

Accepted version of the paper entitled “Plastic deformation of single crystals of the equiatomic Cr-Fe-Co-Ni medium entropy alloy – a comparison with Cr-Mn-Fe-Co-Ni and Cr-Co-Ni alloys to understand effects of Cr concentration” published in International Journal of Plasticity, vol. 169, 103732 (2023),

DOI: <https://doi.org/10.1016/j.ijplas.2023.103732>.

1  
2 **Plastic deformation of single crystals of the equiatomic Cr-Fe-Co-Ni medium**  
3 **entropy alloy – a comparison with Cr-Mn-Fe-Co-Ni and Cr-Co-Ni alloys**

4  
5 Le Li<sup>1</sup>, Zhenghao Chen<sup>1</sup>, Koretaka Yuge<sup>1</sup>, Kyosuke Kishida<sup>1</sup>, Haruyuki Inui<sup>1</sup>, Martin  
6 Heilmaier<sup>2</sup>, Easo P. George<sup>3,4</sup>

7  
8 <sup>1</sup>Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto  
9 606-8501, Japan

10 <sup>2</sup>Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT),  
11 Engelbert-Arnold-Strasse 4, 76131 Karlsruhe, Germany

12 <sup>3</sup>Materials Science and Engineering Department, University of Tennessee, Knoxville, TN  
13 37996, USA

14 <sup>4</sup>Institute for Materials, Ruhr University Bochum, 44801 Bochum, Germany

15  
16 **\*Corresponding Author Contact Information:**

17 Kyosuke Kishida  
18 Department of Materials Science and Engineering, Kyoto University,  
19 Kyoto 606-8501, Japan  
20 Tel: +81-75-753-5461, Fax: +81-75-753-5461,  
21 E-mail: kishida.kyosuke.6w@kyoto-u.ac.jp

22  
23 **Abstract**

24 The plastic deformation behavior of single crystals of the equiatomic Cr-Fe-Co-Ni  
25 medium-entropy alloy was investigated in compression and tension from 9 K to 1373 K.  
26 The critical resolved shear stress (CRSS) for  $\{111\} <1\bar{1}0>$  slip is 44-45 MPa at room  
27 temperature and does not exhibit significant tension-compression asymmetry. It increases  
28 rapidly with decreasing temperature but exhibits a dulling of the temperature dependence  
29 below 77 K due to the inertia effect. The 0 K CRSS was determined to be 200 MPa by  
30 extrapolating the temperature dependence of CRSS from above 77 K to lower  
31 temperatures. This CRSS value is higher than that of the equiatomic Cr-Mn-Fe-Co-Ni  
32 high-entropy alloy, 174 MPa, but lower than that of the equiatomic Cr-Co-Ni medium-  
33 entropy alloy, 225 MPa. The rank of CRSS at 0 K of the three equiatomic alloys is  
34 consistent with the prediction of some solid solution strengthening models. The stacking  
35 fault energy (SFE) of the Cr-Fe-Co-Ni is about 20 mJ/m<sup>2</sup>, which falls between those of  
36 the Cr-Mn-Fe-Co-Ni and Cr-Co-Ni alloys. Deformation twinning in the Cr-Fe-Co-Ni  
37 MEA occurs at a shear stress of 249 MPa on conjugate  $(\bar{1}\bar{1}1)$  planes in the form of Lüders  
38 deformation at 77 K. The relationship between twinning stress and SFE is not monotonic

1 as previously believed, but displays a concave with a minimum twinning stress at an  
2 intermediate SFE value.

3

4 Keywords: High-entropy alloys; Single crystals; Critical resolved shear stress; Solute  
5 strengthening; Stacking fault energy; Twinning

6

7

8

## 1. Introduction

2 The equiatomic high-entropy alloy Cr-Mn-Fe-Co-Ni and its ternary derivative Cr-Co-  
 3 Ni are known to exhibit good strength-ductility balance from ambient to cryogenic  
 4 temperatures and the highest fracture toughness of all modern structural materials (Gal-  
 5 and George, 2013; George et al., 2019, 2020; Gludovatz et al., 2014, 2016; Gupta et al.,  
 6 2022; Hua et al., 2021; Inui et al., 2022a; Li et al., 2019; Liu et al., 2022; Miracle and  
 7 Senkov, 2017; Zhang et al., 2015, 2017). Studies on the Cr-Mn-Fe-Co-Ni high-entropy  
 8 alloy (HEA) and its medium-entropy alloy (MEA) subsystems have revealed that solid-  
 9 solution strengthening is a significant contributor to their yield strength, which can be  
 10 correlated with lattice distortion (Z. Li et al., 2023; Nöhring and Curtin, 2019; Okamoto  
 11 et al., 2016b; Sohn et al., 2019). Ductility can be correlated with the activation of  
 12 additional deformation mechanisms including twinning and HCP (hexagonal-close  
 13 packed) phase transformation (Bahramyan et al., 2020; Kim et al., 2022; Miao et al., 2017;  
 14 Naeem et al., 2020; Wang et al., 2022; Wei et al., 2019; Zhang et al., 2023). Neither  
 15 strength nor ductility can be correlated with the number of constituent elements in HEAs  
 16 and MEAs.

