCM model and the sensitivity

model, reliability attributes are predicted by an uncertainty-based reliability

prediction approach which forms the third part of the approach. Here we

extend the reliability prediction tool of the Palladio framework, PCM-Rel

(see section 2.3.2.2). Roughly speaking, we extend PCM-Rel by considering

the predictive uncertainty of an AI component as a type of software-induced

failure that can be assigned a failure probability. The failure probability is

derived from the sensitivity model and a given set of uncertainty values that

have an impact on the predictive uncertainty.

Finally, it should be noted that we are reusing an existing approach for ar-

chitectural knowledge representation and also not developing any novel

sensitivity analyses (but referencing existing approaches), so neither should

be understood as contributions. Instead, the first contribution is a holis-

tic approach that unifies the sub-approaches (i.e. architectural knowledge

representation/application, sensitivity analysis and reliability prediction of

AI-enabled systems) to a tool that supports software engineers in the design

and analysis of AI-enabled systems. The second contribution relates to the

approach for predicting reliability attributes of AI-enabled systems them-

selves. Therefore, we discuss in the following the three parts of the holistic

approach, focusing on the reliability prediction part as it forms the main

contribution.

7.1.1. Represention of Architectural Safeguards with
Architectural Templates

In this section, we discuss how to represent (AI-specific) architectural knowl-

edge by using models. The notion of architectural knowledge is broad and

refers to reusable structures such as reference architectures, architectural

styles or architectural patterns [184]. We focus on the latter in this section.

We consider architectural patterns as architectural safeguards orArchitectural
Countermeasures that either contain/mitigate AI-specific uncertainties (of

second order) or reduce predictive uncertainty. The notion of architectural

countermeasures is discussed in more detail in section 7.1.3.2.

In literature, several architectural patterns are discussed to enhance the

reliability of AI-enabled systems (we discussed some of them in section

3.1.2.1). In this section, however, we focus on two patterns (namely Filtering

200

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

and N-Version Programming) and model them as ATs. Note that we do not

aim to develop novel architectural patterns for AI systems, nor do we provide

a comprehensive literature review of patterns; this is not in the scope of this

thesis.

7.1.1.1. Architectural Patterns for Dealing with AI-induced Uncertainties

In literature, several works propose or reuse architectural patterns to main-

tain quality attributes of AI-enabled systems, e.g. [211, 167, 45, 212, 23].

However, in this work we focus on two architectural patterns: filtering [145]

and n-version programming [44]. We have chosen these patterns because (𝑖)
they are well researched and known in the software engineering community

and (𝑖𝑖) their structures and application to software architectures are well

documented. In the following, we briefly present the patterns.

Filtering: The filtering pattern (more commonly referred to as Pipe and
Filter [145]) is an architectural pattern consisting of a series of pipes and

filters. A filter describes a set of components which transform input to

output data. A pipe connects one filter with another, a data source with a

filter or a filter with a data consumer. The pipe and filter pattern is a widely

used approach in software architectures that implement any type of data

processing step that requires input data to be transformed into specific output

data.

In the context of this work, however, we consider a simplified version of

pipe and filter which we refer to as the filtering pattern. Hereby, we consider

merely a single filter component and two pipes which connect the filter

two a given data source (e.g. a sensor) and to a data consumer (e.g. the AI

component) which inputs the result of the filtering process. We simplify the

pipe-and-filter approach to a single filtering process, as it is better suited to

AI use cases such as [205], where filtering components are used to preprocess

incoming data before passing the data to the AI component. The general

structure of the filtering pattern is depicted on Figure 7.2. The main com-

ponent of the filtering pattern is the filter component which is responsible

for the preprocessing. The pipes abstract away the concrete communica-

tion technology (e.g. event-based) used by the data source, filter and data

consumer.

201

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Data
source Filter 1 Filter N Data

consumer
...Pipe Pipe Pipe Pipe

(a) Pipe and filter

Data
source Filter Data

consumer
Pipe Pipe

(b) Filtering pattern

Figure 7.2.: Overview of (a) the pipe and filter architectural pattern and (b) filtering pattern.

Component 1

Component 2

Component N
...

Voter/Decision
procedureInput Output

Figure 7.3.: The n-version programming pattern (based on [52]).

N-Version Programming: The next architectural pattern we are focusing on

refers to n-version programming. In the context of deep neural networks var-

ious approaches are indicating the benefits of using n-version programming

in terms of improving the prediction result, e.g. [77, 211, 119].

Originally, n-version programming was developed to improve the fault-

tolerance of software systems [44]. Basically, the idea is to develop 𝑁 inde-

pendent versions or components that are functionally equal, i.e. following

the same specification. Since each component implements the same specifi-

cation, the input and output data are equal. Thus, new input data is passed

to each version which performs the computation resulting in 𝑁 outputs.

The second important concept of n-version programming refers to the voter

or decision component which selects or merges the 𝑁 output results. The

implementation of the voter or decision procedure is manifold, e.g. one may

implement a majority vote based on the confidence assigned to each version

or by simply computing the average. The basic structure of the n-version

programming pattern is depicted on Figure 7.3.

202

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

The generic nature of n-version programming makes it applicable in many

application contexts. In AI, for example, 𝑁 versions of distinct model types

(e.g. DNN) are developed and trained independently. At runtime, the input

data is passed to each version simultaneously, and the individual predictions

are merged in the voter component to produce a more accurate prediction.

7.1.1.2. Modelling of the Filtering Pattern as Architectural Template

In this section, we describe how we realised the AT for the filtering pattern.

Recall from section 2.3.1.2 that the main tasks in modelling ATs comprise

the creation of an EMF profile (which should be considered as annotations

to the architectural model, e.g. PCM model) to indicate where the AT is

woven in, and a completion, i.e. the model transformation that implements

the weaving-in process or application of the AT.

EMF-Profil The EMF profile for the filtering AT is depicted on Figure 7.4.

There is only a single stereotype which extends an AssemblyContext (or

which can be applied to an AssemblyContext), namely AiAssemblyContext.

The stereotype is to be understood as an annotation applied to the Assembly-

Context representing the AI component (or the instantiated component in

the system model). Consequently, the filter is woven in the system, i.e. the

filter component is placed before the AssemblyContext of the AI component;

reflecting the main purpose of the filter pattern, i.e. a preprocessing step to

reduce possible uncertainties in the input data. The filter stereotype includes

two attributes, namely distributionName and targetUncertaintyName. The

attribute distributionName refers to a probability distribution that deter-

mines the probabilistic effect on the uncertainty that the filter reduces or

contains. As we discuss the concept of architectural countermeasures and the

metamodel to describe them and their influence on uncertainties in section

7.1.3.2, we do not go into further details here. It is yet sufficient to know that

the attribute distributionName allows the resolution of the corresponding

distribution that models the influence on a given target uncertainty. However,

the target uncertainty is referenced by the attribute targetUncertaintyName.

This uniquely determines which uncertainty the filter component acts on.

Completion The completion of the filtering pattern refers to a model trans-

formation that weaves in the architectural pattern. Figure 7.5 schematically

203

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Meta class A stereotype meta class

Legend:

Meta class B pcm meta classes

<<stereotype>>

AiAssemblyContext

distributionName: String
AssemblyContext[0...*] extends

targetUncertaintyName: String

Figure 7.4.: The EMF profile of the filtering pattern.

Resource Container

AIComponentComponent

@AiAssemblyContext {

	 distributionName: "..."

	 targetUncertaintyName: "..."

}

Resource Container

FilterComponent AIComponent

Legend:

@Stereotype{

	 attribute: value

	 ...

}

Completion

Figure 7.5.: The action of the filtering pattern completion on an annotated PCM model.

shows the PCM model before and after the completion. We do not go into

the technical details of the model transformation but refer to [156] where the

model transformation can be looked up. However, it can be seen that the filter

is inserted before the AI component. Hereby, a respective BasicComponent

instance is created, added to the repository model and instantiated in the

system model. Since the filter is inserted before the AI component, it emits

events (in the case of event-based communication) to the event group from

which the AI component receives events. Moreover, the filter component

receives events emitted by the component that was previously received by

the AI component. The filter component is deployed on the same resource

container where the AI component is allocated.

What the illustration does not show is the model completion of the uncer-

tainty model that describes (among others) the architectural countermeasures

and their effect on uncertainties. However, we defer the discussion to section

7.1.3 where the reliability prediction approach is explained and the interplay

of all concepts is discussed.

204

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

Meta class A stereotype meta class

Legend:

Meta class B pcm meta classes

<<stereotype>>

AiNVAssemblyContext

improvedModelName: String

AssemblyContext[1...*] extends

BasicComponent
[1...*] extends<<stereotype>>

AiNVBasicComponent

Figure 7.6.: The EMF-profile of the n-version programming pattern.

7.1.1.3. Modelling of the N-Version Programming Pattern as Architectural
Template

In this section, we describe how we realised the AT for the n-version pro-

gramming pattern. Just as before, we first present the EMF profile and the

completion (or model transformation) afterwards.

EMF-Profil The EMF profile for the n-version programming pattern is de-

picted on Figure 7.6. Just as seen in the filtering profile, the n-version pro-

gramming profile defines a stereotype (namely AiNVAssemblyContext) that is

applied to an AssemblyContext related to the AI component. Moreover, the

stereotype holds an attribute called improvedModelName which corresponds

to the name of a GroundProbabilisticNetwork. This again refers to the meta-

model, which we have not yet introduced (not until section 7.1.3.2). We defer

the discussion again to section 7.1.3 where all concepts will be unified into a

holistic approach. For now, it is sufficient to consider the referenced network

name as the sensitivity model associated with the n-version programming

pattern as a whole and which is more robust.

In addition to the stereotype applied to a AssemblyContext, there is another

stereotype applied to a BasicComponent, namely AiNVBasicComponent. The

stereotype is used to annotate the components in the repository of a PCM

model corresponding to the different AI components to be included in the

n-version programming pattern, i.e. each annotated component represents a

single version.

Completion Finally, the completion or model transformation for the n-

version programming pattern is depicted on Figure 7.7. Just as for the filtering

pattern, we do not discuss the details of the transformation but rather refer to

205

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Resource Container

AIComponent1Component

@AiNVAssemblyContext {

	 ImprovedModelName: "..."

}

Resource Container

VoterComponent

AIComponent1

Legend:

@Stereotype{

	 attribute: value

	 ...

}

Completion

AIComponentN

...

Component Repository

Component

AIComponent1

AIComponentN

...

@AiNVBasicComponent

@AiNVBasicComponent

Figure 7.7.: The action of the n-version programming pattern completion on an annotated PCM

model.

[156]. However, as shown in Figure 7.7, the completion substitutes the origi-

nal AI component with𝑁 +1, i.e. the𝑁 versions and an additional component

which acts as a voter or other decision procedure. The component-internal

behaviour of the decision procedure initially dispatches newly arriving input

data among the 𝑁 versions and receives a prediction from each version,

which is eventually evaluated. In the system model, each version instanti-

ates the AI component which has been annotated by a corresponding EMF

stereotype. The components are allocated on the same resource container on

which the replaced AI component was previously allocated. Again, the illus-

tration does not represent the entire model completion (as the corresponding

metamodel is presented in section 7.1.3.2). However, this will be made up for

in section 7.1.3; at this point, it is more important to understand the principle

operation of the completion on a PCM instance.

206

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

𝑋𝑏

. . .𝑋𝜑1
𝑋𝜑𝑁

Figure 7.8.: Probabilistic structure of the sensitivity model (assuming independence between all

uncertainty pairs).

7.1.2. Sensitivity Analysis of AI Components

At the beginning of this chapter, we discussed the problem of not being

able to observe the true state of an AI black-box component. For predicting

reliability attributes of a system with AI components, however, one must

also account for the reliability or confidence of the predictions made by the

AI component. To approach this problem, we apply a Sensitivity Analysis.

Essentially, a sensitivity analysis is about varying the input of an AI com-

ponent and observing how this change affects the output [76, 30] which is

captured in a corresponding sensitivity model. Before describing the sensi-

tivity model in more detail, we must introduce the notion of an AI black-box

component more formally. Similarly to Guidotti et al. [76], we consider an AI

black-box component as a function 𝑏 which maps an input 𝑥 from an input

space X to an output 𝑦 from output space Y.

Definition 30 (AI Black-Box Component based on Guidotti et al. [76]). An
AI Black-Box component is a function 𝑏 : X → Y that maps an input 𝑥 ∈ X to
an output𝑦 = 𝑏 (𝑥) ∈ Y. We denote 𝑏 as black-box to indicate that the internals
are neither understandable nor interpretable by humans.

In the context of this work, the result of the sensitivity analysis (i.e. the sen-

sitivity model) is considered as a probability distribution or CPD (conditional

probability distribution)with the following structure: 𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

).

The sensitivity model (captured by the CPD) is defined over the random

variables 𝑋𝑏 and 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

. The predictive uncertainty of an AI black-

box component 𝑏 is captured by the binary random variable 𝑋𝑏 with value

space 𝑉𝑎𝑙 (𝑋𝑏) := {𝑆𝑢𝑐𝑐𝑒𝑠𝑠, 𝐹𝑎𝑖𝑙} describing the possible events of an AI

207

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Oracle

AI black-box
component

Correct: 1

Incorrect: 0

(a) Oracle for determining the state of AI black-box

𝑏

AI black-box
component

Oracle Success:

Failure:

(b) Oracle approximation by a sensitivity model w.r.t.

some properties 𝜑1, . . . , 𝜑𝑁

Figure 7.9.: Approximation of an oracle for AI black-box component by a sensitivity model.

component to successfully or unsuccessfully make a certain prediction. We

define the model to be a discrete BN (Bayesian network), i.e. the value spaces

of all random variables are discrete. The generic structure of a sensitivity

model is depicted on Figure 7.8 which assumes stochastic independence

between all uncertainty pairs, i.e. ∀𝑖 ≠ 𝑗 : 𝑋𝜑𝑖
⊥⊥ 𝑋𝜑 𝑗

.

Recall that one of the main problems this work is concerned with is the

inability to observe the true state of an AI black-box component 𝑏. That

is, there is no oracle that tells whether a prediction made by 𝑏 is correct or

not. However, one can try to approximate such an oracle by estimating the

probability of correct or incorrect behaviour of 𝑏 based on a set of observable

properties (see Figure 7.9). These properties may relate to environmental

variables or other domain-specific uncertainties that allow conclusions to

be drawn about the true state of 𝑏. In terms of the sensitivity model, these

environmental variables or uncertainties refer to the 𝜑1, . . . , 𝜑𝑁 . Compared

to an oracle that returns 1 (correct prediction) or 0 (wrong prediction) for

any input-output pair (𝑥, 𝑏 (𝑥)), the sensitivity model (as an approximation

of the oracle) is queried for a given set of uncertainties 𝜑1, . . . 𝜑𝑁 and returns

a success probability 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ∈ [0, 1] and failure probability 1 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 .
Because the hidden state problem permits us to reason about the true state of

𝑏, we cannot estimate the predictive uncertainty (i.e. 𝑃 (𝑋𝑏)) directly; however,
we can approximate 𝑃 (𝑋𝑏) by conditioning the predictive uncertainty on the

set 𝜑1, . . . 𝜑𝑁 , i.e. 𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

).

Example 8. Recall the HRI example system from section 1.5.3 which requires

human interaction such that a specific level of safety must be maintained,

e.g. to prevent injuries like squeezing or collision with the robot. However,

this is dependent on the AI-based object detection component because an

undetected body part is not taken into account by the trajectory planner.

208

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

𝑋𝑏

𝑋𝜑𝐵
𝑋𝜑𝑆𝑁

Figure 7.10.: The sensitivity model of the HRI example system.

Since the robotic system is not mobile but is located in a fixed place with

a specific interaction radius, the system operates in a relatively low dy-

namic environment (compared to highly dynamic environments such as

autonomous driving). Therefore, only a limited number of environmental

variables can have an impact on the AI component. From a domain analysis

or domain expert, it might be known that sensor noise of the camera or

brightness variations in the environment can lead to false predictions of the

AI component. That is, we have two uncertainties that affect the predictive

uncertainty and allow conclusions to be drawn about the true state of 𝑏, i.e.

𝜑𝐵 describing varying brightness conditions and 𝜑𝑆𝑁 for sensor noise. The

respective sensitivity model is shown in Figure 7.10. ■

Finally, the question arises of how to obtain a sensitivity model of the form

𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

). Depending on how well-researched the domain is or

whether it indicates low dynamics in the environment (as in the HRI example

system), a domain expert can be consulted to build the sensitivity model man-

ually. Since we represent the model by a BN (i.e. in a graph-based structure),

they are fairly understandable and amenable for humans. Alternatively, in the

literature, numerous sensitivity approaches are presented. For instance, [76]

provides an overview of sensitivity analysis approaches for neural networks.

Additionally, the references [170, 217, 179, 102] provide a good starting point

for further sensitivity analysis approaches. We would like to emphasise once

again that the development of a sensitivity analysis approach is not within

the scope of this work, but rather to reuse existing approaches such as those

listed previously. Furthermore, there is no universal sensitivity analysis that

can be applied to any type of AI model, as it is adjusted to the characteristics

of the AI model. For example, an AI model from the field of natural language

processing is completely different to a model for object detection. It should

also be noted that the aforementioned approaches do not directly provide a

209

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

sensitivity model of the form 𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

), but provide the means to

derive such a model.

7.1.3. Reliability Prediction of AI-Enabled Systems

In this section, we discuss our extension of the reliability prediction tool

PCM-Rel for AI-enabled systems. Recall from section 2.3.2.2 that PCM-Rel

considers three failure types: software, hardware and network failure types

each associated with a failure probability. In this work, we introduce a

fourth type of failure, namely Uncertainty-induced Failure Type. Uncertainty-
induced failure types refine PCM-Rel-specific failure types in the sense that

they are enriched with additional uncertainties that affect the probability of

failure of the respective failure type. For AI-enabled systems, for example,

the predictive uncertainty of an AI component can be considered a type of

software failure which is dependent on a collection of uncertainties. The

uncertainties influence the probability of failure of the refined software

failure. This refinement or relation of a failure type to a set of uncertainties

is established by an uncertainty-induced failure type. In the context of this

work, the uncertainty-induced failure type relates the respective software

failure type (capturing predictive uncertainty) to the sensitivity model 𝑃 (𝑋𝑏 |
𝑋𝜑1

, . . . , 𝑋𝜑𝑁
) where 𝜑1, . . . , 𝜑𝑁 represents the uncertainties. This idea is

illustrated on Figure 7.11.

7.1.3.1. Formal Extension of PCM-Rel

Before we present the practical extension, we start to discuss the formal

extension of PCM-Rel to show formal consistency and the formal semantics

of our approach.

Therefore, recall from section 2.3.2.2 that in PCM-Rel the probability of

whether a software system is experiencing a successful or unsuccessful run

for a given usage scenario is defined by the distribution 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈). The
probability can be rewritten by taking into account the resource failure pat-

terns𝜓 :
∑

𝜓 ∈Ψ 𝑃 (𝑋𝑆𝑦𝑠 , 𝑋Ψ = 𝜓 | 𝑋𝑈). By assuming stochastic independence

between the usage scenario and resource failure pattern variables, one obtains

(2.3).

210

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

Resource Container 2

CPU
MTTF = 150h

MTTR = 8h

Resource Container 1

CPU

Comp A Comp B

<<implements>>

<<allocated>>

System Model

<<allocated>>

Intra-Component Behaviour Model
<<InternalAction>>

methodCall

Deployment Model

PCM-Rel Uncertainty-based Extension

...

AI model

Sensitivity model

<<UncertaintyInduced-
FailureType>>

refines

Uncertainty
model

Figure 7.11.: Uncertainty-based extension of PCM-Rel.

We extend PCM-Rel by considering a set of uncertainties that influence

the predictive uncertainty of an AI component. More specifically, these

uncertainties refer to the set 𝜑1, . . . , 𝜑𝑁 . Their influence on the prediction

result indirectly impacts the overall success (or failure) probability of a system.

That is, for different realisations of 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

(where 𝑋𝜑𝑖
is a random

variable associated with property 𝜑𝑖), one would observe different success

and failure probabilities, i.e. 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈). Hereby, the random variable 𝑋𝑆𝑦𝑠

describes the probability of success or failure of the system including the AI

component affected by 𝜑1, . . . , 𝜑𝑁 . That is to say, the resulting distribution

that we want to predict w.r.t. 𝜑1, . . . , 𝜑𝑁 looks as follows:

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

) (7.1)

211

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

By taking into account the hardware failures (such as in equation (2.3)),

distribution (7.1) can be rewritten:

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

) =
∑︁
𝜓 ∈Ψ

𝑃 (𝑋𝑆𝑦𝑠 , 𝑋Ψ = 𝜓 | 𝑋𝑈 , 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

)

=
∑︁
𝜓 ∈Ψ

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋𝑈 , 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

) · 𝑃𝑟 (𝑋Ψ = 𝜓 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

)

=
∑︁
𝜓 ∈Ψ

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋𝑈 , 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

) · 𝑃𝑟 (𝑋Ψ = 𝜓)

(7.2)

The last step of equation (7.2) follows from the fact that we assume inde-

pendence between the resource failures𝜓 and uncertainties 𝜑1, . . . , 𝜑𝑁 , i.e.

(𝑋𝜑1
, . . . , 𝑋𝜑𝑁

⊥⊥ 𝑋Ψ). Roughly speaking, we assume that the occurrence

of any AI-specific uncertainty does not correlate with the observation of

a specific resource failure pattern. Regarding the HRI example system, for

instance, the occurrence of varying brightness conditions or sensor noise

does not have any effect on the probability of observing a hardware failure.

When comparing equation (7.2) with equation (2.3) (i.e. the original equation

for PCM-Rel), it can be seen that only the CPD of equation (2.3) is expanded

by the uncertainties 𝜑1, . . . , 𝜑𝑁 . That is, from a formal perspective we must

extend PCM-Rel in away such that we can evaluate CPDs of the form 𝑃 (𝑋𝑆𝑦𝑠 |
𝑋Ψ = 𝜓,𝑋𝑈 , 𝑋𝜑1

, . . . , 𝑋𝜑𝑁
). The details of the extension are explained in the

next sections.

7.1.3.2. Metamodeling Uncertainty-induced Failures

In this section, we present the metamodel for describing uncertainty-induced

failure types. Before we delve into the details of the metamodel, however,

we first have to discuss how the sensitivity model 𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

) is
represented. To this end, we assume that the sensitivity model has already

been derived, e.g. by using the methods that we presented in section 7.1.2.

Now the question arises of how the model is represented on a metamodel

level to make use of it. Therefore, recall from section 7.1.2 that we consider

the sensitivity model as a discrete BN. In chapter 5, we presented the EnvDyn
metamodel that allows the modelling of BNs. Thus, we use the modelling

capabilities provided by EnvDyn to describe the sensitivity model. Moreover,

212

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

UncertaintyRepository

[0...*] preconditions

<<abstract>>
ArchitecturalPrecondition

[0..*] uncertaintyInducedFailureTypes

<<abstract>>
Architectural

Countermeasure

[0..*] countermeasures

[1..1] appliedFailureType

<<abstract>>
FailureType

NetworkInduced
FailureType

HardwareInduced
FailureType

SoftwareInduced
FailureType

[0..*] preconditions

[1..*] preconditions

ActiveComponent

requiredActiveComponent:
InterfaceProvidingRequiringEntity

[1..1] refines

UncertainyModelEquality

first: GroundProbabilisticNetwork
second: GroundProbabilisticNetwork

UncertaintyInduced
FailureType

uncertaintyModel:
GroundProbabilisticNetwork
failureVariable:
GroundRandomVariable

GlobalUncertainty
Countermeasure

improvedUncertaintyModel:
GroundProbabilisticNetwork

UncertaintySpecific
Countermeasure

targetUncertainty:
TemplateVariable

<<abstract>>
UncertaintyImprovement

[1..1] uncertainty

Improvement

Probabilistic
Improvement

probabilityDistribution:
ProbabilityDistribution

Deterministic
Improvement

MapEntry

key: String
value: String

[1..*] mappingTable

Meta class A uncertainy meta classes

Meta class B pcm meta classes

Legend:

Figure 7.12.: Metamodel of the uncertainty-induced failure types.

in section 7.2, we discuss how to generalise the approach to self-adaptive

systems, where the dynamics of the environment need to bemodelled anyway.

Since the uncertainties𝜑1, . . . , 𝜑𝑁 must by definition be considered part of the

environment (see definition 17 on page 95), they form a subset of the entire

environment (or rather of the set of environmental variables). Figure 7.12

depicts the metamodel.

The root element of the metamodel is the UncertaintyRepository which

references a set of UncertaintyInducedFailureTypes, ArchitecturalPre-

conditions and ArchitecturalCountermeasures. We start by discussing Ar-

chitecturalPreconditions because the UncertaintyInducedFailureTypes

and ArchitecturalCountermeasures depend on the metaclass. In simple

terms, ArchitecturalPreconditions describe preconditions that the archi-

tecture model (or in our case the PCM model) must satisfy. For example, a

213

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

precondition might require the actual use of a software component in the

runtime model. Thus, for components that implement the same interface (i.e.

the same service), only the component that is deployed at runtime would

satisfy the precondition. The ActiveComponent is a sub metaclass of Archi-

tecturalPreconditions that holds the previously explained semantics. Be-

sides ActiveComponent, there is UncertaintyModelEquality as a second Ar-

chitecturalPrecondition. UncertaintyModelEquality requires structural

equality between two uncertainty models. Suppose two uncertainty models

𝑢1 and 𝑢2 which we consider as BNs, i.e. for each model there is a graph

G𝑢𝑖 describing the structure of model 𝑢𝑖 . For 𝑢1 and 𝑢2, the Uncertainty-

ModelEquality precondition is satisfied if and only if G𝑢1
= G𝑢2

. Note that

UncertaintyModelEquality only requires structural equality but no equal-

ity regarding the distributions. For instance, let 𝑃𝑢1
, 𝑃𝑢2

|= G𝑢1
(and thus

𝑃𝑢1
, 𝑃𝑢2

|= G𝑢2
) be two distributions that satisfy the dependency structure

of G𝑢1
and G𝑢2

(recall the |= notation from section 2.6.1), although the Un-

certaintyModelEquality preconditions hold for the graph structure, it does

not require that the same holds for the distributions, i.e. 𝑃𝑢1
= 𝑃𝑢2

is not re-

quired. The ActiveComponent and UncertaintyModelEquality are currently

the only sub-metaclasses of ActiveComponentPrecondition, although there

might be other preconditions, e.g. the deployment of a component on a

specific hardware resource. Therefore, ArchitecturalPrecondition is an ab-

stract metaclass and thus extensible. So far we have only discussed the idea

of ArchitecturalPreconditions, but have not yet given any insight into

the purpose of the metaclass. Nevertheless, we deliberately continue with

the metaclasses UncertaintyInducedFailureTypes and ArchitecturalCoun-

termeasures because the purpose of ArchitecturalPreconditions becomes

clear when we discuss the concepts in which they are used.

An UncertaintyInducedFailureType defines the metaclass for describing

uncertainty-based failure types. It refines the super metaclass FailureType

of the PCM-Rel metamodel referencing a single FailureType indicating a

refinement relationship. Thus, only software, hardware or network failure

can be refined by an uncertainty model. As a starting point, however, we

focus on refining exclusively software failure types of AI components. Nev-

ertheless, we discuss in section 7.1.3.4 how the concepts can be generalised.

An UncertaintyInducedFailureType is additionally referencing a Ground-

ProbabilisticNetwork which corresponds to the metaclass of the EnvDyn
metamodel describing BNs. Note that although the reference is named uncer-

taintyModel, we refer here to the sensitivity model. To maintain generalis-

214

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

ability, we use the term uncertainty model to be not too restrictive regarding

the type of model one can choose to describe the probabilistic influence of

uncertainties. Again, we defer the discussion to section 7.1.3.4. The next

reference of a UncertaintyInducedFailureType is called failureVariable

and represents the main variable of failure (typed as GroundRandomVariable),

e.g. predictive uncertainty captured by 𝑋𝑏 . The reference can be set option-

ally. However, if not specified, the failure variable must be identified in the

uncertainty model. This cannot be achieved without making assumptions

about the model, i.e. there must only be one random variable in the BN

that has no descendants. The last reference refers to a set of Architectural-

Preconditions. An UncertaintyInducedFailureType can either be active

or inactive. Suppose an UncertaintyInducedFailureType instance refines

a software failure type of an AI component with a sensitivity model. For

the AI component, there might exist several implementations, e.g. different

kinds of deep neural networks for object detection. Let us now assume that

for each model there is an UncertaintyInducedFailureType (and sensitiv-

ity model, respectively), then only the UncertaintyInducedFailureType of

the instantiated (or deployed) AI component in the system is considered

active; the remaining are considered inactive. We return to this concept in

section 7.1.3.3 as we can only consider UncertaintyInducedFailureTypes in

the prediction process that are active.

The last main concept refers to ArchitecturalCountermeasures that describe

architectural means that one can apply to deal with uncertainties. By ar-

chitectural means, we mean architectural patterns describing architectural

safeguards (such as those presented in section 7.1.1) that are used to cope

with uncertainties and to improve the overall quality of the system. An Archi-

tecturalCountermeasure models the concrete effect of an architectural safe-

guard on the predictive uncertainty of an AI component. Generally, Archi-

tecturalCountermeasures reference a set of ArchitecturalPreconditions

and a single UncertaintyInducedFailureType. Similarly to UncertaintyIn-

ducedFailureType, ArchitecturalCountermeasures define preconditions to

check whether they are applicable (or active) in a specific context. For ex-

ample, take the filtering pattern where an additional filter component is

activated to preprocess the input data. To apply the countermeasure, the

corresponding filter component must be instantiated in the system model.

In addition to the set of ArchitecturalPreconditions, the UncertaintyIn-

ducedFailureType (for which the countermeasure is to be used) is refer-

enced. The ArchitecturalCountermeasures metaclass is abstract. Currently,

215

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

there are two extensions, namely GlobalUncertaintyCountermeasure and

UncertaintySpecificCountermeasure. GlobalUncertaintyCountermeasure

refer to countermeasures that have a global impact on the predictive un-

certainty of an AI component. With global impact, we mean the direct

impact on the probability of failure/success of the uncertainty model. In the

case of AI components and sensitivity models, this refers to the distribution

𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

). In principle, the effect of an architectural countermea-

sure always has an impact on the uncertainty model for which it is used (see

reference appliedFailureType). Regarding GlobalUncertaintyCountermea-

sures, this refers to the impact on the failure variable (w.r.t. uncertainties),

e.g. 𝑋𝑏 in the case of AI components. On the contrary, we consider Un-

certaintySpecificCountermeasures as countermeasures that have a local

impact on a specific uncertainty (this is discussed later). More formally, let

G be the DAG (directed acyclic graph) describing the structure of an uncer-

tainty model and 𝑃 the respective probability distribution (e.g. obtained by a

sensitivity analysis), i.e. 𝑃 |= G. When a GlobalUncertaintyCountermeasure

is applied, one obtains a new probability distribution 𝑃 ′ with 𝑃 ′ |= G; that
is, a global countermeasure solely changes the distribution or parametric

setting of the BN describing the uncertainty model but do not modify the

structure encoded by G. The new distribution 𝑃 ′ is captured by the reference
improvedUncertaintyModel of a GlobalUncertaintyCountermeasure. Note,

however, that both 𝑃 and 𝑃 ′ are defined over G. Similarly, both factorise into

a set of CPDs (due to the decomposability property of BNs). That is to say, a

GlobalUncertaintyCountermeasure solely changes 𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

) in
the set of CPDs to which 𝑃 ′ factorises but leaves the other CPDs (e.g. 𝑃 (𝑋𝜑𝑖

))
unchanged.

Example 9. Recall the n-version programming pattern discussed in sec-

tion 7.1.1. In the n-version programming pattern (specifically for AI use

cases), 𝑁 AI components are considered and queried simultaneously for a

given input data. Depending on the implementation of the voter, the pre-

diction result is determined from the 𝑁 predictions made. However, the

resulting predictions of the n-version pattern are very likely to differ from

the predictions of the single AI component (which is to be replaced by the 𝑁

versions). Consequently, the quality of the predictions changes as well; thus,

we can associate the n-version programming pattern with a new sensitivity

model that accounts for the changed prediction quality. For the n-version

programming pattern, one can create a GlobalUncertaintyCountermeasure

where the improvedUncertaintyModel points to the new sensitivity model.

216

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

Additionally, an UncertaintyModelEquality precondition must be created

to make sure that the new sensitivity model is applicable or structurally

equal to the uncertainty model in which distribution 𝑃 is to be adjusted (or

improved). ■

In contrast, UncertaintySpecificCountermeasure describe countermeasures

that have a local effect, i.e. they influence a specific uncertainty. Therefore, an

UncertaintySpecificCountermeasure references a TemplateVariable corre-

sponding to the target uncertainty addressed by the countermeasure. The

TemplateVariable must be instantiated and represents an uncertainty 𝜑𝑖 of

the uncertainty model. The main goal of UncertaintySpecificCountermea-

sures is to contain the target uncertainty. For example, each uncertainty 𝜑𝑖
follows a probability distribution, i.e. 𝑃 (𝑋𝜑𝑖

). An UncertaintySpecificCoun-

termeasure cannot change the distribution itself, as any uncertainty is part

of the environment, which cannot be controlled (or only to a certain extent).

However, it affects whether uncertainties are forwarded to the AI component

in exactly the form in which they are observed in the environment.

Example 10. Recall the HRI example system from section 1.5.3 and the

corresponding sensitivity model from Figure 7.10. An example of an Un-

certaintySpecificCountermeasure represents the filtering pattern where a

filter component is used to preprocess incoming data. In the case of the HRI

system, a filter might be employed to filter out noise artefacts of the input

image. Thus, the sensor noise uncertainty is contained. The filter component

does not directly affect the success/failure probability of the AI component

(e.g. as in the n-version programming approaches) but reduces the likeli-

hood of potentially malicious input data being passed to it. Considering the

sensitivity model (or uncertainty model), the effect of the filtering pattern

manifests itself by inserting an additional random variable 𝑋 ′𝜑𝑆𝑁
between 𝑋𝑏

and 𝑋𝜑𝑆𝑁
(see Figure 7.13).

The random variable 𝑋 ′𝜑𝑆𝑁
specifies the effect of the filtering process on the

sensor noise. More specifically, 𝑋 ′𝜑𝑆𝑁
models the probability of eliminating

noise artefacts from the input image originally observed in the environment

before passing it on to the AI component. ■

More formally, let G be the DAG describing the structure of an uncer-

tainty model. When an UncertaintySpecificCountermeasure is applied,

one obtains a new probabilistic structure G′ of the uncertainty model (such

217

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

𝑋𝜑𝐵
𝑋𝜑𝑆𝑁

𝑋 ′𝜑𝑆𝑁

𝑋𝑏

Figure 7.13.: The sensitivity model of the HRI example system after applying filtering pattern as

an architectural countermeasure.

as depicted on Figure 7.13); that is, an uncertainty-specific countermea-

sure changes the original structure of the sensitivity model by inserting a

new random variable that describes the impact of the target uncertainty.

Therefore, we say that an UncertaintySpecificCountermeasure modifies

the structure of an uncertainty model but not the parametric setting (op-

posed to GlobalUncertaintyCountermeasure). One may argue that if the

structure G is changed to G′, there must be also a new distribution (and

thus a parametric change) satisfying G′, i.e. 𝑃 |= G ∧ 𝑃 ′ |= G′ ⇒ 𝑃 ̸ |=
G′. However, G′ preserves the (in-)dependency assumptions of G such

that the original parametric setting is preserved as well. More accurately,

we can easily obtain 𝑃 from G′ by marginalising over the additional ran-

dom variables introduced by the countermeasure: 𝑃 (𝑋𝑏, 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

) =∑
𝜑∈𝑉𝑎𝑙 (𝜑𝑖) 𝑃

′ (𝑋𝑏, 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

, 𝑋 ′𝜑𝑖
= 𝜑). The concrete improvement or im-

pact on the target uncertainty 𝜑𝑖 is modelled by an UncertaintyImprovement.

Basically, an improvement is defined by a function 𝑓𝜑 : 𝑉𝑎𝑙 (𝑋𝜑) → 𝑉𝑎𝑙 (𝑋𝜑).
An UncertaintyImprovement represents an abstract metaclass which is ex-

tended by two sub metaclasses, namely DeterministicUncertaintyImprove-

ment and ProbabilisticUncertaintyImprovement. A DeterministicUncer-

taintyImprovement describes a deterministic effect of the improvement on

𝜑𝑖 . In this case, the function 𝑓𝜑𝑖
is bijective and uniquely defines a mapping

from 𝑉𝑎𝑙 (𝑋𝜑) to 𝑉𝑎𝑙 (𝑋𝜑); this is modelled by key-value pairs (see reference

mappingTable in Figure 7.12). A ProbabilisticUncertaintyImprovement de-

scribes a probabilistic effect of the improvement on 𝜑𝑖 . For example, in the

218

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

HRI example, there might be input images where the noise component is too

strong such that even the application of a filter cannot reduce the noise level.

The improvement would be only effective for a portion of images which

can be described probabilistically. In this case, function 𝑓𝜑𝑖
is modelled as

probability distribution, i.e. 𝑓𝜑𝑖
= 𝑃 (𝑋𝜑𝑖

| 𝑋𝜑𝑖
). The distribution is modelled

by using the ProbDist metamodel from section 5.2.6.

7.1.3.3. Uncertainty-based Reliability Prediction

In this section, we unify the presented concepts together with the reliability

prediction approach PCM-Rel to make reliability predictions of AI-enabled

software systems. Therefore, recall the main components of the approach (as

depicted on Figure 7.1), namely ATs, sensitivity analysis and the prediction

tool PCM-Rel. As a prerequisite of the extended reliability prediction, an

upstream sensitivity analysis must be conducted such that the sensitivity

model 𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

) is obtained. In addition, the sensitivity model

needs to be represented as BN by using the modelling capabilities of the

EnvDyn metamodel. The sensitivity model, the architecture or PCM model

and a model describing the uncertainty-induced failure types from the last

section (which we commonly refer to in the following as the uncertainty-

refined failure model) are the main components relevant to the prediction

approach.

Internally, the prediction process can be viewed as schematically shown in

the activity diagram of Figure 7.14. As depicted in the diagram, the prediction

process starts by checking whether an AT needs to be applied first before

the regular prediction process is carried out. In the following, however, we

begin to present the regular prediction process and discuss the application of

ATs afterwards. In this case, the process continues by applying architectural

countermeasures w.r.t. the PCM model and the uncertainty-refined failure

model. Afterwards, the PCMmodel and the uncertainty-refined failure model

are forwarded to a loop which iterates over all uncertainty tuples 𝜑1, . . . , 𝜑𝑁
of the uncertainty space, i.e. the space spanned by the distinct value spaces

of each uncertainty 𝜑𝑖 . In each iteration, two steps are performed w.r.t. each

uncertainty tuple. In the following, we assume for simplicity that only a single

UncertaintyInducedFailureType (capturing the AI-induced uncertainties)

is defined. We discuss in section 7.1.3.4 how the concepts generalise.

219

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Prediction

process

Uncertainty model

Apply AT in PCM
Model

apply AT first?

yes

<<Loop>>

Resolve and recalculate

failure probabilities:

Apply architectural
countermeasures once

Apply PCM-Rel to

PCM model

no

Prediction

result

Adjusted uncertainty model
PCM model

Merge prediction results

Figure 7.14.: Activity diagram of the prediction process.

As a first step, architectural countermeasures are applied. In our case, the un-

certaintymodel refers to the sensitivitymodel which represents the predictive

uncertainty of an AI component in the presence of second-order uncertainties.

Moreover, the uncertainty model is referenced by an UncertaintyInduced-

FailureType-object of the uncertainty-refined failure model that refines the

corresponding SoftwareInducedFailureType describing the predictive un-

certainty of an AI component. The uncertainty model is the primary source

used to calculate the adjusted failure probabilities of each refined failure type

(as we will see in the first step of the loop). Since countermeasures act on

the uncertainty model, their effects manifest themselves exclusively in the

uncertainty model. Therefore, the uncertainty model (or sensitivity model in

our case) is adjusted w.r.t. the used countermeasures. However, before a coun-

termeasure is applied, it must be checked if the countermeasure is active, i.e.

whether its ArchitecturalPreconditions are satisfied and whether the refer-

enced failure type is active as well. Recall that architectural countermeasures

act on the uncertainty model either locally (i.e. on a specific uncertainty) or

globally (i.e. by changing the overall probability of success and failure). More-

over, the modification is either structural (i.e. related to the structure of the

graph) or parametric (i.e. related to the probability distribution of the graph),

depending on the kind of countermeasure (i.e. UncertaintySpecificCoun-

termeasure and GlobalUncertaintyCountermeasure). In the case of a Glob-

alUncertaintyCountermeasure, the modification is trivial because, due to the

220

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

decomposability property of BNs, only the probability 𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

)
of the old uncertainty model needs to be swapped with the new distribu-

tion. In terms of UncertaintySpecificCountermeasure, the modification is

more complicated due to the structural change of the model. Therefore,

consider Figure 7.13 where we illustrated the effect of a structural change

caused by an UncertaintySpecificCountermeasure. Recall from the activity

diagram that it is iterated over all uncertainties. If we stay with the exam-

ple of Figure 7.13, this involves all combinations of 𝑉𝑎𝑙 (𝑋𝜑𝐵
) ×𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁

)
such that the probability of failure 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵

, 𝑋𝜑𝑆𝑁
) for all combinations

is evaluated. However, if the structure of the graph changes and another

random variable 𝑋 ′𝜑𝑆𝑁
(representing the effect of an UncertaintySpecific-

Countermeasure) is inserted, iterating over all uncertainty combinations is

no longer sufficient in some cases. More specifically, this depends on the

type of UncertaintyImprovement associated with the countermeasure. For

instance, let us assume that the improvement is deterministic. In this case, no

further steps must be taken because also the probability distribution related

to 𝑋 ′𝜑𝑆𝑁
becomes deterministic, i.e. 𝑃 (𝑋 ′𝜑𝑆𝑁

| 𝑋𝜑𝑆𝑁
) = 1𝑓 (𝜑𝑆𝑁) . When the

improvement is probabilistic, however, for each iteration of the loop the

possible outcomes of distribution 𝑃 (𝑋 ′𝜑𝑆𝑁
| 𝑋𝜑𝑆𝑁

) defined over 𝑋 ′𝜑𝑆𝑁
must

be considered as well. That is, iterating over all uncertainty combinations

is not sufficient anymore. To address this problem, one may expand the

number of iterations by considering also the different values of 𝑉𝑎𝑙 (𝑋 ′𝜑𝑆𝑁
),

i.e. 𝑉𝑎𝑙 (𝑋𝜑𝐵
) ×𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁

) ×𝑉𝑎𝑙 (𝑋 ′𝜑𝑆𝑁
). However, the number of iterations

already increase exponentially in the number of uncertainties (we discuss

the state space explosion problem at the end of this section). Therefore, we

prune the uncertainty model structure by merging 𝑋𝜑𝑆𝑁
and 𝑋 ′𝜑𝑆𝑁

to a single

random variable as depicted on Figure 7.15.

The idea of the pruning or merging process is to recover the structure of

the original graph before the UncertaintySpecificCountermeasure has been

applied such that we can iterate over all the uncertainties as before. This

is achieved by removing variable 𝑋𝜑𝑆𝑁
from the graph and by adjusting

the probability distribution defined over 𝑋 ′𝜑𝑆𝑁
, i.e. 𝑃 (𝑋 ′𝜑𝑆𝑁

). Based on the

221

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

𝑋𝜑𝐵
𝑋𝜑𝑆𝑁 𝑃 (𝑋𝜑𝑆𝑁

)

𝑋 ′𝜑𝑆𝑁
𝑃 (𝑋 ′𝜑𝑆𝑁

| 𝑋𝜑𝑆𝑁
)

𝑋𝑏

(a) Uncertainty model before pruning.

𝑋𝜑𝐵

𝑋 ′𝜑𝑆𝑁

∑
𝜑𝑆𝑁

𝑃 (𝑋 ′𝜑𝑆𝑁
, 𝑋𝜑𝑆𝑁

= 𝜑𝑆𝑁)

𝑋𝑏

(b) Uncertainty model after pruning.

Figure 7.15.: Pruning process: (a) represents the graph G before pruning and (b) depicts the

graph after pruning.

originally provided distributions 𝑃 (𝑋𝜑𝑆𝑁
) and 𝑃 (𝑋 ′𝜑𝑆𝑁

| 𝑋𝜑𝑆𝑁
), the new

distribution 𝑃 (𝑋 ′𝜑𝑆𝑁
) is constructed as follows:

𝑃 (𝑋 ′𝜑𝑆𝑁
) =

∑︁
𝜑𝑆𝑁 ∈𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁)

𝑃 (𝑋 ′𝜑𝑆𝑁
, 𝑋𝜑𝑆𝑁

= 𝜑𝑆𝑁)

=
∑︁

𝜑𝑆𝑁 ∈𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁)

𝑃 (𝑋 ′𝜑𝑆𝑁
| 𝑋𝜑𝑆𝑁

= 𝜑𝑆𝑁) · 𝑃𝑟 (𝑋𝜑𝑆𝑁
= 𝜑𝑆𝑁)

(7.3)

Note that although the mathematical derivation is based on the uncertainty

model of the HRI example system, the concepts generalise to any uncertainty

𝜑𝑖 . Moreover, equation (7.3) reflects the intention of an UncertaintySpeci-

ficCountermeasure, namely the containment or mitigation of an uncertainty.

Based on the pruned graph, the prediction process can be continued as

usual.

In the next step of the prediction process, it is iterated over all uncertainty

tuples (as described before). The first step within the loop corresponds

to the resolution and recalculation of the failure probabilities. Recall that

the core idea of the prediction process is to recalculate the failure proba-

bility of the failure type associated with an AI component. More precisely,

this failure probability is determined taking into account the distinct un-

certainty permutations. That is, the probability of failure of the AI com-

ponent is calculated w.r.t. the considered uncertainty tuple 𝜑1, . . . , 𝜑𝑁 , i.e.

222

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

𝑃𝑟 (𝑋𝑏 = 𝐹𝑎𝑖𝑙 | 𝑋𝜑1
= 𝜑1, . . . , 𝑋𝜑𝑁

= 𝜑𝑁). Afterwards, the recalculated fail-

ure probability is resolved in the (unresolved) PCM model𝑀−
𝐶
by retrieving

the refined failure type and updating the failure probability. Finally, the

resolved PCM model 𝑀+
𝐶
contains the updated failure probability and can be

further analysed.

More specifically, the following step applies the conventional prediction pro-

cedure of PCM-Rel to the resolved model𝑀+
𝐶
to predict the probability of suc-

cess as usual. As a result, we obtain the predicted success (and failure) proba-

bility of the system, given the uncertainty model (or sensitivity model) of the

AI component and a tuple of uncertainties, i.e. 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

)
from (7.1). This is repeated for all uncertainty tuples such that one obtains a

set of prediction results for each uncertainty tuple.

Finally, after the loop is completely iterated, the number of prediction results

must be merged. The individual success and failure predictions help to un-

derstand the impact of each uncertainty on the AI component and the overall

system. In the end, however, the major result is to obtain the overall success

probability 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) given a certain usage scenario𝑈 (just as originally

provided by PCM-Rel). The overall success probability takes into account

all conditional success probabilities and summarises the impact of each un-

certainty on the system (or AI component) into a single value. Formally,

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) is computed by adding the individual conditional probabilities

223

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

of success weighted by the probability of observing an uncertainty tuple to

which it is conditional:

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) =
∑︁
𝜓 ∈Ψ

∑︁
𝜑1,...,𝜑𝑁 ∈Φ

𝑃 (𝑋𝑆𝑦𝑠 , 𝑋Ψ = 𝜓,𝑋Φ = 𝜑1, . . . , 𝜑𝑁 | 𝑋𝑈)

=
∑︁
𝜓 ∈Ψ

∑︁
𝜑1,...,𝜑𝑁 ∈Φ

𝑃𝑟 (𝑋Φ = 𝜑1, . . . , 𝜑𝑁) · 𝑃𝑟 (𝑋Ψ = 𝜓 | 𝑋Φ = 𝜑1, . . . , 𝜑𝑁)

· 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋Φ = 𝜑1, . . . , 𝜑𝑁 , 𝑋𝑈)

=
∑︁

𝜑1,...,𝜑𝑁 ∈Φ
𝑃𝑟 (𝑋Φ = 𝜑1, . . . , 𝜑𝑁)

·
∑︁
𝜓 ∈Ψ

𝑃𝑟 (𝑋Ψ = 𝜓) · 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋Ψ = 𝜓,𝑋Φ = 𝜑1, . . . , 𝜑𝑁 , 𝑋𝑈)︸ ︷︷ ︸
(7.2)

=
∑︁

𝜑1,...,𝜑𝑁 ∈Φ
𝑃𝑟 (𝑋Φ = 𝜑1, . . . , 𝜑𝑁) · 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋Φ = 𝜑1, . . . , 𝜑𝑁)

(7.4)

For the sake of clarification, we use the notations Φ to represent 𝑉𝑎𝑙 (𝑋𝜑1
) ×

· · · ×𝑉𝑎𝑙 (𝑋𝜑𝑁
) and 𝑋Φ = 𝜑1, . . . , 𝜑𝑁 to represent 𝑋𝜑1

= 𝜑1, . . . , 𝑋𝜑𝑁
= 𝜑𝑁 .

The prediction result encompasses a set of CPDs capturing the conditional

success and failure probabilities of the system and the overall probability of

success and failure. Note that one could have used the uncertainty model to

marginalise over the random variables of the uncertainties (i.e. 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

)

to compute the probability 𝑃𝑟 (𝑋𝑏 = 𝐹𝑎𝑖𝑙) (or 𝑃𝑟 (𝑋𝑏 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠)). Afterwards,
the probability could have been used to describe the probability of failure

of the respective failure type in the PCM model and evaluated by using

PCM-Rel as usual. From the perspective of a software engineer, however,

the individual CPDs provide more insights regarding the impact of certain

uncertainties and can be used to prepare appropriate countermeasures. In

addition, the approach presented is fully automated and requires no further

manual intervention.

Based on the prediction result, software architects might test several archi-

tectural countermeasures to deal with uncertainties and enhance the overall

reliability of the system. Architectural countermeasures can be defined

within the uncertainty-refined failure model. In this work, we use ATs to

represent architectural patterns that can be used to deal with uncertainties.

224

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

We already discussed in section 7.1.1 the filtering and n-version programming

pattern which we described by ATs. Hereby, we described how the ATs can

be applied to the PCM model by executing the corresponding completion

(i.e. model transformation). However, we have not yet discussed how the

completions can be extended to enrich the uncertainty-refined failure model

with ArchitecturalCountermeasure instances to account for the ATs in the

reliability prediction for AI-enabled systems. We extended the completion of

the filtering pattern creating an UncertaintySpecificCountermeasure cap-

turing the effect of the filter component on given target uncertainty. Recall

the EMF profile of the filtering pattern which defines a distributionName

and targetUncertaintyName attribute. Both attributes are used to resolve

probability distribution describing the UncertaintyImprovement and Tem-

plateVariable capturing the target uncertainty of the filter. Based on this

information, the completion complements the uncertainty-refined failure

model by a corresponding countermeasure reflecting the action of the fil-

tering pattern on the uncertainty model. The completion of the n-version

programming AT has been extended in the same way. In contrast to the

filtering pattern, a GlobalUncertaintyCountermeasure is generated because

the n-version programming pattern acts globally and not on a specific target

uncertainty. The EMF profile of the n-version programming AT defines the

name of the improved uncertainty model (see attribute improvedModelName).

After resolving the improved uncertainty model, the corresponding coun-

termeasure is created and added to the uncertainty-refined failure model.

Regarding the reliability prediction process, the application of ATs, if re-

quired, is performed before the actual prediction process (as can be seen in

the activity diagram of Figure 7.14). Thus, the AT is considered in the PCM

model and the respective countermeasure is considered during the prediction

process. This empowers software engineers to select from an AT catalogue

different patterns which can be checked regarding their reliability impact.

Moreover, since the completions are purely PCM-based, further analysis or

simulation tools of Palladio are applicable to predict other quality attributes.

For instance, the application of the n-version programming pattern may

improve reliability but degrade performance. However, the prediction tools

support software engineers in making a suitable trade-off decision.

Finally, regarding the efficiency of the presented reliability prediction process,

we already noted the exponential complexity of the procedure (the iterations

of the loop depicted on Figure 7.14 grows exponentially in the number of

uncertainties). Nonetheless, there are several ways to deal with this problem.

225

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

As mentioned in section 7.1.2, we consider the value space of a property

𝑉𝑎𝑙 (𝑋𝜑𝑖
) as a discrete set. Although discretisation drastically reduces the

size of the space, it does not eliminate the exponential property, but rather

makes it manageable. The degree of discretisation or resolution of each

property can be controlled, e.g. by the software architect or domain expert

who identifies and models the properties. However, a low resolution is

associated with information loss; that is, a high degree of discretisation can

potentially affect the quality of the analysis or simulation process. Therefore,

the resolution must be balanced against the resulting complexity of the

uncertainty space (i.e. the efficiency of the prediction procedure itself) and

the quality of the prediction procedure. One last method to tackle the state

space explosion problem is to apply Monte Carlo methods, i.e. by sampling

property tuples from 𝑃 (𝑋𝜑1
, . . . , 𝑋𝜑𝑁

). Although the entire space is not

examined, at least the tuples of uncertainties that have high probabilities are

taken into account and provide sufficient insights regarding the effect of an

architectural safeguard.

7.1.3.4. Generalisation

In the last section, we presented our reliability prediction approach for AI-

enabled software systems. We introduced the uncertainty-refined failure

model for refining specific failure types of the PCM model by an uncertainty

model. Hereby, we restricted our discussion merely to software-induced

failure types as the primary means to model AI-induced failure potentials.

However, the concepts explained can be generalised to a much wider range of

use cases. In this section, we discuss how individual concepts of the approach

need to be extended and what challenges need to be considered to apply

our prediction approach for any failure type refinement and to analyse PCM

models where more than one failure type is refined.

Therefore, recall the metamodel of the uncertainty-refined failure model

from section 7.1.3.2. The possible refinements can be defined for any kind

of failure type (and not solely software-induced failure types). In this case,

the uncertainty-refined failure model includes a set of UncertaintyInduced-

FailureTypes where each refines a certain failure type in the PCM model

associated with a respective uncertainty model. To discuss how the reliability

prediction process can be generalised, the four main steps from the activity

diagram in Figure 7.14 that make up the prediction process are discussed.

226

7.1. Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty

Therefore, recall that the procedure starts with applying architectural counter-

measures. Regarding a generalised prediction procedure, no further actions

must be taken since for each uncertainty-refined failure type the correspond-

ing uncertainty model can be adjusted w.r.t. the modelled and applicable

countermeasures.

The prediction process continues with iterating over all uncertainty tuples

and which requires no further adjustments. However, as already discussed

in the previous section, the complexity of the procedure is exponential in the

number of considered uncertainties. Thus, when considering an arbitrary

number of uncertaintymodels or failure refinements, the uncertainty space in-

creases faster. We already discussed how one can tackle the state space explo-

sion problem. However, depending on the number of uncertainty models and

considered uncertainties in each model, it is likely that they cause severe com-

putational problems. One way to deal with this problem could be to iterate

sequentially over the subspaces spanned by each uncertainty model instead

of iterating over the entire uncertainty space induced by all uncertainties of

each uncertainty model. In this case, when iterating over the subspace of an

uncertaintymodel, a default or fixed failure probability can be assumed for the

other refined failure types, e.g.

∑
𝜑1,...,𝜑𝑁 ∈Φ′ 𝑃𝑟 (𝑋𝑏 = 𝐹𝑎𝑖𝑙, 𝑋Φ′ = 𝜑1, . . . , 𝜑𝑁)

for subspace Φ′ ⊂ Φ.

In the resolving step, we assumed stochastic independence between the

resource failure patterns and the uncertainties, i.e. (𝑋𝜑1
, . . . , 𝑋𝜑𝑁

⊥⊥ 𝑋Ψ).
However, the assumption does not hold when we model a set of uncertainties

𝜑1, . . . , 𝜑𝑁 describing the effect on a hardware-induced failure type. This

can be addressed by making no assumptions at all but involves the modifi-

cation of PCM-Rel. Internally, PCM-Rel implements a dedicated process to

calculate 𝑃𝑟 (𝑋Ψ = 𝜓) for any resource pattern𝜓 . Without the independence

assumption (𝑋𝜑1
, . . . , 𝑋𝜑𝑁

⊥⊥ 𝑋Ψ), this process must be adjusted to account

for distributions of the form 𝑃 (𝑋Ψ | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

).

Finally, after applying PCM-Rel as usual the results of the prediction need to

be merged. Both steps do not involve any additional effort and can be used

as currently implemented.

In summary, to generalise the presented approach of the reliability process

for AI-enabled systems to a wider range of uncertainty-based reliability pre-

diction scenarios, two factors need to be considered. First, the assumptions

227

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

made must be reconsidered, as they do not apply to specific situations. Sec-

ondly, the problem of state-space explosion becomes more challenging the

more uncertainty-refined failure types are added.

7.2. Engineering Self-Adaptive Systems to
Safeguard AI Components

In section 7.1, we discussed how to evaluate AI-enabled software systems

(and non-adaptive architectural safeguards) regarding reliability attributes.

However, so far we focused on static systems. In this section, we generalise

the concepts to self-adaptive systems.

Although we have discussed how to deal with the black-box nature of AI com-

ponents (e.g. by applying sensitivity analysis), the concepts tend to support

software architects in reliability assessment. For self-adaptive systems, how-

ever, the problem of the hidden state of an AI component remains. We con-

sider self-adaptive systems as mechanisms for safeguarding AI components.

Dealing with the black-box property is consequently of great significance

because self-adaptive systems must draw conclusions about the true state to

plan appropriate adaptations. In the following, we start to re-formalise the

problem statement of self-adaptive systems as originally stated in section

4.4.2. In particular, we relax the basic assumptions associated with MDPs

and take into account the black-box property of AI components.

7.2.1. Problem Statement

Recall from section 4.4.2 that we consider a self-adaptive system as an MDP

𝜆𝑆𝐴𝑆 := (S,Δ, 𝑡S, 𝑟S) where the engineering problem is constituted by imple-

menting an adaptation strategy 𝜋 such that the quality objectives (reflected

by reward function 𝑟S) are satisfied. Also, recall that we defined a state as

a tuple 𝑆 := (𝐸,𝐶) ∈ S consisting of an environmental state 𝐸 ∈ E and an

architectural configuration 𝐶 ∈ C of the system. In MDPs, it is assumed that

each state 𝑆 := (𝐸,𝐶) is fully observable. When considering self-adaptive

systems as architectural safeguards for AI black-box components, however,

this is not entirely true for the environmental state 𝐸. In the following, we

discuss why this assumption no longer applies.

228

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components

Recall definition 30 on page 207 of an AI black-box component defined as

a function 𝑏 with input space X and output space Y. Since the true state
of 𝑏 is not observable, the uncertainty induced by 𝑏 refers to the inability

to determine whether a prediction or output is correct or not. Regarding

the state definition 𝑆 := (𝐸,𝐶), this means that there is a variable 𝑒𝑏 ∈ 𝐸
(recall the environmental state from definition 17 on page 95) capturing the

uncertainty induced by 𝑏. According to the hidden state problem, however,

the variable 𝑒𝑏 is not observable such that the entire state 𝑆 := (𝐸,𝐶) is not
fully observable. We say that 𝑆 is Partially Observable to account for the

variables in the state which remain hidden. Instead of directly monitoring

the state of 𝑏 (or 𝑒𝑏), we encounter observations of input/output pairs (i.e. of

the form (𝑥,𝑦) ∈ X×Y) that one can use to draw conclusions about the state

of 𝑏. To account for these observations, we expand the problem statement by

considering a self-adaptive system as a Partially Observable Markov Decision
Process (POMDP) represented by the tuple (𝜆,Ω, 𝑜).

Technically, POMDPs extend MDPs 𝜆 by a set of observations Ω and an

observation model 𝑜 : 𝑆 × Ω → [0, 1] that evaluates the probability to

observe 𝜔 ∈ Ω in state 𝑠 ∈ 𝑆 . That is, instead of observing a state 𝑠 directly,

one encounters an observation 𝜔 generated from the observation model 𝑜

that serves as the basis for determining 𝑠 ; or, in other words, the observation

process (w.r.t. 𝑜) is a stochastic process that allows one to draw conclusions

about the stochastic process of the hidden states 𝑠 ∈ 𝑆 .

We consider self-adaptive systems safeguarding AI black-box components

as POMDPs described by the tuple (𝜆𝑆𝐴𝑆 ,Ω, 𝑜S) where Ω ⊆ X × Y and

𝑜S : S × Ω → [0, 1] represents the instantiated version of the original

observation model (i.e. 𝑜 : 𝑆 × Ω → [0, 1]). Note that in literature POMDPs

are often defined differently; more precisely, the definitions additionally

include the taken action in the observation model, i.e. 𝑜 : 𝑆 ×𝐴 × Ω → [0, 1].
However, when the action is directly reflected or included as a state feature,

then the observationmodel can be written in the form 𝑜 : 𝑆×Ω → [0, 1] [174].
In our case, an adaptation is included by a state 𝑆 := (𝐸,𝐶) in the sense that its
effect is directly reflected by the architectural configuration 𝐶 . Additionally,

from a probabilistic perspective, one may argue that the adaptation and

observation process is conditionally independent given the architectural

configuration because only the configuration impacts the way of observing

correct or incorrect tuples, i.e. (𝑥,𝑦) and (𝑥,𝑦′) where 𝑦 corresponds to a

wrong output and 𝑦′ to a correct output (because (𝑥,𝑦′) might be predicted

229

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

in a situation where the architectural configuration included additional filter

operation or pursued an n-version programming approach).

Extending the formal definition of self-adaptive systems to POMDPs is in-

dicating how the complexity of the problem increases when uncertain AI

components are involved. Instead of implementing an adaptation strategy 𝜋

that must maintain the system’s quality objectives over time (as originally

motivated), a software architect must additionally deal with the fact that the

true state is hidden.

7.2.2. Decoupling of the Observation Process

In the last section, we formally discussed the problem associated with self-

adaptive systems that are supposed to manage AI black-box components,

namely the hidden state of 𝑏 and the observation model 𝑜 as a basis to draw

conclusions about the state of 𝑏. In this section, we discuss how to tackle the

problems induced by uncertainties of AI.

To this end, we need to take a closer look at the problem MAPE-K-based

self-adaptive systems have to deal with when safeguarding AI components,

namely the Observation Process. In this context, the observation process

mainly refers to the process of making observations (w.r.t. observation model

𝑜) from which the true state must be determined. Let us therefore briefly

enumerate the steps of the decision procedure of a self-adaptive system, if

one strictly adheres to the semantics of POMDPs. Since we are focused on

MAPE-K-based self-adaptive systems, these steps refer to the MAPE phases.

Recall that POMDPs comprise two stochastic processes, one describing the

state evolution of the hidden (or partially observable) state and another

generating the respective observation of each state. That is, in the monitor

phase, the self-adaptive system obtains an observation or input/output pair

𝜔 := (𝑥,𝑦) ∈ Ω. In the analyse phase, it must be determined whether

the state of 𝑏 is potentially erroneous, i.e. the prediction of output 𝑦 is

not correct. We abstract this situation by considering it as a probabilistic

problem: 𝑃 (𝑋S | 𝑋Ω = 𝜔). Note that w.l.o.g., we can formulate this in a

probabilistic way because even if there exists a deterministic function 𝑓 (𝜔)
that determines the state, we can write this probabilistically, i.e. 𝑃𝑟 (𝑋S = 𝑆 |
𝑋Ω = 𝜔) = 1𝑓 (𝜔)=𝑆 . Furthermore, recall that a state 𝑆 ∈ S is considered to

be partially observable, i.e. merely the variable 𝑒𝑏 ∈ 𝐸 associated with the

AI component is hidden. Thus, we can constrain the probabilistic problem

230

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components

to the environmental variable directly related to 𝑏: 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) where
(as before) 𝑋𝑏 describes a binary random variable capturing the predictive

uncertainty of an AI component. Simply put, in the analysis phase, the

distribution 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) must be considered to infer the true state of the

AI component and decide whether an adaptation should be planned. The

planning and execution phases are then carried out in the usual way.

It can be seen that, in the analyse phase, it is crucial to have profound

knowledge of the distribution 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) because it determines whether

the system is adapted or not. However, estimating 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) requires
deep knowledge of the observation model 𝑜 and is either tedious or even

infeasible due to the complexity of the input space (e.g. the pixel space).

Therefore, using 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) as a criterion for deciding whether to adapt

the system is arguably questionable, as it involves considerable theoretical

problems.

Instead, we have to focus on a different set of properties that allow conclu-

sions to be drawn of the true state of 𝑏. We argue to augment the monitor

phase of a self-adaptive system by considering observable properties that

allow conclusions to be drawn of the true state of 𝑏. Therefore, recall the set

of uncertainties 𝜑1, . . . , 𝜑𝑁 (which we now consider as observable properties

of 𝑏) from the sensitivity model in section 7.1.2. Depending on the domain,

the properties manifest themselves in various ways; they range from simple

properties such as brightness conditions or sensor noise to more complex

properties such as robustness indicators or neuron coverage in deep neural

networks (we discuss the nature of properties in more detail later). Nonethe-

less, we assume that the properties are observable, i.e. either directly from

the environment (e.g. sensor noise) or derivable from the input/output of

an AI component (e.g. neuron coverage). Thus, runtime monitors can be

constructed such that the properties 𝜑1, . . . , 𝜑𝑁 are monitored and taken into

consideration for the remaining phases of a self-adaptive system. To account

for the monitored properties 𝜑1, . . . , 𝜑𝑁 , the distribution 𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔) of
the analyse phase expands as follows:

𝑃 (𝑋𝑏 | 𝑋Ω = 𝜔,𝑋𝜑1
= 𝜑1, . . . , 𝑋𝜑𝑁

= 𝜑𝑁) (7.5)

However, the distribution still includes the random variable 𝑋Ω which is

associated with severe theoretical problems. Therefore, recall the environ-

mental state 𝐸 of a self-adaptive system before augmenting the monitor phase

with additional properties. The environmental state merely encompasses a

231

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

single variable, namely the variable describing the state of an AI component:

𝐸 := (𝑒𝑏). By considering the set of properties 𝜑1, . . . , 𝜑𝑁 as factors that

potentially influence the quality of a prediction made by 𝑏, they indirectly

impact the quality attributes of the software system including 𝑏. Recall that

we consider predictive uncertainty as the first-order uncertainty of AI com-

ponents. The set 𝜑1, . . . , 𝜑𝑁 refer now to what we defined at the beginning

of the chapter as AI-related uncertainties of second order. Therefore, they

must (according to definition 17 on page 95) also be considered in the envi-

ronmental state: 𝐸 := (𝑒𝑏, 𝑒𝜑1
, . . . , 𝑒𝜑𝑁

). Given that expanded state definition,

the environmental state can be partitioned into a set of observable variables

𝐸𝑜𝑏𝑠 := {𝑒𝜑1
, . . . , 𝑒𝜑𝑁

} and a set of hidden variables 𝐸ℎ𝑖𝑑 := {𝑒𝑏}. This can
also be written in terms of random variables, i.e. 𝑋𝐸𝑜𝑏𝑠 := {𝑋𝜑1

, . . . , 𝑋𝜑𝑁
}

and 𝑋𝐸ℎ𝑖𝑑 := {𝑋𝑏} (we omit the 𝑒’s to simplify the notation). Given the ran-

dom variables 𝑋𝐸𝑜𝑏𝑠 , 𝑋𝐸ℎ𝑖𝑑 and 𝑋𝐸𝑜𝑏𝑠 , we assume that the Missing At Random
(MAR) assumption applies:

(𝑋Ω ⊥⊥ 𝑋𝐸ℎ𝑖𝑑 | 𝑋𝐸𝑜𝑏𝑠) (7.6)

The MAR assumption requires conditional independence between the ob-

servations and hidden variables given the observable variables, i.e. indepen-

dence between 𝑋Ω and 𝑋𝐸ℎ𝑖𝑑 given 𝑋𝐸𝑜𝑏𝑠 [105, P.854]. That is, an observation

𝜔 := (𝑥,𝑦) provides no additional information about the hidden variables

if the observed variables are known. Consequently, the following equation

applies: 𝑃 (𝑋𝐸ℎ𝑖𝑑 | 𝑋𝐸𝑜𝑏𝑠 , 𝑋Ω) = 𝑃 (𝑋𝐸ℎ𝑖𝑑 | 𝑋𝐸𝑜𝑏𝑠) MAR is applicable in many

settings and is primarily used to decouple the observation model to deal

with complex likelihood functions (see Koller and Friedman for detailed

explanations of MAR [105, P.854]). In this context, however, we make the

MAR assumption to decouple the observation process to avoid theoretical

problems induced by large and complex input spaces. Instead, we can focus

on more reliable and easier-to-handle observations or properties. Based on

the MAR assumption and their implications, equation (7.5) simplifies to:

𝑃 (𝑋𝑏 | 𝑋𝜑1
= 𝜑1, . . . , 𝑋𝜑𝑁

= 𝜑𝑁) (7.7)

In summary, the MAR assumption allows the decoupling of the observation

process as we can exclude the observation set Ω and thus the observation

process. Instead, we focus on a set of observable properties that are both

directly observable and allow more precise statements about the state of 𝑏.

Note that this does not change the theoretical problem that one is facing, i.e.

a self-adaptive system safeguarding an AI component still must be consid-

ered as POMDP. However, the MAR assumption is accompanied by several

232

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components

advantages that facilitate dealing with the hidden state of 𝑏 and also the

analysis of such systems at design-time (as we will see in the next section).

According to Koller and Friedman [105], although the MAR assumption is

applicable in many settings, it must be considered with care. For a limited or

not representative set of observable properties, the MAR assumption may not

hold. So far we rather enumerated properties such as brightness, sensor noise,

weather, etc. However, in areas such as autonomous driving with extremely

dynamic environments (where there are fairly more monitorable properties),

taking such primitive properties into account is arguably insufficient or does

not accurately satisfy the MAR assumption. Therefore, we consider more

sophisticated or expressive properties. Basically, we distinguish between

weak and strong properties. We denote properties such as brightness or

sensor noise as weak, even though they allow reasoning about the state of

an AI component, but do not provide strong assurances. On the contrary, we

consider properties such as the determination of safe input regions [201] or

variational inference [26] as strong properties as they provide a higher level

of assurance. For example, if the input data can be mapped to a precomputed

safe region (i.e. a region of the input space for which predictions have

been verified to be correct), the probability of an incorrect prediction is

zero. The computation of such safe regions, however, is computationally

expensive and may not be applicable in situations that require quick reactions

such as autonomous driving [116]. Consequently, strong properties need to

be weighed in terms of the computational cost and the level of assurance

they provide. The MAR assumption can always be sharpened by considering

additional observations. Whether this is achieved by strong or soft properties

(or a combination of both) must be evaluated by the software architect in

terms of the degree of assurance and the computational cost they entail and

is a design decision.

Finally, let us consider the design of a MAPE-K-based self-adaptive system by

taking into account the insights gained from the MAR assumption. A design

sketch is depicted on Figure 7.16. The monitor phase is augmented by the

set of properties 𝜑1, . . . , 𝜑𝑁 which are either directly computable from the

input/output pairs (𝑥,𝑦) (e.g. safe input regions) or by additional monitors

observing external properties (e.g. brightness conditions by external sensors).

In the analyse phase, the distribution (7.7) is used to assess whether, for a

given set of properties, the probability of observing an incorrect prediction

exceeds a threshold 𝜖 . Note that the distribution can be obtained by applying

an upstream sensitivity analysis (as described in section 7.1.2). If this is the

233

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

Knowledge

Monitor

Analyse Plan

Execute

Environment model

Sensitivity model

...

AI model

Comp BComp A

Architecture model

Assumptions: ...

Sensors Actuators

Properties:

If true: trigger plan phase
Otherwise: terminate

Threshold exceeded?

Input/ouput
pair

external
sensor

Adaptation planning (e.g.
w.r.t.)

Execution of the planned
adaptation

Figure 7.16.: Design of the MAPE-phases when considering the MAR assumption.

case, the plan-phase is triggered, in which an adaptation is planned (e.g. by

considering 𝜑1, . . . , 𝜑𝑁) as a countermeasure or to prevent the system from

transitioning to an unsafe state. At the very end, the adjustment is carried

out in the execute-phase. The knowledge part contains all the information

(architecture model, environment model, sensitivity model, assumptions,

etc.) relevant to each phase and required for decision-making.

In the next two sections, we discuss how to evaluate self-adaptive systems

that follow the previously outlined design. More specifically, we discuss

how adaptation strategies are evaluated in terms of maintaining reliability

attributes.

7.2.3. Analysing the Monitorable Space

In the last section, we sketched the design of a MAPE-K-based self-adaptive

system without being too restrictive in terms of the design space, i.e. the

main adaptation logic (such as adaptation planning) still needs to be designed.

234

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components

Hereby, we made the MAR assumption to decouple the observation process

which relates to the problem of dealing with high dimensional input spaces

from which one must draw conclusions about the hidden state of an AI

component. However, the decoupling of the observation process not only

has positive effects on the black-box property of AI components but also on

the evaluation. The general evaluation approach of self-adaptive systems

to safeguard AI components is discussed in the next section; however, this

section discusses how the input spaces of AI components can be taken into

account in the evaluation as peculiarities in the input space are the main

source of incorrect predictions and therefore need to be considered in the

evaluation.

Without the decoupling, one must represent the observations in the eval-

uation process. The observations again refer to input-output pairs of the

AI component, which is fairly difficult to integrate (especially when dealing

with image data where the input space is the pixel space). By the decoupling,

however, we focus on a more manageable set of properties 𝜑1, . . . , 𝜑𝑁 that

allows drawing more precise conclusions of the state of an AI black-box

component 𝑏; recall distribution 𝑃 (𝑋𝑏 | 𝑋𝜑1
= 𝜑1, . . . , 𝑋𝜑𝑁

= 𝜑𝑁). That is,
instead of considering the input space of 𝑏, we rather focus on the distinct

property permutations during analysis or evaluation. We denote the space

spanned by the set of properties 𝜑1, . . . , 𝜑𝑁 the Monitorable Space. More

formally, we describe the monitorable space Φ as follows:

Φ := 𝑉𝑎𝑙 (𝑋𝜑1
) × · · · ×𝑉𝑎𝑙 (𝑋𝜑𝑁

) (7.8)

By considering the monitorable space, one can simulate the monitor phase of

a self-adaptive system by generating property tuples (𝜑1, . . . , 𝜑𝑁) from Φ. By
decoupling the observation process, we shift the analysis to the monitorable

space, bypassing problems caused by large input spaces. We discuss this in

more detail in the next section.

However, it should be noted that the monitorable space still grows expo-

nentially in the number of properties such that we possibly encounter state

space explosion problems. As already discussed in section 7.1.3, Monte Carlo

methods can be applied or the level of discretisation can be adjusted to reduce

the size of the space. However, this might entail a loss of simulation/analysis

accuracy. Again, we defer the detailed discussion to section 7.2.4. Moreover,

the set of properties must be kept small to circumvent statistical problems

(e.g. curse of dimensionality). Consequently, a larger number of properties

235

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

could be an indication of poor selection. Instead, one can reduce the set of

properties by focusing on (if possible) strong properties, i.e. properties that

provide stronger assurances. In this way, the monitorable space is reduced

because adding strong properties allows the removal of weak properties.

7.2.4. Evaluating Adaptation Strategies

In this section, we discuss how to evaluate adaptation strategies of self-

adaptive systems to safeguard AI components at design-time. Therefore, we

take all the concepts we have elaborated in this chapter and combine them

with the SimExp method from chapter 6. Recall that the SimExp method

provides a framework for evaluating adaptation strategies. In the following,

we outline how we extend the SimExp framework to evaluate adaptation

strategies safeguarding AI components.

For this purpose, however, we have to briefly recap the main concepts of

SimExp. More specifically, recall Figure 6.1 that provides an overview. The

SimExp framework needs to be complemented by a reward function and

an adaptation strategy provided by the software engineer. Moreover, the

framework inputs the initial architecture model, an environment model and

a set of model transformations. The latter represents the set of adaptations.

The initial architecture model (represented by a PCM model) indicates the

start configuration of the system. At this point, the environment model

is of most interest because it is directly connected to the uncertainties or

properties 𝜑1, . . . , 𝜑𝑁 . Therefore, recall that during section 7.1 we used the

term uncertainties to describe factors that potentially influence the prediction

quality of an AI component. In this section, however, we introduced the

notion of properties that one can observe to reason about the true state of an

AI black-box component. Although both terms suggest different concepts,

we consider them the same. In the remainder of the chapter we use the

term properties, but would like to emphasise again that we could use the

term synonymously with uncertainties. Nonetheless, they form an integral

part of the environment because they affect quality objectives. They are

represented as environmental variables that make up an environmental state

(as already discussed in section 7.2.2). The set of environmental states forms

the environmental dynamics which is modelled by the EnvDyn metamodel.

That is to say, one can use the EnvDynmetamodel to model the corresponding

DBN that describes the probabilistic behaviour of the properties over time.

236

7.2. Engineering Self-Adaptive Systems to Safeguard AI Components

Based on the DBN, the adaptation strategy can be evaluated based on the

sampled environmental states.

It is important to note that the way the SimExp framework is used originates

from the theoretical insights of decoupling the observation process (see

section 7.2.2) and the fact that we can focus the simulation on the monitorable

space (see section 7.2.3). Without the decoupling, we would still need to

simulate the dynamics of the system governed by the semantics of POMDPs

which is associated with severe theoretical issues caused by the observation

process. By decoupling the observation process, we focus on the purely

observable and monitorable space spanned by a set of properties that allow

conclusions to be drawn about the true state of the AI black box component.

However, this requires that the MAR assumption is sufficiently approximated

by the set of considered properties. Based on both concepts (namely the

decoupling of the observation process and the monitorable space), one can

model the environment as in any other domain and evaluate adaptation

strategies as discussed in Figure 7.16.

Finally, let us return to the reward function, which assigns a reward to each

decision of an adaptation strategy. In this context, we are interested in

analysing how well a strategy maintains reliability objectives. That is, we

have to account for reliability attributes in the reward function. Therefore,

we directly reuse our reliability prediction approach from section 7.1 for

AI-enabled systems. For reliability prediction, the sensitivity model must

be generated beforehand and must match the environmental model, i.e. the

uncertainties of the sensitivity model are equal to (or a subset of) the environ-

mental variables of the DBN. That is, the sampled environmental states are

used to compute the failure potential of the AI component, which has a global

impact on the overall reliability of the system (quantified as probability of suc-

cess). Recall that we introduced this idea in section 6.3.2.2 where each state

of a self-adaptive system (comprising the current architectural configuration

and environmental state) is transformed into an analytical model for pre-

dicting quality attributes. Suppose that there is a proper uncertainty-refined

failure model (referencing the sensitivity model), the environmental state

(including the uncertainties) and the architecture model are simply passed

to the reliability prediction tool to predict the probability of success. The

reliability prediction can be complemented by the application of other simula-

tion/analysis tools, e.g. the Palladio performance prediction tool enables the

prediction of additional performance indicators. Based on these predictions

237

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

, , ,
FilterComponent

AI
ComponentComponent

AI
Component

Reliability
Prediction

Sensitivity model

Figure 7.17.: Internal simulation/sample process when evaluating adaptation strategies for

safeguarding AI components.

the corresponding reward can be determined by the reward function. The

idea is illustrated once again in Figure 7.17 for the HRI example system.

The implemented adaptation strategy executes (if required) model transfor-

mations to simulate adaptations. To account for the effects of the transfor-

mations (or adaptations) on the reliability attributes, the transformations are

implemented in a way such that architectural preconditions defined in the

uncertainty-refined failure model are satisfied, leading to the activation of a

connected architectural countermeasure (see section 7.1.3.3). For example, a

model transformation could activate further filter components to preprocess

input data before passing it to the AI component. In this case, the filter

component is inserted into the architectural model such that a corresponding

architectural precondition of the uncertainty-refined failure model evaluates

to true and the associated countermeasure is considered in the reliability

prediction.

238

7.3. Implementation

PCMRelAI.ModelPCMRelAI.PredictorPCMRelAI.UI

PCM.Core.* PCM.Reliability.*

ProbDist.* EnvDyn.*PCM.AT.*

Figure 7.18.: Excerpt from the dependency graph of the components for implementing the

reliability prediction approach for AI-based systems

7.3. Implementation

In this section, we briefly provide an overview of the implementation de-

tails. Therefore, consider Figure 7.18 which shows an excerpt of the com-

ponent structure implementing the reliability prediction approach from

section 7.1.3.3. For clarity, not all components are displayed, but related

components are combined into a single component (e.g. PCM.Core.* or

PCM.Reliability.*).

The approach is implemented by three central components, namely PCMRelAI.-

UI, PCMRelAI.Predictor and PCMRelAI.Model. Note that we use PCMRelAI.*
to prefix components related to our presented reliability prediction approach.

The PCMRelAI.UI component implements the user interface where all nec-

essary details (e.g. model locations and other configurations) are specified

by the user. Afterwards, the PCMRelAI.Predictor component is used by the

provided configuration of the user and implements the core logic of the

prediction approach. Since the approach extends the conventional PCM-Rel

approach by resolving and updating the failure probabilities of an AI compo-

239

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

nent, the PCMRelAI.Predictor component is dependent on the corresponding

components implementing PCM-Rel (and also on some components provid-

ing core PCM functions, e.g. the PCM model). In addition, the user can apply

an AT before the analysis (if needed). Therefore, the PCMRelAI.Predictor

reuses the appropriate functions provided by the PCM.AT.* components to

apply the specified AT. Finally, the PCMRelAI.Model component is referenced

which provides the uncertainty-refined failure model and corresponding

code artefacts based on the EMF framework. Similar to the implementations

in the other chapters, our tooling is implemented in the context of Eclipse,

more precisely as an Eclipse plug-in.

7.4. Assumptions and Limitations

In the following, we discuss the assumptions and limitations of the presented

approach.

Assumptions As in other chapters, the presented approach is associated

with several assumptions. The first assumption to mention is the MAR

assumption. We make the MAR assumption to decouple the observation

process by focusing on a set of observable properties which allow conclu-

sions to be drawn about the true state of an AI component. As we have

already discussed in this chapter, this assumption might be too strong in

some settings. However, the MAR assumption can be highly approximated

by considering properties that provide high assurances regarding the state

of an AI component. We have discussed this issue in detail in section 7.2.2

and refer to said discussion.

Moreover, we assumed independence between hardware resource patterns

𝜓 , usage model 𝑈 and the observed uncertainties or properties 𝜑1, . . . , 𝜑𝑁 ,

i.e. (𝑋𝜑1
, . . . , 𝑋𝜑𝑁

⊥⊥ 𝑋Ψ ⊥⊥ 𝑋𝑈). We argue that this assumption is accurate

in settings where 𝜑1, . . . , 𝜑𝑁 refer exclusively to AI-specific uncertainties, or

at least accurate enough to perform design-time analysis where simplifying

assumptions are fairly common. Moreover, when considering equation (2.3)

on page 43 of PCM-Rel, similar assumptions must have been made regarding

𝑋Ψ and 𝑋𝑈 . In settings where 𝜑1, . . . , 𝜑𝑁 are related to hardware failure

types, the assumption does not hold anymore (as discussed in section 7.1.3.3).

However, this is currently unrelated to our considered use case but is a topic

240

7.4. Assumptions and Limitations

for future work when the our approach is to be extended to a wider range of

use cases.

Limitations Also, regarding the implemented functionality of the approach,

there are a couple of limitations. First, we outlined in section 7.1.3.3 how

our presented reliability prediction approach for AI-enabled systems can be

generalised to a wider range of use cases. However, the discussion is only

theoretical and not yet implemented. We plan to make up for this in future

work.

Our reliability prediction approach for AI-enabled systems is based on PCM-

Rel [33] which is based on PCM. Consequently, one must strictly use PCM as

ADL to model the software architecture of the AI-enabled system. Although

PCM is a very powerful language to describe numerous software systems, it

might be not perfectly suited to model the architecture of systems from other

domains, e.g. embedded systems. Nonetheless, PCM can be used anyway

and thus our reliability prediction approach. However, using an ADL that

allows more accurate modelling of other types of systems would be desirable.

The same applies to the semantics of the reliability prediction procedure.

Our reliability approach builds upon the existing reliability approach PCM-

Rel of Brosch [33]. Therefore, we also inherit the semantics of the PCM-

Rel reliability prediction procedure. In terms of our reliability prediction

approach (and the inherited prediction semantics of PCM-Rel), the effect of a

wrong prediction is directly evaluated at the modelled AI component and

not in the other parts of the system which might be affected by the corrupted

prediction. However, since our primary goal is to evaluate design decisions

in terms of architectural safeguards, we argue that the reliability prediction

semantics are sufficiently accurate.

In section 7.1, we presented two architectural patterns, namely the filtering

and n-version programming pattern. We modelled both patterns by using

the formal language of ATs (see section 2.3.1.2). Each AT is accompanied by

a completion, i.e. the model transformation, which weaves the pattern into a

specific architectural model (or more precisely PCM model). In this context,

the completions for both ATs are merely applicable to event-based PCM

models. This results from the fact that we considered (at least for AI-enabled

systems) only systems adhering to event-based architectures. In future work,

however, we plan to extend the completions to apply the ATs to PCM models

that communicate synchronously through operation calls.

241

7. Reliability Prediction of Architectural Safeguards for AI-enabled Systems

7.5. Summary

In this chapter, we presented design-time approaches to evaluate architectural

safeguards regarding reliability at design-time. We considered predictive

uncertainty as first-order uncertainty. Moreover, we defined a set of second-

order uncertainties (e.g. brightness, sensor noise) that are directly observable

and allow conclusions to be drawn about the true state of the AI component.

These secondary uncertainties serve as the main components for dealing

with the black-box nature (or hidden state problem) of AI components and

form the entry point for the analysis of systems with AI components.

In section 7.1, we presented an approach to model and analyse architectural

patterns specifically designed to deal with AI uncertainties. We focused on

two patterns, namely the filtering and n-version programming pattern. We

used the AT (architectural template) language to represent the patterns as

models (see section 7.1.1). This allows a software developer to select an AT

and apply it to an architectural model (in this context a PCM model) such

that the impact can be analysed. After that, in section 7.1.2, we explained

how to use sensitivity analysis to address the black-box property of AI com-

ponents. The key idea is to generate a sensitivity model to approximate the

predictive uncertainty of an AI component given a set of secondary uncer-

tainties which affect the predictive uncertainty. The secondary uncertainties

must be known in advance by consulting a domain expert or conducting an

upstream domain analysis. Based on the sensitivity model, we presented

a reliability prediction approach for AI-enabled systems. More specifically,

we extended an existing reliability approach for classic information systems,

namely PCM-Rel (see section 7.1.3.3). Internally, PCM-Rel makes use of

a failure model for annotating specific elements of the architecture model

with failure probabilities. We extended PCM-Rel by using the sensitivity

model to represent the predictive uncertainty of the AI component. The

extended reliability prediction approach complements the developed ATs by

analysing the impact of an architectural safeguard (modelled as AT) in terms

of reliability.

In the second part of this chapter, we generalised the previously presented

concepts to self-adaptive systems. In this context, we consider self-adaptive

systems as a safeguarding mechanism for AI components, where the adapta-

tion strategy (governing the adaptation process) is to be evaluated. Therefore,

we reused the SimExp framework from chapter 6. Moreover, we extended

242

7.5. Summary

the framework by integrating the aforementioned reliability approach for AI-

enabled systems. Thus, an adaptation strategy is analysed and evaluated in

terms of maintaining reliability attributes. Finally, we concluded the chapter

by discussing the assumptions and the limitations.

243

8. Classes of Architectural
Dependability Assurance for
AI-Enabled Systems

In the previous chapter, we presented a model-based approach for the reli-

ability prediction of AI-enabled systems (for both, static and self-adaptive

systems). The approach is based onmodels that abstract the software architec-

ture, adaptations (in the case of self-adaptive systems) and the environment in

which the system is operating. However, the question that arises at this point

is whether we can always abstract systems and environments to conduct

design-time analysis. In self-driving cars, for example, the dynamics of the

environment are so manifold and encompass numerous possible scenarios

that these environments are difficult to capture by an environment model.

Depending on the quality attributes one wants to analyse, there could be a

lack of simulation or analysis tools for prediction. Even if one can predict a

quality attribute (or another type of system property), the state space to be

analysed might be too large to check whether all states satisfy the system

property. The circumstances under which a system can be analysed at design-

time depend not only on the type of system (i.e. static or self-adaptive) but

also strongly on the system properties that are to be analysed. In particular,

for systems with AI components, where the hidden state problem of AI mod-

els prohibits checking whether the model is executing incorrectly, one has

to resort to particular properties (e.g. neuron coverage, robustness or simply

brightness in the input image) that are used to draw conclusions about the

true state of the AI component. However, such properties are not always

observable (i.e. only for a subset of the input space) or computationally

expensive, but are highly relevant to determine system-level properties.

To account for a wide range of system-level properties, we consider those

related to Dependability. According to Sommerville [173], dependability en-

compasses four essential quality dimensions, namely Availability, Reliability,

245

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Safety and Security. Therefore, we consider system-level properties that can

be assigned to one of the enumerated quality dimensions.

In this chapter, we propose four classes of architectural dependability as-

surance, namely Static Analysability, Monitor Analysability, A-posteriori
Analysability and Non-Analysability. Furthermore, we introduce a classi-

fication structure (based on generic classification dimensions) that allows

AI-enabled systems and their domain to be classified into one of these classes.

The classes form a natural order where static analysability is the most de-

sirable class (i.e. the system is fully analysable at design-time) and non-

analysability refers to the worst class (i.e. the system cannot be analysed

at all and thus no assurances can be made). Each class is associated with a

particular system-level property for which assurance can be given either at

design-time or at runtime or not at all. For example, static analysability refers

to the ability to fully analyse a system at design-time such that, as a result,

assurances w.r.t. the considered system-level property can be made at design-

time. Additionally, the classification of the system to be engineered (and w.r.t

the operating environment) into one of the classes gives software engineers

an intuition about the problem domain itself. Systems which are statically

analysable (regarding a system-level property the system must satisfy) are

arguably easier to develop than systems that are classified as non-analysable.

Finally, we envision the classes to serve as assurance arguments in assurance

cases. In assurance cases, claims are made that the system meets the (safety-

related) requirements and arguments and evidence are provided to justify

these claims [25]. Therefore, we consider our classes of dependability assur-

ance as further argumentation and evidence that contribute to the degree of

belief to justify the claims within an assurance case. For example, if it can be

argued (in terms of classification structure) that a system is classified into

static analysability, this strengthens the assurance argument considerably

as it implies that evidence can be provided at design-time. If, on the other

hand, a system can only be classified into lower-ordered classes, then the

assurance argument is weakened as it implies that either only partial analysis

is possible at design-time or even only at runtime.

As a last remark, the classes are inspired by the insights gained from the

previous chapters. Nonetheless, they are formulated in a way that generalises

the concepts of this thesis. However, due to the rather limited number of

approaches to the analysis of AI-enabled systems at design-time, it is difficult

to assess whether the dependability assurance classes (and the classification

dimensions) are complete. Therefore, we consider them as a starting point,

246

8.1. Classes of Architectural Dependability Assurance

but one that is still preliminary and needs to be further investigated in future

work. The contribution of this chapter has been published [160].

In this chapter, we address research question RQ4:

Research Question 4: How to assess the extent to which depend-

ability assurances can be given for an AI-enabled system?

Therefore, we developed the aforementioned classes of analysability and

respective classification dimensions to address the sub-research questions

RQ4.1 and RQ4.2

Research Question 4.1: What are appropriate classes of architec-

tural dependability assurances?

Research Question 4.2: What are the suitable dimensions for

classification?

The chapter is structured as follows: In section 8.1, we introduce the four

classes of architectural dependability assurance. In section 8.2, we discuss

the distinct classification dimensions and provide an overview of the clas-

sification structure (w.r.t. the dimensions). Afterwards, in section 8.3, we

demonstrate the applicability of the classification structure by applying it

to representative AI-enabled systems. Finally, we summarise the chapter in

section 8.4.

8.1. Classes of Architectural Dependability
Assurance

In this section, we present the distinct classes of architectural dependability

assurance. Basically, the idea is to classify systems and the environment

(in which the system operates) into one of the classes. Each class indicates

the extent to which design-time and runtime assurances can be made. We

consider an assurance or assurance case as defined in [68]: “A reasoned

and compelling argument, supported by a body of evidence, that a system,

247

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

service or organisation will operate as intended for a defined application in

a defined environment” [68]. Moreover, an argument “[...] is defined as a

connected series of claims intended to establish an overall claim” [68]. Our

classes determine the time at which these arguments can be given, i.e. at

design-time or runtime. Therefore, classification into one of the classes itself

becomes an assurance argument. Systems that can be assigned to classes for

which assurances can be given at design-time are more favourable because

evidence can be given at design-time and not only at runtime (making the

assurance case more compelling).

Compose Verify
System

Environment

Property

proof

counterexample

Figure 8.1.: Typical formal verification process taken from [165].

For the definition of the classes, we orient ourselves on the traditional verifi-

cation process (see Figure 8.1) for software systems or programs. In principle,

in formal verification, the primary objective is to verify a property Φ based

on a system model 𝑆𝑦𝑠 and environment model 𝐸𝑛𝑣 (in which the system

operates). The 𝑆𝑦𝑠 and 𝐸𝑛𝑣 models are composed and generate a formal

model F which serves as a basis to verify property Φ. The output is a yes
or no answer indicating that the property could either be verified (with an

optional proof) or not (with a corresponding counterexample that falsifies

Φ). Originally, Seshia et al. [165] discuss how this process can be adapted

into a holistic procedure for the verification of AI systems. In this work, we

make use of the individual elements and their interplay to define our distinct

classes.

As a final remark, recall that the classes induce a natural ordering in which

static analysability is to be considered the most preferable class, followed

by monitor and a-posteriori analysability; non-analysability refers to the

worst possible class. Similarly, we argue that the same natural order exists

in the classes static analysability, monitor analysability and a posteriori

analysability in terms of making assurances. More specifically, assurances

that can be made in a particular class must automatically apply to lower-

248

8.1. Classes of Architectural Dependability Assurance

Compose Predict

Architecture model

Environment model

Property

Satisfied

Not satisfied
Model transformations

Figure 8.2.: The adapted dependability assurance process for design-time analysis based on the

classical verification process [165].

order classes as well, i.e. a property that can be assured at design-time can

also be assured at runtime (if the property is efficiently computable). For

example, any system-level property that is (say) statically analysable is also

monitor-analysable, but not vice versa. However, this does not apply to

non-analysability because any system-level property that is static, monitor-

or a-posteriori analysable cannot be non-analysable.

8.1.1. Static Analysability

In this section, we define the dependability assurance class static analysabil-

ity which refers to the ability to statically analyse properties at design-time.

When classified to static analysability, the environment in which the sys-

tem operates is considered to be well known or there is sufficient informa-

tion available to analyse the environment. Environments which are well

understood by (e.g.) domain experts allow sufficient information (such as

assumptions) to be included to describe how the environment behaves, how

it interacts with the system or what the main disturbances are.

To be more formal, let us consider Figure 8.2 which depicts the traditional

verification process adapted for our purposes. In this case, the system model

𝑆𝑦𝑠 and environment model 𝐸𝑛𝑣 correspond to our architecture model𝑀C
and environment model (capturing the environmental dynamics) 𝑀E . As
further input, we consider a set of model transformations𝑀Δ that abstract

adaptations. However, the model transformations are optional, i.e. they must

be only specified if self-adaptive systems are to be analysed. A set of analytical

or formal models Λ is generated by composing the specified models that

serve as a foundation to analyse the given properties (e.g. an MDP associated

with further analytical models to predict system-level properties for each

249

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

state). What was originally formulated as property Φ now refers to system

property Φ𝑆𝑦𝑠 (e.g. the success probability of the system). Finally, based on Λ
it is predicted whether Φ𝑆𝑦𝑠 is satisfied or not. Note that we deliberately use

the term "predict" instead of "verify" because we do not aim to verify whether

Φ𝑆𝑦𝑠 holds in all states, but sometimes calculate an average or expectation of

the individual predictions of Φ𝑆𝑦𝑠 and check whether the expectation satisfies

Φ𝑆𝑦𝑠 . For example, recall our reliability prediction approach from chapter 7,

where an overall success probability is derived by aggregating the individual

conditional success probabilities (conditional on 𝜑1, . . . , 𝜑𝑁). However, the

term "predict" suggests that the considered system-level properties must be

computable. Therefore, we require that the prediction procedure is efficiently

Turing-computable.

Essentially, the dependability assurance process from Figure 8.2 reflects

exactly what we define as static analysability:

Definition 31 (Static Analysability). An AI-enabled system and its operating
environment are said to be statically analysable if there exists a system or
architecture model𝑀C , an environment model𝑀E and a set of model transfor-
mations𝑀Δ such that a set of formal models Λ are generated or derivable that
allow predicting with an acceptable degree of accuracy whether 𝑀C satisfies
system property Φ𝑆𝑦𝑠 w.r.t. 𝑀E .

Note again that 𝑀Δ is not required if non-adaptive software systems are

analysed.

In simple terms, static analysability refers to settings where, for a given

system property Φ𝑆𝑦𝑠 , there are models that abstract the system (and adap-

tations in the case of self-adapting systems) and its operating environment

in such a way that it is possible to predict whether the system satisfies Φ𝑆𝑦𝑠

w.r.t. the operating environment. Static analysability is the most desirable

class into which a system and its environment can be classified, as evidence

for the assurance argument can be given at an early stage of development,

making the assurance case more reasoned and compelling.

8.1.2. Monitor Analysability

The next class of dependability assurance refers to monitor analysability. Sim-

ilarly to static analysability, monitor analysability allows analysing whether

250

8.1. Classes of Architectural Dependability Assurance

Compose Predict

Architecture model

Environment model

Property

Satisfied

Not satisfied

Model transformations Unkown

Figure 8.3.: The adapted dependability assurance process for partial design-time analysis based

on the classical verification process [165].

system properties are satisfied at design-time. This time, however, there

might be a situation where for some states we cannot predict whether Φ𝑆𝑦𝑠

is satisfied or not, i.e. the fulfilment is unknown. This circumstance is illus-

trated in Figure 8.3 by extending the possible outcomes to include the case

of an unknown state.

The term “monitor” of class monitor analysability seems a bit contradictory

because one would rather associate it with runtime monitoring, and yet

we consider it a class for which design-time assurances can be given. In

fact, the term “monitor” refers to a runtime capability, namely the ability to

construct runtime monitors for subregions of the state space for which no

assurances can be given. Since the analysability of monitors implies that no

assertions about Φ𝑆𝑦𝑠 can be made for some subregions of the state space, it

is essential to use additional monitors at runtime to reason about Φ𝑆𝑦𝑠 and

avoid potentially hazardous situations. Restricting the state space to exactly

such subspaces allows software engineers to construct additional runtime

monitors. For the remaining subspace (in which statements about Φ𝑆𝑦𝑠 can

be made), assurances can be given and appropriate countermeasures taken.

Definition 32 (Monitor Analysability). An AI-enabled system and its operat-
ing environment are said to be monitor-analysable if there exists a system or
architecture model𝑀C , an environment model𝑀E and a set of model transfor-
mations𝑀Δ such that a set of formal models Λ are generated or derivable that
allow predicting for a subset of states with an acceptable degree of accuracy
whether𝑀C satisfies system property Φ𝑆𝑦𝑠 w.r.t. 𝑀E .

The definition of monitor analysability is only different from static analysabil-

ity in that only for a subset of states it can be predicted or determined whether

251

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Φ𝑆𝑦𝑠 is satisfied. For example, let us consider an MDP as a formal model for

self-adaptive systems, the monitor analysability indicates that only a subset

of the state space can be checked w.r.t. Φ𝑆𝑦𝑠 . In situations where not every

state of a self-adaptive system is fully observable, there may be situations

where it cannot be determined with sufficient certainty whether the system

is in a particular state (due to a lack of evidence) such that it is not possible

to determine whether Φ𝑆𝑦𝑠 is satisfied.

Although we do not specify a certain percentage of the states for which one

can expect a verdict regarding Φ𝑆𝑦𝑠 , it is reasonable to do so in practice. For

example, if for a large percentage of states, it is not known whether Φ𝑆𝑦𝑠 is

satisfied, the knowledge of the remaining states is unlikely to be sufficiently

informative.

8.1.3. A-posteriori Analysability

A-posteriori analysis states that the system and its operating environment

cannot be analysed at design-time; that is, it can not be determined whether

the system satisfies the system-level properties w.r.t. the environment.

Definition 33 (A-posteriori Analysability). An AI-enabled system and its
operating environment are said to be a-posteriori analysable if there exist no
models 𝑀C , 𝑀E and 𝑀Δ such that (based on Λ) it can be predicted whether
the system property Φ𝑆𝑦𝑠 is satisfied. Instead, assurances can only be given at
runtime; that is, it can be determined whether Φ𝑆𝑦𝑠 is satisfied at runtime.

In this case, only assurances at runtime can be given. System engineers are

advised to perform analysis after a system crash or hazardous event occurred,

e.g. based on logging data. Each arising event of the system is eventually

logged and documented by the system. In case of a system crash (or other

types of events), the logged data can be analysed A-Posteriori to investigate

the source of the event. This trial-and-error approach incrementally improves

the system quality.

252

8.2. Classification Structure

8.1.4. Non-Analysability

Non-analysability means that no assurances can be given at all. Non-analys-

ability is the worst possible class a system and its environment can be classi-

fied into.

Definition 34 (Non-Analysability). An AI-enabled system and its operating
environment are said to be non-analysable if they are at least non-a-posteriori
analysable. That is, no assurances regarding system property Φ𝑆𝑦𝑠 can be given.

The simulation of systems is a common practice in engineering disciplines

before realising the system physically. Simulation is essential to analyse

the impact of design decisions regarding various quality attributes of inter-

est. The capability of analysing the properties of a system before physically

realising it constitutes the central characteristic of traditional engineering.

However, if systems cannot be analysed such that no predictions or state-

ments can be made about certain properties, engineers refuse to realise the

system. This is mainly because, in traditional engineering, the consequences

of system damage usually have an enormous impact on safety or may cause

high financial damage. As soon as the properties can not be guaranteed, the

system is not engineered.

8.2. Classification Structure

In this section, we present the classification structure that allows classifying

systems into one of the dependability assurance classes. Therefore, we

first present the distinct classification dimensions and give an overview

of the classification structure afterwards. In the end, we envision how to

use the classification structure and its dimensions as a blueprint to build

dependability cases, i.e. assurance cases for dependability-specific system-

level properties.

8.2.1. Classification Dimensions

In the following, we discuss four classification dimensions, namely Ab-
stractability, Approximation of the System Dynamics, Analytic Capacity and

253

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Fail-Safe. Especially, the analytic capacity refers to a dimension that we

explicitly elaborated to assess and classify the analytical potential of an AI

component and constitutes a significant part of the contribution presented

in this chapter.

We would like to emphasise again that we do not consider the dimensions

to be complete, but rather preliminary because they are highly subjective

and due to the far too few design-time approaches for AI-enabled systems to

assess the completeness and appropriateness of the classification structure.

Nevertheless, we consider it as (𝑖) a starting point for evaluating systems

and their environments, (𝑖𝑖) a guideline for software engineers and (𝑖𝑖𝑖) a
basis for building/structuring dependability cases. In addition, the classes

are subject to future work.

8.2.1.1. Abstractability

The first dimension refers to abstractability, i.e. the ability to find model

abstractions of the system 𝑀C and operating environment 𝑀E (and 𝑀Δ in

the case of self-adaptive systems) such that a system-level property Φ𝑆𝑦𝑠

is predicted with a sufficient degree of accuracy. Abstractability simply

requires that there exist models that capture the essential characteristics

of a system and its environment. For some systems, for instance, there

might be no suitable ADL that captures all the relevant details of the system

being analysed; or the operating environment is too complex to be modelled,

i.e. there are too many variables and relationships between variables to be

modelled with acceptable effort. Abstractability is to be considered as an

entry point that a system is analysable at design-time w.r.t. Φ𝑆𝑦𝑠 .

In general, it is difficult to objectively determine whether abstractability is

met, and there is also no universal metric that measures whether a system

and its environment are sufficiently abstracted for design-time analysis (this

applies to other dimensions as well). Nevertheless, we argue that depending

on the modelling languages and the respective analysis tools used, it can

be argued whether abstractability is sufficiently satisfied. We return to the

discussion in the section 8.2.3.

254

8.2. Classification Structure

8.2.1.2. Approximation of the System Dynamics

The second dimension is concerned with the approximation of the system

dynamics. Let us assume that a system and its environment can be accurately

abstracted to predict a system property Φ𝑆𝑦𝑠 . If abstractability is given,

we can determine whether Φ𝑆𝑦𝑠 is satisfied for a particular architectural

configuration of a system (i.e. 𝑀𝐶) w.r.t. some environmental state (i.e. 𝑀𝐸).

However, we still have to account for the dynamics of the system, i.e. how

the system moves through the state space.

Therefore, we consider a software system as a stochastic process. In the case

of self-adaptive systems, for example, this stochastic process is described

by an MDP (see section 4.3.1). But also for static systems, one can consider

Markov chains to describe the dynamics (where only the environment proba-

bilistically evolves while the system configuration always remains the same).

The system dynamics describe now how a system is potentially evolving

through the state space. To analyse whether Φ𝑆𝑦𝑠 is sufficiently satisfied

by the system, one must simulate or sample the distinct trajectories which

embody the system dynamics.

We argue, however, that this is rather relevant for self-adaptive systems.

Although one might model static systems as (e.g.) Markov chains, sampling

trajectories from the Markovian is arguably superfluous because only the

environment is changing but not the system configuration. This means that

it is sufficient to check (e.g. in a brute force manner) whether Φ𝑆𝑦𝑠 is satisfied

for each environmental state, see for example [149]. In self-adaptive systems,

however, capturing the system dynamics accurately is paramount since the

dynamics are strongly influenced by the adaptation strategy. That is, the

way how self-adaptive systems move through the state space is dictated by

the adaptation strategy which adapts the system configuration in certain

environmental states. Thus, some states are visited with high probability

and others may never be. Moreover, since adaptation strategies must be

evaluated in terms of the uncertainty Parameter over time, the long-term
effects of adaptations manifest themselves exclusively in the trajectory space.

Therefore, the system dynamics must be adequately captured during the

evaluation of distinct strategies.

To further explain what we consider to be a good approximation of the system

dynamics, recall how we defined the system dynamics of a self-adaptive

system (i.e. by MDPs), which is primarily captured by the transition function

255

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

𝑋𝐴 𝑋 ′
𝐴

𝑋𝑆 𝑋 ′
𝑆

𝑡 𝑡 + 1

(a) The general MDP represented as

DBN.

𝑋Δ 𝑋 ′Δ

𝑋C 𝑋 ′C

𝑋E 𝑋 ′E

𝑡 𝑡 + 1

(b) The MDP of a self-adaptive system represented as

DBN.

Figure 8.4.: DBN representation of an MDP based on [160] (originally adopted from [190]).

𝑡S . Therefore, consider Figure 8.4 which depicts the system dynamics of

an MDP conventionally (i.e. Figure 8.4a) and the instantiated version for

self-adaptive systems (i.e. Figure 8.4b). Now, consider the equations (8.1)

and (8.2) which describe the system dynamics of Figure 8.4a and Figure 8.4b,

respectively.

𝑃 (𝑋 ′𝑆 , 𝑋 ′𝐴 |𝑋𝑆 , 𝑋𝐴) = 𝑃 (𝑋 ′𝑆 |𝑋𝑆 , 𝑋𝐴) · 𝑃 (𝑋 ′𝐴 |𝑋 ′𝑆) (8.1)

𝑃 (𝑋 ′S, 𝑋
′
Δ |𝑋S, 𝑋Δ) = 𝑃 (𝑋 ′C |𝑋C, 𝑋Δ) · 𝑃 (𝑋 ′E |𝑋C, 𝑋E)︸ ︷︷ ︸

𝑃 (𝑋 ′S |𝑋S ,𝑋Δ)=𝑡S

· 𝑃 (𝑋 ′Δ |𝑋 ′C, 𝑋
′
E)︸ ︷︷ ︸

𝑃 (𝑋 ′Δ |𝑋
′
S)=𝜋

(8.2)

It can be seen that 𝑃 (𝑋 ′
𝑆
, 𝑋 ′

𝐴
|𝑋𝑆 , 𝑋𝐴) describe the system dynamics of an MDP

which factorises into two products. The first product (i.e. 𝑃 (𝑋 ′
𝑆
|𝑋𝑆 , 𝑋𝐴)) refers

to the transition function 𝑡 ; the second distribution describes the policy 𝜋

(recall from section 2.4.2). When applied to self-adaptive systems (see equa-

tion (8.2)), the system dynamics factorise into three distributions. The first

two represent the transition function 𝑡S and the last reflects the adaptation

strategy (i.e. policy 𝜋). Because we evaluate adaptation strategies, 𝜋 is a

deterministic function which can be represented as probability distribution

by using the indicator function, i.e. 1𝜋 (𝑆)=𝛿 . Moreover, from theorem 4.3.1

on page 107 we know that the transition function factorises into two dis-

tributions, i.e. exactly those as shown in equation (8.2). Hereby, the first

distribution (i.e. 𝑃 (𝑋 ′C |𝑋C, 𝑋Δ)) is again represented by the indicator function
(see theorem 4.3.1). Thus, only the distribution 𝑃 (𝑋 ′E |𝑋C, 𝑋E) remains which

refers precisely to the interdependency of the system and its environment

256

8.2. Classification Structure

from section 4.3.2. The interdependency of the system and its environment

embodies what we understand under approximating the system dynamics.

When considering self-adaptive systems in the same way as we did in section

4, it is crucial to make accurate assumptions about the interplay between the

system and its environment because it (along with the adaptation strategy)

determines how a self-adaptive system evolves.

Although we have motivated the dimension "approximation of system dy-

namics" from the perspective of our consideration of system dynamics, the

bottom line is to find suitable assumptions or approximations of system

dynamics that are strongly correlated with the behaviour of the system and

its environment. How these assumptions or approximations are encoded is

dependent on the tool used for design-time analysis. Some approaches or

tools already have these implemented internally in a simulator (e.g. [54, 16]);

other approaches require these to be encoded manually (like our approach

or [38]). In any case, it is of utmost importance that the assumptions are

sufficiently accurate to be able to conduct a design-time analysis.

8.2.1.3. Analytic Capacity of AI-enabled Systems

In this section, we present the concept of the analytic capacity of AI-enabled

systems. While the abstractability and approximation of system dynamics

dimensions are mainly to determine whether an AI-enabled system can

be abstracted and simulated/analysed regarding system property Φ𝑆𝑦𝑠 at

design-time, the analytic capacity indicates the potential of analysing AI-

specific properties in general (i.e. at design-time or runtime). The analytic

capacity is spanned by three factors, namely the State Space Complexity,
Φ𝑏-Monitorability and Input-Output Monitorability.

For the analytic capacity, we consider the AI-specific property Φ𝑏 . In contrast

to system propertyΦ𝑆𝑦𝑠 , Φ𝑏 is purely related to AI-specific properties that, for

instance, allow conclusions to be drawn about the state of an AI component.