17 Among the constituent elements, Cr in recent years has come to be recognized as  
 18 being very effective in increasing both strength and ductility of HEA/MEAs (George et  
 19 al., 2020; Inui et al., 2022a; Li et al., 2019). Some material parameters have been proposed  
 20 to quantify the extent of solid-solution hardening of HEA and MEAs in theoretical models  
 21 (Bracq et al., 2019; Inui et al., 2022b; Okamoto et al., 2016b; Toda-Caraballo, 2017; Toda-  
 22 Caraballo and Rivera-Díaz-del-Castillo, 2015; Varvenne et al., 2016). Indeed, theoretical  
 23 models predict the extent of solid-solution hardening of HEA and MEAs reasonably well  
 24 with these materials parameters, one of which is the mean-square atomic displacement  
 25 (MSAD), and all these models indicate that Cr causes severe lattice distortion compared  
 26 to many other elements leading to the higher strength of Cr-Mn-Fe-Co-Ni HEAs and its  
 27 MEA subsystems (Bracq et al., 2019; Inui et al., 2022b; Okamoto et al., 2016b; Varvenne  
 28 et al., 2016; Wang et al., 2023; Wei et al., 2022a, 2022b).

29 Another possible reason for the importance of Cr as an alloying element is related to  
 30 the observation that increasing the Cr content in HEAs and MEAs of the Cr-Mn-Fe-Co-  
 31 Ni system decreases their SFEs (Fan et al., 2023; Hashimoto et al., 2021; Liu et al., 2018;  
 32 Wagner et al., 2022; Wang et al., 2023; Zhang et al., 2020). Since the twinning shear stress  
 33 decreases monotonically with decreasing SFE in FCC alloys (Christian and Mahajan,  
 34 1995; Venables, 1964), it is reasonable to expect higher Cr concentrations to facilitate  
 35 deformation twinning and, in turn, enhance ductility. Therefore, it is pertinent to  
 36 investigate the strength and ductility of HEAs and MEAs in the Cr-Mn-Fe-Co-Ni system  
 37 as a function of Cr content to better understand the role of Cr. This has been studied in

1 some previous work within a single alloy system [non-equiatomic Cr-Mn-Fe-Co-Ni  
2 HEAs (Fan et al., 2023; Wagner et al., 2023) and Cr-Co-Ni MEAs (Wang et al., 2023)],  
3 in which the effects of Cr on strength and ductility are proved dominative among the  
4 constituent elements. For different equiatomic alloy systems, density functional theory  
5 calculations have indicated that those Cr-containing equiatomic HEA/MEAs usually  
6 exhibits higher MSAD and lower SFE (Huang et al., 2018; Niitsu et al., 2020; Okamoto  
7 et al., 2016; Zhao et al., 2017), but so far the direct comparison of mechanical properties  
8 experimentally obtained from bulk single crystals of different HEA/MEAs is too scarce.

9 In our previous studies on single crystals of the equiatomic Cr-Mn-Fe-Co-Ni HEA  
10 and the equiatomic Cr-Co-Ni MEA (Kawamura et al., 2021; Li et al., 2022), we reported  
11 that the latter had a higher critical resolved shear stress (CRSS) and ductility than the  
12 former. We ascribed these properties to the higher MSAD and lower stacking fault energy  
13 of the latter. This is consistent with what was described above about the effect of Cr  
14 concentration on mechanical properties. However, the twinning stress of the Cr-Co-Ni  
15 MEA has been reported to be higher than that of the Cr-Mn-Fe-Co-Ni HEA from  
16 experiments on polycrystals (Li et al., 2022), contrary to the long-held belief that the  
17 twinning shear stress decreases monotonically with decreasing stacking fault energy in  
18 FCC alloys. This motivated us to investigate the mechanical properties of these HEAs  
19 and MEAs with the use of single crystals with different Cr contents to deepen our  
20 understanding. The equiatomic Cr-Fe-Co-Ni MEA is a desirable candidate for this  
21 purpose, as its Cr content (25 at.% Cr) is in between those of the Cr-Mn-Fe-Co-Ni HEA  
22 (20 at.%) and the Cr-Co-Ni MEA (~33 at.%) and hence its MSAD and SFE [which govern  
23 strength and ductility (twinning stress)] are also in between those of the Cr-Mn-Fe-Co-  
24 Ni HEA and Cr-Co-Ni MEA. Previous studies on polycrystals of the equiatomic Cr-Fe-  
25 Co-Ni MEA reported that deformation twinning occurs both at 77 K and room  
26 temperature at twinning shear stresses of 208 and 239 MPa, respectively (Wang et al.,  
27 2018) and 281 MPa from 25 K to room temperature (independent of temperature) (Naeem  
28 et al., 2021). However, these values for twinning may well be affected by the grain size  
29 effect. Limited experimental results can be found for single crystal of the equiatomic Cr-  
30 Fe-Co-Ni MEA. Wu et al. reported that the CRSS for  $\{111\} <110>$  slip is 39-43 MPa and  
31 96-99 MPa at room temperature and 77 K, respectively, but they did not investigate the  
32 twinning behavior at all (Wu et al., 2015).