Thus, the properties Φ𝑆𝑦𝑠 and Φ𝑏 are distinct. However, we assume that

property Φ𝑆𝑦𝑠 depends on Φ𝑏 such that the capability of monitoring Φ𝑏

strongly impacts the way of observing or analysing Φ𝑆𝑦𝑠 . In terms of our

reliability prediction approach for AI-enabled systems, for example, the

capability of observing 𝜑1, . . . , 𝜑𝑁 is paramount to derive a sensitivity model

(capturing the predictive uncertainty) which is required to predict the system-

level property 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) (i.e. the system’s success probability).

257

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

State Space Complexity The first factor of the analytic capacity refers to the

state space complexity of the AI-enabled system. The state space complexity

refers to the various states of an AI-enabled system one must analyse to

determine whether Φ𝑏 applies or not. Intuitively, the larger the state space

the more states need to be checked to provide assurances. Moreover, large

state spaces indicate that there are potentially more malicious states or corner

cases leading to erroneous behaviour.

As discussed in section 4.4.1, the state space complexity of static systems

refers to the design space. When using static systems instead of self-adaptive,

it is assumed that there exists at least one system configuration which sat-

isfies the quality requirements sufficiently. In this case, software engineers

have to explore the design space to identify the best possible configuration,

e.g. by applying optimisation techniques such as [106]. When developing

self-adaptive systems, however, exploring the design space is not sufficient

because an adaptation strategy is to be engineered. The temporal aspect of

self-adaptive systems induces the trajectory space, i.e. the number of individ-

ual trajectories a self-adaptive system might encounter. Thus, the adaption

strategy must be engineered in a sense that the strategy selects only "good"

trajectories, i.e. the sequences of states in which the quality requirements or

objectives are met. Intuitively, one would associate static software systems

with low state space complexity and self-adaptive system with high state

space complexity. However, this may not be the case in general, nor is there

any guarantee for this intuition.

Therefore, we distinguish three cases when determining the complexity

of state spaces, namely Φ𝑏-explorable, Φ𝑏-sufficiently explorable and non-

explorable. State spaces that are considered to be Φ𝑏-explorable are either

fully explorable (i.e. it is possible at design-time to check each state) or

statistically sufficiently explorable (i.e. not all states can be visited but the

portion of visited states is sufficient to make statements about Φ𝑆𝑦𝑠 w.r.t. Φ𝑏).

A system is said to be Φ𝑏-sufficiently explorable if a large portion of the state

space can be explored, i.e. a sufficiently large partition of the state space can

be analysed to reason about Φ𝑏 . Finally, non-explorable refers to state spaces

that are neither Φ𝑏-explorable nor Φ𝑏-sufficiently explorable. We will see

examples of all three variants in section 8.3.

Φ𝑏 -Monitorability The second factor relates to Φ𝑏-monitorability which

defines the extent to which an AI-specific property Φ𝑏 of an AI component

258

8.2. Classification Structure

is monitorable. More specifically, we consider four types of monitorability of

an AI component w.r.t. Φ𝑏 , namely Verifiability, Fully Monitorability, Partially
Monitorability and Non-Monitorability.

The first type refers to AI components where one can prove that Φ𝑏 holds:

Definition 35 (Verifiability). An AI component is said to be verifiable w.r.t.
Φ𝑏 if it is possible to prove with a justifiable effort that Φ𝑏 is always satisfied.

Clearly, verifiability of AI components is rather hard to observe in practice

for AI components which have a certain level of complexity. However, for

very simple AI components with small input spaces, it might be possible to

prove (e.g.) in a brute-force manner that the AI component always produces

the correct output for any input. Note that we deliberately do not further

specify the term “justifiable” because it depends heavily on various factors,

such as experience (how experienced is the developer?), time (how much

time does the verification process take?), computational power (how much

computational resources are needed?), complexity (how complex is the AI

component?), etc.

The next type of monitorability, namely fully monitorability, relaxes this

hard requirement that Φ𝑏 can be proven:

Definition 36 (Fully Monitorability). An AI component is said to be fully
monitorable if there exists a decision procedure which decides in a reasonable
time whether the components’ current behaviour satisfies Φ𝑏 or not.

Instead of proving that an AI component satisfies Φ𝑏 , fully monitorability

relates to situations where a monitor component can be constructed that

determines whetherΦ𝑏 is satisfied or not at any point in time. This relaxes the

assumption regarding the existence of proof that either shows the correctness

or incorrectness of an AI component working properly. Additionally, in

practice, it is more likely that one can construct a monitor instead of finding

proof. The performance of the decision procedure, however, is crucial. For

example, if there is a decision procedure that determines whether Φ𝑏 is

satisfied or not, but takes too much time to reach that conclusion, the decision

procedure is not applicable. This refers to what we mean by “reasonable

time”. Again, “reasonable time” is intentionally not specified further because

it depends strongly on the context of the application.

259

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Technically, the performance of a decision procedure depends on particular

factors, e.g. for some input data it might take more time to check whether the

AI component satisfies Φ𝑏 . In this case, for a subset of states, the procedure

might reach a verdict. Furthermore, it is known from the field of “explainable

AI” that for some AI components only local explainers can be constructed

that generate explanations for a subset of the input space. That is, we are

only able to check for a subset of states whether Φ𝑏 is satisfied. Partially

monitorability accounts for such situations and relaxes the requirements

made for fully monitorable AI components.

Definition 37 (Partially Monitorability). An AI component is said to be
partially monitorable if there exists a decision procedure which decides in a
reasonable time whether the component’s current behaviour satisfies Φ𝑏 or not
or reaches an inconclusive verdict.

Again, we assume that a verdict is reached for a sufficiently large percentage

of states

Finally, the last type of monitorability refers to non-monitorability:

Definition 38 (Non-Monitorability). An AI component is said to be non-
monitorable if it is neither partially monitorable nor verifiable.

Non-monitorability represents the worst-case scenario because no statements

can be made w.r.t. Φ𝑏 .

Just as for the classes of architectural dependability assurance, the moni-

torability types establish a total order where the most favourable type refers

to verifiability and the worst to non-monitorability. Fully monitorability

is more advantageous than partially monitorability but not as desirable as

verifiability.

Input-Output Monitorability The third factor of the analytic capacity is

called input-output monitorability. Input-output monitorability comple-

ments Φ𝑏-Monitorability in that it determines whether the properties Φ𝑏

can be derived by solely analysing the input data or by considering the pro-

duced output of the AI black-box 𝑏. An example of input monitorability

is, for instance, variational inference [26] where it is determined if a new

260

8.2. Classification Structure

State Space
Complexity

Input-Output

Monitorability
 -Monitorability

Proof
Fully

Partially
None

None

Input

Output

non-explorable

-explorable

-sufficiently
explorable

Figure 8.5.: Overview of the analytic capacity with schematically drawn regions indicating

distinct analysis potentials.

input data was produced by the same data generation process as the train-

ing data. An example of output monitorability is, e.g., the use of outcome

explainers [76] which generate explanations for produced outputs that can

be checked against some formal constraints. Hereby, input monitorability

is more favourable because it enables the detection of malicious input data

before being forwarded to the AI component. That is, in case of detection,

appropriate countermeasures can be taken proactively.

Characteristics of the Analytic Capacity After we presented the several

factors of the analytic capacity, we now discuss its main characteristics,

i.e. the manifestation of the analytic capacity for AI-enabled systems that

indicate distinct analytical potentials. Therefore, consider Figure 8.5 which

depicts the analytic capacity spanned by its three factors as a radar chart.

Depending on how the different factors manifest themselves, the analytic

capacity of an AI component takes different forms. However, to provide

a better intuition, we schematically draw regions Figure 8.5 to highlight

different analytical potentials.

261

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

We extend input-outputmonitorability to include the categorical value “none”.

In addition, we have ordered the values of the individual factors (which

together span the three-dimensional analytic capacity) according to their nat-

ural order, with the most desirable values (e.g. verifiability or Φ𝑏-explorable)

being close to the origin of the radar chart. Therefore, AI components whose

analytical capacity spans small regions around the origin are assumed to have

a high analytical capacity, e.g. the green region of Figure 8.5. Consequently,

AI components that occupy a large area are considered to have a low analytic

capacity, e.g. the red region depicted on Figure 8.5.

For example, AI components with high analytic capacity are considered to

be at least fully monitorable in terms of Φ𝑏-monitorability. In addition, the

AI component must at least be output-monitorable, i.e. one can determine

whether the AI component exhibits erroneous execution at the latest when

looking at the outputs. AI-enabled systems that are partially monitorable

and at least output-monitorable (e.g. the yellow and blue region of Figure 8.5)

exhibit a rather medium-like analytic capacity. AI-enabled systems with low

analytic capacity (e.g. the red area of Figure 8.5) are non-monitorable and

thus neither input- nor output-monitorable.

Finally, it should be noted that some factors are more relevant to design-time

analysis; others are more interesting at runtime. The factors of state space

complexity and Φ𝑏-monitorability, for instance, strongly influence the extent

to which an AI-enabled system is analysable at design-time. Intuitively,

systems that have small state spaces and are (say) fully monitorable are

potentially well suited for design-time analysis. On the contrary, at runtime,

the factors of Φ𝑏-monitorability and input-output monitorability are more

important. To make assurances at runtime, one must verify that Φ𝑏 (or Φ𝑆𝑦𝑠 ,

which depends on Φ𝑏) is satisfied. In this case, it does not matter if we

encounter large state spaces, because we only need to check the current

system state in terms of Φ𝑏 . That is, we are more interested in having a high

Φ𝑏-monitorability and preferably input-monitorability to act proactively.

8.2.1.4. Fail-Safe

The last dimension concerns whether there is a fail-safe mode the system

can transition to. Intuitively, the ability to enter the fail-safe mode neither

contributes to nor has any direct analytical implications on whether one

can analyse system property Φ𝑆𝑦𝑠 . Nonetheless, we consider it as the last

262

8.2. Classification Structure

dimension which supports software engineers in the classification process.

Especially in domains where it is not possible to give reliable assurances

about system properties, the availability of a fail-safe mode is always a

last resort when situations occur for which no assurances can be given or

where it is difficult to predict whether the system might crash or malfunction

severely. Therefore, the presence of a fail-safe mode can possibly influence

the classification of the system. We will see in section 8.2.2 that the capability

to transition to a fail-safe mode affects the decision process regarding the

classification of a system to a-posteriori analysability or non-analysability.

8.2.2. Overview of the Classification Structure

After examining the different classes and classification dimensions in the

previous section, we now introduce the classification structure to categorise

AI-enabled systems. To simplify the structure, we introduce the follow-

ing convention regarding the analytic capacity: With Φ𝑏-analysable, we

refer to AI-enabled systems that are at least partially monitorable, at least

output-monitorable and the state space is at least Φ𝑏-sufficiently explorable.

Note that all criteria must apply to consider an AI-enabled system to be

Φ𝑏-analysable. For example, a system which is fully monitorable, output-

monitorable and Φ𝑏-explorable is Φ𝑏-analysable. In contrast, a system which

is fully monitorable, output-monitorable but the state space is non-explorable,

is not Φ𝑏-analysable.

Consider Figure 8.6 which depicts the classification structure. The entry

point of the classification structure is the analytic capacity. More specifically,

for an AI-enabled system, it must be determined whether it is Φ𝑏-analysable.

Recall that assurances about a system-level property Φ𝑆𝑦𝑠 can only be made

whenever any statements about the fulfilment of Φ𝑏 can be given. Thus, an

AI-enabled system must be at least Φ𝑏-analysable. In this case, one is at least

able to make statements about Φ𝑏 for a percentage-sufficient subset of the

state space. We now follow the branch in which this is not the case (i.e. the

AI system or Φ𝑏 is not Φ𝑏-analysable) and later return to the part where the

AI system is Φ𝑏-analysable.

If an AI system is not Φ𝑏-analysable, no assurances at design-time can be

given; that is, the system cannot be classified into static or monitor analysabil-

ity. Instead, the Φ𝑏-monitorability is queried. If the analytic capacity of the

263

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

 -analysable?Abstract-
ability?

 System
dynamics?

 -monitor-
ability

 -monitor-
ability?

Fail-safe?

A-posteriori
Analysability

Static
Analysability

Monitor
Analysability

Non-
Analysability

yes

yes

yes

no

no

no

proof

none

partially
fully,

partially

State space
complexity

proof, fully

-sufficiently
explorable

-explorable

noyes

Figure 8.6.: Overview of the classification structure.

AI-enabled system is non-monitorability, the system is classified to be non-

analysable because no statement can be given about Φ𝑏 and thus Φ𝑆𝑦𝑠 . If

the Φ𝑏-monitorability of the analytic capacity is verifiable, the system is

a-posteriori analysable because we can prove that Φ𝑏 holds. Only if the AI

component is either partially or fully monitorable, the presence of a fail-safe

mode is crucial. If so, one can transition to fail-safe if either Φ𝑏 is not satisfied

or there is an inconclusive verdict. Therefore, if the fail-safe mode is available

or the system is not safety-critical, the system is classified into a-posteriori

analysability. Otherwise, the system is considered to be non-analysable.

As already mentioned in section 8.2.1.4, the presence of a fail-safe mode

is analytical of no relevance (therefore only marked with dashed lines in

Figure 8.6) but crucially affects the classification process regarding the classes

a-posteriori analysability and non-analysability. It may seem contradictory

that a fully monitorable system can be classified as non-analysable. However,

it should be remembered that with full monitorability, although it is possible

264

8.2. Classification Structure

to determine whether Φ𝑏 is satisfied for any state, there are still possible cases

where Φ𝑏 may not be satisfied. For safety-critical systems, it is paramount to

transition to fail-safe in such cases; otherwise, there is no way to fail safely.

Now let us return to the case where the analytic capacity is Φ𝑏-analysable.

At this point, the next question that arises is that of abstractability: Are

there models that abstract the system, environment and adaptations (in

the case of self-adaptive systems) in such a way that we can accurately

predict Φ𝑆𝑦𝑠? (Note that at this point Φ𝑏-analysability already ensures that

Φ𝑏 can be checked to some extent which is required to reason about Φ𝑆𝑦𝑠). If

so, we can move on to the next dimension. Otherwise, the system cannot

be classified into static or monitor analysability but rather in one of the

remaining classes.

If abstractability is given, it must be determinedwhether the system dynamics

are sufficiently approximated as it arguably makes no sense to analyse states

that (w.r.t. the system dynamics) are never visited (see section 8.2.1.2). If the

system dynamics are not accurately approximated, it is not possible to make

assurances at design-time.

Finally, if also the system dynamics are sufficiently approximated, it is gener-

ally possible to make assurances at design-time. At this point, if the system

is partially monitorable in terms of Φ𝑏-monitorability, it can be directly clas-

sified into monitor analysability. If the system is either verifiable or fully

monitorable, the state space complexity determines whether the system is

statically analysable or monitor analysable. More specifically, in terms of

Φ𝑏-explorable state spaces, we consider the system to be statically analysable

because we can explore each state and check whether system-level property

Φ𝑆𝑦𝑠 is satisfied (w.r.t. Φ𝑏). In terms of state spaces that are Φ𝑏-sufficiently

explorable, there are still small regions within the state space for which the

fulfilment of Φ𝑆𝑦𝑠 cannot be checked. For these small regions, we do not

know whether Φ𝑆𝑦𝑠 is satisfied. Thus, systems are classified into monitor

analysability. It is important to note that not knowing whether Φ𝑆𝑦𝑠 is satis-

fied is not directly associated with the inability of monitoring Φ𝑏 in some

states (as for partial monitorability) but could also be a result of lacking

exploration capabilities of the entire state space, i.e. the state space could be

reduced to small regions in which no assurance can be made regarding Φ𝑆𝑦𝑠 .

However, if the system is either partially monitorable and Φ𝑏-sufficiently

explorable, it must be ensured that the portion of the explorable state space

265

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

is sufficient w.r.t. the portion of states for which statements regarding Φ𝑏

can be made.

It may seem unusual that for the branch where an AI system is not Φ𝑏-

analysability, the availability of fail-safe mode is explicitly checked, but not

if we already know that we can classify into static or monitor analysability,

i.e. for the Φ𝑏-analysability branch. However, in case of static or monitor

analysability we can make assurances at design-time; that is, we can de-

termine for which states Φ𝑆𝑦𝑠 is not satisfied. Moreover, we can evaluate

countermeasures to deal with such states. This is in contrast to the remaining

classes, as the knowledge gained at design-time is completely missing and

one has to rely exclusively on the mechanism used at runtime.

8.2.3. Deriving Dependability Assurance Cases

After we introduced the classification structure with its distinct dimensions,

we now envision or outline how the classification structure can be used to

generate dependability assurance cases. Generally, assurance cases (such as

safety assurance cases) are structured by common notations, such as the Goal
Structuring Notation (GSN) [68] or Claims-Argument-Evidence notation [27].

In this section, we discuss how dependability assurance cases can be derived

after a system and its environment have been classified according to our

classification structure. We also outline what such a dependability assurance

case might look like, using GSN as a prevalent notation for assurance cases.

As we have seen in section 8.2.2 the classification structure and its dimen-

sions exhibit a high degree of abstraction. This is mainly because we aim to

classify as many AI-enabled systems as possible, each of which has its partic-

ularities. Consequently, the dimensions are difficult to assess objectively; for

example, the dimensions abstractability, approximation of system dynamics

or Φ𝑏-analysability (or the analytic capacity in general) are arguably difficult

to assess in terms of their fulfilment. Moreover, there are probably no univer-

sal metrics that allow determining whether the dimensions are sufficiently

satisfied (as it is also a domain-specific matter). Instead, software engineers

need to find (domain-specific) evidence which provides adequate justification.

However, in developing assurance cases, claims are made about the system

(e.g. properties that the system exhibits or countermeasures implemented to

mitigate hazardous behaviour) that are substantiated by evidence. Thus, the

266

8.2. Classification Structure

G1
The system

satisfies

G2 G3 G4

G5 G6 G7

S1 S2

Id
goal statement

Id
solution

statement

Id
strategy

statement

Legend:

Sn1

A goal or claim made about the
system

A solution which provides ref-
erence to an evidence item

A strategy that describes the infe-
rence between a goal and its
supporting subgoals

"Supported by"-relationship

 is monitored

at runtime Transition to fail-safe

Argument by static
analysability

Argument by a-
posteriori analysability

Approximation of

system dynamics Abstractability Analytic capacity

(or -analysability)

Evidence for
approximation

Sn2 Sn3
Evidence for
abstractability

Evidence for

 -analysability

The system is analysed
statically w.r.t.

Figure 8.7.: Illustration of a dependability assurance case based on the goal structuring notation

[68].

question arises whether one can derive a dependability assurance case based

on the arguments and evidence gained during the classification process.

In the following, we illustrate how our classification structure can be used

as guidance or a blueprint to generate dependability assurance cases. For

this purpose, we consider GSN as a notation to structure the assurance case.

Figure 8.7 illustrates a simplified GSN-based example of the dependability

assurance case of an AI-enabled system which we assume to be statically

analysable. In principle, a GSN is a directed acyclic graph that consists of

Goals (i.e. top-level claims made about the system), Sub-goals (i.e. claims that

together refine a top-level claim) and Solutions (i.e. the evidence that support
the made claims). Moreover, a Strategy is a multi-argument approach to

support a top-level goal (or claim). In our case, we have created a GSN-based

assurance case where the top-level goal is to satisfy the system property Φ𝑆𝑦𝑠 .

For example, a system-level property could comprise the success probability

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) (e.g. 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) > 𝜖 ∈ [0, 1]) that the system must satisfy.

The top-level goal G1 is supported by three sub-goals. Note that the "sup-

ported by" relationship implies that all sub-objectives are supported by a

267

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

sufficient amount of evidence, and does not mean that only a subset of sub-

objectives must be assured. The first sub-goal G2 claims that the system is

statically analysable (which results from the classification process). The argu-

ment strategy encompasses in this case the same line of reasoning as when

the AI-enabled system is classified as static analysability. That is, the strategy

is supported by three sub-goals (i.e. G5, G6 and G7), each of which claims

the fulfilment of the respective dimension that, taken as a whole, justifies

static analysability. Finally, each sub-goal is associated with the respective

evidence gathered during the classification process. Note that the sub-graph

starting at S1 could have been also replaced by a single solution denoted

“Reliability analysis”. However, when constructing the assurance case based

on the line of argumentation provided by the classification structure, the

assurance case becomes in its entirety more compelling and is substantiated

by a larger body of evidence.

Besides static analysability, we can support the top-level goal G1 by further

sub-goals. Therefore, recall that our dependability assurance classes form

a hierarchy. Because we assumed the system under consideration to be

statically analysable, we are also able to make assurances at runtime. If we

further assume the system to be fully monitorable in terms of Φ𝑏 , we apply

runtime monitoring to check whether Φ𝑏 is satisfied; this constitutes the

second sub-goal G3. Again we can reuse the same line of reasoning and

refer to the respective evidence that justifies a-posteriori analysability. The

dependability assurance case is completed by sub-goal G4 which claims that

the system can transition to fail-safe (assuming that there exists a fail-safe

mode).

In summary, the simplified dependability assurance case is derived for a

statically analysable AI-enabled system. The system-level property Φ𝑆𝑦𝑠 is

supported by the claim that the system is statically analysable at design-time

in terms of Φ𝑆𝑦𝑠 . Thus, software engineers can evaluate design decisions

such as architectural patterns (e.g. N-version programming pattern) that

address Φ𝑆𝑦𝑠 . Since there are still situations where Φ𝑆𝑦𝑠 is not satisfied,

runtime monitors (e.g. by using neuron activation pattern monitors [46] or

outcome explainers [76]) are employed to detect these states and transitions

to fail-safe if necessary. Finally, we would like to emphasise that the outlined

process serves only as an inspiration for how the classification structure

might be used to guide software engineers through the development process

of dependability assurance cases.

268

8.3. Classifying AI-enabled Systems

8.3. Classifying AI-enabled Systems

In this section, we apply our classification structure to AI-enabled systems

from the literature. However, the classification of an AI-enabled system w.r.t.

our classification structure is highly subjective. Thus, a comprehensive eval-

uation was not possible because it would require the knowledge of domain

experts to assess the individual classification dimensions. Therefore, we

focused on the applicability of our classification structure. More specifically,

we apply our classification structure to three representative domains where

AI have been commonly used, namely AI-supported assistance in automated

driving, human-robot-interaction systems and aircraft collision avoidance

systems. Hereby, we consider various system-level properties. Due to the

limited number of design-time approaches for analysing AI-enabled systems,

we apply our reliability prediction approach (if possible) for each considered

system and discuss how they are classified when considering 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈)
as additional system-level property. It is important to note here that the way

we apply the classification structure is only to show general applicability and

is based only on the information provided in the papers. We are no experts

in any of the domains discussed; that is, a domain expert might classify

the system differently based on domain-specific knowledge that we are not

aware of. As a starting point, however, we demonstrate the applicability of

our classification structure by classifying a representative set of AI-enabled

systems.

8.3.1. AI-supported Assistance in Automated Driving

In [93], a taxonomy for automated driving vehicles is presented, which

includes six levels of automation, ranging from level 0 (no automation of

driving) to (e.g.) level 2 (partial automation of driving) to level 5 (full au-

tomation of driving). At each level, AI can be used to assist during driving

(e.g. object detection in automatic braking systems). The higher the level,

the more challenging the learning task. Therefore, AI-enabled systems that

are categorised in higher levels of automation are likely to be classified as

lower-order dependability assurance classes. In the following, we discuss

two AI systems. The first system corresponds to an Automatic Emergency
Braking System (AEBS), which relies on AI-based object recognition to detect

vehicles ahead and actuates the brakes (if necessary) to avoid a collision. The

269

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Camera

Obstacle

Detection
 Controller

Brake

Acceleration

Distance
sensor

ActuationAEBS

Environment

Image,
distance measure

Braking,
acceleration

...

Figure 8.8.: Overview of the AEBS based on [54].

second system corresponds to a more advanced autonomous driving system,

i.e. perception systems.

8.3.1.1. Automatic Emergency Braking System

As a representative example for the discussion, we consider an AEBS pre-

sented in [54]. The AEBS comprises several components that are depicted

on Figure 8.8.

The first component of the Cyber-Physical System (CPS) refers to a controller

responsible for regulating acceleration and braking. For the regulation, the

controller makes use of the second component: the plant (vehicles subsystem

under control). Moreover, the controller component makes its decisions

based on a sensor (more precisely a camera) which is equipped with a DNN-

based obstacle detector. The AEBS and its operating environment form a

closed-loop control system. The controller component (which regulates the

braking and acceleration control signals) relies on the accuracy of the obstacle

detector. Thus, it is paramount to make assurances regarding safety-relevant

system properties.

270

8.3. Classifying AI-enabled Systems

Originally, Dreossi et al. presented in their work [54] a compositional falsi-

fication framework, where they identify counterexamples (by considering

misclassifications of the DNN) for which the AEBS exhibits erroneous exe-

cution. However, the classification structure is designed more to assess the

degree of dependability assurance for a system property of an AI system.

In the absence of other approaches to evaluating AI-enabled systems, we

nevertheless consider the falsification approach. As we will see later, this

approach provides the possibility of making assurances anyway.

After we classified the compositional falsification approach, we discuss how

our approach for reliability prediction can be applied to analyse the system-

level property 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈).

Compositional falsification of CPS with machine learning components In

the following, we apply our classification structure to the compositional

falsification approach of Dreossi et al. [54]. As a system-level property, it

is required that the AEBS avoids collisions, i.e. the system must maintain a

certain distance 𝑑𝑖𝑠𝑡 (𝑡) (relative to a certain distance limit 𝜏) from an obstacle

at any time 𝑡 : 𝑑𝑖𝑠𝑡 (𝑡) ≥ 𝜏 .

In summary, the approach presented by Dreossi et al. involves two main

analysis components (namely a CPS analyser and an ML analyser) which are

composed for the detection of counterexamples. The CPS analyser acts as

the primary component which checks whether the AEBS violates the system

property Φ𝑆𝑦𝑠 . Hereby, the input space of the AEBS is considered of three

variables, namely theDistance between the vehicle and the preceding obstacle,
the Velocity of the vehicle and the Input Images of the camera (forwarded to

the DNN for classification). The CPS analyser abstracts away the DNN 𝑏 by

considering two extremes: A perfect image classifier (i.e. producing always

the correct output; denoted as 𝑏+) and the worst possible image classifier

(i.e. producing always the wrong output; denoted as 𝑏−). Internally, the
CPS analyser is implemented by using a simulation model (in this case a

Simulink model) to simulate the AEBS and a verification tool (namely Breach

[53]) to falsify the Φ𝑆𝑦𝑠 at system-level. Hereby, system property Φ𝑆𝑦𝑠 is

falsified by considering two cases where the image classifier is either perfect

(i.e. 𝑏+) or operates poorly (i.e. 𝑏−). For both cases, the input space can

be partitioned into regions where Φ𝑆𝑦𝑠 is violated or satisfied. When the

partitioned input space of both cases is combined, the input space can be

reduced to an overlapping region where the fulfilment of Φ𝑆𝑦𝑠 solely depends

271

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

on the prediction correctness of 𝑏; this region is called Region of Uncertainty
(ROU). The task of the ML analyser is now to determine the images within

the ROU for which the DNN makes incorrect predictions and based on which

counterexamples are identified. The DNN of the AEBS inputs images which

requires analysis of the pixel space. However, the pixel space is too large to

be analysed; instead, the ML analyser makes use of feature space abstraction

in which the original DNN 𝑏 : X → Y is approximated by
˜𝑏 : 𝐴→ Y. The

approximated version
˜𝑏 acts on an abstraction (called abstract domain 𝐴) of

the original input space (or feature space) X. The abstraction is achieved by

focusing only on a constrained feature space
˜X ⊆ X restricted to the scenario

under investigation (in this case desert road scenarios with a single car on

the highway) and three dimensions along which the scene can be varied,

namely the lateral position of the car, the distance from the sensor position

of the vehicle, and the brightness of the image. Within the three dimensions,

the scene can be varied and analysed regarding misclassifications. More

specifically, the approximated classifier
˜𝑏 allows analysis of regions within

the abstract domain 𝐴 for which the original classifier 𝑏 potentially produces

misclassifications. These regions are used to identify counterexamples within

the ROU. To connect 𝐴 with X, a so-called abstraction function 𝛼 :
˜X → 𝐴

and concretization function 𝛾 : 𝐴 → ˜X are used. The exact details of the

ML analyzer would go beyond the scope of this section; thus, we refer to the

original work of Dreossi et al. [54] to look up the details of theML analyser. In

combination, the CPS and ML analyser allows determining counterexamples

for which the system-level property Φ𝑆𝑦𝑠 is violated.

The classification result is depicted on Table 8.1. In terms of the analytic

capacity, we consider the AEBS to be Φ𝑏-analysable. The AI-specific proper-

ties Φ𝑏 refer to input space regions for which the DNN potentially produces

misclassifications w.r.t. the distance and lateral position to the next obstacle

as well as the brightness of an image. Based on the factors, one can determine

(w.r.t. the approximated classifier
˜𝑏) whether 𝑏 is likely to produce wrong pre-

dictions. Assuming that all factors are derivable from the sensor inputs, the

AI component is fully monitorable regarding Φ𝑏 (i.e. lateral position, distance

and brightness). Moreover, from the information provided by the authors,

we consider the state space complexity to be Φ𝑏-sufficiently explorable. This

results mainly from the fact that the input space of the AEBS is already highly

reduced to the ROU. Although the ROU is unlikely to be fully explored in

terms of misclassifications gained by analysing
˜𝑏, the ROU can still be refined

based on identified misclassification clusters. So while a large part of the state

272

8.3. Classifying AI-enabled Systems

space has already been analysed as non-safety critical, other (much smaller)

parts are known to be potentially unsafe. For these regions, system-level

countermeasures or additional AI-specific monitors can be used to safeguard

the DNN image classifier. Based on the results provided by Dreossi et al., we

argue that the AEBS is Φ𝑏-sufficiently explorable. Moreover, due to the state

space analysis, Φ𝑏 is input monitorable, i.e. we could already determine the

critical subspaces of the state space.

Abstractability is given by using a Simulink model (for physical simula-

tion of the AEBS) and Breach [53] (a verification tool used to falsify Φ𝑆𝑦𝑠).

The concrete interplay between the Simulink model and Breach is not dis-

cussed; however, the authors pointed out that simulation-based verification

is well-studied in the literature. Therefore, we consider abstractability to be

sufficiently addressed (also taking into account the evaluation results of the

approach). The same applies to the approximation of the system dynamics

classification dimension. Since the simulation-based verification of CPS is

a well-researched field, we assume the system dynamics to be sufficiently

approximated. Moreover, the AEBS is a static software system for which the

approximation of the system dynamics is not as important as for self-adaptive

systems (see section 8.2.1.2).

Overall, we classify the AEBS into monitor analysability. This is mainly

because the system is only Φ𝑏-sufficiently explorable, i.e. there exist states

for which no conclusion can be made regarding system property Φ𝑆𝑦𝑠 .

Reliability prediction Now, we discuss how the AEBS is classified when

applying our approach to reliability prediction, i.e. we want to assure the

system’s probability of success as a system-level property. At this point,

we assume that the AEBS is modelled with PCM. However, the core of the

reliability prediction approach is the sensitivity model which represents the

AI component (or in this case the DNN for image classification). Originally,

Dreossi et al. discussed three factors in how an image or scene is varied,

namely brightness, distance and lateral position. Based on the factors mis-

classification ranges were determined. In our approach, we consider the

factors as sources of uncertainty that could force the AI component to make

incorrect predictions. Therefore, we view the sensitivity model with three

variables (one for each factor) and one variable capturing the failure/success

probability (i.e. the predictive uncertainty) of the AI component. Dreossi et al.

presented a scene generator in their compositional falsification framework

273

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable Approximation of 𝑏 and feature space ab-

straction.

State space complexity
Φ𝑏-sufficiently ex-

plorable

CPS input space and ML feature space ab-

straction; reduction of CPS input space to

ROU.

Input-output-monitor.
Input-monitorable Input space analysis of

˜𝑏.

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes CPS-analyser: Simulink model of the AEBS

and the verification tool Breach [53]. ML-

analyser: Approximation of 𝑏 by abstract

˜𝑏 : 𝐴→ Y.
≈ System dynamics

Conclusion Explanation
Yes Simulation-based verification of CPS is a

well-studied field. The software system is

static.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Monitor analysability

Table 8.1.: Classification result of the AEBS by considering the compositional falsification

approach of Dreossi et al. [54].

that concretises images based on samples of the abstract domain (i.e. images

with distinct image brightness, distance of the nearest vehicle and lateral

position). We argue that the generator can be used to produce a dataset from

which the sensitivity model can be derived (e.g. by considering one of the

sensitivity analysis approaches from section 7.1.2). Moreover, we assume a

discretisation of the value spaces for each factor. For example, image bright-

274

8.3. Classifying AI-enabled Systems

ness is discretised in categories (e.g. high, low, normal) or distance values

are discretised into intervals.

Based on these considerations, we can now apply our classification structure.

Therefore, consider Table 8.2 which summarises the classification results. We

consider the analytic capacity to beΦ𝑏-analysable. In this case, the AI-specific

property Φ𝑏 refers to the success/failure probability of the AI component w.r.t.

the aforementioned factors (i.e. brightness, distance and lateral position).

We described how the factors could be discretised into categorical values.

The Cartesian product spans the space to be explored. However, due to

the discretisation (and the fact that we form the Cartesian product of only

three variables), we argue that the space is Φ𝑏-explorable. Because brightness,

distance and lateral position are observable at runtime, we consider the AEBS

to be fully monitorable. In terms of input-output monitorability, the same

reasoning applies as for the compositional falsification approach, i.e. Φ𝑏 is

input-monitorable because we can observe brightness, distance and lateral

position and use the sensitivity model to check whether we might encounter

an unsafe state.

Abstractability is given under the assumption that the AEBS can be modelled

accurately with PCM and that we can generate a sensitivity model from

the DNN. In terms of approximating the system dynamics, we argue (again)

that since we analyse a static software system, the system dynamics are

negligible. More precisely, we analyse how the probability of success for a

given system configuration varies by considering different combinations of

the three factors. However, this is done in a brute-force manner that does

not take into account the temporal evolution of the system.

Overall, we conclude that the AEBS is statically analysable regarding system-

level property 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈).

8.3.1.2. Autonomous Driving

In this section, we move further up the taxonomy of automation and look

at the higher levels of automation for automated driving vehicles. More

specifically, we consider AI components that are part of the entire cognition

process of the automated vehicle. First, we classify an uncertainty estimation

method for software architecture of autonomous driving vehicles provided

by Serban, Poll and Visser [163] and our reliability approach afterwards.

275

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable Brightness, distance and lateral position are

observable.

State space complexity
Φ𝑏-explorable All uncertainty combinations can be iter-

ated.

Input-output-monitor.
Input-monitorable Due to sensitivity analysis.

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes PCM to abstract the software architecture.

Sensitivity model to abstract the DNN.

Markov chain transformation to predict

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈).
≈ System dynamics

Conclusion Explanation
Yes The software system is static.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Static analysability

Table 8.2.: Classification result of the AEBS by considering our reliability prediction approach.

Uncertainty estimation of software architectures for autonomous driving
vehicles Serban et al. [163] applied their uncertainty estimation method to

a perception system for scene understanding of an autonomously driving

system. The perception system comprises three components, namely object

detection (to identify the location of all obstacles in an image), semantic

segmentation (which associates each pixel in an image to a class) and depth

estimation (to determine the position of obstacles or the road surface). Each

component is implemented by using a dedicated DNN. The result of the

perception system is forwarded to a planning component for trajectory com-

putation. Consequently, the prediction accuracy highly affects the safety of

276

8.3. Classifying AI-enabled Systems

the system as incorrect/inaccurate predictions may lead to wrongly computed

trajectories.

We already discussed the approach in related work (see section 3.1.2.2). In a

nutshell, the approach annotates software components of an architecture (e.g.

provided by an architecture model) by the two ML-specific uncertainty types:

epistemic and stochastic (or aleatoric) uncertainty. Based on the annotated

components, a BN (Bayesian network) is generated in which the annotated

components as well as their annotated uncertainties are represented as nodes

(i.e. random variables). The graph structure of the BN describes a kind of

control flow along which uncertainty could be potentially propagated. The

probability distributions associated with each node (or random variable) of

the BN can be determined by a domain expert or simulation. In the case of

the perception system, the last node of the BN refers to the random variable

describing the planning component of the system (subsequently denoted as

𝑋𝑃𝑙𝑎𝑛) which is highly affected by the predictions of the individual DNNs.

Based on the structure and defined distributions of the BN, inference rules

of BNs are applied to reason about properties such as 𝑃𝑟 (𝑋𝑃𝑙𝑎𝑛 = ℎ𝑖𝑔ℎ),
ℎ𝑖𝑔ℎ ∈ 𝑉𝑎𝑙 (𝑋𝑃𝑙𝑎𝑛). Therefore, we consider 𝑃 (𝑋𝑃𝑙𝑎𝑛) as the system-level

property. Moreover, by using Bayesian inference rules, one can determine

how 𝑃𝑟 (𝑋𝑃𝑙𝑎𝑛 = ℎ𝑖𝑔ℎ) is affected when varying the uncertainty values of

components of the perception system.

Table 8.3 summarises our classification results. The AI-specific properties Φ𝑏

refer to the epistemic and aleatoric uncertainty of each AI component. Based

on the information provided by the authors, we could not reliably assess

whether themethods used to analyse the uncertainty types are also suitable to

be applied at runtime (predictions are assessedwhether they exhibit epistemic

or aleatoric uncertainty). To determine the class of Φ𝑏-monitorability, more

knowledge of the methods is required. For example, Phan et al. [139] describe

an approach where epistemic or aleatoric uncertainties are estimated as part

of the prediction. However, they focused on a specific class of DNNs (Bayesian

deep learning models) such that we cannot use the approach for runtime

estimation. Nonetheless, Serban et al. pointed out that for both uncertainty

types: “The methods used to measure them can be different, depending on

the ML algorithm employed” [163]. This suggests that there are several

methods, one can take into consideration when estimating the uncertainties.

Therefore, we assume that the properties are fully monitorable. Moreover,

if they are fully monitorable, they must be at least output-monitorable. In

their estimation approach, the authors showed how to apply inference rules

277

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable By assumption.

State space complexity
Φ𝑏-explorable Due to Bayesian inference rules.

Input-output-monitor.
Output-

monitorable

At least output-monitorable.

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes Software components and their connections

are abstracted by BNs.

≈ System dynamics
Conclusion Explanation

- Irrelevant.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Static analysability

Table 8.3.: Classification result of a perception system of a self-driving vehicle by considering

the uncertainty estimation approach of Serban et al. [163].

of BNs to check the fulfilment of system property 𝑃 (𝑋𝑃𝑙𝑎𝑛) when varying

the uncertainty values of components of the perception system. Since this

can be done with reasonable effort for all the different types of uncertainties

that the components of the perceptual system may encounter, we consider

the state space to be Φ𝑏-explorable. Thus, we evaluate the analytic capacity

to be Φ𝑏-analysable.

Abstractability is given in that BNs are used to model the software architec-

ture or component structure of the perception system. The approximation

of the system dynamics is not relevant as we are (again) assessing a static

software system; but most importantly, the uncertainty estimation method

is to be considered as an inter-component analysis that aims to assess how

uncertainty might propagate and does not incorporate system dynamics.

278

8.3. Classifying AI-enabled Systems

Overall, we classify the perceptual system as statically analysable w.r.t. as-

suring the system property 𝑃 (𝑋𝑝𝑙𝑎𝑛). However, it should be noted that

uncertainty estimation is highly dependent on how well the epistemic and

aleatoric uncertainty can be estimated from the AI components. Thus, it

is paramount that the estimation results are rigorously checked by domain

experts.

Reliability prediction In this section, we again apply our reliability predic-

tion approach to make assurances about the system-level property 𝑃 (𝑋𝑆𝑦𝑠 |
𝑋𝑈). However, we do not consider the perception system we classified earlier.

Instead, we consider a more advanced AI system whose capabilities go be-

yond mere perception and which also includes (partial) planning tasks. More

specifically, we consider an AI system that predicts the steering angles of a

self-driving car based on image data. Several variants of such systems are

presented by Tian et al. [186]. Since the steering angle prediction strongly

influences the movement of the vehicle, it is of paramount importance that

the AI components operate accurately. The reason we consider a different

system is to provide and discuss an example of a non-analysable system in

terms of Φ𝑆𝑦𝑠 (or 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈)).

Recall that the AI-specific property Φ𝑏 refers to the distribution 𝑃 (𝑋𝑏 |
𝑋𝜑1

, . . . , 𝑋𝜑𝑁
) which is conditioned on the uncertainty factors 𝜑1, . . . , 𝜑𝑁 .

Let us assume that the factors refer to events in the environment which

potentially affect the prediction result. However, the set of possible events

is potentially quite large and difficult to fully determine at design-time. In

[139, 186] alone, enumerates together 14 factors, namely brightness varia-

tion, changing contrast, translation, scaling, horizontal, shearing, rotation,

blurring, fog effect, rain effect, depth, occlusion, clouds, and puddles. Due to

the highly dynamic environment of autonomously driving cars, it is unlikely

that the list is complete. Even if we assume that each factor can be discretised

into binary values, we would encounter 2
14 = 16384 entries of the probability

mass function 𝑃 (𝑋𝑏 | 𝑋𝜑1
, . . . , 𝑋𝜑𝑁

). Apart from the fact that such a high-

dimensional probability distribution cannot be modelled manually, it is not

only difficult to estimate such a distribution (as a large data set is required to

build the sensitivity model) but also entails dimensionality issues (i.e. the

curse of dimensionality).

Our classification result is summarised in Table 8.4. Although the system

itself could be modelled by using PCM (i.e. abstractability and approximation

279

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Non-monitorable Due to dimensionality problems and the in-

ability to observe certain properties.

State space complexity
Φ𝑏-explorable By assumption.

Input-output-monitor.
None As a consequence of non-monitorability.

𝚽𝒃-analysable: No

Abstractability
Conclusion Explanation

- Irrelevant as Φ𝑏 is not Φ𝑏-analysable.

≈ System dynamics
Conclusion Explanation

- Irrelevant as Φ𝑏 is not Φ𝑏-analysable.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is non-monitorable.

Class: Non-analysability

Table 8.4.: Classification result of an AI-based steering angle prediction system of an au-

tonomously driving vehicle by considering our reliability prediction approach.

of system dynamics are possibly satisfied), the system is not Φ𝑏-analysable

which results mainly from the dimensionality problems discussed above.

However, the most important aspect is that most of the uncertainty fac-

tors 𝜑1, . . . , 𝜑𝑁 are not monitorable at runtime. For instance, how is one

able to measure properties like translation, scaling, shearing or rotation?

This is generally not possible such that we have to consider Φ𝑏 to be non-

monitorable. Moreover, non-monitorability directly classifies systems into

non-analysability.

Note that the example discussed is rather artificially constructed and is

unlikely to be encountered in practice. Nevertheless, it conveys an intuition

about systems that are non-analysable. Even if a system is non-analysable,

this simply means that no assurances can be made about the system-level

property under consideration. In this case, however, one can instead focus on

280

8.3. Classifying AI-enabled Systems

a set of system properties that are more eligible in terms of making assurances

and that, in combination, provide a strong assurance case. Furthermore,

non-analysability should not prevent software engineers from using testing

approaches such as [186].

Finally, as a last remark, the example reveals an interesting corner case. We

explained that the abstractability and approximation of the system dynamics

are not relevant because Φ𝑏 is not Φ𝑏-analysability. However, let us ignore

for a moment the dimension of analytical capacity and follow the path in

the classification structure when a system is Φ𝑏-analysable. As already

noted, the system could be modelled using PCM and the static nature allows

the neglect of the system dynamics. Even though there are a minimum of

2
14 = 16384 uncertainty combinations that need to be evaluated to determine

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈), this is still manageable or can be done efficiently with our

reliability prediction approach. Thus, we assume the state space complexity

Φ𝑏-explorable because we can at least statistically sufficiently infer 𝑃 (𝑋𝑆𝑦𝑠 |
𝑋𝑈). In summary, the system could be classified into static analysability but

is deemed to be non-analysable due to the inability to monitor 𝜑1, . . . , 𝜑𝑁 at

runtime. In the testing approach of Tian et al. [186], for example, synthetic

data is used to generate images that indicate exactly those uncertainty factors.

Thus, we can generate a dataset in which each generated image can be

labelled by the corresponding factor inserted in the image. However, this

allows us to determine the sensitivity model at design-time and also to

analyse the system regarding 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈) (ignoring the problems discussed

earlier). Therefore, it may seem unreasonable to classify a system into non-

analysablility even though assurances can be given at design-time. However,

we argue that a fully assured system requires assurances at design-time

and runtime; unless one can prove that Φ𝑆𝑦𝑠 is satisfied at design-time (e.g.

Julian and Kochenderfer [95]) or at runtime (e.g. Thumm and Althoff [185]).

One of the main advantages of static (or monitor) analysability is that it not

only allows us to design our system (e.g. by evaluating design decisions)

but also guides us during the design of the system. More specifically, if

we have a statically (or monitor) analysable system, we can determine the

set of potentially unsafe states. This knowledge gained should not only

be used to design the system accordingly but should also be reused when

monitoring the AI component. Having a system in a safety-critical context for

which assurances can be given merely at design-time (assuming the evidence

include no proof) but being incapable of making statements regarding Φ𝑆𝑦𝑠

and Φ𝑏 at runtime cannot be considered to be sufficiently assured.

281

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

8.3.2. Human-Robot-Interaction Systems

In this section, we classify two more systems, namely a robotic manipulation

system in human environments and the HRI system we described in section

1.5.3.

Robotic manipulation in human environments Nowwe classify an approach

for provably safe deep RL (reinforcement learning) for robotic manipulation

by Thumm and Althoff [185]. In their work, the authors describe a shielding

mechanism that ensures human safety during the manipulation task of an RL-

based controller. The considered scenario involves a modular robot with six

degrees of freedom which is mounted on a working table. Because a human

may work at the same table, it must be assured that the robot operates safely,

i.e. there must be no trajectories where the robot collides with the human.

Although not explicitly mentioned by the authors, we assume the state of the

robot to be represented by a vector. Each element of the vector corresponds

to an observation including the current joint position, velocity, episode goal,

Cartesian end-effector position and the relative Cartesian positions of the

human wrists and head.

In essence, the safety shield presented by the authors consists of two planners.

The first planner refers to a long-term planner acting on a low frequency;

the second planner refers to a fail-safe planner acting on a high frequency.

Roughly summarised, the idea is to use the long-term planner for computing

an Intermediate Trajectory in larger time steps Δ𝑇 (i.e. at lower frequency)

which is complemented by the fail-safe planner which calculates safe sub-

trajectories within smaller time steps Δ𝑡 (i.e. at higher frequency) with

Δ𝑡 < Δ𝑇 . Note that the original intermediate trajectory could be getting

unsafe whenever a dynamically moving object interferes with the computed

trajectory. Therefore, the fail-safe planner must verify potential collision

at high frequency. In principle, the approach works as follows: During the

execution of a trajectory between 𝑡𝑖 and 𝑡𝑖+1 (where Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖) a fail-safe
trajectory is computed starting from 𝑡 + 2. If there is no fail-safe trajectory

(as a result of the verification process), the fails-safe trajectory of 𝑡 + 1 is

executed. In addition, it is assumed that the robot starts in a safe state at 𝑡0.

Thus, by induction safety can be guaranteed for any time horizon.

Informally, we define the system-level property “The robot is guaranteed to

cause no collision”. Moreover, we consider as AI-specific property whether

282

8.3. Classifying AI-enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable Due to the fail-safe planner.

State space complexity
Non-explorable Continuous state and action space.

Input-output-monitor.
Input-monitorable Due to the fail-safe planner.

𝚽𝒃-analysable: No

Abstractability
Conclusion Explanation

- Irrelevant as Φ𝑏 is not Φ𝑏-analysable.

≈ System dynamics
Conclusion Explanation

- Irrelevant as Φ𝑏 is not Φ𝑏-analysable.

Fail-safe
Conclusion Explanation

Yes Due to the fail-safe planner. A full stop of

the robot is possible.

Class: A-posteriori analysability

Table 8.5.:Classification result of a robotic system formanipulation tasks in human environments

of Thumm and Althoff [185].

there exists an action for any time 𝑡𝑖 such that a fails-safe trajectory (starting

at 𝑡𝑖) can be constructed. The classification results are summarised in Table 8.5.

We consider the system to be not Φ𝑏-analysable because the state space

complexity is non-explorable. This is mainly because the state and action

space are both continuous spaces which makes it practically impossible to be

at least sufficiently explorable. Moreover, we consider input-monitorability

because it can be determined prior to 𝑡𝑖+1 whether the trajectory starting at

𝑡𝑖 is safe.

Finally, the fact that the system is fully monitorable and is guaranteed to

transition to fail-safe allows the classification into a-posteriori analysabil-

ity.

283

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Reliability prediction of HRI system In this section, we discuss the HRI

example system from section 1.5.3. Recall that in the HRI example system,

a robotic arm is considered which supports humans in the assembly tasks

of some parts. Since the robot implements an AI-based object detection

component, the safety of the human (with whom the robot collaborates)

highly depends on the detection accuracy. Incorrect detection (e.g. the hand

of the human worker) can lead to collisions and crushing injuries. However,

in this setting, it is known that variations in image brightness and sensor

noise may potentially lead to incorrect predictions. For the HRI system, the

system-level property Φ𝑆𝑦𝑠 refers to 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈); the AI-specific property
Φ𝑏 refers to 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵

, 𝑋𝜑𝑆𝑁
) where 𝜑𝐵 and 𝜑𝑆𝑁 describes the brightness

and sensor noise uncertainties.

Our classification result is summarised in Table 8.6. The result is fairly similar

to the classification result of the AEBS when considering our reliability

prediction approach. We analyse the HRI system as part of our validation

(albeit for self-adaptive systems); thus, more details about the reliability

prediction or used models can be found in section 9.4.2. The uncertainty

factors are fully observable in the environment. Moreover, they can be

discretised into finite sets of categorical values that are fully iterable (when

considering the Cartesian product). Again, the sensitivity analysis allows

for determining whether input images are potentially malicious. Thus, we

conclude that overall the system is Φ𝑏-analysable.

As we will see in section 9.4.2, the HRI system can be abstracted by using

PCM models; also, the AI component can be represented by estimating a

sensitivity model. The system dynamics are not relevant because we are

analysing a static system in which each uncertainty combination is visited

and analysed.

Therefore, we classify the HRI system in class static analysability. In sec-

tion 9.4.2, we evaluate self-adaptive systems that are used to safeguard the

AI-based object detection component of the HRI system. The results of the

evaluation indicate that each adaptation strategy converges towards a fixed

reward value. Thus, it can be concluded that the state space is sufficiently

explored. If we now assume that the system dynamics are accurately approx-

imated, the HRI system would also have been classified in static analysability

when self-adaptive systems are evaluated in terms of 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈).

284

8.3. Classifying AI-enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Fully monitorable Image brightness and sensor noise are ob-

servable.

State space complexity
Φ𝑏-explorable All uncertainty combinations can be iter-

ated.

Input-output-monitor.
Input-monitorable Due to sensitivity analysis.

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes PCM to abstract the software architecture.

Sensitivity model to abstract the DNN.

Markov chain transformation to predict

𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈).
≈ System dynamics

Conclusion Explanation
Yes The software system is static.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Static analysability

Table 8.6.: Classification result of the HRI example system by considering our reliability predic-

tion approach.

8.3.3. Aircraft Collision Avoidance Systems

In this section, we discuss the classification of a safety-guaranteeing approach

for DNN-based Aircraft Collision Avoidance System (ACAS) of Julian and

Kochenderfer [95]. In their work, the authors proved safety properties of

two kinds of collision avoidance systems, namely VerticalCAS which issues

vertical rate advisories to an aircraft to avoid Near Midair Collisions (NMACs)

with another aircraft and HorizontalCAS which issues turn rate advisories to

an aircraft to avoid NMACs. The collision avoidance problem is formulated

285

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

by using MDPs. A state is composed of several (physical) variables, e.g. in

VerticalCAS a state consists of five variables (three variables describing the
vertical encounter geometry, one variable capturing the horizontal geometry

and one variable representing the previous advisory). The transition function

𝑡 is constructed based on the dynamic model of aircraft. The action space

relates to the set of advisories the system can issue to the pilot. Based

on dynamic programming techniques, the policy 𝜋 can be computed which

maximises the accumulated reward over time (w.r.t. some reward function).

As a result, 𝜋 is represented by a large table of states to advisory mappings.

Due to storage constraints of certified avionics hardware, however, the table

violates the storage constraints and is not applicable. Thus, DNNs are used

to learn or approximate the table to compress the data and to meet storage

requirements [96, 97]. However, DNNs are highly complex, continuous and

non-linear functions for which it is difficult to predict whether the outputs

are correct or not (recall the black-box nature of DNNs). Moreover, Julian

and Kochenderfer [95] pointed out that pure simulation of the system is

not sufficient because it cannot be guaranteed whether the DNN performs

correctly in all possible states.

Guaranteeing safety for DNN-based ACASs To make safety guarantees of

the advisories produced by the DNN, Julian and Kochenderfer developed an

approach which makes use of DNN verification techniques (e.g. [99, 202]) and

a reachability analysis which verifies whether an NMAC is reachable. If it can

be shown that no advisory results in an NMAC, the system is guaranteed to be

safe (for more details we refer to the original work of Julian and Kochenderfer

[95]).

Informally, we define the system-level property Φ𝑆𝑦𝑠 : “The ACAS is guaran-

teed to cause no NMAC”. In summary, the reachability analysis can be divided

into two main procedures. The first procedure splits the state space (which

is the input space of the DNN) into smaller regions. By applying formal

verification techniques for DNNs (in this case, symbolic bound propagation

[201]), it is verified which advisoriesA𝑐 can be given within a region (or cell)

𝑐 . The AI-specific property Φ𝑏 thus refers to an input-output property, where

output bounds are proved for a given input range. The second procedure

starts to identify those regions or cells 𝑐 representing the states that could

occur before the DNN-based ACAS takes action. Afterwards, the system

makes use of the system dynamics to compute the next state regions, i.e. the

286

8.3. Classifying AI-enabled Systems

regions of the state space at time 𝑡 + 1 one would observe when following

the advisories and system dynamics given the previous regions at time 𝑡 .

Because the state space (or input space) has been already split into regions

A𝑐 for which some advisories are proven, the next advisories of the regions

computed at 𝑡 + 1 are determined. This procedure is repeated until either an

NMAC cell is reached or it converges to a set of reachable regions with no

NMAC. If no NMAC cell is reached, the ACAS is guaranteed to be safe.

The classification of the DNN-based ACAS is shown in Table 8.7. We consider

the analytic capacity of the discussed ACAS to be Φ𝑏-analysable. More

specifically, the Φ𝑏-monitorability is given by a proof, i.e. the input space is

partitioned into a set of regions A𝑐 for which it can be proven that the DNN

produces a certain set of advisories by using symbolic bound propagation

[201]. Moreover, we consider the state space to be Φ𝑏-explorable because all

relevant states are verified in terms of Φ𝑏 (or rather A𝑐) by exploring the

state space w.r.t. the system dynamics. In this case, it is not relevant whether

the AI component is input or output monitorable since we can prove the

ACAS to operate safely.

In terms of abstractability, we consider the ACAS to be sufficiently abstracted.

More specifically, the system is represented as an MDP where the state space

is spanned by several (physical) variables. In addition, the transition function

is based on the well-researched physical dynamics of an aircraft. Because

the transition function represents the dynamics of the system, we consider

the system dynamics to be accurately approximated (again, due to the well-

known aerodynamic properties of an aircraft). In conclusion, the DNN-based

ACAS is classified into static analysability.

Reliability prediction In this part of the section, we would now apply our

reliability prediction approach. However, our approach is barely applicable to

ACAS for two reasons: First, since the safe operation has been already proven

there is no need to apply a reliability analysis. Secondly, the environmental

dynamics of an ACAS are rather low for aircraft; that is, there are fewer

environmental variables or uncertainties that could force the AI component

to make wrong predictions (in contrast to, e.g., self-driving cars). Julian

and Kochenderfer pointed out that pilot delays (to respond to advisories) or

sensor errors are potential sources of uncertainty; however, the reachability

analysis can be expanded to account for both uncertainties. Therefore, we

do not discuss our reliability prediction approach.

287

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Analytic Capacity
𝚽𝒃-monitorability Explanation

Verifiable Proof by input space partitioningA𝑐 (using

neural network verification tools like [99,

202]).

State space complexity
Φ𝑏-explorable All safety-critical states are verified by the

reachability analysis.

Input-output-monitor.
- Irrelevant due to verifiability of Φ𝑏 .

𝚽𝒃-analysable: Yes

Abstractability
Conclusion Explanation

Yes MDPs are used to represent the logic of col-

lision avoidance systems. Transition func-

tion 𝑡 is constructed according to the well-

known physics of an aircraft.

≈ System dynamics
Conclusion Explanation

Yes Known from the physical dynamics of an

aircraft.

Fail-safe
Conclusion Explanation

- Irrelevant as Φ𝑏 is Φ𝑏-analysable.

Class: Static analysability

Table 8.7.:Classification result of an aircraft collision avoidance system by considering the safety

guaranteeing approach of Julian and Kochenderfer [95].

8.3.4. Discussion

After applying our classification structure to several AI-enabled systems, we

now discuss the results. We could show that the classification structure could

be applied to each system. Thus, we conclude the general applicability of

the classification structure and architectural dependability assurance classes.

Although we considered only a limited number of AI-enabled systems, we

288

8.3. Classifying AI-enabled Systems

chose very generic and representative AI-enabled systems from different

domains. Since we are no experts, it is debatable whether some classification

decisions can be made as we have done. However, even if different decisions

were made for some classification dimensions, we have not encountered

situations where the dimensions were neither appropriate nor applicable.

Therefore, we conclude that the classification structure and its dimensions

are applicable.

We now discuss research questionRQ4 and its sub-questions. As our depend-
ability assurance classes and dimensions are to be regarded as preliminary

and still subject to research, it is not possible to answer the research ques-

tion comprehensibly. Therefore, we can only give preliminary answers. To

improve readability, we recap the individual research questions.

Research Question 4: How to assess the extent to which depend-

ability assurances can be given for an AI-enabled system?

However, before answering the research question, we must first answer the

sub-research questions. Therefore, recall research question RQ4.1:

Research Question 4.1: What are appropriate classes of architec-

tural dependability assurances?

We addressed the research question by our four classes of architectural de-

pendability assurance: Static analysability, monitor analysability, a-posteriori

analysability and non-analysability. The most favourable classes are static

and monitor analysability because they allow assurances to be given at

design-time. A-posteriori analysability involves only runtime assurances

while for non-analysable systems no assurances can be given. The assurances

are always associated with a particular system-level property, e.g. the system

success probability or the ability to avoid collision with another object at

any time. This means, however, that the system is always classified w.r.t. to

the system-level property. In the 8.3 section, we could assign all the systems

to one of the classes. Therefore, we could demonstrate the applicability of

the classes.

Recall research question RQ4.2 which asks for suitable classification dimen-

sions:

289

8. Classes of Architectural Dependability Assurance for AI-Enabled Systems

Research Question 4.2: What are the suitable dimensions for

classification?

We identified four classification dimensions consisting of the analytic ca-

pacity (which itself is defined by three dimensions: state space complexity,

Φ𝑏-monitorability and input-output-monitorability), abstractability, approx-

imation of the system dynamics and fail-safe. Based on the classification

dimensions, we have developed a classification structure that makes it possi-

ble to assign a particular system and its environment to one of our classes.

In section 8.3, we were able to classify each AI-enabled system w.r.t. the di-

mensions. Due to the limited number of systems that we classified, it cannot

be said for certain whether the dimensions are complete or whether they

must be refined to some extent. However, in 8.3 section, we demonstrated

that they form a solid foundation, but need to be researched further.

Considering RQ4.1 and RQ4.2 together, we conclude that we addressed the

research question with our architectural dependability assurance classes and

dimensions. The dimensions and classification structure classifies systems

and their environments (w.r.t. Φ𝑆𝑦𝑠) into one of the classes. Nevertheless,

research question RQ4 cannot be fully answered due to the restricted dis-

cussion of the classification structure. To have a more informed discussion,

we would have to interview experts for each area. However, this involves

a great deal of effort, which was no longer feasible within the scope of this

work, but is the subject of future work. However, the classification of AI-

enabled systems in section 8.3 has demonstrated general applicability and

strongly suggests that the classification structure and classes already provide

a solid foundation. Furthermore, we argue that our classes and classification

structure provide software engineers with guidelines to judge at what level

assurances can be given for a system-level property and whether the system-

level property needs to be refined and broken down into more analytically

amenable properties. Especially for the last point, our class and classification

structure supports software engineers to identify system properties that are

difficult to assure as such. For example, we argue that an AI system which is

classified into a lower-ordered class (e.g., non-analysability) is symptomatic

of a poorly defined and hard-to-assure system property. In such cases, it

is arguably more advisable to split the original system property into multi-

ple (and analytically more amenable) properties that can be classified into

higher-order classes.

290

8.4. Summary

8.4. Summary

In this chapter, we introduced four classes of architectural dependability

assurance, namely static analysability, monitor analysability, a-posteriori

analysability and non-analysability. Each class is associated with different

dependability assurances one can make regarding a particular system-level

property. AI-enabled systems and the environments (in which they operate)

can be classified into one of the classes that indicate the extent to which

assurances can be made. Moreover, we discussed a classification structure

consisting of several classification dimensions, namely abstractability, ap-

proximation of system dynamics, analytic capacity and fail-safe. Based on

the dimensions, we discussed how to classify AI-enabled systems. After-

wards, we envisioned how the classification structure can be used to build

dependability assurance cases. Finally, we applied the classification struc-

ture to representative and well-known examples of AI-enabled systems and

discussed its applicability.

291

Part V.

Validation

9. Validation

In this section, we validate our presented approaches by considering a series

of case studies of different domains. The primary target of the validation is

to answer our research questions stated in section 1.3. The validation process

of this thesis is organised and structured similarly to the validation process

of the dissertation from Stier [178]. That is, we start with an overview of

the validation (including the presentation of the GQM plan, the case study

systems and the discussion of the validation process), carry out the validation

for each validation goal and discuss the results afterwards. Just like in the

work of Stier, our validation is guided by a GQM (goal-question-metric) plan

based on Basili et al. [36] (see section 2.8.1). Therefore, we start to elaborate

the GQM plan by defining four central validation goals. The validation

goals are complemented by validation questions that need to be answered to

determine whether the respective validation goal is achieved. Each validation

question is associated with a set of metrics that aim to answer the validation

question under consideration. For each validation goal, we have created a

separate section in which the corresponding validation goal is examined.

The remainder of this chapter is structured as follows: In section 9.1, we

provide an overview of the validation and introduce the GQM plan. In

sections 9.2, 9.3 and 9.4 the performed validations of the individual validation

goals are presented. Finally, the results of the validation are discussed in

section 9.5.

9.1. Overview

In this section, we give an overview of the validation. Therefore, we start

to present our GQM plan in the next section. Afterwards, we discuss the

validation levels (based on Böhme and Reussner [28]) associated with the

corresponding validation goal and considered case studies. Moreover, we

explain the structure of the validation process and its accomplishment.

295

9. Validation

9.1.1. Validation Goals, Questions and Metrics

In this section, we present the GQM plan and its validation goals, questions

and metrics. We relate each validation goal with its addressed research

questions. Therefore, we start to present the GQM plan as such and dis-

cuss the individual validation goals and the interpretation of the metrics

subsequently.

Before we present the GQM plan, we have to introduce further notations

that we use in the metrics:

• As introduced in definition 30, we consider an AI black-box component

as a function 𝑏 which maps inputs of the input space to outputs of the

output space. In addition, with 𝑏+ we denote an AI component which

produces for any input the correct output; with 𝑏− we denote an AI

component which produces for any input the incorrect output.

• We use the notation 𝐶𝑏 to express that architectural configuration 𝐶

includes AI component𝑏; in addition,𝑀𝐶𝑏
indicates the corresponding

architecture model (or PCM model) that describes 𝐶𝑏 .

• The function 𝑎𝑐𝑐 (𝑏) abstracts a performance measure for a trained AI

model 𝑏, e.g. based on RMSE (root-mean-squared error).

• For simplification, we use the function 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑1, . . . , 𝜑𝑁) to repre-

sent a prediction run with our reliability prediction approach for

AI-enabled systems from section 7, i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑1, . . . , 𝜑𝑁) =

𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝑈 = 𝑈 ,𝑋𝜑1
= 𝜑1, . . . , 𝑋𝜑𝑁

= 𝜑𝑁) (recall from
formula (7.1)) where the probability of success of the system (defined

over 𝑋𝑆𝑦𝑠) is investigated w.r.t. 𝑀𝐶𝑏
and for given uncertainty tuple

(𝜑1, . . . , 𝜑𝑁) and a fixed usage scenario 𝑈 . Moreover, with 𝑟𝑒𝑙 (𝑀𝐶𝑏
)

we refer to the overall probability of success of the system (or𝑀𝐶𝑏
),

i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏
) = 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝑈 = 𝑈) = ∑

𝜑1,...,𝜑𝑁 ∈Φ 𝑃𝑟 (𝑋Φ =

𝜑1, . . . , 𝜑𝑁) · 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑1, . . . , 𝜑𝑁) (recall from equation (7.4)).

• The set Φ𝑏𝑖 ,𝑏 𝑗
:= {(𝜑1, . . . , 𝜑𝑁) ∈ Φ | 𝑃𝑟 (𝑋𝑏𝑖 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑1

=

𝜑1, . . . , 𝑋𝜑𝑁
= 𝜑𝑁) ≥ 𝑃𝑟 (𝑋𝑏 𝑗

= 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑1
= 𝜑1, . . . , 𝑋𝜑𝑁

= 𝜑𝑁)} is
defined over two distinct AI components 𝑏𝑖 and 𝑏 𝑗 and contains all

uncertainty tuples (𝜑1, . . . , 𝜑𝑁) for which the sensitivity model of 𝑏𝑖
indicates higher success probabilities than the sensitivity model of 𝑏 𝑗 .

296

9.1. Overview

• We write an adaptation strategy 𝜋 [𝑏] if the strategy 𝜋 is safeguarding

AI component 𝑏.

Based on the previous notations, we define a set of plausibility assertions.

Let {𝑏1, 𝑏2, . . . } be a set of AI components under investigation where 𝑎𝑐𝑐 (𝑏𝑖)
induce a partial order over the set, i.e. 𝑏1 ≤ 𝑏2 ≤ · · · ⇔ 𝑎𝑐𝑐 (𝑏1) ≤ 𝑎𝑐𝑐 (𝑏2) ≤
. . . Moreover, let denote𝑀𝐶𝑏𝑖

the corresponding architecturemodel including

𝑏𝑖 where the architecture models exclusively differ in the used AI component.

We consider the following plausibility assertions:

𝑏− ≤ 𝑏1 ≤ · · · ≤ 𝑏+ ⇔ 𝑟𝑒𝑙 (𝑀𝐶𝑏−) ≤ 𝑟𝑒𝑙 (𝑀𝐶𝑏
1

) ≤ · · · ≤ 𝑟𝑒𝑙 (𝑀𝐶𝑏+) (9.1)

∀(𝜑1, . . . , 𝜑𝑁) ∈ Φ𝑏𝑖 ,𝑏 𝑗
:

𝑟𝑒𝑙 (𝑀𝐶𝑏𝑖
| 𝜑1, . . . , 𝜑𝑁) ≥ 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑗

| 𝜑1, . . . , 𝜑𝑁)
(9.2)

∀(𝜑1, . . . , 𝜑𝑁) ∈ Φ𝑏𝑖 ,𝑏 𝑗
∩ Φ𝑏 𝑗 ,𝑏𝑖 :

𝑟𝑒𝑙 (𝑀𝐶𝑏𝑖
| 𝜑1, . . . , 𝜑𝑁) = 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑗

| 𝜑1, . . . , 𝜑𝑁)
(9.3)

𝑏− ≤ 𝑏1 ≤ · · · ≤ 𝑏+ ⇔ 𝜋 [𝑏−] ≤ 𝜋 [𝑏1] ≤ · · · ≤ 𝜋 [𝑏+] (9.4)

The first plausibility assertion (9.1) states that the ordering of the AI compo-

nents must be preserved by our reliability prediction approach. That is, for

any distinct 𝑏𝑖 , 𝑏 𝑗 with 𝑏𝑖 ≤ 𝑏 𝑗 our reliability prediction approach applied

to the respective models𝑀𝐶𝑏𝑖
and𝑀𝐶𝑏𝑗

must indicate the same ordering in

terms of the success probability (recall again that both models only differ

in the used AI component). We extend the set of AI components that are

subject to validation with 𝑏− and 𝑏+. The order of the set must therefore

start with 𝑏− (reflecting the worst possible AI component) and end with 𝑏+

(reflecting the best possible AI component). When applied to our reliability

prediction model, the prediction order must preserve the two extremes.

The plausibility assertion (9.2) states that for any pair 𝑏𝑖 , 𝑏 𝑗 where the sen-

sitivity model of 𝑏𝑖 yields higher success probabilities than the sensitivity

model of 𝑏 𝑗 for some uncertainty tuples, this must also be reflected by the

individual prediction results of our reliability prediction tool. For AI compo-

nents whose sensitivity models indicate the same success probabilities for

some uncertainties, the reliability results for these uncertainty tuples must

be equal; this is captured by the plausibility assertion (9.3). Note that (9.3)

directly follows from (9.2); nonetheless, we make the assertion explicit to

clearly emphasise that this plausibility relation must hold.

297

9. Validation

In essence, the plausibility assertion (9.4) states that any adaptation strategy

𝜋 used to safeguard the AI components 𝑏𝑖 and 𝑏 𝑗 (i.e. 𝜋 [𝑏𝑖] and 𝜋 [𝑏 𝑗]) must

generate higher rewards in safeguarding 𝑏𝑖 if and only if 𝑏𝑖 ≤ 𝑏 𝑗 . Hereby, we
assume that each adaptation strategy 𝜋 [𝑏] implements the same adaptation

logic and only differs in the AI black-box component 𝑏 to be safeguarded. The

ordering of strategies is based on formula (6.6). Moreover, it is assumed that

each strategy is evaluated with the same reward function where a reward

directly reflects the reliability of the system, i.e. the success probability.

9.1.1.1. Evaluating Adaptation Strategies

The validation goals of this section are related to the first research questions

and their sub-questions:

Research Question 1: How to evaluate adaptation strategies of

self-adaptive systems at design-time regarding the ability to meet

quality objectives?

Research Question 1.1: How can environmental dynamics be

formalised domain-independently at design-time?

Research Question 1.2: What is an appropriate level of abstraction

to represent the environmental dynamics domain independently? By

appropriateness, we mean that

• adaptation strategies can be analysed at design-time with suf-

ficient accuracy.

• environmental state spaces can be described flexibly and com-

pactly.

Research Question 1.3: What is an appropriate analytical model

to enable design-time analyses of self-adaptive systems?

298

9.1. Overview

Research Question 1.4: Are the predictions sufficiently accurate

to yield plausible results?

The validation goals are divided to validate key aspects of RQ1, namely the

applicability of the formal modelling language of environmental dynamics

and the appropriateness of using MDPs as an analytical model for evaluating

adaptation strategies. The GQM plan presented in the next two sections

adheres to the same structure as in Stier’s dissertation [178].

Goal 1. Analyse the applicability of the EnvDyn formal modelling language

to describe the operating environment of self-adaptive systems.

Addressed RQs: RQ1, RQ1.1, RQ1.2

Question 1.1. Can we instantiate and apply the EnvDyn modelling

language domain-independently?

Metric 1.1.1. Rank of adaptation strategies evaluated by the

DeltaIoT simulator compared to adaptation strategy rank-

ing of the SimExp method.

Metric 1.1.2. Rank of adaptation strategies evaluated by Simu-

Lizar compared to adaptation strategy ranking of the Sim-
Exp method.

Metric 1.1.3. Plausibility assertion checks based on measured

reliability properties of the AI components. More specifi-

cally, plausibility assertions (9.1)-(9.4) are validated.

Addressed RQs: RQ1, RQ1.1

Question 1.2. Are the essential characteristics of an operating envi-

ronment captured by the EnvDyn modelling language?

Metric 1.2.1. Rank of adaptation strategies evaluated by the

DeltaIoT simulator compared to adaptation strategy rank-

ing of the SimExp method.

Metric 1.2.2. Rank of adaptation strategies evaluated by Simu-

Lizar compared to adaptation strategy ranking of the Sim-
Exp method.

299

9. Validation

Metric 1.2.3. Plausibility assertion checks based on measured

reliability properties of the AI components. More specifi-

cally, plausibility assertions (9.1)-(9.4) are validated.

Addressed RQs: RQ1, RQ1.2

Goal 2. Analyse the appropriateness of our SimExp method to evaluate

adaptation strategies of self-adaptive systems at architecture-level.

Addressed RQs: RQ1, RQ1.3, RQ1.4

Question 2.1. Does our SimExp method achieve the evaluation re-

sults of comparable quality for adaptation strategies compared

to domain-specific simulators?

Metric 2.1.1. Rank of adaptation strategies evaluated by the

DeltaIoT simulator compared to adaptation strategy rank-

ing of the SimExp method.

Metric 2.1.2. Rank of adaptation strategies evaluated by Simu-

Lizar compared to adaptation strategy ranking of the Sim-
Exp method.

Addressed RQs: RQ1, RQ1.3, RQ1.4

Question 2.2. Can our SimExp method evaluate design decisions

within an adaptation strategy family or the comparison of dis-

tinct adaptation strategies?

Metric 2.2.1. Rank of adaptation strategies evaluated by the

DeltaIoT simulator compared to adaptation strategy rank-

ing of the SimExp method.

Metric 2.2.2. Rank of adaptation strategies evaluated by Simu-

Lizar compared to adaptation strategy ranking of the Sim-
Exp method.

Addressed RQs: RQ1, RQ1.3

Question 2.3. Does our SimExpmethod support the decision-making

process regarding the design decision of whether to use a self-

adaptive system or static software systems?

300

9.1. Overview

Metric 2.3.1. Rank of adaptation strategies evaluated by the

DeltaIoT simulator compared to adaptation strategy rank-

ing of the SimExp method.

Metric 2.3.2. Rank of adaptation strategies evaluated by Simu-

Lizar compared to adaptation strategy ranking of the Sim-
Exp method.

Addressed RQs: RQ1, RQ1.3

Note that the first validation goal (the applicability of the EnvDyn modelling

language) is implicitly covered by the remaining validation goals. The first

part of validation goal 1 is concerned with the domain-independent applica-

tion. As we use four case study systems during the entire validation of this

work, we instantiate the EnvDyn metamodel in each case study. That is, we

show the applicability of the modelling language in four different domains.

The second part of validation goal 1 relates to the appropriateness in terms of

coverage of the essential characteristics of a domain. For each case study, a

corresponding environment model is created and used in adaptation strategy

evaluation and reliability prediction. That is, if the resulting evaluation and

prediction results are shown to be valid in the respective validation goals,

we can conclude the applicability of the EnvDyn metamodel.

9.1.1.2. Analysis of Architectural Safeguards for AI-enabled Systems

The validation goals of this section are related to the second research question

and their sub-questions:

Research Question 2: How can software systems that contain AI

black-box components be evaluated in terms of meeting reliability

attributes at design-time?

Research Question 2.1: How to deal with the hidden state problem

of AI black-box components?

301

9. Validation

Research Question 2.2: How to systematically consider the influ-

ence of predictive uncertainty and causally related environmental

variables in the reliability prediction?

Research Question 3: How can adaptation strategies of self-

adaptive systems that safeguard uncertain AI black-box components

be evaluated in terms of reliability at design-time?

Goal 3. Analyse the plausibility of our reliability predictions of AI-enabled

software systems at architectural-level.

Addressed RQs: RQ2, RQ2.1, RQ2.2

Question 3.1. Do sensitivity models adequately capture AI black-box

components in reliability prediction?

Metric 3.1.1. Bhattacharyya distance to measure the similarity

between the success/failure probabilities of the sensitivity

model and the reliability predictions.

Metric 3.1.2. Plausibility assertion checks based on measured

properties of the AI components. More specifically, plausi-

bility assertion (9.1) is validated.

Addressed RQs: RQ2, RQ2.1

Question 3.2. Do the prediction results of our holistic approach re-

flect reliability attributes measured from AI components?

Metric 3.2.1. Plausibility assertion checks based on measured

properties of the AI components. More specifically, plausi-

bility assertions (9.1)-(9.3) are validated.

Addressed RQs: RQ2, RQ2.2

Question 3.3. Does the approach allow for the evaluation of AI-

specific design decisions?

Metric 3.3.1. Plausibility assertion checks based on measured

properties of the AI components. More specifically, plau-

sibility assertions (9.2)-(9.3) must hold after applying a

design decision.

302

9.1. Overview

Addressed RQs: RQ2, RQ2.2

Goal 4. Analyse the plausibility of the instantiated SimExp method for the

evaluation of adaptation strategies of self-adaptive systems safeguard-

ing AI black-box components at architecture-level.

Addressed RQs: RQ3(, RQ1.3)

Question 4.1. Do the generated rewards of an adaptation strategy

reflect reliability attributes derived from AI components?

Metric 4.1.1. Plausibility assertion checks based on measured

properties of the AI components. More specifically, plausi-

bility assertion (9.4) is validated.

9.1.2. Case Study Systems

In this section, we briefly enumerate the case study systems that we consider

in the validation. In total, we consider four case studies:

CS1 DeltaIoT system: We use the DeltaIoT system as a case study which

has been introduced in section 1.5.2. The DeltaIoT system is a widely

known case study in the self-adaptive system community. Moreover,

it is complemented with a simulator for the evaluation of adaptation

strategies implemented for the DeltaIoT system.

CS2 Load balancing based on the ZNN.com system: The second case

study that we consider corresponds to the load balancer example sys-

tem from section 1.5.1 which is based on the ZNN.com community

case study [48]. The case study has already been used in the context of

SimuLizar [15]. SimuLizar provides means for scenario-based perfor-

mance evaluation of adaptation strategies which we use to compare

with the results of our approach based on the load balancer case study.

CS3 Human-Robot-Interaction system: The HRI system has been in-

troduced in section 1.5.3. The case study is primarily used to evaluate

adaptation strategies for self-adaptive systems safeguarding AI black-

box components.

303

9. Validation

CS4 Udacity self-driving car challenge: Finally, we consider a case

study from the autonomous driving domain. The case study is part of

the Udacity self-driving car challenge [192]. In the challenge, several

teams were developing DNNs (deep neural networks) for predicting

the steering angles of a self-driving car based on image data. For our

validation, we consider two trained DNNs from the set of developed

DNNs which we use for further investigation.

9.1.3. Validation Process

In this section, we discuss the validation process. We start to classify the

validation goals and questions into the validation levels of Böhme and Reuss-

ner [28] and assign the considered case studies to the respective validation

question. Moreover, the validation question specific interpretation of metrics

are explained. Afterwards, we discuss the validation accomplishment, i.e. the

structure of the validation process, ordering of the validation goals, etc.

9.1.3.1. Classification into Validation Levels

For the classification of the validation goals and questions, we use the vali-

dation levels of Böhme and Reussner [28]. The validation levels have been

introduced in section 2.8.2. We associate each validation question of a val-

idation goal with its corresponding validation levels. In the following, we

discuss the validation levels of each goal.

Validation goal 1 Table 9.1 provides an overview of the validation question

to validation level assignment and the considered case study systems as

validation foundation.

Validation question Validation level Case study systems

1.1 Level II CS1-CS4

1.2 Level II CS1-CS4

Table 9.1.: Overview of the assignment of validation level to question of goal 1.

304

9.1. Overview

The validation goal 1 is about analysing the applicability of our EnvDyn
metamodel and is linked to two validation questions. Question 1.1 is con-

cerned with the domain-independent applicability of the modelling language;

question 1.2 is about whether the essential characteristics of an operating

environment are captured. In the following, we examine the levels at which

both questions are validated, the case study systems and the interpretation

of the metrics for each question.

We conducted a level II validation to address both questions. To validate

whether the EnvDynmetamodel is both applicable domain-independently and

captures the key characteristics of an operating environment is determined

by considering the validity of the results validated in the remaining goals

(and w.r.t. all case study systems). The EnvDynmodelling language is used in

both the evaluation of adaptation strategies (i.e. the SimExp method) and the

reliability prediction of AI-enabled systems; thus, their respective validity

strongly depends on the applicability of the EnvDynmetamodel. That is, if the

results are valid, both questions are positively answered. Therefore, we link

each question to each metric used to validate either the SimExp method or

the reliability prediction approach. In this case, however, the metrics are not

generally interpretable (or at least not in the context of goal 1). Instead, one

must take into account the interpretations of each metric in the remaining

validation goals where the metric is used to answer a validation question.

Validation goal 2 Table 9.2 shows the validation question to validation level

assignment and the considered use cases to validate the question.

Validation Question Validation level Case study systems

2.1 Level I CS1-CS2

2.2 Level I & II CS1-CS2

2.3 Level I & II CS1-CS2

Table 9.2.: Overview of the assignment of validation level to question of goal 2.

For validation goal 2, we formulated three questions. Question 2.1 is con-

cerned with whether our SimExp approach produces comparable results by

considering domain-specific simulators for evaluating adaptation strategies.

We conducted a level I validation to answer the question. Moreover, we

consider metrics 2.1.1 and 2.1.2. The metrics are intended to validate that the

305

9. Validation

evaluation order of adaptation strategies made by domain-specific simulators

are preserved by the SimExp method (which builds upon MDPs). As domain-

specific simulators, we consider the DeltaIoT simulator and SimuLizar. There-

fore, the used case study systems are CS1 and CS2 because both simulators

are applicable to the respective case study. The DeltaIoT simulator has been

used in many evaluation settings (e.g. [194, 168]). Consequently, we assume

that the simulator is sufficiently accurate to be used in our context. Also,

SimuLizar has been evaluated for the load balancer case study that we con-

sider [15]. The rationale behind the metrics is to compare the results of our

MDP based SimExp approach with two established simulators. If SimExp
produces the same ranking of strategies as the domain-specific simulators,

we can conclude the appropriateness of SimExp and the appropriateness

of MDPs as an underlying analytical model. We do not aim to be more

accurate than the simulators; this is arguably hard to achieve due to the

level of abstraction and simplifications associated with the SimExp method.

On the other hand, however, to obtain the ranking of adaptation strategies,

SimExp must at least satisfy a particular level of accuracy, otherwise one

would observe different ranks resulting from our SimExp method.

For question 2.2, we conduct a level I validation. The question is about

whether our SimExp method allows the evaluation of design decisions within

adaptation strategy families and whether distinct strategies are comparable.

We use the metrics as before, i.e. 2.2.1 and 2.2.2 (and thus the same case study

systems, i.e. CS1 and CS2). For the level I validation, the metrics must be

interpreted as discussed in question 2.1. Only if the rank of an adaptation

strategy family is preserved, one can evaluate design decisions and compare

distinct strategies based on the rank generated by SimExp.

For validation question 2.3, we use the same metrics and case study systems

as in question 2.2. The measurements of the metrics are also interpreted in

the same way. The only difference is that we compare the results of static and

self-adaptive systems produced by the domain-specific simulators compared

to the results of the SimExp method.

For validation questions 2.2 and 2.3, we conduct also a level II validation.

We use the same metrics as for Level I validation, but focus on whether our

SimExpmethod enables software engineers to evaluate meaningful design de-

cisions based on the models acquired from the respective case study systems

and relevant to SimExp.

306

9.1. Overview

Validation goal 3 Table 9.3 shows the validation question to validation level

assignment and considered case study systems.

Validation Question Validation level Case study systems

3.1 Level I CS4

3.2 Level I CS4

3.3 Level II CS4

Table 9.3.: Overview of the assignment of validation level to question of goal 3.

The validation goal is associated with three validation questions. The first

two questions are validated by a level I validation; question 3.3 is conducted

in the context of a level II validation.

Question 3.1 is about whether sensitivity models adequately capture AI

black-box components. We address the question by two metrics, namely

metric 3.1.1 and metric 3.1.2. Moreover, for the validation of the goal we

use solely case study CS4. The first metric measures the similarity of the

success/failure probability of the sensitivity model (or rather its distribution)

with the predicted success probabilities w.r.t. the individual uncertainty

tuples. Recall that for each reliability prediction run, we only change the

AI component 𝑏 such that only 𝑏 affects the reliability of the entire sys-

tem. As a result, the predicted success/failure probabilities of the system

𝑀𝐶𝑏
must indicate some degree of similarity with the success/failure prob-

abilities of the respective sensibility model of 𝑏. Therefore, we calculate

the Bhattacharyya distance (see section 2.8.3) to measure the similarity of

both distributions. For this purpose, we predict the individual success and

failure probabilities for each uncertainty tuple by our reliability prediction

approach and compare the results with the success and failure probabil-

ity with the sensitivity model of the AI component under investigation.

More formally, for all uncertainty tuple (𝜑1, . . . , 𝜑𝑁), we compute the Bhat-

tacharyya distance of the distributions 𝑃 (𝑋𝑏 | 𝑋𝜑1
= 𝜑1, . . . , 𝑋𝜑𝑁

= 𝜑𝑁) and
𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 = 𝑈 ,𝑋𝜑1

= 𝜑1, . . . , 𝑋𝜑𝑁
= 𝜑𝑁). If the value is close to 0, we

can conclude that both distributions are similar. With metric 3.1.2, we check

whether plausibility assertion (9.1) holds which requires for a given ordering

of AI components (w.r.t. some performance measure), the same ordering of

reliability predictions.

307

9. Validation

For question 3.2, we consider metric 3.2.1. Hereby, we take into account

plausibility assertions (9.1)-(9.3). For question 3.1, we required that assertion

(9.1) is satisfied from the perspective of the sensitivity model. In this case,

we require that assertions (9.1)-(9.3) are satisfied from the perspective of our

reliability prediction approach. More specifically, in terms of assertion (9.1),

it is required that for a given set of AI components, our holistic reliability

prediction approach reflects their individual reliability properties, i.e. the

accuracy of an AI component. This is complemented by the assertions (9.2)

and (9.3), which for any two AI components, say 𝑏 and 𝑏′, giving different
or equal prediction confidences (i.e. predictive uncertainty) for particular

(𝜑1, . . . , 𝜑𝑁), require that exactly these prediction confidences are reflected

in the individual reliability predictions 𝑟𝑒𝑙 (𝐶𝑏 | 𝜑1, . . . , 𝜑𝑁) and 𝑟𝑒𝑙 (𝐶𝑏′ |
𝜑1, . . . , 𝜑𝑁) under identical architectural model 𝐶 .

For question 3.3, we conduct a level II validation and, similarly to goal

2, focus on whether our reliability prediction approach supports software

engineers in evaluating design decisions based on the models acquired from

the respective case study systems. More specifically, we consider metric 3.3.1

which is associated with plausibility assertions (9.2)-(9.3). The metric intends

to measure whether the assertions still hold after applying a design decision

(e.g. the application of the filtering or n-version pattern). For question 3.2,

we validate whether the assertions (9.2)-(9.3) hold for a fixed architecture

model 𝑀𝐶𝑏
where only the used AI component 𝑏 is exchangeable. Now,

we require that if we apply a specific design decision to the architecture

model 𝑀𝐶𝑏
such that we obtain 𝑀𝐶′

𝑏
, the plausibility assertions must still

hold. Note that a design decision has an impact on the sensitivity model of 𝑏

(either structural or parametric, recall architectural countermeasures from

section 7.1.3.2). That is, the sensitivity model originally associated with 𝑏 is

modified, i.e. it accounts for the effects of the design decision. Consequently,

the sets Φ𝑏𝑖 ,𝑏 𝑗
are modified accordingly. However, the plausibility assertions

(9.2)-(9.3) for the modified sets Φ𝑏𝑖 ,𝑏 𝑗
must still hold. If this is the case, our

reliability prediction approach has been shown to enable the evaluation of

AI-specific design decisions.

Validation goal 4 Finally, Table 9.4 shows the mapping of the validation

questions of goal 4 to the corresponding validation levels.

For validation goal 4, we conduct a level I validation. The goal is related to

a single validation question. Question 4.1 is about whether the generated

308

9.1. Overview

Validation Question Validation level Case study systems

4.1 Level I CS3-CS4

Table 9.4.: Overview of the assignment of validation level to question of goal 4.

rewards of an adaptation strategy reflect the reliability attributes derived

from an AI component. In terms of question 4.1, metric 4.1.1 is used to

measure whether plausibility assertion (9.4) is satisfied or maintained by our

SimExp approach. Suppose a set of AI components with varying degrees of

accuracy and an adaptation strategy that implements some adaptation logic.

The assertion 9.4 states that when the adaptation strategy is evaluated for

each AI component, the individual evaluation results must indicate the same

order as given by the order of the AI components w.r.t. their accuracies. In

other words, for two AI components, say 𝑏 and 𝑏′ with 𝑎𝑐𝑐 (𝑏′) ≤ 𝑎𝑐𝑐 (𝑏), it
is required that the overall result of the adaptation strategy safeguarding

𝑏 is higher compared to the strategy safeguarding 𝑏′ (where the strategies
implement the same adaptation logic but differ in 𝑏 and 𝑏′ respectively).

9.1.3.2. Validation Accomplishment

In this section, we discuss how we conduct the validation for the distinct

validation goals.

We start to validate goals 2-4 and goal 1 afterwards. The reason for this has

already been explained in the previous section. To validate the goal 1, we

must first validate the other goals, as the validity of their results is strongly

related to the validity of goal 1.

Therefore, we start with validation goal 2. To the best of our knowledge,

there is no gold standard approach that enables the evaluation of adapta-

tion strategies domain-independently. However, there are domain-specific

simulators that one can use to evaluate adaptation strategies for a given

domain, e.g. the DeltaIoT simulator [92] in the field of IoT. We use these

domain-specific simulators as a baseline to reason about the appropriateness

of using MDPs as analytical models to evaluate adaptation strategies. Once

we have shown the appropriateness of using MDPs, we continue to validate

our SimExp method in terms of evaluating adaption strategies that safeguard

AI black-box components.

309

9. Validation

However, we have to validate goal 3 before as it is concerned with relevant

concepts. The validation of these concepts must be considered as a prereq-

uisite for validating goal 4, namely the reliability prediction of AI-enabled

systems. Also, we are facing here the same problems as in goal 2; to the best

of our knowledge, there are no comparable approaches that we can use as

a baseline or ground truth. Another possibility would be to implement an

AI-enabled case study system to compare the runtime measurements with

our predictions. However, besides the high effort associated with such a

validation, obtaining accurate measurements for reliability metrics is hard

to achieve due to the rare nature of events influencing the reliability of the

system [28]. Therefore, we follow a different validation approach. More

precisely, we check plausibility assertions based on measurable reliability

attributes in the considered domain or case study system, which have to

be preserved by our reliability prediction approach. At first glance, this

seems contradictory, as one would expect the accuracy of our approach to be

validated. Looking at the components that make up our reliability prediction

approach (sensitivity model, PCM-Rel and ATs) and the way they are con-

nected, it is clear that there is no need to validate accuracy. More specifically,

recall that the reliability prediction approach demands an upstream sensitiv-

ity analysis of an AI component. For this purpose, we enumerated a set of

approaches that can be used to conduct the sensitivity analysis (see section

7.1.2). Based on the resulting sensitivity model, our approach predicts the

respective success probabilities of the system for distinct uncertainty tuples

by using the conventional PCM-Rel prediction approach. At this stage, it is

important to note that we did not modify the code and thus the prediction

logic of PCM-Rel (see section 7.1.3). Instead, we implemented an upstream

resolving procedure for recalculating the failure probability of the analysed

AI component based on the sensitivity model. Consequently, validating the

accuracy of our reliability prediction approach is equal to validating the

accuracy of PCM-Rel which was extensively validated by Brosch [33]. Addi-

tionally, our reliability prediction approach is complemented by ATs which

can be applied to improve the reliability of the system. The AT approach was

also validated by Lehrig [113]. Thus, our reliability prediction approach for

AI-enabled systems is composed of well-validated components such that only

their joint interaction needs to be validated holistically. Therefore, we focus

the validation on plausibility assertions that need to be preserved to reason

about the validity of the joint interaction of the components that make up

our approach to predicting reliability. The plausibility assertions have been

discussed in previous sections.

310

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

Following validation goal 3, we finally validate our SimExp method for eval-

uating adaptation strategies that safeguard AI components in validation goal

4. As before, there is no gold standard or baseline against which we can

compare our approach. However, as we have already validated the SimExp
method in validation goal 2, we validated the appropriateness of the SimExp
method; thus, we validate in this context again the preservation of plausi-

bility assertions. The results of this validation goal also complement the

validation results of goal 2 and increase confidence and reasoning that MDPs

are appropriate for evaluating adaptation strategies.

9.2. Evaluating Adaptation Strategies of
Self-Adaptive Systems

In this section, we validate validation goal 2 by considering the DeltaIoT

case study and the load balancer case study in conjunction with SimuLizar, a

performance simulator for self-adaptive systems.

9.2.1. DeltaIoT

In the following, we validate validation goal 2 by considering the DeltaIoT

community case study. Therefore, we start to outline how we instantiated

the SimExp method for the DeltaIoT system. The case study itself has already

been introduced in section 1.5.2. Subsequently, we discuss the experimental

setup and present the results afterwards.

9.2.1.1. Instantiation of SimExp

For the instantiation of the SimExp method, we created the models and other

artefacts required to analyse adaptation strategies with SimExp, namely the

architecture model (i.e. PCM model), the model transformation representing

the adaptation, the environment model (based on our EnvDyn metamodel),

the adaptation strategy subject to evaluation and the reward function to eval-

uate decisions made by the strategy. Moreover, recall from section 4.3.2 that

the architecture possibly influences the environmental dynamics. By default,

we assume that the environment evolves independently of the architecture;

311

9. Validation

Link Power Distribution

2 to 4 15 100

3 to 1 15 100

4 to 1 15 100

5 to 9 15 100

6 to 4 15 100

7 to 2 15 0

7 to 3 15 100

8 to 1 15 100

9 to 1 15 100

10 to 6 15 50

10 to 5 15 50

11 to 7 15 100

12 to 7 15 0

12 to 3 15 100

13 to 11 15 100

14 to 12 15 100

15 to 12 15 100

Table 9.5.: Initial architectural configuration of the (PCM) modelled DeltaIoT system.

however, in the context of the DeltaIoT system, this is not the case. Therefore,

we briefly discuss the assumption made (and its rationale).

Initial Architecture Model We created the PCM model for describing the

DeltaIoT system based on the information provided by [92]. However, the

models are too large and complex to be discussed here. Therefore, we refer

to [157] where all models and validation results are located. Nonetheless, Ta-

ble 9.5 shows the initial architectural configuration (and adaptable elements)

of the DeltaIoT system modelled with PCM.

Therefore, recall that each mote can send a packet via a communication link

to another mote. Links are modelled in PCM by so-called Linking Resources
(see [149, P.57]). Each connection is assigned a transmission power value

between 0 and 15 (see the second column of Table 9.5), with high values

increasing the probability that the packet will not be lost during transmission.

Moreover, if a mote has two communication endpoints, the distribution factor

312

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

(see the third column of Table 9.5) determines the distribution of sending the

packet to the respective mote.

Adaptations Effectively, there are two atomic adaptations in the context

of the DeltaIoT system. In the first adaptation, the transmission power of a

particular mote 𝑖 (or its communication link) is adjusted by adding a value,

say 𝑡𝑝𝑖 ∈ {+1,−1, 0}, to the current transmission power, where the ranges

are fixed, i.e. it is not possible to set 𝑡𝑝 = 1 if the transmission power to

be adjusted is already set to 15, or 𝑡𝑝 = −1 if the transmission power is

set to 0. The second adaptation adjusts the distribution factors of a mote

which has two communication links. More specifically, a distribution factor

𝑑 𝑓𝑖 𝑗 ∈ {+10,−10, 0} modifies the current distribution of a mote 𝑖 which

communicates via link (𝑖, 𝑗) with mote 𝑗 where again the ranges are fixed, i.e.

if the distribution of link (𝑖, 𝑗) is already set to 100, 𝑑 𝑓𝑖 𝑗 ≠ +10 and 𝑑 𝑓𝑖 𝑗 ≠ −10
if the distribution of link (𝑖, 𝑗) is set to 0.

In the case of an adaptation, however, the system is not adapted by (e.g.)

modifying the transmission power of a single mote. Instead, an adaptation is

considered a composition of several atomic adaptations. That is, an adapta-

tion consists of several atomic adaptations which are summarised as a tuple

𝛿 := (𝑡𝑝1, . . . , 𝑡𝑝𝑖 , . . . , 𝑡𝑝15, 𝑑 𝑓𝑖 𝑗 , . . .). The whole tuple is finally applied to

adjust the network configuration of the system.

In terms of SimExp, we implemented a single model transformation which

takes a tuple of network configuration 𝛿 and transforms the PCM model

accordingly. More specifically, the transformation traverses over all motes

and their links and reconfigures the network configurations according to the

new values 𝑡𝑝𝑖 and 𝑑 𝑓𝑖 𝑗 .

Environment Model We modelled the environment of the DeltaIoT system

by using our EnvDynmetamodel. Basically, for the DeltIoT systems, there are

three template variables, namely mote activation𝑀𝐴, wireless interference

𝑊𝐼 and the signal-to-noise-ratio 𝑆𝑁𝑅 (recall the definitions from section

5.2.3.2). Figure 9.1 provides an overview of the essential environmental

variables.

The𝑀𝐴 template variable is instantiated for each mote in the PCM model.

Similarly, the𝑊𝐼 and 𝑆𝑁𝑅 templates are instantiated for each wireless or

communication link within the PCM model.

313

9. Validation

𝑊𝐼

𝑆𝑁𝑅

Wireless link

𝑀𝐴

Mote

(a) Overview of the template variables in

the plate model notation.

𝑀𝐴 𝑀𝐴′ 𝑀𝐴′′

𝑊𝐼

𝑆𝑁𝑅

𝑊 𝐼 ′

𝑆𝑁𝑅′

𝑊𝐼 ′′

𝑆𝑁𝑅′′

𝑡 = 0 𝑡 = 1 𝑡 = 2

(b) The DBN describing the environmental dynamics

unrolled for three time steps.

Figure 9.1.: Overview of the essential environmental variables of the DeltaIoT system and their

relationships.

Mote 5 Mote 7 Mote 11 Mote 12 Default

Mote activation 0.8 + Δ 0.8 + Δ 0.8 + Δ 0.9 + Δ 1 + Δ
Disturbance Δ [−0.1, 0.1] [−0.2, 0.2] [−0.1, 0.1] [−0.1, 0.1] Δ = 0

Table 9.6.: Overview of the individual mote activations taken from [168].

For the parameter setting of the variables, we considered thework of Shevtsov

et al. [168] where the DeltaIoT system and simulator are used. The work

contains information about the static/initial (but non-temporal) distributions

of all three templates, i.e. the local CPDs of each ground Bayesian network

(instantiated for each mote and wireless link). Therefore, consider Table 9.6

which depicts the individual mote activations.

For example, the table indicates for mote 5 a basis mote activation of 80%

which varies w.r.t. a disturbance factor Δ ∈ [−0.1, 0.1]. We discretised the

intervals of the disturbance factors, e.g. [−0.1, 0.1] is discretised to the set

{−0.1, 0, 0.1}. Because we have no information about how the values are

distributed, we assumed uniform distribution. The activation variations only

314

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

Link SNR Wireless interference Δ

2 to 4 8.0 + Δ [−5, 5]
3 to 1 7.63 + Δ [−2, 2]
4 to 1 3.0 + Δ [−2, 2]
5 to 9 2.6 + Δ [−2, 2]
6 to 4 7.6 + Δ [−2, 2]
7 to 2 5.0 + Δ [−5, 5]
7 to 3 0.8 + Δ [−5, 5]
8 to 1 7.0 + Δ [−5, 5]
9 to 1 4.4 + Δ [−2, 2]
10 to 6 4.0 + Δ [−5, 5]
10 to 5 6.0 + Δ [−5, 5]
11 to 7 6.0 + Δ [−2, 2]
12 to 7 −3.0 + Δ [−2, 2]
12 to 3 7.5 + Δ [−2, 2]
13 to 11 4.7 + Δ [−5, 5]
14 to 12 1.0 + Δ [−5, 5]
15 to 12 0.4 + Δ [−2, 2]

Table 9.7.: Overview of the individual SNR and wireless interference probabilities taken from

[168].

apply to a couple of motes; the remaining motes produce sensor data with

constant activation. Since we could not find any information on the temporal

evolution of mote activation, we assumed that the same distribution applies

to the temporal behaviour, i.e. 𝑃 (𝑋𝑀𝐴′ | 𝑋𝑀𝐴).

For the distribution parameters of the 𝑆𝑁𝑅 and 𝑊𝐼 templates, consider

table Table 9.7. The table shows the static distribution parameters for the

individual SNRs and wireless interferences. For example, for link (2, 4) the
basis SNR value is 8.0 which varies w.r.t. disturbance factor Δ ∈ [−5, 5]
(i.e. wireless interference) which is added to the basis SNR value. Recall

that the SNR value is determined w.r.t. the transmission power, i.e. the

SNR value increases for high power values and decreases for small power

values, respectively. Since all transmission powers of the initial architectural

configuration are configured to the highest value (i.e. 15), we determined

the basis SNR value according to values of [168] which specifies the SNR

values for all possible power values. Moreover, table Table 9.7 indicates that

315

9. Validation

there are merely two possible wireless interference intervals, namely [−2, 2]
and [−5, 5]. Just as for the mote activation, we discretised both intervals

and assumed uniform distributions. Also, there is no information about

the probabilistic temporal behaviour of𝑊𝐼 such that we assumed the same

distributions as for the static case. Finally, we defer the discussion of the

stochastic evolution of the SNR values to a subsequent section that discusses

the interdependency of the architectural configuration and the environment.

We will see that the architectural configurations (or rather their transmission

power configurations) determine how the SNR values evolve.

Adaptation Strategies In the context of DeltaIoT, we considered three adap-

tation strategies. For the first strategy, we consider a non-adaptive behaviour;

that is to say, we reflect the behaviour of a static system. In terms of SimExp
or self-adaptive systems in general, this is simply achieved by constructing an

adaptation strategy, say 𝜋𝛿∅ , which returns for all states the empty adaptation

𝛿∅ (recall from property 1), i.e. ∀𝑆 ∈ S : 𝜋𝛿∅ (𝑆) = 𝛿∅ . To put it another way,

strategy 𝜋𝛿∅ does not adapt the system and thus simulates the behaviour

of a static system. In the remainder of this chapter, we denote the strategy

non-adaptive strategy.

The second adaptation strategy is taken from [92] and was presented within

the context of DeltaIoT as a strategy example. Thus, we refer to this strategy

as the default strategy denoted as 𝜋𝐷 . The adaptation logic is shown in listing

9.1.

1 public class DefaultStrategy extends

ReconfigurationStrategy<QVToReconfiguration> {

2 ...

3 @Override

4 protected boolean analyse(State source, SharedKnowledge

knowledge) {

5 for (MoteContext eachMote : getAllMoteContexts(knowledge)) {

6 for (WirelessLink eachLink : eachMote.links) {

7 boolean isPowerOptimal = (eachLink.SNR > 0 &&

eachLink.transmissionPower > 0) ||

(eachLink.SNR < 0 && eachLink.transmissionPower

< 15)

8 if (isPowerOptimal == false) {

9 return true;

10 }

316

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

11 }

12

13 if (eachMote.hasTwoLinks()) {

14 if (eachMote.hasUnequalTransmissionPower()) {

15 return true;

16 }

17 }

18 }

19 return false;

20 }

21

22 @Override

23 protected QVToReconfiguration plan(State source,

Set<QVToReconfiguration> options, SharedKnowledge

knowledge) {

24 DeltaIoTNetworkReconfiguration reconfiguration =

getFirstElementOf(options);

25

26 boolean powerChanging = false;

27 for (MoteContext eachMote : getAllMoteContexts(knowledge)) {

28 for (WirelessLink eachLink : eachMote.links) {

29 powerChanging = false;

30 if (eachLink.SNR > 0 && eachLink.transmissionPower >

0) {

31 decreaseTransmissionPower(eachMote.mote,

eachLink, reconfiguration);

32 powerChanging = true;

33 } else if (eachLink.SNR < 0 &&

eachLink.transmissionPower < 15) {

34 increaseTransmissionPower(eachMote.mote,

eachLink, reconfiguration);

35 powerChanging = true;

36 }

37 }

38

39 if (eachMote.hasTwoLinks() && powerChanging == false) {

40 if (eachMote.hasUnequalTransmissionPower()) {

41 WirelessLink left = getLeftLink(eachMote);

42 WirelessLink right = getRightLink(eachMote);

43

44 if (left.distributionFactor == 1 &&

right.distributionFactor == 1) {

317

9. Validation

45 setDistributionFactorsUniformally(

46 eachMote.mote,

47 reconfiguration

48);

49 }

50

51 if (left.transmissionPower >

right.transmissionPower &&

left.distributionFactor < 1) {

52 adjustDistributionFactor(right, eachMote,

reconfiguration);

53 } else if (right.distributionFactor < 1) {

54 adjustDistributionFactor(left, eachMote,

reconfiguration);

55 }

56

57 }

58 }

59 }

60

61 return reconfiguration;

62 }

63 }

Listing 9.1: Default adaptation strategy 𝜋𝐷 taken from [92].

Note that, for simplicity, listing 9.1 only reflects a snippet of the actual

adaptation logic and does not reflect all the technical details, e.g. we omit the

monitor phase implementation. We thus concentrate on the pure adaptation

logic; more precise implementation details can be looked up in [157]. The

strategy checks in the analyse-phase whether there exists a wireless link

for which the power settings are not optimal. If they are, in effect, not

optimal, the plan-phase is invoked. In the plan-phase, the transmission

power is adapted for links that are not optimally configured w.r.t. the current

SNR value associated with the said link. Moreover, the distribution factor is

increased for those links of a mote where the transmission power is higher.

The third strategy 𝜋𝑄 (see listing 9.2) represents a quality-driven strategy

because the decision of adapting the system is exclusively determined w.r.t.

the current quality objectives, i.e. packet loss and energy consumption.

In the analyse-phase, strategy 𝜋𝑄 checks whether the quality objectives

318

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

are violated, i.e. whether their values exceed some thresholds. If so, the

plan-phase is executed. The strategy prioritises energy consumption; that

is, during planning, it is first checked whether the energy consumption

objective is violated and if so, appropriate adaptations are planned. Hereby,

the transmission power for all wireless links with SNR values (i.e. SNR value

≥ 0) is decreased. Also, the distribution factor for motes with two links is

decreased for those links that indicate higher transmission powers. If the

packet loss objective is violated, the transmission power for all links with

low SNR values (i.e. SNR value < 0) is increased and the distribution factor

for motes with two links is increased for those links that indicate higher

transmission powers.

Reward Function In this section, we discuss the reward function that we

consider in the evaluation of the adaptation strategies. Recall that the qual-

ity objectives within the DeltaIoT system are to minimise packet loss and

energy consumption. Thus, the quality attributes of packet loss and energy

consumption determine the reward. As we will see in the evaluation results,

however, the energy consumption values (measured in Coulomb) are signifi-

cantly higher than the estimated packet loss (the percentage ratio of sent and

received packets). That is, when calculating the reward for a given state by

summing the packet loss and energy consumption values, the accumulated

reward is completely dominated by the energy consumption (packet loss

values are within the range of [0, 1], so they do not contribute sufficiently

to the total reward computation). Therefore, we normalise each packet loss

and energy consumption value to the range [0, 1] w.r.t. an upper and lower

bound indicating the best possible and worst possible packet loss and energy

consumption values, respectively. For packet loss we denote the upper bound

𝛽+
𝑝𝑙

and lower bound 𝛽−
𝑝𝑙
; for energy consumption the bounds are denoted as

𝛽+𝑒𝑐 and 𝛽
−
𝑒𝑐 . The normalisation function is defined as follows:

𝑛𝑜𝑟𝑚𝑞 : 𝐼𝑅 → [0, 1], 𝑥 ↦→ 1

𝛽+𝑞 − 𝛽−𝑞
· (𝛽+𝑞 − 𝑥) (9.5)

Hereby, 𝑞 refers to one of the quality attributes, i.e. 𝑝𝑙 or 𝑒𝑐 . The normalisa-

tion allows the comparison of energy consumption and packet loss. Therefore,

we define the following reward function:

𝑟S : S × Δ × S → [0, 2],
(𝑆, 𝛿, 𝑆 ′) ↦→ (𝑛𝑜𝑟𝑚𝑝𝑙 ◦ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑝𝑙) (𝑆 ′) + (𝑛𝑜𝑟𝑚𝑒𝑐 ◦ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑐) (𝑆 ′)

(9.6)

319

9. Validation

1 public class QualityBasedStrategy extends

ReconfigurationStrategy<QVToReconfiguration> {

2 ...

3 @Override

4 protected boolean analyse(State source, SharedKnowledge

knowledge) {

5 return getPacketLoss(knowledge) >= PL_THRESHOLD ||

getEnergyConsumption(knowledge) >= EC_THRESHOLD;

6 }

7

8 @Override

9 protected QVToReconfiguration plan(State source,

Set<QVToReconfiguration> options, SharedKnowledge

knowledge) {

10 DeltaIoTNetworkReconfiguration reconfiguration =

getFirstElementOf(options);

11

12 if (getEnergyConsumption(knowledge) >= EC_THRESHOLD) {

13 // Decreases the transmission power for all links with

high SNR, i.e. SNR >= 0.

14 decreaseTransmissionPowerLocally(reconfiguration,

knowledge);

15 // Decreases the distribution factor for motes with two

links, i.e. for the link with the higher

transmission power.

16 decreaseDistributionLocally(reconfiguration, knowledge);

17 return reconfiguration;

18 } else {

19 // Increase the transmission power for all links with

low SNR, i.e. SNR < 0.

20 increaseTransmissionPowerLocally(reconfiguration,

knowledge);

21 // Increase the distribution factor for motes with two

links (the link with higher transmission power).

22 increaseDistributionLocally(reconfiguration, knowledge);

23 return reconfiguration;

24 }

25 }

26 }

Listing 9.2: Quality-based adaptation strategy 𝜋𝑄

320

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

The function 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑞 : S → 𝐼𝑅 abstracts away the predicted packet loss

(i.e. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑝𝑙 (𝑆 ′)) and energy consumption values (i.e. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑐 (𝑆 ′)) ob-
tained from some state 𝑆 ′ resulting from applying 𝛿 in state 𝑆 . We use the

model-checking tool Prism to predict both quality attributes (this is discussed

later).

Interdependency Assumption of Architecture and Environment In section

4.3.2, we already illustrated the interdependency of architectural configu-

ration and environment within the DeltaIoT system. More specifically, we

pointed out that the transmission power (which is part of the architectural

configuration) affects the SNR values (which are part of the environment).

Consequently, the stochastic evolution of the environmental dynamics is not

purely environmental-driven but also partially by the selected architectural

configurations. Conventionally, we assume by default that the environmental

dynamics are purely environmental-driven, i.e. independent of the architec-

tural configuration. However, taking into account the previous discussion,

this assumption no longer applies to the DeltaIoT system.

In section 6.3.2.1, we explained that interdependency assumptions are en-

coded within the SimExp framework by implementing a dedicated inter-

face. For the implementation of the interdependency assumption, only the

stochastic evolution of the SNR values must be considered as the other en-

vironmental variables (i.e. mote activation and wireless interference) are

purely environmental-driven. As mentioned earlier, the work of Shevtsov et

al. [168] already provides information about the DeltaIoT system. Moreover,

they provide a complete table which maps transmission power values to

SNR values for each wireless link. The table can be used to implement the

interdependency assumption, i.e. by calculating the next SNR value w.r.t.

the current transmission power associated with a wireless link. However,

while exploring the code of the DeltaIoT simulator, we found a set of linear

equations of the form

𝑆𝑁𝑅𝑖 𝑗 : {0, 1, . . . , 15} → 𝐼𝑅, 𝑥 ↦→𝑚𝑖 𝑗 · 𝑥 + 𝑐𝑖 𝑗 (9.7)

Here, 𝑚𝑖 𝑗 is some multiplier and 𝑐𝑖 𝑗 is some constant dependent on the

wireless link (𝑖, 𝑗) for which the SNR is to be calculated. The equations

calculate for a given link (𝑖, 𝑗) w.r.t. the current transmission power 𝑥 the

new SNR value. Therefore, we instantiate each equation for each wireless link

(𝑖, 𝑗) and calculate the new SNR value of each link based on the transmission

power extracted from the current architectural configuration.

321

9. Validation

Prediction of quality attributes In section 6.3.2.2, we explained how to

extend the SimExp framework to account for other prediction tools which

are not part of the simulation and analysis tool repertoire of the Palladio

ecosystem. For the prediction of packet loss and energy consumption, we

extended the SimExp framework by the model-checking tool Prism [109].

Weyns and Iftikhar [207] used Prism in the context of DeltaIoT to predict

packet loss and energy consumption. We reuse their Prism artefacts [140]

(i.e. property and module files) for prediction. Hereby, we use the Prism

module files as parameterised templates that are complemented by values

derived from a given self-adaptive system state 𝑆 . More specifically, for a

self-adaptive system state 𝑆 := (𝐶, 𝐸), the prediction procedure extracts all

relevant parameters of the architectural configuration𝐶 (i.e. the PCM model)

and environmental state 𝐸 and inserts them in the parameterised template

of the Prism module. After completion, the module file is forwarded to the

Prism tool for prediction.

9.2.1.2. Experiment Setup

For the validation, we evaluate the quality of the previously presented adap-

tation strategies with both, the DeltaIoT simulator and our SimExp method.

Afterwards, we compare the rank of the strategies w.r.t. both evaluation

approaches. To validate the appropriateness of our MDP-based approach, we

expect the evaluation results of the strategies with our SimExp method to

produce the same rank as the DeltaIoT simulator.

Therefore, we complemented the DeltaIoT simulator by implementing the

quality-based strategy 𝜋𝑄 as shown in listing 9.2. The default strategy 𝜋𝐷
was already implemented and provided by the simulator. Also, the DeltaIoT

simulator allows the evaluation of non-adaptive and thus static systems

w.r.t. some specified initial configuration. We configured the simulator by

defining the same initial architecture as for the instantiation of the SimExp
method before (see 9.5). Moreover, we used the same set of SNR equations

(recall 9.7) already defined by the simulator. We configured the wireless

interferences and mote activation probabilities as shown in Table 9.6 and

Table 9.7. For transparency, we initialised a Git repository in the code base

of the DeltaIoT simulator. Thus, all configurations and settings made are

documented and can be understood. Moreover, within the DeltaIot simulator,

there are various configurable simulation parameters. We adopted all default

322

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

Name Value Description

Spreading factor 1.158 Number of bits encoded of a trans-

mitted packet [92].

Reception cost 14.2 -

Reception time 4 -

Coulomb 1000.0 The unit for measuring the energy

consumption.

Number of simulations 96 Number of simulations per trajec-

tory (compare with horizon from

SimExp).
Number of trajectories 10 Number of trajectories to simulate.

Table 9.8.: Overview of the parameter setting for the DeltaIoT case study system. For some

parameters, no description could be found.

simulation parameters predefined by the simulator (some of them are relevant

for the Prism files for quality prediction). Table 9.8 provides an overview.

Only the number of trajectories was defined by us. By default, the DeltaIoT

simulator performs only a single simulation of an entire trajectory. To achieve

a particular statistical certainty, we have increased the number to 10 runs.

One could argue that even 10 runs might not be sufficient; however, we had

efficiency problems with some energy consumption predictions with Prism

(up to several minutes for a single prediction). Therefore, we limited the

number of runs to 10. Nonetheless, we will see later that the results are stable

in terms of statistical certainty.

9.2.1.3. Experiment Results

Finally, we present the results of the validation. As described in the last

section, we evaluated all three strategies (i.e. non-adaptive strategy 𝜋𝛿∅ ,

default strategy 𝜋𝐷 and the quality-based strategy 𝜋𝑄) with our SimExp
method and the DeltaIoT simulator. The primary objective of each strategy

is to minimise the packet loss and energy consumption of the system.

The results of the evaluation runs of SimExp and the DeltaIoT simulator

are depicted on Figure 9.2 regarding packet loss and Figure 9.3 for energy

consumption. Note that in the following all line plots indicate the mean and

323

9. Validation

(a) DeltaIoT results for packet loss (b) SimExp results for packet loss

(c) DeltaIoT results for packet loss (d) SimExp results for packet loss

Figure 9.2.: Comparison of DeltaIoT and SimExp results considering the line plots and box plots

of the packet loss. In addition to the median value of the box plots, the white dots indicate the

mean values.

95% confidence interval of the considered quality attribute. In general, the

y-axes of the line graphs show the packet loss/energy consumption of each

strategy; the x-axes indicate the discrete time steps in both cases.

In terms of Figure 9.2, the left-hand side (i.e. Figure 9.2a and Figure 9.2c)

shows the results of the DeltaIoT simulator. More specifically, it depicts

the line plot and box plot of the packet loss achieved by the strategies. The

right-hand side shows the line plot and box plot of the SimExp evaluation of

the strategies. It can be seen that the evaluation results for the non-adaptive

strategy 𝜋𝛿∅ and default strategy 𝜋𝐷 indicate the same results, i.e. 𝜋𝐷 causes

higher packet loss than 𝜋𝛿∅ . Also, the prediction accuracy is remarkably

precise, i.e. mean value and median are not deviating significantly. This

fact is visualized in the box plots more clearly. However, the quality-based

strategy 𝜋𝑄 is slightly deviating. When considering the mean values of the

324

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

SimExp results, we observe the strategy ordering 𝜋𝛿∅ < 𝜋𝐷 < 𝜋𝑄 w.r.t. packet

loss. In contrast, the ordering of the DeltaIoT results are given as follows:

𝜋𝑄 < 𝜋𝛿∅ < 𝜋𝐷 . Nonetheless, the mean values of the packet loss of both,

DeltaIoT and SimExp are fairly close to each other, i.e. approximately in a

range of [0.1, 0.15]. Therefore, it can be argued that all strategies achieve

comparable packet loss results such that the packet loss quality objective is

not a crucial factor when considering the overall quality of each strategy (i.e.

taking into account the energy consumption as well).

The energy consumption results (see Figure 9.3) are not as accurate as the

packet loss results. In terms of prediction accuracy, the pure energy consump-

tion predictions are quite deviating. The prediction range of the DeltaIoT

simulator is approximately between [14, 23]; the prediction range of the

SimExp results is approximately between [31, 34.5]. However, this deviation
results from the prediction inaccuracy of Prism and is not a result of SimExp
(we will come back to this later). Nonetheless, the rank of the strategies

in terms of energy consumption is preserved in both evaluations, i.e. 𝜋𝛿∅
causes the highest mean energy consumption followed by 𝜋𝑄 and 𝜋𝐷 which

performs best.

Recall that the quality-based strategy 𝜋𝑄 depends on some packet loss and

energy consumption thresholds on which decisions are made (see Listing 9.2).

Generally, the thresholds are determined w.r.t. the quality requirements.

For the experiments, we configured the packet loss threshold to be 𝛼 = 0.1.

Regarding energy consumption, we have chosen two distinct thresholds. As

discussed, the energy consumption predictions of DeltaIoT and SimExp are

deviating to an extent that makes it not possible to use the same threshold;

this would result in completely different results. Therefore, we have selected

two separate thresholds (𝛽 = 18 for DeltaIoT and 𝛽 = 32 for SimExp) w.r.t. the
energy consumption prediction ranges such that the results are comparable.

We explain the precise determination of the thresholds later in this section.

The thresholds are summarised in table Table 9.9.

To compare the results of the reward function for both simulations, we applied

the reward function to the DeltaIoT simulator as well. More specifically, we

calculated the reward for each time instance where a packet loss and energy

consumption pair have been generated. We repeated that process for each

strategy. The results of both reward functions are shown in Figure 9.4.

The figure depicts the average accumulated rewards. Note that Table 9.9

depicts the upper and lower bounds used to calculate the reward for each

325

9. Validation

(a) DeltaIoT results for energy consumption (b) SimExp results for energy consumption

(c) DeltaIoT results for energy consumption (d) SimExp results for energy consumption

Figure 9.3.: Comparison of DeltaIoT and SimExp results considering the line plots and box plots

of the energy consumption. In addition to the median value of the box plots, the white dots

indicate the mean values.

DeltaIoT
Packet loss Energy consumption

𝛼+ = 0.2 𝛼 = 0.1 𝛼− = 0.025 𝛽+ = 26 𝛽 = 18 𝛽− = 10

SimExp
Packet loss Energy con.

𝛼+ = 0.2 𝛼 = 0.1 𝛼− = 0.025 𝛽+ = 34.5 𝛽 = 32 𝛽− = 30.5

Table 9.9.: Overview of the distinct thresholds and bounds used in the quality-based strategy

and reward function. A threshold value superscripted with + or − denotes the upper and lower

bounds of the quality attribute in question.

326

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

(a) Line plot of the accumulated reward of

DeltaIoT (b)Line plot of the accumulated reward of SimExp

Figure 9.4.: Comparison of the accumulated rewards of DeltaIoT and SimExp.

𝑰𝑬𝝅 [𝑿𝑮0]

𝝅𝜹∅
= 51.6 𝝅𝑸 = 100.7 𝝅𝑫 = 109.6

Table 9.10.: Overview of the expected rewards of each strategy for the DeltaIoT case study.

strategy. Again, we have chosen different upper and lower bounds for energy

consumption because the predictions in DeltaIoT and SimExp differ too much.

For this purpose, we evaluated the rewards of each simulated trajectory by

considering the following function: 𝑎𝑐𝑐𝑢𝑚𝜋 (𝑁) = 1

𝑁

∑𝑁
𝑖=1 𝑟𝑖 . The function

accumulates the rewards of a strategy 𝜋 to a given time instance 𝑁 and

calculates the mean value. Figure 9.4 depicts the averaged accumulation

function for the considered time steps (i.e. 0, 1, 2, . . . , 95) of 10 runs. It can be

seen that both functions indicate the same behaviour. Moreover, in terms

of the strategies, the order 𝑎𝑐𝑐𝑢𝑚𝜋𝛿∅
(96) < 𝑎𝑐𝑐𝑢𝑚𝜋𝑄 (96) < 𝑎𝑐𝑐𝑢𝑚𝜋𝐷 (96) is

in both results the same. Complementary to the results from Figure 9.4, we

depict the estimated reward (i.e. 𝐼𝐸𝜋 [𝑋𝐺0
] from equation (6.10)) in Table 9.10.

Note that we could not estimate the expected reward in the case of DeltaIoT

because we could only extract the quality values (i.e. packet loss and energy

consumption).

Although the averaged accumulated rewards of strategies 𝜋𝛿∅ and 𝜋𝐷 con-

verge to a fixed reward value for both, DeltaIoT and SimExp, this is not the
case for strategy 𝜋𝑄 . Furthermore, when considering again the packet loss

and energy consumption of DeltaIoT, it can be seen that the curves of both

quality objectives tend to rise instead of converging towards a fixed value

327

9. Validation

(a) DeltaIoT results for packet loss (b) SimExp results for packet loss

(c) DeltaIoT results for energy consumption (d) SimExp results for energy consumption

(e) The accumulated reward of DeltaIoT (f) The accumulated reward of SimExp

Figure 9.5.: Comparison of DeltaIoT and SimExp packet loss, energy consumption and accumu-

lated rewards results of strategy 𝜋𝑄 taking into account the bounds 𝛽− , 𝛽 and 𝛽+.

(in contrast to the other strategies). Therefore, we repeated the DeltaIoT

simulation experiment by increasing the simulation horizon (i.e. the number

of simulations which were initially set to 96) to 500 runs. The results are

depicted by the orange curve on the left-hand side of Figure 9.5.

328

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

If we ignore for one moment the other curves depicted and simply focusing

the orange curve (again, indicating the results of the quality-based strategy

generated by the DeltaIoT simulator for 500 simulation runs), we can see that

the packet loss and energy consumption converge to a completely different

value as suggested for simulation horizon of 96. The right-hand side of

Figure 9.5 shows the quality-based strategy (also the orange curve) generated

by SimExp for 96 simulations per trajectory (the results are, in effect, copied

from the figures before). At this point, it can be seen that the packet loss

(which seems to diverge a little when comparing DeltaIoT with SimExp for

96 runs w.r.t. strategy 𝜋𝑄) now becomes accurate again, as the packet loss

of strategy 𝜋𝑄 for the DeltaIoT simulator clearly converges to the highest

packet loss value of all strategies. On the other hand, however, the energy

consumption of the DeltaIoT results converges towards a value ≈ 22.5 which

is again the highest energy consumption value of all three strategies (see

Figure 9.3c). This is in contradiction with our results where strategy 𝜋𝑄
causes the second-highest energy consumption.

One reason why the results in DeltaIoT and SimExp differ for the strategy

𝜋𝑄 is that the strategy makes its decisions based on the predicted energy

consumption. That is, if the energy consumption predictions are diverging,

also the behaviour of the adaptation logic is likely to diverge. In addition,

energy consumption is the primary quality attribute, i.e. it is first checked

whether the required energy consumption level is met, and if not, appropriate

countermeasures are taken; only if the energy consumption objective is

satisfied, the packet loss is checked. Although the evaluation results of the

strategies 𝜋𝛿∅ and 𝜋𝐷 (when compared to the evaluation results of DeltaIoT)

are quite precise, and we already observed prediction deviations in terms

of energy consumption for Prism and the DeltaIoT simulator, we conducted

further experiments to show the appropriateness of our MDP-based SimExp
method.

Therefore, we adjusted the thresholds of the quality-based strategy by con-

sidering upper and lower bounds. The upper and lower bounds correspond

to the thresholds at which the strategy 𝜋𝑄 reaches the maximum and mini-

mum energy consumption; that is, the same maximum and minimum energy

consumption is observed for each threshold above and below the thresh-

olds, respectively. Hereby, we investigated the bounds in both cases (i.e. for

DeltaIoT and SimExp) by experimental testing. In terms of SimExp the lower

bound corresponds to 𝛽− = 30.5 and the upper bound 𝛽+ = 34.5; for the

DeltaIoT simulator the lower bound is 𝛽− = 10 and 𝛽+ = 26. The thresholds

329

9. Validation

and bounds are summarised in Table 9.9. Note again that for any bound

lower than 𝛽− or higher than 𝛽+, the DeltaIoT simulator indicates the same

adaptation behaviour because 𝛽− and 𝛽+ refer to lower and upper energy

consumption bounds the system can never achieve by adaptation.

On this basis, we determined the thresholds of the strategy 𝜋𝑄 for the initial

validation. Since the ranges of energy consumption differ, we had to choose

a threshold 𝛽 that makes both strategies 𝜋𝑄 comparable when evaluated in

the context of DeltaIoT and SimExp. Therefore, we chose the mean value of

the respective upper and lower bounds.

The rationale for evaluating strategy 𝜋𝑄 for lower and upper bounds is that

we can expect a similar adaptation behaviour. For the upper bound case,

for example, the energy consumption is always satisfactory. Consequently,

fewer adaptations are required. The same applies to packet loss. Since

the initial configuration already provides for high transmission powers (i.e.

each mote is configured with the highest possible transmission power) and

no further adaptations to reduce the transmission power are expected, the

packet loss is also likely to be below the predefined threshold (recall that

high transmission powers reduce the probability of packet loss). For the

lower bound case, however, we expect the very opposite behaviour. In this

case, the energy consumption is not satisfied at any time. Therefore, strategy

𝜋𝑄 adapts the system as much as possible to satisfy the energy consumption

objective w.r.t. its implemented adaptation logic. Therefore, we expect low

energy consumption but increased packet loss because minimising energy

consumption is always at the cost of packet loss.

We simulated strategy 𝜋𝑄 for both, DeltaIoT and SimExp, with different

bounds. The results are depicted on Figure 9.5 where the results for 𝜋𝑄 with

upper bound 𝛽+ refer to the green curves and the results for 𝜋𝑄 with lower

bound 𝛽− refer to the blue curves. The results show that strategy 𝜋𝑄 behaves

for both bounds as expected. When we compare the DeltaIoT results with

our SimExp results, we also notice that the curves for packet loss and energy

consumption have the same shape; except the energy consumption curve for

mean bound 𝛽 . Consequently, the average accumulated rewards are deviating

from the strategy 𝜋𝑄 with mean bound 𝛽 . Nonetheless, we showed that the

evaluation results of SimExp for strategy 𝜋𝑄 are accurate when considering

bounds (or thresholds) which dictate a certain adaptation behaviour. This

adaptation behaviour could be observed in the DeltaIoT simulator and also by

our SimExp method. Therefore, we conclude that SimExp still gives accurate

330

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

results w.r.t. the strategy 𝜋𝑄 (although the results for the mean bound 𝛽

differed). In addition, we consider the evaluation deviation for the mean

bound 𝛽 as a result of the deviating energy consumption of Prism and the

DeltaIoT simulator we observed before.

Complementary to the discussed results of this section, in appendix A the

average architectural configurations to which each strategy converges after

a specific length of sampled states per trajectory. Here, we compare the

predicted configuration of SimExp with the actual configurations that one

observed after applying the DeltaIoT simulator. We consider it remarkable

that the prediction results regarding the 𝛿𝐷 strategy are very precise and

hardly differ from each other. The same applies to the strategy 𝜋𝑄 with

upper and lower bounds where the results are also fairly close. Only for the

strategy 𝜋𝑄 with mean bound 𝛽 there are deviations in the configurations

for the very reasons that we discussed in this section before. However, the

configurations do not deviate significantly either.

9.2.2. Load Balancing

After validating the SimExp method for the DeltaIoT case study system, we

consider the load balancer case study system in this section. Moreover, in

the context of the case study, we use SimuLizar as a baseline for SimExp.
The section is organised as for the DeltaIoT case study before. We start to

explain how the SimExp method is instantiated for the load balancer system.

Then, we outline the experiment setup and discuss the results afterwards.

The validation artefacts and results can be found at [157].

9.2.2.1. Instantiation of SimExp

In the following, we outline the instantiation of the SimExpmethod regarding

the load balancer system by following the same structure as in the last

section.

Initial Architecture Model The load balancer system has already been dis-

cussed in section 1.5.1. Therefore, we do not discuss the details of the system

(and its software architecture) again but refer to said section. Recall that the

load balancing system includes two application servers that are preceded

331

9. Validation

by a load balancing component to balance the incoming load. The load bal-

ancing component is controlled by a distribution factor which determines

the percentage of load distributed to the respective application servers. For

example, if the distribution factor is set to 0.7, 70 percent is distributed to

application server 1 and the remaining 30 percent to application server 2. The

distribution factor is adapted by a self-adaptive system to deal with varying

loads. Initially, however, we assume that the distribution factor is set to 1.0,

i.e. all incoming load is initially forwarded to application server 1.

Adaptations We consider two adaptations, namely Outsource and Scale
in. Both adaptations are concerned with adapting the distribution factor

w.r.t. some step size. More specifically, outsource refers to the case where

the distribution factor is adapted in a sense such that incoming load is dis-

tributed to both servers more strongly. For example, if the step size is set

to 0.1 and suppose the system is in the initial architecture configuration,

outsource results in adapting the distribution factor to 0.9. Afterwards, it is

possible to outsource again until the maximum possible distribution, i.e. 0.5,

is reached.

Scale in, on the contrary, reverses outsource adaptations w.r.t. step size (to

reduce the number of resources used and thus the costs). This means if the

distribution factor is set to 0.5, scale in results in a distribution factor of 0.6.

Furthermore, scale in can be repeated until the distribution factor is set to

1.0 again.

Environment Model The environment model and its corresponding envi-

ronmental variables of the load balancing system are trivial. In principle, the

environment includes only a single variable, namely the inter-arrival time.

The inter-arrival time determines the time between two user arrivals (see

section 2.3.1.1). Whenever the inter-arrival time decreases, the incoming load

of the system increases because of the rising number of incoming users per

time unit. The environment model and its modelled environmental dynamics

(described by our EnvDyn metamodel) are depicted on Figure 9.6.

Note that since we use PCM as ADL to describe software architectures, the

𝐼𝐴𝑇 template variable is instantiated to the open workload object (which

is the container object for describing the inter-arrival rates of users) of the

PCM model. For the load balancing system, there is only a single usage

332

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

𝐼𝐴𝑇

Open Workload

(a) Overview of the template variable in the

plate model notation.

𝐼𝐴𝑇 𝐼𝐴𝑇 ′ 𝐼𝐴𝑇 ′′

𝑡 = 0 𝑡 = 1 𝑡 = 2

(b) The DBN describing the environmental dynamics un-

rolled for three time steps.

Figure 9.6.: Overview of the only environmental variable of the load balancer system: The

inter-arrival time.

scenario defined with a single open workload object. Thus, the template 𝐼𝐴𝑇

is instantiated once. We discuss the concrete probability distributions of the

environment model in section 9.2.2.2.

Adaptation Strategies We consider three adaptation strategies in the con-

text of the load balancer case study system. As a first adaptation strategy,

we again consider the non-adaptive strategy 𝜋𝛿∅ (recall from section 9.2.1)

which reflects the behaviour of a static software system.

As a second adaptation strategy, we consider an adaptation strategy that

outsources the system when the response time exceeds a certain threshold 𝜀+

or scales in when the response time falls below a second threshold 𝜀− . The
step size for adapting the distribution factor of this strategy is 0.1; therefore,

we refer to the strategy as 𝜋0.1 in the following.

As a third adaptation strategy (denoted 𝜋0.2), we consider the same adaptation

logic as discussed for strategy 𝜋0.1 but consider a different step size, i.e. 0.2.

Therefore, strategy 𝜋0.2 reflects a design decision within the adaptation

strategy family where only the step size is varied.

For both strategies, we used the fixed thresholds 𝜀+ = 2.0 and 𝜀− = 0.3 where

the thresholds are specified in seconds.

Reward Function Again, we consider a reward function that reflects the

extent to which the quality objectives are satisfied. In terms of the load

balancing system, the primary quality objective is performance or more

333

9. Validation

specifically the response time of the system. Therefore, the reward function

simply returns a positive reward (i.e. +1) if the current response time is below

𝜀+ and a negative reward (i.e. -1) otherwise.

𝑟S : S × Δ × S → {+1,−1}, (𝑆, 𝛿, 𝑆 ′) ↦→ (−1)1𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑟𝑡 (𝑆′)>𝜀+ (9.8)

Again, we use the function 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑟𝑡 to abstract (in this case) the response

time prediction for state 𝑆 ′; we discuss the used prediction tool later.

Interdependency Assumption of Architecture and Environment Weassumed

no interdependency between the system or architectural configuration and

the environment, i.e. the default assumption is made (recall independence

assumption (6.9)). In other words, we assume that the stochastic dynamics

of the self-adaptive system are purely environmental-driven.

Prediction of quality attributes For the prediction of the quality attributes

(i.e. the response time of the system), we use SimuLizar. It is important

to understand the difference in how we use SimuLizar within our SimExp
method itself and for comparison. Within SimExp, we use the simulation

capabilities of SimuLizar for static systems. That is, we predict the response

time of the current architectural configuration and environmental state. In

this case, the environmental state consists of a single environmental variable

(i.e. the inter-arrival time 𝐼𝐴𝑇) holding a single inter-arrival time value.

The inter-arrival time is synchronised with the usage model of the current

PCM model (describing the architectural configuration) such that SimuLizar

is applied to predict the response time. Thus, we obtain a response time

prediction by considering the said PCM model as a static system and the

inter-arrival time as a fixed and non-varying value. This is repeated for

any state sampled by SimExp (based on the sampled environment state or

inter-arrival time and the adaptation applied by the strategy). In contrast,

we compare the results of SimExp with the simulation results of SimuLizar

by considering its self-adaptive system simulation capabilities.

9.2.2.2. Experiment Setup

Just like the DeltaIoT system, we compare the evaluation results of SimuLizar

with the evaluation results of SimExpw.r.t. the three adaptation strategies 𝜋𝛿∅ ,

334

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

𝜋0.1 and 𝜋0.2 in the context of the load balancer case study system. Therefore,

we implemented the strategies for both simulators. Also, to validate the

appropriateness of ourMDP-based approach, we expect the evaluation results

of the strategies with our MDP-based SimExp method to produce the same

rank as SimuLizar.

However, SimuLizar is effectively used to evaluate adaptation strategies for a

collection of predefined scenarios. Such scenarios are usually modelled by an

approach called Usage Evolution [31]. Usage evolution allows the modelling

of varying performance-relevant factors over time. Such a factor refers to the

arrival rate, i.e. the number of users arrivals within a time unit. An example

usage evolution of the arrival rate is depicted on Figure 9.7g which models

a scenario where the arrival rate increases to a maximum and decreases

afterwards again, i.e. a peak load scenario with time range [0, 100]. Usage
evolution is used in conjunction with Palladio in that during the simulation

of SimuLizar, the inter-arrival time of PCM’s usage model is periodically

synchronised with usage evolution. The inter-arrival time 𝑖𝑎𝑡 is calculated

by dividing 1 with the current arrival rate 𝑎𝑟 , i.e. 𝑖𝑎𝑡 = 1/𝑎𝑟 .

This is, however, in contrast with SimExp which evaluates adaptation strate-

gies in terms of numerous sampled trajectories of the environmental dynam-

ics. A naive approach for comparing with SimuLizar could be to sample a

representative number of trajectories which are transformed to an equiv-

alent set of usage evolutions for evaluating adaptation strategies in both

contexts. However, this is impractical and would require an exhaustive effort.

Conversely, we can define a set of usage evolutions and transform them

into individual DBNs where each DBN represents a deterministic trajectory.

For example, consider again the usage evolution describing the arrival rates

of a peak load scenario depicted on Figure 9.7g. In the first step, we can

transform the arrival rates such that we obtain the respective inter-arrival

times, see Figure 9.7h. The inter-arrival times are then discretised at equidis-

tant intervals, say 0, 1, 2, 3, . . . , 100. After discretisation, we obtain a discrete

function 𝑓 : {0, 1, . . . , 100} → 𝐼𝑅, as depicted on Figure 9.7i. From func-

tion 𝑓 , we generate a DBN with static distribution 𝑃 (𝑋𝐼𝐴𝑇) and dynamic

distribution 𝑃 (𝑋𝐼𝐴𝑇𝑡+1 | 𝑋𝐼𝐴𝑇𝑡). Let 𝑥, 𝑥 ′ ∈ 𝑉𝑎𝑙 (𝑋𝐼𝐴𝑇), the action of static dis-

tribution 𝑃 (𝑋𝐼𝐴𝑇) on 𝑥 is 𝑥 ↦→ 1𝑓 (0)=𝑥 and the action of dynamic distribution

𝑃 (𝑋𝐼𝐴𝑇𝑡+1 | 𝑋𝐼𝐴𝑇𝑡) on 𝑥 and 𝑥 ′ is (𝑥, 𝑥 ′) ↦→ 1𝑓 (𝑡+1)=𝑥 ′ · 1𝑓 (𝑡)=𝑥 . We repeated

this transformation for two further usage evolutions. The usage evolutions

and their discretised versions for SimExp are depicted on Figure 9.7.

335

9. Validation

(a) Usage evolution with con-

stant arrival rates.

(b) Inter-arrival time at constant

evolution.

(c) Discretized inter-arrival time

at constant evolution.

(d) Usage evolution with linear

arrival rates.

(e) Inter-arrival time at linear

evolution.

(f) Discretized inter-arrival time

at linear evolution.

(g) Usage evolution with arrival

rate peak. (h) Inter-arrival time with peak.

(i) Discretized inter-arrival time

with peak.

Figure 9.7.: Comparison of the usage evolutions in SimuLizar and SimExp.

The constant usage evolution on Figure 9.7a is selected in such a way that

the initial architectural configuration is not able to deal with the arrival rate

in the long run such that adaptation is required. The second usage evolution

indicates a continuously increasing arrival rate which demands adaptation

as well. For each strategy, we can now evaluate how each strategy performs

in the three usage evolutions for SimuLizar and SimExp where we expect the

same strategy rank.

Finally, Table 9.11 provides an overview of the experiment parameters. As

already mentioned, we defined the usage evolution scenarios over the time

range [0, 100]; thus, the simulation time of SimuLizar is adjusted to 100

and the number of trajectories in terms of SimExp. Because the simulation

of self-adaptive systems in SimuLizar is nondeterministic, we repeated the

336

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

Name Value Description

𝜀+ 2.0 Upper threshold of the response

time (specified in seconds) which

must not be exceeded.

𝜀− 0.3 Lower threshold of the response

time (specified in seconds) which

must not be fallen short of.

Simulation time 100 Simulated time units of SimuLizar.

Repetitions 10 Number of experiment repetitions

for SimuLizar.

Number of simulations 100 Number of simulations per trajec-

tory (compare with horizon from

SimExp).

Table 9.11.: Overview of the parameter setting for the load balancer case study system.

experiments ten times to maintain statistical certainty (we see in the next

section that there are no significant deviations). In terms of SimExp, the
only non-deterministic component refers to the environmental dynamics.

However, since we generated deterministic DBNs, the entire sampling process

becomes deterministic such that no further repetitions are required.

9.2.2.3. Experiment Results

Finally, we present the results of the validation. As described in the last

section, we evaluated all three strategies (i.e. non-adaptive strategy 𝜋𝛿∅ , 𝜋0.1
and 𝜋0.2) with our SimExp method and SimuLizar. The primary objective of

each strategy is to keep the system responsive in the presence of varying

workloads (or arrival rates). Again, all line plots indicate the mean and 95%

confidence interval.

Figure 9.8 depicts the evaluation results of all strategies for SimuLizar and

SimExp where the y-axis shows the response time of each strategy and

the x-axis depicts the simulation time. At this point, it is important to

note that the prediction results of SimuLizar and SimExp are not directly

comparable because SimuLizar conducts a continuous simulation over the

time range [0, 100] and SimExp samples 100 discrete states in which each state

337

9. Validation

(a) Simulizar results with constant evolution. (b) SimExp results with constant evolution.

(c) Simulizar results with linear evolution. (d) SimExp results with linear evolution.

(e) Simulizar results with peak. (f) SimExp results with peak.

Figure 9.8.: Comparison of SimuLizar and SimExp results. The left-hand side enumerates all

SimuLizar results w.r.t. the individual usage evolutions and the right-hand side the SimExp
results, respectively.

is individually simulated. For instance, consider the results of strategy 𝜋𝛿∅ for

SimuLizar Figure 9.8a and SimExp Figure 9.8b with constant usage evolution

(in each case the blue curve). Since strategy 𝜋𝛿∅ does not apply any adaptation,

the system remains in its initial architectural configuration. The initial

338

9.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

configuration, however, is not able to deal with the constant arrival rate (or

inter-arrival times) such that the response time increases linearly over time.

This situation is perfectly reflected in terms of SimuLizar and its continuous

simulation (see Figure 9.8a). In contrast, for strategy 𝜋𝛿∅ SimExp samples

100 states which constitute (in this case) the deterministic dynamics of the

self-adaptive system where for each state the architectural configuration (i.e.

the initial configuration) and the environmental states (the constant inter-

arrival time) are the same. However, each state is simulated individually

by SimuLizar such that we obtain for each simulation the same linearly

increasing response times as SimuLizar produced in Figure 9.8a. Internally,

SimExp reduces the response times to a single value, i.e. it calculates the

average response time which is approximately ≈ 29.33 (see Figure 9.8b). This

behaviour applies to all SimExp results and explains why the corresponding

result curves tend to be discontinuous in contrast to the SimuLizar curves.

Although the prediction results of SimuLizar and SimExp are not directly

comparable, we still expect the prediction results of SimExp to show the

same characteristics as the prediction results of SimuLizar, e.g. strategies

that show high response times in SimuLizar should also show high response

times in SimExp and vice versa. From this, we can conclude that our SimExp
framework allows the evaluation of adaptation strategies (w.r.t. some usage

scenarios) in the same way as SimuLizar. If we look at Figure 9.8 we can

see that the results of SimExp reflect the same as the results of SimuLizar.

More specifically, for each usage evolution scenario, strategy 𝜋𝛿∅ indicates

high response times; the strategies 𝜋0.1 and 𝜋0.2 performs better in which

𝜋0.2 achieves the best results.

The strategy rank is especially observable in the averaged accumulated

rewards as shown in Figure 9.9. We applied the same reward function that

we used for SimExp to the SimuLizar results (see left side of Figure 9.9);

the rewards of SimExp results are depicted on the right side. Hereby, we

again accumulated and averaged the generated rewards, i.e. 𝑎𝑐𝑐𝑢𝑚𝜋 (𝑁) =
1

𝑁

∑𝑁
𝑖=1 𝑟𝑖 . It can be seen that for 𝑁 = 100 the ranks of strategies are the same.

More specifically, for all three usage evolution scenarios, SimuLizar evaluates

the strategy rank: 𝑎𝑐𝑐𝑢𝑚𝜋𝛿∅
(100) < 𝑎𝑐𝑐𝑢𝑚𝜋0.1

(100) < 𝑎𝑐𝑐𝑢𝑚𝜋0.2
(100). The

very same rank is observed in the SimExp results which are in line with our

expectations.

Although the averaged accumulated rewards are fairly accurate, we ob-

serve that some characteristics of the predicted response time trajectories

of SimuLizar are differently predicted in SimExp. Regarding strategy 𝜋𝛿∅ ,

339

9. Validation

(a) Simulizar accumulated rewards for constant

evolution (b) SimExp results for constant evolution

(c) Simulizar results for linear evolution (d) SimExp results for linear evolution

(e) Simulizar results for peaked evolution (f) SimExp results for peaked evolution

Figure 9.9.: Comparison of the accumulated rewards of SimuLizar and SimExp.

for example, we observe in the SimExp results (although capturing the

high response times associated with 𝜋𝛿∅) quite a different response time

behaviour which is a result of the discrete sampling process to which SimExp
adheres. More specifically, the continuous simulation of SimuLizar maintains

performance-relevant properties (e.g. resource contention) over the entire

340

9.3. Reliability Analysis of AI-enabled Systems

simulation time range. SimExp, however, applies a simulation for every state

such that the simulation context (and thus performance-relevant properties)

is lost after each simulation. The extent to which the loss of information gen-

erally affects the evaluation of adaptation strategies cannot be fully clarified

within this validation. However, it did not influence the validation use case

currently under consideration but should be further investigated in future

work.

9.3. Reliability Analysis of AI-enabled Systems

In this section, we present the results of validation goal 3. As already dis-

cussed in section 9.1.3.2, there are no approaches comparable to ours. Al-

though there are model-based tools for analysing reliability attributes of

software systems, none of these applies to the scenarios we are interested in,

i.e. reliability analysis of AI-enabled systems taking into account the predic-

tive uncertainty of AI components. That is to say, we cannot use any tool as a

baseline or ground truth for comparison. Therefore, the main objective is to

validate the plausibility of our reliability prediction approach for AI-enabled

software systems. As our holistic approach is based on already validated

components, we validate several plausibility assertions to show the validity.

We initially focus on static software systems and expand the validation in the

next section for self-adaptive systems. First, however, we must introduce the

case study system of the Udacity self-driving car challenge. All validation

artefacts (i.e. results and models) can be looked up under [156].

9.3.1. Udacity Self-Driving Car Challenge

We conduct the validation in the context of the Udacity self-driving car

challenge [192]. The Udacity challenge is also known from the DNN (deep

neural network) testing tool DeepTest [186] where it was used as a case

study system to detect erroneous predictions from a selection of DNNs for

steering angle prediction. In the subsequent two sections, we give a brief

overview of the background of the challenge and introduce the considered

DNNs afterwards.

341

9. Validation

9.3.1.1. Background

The Udacity self-driving car challenge is about using deep learning methods

to take on certain control tasks. In this case, the DNNs are considered to

predict the steering angle of a self-driving car based on pure image data. For

this purpose, training data have been collected consisting of centred traffic

images labelled with steering angles. A steering angle is considered as a

value 𝛼 ∈ [−25, 25]; that is, the steering angle is a bounded value which is

finally scaled by value 1/25 such that the result is within the range [−1, 1]
[186].

Several teams were competing in the challenge to develop DNNs (trained

by the provided training data) that are to predict the steering angle as well

as possible for a final test dataset. The trained DNNs were evaluated by the

RMSE (root-mean-squared-error; see section 2.7.1) metric. More specifically,

the ranks of the DNNs were established by measuring the deviation of the

predicted steering angles to the actual steering angles of the test data by

applying RMSE. Based on the rank, the best DNNs were investigated. In the

next section, we describe the DNNs that we considered during validation.

9.3.1.2. Considered Deep Neural Networks for Steering Angle Prediction

In the context of the Udacity challenge, ten DNNs have been submitted and

ranked [192]. From these ten models, we selected two for validation, namely

Chauffeur [42] and Rambo [146]. We decided to use Chauffeur and Rambo

as their trained models are publicly available, well documented and easy to

reproduce (i.e. in terms of evaluation w.r.t. the provided test data).

Chauffeur The Chauffeur model [42] for steering angle prediction achieved

in the Udacity challenge the third rank [192] of all DNNs. It is based on

two sub-models where the first extracts a set of features from the input

image and the second sub-model is responsible for the actual prediction of

the steering angle. More specifically, the first sub-model corresponds to a

CNN (convolutional neural network) extracting 100 features from the input

image. The extracted features are forwarded to the second sub-model that

corresponds to an LSTM (long-short term memory) a subgroup of RNNs

(recurrent neural networks). The LSTM does not directly predict the steering

angle based on the given features but predicts the steering angle based on the

342

9.3. Reliability Analysis of AI-enabled Systems

concatenation of the features extracted from 100 images. In the following,

we denote the Chauffeur prediction model as 𝑏𝐶 .

Rambo The Rambo prediction model [146] achieved the second-best rank

within the Udacity challenge [192]. It consists of three CNNs in which two

CNNs are inspired by a DNN architecture of NVIDIA [29] and the third is

inspired by comma.ai’s steering model [51]. The Rambo model takes three

consecutive images and computes two consecutive differenced images which

serve as input. The result of each CNN is merged into a final layer. In the

following, we denote the Chauffeur prediction model as 𝑏𝑅 .

N-Version Recall from section 7.3 that we implemented the n-version pro-

gramming pattern as an architectural template. For steering angle prediction,

the n-version approach is essentially used to forward the input image to 𝑁

redundant and distinct prediction models that generate a prediction for the

image. The predictions are finally merged or combined by a voter or other

type of decision procedure. In this case, the steering angles are combined

by calculating the average of all predictions. Moreover, we consider two

redundant steering angle prediction models, namely Chauffeur and Rambo.

In the following, we denote the n-version prediction model as 𝑏𝑁𝑉 .

Perfect and Worst Steering Models Finally, we supplement the prediction

models 𝑏𝐶 , 𝑏𝑅 and 𝑏𝑁𝑉 by two additional steering models (or black-boxes)

𝑏+ and 𝑏− . As introduced in section 9.1.1, the black-box models 𝑏+ and 𝑏−

correspond to models where either the correct output is always produced

for every input (i.e. 𝑏+) or the wrong output is always produced for every

input (i.e. 𝑏−). In this case, the black-box models correspond to steering

angle prediction models following the aforementioned semantics.

9.3.2. A Generic Software Architecture for Self-Driving Cars

So far, we introduced the Udacity self-driving car case study system and

the various steering angle prediction models that we consider within the

validation of goal 3. A steering angle prediction model only provides a small

fraction of the functionality which constitutes a self-driving car. Thus, there

are other functionalities (e.g. braking and accelerating) relating to other

343

9. Validation

software components that make up the software system as a whole. The case

study does not provide any information about the software architecture of

the self-driving car because the focus is merely on the prediction of steering

angles. However, we need a software architecture based on which we create

the corresponding PCM model for which we want to show the validity of

our reliability prediction approach. In the context of the Udacity challenge,

there are no assumptions made about the software architecture in which a

steering angle prediction model is included. Therefore, we assume w.l.o.g. a

software architecture of a self-driving car w.r.t. proposed architectures from

literature [18, 94, 183]. Note that we do not sacrifice generality by assuming

a particular architecture as the plausibility assertions (9.1)-(9.3) are defined

over a fixed architecture model 𝐶𝑏 where only the used black-box model 𝑏 is

different. That is to say, if we analyse the architecture models individually

with distinct AI components, only the AI components themselves have an

impact on the reliability of the entire system. Therefore, the design of the

architectural model is of no relevance as long as they remain the same for

each AI component 𝑏. More generally, if plausibility assertions (9.1)-(9.3) hold

for a particular software architecture of an architecture family, the assertions

hold for the entire architecture family.

Since we are no experts in the field of engineering software architectures

for self-driving cars, we searched the literature for existing architectural

designs. Hereby, we created a PCM model for describing a fairly generic

software architecture of a self-driving car based on [18, 94, 183]. The generic

architecturemodel is by nomeans to be considered complete but rather serves

as a sufficiently abstract and simplified representation of a real software

architecture for a self-driving car. In the following, we briefly discuss the

architecture model and its generic components.

Figure 9.10 depicts the generic architecture. We assume an event-based

communication between the individual software components, e.g. by using

ROS (robot operating system) [142], which is already used in the context

of autonomous driving [3]. Excluded from event-based communication are

the VehicleControl, Acceleration, Brake and Steering components, as the

VehicleControl is connected exclusively to the TrajectoryGeneration com-

ponent, i.e. the generated trajectory is passed directly to the VehicleControl

component and not received from other components. Similarly, the Vehicle-

Control is directly connected with the components Acceleration, Brake and

Steering. For clarification, we slightly abuse the graphical notations by not

explicitly modelling every event channel from one component to another (e.g.

344

9.3. Reliability Analysis of AI-enabled Systems

EmbeddedPC Planning

RCP ECU VehicleControl

ECU Steering Brake

ECU Acceleration

EmbeddedPC VisionSensorik ECU

Sensors

<<call>>

Request/ms = 1

Camera

Localisation

Distance-
Measure

Semantic-
Understanding

SensorFusion

Steering-
AnglePrediction

Longitudinal-
MotionPlanning

Trajectory-
Generation

VehicleControl

Acceleration

Brake

Steering

Fl
ex

R
ay

 b
us

receives

emits

provides

requires

Figure 9.10.: An excerpt of the generic software architecture of a self-driving car assumed in

validation based on [18, 94, 183].

as for the HRI example system in Figure 1.3). That is, not all event channels

between components are directly visible in the figure but can be looked up

in the PCM model directly (see [156]).

The system is constantly taking sensor values (i.e. by a fixed time rate)

to perceive the environment. More specifically, the components Camera,

Localisation and DistanceMeasure indicate that respective sensor values

are taken. The sensor values are then emitted in the form of messages,

which are received by the components for which there exists an event chan-

nel for the reception. For example, the SteeringAnglePrediction compo-

nent receives the recorded images of the Camera component, predicts the

steering angle and emits the prediction as a message again. Note that the

SteeringAnglePrediction component represents one of the steering angle

345

9. Validation

𝑋𝑏

𝑋𝜑𝐵
𝑋𝜑𝐵𝑙

Figure 9.11.: The sensitivity model of the steering angle prediction models.

prediction models, e.g. Rambo 𝑏𝑅 or Chauffeur 𝑏𝐶 ; depending on the cur-

rently deployed AI component. Moreover, the components SensorFusion

and SemanticUnderstanding receive the recorded image data together with

the sensed localisation and distance data. The SensorFusion abstracts away

all procedures that take the sensor data from several sources (in this case

image, localisation and distance data) to produce features or new data of

higher quality [18]. Similarly, the SemanticUnderstanding component re-

ceives sensor data and is considered to generate semantically richer data. For

example, the image data can be enriched by detecting objects or segmenting

regions of interest that are relevant to the final trajectory planning [18].

The LongitudinalMotionPlanning component is responsible for determin-

ing the braking or acceleration parameters [94]. The TrajectoryGeneration

component receives the according messages (i.e. the longitudinal motion

parameters, semantically enriched data and predicted steering angle) to

compute a collision-free trajectory. The trajectory is finally translated into

control signals that are passed on to the VehicleControl component which

controls the respective actuators (i.e. Acceleration, Brake and Steering).

Finally, note that we assumed FlexRay as communication protocol [94]. More-

over, we modelled the resource environment consisting of six resource con-

tainers and the deployment of the component as specified by Jo et al. [94].

9.3.3. Sensitivity Model and Analysis

In this section, we introduce the sensitivity model that we consider for

validation. Furthermore, we present a sensitivity analysis algorithm that we

developed based on the work of Tian et al. [186].

346

9.3. Reliability Analysis of AI-enabled Systems

The general structure of the sensitivity model is depicted on Figure 9.11. For

validation, we consider two uncertainties: image brightness𝑋𝜑𝐵
and blurring

𝑋𝜑𝐵𝑙
where 𝑉𝑎𝑙 (𝑋𝜑𝐵

) := {𝐿𝑜𝑤, 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑆𝑡𝑟𝑜𝑛𝑔} indicates three brightness
levels and 𝑉𝑎𝑙 (𝑋𝜑𝐵𝑙

) := {𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦} indicates two possible events.

As usual, the random variable 𝑋𝑏 is binary, i.e. 𝑉𝑎𝑙 (𝑋𝑏) := {𝑆𝑢𝑐𝑐𝑒𝑠𝑠, 𝐹𝑎𝑖𝑙}.
We decided to consider the uncertainties as they were used (among others)

by DeepTest which already verified erroneous behaviour of the steering

angle prediction models when observing said uncertainties in the context

of the Udacity self-driving car challenge [186]. Clearly, image brightness

and blurring are generally no good uncertainties or properties in the context

of autonomous driving to analyse reliability attributes. Instead, one would

rather focus on stronger properties, e.g. neuron coverage. Nonetheless, for

showing the validity of our approach, the effectively chosen uncertainties

(and their quality) are of no relevance since only their measurable effect on the

AI model is of importance. For example, if we measure varying prediction

confidence of an AI component for some uncertainties and observe the

variation in the reliability predictions as well, we can conclude the validity (at

least regarding assertion (9.1)) of our approach independent of the concretely

chosen uncertainties.

Regarding the given structure of the sensitivity model, we need to deter-

mine the sensitivity distribution (i.e. 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

)) which we derive by

applying a sensitivity analysis. For the sensitivity analysis, we consider an

algorithm depicted on algorithm 9.1. Clearly, we could have used one of

the sensitivity analysis approaches described in section 7.1.2; however, we

decided to develop our own analysis as we would have to adopt the sensitivity

analysis approaches anyway to obtain a sensitivity model with the required

structure. Moreover, we can reuse insights from the DeepTest tool to derive

the sensitivity values (as we will see later).

The algorithm inputs five parameters.

• 𝐷𝑆𝑒𝑛𝑠 : The parameter refers to the sensitivity dataset 𝐷𝑆𝑒𝑛𝑠 based on

which the sensitivity model is determined. Hereby, 𝐷𝑆𝑒𝑛𝑠 does not

simply consist of labelled data, but each data is additionally labelled

with the uncertainty values which are observed in the given data. More

specifically, an element 𝑑 := (𝑥,𝑦, 𝜑𝐵, 𝜑𝐵𝑙) ∈ 𝐷𝑆𝑒𝑛𝑠 of the sensitivity

dataset includes (in addition to a given image 𝑥 ∈ X and correct

label or output 𝑦 ∈ Y of the input and output space of black-box

𝑏) two uncertainty values or labels 𝜑𝐵 and 𝜑𝐵𝑙 . For example, for a

347

9. Validation

Algorithm 9.1: Sensitivity analysis algorithm

Input: Dataset 𝐷𝑆𝑒𝑛𝑠 ,

Steering angle prediction model 𝑏,

The original RMSE 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏),
The averaged RMSE 𝑅𝑀𝑆𝐸𝑎𝑣𝑔,

The set of uncertainties Φ
Output: Sensitivity distribution 𝑃𝜃𝑏 (𝑋𝑏 | 𝑋𝜑𝐵

, 𝑋𝜑𝐵𝑙
)

1 𝜆 ∈ 𝐼𝑁 // The 𝑅𝑀𝑆𝐸𝑎𝑣𝑔 scaling factor

2 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑆 () // an empty list, for all

(𝜑𝐵, 𝜑𝐵𝑙) ∈ Φ
3 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒𝑃𝑎𝑟𝑎𝑚𝑠 () // ∀(𝜑𝐵, 𝜑𝐵𝑙) ∈ Φ : 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) = 0

4 foreach (𝑥,𝑦, 𝜑𝐵, 𝜑𝐵𝑙) ∈ 𝐷𝑆𝑒𝑛𝑠 do
5 𝑝 ← (𝑦,𝑏 (𝑥))
6 𝑎𝑝𝑝𝑒𝑛𝑑 (𝑆 (𝜑𝐵, 𝜑𝐵𝑙), 𝑝) // Appends 𝑝 to 𝑆 (𝜑𝐵, 𝜑𝐵𝑙)
7 end
8 foreach (𝜑𝐵, 𝜑𝐵𝑙) ∈ Φ do
9 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) ←

𝜆 ·𝑅𝑀𝑆𝐸𝑎𝑣𝑔

2

10 if 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) ≠ ∅ then
11 𝒚, 𝒚̂ ← 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) // fetch all predictions and

respective label

12 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) ←
√︃

1

|𝑆 (𝜑𝐵 ,𝜑𝐵𝑙) |
∑ |𝑆 (𝜑𝐵 ,𝜑𝐵𝑙) |

𝑖=1
(𝒚𝑖 − 𝒚̂𝑖)2

// calculates the local RMSE

13 end
14 if 𝜑𝐵 = 𝑁𝑜𝑟𝑚𝑎𝑙 ∧ 𝜑𝐵𝑙 = 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦 then
15 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) ← 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏)
16 end

17 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) ← 1𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)≤𝜆 ·𝑅𝑀𝑆𝐸𝑎𝑣𝑔 ·
(
1 − 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)

𝜆 ·𝑅𝑀𝑆𝐸𝑎𝑣𝑔

)
18 end
19 return 𝑃𝜃𝑏 (𝑋𝑏 | 𝑋𝜑𝐵

, 𝑋𝜑𝐵𝑙
)

given image 𝑥 and the corresponding label 𝑦, there are two additional

uncertainty labels, e.g. 𝜑𝐵 = 𝐿𝑜𝑤 and 𝜑𝐵𝑙 = 𝐵𝑙𝑢𝑟𝑟𝑦, which means that

the image 𝑥 is blurred and also has low brightness. The sensitivity

dataset 𝐷𝑆𝑒𝑛𝑠 consists, in effect, of synthetic image data and originates

from a test dataset 𝐷𝑇𝑒𝑠𝑡 used to evaluate the accuracy of steering

348

9.3. Reliability Analysis of AI-enabled Systems

angle prediction model 𝑏. 𝐷𝑆𝑒𝑛𝑠 is generated by 𝐷𝑇𝑒𝑠𝑡 by applying

image transformations that account for the distinct uncertainties under

consideration. In the next section, we discuss in more detail how

dataset 𝐷𝑆𝑒𝑛𝑠 is generated.

• 𝑏: Corresponds to the steering angle prediction model 𝑏 which is to

be analysed.

• 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏): The parameter refers to the original RMSE value asso-

ciated with steering angle prediction model 𝑏 and is originally deter-

mined by 𝐷𝑇𝑒𝑠𝑡 .

• 𝑅𝑀𝑆𝐸𝑎𝑣𝑔: Corresponds to the average RMSE of all steering angle

prediction models, i.e. 𝑅𝑀𝑆𝐸𝑎𝑣𝑔 :=
1

𝑁

∑
𝑏∈{𝑏1,...,𝑏𝑁 } 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏).

• Φ: The set of uncertainties based on which the sensitivity model is

analysed; in our case Φ := 𝑉𝑎𝑙 (𝑋𝜑𝐵
) ×𝑉𝑎𝑙 (𝑋𝜑𝐵𝑙

).

The output of the algorithm corresponds to the estimated sensitivity model,

i.e. 𝑃𝜃𝑏 (𝑋𝑏 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

).

Basically, the algorithm holds two variables (i.e. 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) and 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙))
and one constant 𝜆. The constant 𝜆 corresponds to a natural number which

describes a scaling factor used to determine the success probability (we

explain the meaning of 𝜆 later).

The algorithm initially iterates over all elements of 𝐷𝑆𝑒𝑛𝑠 . For each image

𝑥 the corresponding prediction is made by applying 𝑏 on 𝑥 , i.e. 𝑏 (𝑥). The
correct output 𝑦 and prediction 𝑏 (𝑥) are appended to 𝑆 (𝜑𝐵, 𝜑𝐵𝑙). Recall that
any 𝑑 ∈ 𝐷𝑆𝑒𝑛𝑠 is labelled with the corresponding uncertainties which are

observable in image 𝑥 . That is, the prediction of 𝑏 is made w.r.t. to the labeled

uncertainties 𝜑𝐵 and 𝜑𝐵𝑙 . Thus, the prediction 𝑏 (𝑥) and correct output or

label 𝑦 must be associated with 𝜑𝐵 and 𝜑𝐵𝑙 which is done by appending the

tuple (𝑦,𝑏 (𝑥)) to 𝑆 (𝜑𝐵, 𝜑𝐵𝑙).

The second loop of the algorithm iterates over all uncertainties of Φ (i.e.

𝑉𝑎𝑙 (𝑋𝜑𝐵
) ×𝑉𝑎𝑙 (𝑋𝜑𝐵𝑙

)). Within the loop, variable 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) is declared
and initialized. In principle, the variable holds the RMSE which is calculated

based on 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) for a given uncertainty pair 𝜑𝐵 ,𝜑𝐵𝑙 . In other words, it

holds a value which is calculated by applying RMSE to all prediction and label

pairs that are associated with particular uncertainty pair 𝜑𝐵 ,𝜑𝐵𝑙 . We consider

𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) as local RMSE because it is not computed based on the entire

dataset 𝐷𝑆𝑒𝑛𝑠 (as opposed to 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏) which is calculated w.r.t. 𝐷𝑇𝑒𝑠𝑡)

349

9. Validation

but only a subset of 𝐷𝑆𝑒𝑛𝑠 . Initially, 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) is set to (𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔)/2
(the reason for the initialisation is explained shortly). Afterwards, the first

if-clause checks whether 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) maintains values for uncertainty pair

𝜑𝐵 ,𝜑𝐵𝑙 . If so, the local RMSE is calculated w.r.t. the values of uncertainty

pair 𝜑𝐵 ,𝜑𝐵𝑙 stored in 𝑆 (𝜑𝐵, 𝜑𝐵𝑙). The second if-clause checks whether the

uncertainty pair corresponds to the default values. Recall that dataset𝐷𝑆𝑒𝑛𝑠 is

generated by 𝐷𝑇𝑒𝑠𝑡 , i.e. for all elements of 𝐷𝑇𝑒𝑠𝑡 some image transformation

is applied to generate synthetic images that include increased brightness or

blurring. The data elements of 𝐷𝑇𝑒𝑠𝑡 , however, are considered to indicate

no uncertainties; that is, no increased image brightness and no blurring are

observed in the images. Thus, we cannot calculate the local RMSE because

𝑆 (𝑁𝑜𝑟𝑚𝑎𝑙, 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦) = ∅. Instead, we set 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) := 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏)
since 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏) is computed w.r.t. 𝐷𝑇𝑒𝑠𝑡 , i.e. based on images where

𝜑𝐵 = 𝑁𝑜𝑟𝑚𝑎𝑙 ∧ 𝜑𝐵𝑙 = 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦 holds true.

Next, the success probability of making a correct prediction w.r.t. 𝜑𝐵 ,𝜑𝐵𝑙 must

be determined. Since𝑋𝑏 is a binary random variable, it is sufficient to estimate

either the event of encountering a successful or an erroneous prediction.

We estimate the success probability 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) = 𝑃𝑟 (𝑋𝑏 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
=

𝜑𝐵, 𝑋𝜑𝐵𝑙
= 𝜑𝐵𝑙) by taking 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) into account:

𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) = 1𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)≤𝜆 ·𝑅𝑀𝑆𝐸𝑎𝑣𝑔 ·
(
1 − 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)

𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔

)
(9.9)

The first term of the product of (9.9) makes sure that the local RMSE is

smaller or equal to the average RMSE of all considered steering angle pre-

diction models 𝑅𝑀𝑆𝐸𝑎𝑣𝑔 scaled by constant 𝜆. In other words, if for a

given uncertainty pair the RMSE is strongly deviating (i.e. the uncertainties

have a great impact on the prediction results), the 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) increases
accordingly but must not exceed the threshold 𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔. Otherwise,

1𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)≤𝜆 ·𝑅𝑀𝑆𝐸𝑎𝑣𝑔 evaluates to 0 and thus the success probability be-

comes 0 as well. However, if 𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) ≤ 𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔 holds, the success
probability is calculated according to the second term of the product of (9.9),

i.e. 1 − (𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏)/𝜆 · 𝑅𝑀𝑆𝐸𝑎𝑣𝑔) ∈ [0, 1]. This procedure is inspired by

a metamorphic relation introduced in DeepTest [186] which measures the

deviation of predicted and actual steering angles.

If no condition of the if-clauses of algorithm 9.1 evaluates to true,𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) =
(𝜆 ·𝑅𝑀𝑆𝐸𝑎𝑣𝑔)/2 applies. If we consider the if-clauses more precisely, it can be

seen that there still might be the case 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) = ∅. Another reason (besides

350

9.3. Reliability Analysis of AI-enabled Systems

𝜑𝐵 = 𝑁𝑜𝑟𝑚𝑎𝑙∧𝜑𝐵𝑙 = 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦) why 𝑆 (𝜑𝐵, 𝜑𝐵𝑙) = ∅might still apply relates

simply to the fact that 𝐷𝑆𝑒𝑛𝑠 contains no images where a respective uncer-

tainty tuple (𝜑𝐵, 𝜑𝐵𝑙) is observed. In this case, no statement about the success

probability can be made, i.e. the probability of observing success or failure is

by chance. More specifically, if we substitute𝑅𝑀𝑆𝐸𝑙𝑜𝑐𝑎𝑙 (𝑏) = (𝜆 ·𝑅𝑀𝑆𝐸𝑎𝑣𝑔)/2
in (9.9), it evaluates to 0.5.

Finally, based on 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙) the sensitivity distribution 𝑃𝜃𝑏 (𝑋𝑏 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

)
is determined and returned in which 𝜃𝑏 indicates that the parametric setting

of the distribution refers to 𝜃𝑏 (𝜑𝐵, 𝜑𝐵𝑙).

9.3.4. Generating Synthetic Data

In the last section, we discussed the sensitivity model and analysis. For the

sensitivity analysis, we need a sensitivity dataset 𝐷𝑆𝑒𝑛𝑠 which does not only

include input image and steering angle label pairs but also further labels

regarding the uncertainties observable in the input image. For this purpose,

we generate𝐷𝑆𝑒𝑛𝑠 by the test dataset𝐷𝑇𝑒𝑠𝑡 which is primarily used to evaluate

the accuracy (i.e. RMSE) of a steering angle prediction model 𝑏. More

specifically, we apply image transformations on each input image of 𝐷𝑇𝑒𝑠𝑡 .

For the generation of synthetic image data, we reuse image transformations

of DeepTest [186] that generate synthetic image data to detect erroneous

behaviour in AI models. The synthetic image data generation algorithm is

depicted on algorithm 9.2 The algorithm starts to loop over all input images

and steering angle label pairs. For each iteration, the brightness and blurring

uncertainty values are initially set to their default values, i.e. 𝑁𝑜𝑟𝑚𝑎𝑙 and

𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦. Afterwards, a natural number 𝑟 is randomly selected from the set

{1, 2, 3} to distinguish between three cases. In the first case (i.e. 𝑟 = 1), only

the image transformation to insert the blur 𝑡𝐵𝑙 is applied to 𝑥 , returning a

synthetic image (including the blur) and the corresponding uncertainty label

(i.e. 𝐵𝑙𝑢𝑟𝑟𝑦). The image transformation 𝑡𝐵𝑙 is reused by DeepTest, where

several different blur filters are available: Averaging, Gaussian, median and

bilateral. In the transformation 𝑡𝐵𝑙 we randomly select one of the blur filters.

In the second case (i.e. 𝑟 = 2), only the image transformation 𝑡𝐵 to adjust the

brightness of the image is applied. Again, we reuse the image transformation

of DeepTest where a constant value 𝛽 ∈ {10, 20, 30, . . . , 100} is either added
(to increase brightness) or subtracted (to decrease brightness) from each pixel

in the image. Moreover, whether 𝛽 is added or subtracted is again randomly

351

9. Validation

Algorithm 9.2: Synthetic image data generation algorithm

Input: Test dataset 𝐷𝑇𝑒𝑠𝑡

Output: Sensitivity dataset 𝐷𝑆𝑒𝑛𝑠

1 𝐷𝑆𝑒𝑛𝑠 ← ∅
2 foreach (𝑥,𝑦) ∈ 𝐷𝑇𝑒𝑠𝑡 do
3 𝜑𝐵 ← 𝑁𝑜𝑟𝑚𝑎𝑙

4 𝜑𝐵𝑙 ← 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦

5 𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚(1, 3) // selects randomly a natural number

from the range

6 if 𝑟 = 1 then
7 𝑥, 𝜑𝐵𝑙 ← 𝑡𝐵𝑙 (𝑥)
8 end
9 if 𝑟 = 2 then
10 𝑥, 𝜑𝐵 ← 𝑡𝐵 (𝑥)
11 end
12 if 𝑟 = 3 then
13 𝑥, 𝜑𝐵𝑙 ← 𝑡𝐵𝑙 (𝑥)
14 𝑥, 𝜑𝐵 ← 𝑡𝐵 (𝑥)
15 end
16 𝐷𝑆𝑒𝑛𝑠 ← 𝐷𝑆𝑒𝑛𝑠 ∪ (𝑥,𝑦, 𝜑𝐵, 𝜑𝐵𝑙)
17 end
18 return 𝐷𝑆𝑒𝑛𝑠

chosen. 𝑡𝐵 returns the synthetic image with the adjusted brightness and

uncertainty label (i.e. 𝑆𝑡𝑟𝑜𝑛𝑔 or 𝐿𝑜𝑤). In the third case (i.e. 𝑟 = 3), both

transformations (i.e. 𝑡𝐵𝑙 and 𝑡𝐵) are applied. Depending on the randomly

selected cases, a new synthetic image is created which is finally added to the

set 𝐷𝑆𝑒𝑛𝑠 .

9.3.5. Experiment Setup

In this section, we briefly discuss the experimental setup including the pre-

liminary analyses and experimental parameters. A summary can be found in

Table 9.12.

352

9.3. Reliability Analysis of AI-enabled Systems

Name Value Description

𝜆 20 Scaling factor of 𝑅𝑀𝑆𝐸𝑎𝑣𝑔.

𝐷𝑇𝑒𝑠𝑡 - The CH2_001 test dataset [191] which en-

compasses 5614 images and corresponding

steering angle labels.

𝑎𝑐𝑐 (𝑏) see (9.10) We use an RMSE-based accuracy measure

which is calculated based on 𝐷𝑇𝑒𝑠𝑡 .

Table 9.12.:Overview of the parameter setting for the Udacity self-driving car case study system.

Recall from section 9.3.1.2 that we consider for validation five steering angle

predictionmodels, namely Chauffeur𝑏𝐶 , Rambo𝑏𝑅 , n-version𝑏𝑁𝑉 (including

𝑏𝐶 and 𝑏𝑅 as two versions), a perfect steering angle prediction model 𝑏+ and
the worst possible model 𝑏− for predicting steering angles. For each black-

box 𝑏, we determined the accuracy 𝑎𝑐𝑐 (𝑏). Recall that the accuracy measure

is relevant for the plausibility assertions. Concretely, we use an RMSE-based

accuracy measure:

𝑎𝑐𝑐 (𝑏) = 1 − 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏) = 1 −

√√√
1

𝑁

𝑁∑︁
𝑖=1

(𝑏 (𝑥𝑖) − 𝑦𝑖)2, 𝑁 = |𝐷𝑇𝑒𝑠𝑡 | (9.10)

We calculate the RMSE (recall from section 2.17) based on the test dataset

𝐷𝑇𝑒𝑠𝑡 . For 𝐷𝑇𝑒𝑠𝑡 , we considered the test dataset CH2_001 [191] which en-

compasses 5614 images. The dataset was used in the Udacity self-driving

car challenge as the final test dataset to evaluate the distinct steering angle

prediction models.

For each steering angle prediction model (except 𝑏− and 𝑏+), we analysed
the sensitivity as described in section 9.3.3 based on a generated sensitivity

dataset 𝐷𝑆𝑒𝑛𝑠 (as described in 9.3.4). The individual sensitivity models are

depicted on Table 9.13. For each sensitivity model generated by the sensi-

tivity analysis, we created a corresponding EnvDyn model which holds the

sensitivity values and is used during reliability prediction. Note that for

reliability prediction with our approach, the probabilities of the uncertainties

themselves must also be determined, i.e. 𝑃 (𝑋𝜑𝐵
) and 𝑃 (𝑋𝜑𝐵𝑙

). Therefore, we
have assumed (w.l.o.g.) a distribution defined over the uncertainties that we

have consistently used for each reliability prediction.

353

9. Validation

Moreover, we created a PCM model describing the software architecture of

a self-driving car. Recall that w.l.o.g. we assumed a generic software archi-

tecture for self-driving cars based on proposed architectures from literature

(see 9.3.2).

For each steering angle prediction model, we created an uncertainty-refined

failure model to connect each 𝑏 with its respective sensitivity model. Fur-

thermore, each failure model references the same software-induced failure

type (which is defined within the SteeringAnglePrediction component)

reflecting the refined failure type modelling the failure potential of each AI

component. Based on the uncertainty-refined failure model, we predicted

the reliability (or rather probability of success) of our generic software archi-

tecture of a self-driving car by considering each black-box 𝑏 individually.

As a final remark, steering angle prediction models𝑏 𝑓 which are annotated by

𝑓 refer to models where the filtering pattern from section 7.1.1.2 is applied (or

the corresponding architectural template) and𝑀
𝑓

𝐶𝑏
the architecture model,

respectively. If the filtering pattern is applied, the resulting architecture

model 𝑀𝐶 is modified as well. We stated, however, that we consider only

a single architectural configuration; more specifically, the generic software

architecture from section 9.3.2 for which we created the corresponding PCM

model𝑀𝐶 . As a matter of fact, the same applies for𝑀𝐶𝑏𝑁𝑉
which describes

the architecture model where the n-version pattern (or architectural template)

is applied. This contradicts our plausibility assertions in which we stated that

we consider a single architecture model𝑀𝐶𝑏
where only the AI component

𝑏 is interchangeable. The reason for considering a fixed architectural model

𝑀𝐶𝑏
, where only 𝑏 is variable, is that only 𝑏 needs to have an impact on the

reliability of the system, so we can relate reliability attributes of 𝑏 directly

to reliability predictions and for comparison (e.g. 𝑀𝐶𝑏𝑅
with 𝑀𝐶𝑏𝐶

). That

is, when applying the filter to architecture model 𝑀𝐶𝑏
, we obtain a new

architecture model 𝑀
𝑓

𝐶𝑏
which are not directly comparable, e.g. the filter

component itself might indicate a certain failure probability which impacts

to some extent the overall reliability of the system. For validation purposes,

however, we configured all reliability-related elements inserted into the

architectural model (after either the filtering or the n-version pattern was

applied) to not affect the reliability of the system, but only the prediction

accuracy or predictive uncertainty of 𝑏 itself, i.e. the sensitivity model. This

means that each applied pattern or architectural template acts exclusively

as an architectural countermeasure (as described on 7.1.3.2) and has no

354

9.3. Reliability Analysis of AI-enabled Systems

other consequences in terms of reliability. Therefore, the architecture models

𝑀𝐶𝑏𝑁𝑉
,𝑀

𝑓

𝐶𝑏𝑅

and𝑀
𝑓

𝐶𝑏𝐶

are admittedly different in terms of their architectural

configuration but are still directly comparable with all other models.

9.3.6. Experiment Results

In this section, we present the experiment results. Recall that the main inten-

tion is to show that the plausibility assertions (9.1)-(9.3) are satisfied. More-

over, we show similarity between the sensitivity model 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

) and
the reliability predictions 𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 , 𝑋𝜑𝐵

, 𝑋𝜑𝐵𝑙
). In other words, we show

that the predicted success/failure probabilities indicate the same behaviour

or characteristics as the sensitivity model for different uncertainty values 𝜑𝐵
and 𝜑𝐵𝑙 .

First, however, consider Table 9.13 which depicts the sensitivity models

of all steering angle prediction models. As mentioned in the last section,

we obtained the sensitivity models and their respective probabilities by

applying the sensitivity analysis from section 9.3.3. For 𝑏+, we defined the

success probability to be always 1 to account for the perfect prediction

property. Accordingly, we define the success probabilities of 𝑏− to be always

0. From the sensitivity model, it appears that Chauffeur and Rambo indicate

lower probabilities of success (and thus higher probabilities of failure) for

uncertainty values that deviate from what we consider normal (i.e. images

that are not blurred 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦 and under normal brightness conditions

𝑁𝑜𝑟𝑚𝑎𝑙). Moreover, we calculated the RMSE of each model based on the

original test dataset 𝐷𝑇𝑒𝑠𝑡 (i.e. 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏)) and based on dataset 𝐷𝑆𝑒𝑛𝑠 (i.e.

𝑅𝑀𝑆𝐸𝑆𝑒𝑛𝑠 (𝑏)) which contains the generated synthetic image data enriched

by varying image brightness and blur. For Chauffeur 𝑏𝐶 , we calculated

𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏𝐶) = 0.05768, which deviates slightly (but negligibly) from the

originally documented RMSE (0.05816) of the Udacity challenge. Similarly,

Rambo’s calculated RMSE (𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏𝑅) = 0.05682) also differs negligibly

from the published results where the RMSE is reported as 0.05787. However,

the rank of the two models remains the same, i.e. Rambo performs better

than Chauffeur. The final rank of all models can be found in [192]. The

third and fourth columns depict the success and failure probabilities of each

𝑏. Note that 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏−) = ∞ accounts for the fact that 𝑏− produces the
worst possible predictions. Moreover, by considering the accuracy 𝑎𝑐𝑐 (𝑏) of

355

9. Validation

𝒃 𝑹𝑴𝑺𝑬𝒐𝒓 𝒊𝒈 𝑹𝑴𝑺𝑬𝑺𝒆𝒏𝒔 𝚽 Succ. Fail.

𝑏− ∞ ∞

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0 1

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0 1

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0 1

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0 1

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0 1

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0 1

𝑏𝐶 0.05768 0.07065

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9374 0.0626

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9347 0.0653

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9248 0.0752

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.933 0.067

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9448 0.0552

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9305 0.0695

𝑏𝑅 0.05682 0.06144

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9462 0.0538

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9365 0.0635

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9435 0.0565

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9411 0.0589

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9456 0.0544

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9434 0.0566

𝑏𝑁𝑉 0.04221 0.04631

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9561 0.0439

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9542 0.0458

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9523 0.0477

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.9562 0.0438

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.9596 0.0404

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.9543 0.0457

𝑏+ 0 0

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 1 0

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 1 0

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 1 0

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 1 0

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 1 0

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 1 0

Table 9.13.: An overview of the steering angle prediction models, their sensitivity models and

RMSE values.

356

9.3. Reliability Analysis of AI-enabled Systems

Model 𝒂𝒄𝒄 (𝒃) 𝒓𝒆𝒍 (𝑴𝑪𝒃) 𝑷𝒓 (𝑿𝒃 = 𝑺𝒖𝒄𝒄𝒆𝒔𝒔)

𝑏− −∞ 0 0

𝑏𝐶 0.94232 0.9170 0.9356

𝑏𝑅 0.94318 0.9242 0.9429

𝑏𝑁𝑉 0.95779 0.9372 0.9561

𝑏+ 1 0.9798 1

Table 9.14.: Comparing the accuracy of all steering angle prediction models with the overall

success probability of our reliability prediction approach and the overall success probability of

individual sensitivity models (i.e. 𝑃𝑟 (𝑋𝑏 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠)).

each steering angle prediction model 𝑏 (recall that 𝑎𝑐𝑐 (𝑏) = 1−𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔 (𝑏)),
we observe the following order:

𝑏− < 𝑏𝐶 < 𝑏𝑅 < 𝑏𝑁𝑉 < 𝑏+ (9.11)

By recalling assertion (9.1), we must observe

𝑟𝑒𝑙 (𝑀𝐶𝑏−) < 𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
) < 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅

) < 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑁𝑉
) < 𝑟𝑒𝑙 (𝑀𝐶𝑏+) (9.12)

in the reliability predictions of our approach. Therefore, consider Table 9.14.

The table shows all steering angle prediction models which are ordered from

top to bottom according to (9.11). The third column of the table shows the

predicted success probabilities that we obtained after applying our reliability

approach for each 𝑏 to architecture model𝑀𝐶𝑏
. It can be seen that the same

order applies as required in (9.12). Thereby, we conclude that our reliability

prediction approach maintains plausibility assertion (9.1).

After we validated that our reliability prediction approach preserves the over-

all success probability of the whole system (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏
)) w.r.t. the accuracy

of 𝑏, we now investigate how the characteristics of 𝑏 regarding (𝜑𝐵, 𝜑𝐵𝑙)
are preserved. Therefore, consider Figure 9.12, Figure 9.13, Figure 9.14 and

Figure 9.15 which relate the individual success probabilities of the sensitiv-

ity models of 𝑏+, 𝑏𝑅 , 𝑏𝐶 and 𝑏𝑁𝑉 with the predicted success probabilities

𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑𝐵, 𝜑𝐵𝑙) for all 𝜑𝐵 , 𝜑𝐵𝑙 and fixed architecture model𝑀𝐶𝑏

.

Note that𝑏− is not depicted because the success probabilities of the sensitivity
model and the predicted success probabilities of the system are 0. On the

other hand, Figure 9.15 depicts the success probabilities of the sensitivity

357

9. Validation

(a) Success probabilities of 𝑏𝐶 .
(b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶

| 𝜑𝐵 , 𝜑𝐵𝑙) .

Figure 9.12.:Comparing the sensitivitymodel of Chauffeur (i.e. 𝑃 (𝑋𝑏𝐶
= 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵

, 𝑋𝜑𝐵𝑙
))

with the prediction results of our reliability prediction approach (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
| 𝜑𝐵, 𝜑𝐵𝑙)).

(a) Success probabilities of 𝑏𝑅 . (b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅
| 𝜑𝐵 , 𝜑𝐵𝑙) .

Figure 9.13.: Comparing the sensitivity model of Rambo (i.e. 𝑃 (𝑋𝑏𝑅
= 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵

, 𝑋𝜑𝐵𝑙
))

with the prediction results of our reliability prediction approach (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅
| 𝜑𝐵, 𝜑𝐵𝑙)).

model of perfect model 𝑏+ (and the predicted success probabilities of the

system including 𝑏+). It can be seen that both 𝑃 (𝑋𝑏+ = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

)
and 𝑟𝑒𝑙 (𝑀𝐶𝑏+ | 𝜑𝐵, 𝜑𝐵𝑙) indicate equal probabilities which is a result of the

fact that the success probability of 𝑏+ is for all pairs (𝜑𝐵, 𝜑𝐵𝑙) equal to 1. It

358

9.3. Reliability Analysis of AI-enabled Systems

(a) Success probabilities of 𝑏𝑁𝑉 .
(b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑁𝑉

| 𝜑𝐵 , 𝜑𝐵𝑙) .

Figure 9.14.: Comparing the sensitivity model of the n-version model (i.e. 𝑃 (𝑋𝑏𝑁𝑉
= 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 |

𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

)) with the prediction results of our reliability prediction approach (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑁𝑉
|

𝜑𝐵, 𝜑𝐵𝑙)).

(a) Success probabilities of 𝑏+ . (b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏+ | 𝜑𝐵 , 𝜑𝐵𝑙) .

Figure 9.15.: Comparing the sensitivity model of the perfect steering angle prediction model

(i.e. 𝑃 (𝑋𝑏+ = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

)) with the prediction results of our reliability prediction

approach (i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏+ | 𝜑𝐵, 𝜑𝐵𝑙)).

359

9. Validation

is important to note that the figures do not depict probability distributions

but merely the individual success probabilities for any uncertainty pair, e.g.

𝑃𝑟 (𝑋𝑏𝐶 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
= 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙

= 𝐵𝑙𝑢𝑟𝑟𝑦) and 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 |
𝑋𝑈 = 𝑈 ,𝑋𝜑𝐵

= 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙
= 𝐵𝑙𝑢𝑟𝑟𝑦) for 𝑏𝐶 . However, each bar of a single

plot is associated with a probability distribution defined over 𝑋𝑏 and 𝑋𝑆𝑦𝑠 ,

respectively. For example, 𝑃𝑟 (𝑋𝑏𝐶 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
= 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙

= 𝐵𝑙𝑢𝑟𝑟𝑦) =
0.9374 and thus 𝑃𝑟 (𝑋𝑏𝐶 = 𝐹𝑎𝑖𝑙 | 𝑋𝜑𝐵

= 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙
= 𝐵𝑙𝑢𝑟𝑟𝑦) = 1 − 0.9374;

similarly, 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝑈 = 𝑈 ,𝑋𝜑𝐵
= 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙

= 𝐵𝑙𝑢𝑟𝑟𝑦) =

𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
| 𝐿𝑜𝑤, 𝐵𝑙𝑢𝑟𝑟𝑦) = 0.9188 and 𝑃𝑟 (𝑋𝑆𝑦𝑠 = 𝐹𝑎𝑖𝑙 | 𝑋𝑈 = 𝑈 ,𝑋𝜑𝐵

=

𝐿𝑜𝑤,𝑋𝜑𝐵𝑙
= 𝐵𝑙𝑢𝑟𝑟𝑦) = 1 − 0.9188. From the figures, it is quite obvious that

the probabilities of success show the same behaviour for each uncertainty

pair or more specifically are proportional to 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑𝐵, 𝜑𝐵𝑙). Thus, the

same must be true for the probabilities of failure. Complementary to the

figures, Table 9.15 contains the concrete values of the success probabilities,

the probabilities of the uncertainties pairs themselves, and the Bhattacharyya

distance 𝐷𝐵 .

Note that the table does not consider 𝑏− since the success probabilities are
all zero. Moreover, for simplification, we do not depict all entries of 𝑏+

because the success probabilities (i.e. 𝑃 (𝑋𝑏 | 𝑋Φ) and 𝑟𝑒𝑙 (𝑀𝐶𝑏
| Φ)) and

Bhattacharyya distances are the same for all uncertainties. We calculated

the Bhattacharyya distance between 𝑃 (𝑋𝑏 | 𝑋𝜑𝐵
= 𝜑𝐵, 𝑋𝜑𝐵𝑙

= 𝜑𝐵𝑙) and
𝑃 (𝑋𝑆𝑦𝑠 | 𝑋𝑈 = 𝑈 ,𝑋𝜑𝐵

= 𝜑𝐵, 𝑋𝜑𝐵𝑙
= 𝜑𝐵𝑙) for all (𝜑𝐵, 𝜑𝐵𝑙). As can be seen in

Table 9.15, the Bhattacharyya distance is fairly small for all 𝑏 which shows

the similarity of the respective distributions.

Finally, we validate plausibility assertions (9.2) and (9.3). For the assertions,

we have to compare the sets Φ𝑏𝑖 ,𝑏 𝑗
pairwise for all considered black-boxes 𝑏.

However, the pairwise comparison is tedious and difficult to assess even for a

few steering angle prediction models as we have to compare all combinations

(𝑏𝑖 , 𝑏 𝑗). Instead, we exploit a property that can be observed in all steering

angle prediction models. If we carefully review the table Table 9.15, we

can see that the individual success probabilities (i.e. the fourth column) are

partially ordered between the steering angle prediction models (ordered

from top to bottom according to (9.11)), e.g. 𝑃𝑟 (𝑋𝑏− = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
=

𝐿𝑜𝑤,𝑋𝜑𝐵𝑙
= 𝐵𝑙𝑢𝑟𝑟𝑦) < 𝑃𝑟 (𝑋𝑏𝐶 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵

= 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙
= 𝐵𝑙𝑢𝑟𝑟𝑦) =

𝑃𝑟 (𝑋
𝑏
𝑓

𝐶

= 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
= 𝐿𝑜𝑤,𝑋𝜑𝐵𝑙

= 𝐵𝑙𝑢𝑟𝑟𝑦) < . . . Figure 9.16 depicts

this monotonic property.

360

9.3. Reliability Analysis of AI-enabled Systems

𝒃 𝚽 𝑷 (𝑿𝚽) 𝑷 (𝑿𝒃 | 𝑿𝚽) 𝒓𝒆𝒍 (𝑴𝑪𝒃 | 𝚽) 𝑫𝑩

𝑏𝐶

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.09 0.9374 0.9188 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.12 0.9347 0.9162 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.09 0.9248 0.9063 0.0005

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.21 0.933 0.9144 0.0006

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.28 0.9448 0.9260 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.21 0.9305 0.9121 0.0005

𝑏
𝑓

𝐶

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0 0.9374 0.9188 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0 0.9347 0.9162 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0 0.9248 0.9063 0.0005

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.3 0.933 0.9144 0.0006

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.4 0.9448 0.9260 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.3 0.9305 0.9121 0.0005

𝑏𝑅

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.09 0.9462 0.9274 0.0007

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.12 0.9365 0.9179 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.09 0.9435 0.9247 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.21 0.9411 0.9224 0.0006

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.28 0.9456 0.9268 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.21 0.9434 0.9247 0.0007

𝑏
𝑓

𝑅

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0 0.9462 0.9274 0.0007

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0 0.9365 0.9179 0.0006

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0 0.9435 0.9247 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.3 0.9411 0.9224 0.0006

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.4 0.9456 0.9268 0.0007

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.3 0.9434 0.9247 0.0007

𝑏𝑁𝑉

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.09 0.9561 0.9371 0.0008

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.12 0.9542 0.9353 0.0008

(𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.09 0.9523 0.9334 0.0008

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝐿𝑜𝑤) 0.21 0.9562 0.9372 0.0008

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑁𝑜𝑟𝑚𝑎𝑙) 0.28 0.9596 0.9405 0.0009

(𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦, 𝑆𝑡𝑟𝑜𝑛𝑔) 0.21 0.9543 0.9354 0.0008

𝑏+ - - 1 0.9798 0.01

Table 9.15.: Comparison of the similarity of the success probabilities of the sensitivity models

with the success probability predicted by our reliability prediction approach.

361

9. Validation

(a) Success probabilities of the sensitivity models 𝑃 (𝑋𝑏 = 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑋𝜑𝐵
, 𝑋𝜑𝐵𝑙

) .

(b) Prediction results 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑𝐵 , 𝜑𝐵𝑙) .

Figure 9.16.: Comparing the success probabilities of the individual sensitivity models with the

predicted success probability of our approach.

362

9.3. Reliability Analysis of AI-enabled Systems

More precisely, Figure 9.16a shows monotonically decreasing success prob-

abilities (y-axis) of each sensitivity model (x-axis), with the steering angle

prediction models sorted according to (9.11) but in descending order. Regard-

ing plausibility assertion (9.2) and (9.3), this means that the success prob-

abilities of our reliability analysis must indicate the very same monotonic

property. Therefore, consider Figure 9.16b which shows the predicted success

probabilities 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑𝐵, 𝜑𝐵𝑙) (y-axis) for each steering angle prediction

model (x-axis) and uncertainty pair (𝜑𝐵, 𝜑𝐵𝑙). If we compare Figure 9.16a

and Figure 9.16b, we can observe exactly this property. Note that we omitted

𝑏− in Figure 9.16 as the success probability in both cases is 0 for all pairs

(𝜑𝐵, 𝜑𝐵𝑙). More specifically, the line plot of Figure 9.16b is simply shifted in

the negative direction of the y-axis (because the reliability predictions are

slightly smaller than the success probabilities of the sensitivity models) but

indicates the very same behaviour. Therefore, we conclude that plausibility

assertions (9.2) and (9.3) must hold.

Note that we have deliberately not considered or discussed the case where the

filtering pattern was applied, e.g. 𝑀
𝑓

𝐶𝑏𝑅

and𝑀
𝑓

𝐶𝑏𝐶

where an additional filter

is inserted to contain the effect of uncertainties. The main reason for this is

that the previous discussion referred exclusively to the success probability

of the sensitivity models and the models predicted by our approach. How-

ever, recall that the filtering pattern corresponds to an uncertainty-specific

architectural countermeasure which has no direct impact on the success

probability of the sensitivity model itself but rather on the impact of uncer-

tainties (see section 7.1.3.2). This can also be observed in Figure 9.16b where

the sensitivity models of 𝑏
𝑓

𝐶
and 𝑏

𝑓

𝑅
are identical to the sensitivity models of

𝑏𝐶 and 𝑏𝑅 . However, when looking at the probabilities of the uncertainties

(i.e. the third column), it can be seen that they are different compared to

the others. In this case, we modelled the effect of the filter component to

be deterministic. More precisely, we assumed that the filter always elimi-

nates the blur from the image, i.e. 𝑓 (𝐵𝑙𝑢𝑟𝑟𝑦) = 𝑓 (𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦) = 𝑁𝑜𝑡𝐵𝑙𝑢𝑟𝑟𝑦.
We made this strict improvement assumption because we can now expect

𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
) < 𝑟𝑒𝑙 (𝑀 𝑓

𝐶𝑏𝐶

) and 𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅
) < 𝑟𝑒𝑙 (𝑀 𝑓

𝐶𝑏𝑅

). Note from equation

(7.4) that 𝑟𝑒𝑙 (𝑀𝐶𝑏
) =

∑
(𝜑𝐵 ,𝜑𝐵𝑙) ∈Φ 𝑃𝑟 (𝑋𝜑𝐵

= 𝜑𝐵, 𝑋𝜑𝐵𝑙
= 𝜑𝐵𝑙) · 𝑟𝑒𝑙 (𝑀𝐶𝑏

|
𝜑𝐵, 𝜑𝐵𝑙). However, since the application of the filter eliminates image blur,

the corresponding probabilities of uncertainty tuples which contain 𝐵𝑙𝑢𝑟𝑟𝑦

have zero probability and do not affect the success probability of 𝑏. This

363

9. Validation

effect is reflected when predicting the corresponding success probabilities of

the entire system:

𝑟𝑒𝑙 (𝑀𝐶𝑏𝐶
) = 0.9170 < 0.9183 = 𝑟𝑒𝑙 (𝑀 𝑓

𝐶𝑏𝐶

)

𝑟𝑒𝑙 (𝑀𝐶𝑏𝑅
) = 0.9242 < 0.9249 = 𝑟𝑒𝑙 (𝑀 𝑓

𝐶𝑏𝑅

)

Thus, systems that contain the filter pattern are more reliable than systems

that do not, which is in line with our expectations.

9.4. Evaluating Self-Adaptive Systems to Safeguard
AI Components

In this section, we focus on validation goal 4. More specifically, we expand

the validation of the last section (i.e. reliability prediction of static AI-enabled

systems) to self-adaptive systems in which an AI component is to be safe-

guarded. For the validation, we focus on two case study systems, namely the

Udacity self-driving car challenge and the HRI system of section 1.5.3. All

results and validation artefacts can be found in reference [157].

9.4.1. Udacity Self-Driving Car Challenge

This section is similar in structure to the previous sections where SimExp
was validated. That is, we outline how the SimExp method is instantiated

in the context of the Udacity case study system and discuss the experiment

setup and results afterwards. First, however, we discuss how we expand the

Udacity case study system to a self-adaption scenario.

9.4.1.1. Self-Adaptive Filtering of Input Images

In section 9.3, we introduced the Udacity self-driving car challenge where AI

models (or more specifically deep learning) have been employed to predict

steering angles for a self-driving car. In this section, we expand the scenario

by considering the same generic software architecture from section 9.3.2 but

assume that the filtering pattern is applied to contain the effect of image

364

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

blurring. Although safety is an important aspect of self-driving cars, the

performance of the system, or the ability to process in real-time, must be en-

sured at the same time [116]. Therefore, the filter component is dynamically

activated in situations where an increased image blur is observed, e.g. by

leveraging image blur detection methods [189, 132, 117].

We consider the steering angle prediction models 𝑏− , 𝑏𝐶 , 𝑏𝑅 and 𝑏+. Note that
we exclude 𝑏𝑁𝑉 as it represents no AI component which must be safeguarded

but an already applied architectural pattern to enhance the reliability of

the system. Clearly, one may combine the n-version and filtering pattern

to obtain an even more reliable system; however, we do not consider this

scenario as it has no relevance for the validation of goal 4 but only leads to

more complexity.

The motivation for dynamically activating and deactivating the filter compo-

nent is to balance the reliability and performance attributes of the system.

Thus, one would expect that both attributes are considered in the reward

function. The consideration of performance as an additional influencing

factor, however, does not allow the validation of plausibility assertion (9.4)

where the assertion is exclusively based on reliability attributes. Therefore,

we only consider reliability as a single quality attribute.

9.4.1.2. Instantiation of SimExp

For the instantiation of SimExp, we could reuse various artefacts which have

already been generated in section 9.3.

Initial Architecture Model We reuse the same generic software architecture

of a self-driving car as presented in section 9.3.2. As discussed, we assume that

the filtering pattern is applied. Hereby, we configure the initial architecture

such that the filter component is initially deactivated.

Adaptations We consider two adaptations, namely the activation and de-

activation of the filter component. We implemented both adaptations as

model transformations which can be selected and applied by an adaptation

strategy.

365

9. Validation

Environment Model Recall that the environmental dynamics of a self-adaptive

system consists of a static part (describing the initial distribution of the en-

vironment) and a dynamics part (describing the temporal extension of the

static environment) which in conjunction constitutes a DBN. The environ-

ment E of the Udacity case study system encompasses two environmental

variables namely, image blur 𝜑𝐵𝑙 and brightness variations 𝜑𝐵𝑙 . That is, an

environmental state is formed by two random variables: 𝐸 := (𝑋𝜑𝐵𝑙
𝑋𝜑𝐵𝑙
). In

the context of the sensitivity model from section 9.3, we already modelled

the static environment, i.e. the distributions 𝑃 (𝑋𝜑𝐵𝑙
) and 𝑃 (𝑋𝜑𝐵

). Therefore,
only the stochastic evolution (i.e. the dynamic part) must be modelled. Just

as for 𝑃 (𝑋𝜑𝐵𝑙
) and 𝑃 (𝑋𝜑𝐵

), we assumed w.l.o.g. the dynamic distributions

which can be looked up in reference [157].

Adaptation Strategies We consider three adaptation strategies, namely the

non-adaptive strategy 𝜋𝛿∅ , the randomised filtering strategy 𝜋𝑅𝑎𝑛 and the

image blur mitigation strategy 𝜋𝑀𝑖𝑡 . The strategy 𝜋𝛿∅ again simulates the

behaviour of a static system where no adaptation is triggered at all. The

two remaining strategies are used to validate the steering angle prediction

model by dynamically activating the filter component. The randomised filter

strategy 𝜋𝑅𝑎𝑛 activates or deactivates the filter component randomly and

independently of the current environmental state; the image blur reduction

strategy 𝜋𝑀𝑖𝑡 activates the filter component whenever increased image blur

is observed and deactivates it otherwise.

It should be noted that the strategies are not thoroughly engineered. It is

arguably not sufficient for self-driving cars to just observe the degree of

blurring and activate a filtering component when needed. However, it is

not within the scope of this thesis to research suitable adaptation strategies

specifically for autonomous systems, nor arewe experts in this field. However,

regardless of the complexity of the strategies, our SimExp method must

preserve the plausibility assertion (9.4). Recall that the assertion requires that

for any strategy 𝜋 which is individually applied to safeguard an AI black-box

𝑏 from a set of AI black-box models {𝑏1, 𝑏2, . . . } with 𝑏1 < 𝑏2 < . . . , the

same ordering must apply for adaptation strategy where only 𝑏 is modified,

i.e. 𝜋 [𝑏1] < 𝜋 [𝑏2] < For the assertion, however, the complexity of

the adaptation strategy is of no relevance. That is to say, if we can validate

that assertion (9.4) holds for the adaptation strategies under consideration,

it must immediately follow that it also holds for any strategy of arbitrary

366

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

complexity. Moreover, we have already validated the appropriateness of our

SimExp method for more complex adaptation strategies in section 9.2.

Reward Function As mentioned before, we only account for the reliability

of the system to determine the reward because the consideration of additional

quality attributes might distort the order of evaluated strategies. More specif-

ically, the reward function returns simply the predicted success probability

of the system by using our reliability prediction approach for AI-enabled

systems.

𝑟S : S × Δ × S → [0, 1], (𝑆, 𝛿, 𝑆 ′) ↦→ 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑𝐵, 𝜑𝐵𝑙) (9.13)

Note that 𝑆 ′ := (𝐶𝑏, 𝐸) with 𝐸 := (𝑋𝜑𝐵𝑙
, 𝑋𝜑𝐵
).

Interdependency Assumption of Architecture and Environment Weassumed

no interdependency between the system or architectural configuration and

the environment, i.e. the dynamics of the self-adaptive system is purely

environmental-driven (recall independence assumption (6.9) on page 184).

This seems reasonable because no architectural configuration changes the

way how the environment (i.e. brightness and blurring effects) is stochasti-

cally evolving.

Prediction of quality attributes As mentioned before, we predict the proba-

bility of success for any sampled state 𝑆 . Therefore, we use our reliability

prediction approach for AI-enabled systems, i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑𝐵, 𝜑𝐵𝑙).

9.4.1.3. Experiment Setup

We evaluated each strategy w.r.t. any steering angle prediction model 𝑏− , 𝑏𝐶 ,
𝑏𝑅 and 𝑏+. Hereby, we sampled for each strategy 150 trajectories of length

100 making a total of 15000 sampled states. In the next section, we discuss

the results of the validation.

367

9. Validation

(a) Non-adaptive strategy 𝜋𝛿∅ [𝑏]. (b) Randomised filter strategy 𝜋𝑅𝑎𝑛 [𝑏].

(c) Image blur mitigation strategy 𝜋𝑀𝑖𝑡 [𝑏].

Figure 9.17.: SimExp results of each strategy individually evaluated for 𝑏− , 𝑏𝐶 , 𝑏𝑅 and 𝑏+.

9.4.1.4. Experiment Results

Figure 9.17 depicts the accumulated and averaged rewards generated by each

strategy. It can be seen that the accumulated and averaged rewards of any

strategy are fairly stable and converge towards a fixed reward. Comple-

menting Figure 9.17, Table 9.16 lists the expected and total rewards for each

strategy.

Note that each strategy which safeguards 𝜋 [𝑏−] is not visible on the figures

because they generate zero-valued rewards (which seems reasonable because

the success probability of 𝑏− is always 0). From section 9.3.6, we know

that the accuracy of the steering angle prediction models corresponds to

𝑏− < 𝑏𝐶 < 𝑏𝑅 < 𝑏+. That is, we expect for each strategy the following order

w.r.t. the expected reward 𝐼𝐸𝜋 [𝑋𝐺0
]:

𝜋 [𝑏−] < 𝜋 [𝑏𝐶] < 𝜋 [𝑏𝑅] < 𝜋 [𝑏+] (9.14)

368

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

Strategy 𝑰𝑬𝝅 [𝑿𝑮0]
∑

𝒊 𝒓 𝒊

𝒃− 𝒃𝑪 𝒃𝑹 𝒃+ 𝒃− 𝒃𝑪 𝒃𝑹 𝒃+

𝜋𝛿∅ [𝑏] 0.0 84.5 85.2 89.3 0.0 13647 13719 14555

𝜋𝑅𝑎𝑛 [𝑏] 0.0 80.5 79.2 85.2 0.0 13664 13733 14555

𝜋𝑀𝑖𝑡 [𝑏] 0.0 81.8 82.4 86.3 0.0 13663 13733 14555

Table 9.16.: Overview of the expected and total rewards of each strategy for the Udacity self-

driving car case study.

While in Figure 9.17 and almost all expected rewards shown in Table 9.16

reflect the very same order, we can observe a slight deviation of strategy

𝜋𝑅𝑎𝑛 [𝑏]. More specifically the expected reward of 𝜋𝑅𝑎𝑛 [𝑏𝐶] is higher than
𝜋𝑅𝑎𝑛 [𝑏𝑅], i.e. 𝜋𝑅𝑎𝑛 [𝑏𝐶] > 𝜋𝑅𝑎𝑛 [𝑏𝑅]. On the contrary, however, if we look

at the total rewards generated by 𝜋𝑅𝑎𝑛 [𝑏𝐶] and 𝜋𝑅𝑎𝑛 [𝑏𝑅], we can observe

the expected order. Therefore, we suspect that the expected rewards of

the experiment did not converge properly (which can also be a result of

the similar success probabilities of 𝑏𝐶 and 𝑏𝑅). If the convergence assump-

tion holds, we must merely sample more states, calculate the expected re-

ward again and should observe the proper order. Therefore, we sampled

for 𝜋𝑅𝑎𝑛 [𝑏𝐶] and 𝜋𝑅𝑎𝑛 [𝑏𝑅] 20000 states and calculated the expected reward

again. Hereby, we obtained 𝐼𝐸𝜋𝑅𝑎𝑛 [𝑏𝐶] [𝑋𝐺0
] = 79.3769 (with total reward

18219.2) and 𝐼𝐸𝜋𝑅𝑎𝑛 [𝑏𝑅] [𝑋𝐺0
] = 80.6528 (with total reward 18310.4) which

confirms our suspicion.

Finally, the results show that dynamically activating and deactivating a filter

component to remove blurring does not have a major impact on the reliability

of the system. In fact, this is not surprising as we already observed a small

improvement in reliability when using the filtering pattern. Looking at the

results of the generated rewards without considering the performance effects,

it is quite obvious that using a filter component does not seem to be a good

decision as it does not add significant value to the overall reliability of the

system, but rather degrades the performance. Nonetheless, the results show

that plausibility assertion (9.4) is preserved by our SimExp method which is

in line with our expectations.

369

9. Validation

9.4.2. Human-Robot-Interaction

In this section, we continue with validating goal 4 by considering the HRI

case study system. Whereas in the last section, we regarded adaptation

strategies where only the filter component has been dynamically activated,

we expand the adaptation logic in this section by considering a second

type of adaptation, namely switching the AI component. In this case, we

have two AI components which can be dynamically exchanged by a self-

adaptive system. Recall that the adaptation problem of the HRI system is to

strike a balance between the performance and reliability attributes of the

system. Therefore, the first AI component (hereinafter referred to as 𝑏𝐷)

tends to be less reliable in prediction but less computationally expensive;

in turn, the second AI component (hereinafter referred to as 𝑏𝑅𝑜𝑏) is more

robust but computationally expensive. However, this must be taken into

account by a self-adaptive system to balance both attributes as well as possible.

Although the validation primarily concentrates on plausibility assertion

(9.4), we complement the validation results by considering a second reward

function which also takes into account the performance of the system (and

not only the reliability as in the last section). Thus, we demonstrate how

SimExp allows software engineers to make trade-off decisions.

9.4.2.1. Instantiation of SimExp

In this section, we outline how the SimExp method is instantiated.

Initial Architecture Model We modelled the software architecture of the

HRI system (as presented in section 1.5.3) as PCM model. Initially, the filter

component is deactivated. Moreover, we consider 𝑏𝐷 as the default AI model

which is initially instantiated in the system.

Adaptations As already mentioned, the first adaptation that we consider is

activating or deactivating a filter component which reduces noise artefacts

(just as in the last section). The second adaptation corresponds to switching

the currently deployed AI component with a different one. As explained

earlier, we consider 𝑏𝐷 as the default AI model that can be dynamically

exchanged by the more robust model but computationally expensive 𝑏𝑅𝑜𝑏
and vice versa.

370

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

Environment Model Recall that in terms of the HRI case study system,

we have two uncertainties, namely brightness 𝜑𝐵 and sensor noise 𝜑𝑆𝑁 .

Hereby, the value space𝑉𝑎𝑙 (𝑋𝜑𝐵
) is equally discretised as in the Udacity case

study; the value space of 𝑋𝜑𝑆𝑁
, however, is discretised by considering three

sensor noise levels𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁
) := {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ}. The structure of the

sensitivity model for both AI components is depicted on Figure 7.10. Just as in

the Udacity case study, we assumed the distributions 𝑃 (𝑋𝜑𝐵
) and 𝑃 (𝑋𝜑𝑆𝑁

) for
the static environment and the dynamic environment (i.e. 𝑃 (𝑋 ′𝜑𝐵

| 𝑋𝜑𝐵
) and

𝑃 (𝑋 ′𝜑𝑆𝑁
| 𝑋𝜑𝑆𝑁

)) as well. Again, it is important to note that we can assume

w.l.o.g. any kind of distribution which governs the environmental dynamics

as long as they are rigorously used for the evaluation of all strategies. The

concrete distributions can be looked up in [157].

Adaptation Strategies We consider three adaptation strategies, namely the

by now well-known non-adaptive adaptation strategy 𝜋𝛿∅ , a randomised

strategy 𝜋𝑅𝑎𝑛 and finally a reliability-prioritised strategy 𝜋𝑅𝑒𝑙 . As before, 𝜋𝛿∅
simulates the behaviour of a static software system.

The adaptation logic of the reliability-prioritised strategy 𝜋𝑅𝑒𝑙 is depicted on

Listing 9.3. For the sake of clarification, we simplified the strategy and also

show only the analyse- and plan-phase of the adaptation strategy. In princi-

ple, analyse-phase checks whether the brightness and sensor noise levels are

increased or deviating from what is considered to have no significant effect

on the prediction of the AI component. If so, the plan-phase is initiated. If

the brightness and sensor noise are not suspicious, but the system response

time exceeds a fixed threshold 𝜀, the plan-phase is also initiated. Otherwise,

the strategy terminates and no adaptation is planned. Since the 𝜋𝑅𝑒𝑙 strategy

prioritises reliability, the planning phase first checks whether the reason for

the adaptation is due to potentially malicious input values (e.g. increased

sensor noise or varying image brightness) and selects appropriate adapta-

tions. Otherwise, performance-improving countermeasures are taken that

mainly reverse reliability-improving adaptations which are computationally

expensive and degrade the response time of the system.

In contrast, strategy 𝜋𝑅𝑎𝑛 randomly selects an applicable adaptation at each

time, i.e. activating the filter component is not possible, if the filter is already

activated.

371

9. Validation

1 public class ReliabilityPrioritizedStrategy extends

ReconfigurationStrategy<QVToReconfiguration> {

2 ...

3 @Override

4 protected boolean analyse(State source, SharedKnowledge

knowledge) {

5 if (getImgBrightness(knowledge) != "Normal" ||

getSensorNoise(knowledge) != "Low") {

6 return true;

7 }

8 return getResponseTime(knowledge) > THRESHOLD_RT

9 }

10

11 @Override

12 protected QVToReconfiguration plan(State source,

Set<QVToReconfiguration> options, SharedKnowledge

knowledge) {

13 var highSensorNoise = getSensorNoise(knowledge) != "Low";

14 var brightChange = getImgBrightness(knowledge) != "Normal";

15 if (highSensorNoise && brightChange &&

isDefaultMLModelActivated) {

16 return switchToRobustMLModel(options);

17 } else if (highSensorNoise && !isFilteringActivated) {

18 return activateFilteringReconfiguration(options);

19 } else if (brightChange) {

20 return QVToReconfiguration.empty();

21 }

22

23 if (getResponseTime(knowledge) > THRESHOLD_RT) {

24 if (!isDefaultMLModelActivated) {

25 return switchToDefaultMLModel(options);

26 } else if (isFilteringActivated) {

27 return deactivateFilteringReconfiguration(options);

28 } else {

29 return QVToReconfiguration.empty();

30 }

31 }

32 return QVToReconfiguration.empty();

33 }

34 }

Listing 9.3: Adaptation logic of strategy 𝜋𝑅𝑒𝑙

372

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

Reward Function We use the same reward function as presented in section

9.4.1 (see (9.13)). Recall that plausibility assertion (9.4) is formulated based

on the motivation to preserve reliability properties. Therefore, we can only

consider reliability predictions (or the success probability of the system) to

assess whether the assertions hold. However, since the challenge of a self-

adaptive system is also to take performance-related attributes into account,

we consider a second reward function:

𝑟𝑃𝑒𝑟 𝑓 : S × Δ × S → [0, 2],
(𝑆, 𝛿, 𝑆 ′) ↦→ 𝑟𝑒𝑙 (𝑀𝐶𝑏

| 𝜑𝐵, 𝜑𝐵𝑙) + (𝑛𝑜𝑟𝑚𝑟𝑡 ◦ 𝑟𝑡) (𝑆 ′)
(9.15)

To distinguish between both reward functions, we denote 𝑟𝑅𝑒𝑙 the pure

reliability-based reward function (i.e. (9.13)) and 𝑟𝑃𝑒𝑟 𝑓 the reward function

from (9.15). Note that 𝑟𝑃𝑒𝑟 𝑓 accounts for performance by considering the

normalised response time. We use the normalisation function 𝑛𝑜𝑟𝑚𝑟𝑡 from

(9.5) which normalises predicted response times to the range [0, 1] w.r.t.
some upper and lower response time bounds (i.e. by considering the upper

response time bound (i.e. 𝛽+𝑟𝑡 and 𝛽
−
𝑟𝑡). We solely use 𝑟𝑅𝑒𝑙 when checking

assertion (9.4); however, by considering 𝑟𝑃𝑒𝑟 𝑓 , we will demonstrate SimExp
supports software engineers in the decision-making process.

Interdependency Assumption of Architecture and Environment Weassumed

no interdependency between the system or architectural configuration and

the environment, i.e. the dynamics of the self-adaptive system is purely

environmental-driven (recall independence assumption (6.9) on page 184).

Prediction of quality attributes For this part of the validation, we consider

two quality prediction tools/approaches. First, we use our reliability predic-

tion approach for AI-enabled systems, i.e. 𝑟𝑒𝑙 (𝑀𝐶𝑏
| 𝜑𝐵, 𝜑𝐵𝑙). Second, we use

SimuLizar to predict the response time of a given state 𝑆 .

9.4.2.2. Experiment Setup

In the context of the HRI system, a Mask R-CNN [80, 2] has been used as a

detection component. However, the component has been trained via transfer

learning, i.e. the AI model was trained on a completely unrelated training

dataset containing completely different images as in the HRI context and

373

9. Validation

𝚽

𝒃𝑫 𝒃𝑹𝒐𝒃

Success Failure Success Failure

(𝐻𝑖𝑔ℎ, 𝐻𝑖𝑔ℎ) 0.85 0.15 0.95 0.05

(𝐻𝑖𝑔ℎ,𝑀𝑒𝑑𝑖𝑢𝑚) 0.9 0.1 0.97 0.03

(𝐻𝑖𝑔ℎ, 𝐿𝑜𝑤) 0.95 0.05 0.99 0.01

(𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ) 0.9 0.1 0.98 0.02

(𝑀𝑒𝑑𝑖𝑢𝑚,𝑀𝑒𝑑𝑖𝑢𝑚) 0.95 0.05 0.99 0.01

(𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑜𝑤) 0.99 0.01 1 0

(𝐿𝑜𝑤,𝐻𝑖𝑔ℎ) 0.85 0.15 0.95 0.05

(𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚) 0.9 0.1 0.97 0.03

(𝐿𝑜𝑤, 𝐿𝑜𝑤) 0.95 0.05 0.99 0.01

Table 9.17.: The sensitivity models of 𝑏𝐷 and 𝑏𝑅𝑜𝑏 .

finally retrained for a smaller set of HRI-related training data. Therefore, we

had not sufficient data to perform a sensitivity analysis. Instead, we assumed

sensitivity models for the AI components 𝑏𝐷 and 𝑏𝑅𝑜𝑏 which are depicted on

Table 9.17.

The monitorable space is defined as Φ := 𝑉𝑎𝑙 (𝑋𝜑𝐵
) ×𝑉𝑎𝑙 (𝑋𝜑𝑆𝑁

). We have

picked the individual sensitivity values such that for all uncertainty values

𝑏𝑅𝑜𝑏 indicates higher success probabilities reflecting the circumstance that

𝑏𝑅𝑜𝑏 is more robust regarding uncertainties compared to 𝑏𝐷 . We also config-

ured the PCMmodel such that the initial architecture configuration produces

an acceptable response time, i.e. less than the fixed threshold 𝜀, which we set

to 0.1. On the other hand, we have chosen the reliability-improving adapta-

tions (i.e. activation of the filter component and switching to 𝑏𝑅𝑜𝑏) such that

they introduce a performance overhead, i.e. the response time exceeds the

required threshold 𝜀. In this way, we artificially generate a situation where

performance and reliability compete with each other but must be balanced

by an adaptation strategy in the best possible way.

In the last section, we considered an ideal filter component that was able to

deterministically remove any occurrence of image blur. For the HRI system,

we assume that the filter is not able to remove all sensor noise. Therefore, we

defined a probabilistic filter component that is not always able to successfully

remove sensor noise. Depending on the level of sensor noise, the filter is more

or less successful. More specifically, for𝐻𝑖𝑔ℎ sensor noise, we assume that the

374

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

Name Value Description

𝛽+𝑟𝑡 0.3 The upper response time bound used

for response time normalisation, i.e.

𝑛𝑜𝑟𝑚𝑟𝑡 .

𝛽−𝑟𝑡 0.1 The lower response time bound used

for response time normalisation, i.e.

𝑛𝑜𝑟𝑚𝑟𝑡 .

𝜀 0.1 The response time threshold that

must not be exceeded.

Number of simulations 100 Number of simulations per trajectory

(compare with horizon from SimExp).
Number of trajectories 150 Number of trajectories to simulate.

Table 9.18.: Overview of the parameter setting for the HRI case study system. For some parame-

ters, no description could be found.

filter can reduce the level to𝑀𝑒𝑑𝑖𝑢𝑚 60% of the time and is unsuccessful to

40%; for𝑀𝑒𝑑𝑖𝑢𝑚 sensor noise, we expect the filter to reduce the sensor noise

level to 𝐿𝑜𝑤 70% of the time and be unsuccessful to 30% (where unsuccessful

means that the sensor level remains unchanged). The probabilistic nature

of the filter is reflecting the situation where sensor noise is not sufficiently

reduced, or the filtered image is still likely to produce wrong predictions.

Finally, table Table 9.18 summarises the made setups for the experiment. Just

as for the Udacity case study, we sampled 15000 states.

9.4.2.3. Experiment Results

As before, we calculated for each strategy the accumulated and averaged

rewards of each trajectory. That is, for a strategy 𝜋 , we apply 𝑎𝑐𝑐𝑢𝑚𝜋 (𝑁) :=
1

𝑁

∑𝑁
𝑖=1 𝑟𝑖 to each trajectory (or rather the rewards generated by 𝜋 of the

trajectory). The results are depicted on Figure 9.18 as line plots which in-

dicate the mean reward calculated by 𝑎𝑐𝑐𝑢𝑚𝜋 (𝑁) for each time step 𝑡 ∈
{0, 1, . . . , 𝑁 = 100} and 95% confidence interval.

We considered three AI black-boxes which are to be safeguarded, namely 𝑏− ,
𝑏𝐷 and 𝑏+. Note that 𝑏𝑅𝑜𝑏 is already considered to be a sufficiently robust (but

at the cost of a high resource burden) AI model such that we focus only on 𝑏𝐷 .

375

9. Validation

(a) Pure reliability based rewards of 𝜋𝛿∅ [𝑏]. (b) Pure reliability based rewards of 𝜋𝑅𝑎𝑛 [𝑏].

(c) Pure reliability based rewards of 𝜋𝑅𝑒𝑙 [𝑏].

Figure 9.18.: SimExp results of the strategies 𝜋𝛿∅ [𝑏], 𝜋𝑟𝑎𝑛 [𝑏], 𝜋𝑅𝑒𝑙 [𝑏] evaluated w.r.t. 𝑟𝑅𝑒𝑙 .

Because of this high computational cost, 𝑏𝑅𝑜𝑏 is rather to be considered in

situations where the overall reliability of the system is at risk (and the filter

component is not sufficient to maintain reliability objectives). Moreover,

when safeguarding 𝑏+ it makes arguably no sense to switch the perfect

AI model 𝑏+ with 𝑏𝑅𝑜𝑏 . For validation, however, only the preservation of

assertion (9.4) matters and not the suitability of the adaptation logic itself.

Therefore, we have the following order of AI models: 𝑏− < 𝑏𝐷 < 𝑏+. Based
on the ordering, we expect to observe

𝜋 [𝑏−] < 𝜋 [𝑏𝐷] < 𝜋 [𝑏+] (9.16)

w.r.t. the expected reward 𝐼𝐸𝜋 [𝑋𝐺0
]. Looking at the results (the left side of

Figure 9.18), we observe the very exact ordering. Complementary to the

results of Figure 9.18 consider Table 9.19 which shows the expected and

total rewards for each strategy. Just as in Figure 9.18, the expected rewards

376

9.4. Evaluating Self-Adaptive Systems to Safeguard AI Components

Strategy 𝑰𝑬𝝅 [𝑿𝑮0]
∑

𝒊 𝒓 𝒊

𝒃− 𝒃𝑫 𝒃+ 𝒃− 𝒃𝑫 𝒃+

𝜋𝛿∅ [𝑏] 0.0 80.1 85.1 0.0 13659 14250

𝜋𝑅𝑎𝑛 [𝑏] 37.1 72.5 75.3 7038 13885 14124

𝜋𝑅𝑒𝑙 [𝑏] 28.4 81.1 82.2 4813 13832 14149

Table 9.19.: Overview of the expected and total rewards of each strategy of the HRI case study.

(a) Results of 𝜋𝛿∅ [𝑏], 𝜋𝑅𝑎𝑛 [𝑏] and 𝜋𝑅𝑒𝑙 [𝑏]
based on 𝑟𝑅𝑒𝑙 .

(b) Results of 𝜋𝛿∅ [𝑏], 𝜋𝑅𝑎𝑛 [𝑏] and 𝜋𝑅𝑒𝑙 [𝑏]
based on 𝑟𝑃𝑒𝑟 𝑓 .

Figure 9.19.: SimExp results of the strategies 𝜋𝛿∅ [𝑏], 𝜋𝑟𝑎𝑛 [𝑏], 𝜋𝑅𝑒𝑙 [𝑏] w.r.t. 𝑟𝑅𝑒𝑙 and 𝑟𝑃𝑒𝑟 𝑓 .

maintain the strategy ordering when considering varying AI models which

conform to the expected ordering (9.16).

Finally, we evaluated the results by considering reward function 𝑟𝑃𝑒𝑟 𝑓 which

also accounts for performance aspects. Let us now put ourselves in the

position of a software engineer who has to choose one of the strategies for

safeguarding 𝑏𝐷 , i.e. 𝜋𝛿∅ [𝑏𝐷], 𝜋𝑅𝑎𝑛 [𝑏𝐷] and 𝜋𝑅𝑒𝑙 [𝑏𝐷]. Therefore, consider
Figure 9.19 which shows the results of all strategies (i.e. 𝜋𝛿∅ [𝑏𝐷], 𝜋𝑅𝑎𝑛 [𝑏𝐷]
and 𝜋𝑅𝑒𝑙 [𝑏𝐷]) applied to 𝑏𝐷 by considering 𝑟𝑅𝑒𝑙 (see Figure 9.19a) and 𝑟𝑃𝑒𝑟 𝑓
(see Figure 9.19b).

From the figure, it can be seen that the order of the strategies is changing

when taking into account performance attributes. In summary, the results

of our SimExp method show the highest expected reward for the strategy

𝜋𝛿∅ [𝑏𝐷] (≈ 1.92); in comparison, 𝜋𝑅𝑎𝑛 [𝑏𝐷] (≈ 1.68) and 𝜋𝑅𝑒𝑙 [𝑏𝐷] (≈ 1.7)

perform worse. That is, the most reasonable design decision would be to

engineer the system without self-adaptation capabilities. For the reward

377

9. Validation

function 𝑟𝑅𝑒𝑙 , the strategy 𝜋𝑅𝑎𝑛 [𝑏] performed best, arguably making more

frequent reliability-improving adaptations due to the random component of

the strategy. However, the strategy is not balancing the performance and

reliability attributes ideally which results in frequent performance violations.

Strategy 𝜋𝑅𝑒𝑙 [𝑏], on the contrary, applies only reliability-improving adapta-

tions if necessary which leads to better responsiveness of the system. The

strategy 𝜋𝛿∅ [𝑏𝐷], on the other hand, always remains in the initial architecture

configuration, which is known to be performance-friendly, i.e. the configura-

tion achieves the best possible response time and thus does not show any

performance violations. In addition, the AI model 𝑏𝐷 already has acceptable

predictive accuracy which leads to high rewards overall. Note however that

the results are dependent on the defined reward function and the behaviour

of the environment. For example, if we assume a more dynamic environment

and the reward function favours the reliability of the system, the overall

result could be different.

Finally, note that the expected rewards of all strategies safeguarding 𝑏𝐷
(see the third column of Table 9.19) deviate from the averaged accumulated

rewards of Figure 9.19a. In terms of plausibility assertion (9.4) this has no

consequences because the assertion is defined over the same strategy 𝜋

where only the safeguarded AI model 𝑏 varies. Nonetheless, one would

expect the same ordering when comparing the expected reward with the

averaged accumulated reward. However, when considering the total reward

(see the sixth column of Table 9.19), we observe the very same strategy

ordering as in Figure 9.19a. Just as in section 9.4.1, we attribute this to

the convergence behaviour. More specifically, while 𝜋𝛿∅ and 𝜋𝑅𝑒𝑙 dictate

a specific adaptation logic, the resulting sampled trajectory space often

contains more characteristic trajectories. On the contrary, strategy 𝜋𝑅𝑎𝑛 is

completely based on random such that no characteristic trajectories exist

but solely trajectories that follow no pattern or logic. This exploratory

property of 𝜋𝑅𝑎𝑛 leads to an increased trajectory space from which samples

are generated (containing no characteristic trajectories but only random

ones). However, this is accompanied by slow convergence behaviour when

estimating 𝐼𝐸𝜋𝑅𝑎𝑛 [𝑋𝐺0
].

378

9.5. Discussion of Results and Research Questions

9.5. Discussion of Results and Research Questions

In this section, we discuss the results of the validation and answer the research

questions accordingly. Moreover, we discuss the threats to validity.

9.5.1. Goal Achievement

Having carried out the validations for each validation goal, we are now

discussing the results and achievement of each validation goal. As a final

remark, we would like to emphasise that we consider the case study systems

load balancing and HRI rather as supplementary validations. In the case of

the load balancing system, this is because SimuLizar is not fully comparable

to SimExp (as SimuLizar is scenario-based); in the case of the HRI system,

we had to assume sensitivity models and could not analyse the existing AI

models. Nevertheless, both case studies are considered an integral part of

the validation, which reinforces the validity of our results.

9.5.1.1. Modelling the Environmental Dynamics

For validation goal 1, we aimed to validate the applicability of our EnvDyn
metamodel. In contrast to the other validation goal, there is no dedicated

section where goal 1 is validated. This is because the validation of all other

goals implicitly validates goal 1.

For the validation goal, we focused on two questions: First, whether we

can instantiate and apply our EnvDyn metamodel domain independently

(i.e. question 1.1) and second, whether the essential characteristics of the

operating environment are captured (i.e. question 1.2). For both questions,

we considered the metrics used in the remaining validation goals as their

results directly provide answers for the validation questions 1.1 and 1.2. We

were able to instantiate the EnvDyn metamodel for all considered case study

systems. That is, we modelled the operating environment of the individual

self-adaptive systems considered for each case study system (each of which

belongs to a different domain). Therefore, we identified the essential variables

of the environment which affect the quality attributes of the system (e.g.

activation probability, SNR and wireless interference in the context of the

DeltaIoT case study system), modelled their initial/static distribution (i.e.

379

9. Validation

the BN describing the static environment) and modelled the environmental

dynamics (i.e. the temporal expansion captured by a DBN). Moreover, the

sensitivity models of the AI components are also modelled with our EnvDyn
metamodel (modelled as BN).

Based on the modelled operating environments, we conducted the validation

of the goals 2, 3 and 4 as intended. As presented in the respective sections,

we showed that the validation results are in line with our expectations and

are considered to be valid. Therefore, we conclude that our EnvDyn meta-

model provides the required capabilities to model and capture the essential

characteristics of an operating environment. In summary, we conclude that

the EnvDyn metamodel is applicable in the sense that the operating environ-

ments can be modelled domain-independently and that the created instances

are sufficiently accurate such that they allow the evaluation of adaptation

strategies (i.e. goals 2 and 4) and the prediction of reliability attributes of

AI-enabled systems (i.e. 3).

9.5.1.2. Evaluating Adaptation Strategies of Self-Adaptive Systems

In terms of validation goal 2, we validated our SimExp method in the context

of two case study systems, namely the DeltaIoT and the load balancer system.

Moreover, we formulated three validation questions (i.e. questions 2.1-2.3).

Question 2.1 was concerned with whether our SimExp framework generates

comparable evaluation results compared with a domain-specific simulator.

We defined two metrics (namely metrics 2.1.1 and 2.1.1) to elaborate the ques-

tion. For metric 2.1.1, we considered the DeltaIoT system where we compared

the evaluation results of adaptation strategies produced by SimExp with the

results of the domain-specific DeltaIoT simulator. The results demonstrated

that the rank of the strategies was preserved by SimExp. Although we found

deviations for a single strategy, the anomaly can be attributed to prediction

deviations of the Prism model-checking tool used for energy consumption

prediction. Furthermore, we have shown that our SimExp method provides

accurate evaluation results for this strategy under certain conditions. For

metric 2.1.2, we instantiated the SimExp method in the performance domain,

i.e. the load balancing system based on the ZNN.com system. In the case

study, we considered SimuLizar as a domain-specific simulator to predict

the quality of adaptation strategies in terms of response time. However,

380

9.5. Discussion of Results and Research Questions

SimuLizar is a scenario-based simulation tool which is only partially com-

parable with our SimExp method. Nonetheless, we defined three evaluation

scenarios and three adaptation strategies for which SimuLizar could evaluate

each strategy individually. We transformed the scenarios into deterministic

trajectories which we used to evaluate each adaptation strategy with Sim-
Exp. We observed that our SimExp framework produced the same evaluation

results as SimuLizar, i.e. the same quality rank of the strategies.

In validation question 2.2, the goal was to validate whether our SimExp
method supports software engineers in decision-making. Hereby, we consid-

ered the same metrics as for question 2.1. Because the results of the metrics

demonstrated that our SimExp frameworks generate the same strategy rank,

we can conclude that the framework allows for the comparison of distinct

strategies. Moreover, for the load balancer system we considered two adap-

tation strategies of the same adaptation strategy family. Because also in

this case, the proper adaptation strategy rank was maintained, we can also

conclude that design decisions within an adaptation strategy family can be

evaluated. Similarly, we considered several variants of an adaptation strategy

in the DeltaIoT system (corresponding to design decisions within a strategy

family) and evaluated them accordingly, e.g. different energy consumption

thresholds.

In validation question 2.3, we focused on whether SimExp enables the com-

parison of self-adaptive and static software systems. Again, we considered

the same metrics. Recall that we have always considered the adaptation strat-

egy 𝜋𝛿∅ in each case study system, which simulates the behaviour of a static

software system. Since both, DeltaIoT and SimuLizar allow the evaluation of

static systems, we could validate whether SimExp generates the same ranks

for a set of adaptation strategies including 𝜋∅ and compare the results with

DeltaIoT and SimuLizar. In doing so, we have shown that our SimExpmethod

allows the comparison between self-adaptive systems and a static software

system. Therefore, we conclude that SimExp provides means to support soft-

ware engineers in deciding whether self-adaptation capabilities are necessary

or whether a static system already meets the quality requirements.

Complementary to the results of both case study systems, we showed that

SimExp preserves plausibility assertions when evaluating adaptation strate-

gies for safeguarding AI black-box components (see validation goal 4 later).

The results not only demonstrate the general validity of SimExp but addi-

tionally demonstrates the ability to compare distinct strategies and design

381

9. Validation

decisions within strategy families. In total, we considered nine different adap-

tation strategies (considering all case study systems; three per case study,

with strategy 𝜋∅ being the same in all case studies) to solve the adaptation

problem of each case study. Taking into account the results of all metrics for

each validation question, we conclude that MDPs are appropriate analytical

models to evaluate adaptation strategies.

9.5.1.3. Reliability Analysis of AI-enabled Systems

Regarding validation goal 3, we considered the Udacity challenge for predict-

ing steering angles of self-driving cars. Because our approach is based on an

existing reliability approach (without changing the core prediction logic), we

focused on plausibility assertions which must be preserved by our approach.

We considered three validation questions, i.e. questions 3.1-3.3.

In validation question 3.1, we addressed whether sensitivity models are

appropriate representations of AI models when predicting system-level reli-

ability attributes. We tackled the question by considering two metrics, i.e.

metrics 3.1.1 and 3.1.2. For the metric 3.1.1, we measured the similarity of

the individual success/failure probabilities of each sensitivity model to the

resulting success/failure probabilities of the reliability prediction. Since only

the success/failure probabilities of the sensitivity models affect the reliability

prediction, both success/failure probabilities (i.e. those of the sensitivity

model and those of the reliability prediction) must have some similarity.

Therefore, we measured the similarities using the Bhattacharyya distance. In

all cases, we determined values close to 0, which means that the distributions

are very close or similar. In addition, we considered metric 3.1.2 which is

associated with plausibility assertion (9.1). Regarding plausibility assertion

(9.1), the results demonstrated that for a set of steering angle prediction

models which induce an accuracy order (w.r.t. some performance measure),

we could observe the same order in the reliability predictions. That is, for any

two AI models 𝑏 and 𝑏′ with 𝑏 > 𝑏′ (i.e. 𝑏 gives more accurate prediction re-

sults compared to 𝑏′), the predicted success probability of the overall system

with 𝑏 is higher than for the same system with 𝑏′. Given the results of both

metrics, we conclude that sensitivity models are adequate representations of

AI models in terms of reliability prediction.

In validation question 3.2, we focused on whether our reliability prediction

approach reflects reliability attributes of AI components. Hereby, we consider

382

9.5. Discussion of Results and Research Questions

metric 3.2.1 which is associated with plausibility assertions (9.1)-(9.3). Plausi-

bility assertion (9.1) has been already validated for the previous question. For

plausibility assertions (9.2) and (9.3), we similarly demonstrated that the in-

dividual conditional success probabilities of a sensitivity model (conditioned

on a particular uncertainty tuple) are preserved by the individual conditional

success probabilities of our reliability prediction.

Finally, in question 3.3, we validated whether our relaibility prediction ap-

proach supports software engineers in decision-making by consideringmetric

3.3.1. The metric is associated with the assertions (9.2) and (9.3). We have

considered two architectural patterns (namely the filter and the n-version

patterns), which we have applied and analysed in terms of the reliability

attributes. We have taken advantage of the fact that architectural patterns

(when applied as described in section 7.1) act exclusively on the sensitivity

model of an AI model 𝑏. Consequently, this can be thought of as generating

new sensitivity models for which the assertions (9.2) and (9.3) must still hold.

The results of the validation confirm these effects and demonstrates that

both assertions are preserved.

In summary, we consider the validation goal 3 as achieved. We were able to

validate all plausibility assertions and answer each validation question posi-

tively. Therefore, we conclude the plausibility of our reliability prediction.

9.5.1.4. Evaluating Adaptation Strategies of Self-Adaptive Systems to
Safeguard AI Black-Box Components

Finally, for validation goal 4, we expanded the validation of goal 3 to self-

adaptive systems. In doing so, we have considered a single validation question

(namely question 4.1) which elaborates whether our expanded SimExp frame-

work allows the evaluation of adaptation strategies specifically designed

to safeguard AI components. More precisely, we aim to validate whether

reliability-specific attributes are sufficiently reflected in the overall evaluation

result of a strategy produced by SimExp.

For validation question 4.1, we have considered an additional plausibility

assertion (more precisely assertion (9.4)) which states in simplified terms

that for any two AI models 𝑏 and 𝑏′ with 𝑏 > 𝑏′ it follows that 𝜋 [𝑏] > 𝜋 [𝑏′],
i.e. the strategy 𝜋 applied to both AI models must have a higher expected

reward for the safeguarded model with higher accuracy. We determined

383

9. Validation

the validity of our approach regarding assertion (9.4) by considering various

adaptation strategies and AI models in two case stud systems, namely the

Udacity self-driving car challenge and the HRI system. For both case studies,

we demonstrated that assertion (9.4) has been preserved by our approach.

The results are complementing the results of validation goal 2 and allow the

conclusion that our SimExp method is also capable to evaluate adaptation

strategies for safeguarding AI black-box components.

9.5.2. Answering the Research Questions

Based on the validation results, we are now able to answer the research

questions. Recall that the research questions are structured by one main

research question followed by several sub-research questions which must be

answered individually to answer the main research question. Therefore, we

first start to answer the sub-research question and discuss the main research

question afterwards.

Research Question 1 We formulated research question RQ1 as follows:

Research Question 1: How to evaluate adaptation strategies of

self-adaptive systems at design-time regarding the ability to meet

quality objectives?

The first research question is mainly concerned with the question of how to

evaluate adaptation strategies at design-time. We have formulated several

sub-research questions whose individual answers enable us to answer the

main question:

Research Question 1.1: How can environmental dynamics be

formalised domain-independently at design-time?

To evaluate adaptation strategies at design-time, one has to model the op-

erating environment or environmental dynamics in which a self-adaptive

system operates. Moreover, we don’t want to restrict ourselves to a certain

domain but rather evaluate adaptation strategies domain-independently. This

is essentially what research question RQ1.1 is about. To tackle this issue, we

384

9.5. Discussion of Results and Research Questions

introduced our EnvDynmetamodel based on the semantics of template-based

probabilistic models which allow the instantiation of probabilistic structures

domain-independently. In the validation, we showed that our metamodel

could be instantiated for all domains of the four case studies. Therefore,

we consider the sub-research question to be sufficiently addressed by our

EnvDyn metamodel.

Research Question 1.2: What is an appropriate level of abstraction

to represent the environmental dynamics domain independently? By

appropriateness, we mean that

• adaptation strategies can be analysed at design-time with suf-

ficient accuracy.

• environmental state spaces can be described flexibly and com-

pactly.

The sub-research question RQ1.2 relates to the level of abstraction that

such a formal modelling language must provide, i.e. the ability to describe

large state spaces and still be meaningful enough to evaluate adaptation

strategies. As already discussed for RQ1.1, we address the problem at a

high abstraction level by using template-based probabilistic models (which

generalise the framework of DBNs). To describe the environmental state

spaces compactly and flexibly, we considered each environmental variable

as a random variable which can be related to each other, i.e. they form a

network of random variables or more precisely a DBN. We assumed that the

value spaces of the individual random variables are discrete which reduces

the state space tremendously. The discretisation level can be controlled by a

domain expert such that the complexity of the state space is controllable as

well. Finally, the decomposability property of DBNs as well as the stationary

and Markov assumptions that apply to DBNs, allow the compact modelling

of environmental state spaces in a simple and human-understandable way.

Because our EnvDyn metamodel adheres to the semantics of DBNs, we can

leverage these characteristics to describe large state spaces compactly and

flexibly. In fact, the validation results confirm our argumentation. For each

case study, we were able to describe the dynamics of the environment by a

compact set of discrete probability distributions. In particular, for theDeltaIoT

system (which has a large environmental state space), we have demonstrated

how large and complex-structured state spaces can be described and handled

385

9. Validation

using our EnvDyn metamodel and the associated concepts. Also, for each

case study, we produced valid results which are all dependent on the EnvDyn
metamodel. Therefore, we conclude that our EnvDyn metamodel sufficiently

addresses RQ1.2.

Research Question 1.3: What is an appropriate analytical model

to enable design-time analyses of self-adaptive systems?

In terms of RQ1.3, we addressed the question by using MDPs as analytical

models. More specifically, we instantiated the generic framework of MDPs

in the context of self-adaptive systems. The rationale for using MDPs is

twofold: first, they are prevalent models to capture the dynamics of self-

adaptive systems; second, there are various approaches which build upon

MDPs that can be used for adaptation strategy evaluation. Especially for the

second point, we reused concepts from dynamic programming and Monte

Carlo methods. More specifically, we usedMonte Carlo prediction to evaluate

adaption strategies based on the formal semantics of MDPs. With regard

to the validation results, using MDPs as analytical models is promising. In

terms of the DeltaIoT and load balancing case study systems, our MDP-

based SimExp method produced the same ranks as their domain-specific

counterpart, i.e. the DeltaIoT simulator and SimuLizar. Also, for the Udacity

challenge and the HRI case study system, our SimExp method maintained

the plausibility assertion required to consider the results valid.

Research Question 1.4: Are the predictions sufficiently accurate

to yield plausible results?

In terms of accuracy, we showed that for the DeltaIoT and load balancing case

study system our SimExpmethodwas able to produce the same strategy ranks.

Therefore, we argue that our SimExp method produces sufficiently accurate

predictions and thus plausible results. Note that we do not aim to achieve

equal or better accuracy as domain-specific simulators but maintain a certain

degree of accuracy sufficient to compare and evaluate distinct adaptation

strategies as well as design decisions.

However, when looking at the prediction results of the quality attributes

themselves, we experienced some deviations compared to the domain-specific

simulators. In the DeltaIoT case study, for example, the energy consump-

386

9.5. Discussion of Results and Research Questions

tion predictions deviated significantly from the predictions of the DeltaIoT

simulator. Nevertheless, the main characteristics of the predictions were

maintained (i.e. if an architectural configuration causes high or low energy

consumption, we observed this in both SimExp and the DeltaIoT simulator).

Therefore, we conclude that at least for adaptation strategy evaluation, the

results are sufficiently accurate and plausible (which also depends on the

quality attribute prediction tool used).

Overall, we conclude thatRQ1 can only be partially answered. Effectively, the
results indicate that our SimExp method enables the evaluation of adaptation

strategies by considering quality objectives as a primary source to determine

the overall quality of a strategy. The validation, however, revealed a couple of

weaknesses in our SimExp method. The first problem relates to efficiency. In

general, the efficiency of SimExp is unproblematic (since the horizon and the

number of sample states per trajectory are fixed) if no convergence criteria

are defined; in this case, the efficiency depends on the complexity of the state

space (which is a general theoretical problem in this area). However, since

our SimExp framework is dependent on quality attribute prediction tools to

determine a reward (e.g. SimuLizar or Prism), the efficiency of SimExp is also
dependent on the efficiency of the prediction tools. This was particularly

evident in the validation of the DeltaIoT system where we used Prism as a

prediction tool. Therefore, the selection of the prediction tools is crucial in

terms of efficiency. The same applies to the accuracy of the prediction tools,

e.g. Prism indicated deviations in predicting the energy consumption of the

DeltaIoT system. Moreover, comparable inaccuracies have been observed in

the context of the load balancer case study system and SimuLizar. The SimExp
method suffers information loss due to discretisation, i.e. the continuous

simulation of SimuLizar maintains performance-relevant properties while

SimExp applies a simulation for every state such that the simulation context

(and thus performance-relevant properties) is lost after each simulation.

However, we consider the SimExp framework not as a fully-fledged approach

which is applicable for any domain but rather as a method, one can take

into account when evaluating adaptation strategies for a specific domain and

adaptation problem. That is, in some domains or scenarios further efforts

have to be made to fully apply the SimExp method. For example, for the

DeltaIoT case study, we have additionally created an auxiliary metamodel

to adequately capture the adaptation parameter. Therefore, we argue that

in some cases SimExp needs to be enriched by additional concepts (such as

additional metamodels or state-preserving simulations) to cope with domain-

387

9. Validation

specific particularities, but that the basic methodology of SimExp remains

unaffected. Furthermore, due to the large number of possible domains where

self-adaptive systems are applicable, it cannot be shown that the SimExp
method is applicable in all scenarios. However, this was also not in the scope

of this work but rather to gain insights into the general feasibility of such

an approach/method. Nonetheless, the results of the validation showed that

the SimExp method provides a framework for the evaluation of adaptation

strategies.

Research Question 2 We formulated research question RQ2 as follows:

Research Question 2: How can software systems that contain AI

black-box components be evaluated in terms of meeting reliability

attributes at design-time?

In the context of the research question, we investigated the following sub-

research question:

Research Question 2.1: How to deal with the hidden state problem

of AI black-box components?

Recall that the hidden state problem of AI black-box components refers to

the inability to observe the true state of an AI component. We addressed the

problem by generating a sensitivity model for each AI black-box component.

The sensitivity model approximates the predictive uncertainty w.r.t. a set of

uncertainties, e.g. image brightness or image blur. Based on the sensitivity

model, we circumvent the problem of knowing the true state of the AI com-

ponent but consider the failure potential (i.e. predictive uncertainty) which

is most relevant when we deal with reliability attributes. Since the valida-

tion results are in line with our expectations (i.e. all plausibility assertions

were preserved), we conclude that sensitivity models are a suitable means

to represent AI components during reliability analysis and to deal with the

hidden state problem.

388

9.5. Discussion of Results and Research Questions

Research Question 2.2: How to systematically consider the influ-

ence of predictive uncertainty and causally related environmental

variables in the reliability prediction?

Recall that we distinguished between first-order and second-order uncertain-

ties. First-order uncertainty refers to predictive uncertainty. Second-order

uncertainties relate to monitorable environmental factors or disturbances in

the input data that potentially lead to incorrect predictions and allow conclu-

sions to be drawn about the true state of the AI component; RQ2.2 focuses

on second-order uncertainties. As for RQ2.1, we addressed the problem

by representing AI components with sensitivity models. Sensitivity models

describe how the predictive uncertainty of an AI component changes for a

given set of uncertainties. This is particularly important for analysing the

reliability of the overall system in which the AI model is integrated w.r.t. a

set of known uncertainties. The validity of the validation results confirms

the suitability of addressing RQ2.2 using sensitivity models.

Based on the sub-research questions RQ2.1 and RQ2.2, we can represent

and evaluate the predictive uncertainty of AI components w.r.t. a set of

uncertainties. For the reliability prediction itself, we reused the reliability

prediction tool PCM-Rel [33] which predicts the success probability of a sys-

tem modelled with PCM. The extended PCM-Rel by including the sensitivity

model of the AI component to account for failure potentials. Because we

did not change the core prediction logic of PCM-Rel, but only implemented

an upstream resolving routine, we did not need to show the accuracy of

our reliability prediction approach (as this would validate the accuracy of

PCM-Rel itself, which has already been done in [33]). Instead, we showed the

validity of our approach by checking whether a set of plausibility assertions

are preserved. In the context of the Udacity case study system, we were

able to validate the preservation of all assertions, so we consider RQ2 to be

sufficiently addressed.

Research Question 3 We formulated research question RQ3 as follows:

389

9. Validation

Research Question 3: How can adaptation strategies of self-

adaptive systems that safeguard uncertain AI black-box components

be evaluated in terms of reliability at design-time?

While research question RQ2 was related to static software systems, RQ3
focuses on the more general case, i.e. self-adaptive systems. Effectively,

the answer of RQ3 directly follows from the results related to RQ1 and

RQ2. In RQ1, we developed the SimExp method which establishes the

basic framework to evaluate adaptation strategies. In RQ2, we provided the

concepts necessary to predict reliability attributes of AI-enabled systems.

Therefore, we have combined the two concepts to provide a framework for

evaluating adaptation strategies of self-adaptive systems to safeguard AI

black box components. We validated the approach in terms of the Udacity

challenge and HRI case study system. For both case studies, we could show

that plausibility assertion (9.4) was preserved which we considered as a

prerequisite to consider our approach valid.

9.5.3. Threats to Validity

Finally, we complete this section by enumerating possible threats to validity.

More specifically, we discuss internal and external validity.

9.5.3.1. Internal Validity

For the validation of our SimExp method, we estimate the threats of internal

validity to be rather low. This is mainly because we compare SimExp with

existing simulators, i.e. the DeltaIoT simulator and SimuLizar. In both cases,

we produced similar results. Although we observed isolated deviations in the

context of the DeltaIoT case study, we were able to demonstrate experimen-

tally that the deviations are a result of the inaccuracy of Prism. Consequently,

the inaccuracy of the evaluation tools may potentially pose a further threat

to validity. However, all prediction tools that we used are extensively vali-

dated and widely accepted in their corresponding communities, i.e. see [15]

for SimuLizar, [109] for Prism and [33] for PCM-Rel. Although we have

found discrepancies in Prism predictions, we show experimentally that Prism

(in conjunction with our SimExp method) gives plausible predictions under

390

9.5. Discussion of Results and Research Questions

controlled conditions. Furthermore, since we are no Prism experts but have

reused the Prism files from [207] (see [140] with the artefacts), we cannot rule

out the possibility that these files contain implementation bugs. Another pos-

sible threat to validity refers to the inaccuracy of SimuLizar and the DeltaIoT

simulator which we used as a baseline to compare our results. However,

both simulators have been used in different contexts and case studies (see for

example [15] for SimuLizar and [168, 194, 143] for the DeltaIoT simulator),

so we consider them suitable baselines.

For validating our reliability prediction approach, we created an architecture

model (PCM model) and applied sensitivity analysis to generate the sensi-

tivity models of the AI components. Both crucially impact the validation

result and are thus threats to internal validity. Regarding the architecture

model, however, we already explained that as long as the architecture is

used in each reliability prediction consistently, the validity of the results

and plausibility assertions are not impacted. For the sensitivity analysis,

we integrated the insights of Tian et al. [186] which exhaustively investi-

gated the steering angle prediction models of the Udacity self-driving car

challenge. More precisely, we considered uncertainties for which Tian et

al. verified erroneous behaviour of the steering angle prediction models.

Moreover, we determined the deviation of the predicted and actual steering

angles based on a metamorphic relation introduced by Tian et al. Finally, at

least plausibility assertions (9.2) and (9.3) are independent of the accuracy

of the sensitivity model; that is, only the causalities between the success

probabilities of the sensitivity models and the associated reliability analysis

results are relevant.

9.5.3.2. External Validity

We have instantiated the SimExpmethod in four different domains. Therefore,

we can safely exclude the possibility that the method is not generalisable.

Concerning our reliability prediction approach for AI-enabled systems, it

could be argued that the approach has only been validated for two case studies

with similar settings and a similar experimental setup such that generalis-

ability is not guaranteed. If we recall the Udacity case study, one will see that

the mere fact that our approach preserves the causalities between the sensi-

tivity model and the predictions is sufficient to conclude that our approach

391

9. Validation

is generalisable. The same applies to the HRI case study system. Regard-

less of what type of uncertainties (i.e. whether image brightness or neuron

coverage or other factors) are considered in the sensitivity model, as long

as the sensitivity analysis correctly captures the corresponding sensitivities,

our reliability approach correctly accounts for them in the prediction results.

That is, we could have used other uncertainties for which we would have

analysed the sensitivity model in a completely different context, but would

find the same causalities between the sensitivity model and the prediction

results generated by our approach. Therefore, we conclude that our reliability

prediction approach is generalisable to other application scenarios.

392

Part VI.

Epilogue

10. Conclusion

In this chapter, we conclude the thesis. Hereby, we give in section 10.1 a

summary of the contributions, their related research questions and how

they have been validated. In section 10.2, we recap and discuss the main

limitations and assumptions of this thesis. Finally, in section 10.3, we discuss

future work.

10.1. Summary

In summary, this thesis presented approaches to evaluate architectural safe-

guards of AI black-box components regarding reliability attributes. Besides

classic architectural approaches such as architectural patterns (e.g. n-version

programming pattern), we also considered self-adaptive systems as architec-

tural safeguards. The central goal of this thesis was to evaluate the effect

of architectural safeguards and to make informed decisions in the decision-

making process, i.e. regarding the selection of an appropriate architectural

safeguard w.r.t. quality requirements. We focused on software reliability as

system-level property or attribute; however, we integrated our approach into

the Palladio framework such that architectural safeguards could be evalu-

ated from the perspective of several quality attributes (e.g. performance and

reliability). Therefore, we presented three contributions that addressed our

central goal. Additionally, we presented a fourth contribution which com-

plements the aforementioned contributions by a classification structure to

evaluate AI-enabled systems in terms of giving assurances for dependability-

related system-level properties. In the following, we briefly summarise the

approaches, research questions and validation results of each contribution.

Contribution 1: Domain-agnostic instantiation of probabilistic environment
models. The first contribution of this thesis partially addressed research

395

10. Conclusion

question RQ1 by focusing on the sub-research questions RQ1.1 and RQ1.2.
Hereby, the main result is a formal modelling language for describing proba-

bilistic environments, i.e. the EnvDynmetamodel. The metamodel serves two

purposes: First, it allows the modelling of environmental variables and their

effect on the predictive uncertainty of an AI model. Second, the metamodel

describes concepts to model the temporal expansion of the environmental

variables to describe the operating environment or the Environmental Dy-
namics of a self-adaptive system. Essentially, the semantics of the EnvDyn
metamodel is based on Bayesian modelling. More specifically, for the first

part of the metamodel, we employ BNs (Bayesian networks) to model the

environmental variables and their effects on the predictive uncertainty of

an AI model by a DAG (directed acyclic graph) and a set of probability dis-

tributions. For the temporal expansion, we use DBNs (dynamic Bayesian

networks) which extend BNs by an inductive description capturing the tem-

poral evolution of the random variables of the original BN. The modelling

capabilities form the building blocks for the second and third contributions

because the modelled environments play an essential role in predicting relia-

bility attributes of AI-enabled software systems (second contribution) and

later as a generalised variant for self-adaptive software systems (third con-

tribution). Finally, since AI is applicable in various domains, there are also

many domain-specific environmental variables which affect the predictive

uncertainty of an AI model. Consequently, the EnvDyn metamodel must

allow the instantiation of environmental variables domain-independently.

While arguing from a theoretical perspective that reusing the formal seman-

tics of Template-based Probabilistic Models leads to domain independence, we

support this claim by instantiating the EnvDyn metamodel in four different

domains (i.e. the four case study systems).

We validated the applicability of the EnvDyn metamodel by considering four

case study systems. However, we do not explicitly validate the applicability

but rather implicitly by validating the second and third contributions. Note

that the second and third contribution highly depends on the EnvDyn meta-

model in that instances are used to make reliability prediction for AI-enabled

systems and to determine the quality of an adaptation strategy w.r.t. several

quality objectives. Since we were able to successfully validate both contribu-

tions, we implicitly validated the applicability of our EnvDyn metamodel. In

addition to the pure theoretical argument of achieving domain independence

by reusing the formal semantics of template-based probabilistic models, the

396

10.1. Summary

instantiation of the EnvDyn metamodel in four different domains supports

that claim.

Contribution 2: Reliability prediction of AI-enabled systems at design-time.
The second contribution of this thesis addressed research question RQ2
and its related sub-questions. The result of the contribution is a reliability

prediction approach for AI-enabled systems. The approach is based on the

existing reliability prediction approach of Brosch [33]. We abstracted an AI

black-box component by a sensitivity model which captures the predictive

uncertainty of the AI model and the environmental variables affecting the

predictive uncertainty. Hereby, we reuse the modelling capabilities provided

by our EnvDynmetamodel from the first contribution. We apply an upstream

sensitivity analysis to obtain the probability distributions that describe the

effect of the environmental variables on the predictive uncertainty of the

AI model. The resulting sensitivity model is integrated into our extended

reliability prediction approach to systematically consider the failure poten-

tials or the predictive uncertainty of the AI model. We reused the formal

modelling language AT (architectural templates) to describe architectural

patterns such as the n-version programming pattern. Finally, we created

an uncertainty-refined failure-type metamodel which relates architectural

templates (described by ATs) with the sensitivity model of an AI component.

Furthermore, the metamodel allows modelling the effect of the considered

architectural safeguard (e.g. an architectural pattern) on the predictive un-

certainty of the AI model (directly or indirectly). Thus, one can predict the

effect of an architectural safeguard on the overall reliability of the system by

considering its effect on the predictive uncertainty of the AI model.

We validated the approach by considering the Udacity case study system

which considers various AI models for steering angle prediction in the con-

text of autonomous driving. The primary goal of the validation was to show

the plausibility of our approach. Because we did not change the core logic of

the reliability prediction approach of Brosch [33] but rather use an update

routine to account for the failure probability of an AI component (w.r.t. the

sensitivity model), the accuracy of the prediction results didn’t have to be

validated. Instead, we validated a set of plausibility assertions which must

be preserved by our holistic reliability prediction approach. The plausibility

assertions account for real measured properties of the considered AI models.

For example, let 𝑏 and 𝑏′ be two AI models where 𝑏 is more accurate than

397

10. Conclusion

𝑏′ w.r.t. some performance measure. If we assume a fixed architecture in

which only the AI component is variable, then the predicted reliability of the

software architecture including 𝑏 must be higher compared to the prediction

of the software architecture including 𝑏′. We could show that our reliability

prediction approach preserves all plausibility assertions. Based on the plausi-

bility assertions we could validate that our reliability prediction approach

allows software engineers to evaluate architectural safeguards regarding re-

liability attributes at design-time. Moreover, the validation showed that our

approach enables the comparison of architectural safeguards from the per-

spective of different quality attributes (e.g. reliability and performance). This

assists software engineers in decision-making, as they can make informed

trade-off decisions (in terms of the quality requirements of the system) at

design-time.

Contribution 3: Evaluation of adaptation strategies of self-adaptive systems
at design-time. The third contribution of this thesis addresses two research

questions and is divided into two parts. The first (and more general) part

examines how adaptation strategies of self-adaptive systems can be evaluated

at design-time in general; that is, for any purpose (i.e. beyond safeguarding

AI components) and in any domain. This relates to research question RQ1
and tackles the sub-questions RQ1.3 and RQ1.4. To evaluate adaptation

strategies, we defined self-adaptive systems as MDPs (Markov decision pro-

cesses). In MDPs, the main challenge is to find a policy function that returns

for each state a suitable action such that the accumulated reward over time is

maximised w.r.t. some reward function. We have equated an adaptation strat-

egy with the concept of a policy in MDPs and integrated quality objectives

(which must be addressed by the adaptation strategy) into the reward func-

tion. Moreover, we mapped the remaining concepts to equivalent concepts

in the domain of self-adaptive systems and used model-based techniques

to describe them at design-time, i.e. adaptations are abstracted by model

transformations, architectural system configurations are described by PCM

(Palladio Component Model) and the operating environment is modelled

by our EnvDyn metamodel. We implemented the concepts in our SimExp
framework. Internally, SimExp applies Monte Carlo prediction to evaluate

the adaptation strategy at design-time by sampling environmental states

(from the DBN capturing the operating environment modelled by the Env-
Dyn metamodel of the first contribution) and applying model transformation

whenever the strategy decides (w.r.t. the current state) whether an adaptation

398

10.1. Summary

is applied or not. Each decision of the strategy is evaluated by the reward

function where the reward function makes use of quality prediction tools

to predict the impact of the selected adaptations on the quality objectives.

In the end, the expected accumulated reward is estimated and relates each

strategy with a value and serves as a foundation to compare strategies or

assess design decisions within a strategy.

We validated the appropriateness of this part of the contribution by con-

sidering two case study systems, namely a load balancer and the DeltaIoT

case study system. Both are equipped with a domain-specific simulator that

allows the evaluation of adaptation strategies for the given case study. We

applied our SimExp method in both domains, i.e. we created the correspond-

ing models, model transformations, etc. For each case study, we considered

a fixed set of adaptation strategies that were once evaluated by SimExp and

once evaluated by the respective simulator of each case study. We compared

the resulting ranks of the evaluated strategies. The results were in line with

our expectations: The generated ranks of the adaptation strategies were

equal to the ranks produced by the simulators. Thus, we could not only

validate the appropriateness of SimExp but also the general possibility to

evaluate and compare design decisions within an adaptation strategy and

distinct strategies.

The second part of this contribution combines our reliability prediction ap-

proach from the second contribution with the SimExp framework to enable

the evaluation of self-adaptive systems for safeguarding AI black-box com-

ponents. Hereby, we integrated the reliability prediction approach into the

reward function. Moreover, we discussed how to deal with large input spaces

(e.g. the pixel space) during the evaluation process by focusing on more

manageable spaces, i.e. the Monitorable Space.

For the second part of this contribution, we validated again the plausibility.

Just as in the second contribution, we formulated plausibility assertionswhich

must be maintained by the approach. For the validation, we considered two

case study systems, namely the HRI and Udacity case study system. The

results have shown that all plausibility assertions were maintained by our

approach.

Overall, we can conclude that our SimExp framework allows the evaluation

of adaptation strategies at design-time which greatly supports software

engineers in comparing distinct strategies or design decisions within an

adaptation strategy family. Especially when evaluating adaptation strategies

399

10. Conclusion

of self-adaptive systems that are acting as architectural safeguards, software

engineers cannot only evaluate the quality of a strategy from the perspective

of reliability but also other quality attributes (e.g. performance). Moreover,

we demonstrated how the SimExp framework can be used to evaluate whether

an adaptive or non-adaptive solution of an architectural safeguard should

be considered. Overall, the SimExp framework provides software engineers

with a repertoire of analysis scenarios to explore multiple design options (in

terms of system quality requirements) during the system design process.

Contribution 4: Classification structure to assess AI-enabled systems regard-
ing assurances that can be given for system-level dependability properties.
In the last contribution of this thesis, we elaborated a classification structure

to evaluate AI-enabled systems in terms of assurances that can be given for

dependability-related system-level properties. The contribution relates to

research question RQ4 and its corresponding sub-questions. We defined four

classes of architectural dependability assurance into which an AI-enabled

system can be classified. Each class describes the degree (e.g. fully or par-

tially) and point in the development process (i.e. design-time, runtime or

not at all) at which assurances can be given for a particular system-level

property Φ𝑆𝑦𝑠 . Based on the classes, we elaborated a classification structure

consisting of various classification dimensions that classify AI systems. We

identified four dimensions, namely Abstractability (i.e. the extent to which

the system can be abstracted by models to analyse the system in terms of

Φ𝑆𝑦𝑠), Approximation of the System Dynamics (e.g. the accurate description
of the stochastic process that describes the dynamics the system), Analytic
Capacity (i.e. the analytic potential of an AI component itself) and Fail-Safe
(i.e. the ability to transition the system into a fail-safe mode).

Because the classification structure is highly subjective, a comprehensive

evaluation was not possible in this thesis. The classification of multiple

AI-enabled systems according to our classes and classification structure

would require the involvement of domain experts due to the subjective

nature of the classification structure. However, this was not realistically

possible in the scope of this thesis. Instead, we applied our classification

structure to AI systems from three representative domains in which AI have

been commonly used, namely AI-supported assistance in automated driving,

human-robot-interaction systems and aircraft collision avoidance systems.

However, since we are no experts in none of the domains, we could only

400

10.2. Central Limitations and Assumptions

classify the systems according to the information provided by the scientific

publications. Consequently, we could only show the applicability of our

classification dimensions. A comprehensive evaluation of the classification

structure in terms of other aspects (such as completeness or coverage) is

planned in future work.

10.2. Central Limitations and Assumptions

Although we have already discussed in each contribution-related chapter the

respective limitations and assumptions, we summarise in this section the cen-

tral assumptions. Moreover, we discuss the main limitations complemented

by insights we gained during validation.

Limitations: Recall that we use PCM (Palladio Component Model) as ADL

(architectural description language) to describe software architectures em-

ploying models. Although we described the concepts of SimExp by using

PCM, the SimExp method itself is ADL agnostic. However, this applies not

to our reliability prediction approach for AI-enabled systems. More specifi-

cally, the approach builds upon the reliability prediction approach PCM-Rel

of Brosch [33] which requires PCM as modelling language for describing

software architectures. Consequently, our extended reliability prediction ap-

proach can only be used in combination with PCM models. The same applies

to the reliability prediction logic. Recall that we did not change the prediction

semantics of PCM-Rel but implemented a procedure which iteratively (w.r.t.

considered uncertainties or environmental variables 𝜑1, . . . , 𝜑𝑛) calculates

the failure probability of an AI component, updates the failure probability in

the PCM model and invokes PCM-Rel. As a result, we inherit the prediction

semantics of PCM-Rel as well. For example, while the effect of a wrong

prediction might rather affect other components of the software architec-

ture which are dependent on the prediction result, PCM-Rel evaluates the

failure probability directly at the AI component in the PCM model. Nonethe-

less, regarding the evaluation of architectural safeguards at design-time,

we argue that the reliability prediction semantics of PCM-Rel are sufficient.

Additionally, since PCM-Rel annotates PCM models with failure types, it is

possible to specify the exact location in the software architecture (i.e. the

401

10. Conclusion

modelled software component) that is affected by incorrect predictions of

the AI component.

We applied our reliability prediction approach for AI-enabled systems in

the context of autonomous driving and human-robot-interaction by con-

sidering distinct and complex types of DNNs (deep neural networks), e.g.

CNNs (convolutional neural networks) or RNNs (recurrent neural networks).

However, there might be more complex settings (especially in the context

of autonomous driving) where AI models rely on input data from other AI

models. For example, the perception phase of a cognitive system might

involve upstream AI components for sensor fusion of the raw sensor data. In

this case, however, the input of the AI component must rely on outputs of

other AI models that are associated with AI-specific uncertainties as well.

One can approach this problem by considering the involved AI components

as an end-to-end approach which produces for some raw sensor data a cor-

responding output prediction. In this case, our reliability approach can be

applied as usual in which the predictive uncertainty of the end-to-end AI

component is estimated by considering various uncertainties or environmen-

tal variables. It is arguably difficult to find an appropriate set of uncertainties

or environmental variables of the sensitivity model that allow reasoning

about the predictive uncertainty. Although the sensitivity model doesn’t

have to perfectly approximate predictive uncertainty to evaluate design deci-

sions of architectural safeguards, a poor sensitivity model would still corrupt

the reliability predictions of the entire system significantly. However, as a

starting point, we focused on single AI components. Nonetheless, checking

the applicability of our approach for more complex AI systems can be still

considered to be the subject of future work.

Finally, our SimExp does currently not support Transient Effects in the eval-

uation process of self-adaptive systems. Recall that transient effects relate

to execution times and consumed resources of applied adaptations [178], i.e.

they can be considered as costs associated with an adaptation. In the domains

or case study systems we considered in this thesis (except the load balancing

case study system), transient effects are rather negligible because none of

the adaptations is associated with high costs. Nevertheless, since transient

effects are important in some domains (e.g. performance engineering), it

makes sense to include them in the reward function. As a starting point,

however, we solely focused on system-level quality attributes but plan to

account for transient effects in future work.

402

10.2. Central Limitations and Assumptions

Assumptions: Since our SimExpmethod strongly builds uponMDPs (Markov

decision processes), we also inherit assumptions made in MDPs. This refers

to the Markov assumption, which states that the probability to transition

from one state to another solely depends on the previously given state and

not on the history of already past states (see equation (2.4)). The Markov

assumption is essential in the SimExp framework when trajectories (i.e. se-

quences of states) are sampled w.r.t. a predefined adaptation strategy and the

modelled environmental dynamics. However, as we already pointed out in

chapter 4, many scientific works in the self-adaptive system community make

use of MDPs to describe the stochastic dynamics of self-adaptive systems.

Moreover, whenever the Markov assumption is too strong in a given context,

it can always be sharpened by selecting a richer state representation (i.e.

considering more variables in the state description) [105].

The second central assumption of this thesis refers to the assumption of

discretising the environment or environmental dynamics into a set of discrete

states. Basically, we made this assumption to reduce the state space and to

tackle the state space explosion problem. However, the discretisation is at

the cost of information loss. For model-based analysis, it is fairly common to

use abstraction and simplification to analyse complex systems at design-time.

In addition, the degree of discretisation can be controlled such that also

more fine-grained states can be considered (at the cost of an increased state

space).

Finally, in section 7.2, we made the MAR (missing at random) assumption (𝑖)
to justify that we can focus on environmental variables or properties instead

of considering individual input-output pairs of an AI component and (𝑖𝑖) to
deal with the hidden state problem. This enabled us to ignore potentially

large and complex structured input spaces (such as the pixel space) during

the evaluation of self-adaptive systems (or rather their adaptation strategies)

that are specifically designed to safeguard an AI component. However, the

MAR assumption must be considered with care because the assumption

might not hold in some settings. Just like the Markov assumption, the MAR

assumption can be sharpened [105] by identifying “good” properties that

allow conclusions to be drawn about the true state of an AI component.

403

10. Conclusion

10.3. Future Work

In this section, we summarise several aspects of the thesis that we identified

for extension in future work.

As we already discussed in section 10.2, one of the limitations of our approach

is that currently no transient effects (i.e. costs associated with adaptations)

are considered during the evaluation of adaptation strategies. Therefore, in

future work, we plan to integrate transient effects in our SimExp framework.

An entry point is provided by Stier [178] which considers transient effects in

the analysis of self-adaptive systems in the context of the Palladio framework.

However, the approach focuses on transient effects that relate to performance

and energy efficiency. Nonetheless, the concepts can be used as a starting

point and generalised to other domains.

In section 6, we presented our SimExp framework for evaluating adaptation

strategies of self-adaptive systems. Currently, some required artefacts are

either passed to the framework via code and not by dedicated models (the

adaptation strategy and reward function implementations) while others are

lacking graphical editors which would greatly reduce the modelling effort

(the EnvDynmetamodel). Unfortunately, we could not address all in the scope

of this thesis. For the sake of usability and to make the framework more

amenable to the community, we plan to add more modelling features to the

framework in future work. For example, we already envisioned the design of

a DSL (domain-specific language) for modelling adaptation strategies [147].

In future work, we plan to implement such a DSL and integrate it into the

SimExp framework. Moreover, another potential aspect for future work is

the modelling of reward functions based on quality attributes. Currently,

the reward function must be specified by a java code file which extends a

particular interface provided by the SimExp framework. Hereby, the work of

Becker [15, P.87] might serve as a starting point because it presents a meta-

model for describing service level objectives (e.g. tolerance ranges, violation

ranges, etc.). The concepts and ideas might be potentially reused to represent

reward functions. Finally, regarding the modelling of environment models

(i.e. instances of the EnvDyn metamodel), we plan to develop graphical edi-

tors that simplify the creation of environment models. The work of Koller

and Friedman [105, P.157] provides methods for the compact description of

such models, which can be regarded as a starting point.

404

10.3. Future Work

Although we validated our approach in case study systems that include

complex AI models (e.g. Udacity case study where distinct DNNs are used to

predict steering angles based on image data), we plan to apply our approach

to more advanced case study systems that encompass AI systems with several

AI components. For example, in cognitive systems (e.g. self-driving cars) the

sensor data is preprocessed in the perception phase before it is forwarded to

the AI component used in other phases. However, also within the perception

phase, AI models might be used for sensor fusion or representation learning

(i.e. unsupervised learning). That is, the predictive uncertainty of an AI

component (e.g.) used for classification or detection tasks is dependent on

the result of other AI components. In this case, we must not only account for

the environmental variables affecting predictive uncertainty but also model a

kind of failure propagation of the individual AI components. Intuitively, we

can model such a setting with our approach by treating the random variables

capturing the predictive uncertainty of preceding AI components in the

sensitivity model of dependent AI components. However, this is hypothetical

and requires further investigation.

Also in terms of the SimExp framework, we plan to apply the method to

further use cases of different domains. For example, Gerasimou [65] et al.

provide a case study system of an unmanned underwater vehicle which is

equipped with a domain-specific simulator one can use to evaluate adaptation

strategies. By applying the SimExp methods to further case studies, we hope

to identify possible vulnerabilities of the method or potential aspects that

can be further automated.

Finally, regarding our classes of architectural dependability assurance and the

classification structure we elaborated to classify AI systems into one of the

classes, we plan a more comprehensive evaluation. Currently, we evaluated

the applicability of the structure by applying it to a collection of well-known

and representative AI systems. However, the classification dimensions of the

structure are highly subjective such that an objective assessment is practically

difficult to achieve. Moreover, we are no experts in any of the discussed

domains; thus, the discussion of the classification structure is subjective.

A more founded discussion would require the inclusion of domain experts.

This is, however, associated with a high effort which was not possible to

be conducted in the scope of this thesis but is still subject to future work.

Moreover, we plan to apply the structure in systematic literature research to

assess the coverage of the classification structure (i.e. whether any AI system

405

10. Conclusion

can be classified). As a result, we hope to refine our existing dimensions (if

necessary) or even identify additional dimensions (if any).

406

Bibliography

[1] Vahdat Abdelzad et al. “Detecting out-of-distribution inputs in deep

neural networks using an early-layer output”. In: arXiv preprint
arXiv:1910.10307 (2019).

[2] Waleed Abdulla.Mask R-CNN for object detection and instance segmen-
tation on Keras and TensorFlow. https://github.com/matterport/
Mask_RCNN. 2017.

[3] Michael Aeberhard et al. “Automated Driving with ROS at BMW”.

In: ROSCon 2015 Hamburg. 2015.

[4] Mohammed Alshiekh et al. “Safe reinforcement learning via shield-

ing”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 32. 1. 2018.

[5] Saleema Amershi et al. “Software engineering for machine learning:

A case study”. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE. 2019, pp. 291–300.

[6] Mehdi Amoui et al. “Adaptive action selection in autonomic software

using reinforcement learning”. In: Fourth International Conference on
Autonomic and Autonomous Systems (ICAS’08). IEEE. 2008, pp. 175–
181.

[7] Adina Aniculaesei et al. “Toward a holistic software systems engi-

neering approach for dependable autonomous systems”. In: 2018
IEEE/ACM 1st International Workshop on Software Engineering for AI
in Autonomous Systems (SEFAIAS). IEEE. 2018, pp. 23–30.

[8] Paolo Arcaini, Elvinia Riccobene, and Patrizia Scandurra. “Modeling

and analyzing MAPE-K feedback loops for self-adaptation”. In: 2015
IEEE/ACM 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. IEEE. 2015, pp. 13–23.

407

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN

Bibliography

[9] Paolo Arcaini et al. “Model-Based Testing for MAPE-K adaptation

control loops”. In: 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE. 2020,
pp. 43–51.

[10] Ashraf Armoush. “Design patterns for safety-critical embedded sys-

tems”. Aachen, Techn. Hochsch., Diss., 2010. PhD thesis. Aachen,

2010, XIV, 181 S. : graph. Darst. url: https://publications.rwth-

aachen.de/record/51773.

[11] Rob Ashmore, Radu Calinescu, and Colin Paterson. “Assuring the

machine learning lifecycle: Desiderata, methods, and challenges”. In:

ACM Computing Surveys (CSUR) 54.5 (2021), pp. 1–39.

[12] Earl T Barr et al. “The oracle problem in software testing: A survey”.

In: IEEE transactions on software engineering 41.5 (2014), pp. 507–525.

[13] Osbert Bastani et al. “Measuring neural net robustness with con-

straints”. In: Advances in neural information processing systems 29
(2016).

[14] Dennis Bäuml. “Entwicklung zuverlässiger KI-basierter Software-

Systeme in Anwesenheit von Unsicherheit”. Master’s Thesis. Karl-

sruhe: Karlsruhe Institute of Technology (KIT), 2022.

[15] Matthias Becker. “Engineering self-adaptive systems with simulation-

based performance prediction”. PhD thesis. University of Paderborn,

Germany, 2017. url: http://nbn-resolving.de/urn:nbn:de:hbz:

466:2-28816.

[16] Matthias Becker, Steffen Becker, and Joachim Meyer. “SimuLizar:

Design-Time Modeling and Performance Analysis of Self-Adaptive

Systems.” In: Software Engineering 213 (2013), pp. 71–84.

[17] Matthias Becker, Markus Luckey, and Steffen Becker. “Performance

analysis of self-adaptive systems for requirements validation at design-

time”. In: Proceedings of the 9th international ACM Sigsoft conference
on Quality of software architectures. ACM. 2013, pp. 43–52.

[18] Sagar Behere and Martin Torngren. “A functional architecture for

autonomous driving”. In: Automotive Software Architecture (WASA),
2015 First International Workshop on. IEEE. 2015, pp. 3–10.

[19] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966),
pp. 34–37.

408

https://publications.rwth-aachen.de/record/51773
https://publications.rwth-aachen.de/record/51773
http://nbn-resolving.de/urn:nbn:de:hbz:466:2-28816
http://nbn-resolving.de/urn:nbn:de:hbz:466:2-28816

Bibliography

[20] Luca Berardinelli et al. “Multidimensional context modeling applied

to non-functional analysis of software”. In: Software & Systems Mod-
eling (2017), pp. 1–40.

[21] Simona Bernardi and José Merseguer. “A UML profile for depend-

ability analysis of real-time embedded systems”. In: Proceedings of
the 6th international workshop on Software and performance. 2007,
pp. 115–124.

[22] Anil Bhattacharyya. “On a measure of divergence between two statis-

tical populations defined by their probability distributions”. In: Bull.
Calcutta Math. Soc. 35 (1943), pp. 99–109.

[23] Alessandro Biondi et al. “A safe, secure, and predictable software

architecture for deep learning in safety-critical systems”. In: IEEE
Embedded Systems Letters 12.3 (2019), pp. 78–82.

[24] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition
and machine learning. Vol. 4. 4. Springer, 2006.

[25] Peter Bishop, Robin Bloomfield, and Sofia Guerra. “The future of

goal-based assurance cases”. In: Proc. Workshop on Assurance Cases.
Citeseer. 2004, pp. 390–395.

[26] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. “Variational

inference: A review for statisticians”. In: Journal of the American
statistical Association 112.518 (2017), pp. 859–877.

[27] RE Bloomfield et al. “Ascad—adelard safety case development man-

ual”. In: Adelard 5 (1998).

[28] Rainer Böhme and Ralf Reussner. “Validation of predictions with

measurements”. In: Dependability Metrics. Springer, 2008, pp. 14–18.

[29] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In:

arXiv preprint arXiv:1604.07316 (2016).

[30] Zoran Bosnić and Igor Kononenko. “An overview of advances in

reliability estimation of individual predictions in machine learning”.

In: Intelligent Data Analysis 13.2 (2009), pp. 385–401.

[31] Gunnar Brataas, Erlend Stav, and Sebastian Lehrig. “Analysing evo-

lution of work and load”. In: 2016 12th International ACM SIGSOFT
Conference on Quality of Software Architectures (QoSA). IEEE. 2016,
pp. 90–95.

409

Bibliography

[32] Eric Breck et al. “The ML test score: A rubric for ML production

readiness and technical debt reduction”. In: 2017 IEEE International
Conference on Big Data (Big Data). IEEE. 2017, pp. 1123–1132.

[33] Franz Brosch. Integrated software architecture-based reliability predic-
tion for it systems. Vol. 9. KIT Scientific Publishing, 2012.

[34] Franz Brosch et al. “Architecture-based reliability prediction with

the palladio component model”. In: IEEE Transactions on Software
Engineering 38.6 (2011), pp. 1319–1339.

[35] Simon Burton, Lydia Gauerhof, and Christian Heinzemann. “Making

the case for safety of machine learning in highly automated driv-

ing”. In: International Conference on Computer Safety, Reliability, and
Security. Springer. 2017, pp. 5–16.

[36] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. “The goal

question metric approach”. In: Encyclopedia of software engineering
(1994), pp. 528–532.

[37] Javier Cámara and Rogério De Lemos. “Evaluation of resilience in

self-adaptive systems using probabilistic model-checking”. In: 2012
7th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). IEEE. 2012, pp. 53–62.

[38] Javier Cámara et al. “Adaptation impact and environment models for

architecture-based self-adaptive systems”. In: Science of Computer
Programming 127 (2016), pp. 50–75.

[39] Javier Cámara et al. “MOSAICO: offline synthesis of adaptation strat-

egy repertoires with flexible trade-offs”. In: Automated Software En-
gineering 25.3 (2018), pp. 595–626.

[40] Matteo Camilli, Raffaela Mirandola, and Patrizia Scandurra. “Runtime

Equilibrium Verification for Resilient Cyber-Physical Systems”. In:

2021 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS). IEEE. 2021, pp. 71–80.

[41] Maria Casimiro et al. “Self-Adaptation for Machine Learning Based

Systems.” In: ECSA (Companion). 2021.

[42] Chauffeur steering angle prediction model. 2016. url: https://github.
com/udacity/self-driving-car/tree/master/steering-models/

community-models/chauffeur.

410

https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur

Bibliography

[43] Chenyi Chen et al. “Deepdriving: Learning affordance for direct

perception in autonomous driving”. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. 2015, pp. 2722–2730.

[44] Liming Chen and Algirdas Avizienis. “N-version programming: A

fault-tolerance approach to reliability of software operation”. In: Proc.
8th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-8). Vol. 1. 1978,
pp. 3–9.

[45] Chih-Hong Cheng, Dhiraj Gulati, and Rongjie Yan. “Architecting

dependable learning-enabled autonomous systems: A survey”. In:

arXiv preprint arXiv:1902.10590 (2019).

[46] Chih-Hong Cheng, Georg Nührenberg, and Hirotoshi Yasuoka. “Run-

time monitoring neuron activation patterns”. In: 2019 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE. 2019,
pp. 300–303.

[47] Shang-Wen Cheng and David Garlan. “Stitch: A language for archi-

tecture-based self-adaptation”. In: Journal of Systems and Software
85.12 (2012), pp. 2860–2875.

[48] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Evaluating

the effectiveness of the rainbow self-adaptive system”. In: 2009 ICSE
Workshop on Software Engineering for Adaptive and Self-Managing
Systems. IEEE. 2009, pp. 132–141.

[49] Tony Clark, Cesar Gonzalez-Perez, and Brian Henderson-Sellers. “A

foundation for multi-level modelling”. In: MULTI 2014–Multi-Level
Modelling Workshop Proceedings. 2014.

[50] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. “Certified adversarial

robustness via randomized smoothing”. In: International Conference
on Machine Learning. PMLR. 2019, pp. 1310–1320.

[51] comma.ai’s steering model. 2016. url: https://github.com/commaai/
research/blob/master/train_steering_model.py.

[52] Kai Ding, Andrey Morozov, and Klaus Janschek. “Classification of

hierarchical fault-tolerant design patterns”. In: 2017 IEEE 15th Intl
Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf
on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech). IEEE. 2017, pp. 612–619.

411

https://github.com/commaai/research/blob/master/train_steering_model.py
https://github.com/commaai/research/blob/master/train_steering_model.py

Bibliography

[53] Alexandre Donzé. “Breach, a toolbox for verification and parameter

synthesis of hybrid systems”. In: International Conference on Com-
puter Aided Verification. Springer. 2010, pp. 167–170.

[54] Tommaso Dreossi, Alexandre Donzé, and Sanjit A Seshia. “Compo-

sitional falsification of cyber-physical systems with machine learn-

ing components”. In: Journal of Automated Reasoning 63.4 (2019),

pp. 1031–1053.

[55] Yehia Elrakaiby, Paola Spoletini, and Bashar Nuseibeh. “Optimal by

Design: Model-Driven Synthesis of Adaptation Strategies for Au-

tonomous Systems”. In: arXiv preprint arXiv:2001.08525 (2020).

[56] Wolfgang Ertel. Introduction to artificial intelligence. Springer, 2018.

[57] Naeem Esfahani and Sam Malek. “Uncertainty in self-adaptive soft-

ware systems”. In: Software Engineering for Self-Adaptive Systems II.
Springer, 2013, pp. 214–238.

[58] José M Faria. “Machine learning safety: An overview”. In: Proceedings
of the 26th Safety-Critical Systems Symposium, York, UK. 2018, pp. 6–8.

[59] Robert Feldt, Francisco Gomes de Oliveira Neto, and Richard Torkar.

“Ways of applying artificial intelligence in software engineering”.

In: 2018 IEEE/ACM 6th International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE). IEEE. 2018,
pp. 35–41.

[60] Antonio Filieri et al. “Self-adaptive software meets control theory: A

preliminary approach supporting reliability requirements”. In: 2011
26th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2011). IEEE. 2011, pp. 283–292.

[61] Joao M Franco et al. “Improving self-adaptation planning through

software architecture-based stochastic modeling”. In: Journal of Sys-
tems and software 115 (2016), pp. 42–60.

[62] Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno. “An intro-

duction to UML profiles”. In: UML and Model Engineering 2.6-13

(2004), p. 72.

[63] Javier Garcıa and Fernando Fernández. “A comprehensive survey

on safe reinforcement learning”. In: Journal of Machine Learning
Research 16.1 (2015), pp. 1437–1480.

412

Bibliography

[64] David Garlan, Bradley Schmerl, and Shang-Wen Cheng. “Software

architecture-based self-adaptation”. In: Autonomic computing and
networking. Springer, 2009, pp. 31–55.

[65] Simos Gerasimou et al. “UNDERSEA: an exemplar for engineering

self-adaptive unmanned underwater vehicles”. In: 2017 IEEE/ACM
12th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS). IEEE. 2017, pp. 83–89.

[66] Carlo Ghezzi et al. “Managing non-functional uncertainty via model-

driven adaptivity”. In: Software Engineering (ICSE), 2013 35th Interna-
tional Conference on. IEEE. 2013, pp. 33–42.

[67] Görkem Giray. “A software engineering perspective on engineering

machine learning systems: State of the art and challenges”. In: Journal
of Systems and Software 180 (2021), p. 111031.

[68] Goal Structuring Notation (GSN) community standard version 3. 2011.
url: https://scsc.uk/publications.

[69] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. “Deep learning

(adaptive computation and machine learning series)”. In: Adaptive
Computation and Machine Learning series (2016), p. 800.

[70] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in
neural information processing systems 27 (2014).

[71] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explain-

ing and harnessing adversarial examples”. In: arXiv preprint
arXiv:1412.6572 (2014).

[72] VincenzoGrassi, RaffaelaMirandola, andAntonino Sabetta. “Amodel-

driven approach to performability analysis of dynamically reconfig-

urable component-based systems”. In: Proceedings of the 6th interna-
tional workshop on Software and performance. 2007, pp. 103–114.

[73] Vincenzo Grassi, Raffaela Mirandola, and Antonino Sabetta. “From

design to analysis models: a kernel language for performance and

reliability analysis of component-based systems”. In: Proceedings of
the 5th international workshop on Software and performance. 2005,
pp. 25–36.

[74] Shixiang Gu et al. “Deep reinforcement learning for robotic manip-

ulation with asynchronous off-policy updates”. In: 2017 IEEE inter-
national conference on robotics and automation (ICRA). IEEE. 2017,
pp. 3389–3396.

413

https://scsc.uk/publications

Bibliography

[75] Xiaozhe Gu and Arvind Easwaran. “Towards safe machine learning

for CPS: infer uncertainty from training data”. In: Proceedings of the
10th ACM/IEEE International Conference on Cyber-Physical Systems.
ACM. 2019, pp. 249–258.

[76] Riccardo Guidotti et al. “A survey of methods for explaining black

box models”. In: ACM computing surveys (CSUR) 51.5 (2018), p. 93.

[77] Arpan Gujarati, Sathish Gopalakrishnan, and Karthik Pattabiraman.

“New wine in an old bottle: N-version programming for machine

learning components”. In: 2020 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE. 2020,
pp. 283–286.

[78] S. de Gyves Avila and K. Djemame. “Fuzzy Logic Based QoS Opti-

mization Mechanism for Service Composition”. In: 2013 IEEE Sev-
enth International Symposium on Service-Oriented System Engineering.
IEEE, Mar. 2013. doi: 10.1109/sose.2013.28.

[79] Muhammad Abdullah Hanif et al. “Robust machine learning systems:

Reliability and security for deep neural networks”. In: 2018 IEEE
24th International Symposium on On-Line Testing And Robust System
Design (IOLTS). IEEE. 2018, pp. 257–260.

[80] Kaiming He et al. “Mask r-cnn”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2017, pp. 2961–2969.

[81] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting mis-

classified and out-of-distribution examples in neural networks”. In:

arXiv preprint arXiv:1610.02136 (2016).

[82] Andreas Henelius et al. “A peek into the black box: exploring clas-

sifiers by randomization”. In: Data mining and knowledge discovery
28.5 (2014), pp. 1503–1529.

[83] Marc Hesenius et al. “Towards a software engineering process for

developing data-driven applications”. In: 2019 IEEE/ACM 7th Inter-
national Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE). IEEE. 2019, pp. 35–41.

[84] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-

ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[85] Boyue Caroline Hu et al. “If a Human Can See It, So Should Your

System: Reliability Requirements for Machine Vision Components”.

In: arXiv preprint arXiv:2202.03930 (2022).

414

https://doi.org/10.1109/sose.2013.28

Bibliography

[86] Xiaowei Huang et al. “A survey of safety and trustworthiness of

deep neural networks: Verification, testing, adversarial attack and

defence, and interpretability”. In: Computer Science Review 37 (2020),

p. 100270.

[87] Nikolaus Huber et al. “Model-based self-aware performance and

resource management using the descartes modeling language”. In:

IEEE Transactions on Software Engineering 43.5 (2016), pp. 432–452.

[88] Nikolaus Huber et al. “Modeling run-time adaptation at the system

architecture level in dynamic service-oriented environments”. In:

Service Oriented Computing and Applications 8.1 (2014), pp. 73–89.

[89] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and epistemic

uncertainty in machine learning: An introduction to concepts and

methods”. In: Machine Learning 110.3 (2021), pp. 457–506.

[90] “IEEE Recommended Practice on Software Reliability”. In: IEEE Std
1633-2016 (Revision of IEEE Std 1633-2008) (2017), pp. 1–261. doi:
10.1109/IEEESTD.2017.7827907.

[91] M Usman Iftikhar and Danny Weyns. “Activforms: Active formal

models for self-adaptation”. In: Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems. 2014, pp. 125–134.

[92] Muhammad Usman Iftikhar et al. “Deltaiot: A self-adaptive internet

of things exemplar”. In: 2017 IEEE/ACM 12th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE. 2017, pp. 76–82.

[93] Sae International. “Taxonomy and definitions for terms related to

driving automation systems for on-road motor vehicles”. In: SAE
(2018).

[94] Kichun Jo et al. “Development of autonomous car—Part II: A case

study on the implementation of an autonomous driving system based

on distributed architecture”. In: IEEE Transactions on Industrial Elec-
tronics 62.8 (2015), pp. 5119–5132.

[95] Kyle D Julian and Mykel J Kochenderfer. “Guaranteeing safety for

neural network-based aircraft collision avoidance systems”. In: 2019
IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). IEEE.
2019, pp. 1–10.

415

https://doi.org/10.1109/IEEESTD.2017.7827907

Bibliography

[96] Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen. “Deep

neural network compression for aircraft collision avoidance systems”.

In: Journal of Guidance, Control, and Dynamics 42.3 (2019), pp. 598–
608.

[97] Kyle D Julian et al. “Policy compression for aircraft collision avoid-

ance systems”. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Con-
ference (DASC). IEEE. 2016, pp. 1–10.

[98] Daniel Kang et al. “Model assertions for monitoring and improving

MLmodels”. In: Proceedings of Machine Learning and Systems 2 (2020),
pp. 481–496.

[99] Guy Katz et al. “Reluplex: An efficient SMT solver for verifying

deep neural networks”. In: International conference on computer aided
verification. Springer. 2017, pp. 97–117.

[100] Guy Katz et al. “The marabou framework for verification and analysis

of deep neural networks”. In: International Conference on Computer
Aided Verification. Springer. 2019, pp. 443–452.

[101] Jeffrey O Kephart and David M Chess. “The vision of autonomic

computing”. In: Computer 36.1 (2003), pp. 41–50.

[102] Edward Kim et al. “A programmatic and semantic approach to ex-

plaining and debugging neural network based object detectors”. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2020, pp. 11128–11137.

[103] Anneke G Kleppe et al. MDA explained: the model driven architecture:
practice and promise. Addison-Wesley Professional, 2003.

[104] Fabian Kneer, Erik Kamsties, and Klaus Schmid. “Environment mod-

eling for adaptive systems: a systematic literature review”. In: arXiv
preprint arXiv:2011.07892 (2020).

[105] Daphne Koller and Nir Friedman. Probabilistic graphical models: prin-
ciples and techniques. MIT press, 2009.

[106] Anne Koziolek. Automated improvement of software architecture mod-
els for performance and other quality attributes. Vol. 7. KIT Scientific

Publishing, 2014.

[107] Sanjay Krishnan and Eugene Wu. “Palm: Machine learning explana-

tions for iterative debugging”. In: Proceedings of the 2Nd workshop on
human-in-the-loop data analytics. 2017, pp. 1–6.

416

Bibliography

[108] Philippe Kruchten, Patricia Lago, and Hans van Vliet. “Building up

and reasoning about architectural knowledge”. In: International con-
ference on the quality of software architectures. Springer. 2006, pp. 43–
58.

[109] Marta Kwiatkowska, Gethin Norman, and David Parker. “Prism: Prob-

abilistic model checking for performance and reliability analysis”.

In: ACM SIGMETRICS Performance Evaluation Review 36.4 (2009),

pp. 40–45.

[110] Philip Langer et al. “EMF Profiles: A Lightweight Extension Approach

for EMF Models.” In: J. Object Technol. 11.1 (2012), pp. 1–29.

[111] Michael Austin Langford and Betty HC Cheng. ““Know What You

Know”: Predicting Behavior for Learning-Enabled Systems When

Facing Uncertainty”. In: 2021 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE.
2021, pp. 78–89.

[112] Yann LeCun et al. “Gradient-based learning applied to document

recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[113] Sebastian Michael Lehrig. Efficiently conducting quality-of-service
analyses by templating architectural knowledge. Vol. 25. KIT Scientific

Publishing, 2018.

[114] Rogério de Lemos and Marek Grześ. “Self-adaptive artificial intelli-

gence”. In: 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS). IEEE.
2019, pp. 155–156.

[115] Grace A Lewis, Ipek Ozkaya, and Xiwei Xu. “Software Architecture

Challenges for ML Systems”. In: 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE. 2021, pp. 634–
638.

[116] Shih-Chieh Lin et al. “The architectural implications of autonomous

driving: Constraints and acceleration”. In: Proceedings of the Twenty-
Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems. 2018, pp. 751–766.

[117] Renting Liu, Zhaorong Li, and Jiaya Jia. “Image partial blur detection

and classification”. In: 2008 IEEE conference on computer vision and
pattern recognition. IEEE. 2008, pp. 1–8.

417

Bibliography

[118] Yaping Luo et al. “An architecture pattern for safety critical auto-

mated driving applications: Design and analysis”. In: 2017 Annual
IEEE International Systems Conference (SysCon). IEEE. 2017, pp. 1–7.

[119] Fumio Machida. “On the diversity of machine learning models for

system reliability”. In: 2019 IEEE 24th Pacific Rim International Sym-
posium on Dependable Computing (PRDC). IEEE. 2019, pp. 276–27609.

[120] Anne Martens et al. “Automatically improve software architecture

models for performance, reliability, and cost using evolutionary al-

gorithms”. In: Proceedings of the first joint WOSP/SIPEW international
conference on Performance engineering. 2010, pp. 105–116.

[121] Robert von Massow, André van Hoorn, and Wilhelm Hasselbring.

“Performance simulation of runtime reconfigurable component-based

software architectures”. In: European Conference on Software Archi-
tecture. Springer. 2011, pp. 43–58.

[122] Nenad Medvidovic and Richard N Taylor. “Software architecture:

foundations, theory, and practice”. In: 2010 ACM/IEEE 32nd Interna-
tional Conference on Software Engineering. Vol. 2. IEEE. 2010, pp. 471–
472.

[123] Sean P Meyn and Richard L Tweedie. Markov chains and stochastic
stability. Springer Science & Business Media, 2012.

[124] Tom M Mitchell. Machine Learning. McGraw-Hill, 1997.

[125] Volodymyr Mnih et al. “Playing atari with deep reinforcement learn-

ing”. In: arXiv preprint arXiv:1312.5602 (2013).

[126] Gabriel A Moreno et al. “Flexible and efficient decision-making for

proactive latency-aware self-adaptation”. In: ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 13.1 (2018), pp. 1–36.

[127] Gabriel A Moreno et al. “Proactive self-adaptation under uncertainty:

a probabilistic model checking approach”. In: Proceedings of the 2015
10th joint meeting on foundations of software engineering. 2015, pp. 1–
12.

[128] Henry Muccini and Karthik Vaidhyanathan. “Software architecture

for ml-based systems: what exists and what lies ahead”. In: 2021
IEEE/ACM 1st Workshop on AI Engineering-Software Engineering for
AI (WAIN). IEEE. 2021, pp. 121–128.

[129] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT

press, 2012.

418

Bibliography

[130] Kevin Patrick Murphy. “Dynamic bayesian networks: representation,

inference and learning”. In: (2002).

[131] Patrick Musau et al. “On Using Real-Time Reachability for the Safety

Assurance of Machine Learning Controllers”. In: 2022 IEEE Interna-
tional Conference on Assured Autonomy (ICAA). IEEE. 2022, pp. 1–
10.

[132] Niranjan D Narvekar and Lina J Karam. “A no-reference image blur

metric based on the cumulative probability of blur detection (CPBD)”.

In: IEEE Transactions on Image Processing 20.9 (2011), pp. 2678–2683.

[133] MDA OMG. OMG Unified Modeling Language(OMG UML), Infrastruc-
ture, V2.1.2, 2007. url: http://www.omg.org/spec/UML/2.1.2/.

[134] PeymanOreizy et al. “An architecture-based approach to self-adaptive

software”. In: IEEE Intelligent Systems and Their Applications 14.3
(1999), pp. 54–62.

[135] Nicolas Papernot et al. “Practical black-box attacks against machine

learning”. In: Proceedings of the 2017 ACM on Asia conference on
computer and communications security. ACM. 2017, pp. 506–519.

[136] Kexin Pei et al. “Deepxplore: Automated whitebox testing of deep

learning systems”. In: proceedings of the 26th Symposium on Operating
Systems Principles. 2017, pp. 1–18.

[137] Ana Pereira and Carsten Thomas. “Challenges of machine learn-

ing applied to safety-critical cyber-physical systems”. In: Machine
Learning and Knowledge Extraction 2.4 (2020), pp. 579–602.

[138] Ana Petrovska et al. “Defining adaptivity and logical architecture

for engineering (smart) self-adaptive cyber–physical systems”. In:

Information and Software Technology 147 (2022), p. 106866.

[139] Buu Phan et al. “Bayesian uncertainty quantification with synthetic

data”. In: International Conference on Computer Safety, Reliability, and
Security. Springer. 2019, pp. 378–390.

[140] Prism artifacts. url: https://people.cs.kuleuven.be/~danny.
weyns/software/ActivFORMS/supplement/index.htm.

[141] Georg Püschel et al. “Towards systematic model-based testing of self-

adaptive software”. In: Proceedings of the 5th International Conference
on Adaptive and Self-Adaptive Systems and Applications (ADAPTIVE).
Citeseer. 2013, pp. 65–70.

419

http://www.omg.org/spec/UML/2.1.2/
https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/supplement/index.htm
https://people.cs.kuleuven.be/~danny.weyns/software/ActivFORMS/supplement/index.htm

Bibliography

[142] Morgan Quigley et al. “ROS: an open-source Robot Operating Sys-

tem”. In: ICRA workshop on open source software. Vol. 3. 3.2. Kobe,
Japan. 2009, p. 5.

[143] Federico Quin, Danny Weyns, and Omid Gheibi. “Reducing large

adaptation spaces in self-adaptive systems using classical machine

learning”. In: Journal of Systems and Software 190 (2022), p. 111341.

[144] Mona Rahimi et al. “Toward requirements specification for machine-

learned components”. In: 2019 IEEE 27th International Requirements
Engineering Conference Workshops (REW). IEEE. 2019, pp. 241–244.

[145] Pethuru Raj. Architectural Patterns: Uncover essential patterns in the
most indispensable realm of enterprise architecture. Packt Publishing
Limited, 2017.

[146] Rambo steering angle prediction model. 2016. url: https://github.
com/udacity/self-driving-car/tree/master/steering-models/

community-models/rambo.

[147] Martina Rapp, Max Scheerer, and Ralf Reussner. “Design-Time Per-

formability Optimization of Runtime Adaptation Strategies”. In: Com-
panion of the 2022 ACM/SPEC International Conference on Perfor-
mance Engineering. ICPE ’22. Bejing, China: Association for Com-

puting Machinery, 2022, pp. 113–120. isbn: 9781450391597. doi: 10.

1145/3491204.3527471. url: https://doi.org/10.1145/3491204.

3527471.

[148] Samik Raychaudhuri. “Introduction to monte carlo simulation”. In:

2008 Winter simulation conference. IEEE. 2008, pp. 91–100.

[149] Ralf H Reussner et al. Modeling and simulating software architectures:
The Palladio approach. MIT Press, 2016.

[150] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Anchors:

High-precision model-agnostic explanations”. In: Proceedings of the
AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[151] Rick Salay and Krzysztof Czarnecki. “Improving ml safety with par-

tial specifications”. In: International Conference on Computer Safety,
Reliability, and Security. Springer. 2019, pp. 288–300.

[152] Rick Salay and Krzysztof Czarnecki. “Using machine learning safely

in automotive software: An assessment and adaption of software pro-

cess requirements in ISO 26262”. In: arXiv preprint arXiv:1808.01614
(2018).

420

https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/rambo
https://doi.org/10.1145/3491204.3527471
https://doi.org/10.1145/3491204.3527471
https://doi.org/10.1145/3491204.3527471
https://doi.org/10.1145/3491204.3527471

Bibliography

[153] Mazeiar Salehie and Ladan Tahvildari. “Self-adaptive software: Land-

scape and research challenges”. In: ACM transactions on autonomous
and adaptive systems (TAAS) 4.2 (2009), pp. 1–42.

[154] P Santhanam, Eitan Farchi, and Victor Pankratius. “Engineering re-

liable deep learning systems”. In: arXiv preprint arXiv:1910.12582
(2019).

[155] Max Scheerer. Environmental Dynamics. url: https://github.com/
PalladioSimulator/Palladio-Addons-EnvironmentalDynamics.

[156] Max Scheerer. “Reliability prediction of AI-enabled systems”. In: url:

https://github.com/PalladioSimulator/Palladio- Analyzer-

Dependability-ML.

[157] Max Scheerer and Martina Rapp. SimExp Framework - Evaluation of
adaptation strategies for self-adaptive systems. url: https://github.
com/PalladioSimulator/Palladio-Analyzer-SimExp.

[158] Max Scheerer, Martina Rapp, and Ralf Reussner. “Design-Time Val-

idation of Runtime Reconfiguration Strategies: An Environmental-

Driven Approach”. In: 2020 IEEE International Conference on Auto-
nomic Computing and Self-Organizing Systems (ACSOS). IEEE. 2020,
pp. 75–81.

[159] Max Scheerer and Ralf Reussner. “Reliability Prediction of Self-Adaptive

Systems Managing Uncertain AI Black-Box Components”. In: 2021
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). IEEE. 2021, pp. 111–117.

[160] Max Scheerer et al. “Towards classes of architectural dependability

assurance for machine-learning-based systems”. In: Proceedings of
the IEEE/ACM 15th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. 2020, pp. 31–37.

[161] Gesina Schwalbe and Martin Schels. “A survey on methods for the

safety assurance of machine learning based systems”. In: 10th Euro-
pean Congress on Embedded Real Time Software and Systems (ERTS
2020). 2020.

[162] David Sculley et al. “Hidden technical debt in machine learning

systems”. In: Advances in neural information processing systems 28
(2015).

421

https://github.com/PalladioSimulator/Palladio-Addons-EnvironmentalDynamics
https://github.com/PalladioSimulator/Palladio-Addons-EnvironmentalDynamics
https://github.com/PalladioSimulator/Palladio-Analyzer-Dependability-ML
https://github.com/PalladioSimulator/Palladio-Analyzer-Dependability-ML
https://github.com/PalladioSimulator/Palladio-Analyzer-SimExp
https://github.com/PalladioSimulator/Palladio-Analyzer-SimExp

Bibliography

[163] Alex Serban, Erik Poll, and Joost Visser. “Towards using probabilistic

models to design software systems with inherent uncertainty”. In:

European Conference on Software Architecture. Springer. 2020, pp. 89–
97.

[164] Alexandru Constantin Serban. “Designing safety critical software

systems to manage inherent uncertainty”. In: 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C). IEEE. 2019,
pp. 246–249.

[165] Sanjit A Seshia, Dorsa Sadigh, and S Shankar Sastry. “Towards veri-

fied artificial intelligence”. In: arXiv preprint arXiv:1606.08514 (2016).

[166] Lui Sha et al. “Using simplicity to control complexity”. In: IEEE Soft-
ware 18.4 (2001), pp. 20–28.

[167] Sina Shafaei et al. “Uncertainty in machine learning: A safety per-

spective on autonomous driving”. In: International Conference on
Computer Safety, Reliability, and Security. Springer. 2018, pp. 458–
464.

[168] Stepan Shevtsov, Danny Weyns, and Martina Maggio. “SimCA* A

Control-theoretic Approach to Handle Uncertainty in Self-adaptive

Systems with Guarantees”. In: ACM Transactions on Autonomous and
Adaptive Systems (TAAS) 13.4 (2019), pp. 1–34.

[169] Yong-Jun Shin, Joon-Young Bae, and Doo-Hwan Bae. “Concepts and

Models of Environment of Self-Adaptive Systems: A Systematic Lit-

erature Review”. In: 2021 28th Asia-Pacific Software Engineering Con-
ference (APSEC). IEEE. 2021, pp. 296–305.

[170] Hai Shu and Hongtu Zhu. “Sensitivity analysis of deep neural net-

works”. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. Vol. 33. 01. 2019, pp. 4943–4950.

[171] Ravid Shwartz-Ziv andNaftali Tishby. “Opening the black box of deep

neural networks via information”. In: arXiv preprint arXiv:1703.00810
(2017).

[172] Gagandeep Singh et al. “An abstract domain for certifying neural

networks”. In: Proceedings of the ACM on Programming Languages
3.POPL (2019), pp. 1–30.

[173] Ian Sommerville. Software Engineering, 9/E. Pearson Education India,

2011.

422

Bibliography

[174] Matthijs TJ Spaan. “Partially observable Markov decision processes”.

In: Reinforcement Learning. Springer, 2012, pp. 387–414.

[175] Herbert Stachowiak. Allgemeine modelltheorie. Springer, 1973.

[176] Thomas Stahl, Markus Völter, and Krzysztof Czarnecki.Model-driven
software development: technology, engineering, management. John
Wiley & Sons, Inc., 2006.

[177] Dave Steinberg et al. EMF: eclipse modeling framework. Pearson Edu-

cation, 2008.

[178] Christian Stier. “Adaptation-aware architecture modeling and analy-

sis of energy efficiency for software systems”. PhD thesis. Karlsruhe

Institute of Technology, Germany, 2018.

[179] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attri-

bution for deep networks”. In: International Conference on Machine
Learning. PMLR. 2017, pp. 3319–3328.

[180] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. Vol. 1. 1. MIT press Cambridge, 1998.

[181] Marius Take et al. “Software Design Patterns for AI-Systems”. In:

Proceedings of the 11th International Workshop on Enterprise Mod-
eling and Information Systems Architectures (EMISA 2021). Hrsg.: A.
Koschmider. 2021, p. 30.

[182] Moeka Tanabe et al. “Learning environment model at runtime for

self-adaptive systems”. In: Proceedings of the Symposium on Applied
Computing. 2017, pp. 1198–1204.

[183] Ömer Şahin Taş et al. “Functional system architectures towards fully

automated driving”. In: Intelligent Vehicles Symposium (IV), 2016 IEEE.
IEEE. 2016, pp. 304–309.

[184] R.N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture:
Foundations, Theory, and Practice. Wiley, 2009. isbn: 9780470167748.

url: https://books.google.de/books?id=j9pdGQAACAAJ.

[185] Jakob Thumm and Matthias Althoff. “Provably Safe Deep Reinforce-

ment Learning for Robotic Manipulation in Human Environments”.

In: arXiv preprint arXiv:2205.06311 (2022).

[186] Yuchi Tian et al. “Deeptest: Automated testing of deep-neural-network-

driven autonomous cars”. In: Proceedings of the 40th international
conference on software engineering. 2018, pp. 303–314.

423

https://books.google.de/books?id=j9pdGQAACAAJ

Bibliography

[187] Yuchi Tian et al. “Testing DNN image classifiers for confusion & bias

errors”. In: Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. 2020, pp. 1122–1134.

[188] David Timmermann et al. “A Hybrid Approach for Object Localiza-

tion Combining Mask R-CNN and Halcon in an Assembly Scenario”.

In: 2021 IEEE 8th International Conference on Industrial Engineering
and Applications (ICIEA). IEEE. 2021, pp. 270–276.

[189] Hanghang Tong et al. “Blur detection for digital images using wavelet

transform”. In: 2004 IEEE international conference on multimedia and
expo (ICME)(IEEE Cat. No. 04TH8763). Vol. 1. IEEE. 2004, pp. 17–20.

[190] Marc Toussaint, Amos Storkey, and Stefan Harmeling. “Expectation-

Maximization methods for solving (PO) MDPs and optimal control

problems”. In: Inference and Learning in Dynamic Models (2010).

[191] Udacity self-driving car challenge - CH2_001 Dataset. 2016. url: https:
//github.com/udacity/self-driving-car/tree/master/datasets/

CH2.

[192] Udacity self-driving car challenge 2. 2016. url: https://github.com/
udacity/self-driving-car/tree/master/challenges/challenge-

2.

[193] Mark Utting and Bruno Legeard. Practical model-based testing: a tools
approach. Elsevier, 2010.

[194] Jeroen Van Der Donckt et al. “Applying deep learning to reduce large

adaptation spaces of self-adaptive systems with multiple types of

goals”. In: Proceedings of the IEEE/ACM 15th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. 2020,
pp. 20–30.

[195] Kush R Varshney and Homa Alemzadeh. “On the safety of machine

learning: Cyber-physical systems, decision sciences, and data prod-

ucts”. In: Big data 5.3 (2017), pp. 246–255.

[196] David Verstraete et al. “Deep learning enabled fault diagnosis using

time-frequency image analysis of rolling element bearings”. In: Shock
and Vibration 2017 (2017).

[197] Andreas Vogelsang and Markus Borg. “Requirements engineering for

machine learning: Perspectives from data scientists”. In: 2019 IEEE
27th International Requirements Engineering Conference Workshops
(REW). IEEE. 2019, pp. 245–251.

424

https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://github.com/udacity/self-driving-car/tree/master/datasets/CH2
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2
https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2

Bibliography

[198] Markus Völter et al. Model-driven software development: technology,
engineering, management. John Wiley & Sons, 2013.

[199] Laura Von Rueden et al. “Informed machine learning–towards a tax-

onomy of explicit integration of knowledge into machine learning”.

In: Learning 18 (2019), pp. 19–20.

[200] Akifumi Wachi and Yanan Sui. “Safe reinforcement learning in con-

strained markov decision processes”. In: International Conference on
Machine Learning. PMLR. 2020, pp. 9797–9806.

[201] ShiqiWang et al. “Efficient formal safety analysis of neural networks”.

In: Advances in Neural Information Processing Systems. 2018, pp. 6367–
6377.

[202] Shiqi Wang et al. “Formal security analysis of neural networks using

symbolic intervals”. In: 27th USENIX Security Symposium (USENIX
Security 18). 2018, pp. 1599–1614.

[203] Hironori Washizaki et al. “Studying software engineering patterns

for designing machine learning systems”. In: 2019 10th International
Workshop on Empirical Software Engineering in Practice (IWESEP).
IEEE. 2019, pp. 49–495.

[204] Gereon Weiss et al. “Towards integrating undependable self-adaptive

systems in safety-critical environments”. In: Proceedings of the 13th
International Conference on Software Engineering for Adaptive and
Self-Managing Systems. 2018, pp. 26–32.

[205] Wiphada Wettayaprasit, Nasith Laosen, and Salinla Chevakidagarn.

“Data filtering technique for neural networks forecasting”. In: Pro-
ceedings of the 7th WSEAS International Conference on Simulation,
Modelling and Optimization. World Scientific, Engineering Academy,

and Society (WSEAS). 2007, pp. 225–230.

[206] Danny Weyns. An Introduction to Self-adaptive Systems: A Contempo-
rary Software Engineering Perspective. John Wiley & Sons, 2020.

[207] Danny Weyns and M Usman Iftikhar. “Activforms: A model-based

approach to engineer self-adaptive systems”. In: arXiv preprint
arXiv:1908.11179 (2019).

[208] Danny Weyns and Usman Iftikhar. “Model-based simulation at run-

time for self-adaptive systems”. In: Proceeding Models at Runtime,
Würzburg 2016 (2016), pp. 1–9.

425

Bibliography

[209] Danny Weyns et al. “Applying architecture-based adaptation to auto-

mate the management of internet-of-things”. In: European Conference
on Software Architecture. Springer. 2018, pp. 49–67.

[210] Who’s responsible when an autonomous car crashes? http://money.

cnn.com/2016/07/07/technology/tesla-liability-risk/index.

html. 2016.

[211] Hui Xu et al. “NV-DNN: towards fault-tolerant DNN systems with

N-version programming”. In: 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W).
IEEE. 2019, pp. 44–47.

[212] Haruki Yokoyama. “Machine learning system architectural pattern

for improving operational stability”. In: 2019 IEEE International Con-
ference on Software Architecture Companion (ICSA-C). IEEE. 2019,
pp. 267–274.

[213] Jie M Zhang et al. “Machine learning testing: Survey, landscapes and

horizons”. In: IEEE Transactions on Software Engineering (2020).

[214] Mengshi Zhang et al. “Deeproad: Gan-based metamorphic testing

and input validation framework for autonomous driving systems”. In:

2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE. 2018, pp. 132–142.

[215] Tianqi Zhao et al. “A reinforcement learning-based framework for

the generation and evolution of adaptation rules”. In: 2017 IEEE In-
ternational Conference on Autonomic Computing (ICAC). IEEE. 2017,
pp. 103–112.

[216] Qi Zhu et al. “Safety-assured design and adaptation of learning-

enabled autonomous systems”. In: 2021 26th Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE. 2021, pp. 753–760.

[217] Luisa M Zintgraf et al. “Visualizing deep neural network decisions:

Prediction difference analysis”. In: arXiv preprint arXiv:1702.04595
(2017).

426

http://money.cnn.com/2016/07/07/technology/tesla-liability-risk/index.html
http://money.cnn.com/2016/07/07/technology/tesla-liability-risk/index.html
http://money.cnn.com/2016/07/07/technology/tesla-liability-risk/index.html

A. Results of Architectural
Configurations Predicted by
SimExp for the DeltaIoT System

In the following, a collection of tables are depicted which show the aver-

aged architectural configurations predicted by the SimExp method. In each

scenario, 10 trajectories are sampled where each trajectory has some fixed

length 𝑁 . The architectural configurations are calculated by averaging the

transmission powers and distribution factors of the𝑁 th sampled state (i.e. the

last state) by the factor of 10 (i.e. the total number of sampled trajectories).

427

A. Results of Architectural Configurations Predicted by SimExp for the DeltaIoT System

Default Strategy

DeltaIoT SimExp

Link Power Distribution Power Distribution

2 to 4 15 100 15 100

3 to 1 0 100 0 100

4 to 1 12 100 13 100

5 to 9 0 100 0 100

6 to 4 15 100 15 100

7 to 2 0 0 0 3

7 to 3 0 100 0 97

8 to 1 0 100 0 100

9 to 1 0 100 0 100

10 to 6 15 50 15 100

10 to 5 8 50 7.1 0

11 to 7 6 100 5.3 100

12 to 7 0 0 0 1

12 to 3 15 100 15 99

13 to 11 15 100 15 100

14 to 12 0 100 0 100

15 to 12 0 100 0 100

Table A.1.: Overview of the average configurations of DeltaIoT and SimExp to which the strategy

𝜋𝐷 converges after sampling 96 states for 10 runs.

428

A. Results of Architectural Configurations Predicted by SimExp for the DeltaIoT System

Q
ua

li
ty
-b
as
ed

St
ra
te
gy

D
el
ta
Io
T

𝛽
=
1
0

Si
m
Ex

p
𝛽
=
3
0
.5

D
el
ta
Io
T

𝛽
=
1
8

Si
m
Ex

p
𝛽
=
3
2

D
el
ta
Io
T

𝛽
=
2
6

Si
m
Ex

p
𝛽
=
3
4
.5

Li
nk

Po
w
er

D
is
t.

Po
w
er

D
is
t.

Po
w
er

D
is
t.

Po
w
er

D
is
t.

Po
w
er

D
is
t.

Po
w
er

D
is
t.

2
t
o
4

1
5

1
0
0

1
4

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

3
t
o
1

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
4

1
0
0

4
t
o
1

1
2

1
0
0

1
2

1
0
0

1
2
.1

1
0
0

1
3

1
0
0

1
5

1
0
0

1
3
.9

1
0
0

5
t
o
9

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
3
.9

1
0
0

6
t
o
4

1
5

1
0
0

1
4

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

7
t
o
2

0
0

1
5

0
0

9
6

8
.1

1
0
0

1
5

0
1
5

0

7
t
o
3

0
1
0
0

7
1
0
0

0
4

7
0

1
5

1
0
0

1
4
.1

1
0
0

8
t
o
1

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
3
.9

1
0
0

9
t
o
1

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
4
.1

1
0
0

1
0
t
o
6

1
5

1
0

1
4
.6

0
1
5

5
1
4
.7

0
1
5

0
1
5

0

1
0
t
o
5

7
9
0

7
1
0
0

7
.1

9
5

8
1
0
0

1
5

1
0
0

1
4

1
0
0

1
1
t
o
7

5
1
0
0

5
1
0
0

5
.1

1
0
0

6
1
0
0

1
5

1
0
0

1
3
.9

1
0
0

1
2
t
o
7

1
5

0
1
5

0
0

1
0
0

8
.1

1
0
0

1
5

9
3

1
4
.6

9
2

1
2
t
o
3

1
5

1
0
0

1
4

1
0
0

1
5

0
1
5

0
1
5

7
1
5

8

1
3
t
o
1
1

1
5

1
0
0

1
4

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

1
5

1
0
0

1
4
t
o
1
2

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
4
.1

1
0
0

1
5
t
o
1
2

0
1
0
0

0
1
0
0

0
1
0
0

0
1
0
0

1
5

1
0
0

1
4
.1

1
0
0

Ta
bl

e
A.

2.
:O

v
e
r
v
i
e
w
o
f
t
h
e
a
v
e
r
a
g
e
c
o
n
fi
g
u
r
a
t
i
o
n
s
o
f
D
e
l
t
a
I
o
T
a
n
d
Si
m
Ex

p
t
o
w
h
i
c
h
t
h
e
s
t
r
a
t
e
g
y
𝜋
𝑄

c
o
n
v
e
r
g
e
s
f
o
r
v
a
r
y
i
n
g
b
o
u
n
d
s
.
I
n
t
e
r
m
s
o
f

Si
m
Ex

p,
9
6
s
t
a
t
e
s
h
a
v
e
b
e
e
n
s
a
m
p
l
e
d
f
o
r
1
0
r
u
n
s
;
r
e
g
a
r
d
i
n
g
D
e
l
t
a
I
o
T
5
0
0
s
t
a
t
e
s
h
a
v
e
b
e
e
n
s
i
m
u
l
a
t
e
d
f
o
r
1
0
r
u
n
s
.

429

Band 1	 Steffen Becker
	� Coupled Model Transformations for QoS Enabled

Component-Based Software Design.
	 ISBN 978-3-86644-271-9

Band 2	 Heiko Koziolek
	� Parameter Dependencies for Reusable Performance

Specifications of Software Components.
	 ISBN 978-3-86644-272-6

Band 3	 Jens Happe
	� Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments.
	 ISBN 978-3-86644-381-5

Band 4	 Klaus Krogmann
	� Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis.
	 ISBN 978-3-86644-804-9

Band 5	 Michael Kuperberg
	� Quantifying and Predicting the Influence of Execution Platform

on Software Component Performance.
	 ISBN 978-3-86644-741-7

Band 6	 Thomas Goldschmidt
	 View-Based Textual Modelling.
	 ISBN 978-3-86644-642-7

Band 7	 Anne Koziolek
	� Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes.
	 ISBN 978-3-86644-973-2

The Karlsruhe Series on
Software Design and Quality

ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 8	 Lucia Happe
	 �Configurable Software Performance Completions through

Higher-Order Model Transformations.
	 ISBN 978-3-86644-990-9

Band 9	 Franz Brosch
	� Integrated Software Architecture-Based Reliability

Prediction for IT Systems.
	 ISBN 978-3-86644-859-9

Band 10	 Christoph Rathfelder
	� Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation.
	 ISBN 978-3-86644-969-5

Band 11	 Henning Groenda
	� Certifying Software Component

Performance Specifications.
	 ISBN 978-3-7315-0080-3

Band 12	 Dennis Westermann
	� Deriving Goal-oriented Performance Models

by Systematic Experimentation.
	 ISBN 978-3-7315-0165-7

Band 13	 Michael Hauck
	� Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments.
	 ISBN 978-3-7315-0138-1

Band 14	 Zoya Durdik
	� Architectural Design Decision Documentation through

Reuse of Design Patterns.
	 ISBN 978-3-7315-0292-0

Band 15	 Erik Burger
	� Flexible Views for View-based Model-driven Development.
	 ISBN 978-3-7315-0276-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 16	 Benjamin Klatt
	 Consolidation of Customized Product Copies
	 into Software Product Lines.
	 ISBN 978-3-7315-0368-2

Band 17	 Andreas Rentschler
	� Model Transformation Languages with

Modular Information Hiding.
	 ISBN 978-3-7315-0346-0

Band 18	 Omar-Qais Noorshams
	� Modeling and Prediction of I/O Performance

in Virtualized Environments.
	 ISBN 978-3-7315-0359-0

Band 19	 Johannes Josef Stammel
	� Architekturbasierte Bewertung und Planung

von Änderungsanfragen.
 	 ISBN 978-3-7315-0524-2

Band 20	 Alexander Wert
	 Performance Problem Diagnostics by Systematic Experimentation.
 	 ISBN 978-3-7315-0677-5

Band 21	 Christoph Heger
	� An Approach for Guiding Developers to

Performance and Scalability Solutions.
 	 ISBN 978-3-7315-0698-0

Band 22	 Fouad ben Nasr Omri
	� Weighted Statistical Testing based on Active Learning and Formal

Verification Techniques for Software Reliability Assessment.
 	 ISBN 978-3-7315-0472-6

Band 23	 Michael Langhammer
	� Automated Coevolution of Source Code and

Software Architecture Models.
 	 ISBN 978-3-7315-0783-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 24	 Max Emanuel Kramer
	� Specification Languages for Preserving Consistency between

Models of Different Languages.
 	 ISBN 978-3-7315-0784-0

Band 25	 Sebastian Michael Lehrig
	� Efficiently Conducting Quality-of-Service Analyses by Templating

Architectural Knowledge.
 	 ISBN 978-3-7315-0756-7

Band 26	 Georg Hinkel
	� Implicit Incremental Model Analyses and Transformations.
 	 ISBN 978-3-7315-0763-5

Band 27	 Christian Stier
	� Adaptation-Aware Architecture Modeling and

Analysis of Energy Efficiency for Software Systems.
 	 ISBN 978-3-7315-0851-9

Band 28	 Lukas Märtin
	� Entwurfsoptimierung von selbst-adaptiven Wartungs-

mechanismen für software-intensive technische Systeme.
 	 ISBN 978-3-7315-0852-6

Band 29	 Axel Busch
	� Quality-driven Reuse of Model-based

Software Architecture Elements.
 	 ISBN 978-3-7315-0951-6

Band 30	 Kiana Busch
	� An Architecture-based Approach for Change

Impact Analysis of Software-intensive Systems.
 	 ISBN 978-3-7315-0974-5

Band 31	 Misha Strittmatter
	� A Reference Structure for Modular Metamodels of

Quality-Describing Domain-Specific Modeling Languages.
 	 ISBN 978-3-7315-0982-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 32	 Markus Frank
	 Model-Based Performance Prediction for Concurrent Software
	 on Multicore Architectures. A Simulation-Based Approach.
	 ISBN 978-3-7315-1146-5

Band 33	 Manuel Gotin
	 QoS-Based Optimization of Runtime Management of Sensing 	
	 Cloud Applications.
	 ISBN 978-3-7315-1147-2

Band 34	 Heiko Klare
	� Building Transformation Networks for Consistent Evolution of

Interrelated Models.
 	 ISBN 978-3-7315-1132-8

Band 35	 Roman Pilipchuk
	� Architectural Alignment of Access Control Requirements

Extracted from Business Processes.
 	 ISBN 978-3-7315-1212-7

Band 36	 Stephan Seifermann
	� Architectural Data Flow Analysis for Detecting Violations of

Confidentiality Requirements.
 	 ISBN 978-3-7315-1246-2

Band 37	 Sofia Ananieva
	� Consistent View-Based Management of Variability in

Space and Time.
 	 ISBN 978-3-7315-1241-7

Band 38	 Robert Heinrich
	 Architecture-based Evolution of Dependable
	 Software-intensive Systems.
 	 ISBN 978-3-7315-1294-3

Band 39	 Max Scheerer
	 Evaluating Architectural Safeguards
	 for Uncertain AI Black-Box Components.
 	 ISBN 978-3-7315-1320-9

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

Although tremendous progress has been made in Artificial Intelligence (AI), it
entails new challenges. The growing complexity of learning tasks requires more
complex AI components, which increasingly exhibit unreliable behaviour. This
is of particular concern in safety-critical systems where AI is commonly used.

In this book, we address the safeguarding of AI components at the architec-
tural level. Our approach supports software engineers in evaluating existing
architectural safeguards at design-time. Based on model-driven techniques,
architectural safeguards are modelled and their effect on the overall system
reliability is analysed. Thus, software engineers can evaluate and compare
safety-critical design decisions before implementing the system.

ISSN 1867-0067
ISBN 978-3-7315-1320-9
Gedruckt auf FSC-zertifiziertem Papier

	Abstract
	Zusammenfassung
	Danksagungen
	List of Figures
	List of Tables
	List of Listings
	Notations
	Prologue
	Introduction
	Motivation
	Research Gaps
	Challenges and Research Questions
	Modelling and Simulating Adaptation Strategies of Self-Adaptive Systems
	Evaluation of Architectural Safeguards Regarding Reliability Attributes
	Dependability Assurance of AI-enabled Systems

	Contributions
	Example Systems
	Load Balancer
	DeltaIoT
	Human-Robot-Interaction

	Outline

	Foundations and Related Work
	Foundations
	Self-Adaptive Software Systems
	Model-driven Software Development
	Models and Metamodels
	Model Transformation
	EMF Profiles

	The Palladio Approach
	Modelling Component-based Software Architectures
	Simulating Component-based Software Architectures

	Markov Models
	Discrete-time Markov Chain
	Markov Decision Process
	Partially Observable Markov Decision Process

	Dynamic Programming
	Policy Evaluation
	Monte Carlo Prediction

	Probabilistic Graphical Models
	Bayesian Networks
	Dynamic Bayesian Networks
	Template-based Probabilistic Models

	A Brief Introduction to Artificial Intelligence
	Machine Learning
	Deep Learning

	Validation Preliminaries
	Goal-Question-Metric Approach
	Validation Levels
	Bhattacharyya Distance

	Related Work
	Dealing with AI-induced Uncertainty
	Algorithmic Approaches
	System-level Approaches

	Quality Assurance of AI-enabled Systems
	Engineering Processes
	Classifying AI-enabled Systems

	Analysing Self-Adaptive Systems
	Using Markov Models for Decision-Making
	Model-based Analysis of Self-Adaptive Systems

	Design-time Evaluation of Self-Adaptive System
	The Dynamics of Self-Adaptive Systems: A Theoretical Perspective
	Environmental Dynamics
	The Deterministic Adaptation Process
	Considering Self-Adaptive Systems as Stochastic Processes
	Mapping Self-Adaptive Systems to Markov Decision Processes
	The Interdependency of Software Architecture and Environment

	Problem Statement
	State Space Complexity
	The Engineering Problem of Self-Adaptive Systems

	Assumptions
	Summary

	Using Bayesian Modelling to Capture the Environmental Dynamics
	Requirements
	The Environmental Dynamics Metamodel
	Representing Environmental Dynamics with Dynamic Bayesian Networks
	Overview of the Metamodel
	Modelling Domain-Independent Template Variables and Template Factors
	Modelling the Static Environment
	Modelling the Dynamic Environment
	Modelling Probability Distributions
	Discussion

	Instantiating Environmental Dynamics in Domain-Specific Contexts
	Instantiation of Template-based Structures
	Semi-Automated Generation of the Structural Environment Model by Annotation-based Instantiation

	Implementation
	Assumptions and Limitations
	Summary

	Evaluating Self-Adaptive Systems by Simulating Experience: The SimExp Method
	Evaluating Adaptation Strategies at Design-time
	A Formal Framework for Evaluating Adaptation Strategies
	Using Dynamic Programming to Evaluate Adaptation Strategies
	Using Monte-Carlo-Methods to Generate Simulated Experience

	Simulating Experience by Model-based Quality Analysis
	Modelling Self-Adaptive Systems
	Evaluating Adaptation Strategies by Generating Simulated Experience

	Implementation
	Assumptions and Limitations
	Summary

	Safeguarding Uncertain AI Black-Box Components
	Reliability Prediction of Architectural Safeguards for AI-enabled Systems
	Engineering Reliable AI-Enabled Systems in the Presence of Uncertainty
	Represention of Architectural Safeguards with Architectural Templates
	Sensitivity Analysis of AI Components
	Reliability Prediction of AI-Enabled Systems

	Engineering Self-Adaptive Systems to Safeguard AI Components
	Problem Statement
	Decoupling of the Observation Process
	Analysing the Monitorable Space
	Evaluating Adaptation Strategies

	Implementation
	Assumptions and Limitations
	Summary

	Classes of Architectural Dependability Assurance for AI-Enabled Systems
	Classes of Architectural Dependability Assurance
	Static Analysability
	Monitor Analysability
	A-posteriori Analysability
	Non-Analysability

	Classification Structure
	Classification Dimensions
	Overview of the Classification Structure
	Deriving Dependability Assurance Cases

	Classifying AI-enabled Systems
	AI-supported Assistance in Automated Driving
	Human-Robot-Interaction Systems
	Aircraft Collision Avoidance Systems
	Discussion

	Summary

	Validation
	Validation
	Overview
	Validation Goals, Questions and Metrics
	Case Study Systems
	Validation Process

	Evaluating Adaptation Strategies of Self-Adaptive Systems
	DeltaIoT
	Load Balancing

	Reliability Analysis of AI-enabled Systems
	Udacity Self-Driving Car Challenge
	A Generic Software Architecture for Self-Driving Cars
	Sensitivity Model and Analysis
	Generating Synthetic Data
	Experiment Setup
	Experiment Results

	Evaluating Self-Adaptive Systems to Safeguard AI Components
	Udacity Self-Driving Car Challenge
	Human-Robot-Interaction

	Discussion of Results and Research Questions
	Goal Achievement
	Answering the Research Questions
	Threats to Validity

	Epilogue
	Conclusion
	Summary
	Central Limitations and Assumptions
	Future Work

	Bibliography
	Results of Architectural Configurations Predicted by SimExp for the DeltaIoT System