33 In the present study, we investigate the plastic deformation behavior of single  
34 crystals of the equiatomic Cr-Fe-Co-Ni MEA in compression and tension from 9 K to  
35 1373 K to deduce the temperature dependence of CRSS, twinning shear stress, tensile  
36 ductility at room temperature and 77 K, and stacking fault energy. The mechanical  
37 properties of the Cr-Fe-Co-Ni MEA are compared with those of the Cr-Mn-Fe-Co-Ni

1 HEA and Cr-Co-Ni MEA in [Section 3](#). In [Section 4](#), the thermally activated behavior of  
 2 dislocations is analyzed based on the classical model for conventional FCC solid-  
 3 solutions. Then, solid-solution strengthening is quantitatively calculated by several  
 4 different models to understand the role of Cr. Finally, the effects of Cr on the stacking  
 5 fault energy and deformation twinning stress are discussed.

6

## 7 **2.1. Experimental Procedures**

8 High-purity (>99.9%) elemental metals (Cr, Fe, Co, Ni) were arc melted in argon to  
 9 produce rods of the equiatomic Cr-Fe-Co-Ni alloy which were then grown into single  
 10 crystals using procedures similar to those described in an earlier paper ([Li et al., 2022](#)).  
 11 The single crystals were annealed at 1473 K for 168 hours, followed by water quenching.  
 12 After crystallographic orientations were determined by the Laue method, [123]-oriented  
 13 tension and compression specimens with gauge dimensions of  $2 \times 2 \times 5 \text{ mm}^3$  were cut by  
 14 spark-machining and their surfaces polished mechanically and electrolytically with a  
 15 solution of nitric acid and methanol (1:4 by volume). Compression and tension tests were  
 16 conducted at temperatures between 9 K to 1373 K at an engineering strain rate of  $1 \times 10^4 \text{ s}^{-1}$ . Strain rate change tests were performed below room temperature to measure the  
 17 strain-rate sensitivity of flow stress. Deformation markings on specimen surfaces were  
 18 examined in a light microscope and scanning electron microscope (SEM) equipped with  
 19 an electron back-scatter diffraction (EBSD) system. Deformation fine structures were  
 20 examined by transmission electron microscopy (TEM) and scanning transmission  
 21 electron microscopy (STEM) with JEOL JEM-2000FX and JEM-ARM200F electron  
 22 microscopes. Thin foils for TEM observations were prepared by electro-polishing with a  
 23 solution of perchloric acid, n-butanol, and methanol (1:2:7 by volume).

## 25 **2.2. Theoretical calculations**

26 The optimized SQS (special quasirandom structure, [Zunger et al., 1990](#))  
 27 configurations are constructed for supercell of 600-atom (i.e.,  $5 \times 5 \times 6$  expansion of FCC  
 28 conventional 4-atom unit cell) based on Monte Carlo simulation to minimize Euclidean  
 29 distance between correlation functions up to 4th nearest neighbor pair for practically-  
 30 constructed configurations and those for ideal ones.

31 MSAD for SQS configurations are estimated based on density functional theory  
 32 (DFT) calculation ([Kresse and Furthmüller, 1996](#)). We perform total energy calculation  
 33 by VASP code using projector-augmented wave method, with the exchange-correlation  
 34 functional treated under the generalized-gradient approximation of Perdew-Burke-  
 35 Ernzerhof (GGA-PBE). The plane wave cutoff of 360 eV is used. Structural optimization  
 36 is performed until the residual forces become less than 0.001 eV/Å, where cell-shape is  
 37 kept fixed on cubic while lattice parameter and internal atomic positions are relaxed. k-

1 point sampling is performed on the basis of the Monkhorst-Pack scheme with gamma  
 2 point as well as  $2 \times 2 \times 2$  grids for representative configurations, confirming that the  
 3 former sampling condition is sufficient for the present purpose.

4

5 **3. Results**

6 **3.1. Compressive deformation behavior**

7 **3.1.1. Temperature dependence of CRSS**

8 Yielding occurs smoothly in compression without any load drop in the [123]-  
 9 oriented single crystals of the equiatomic Cr-Fe-Co-Ni MEA at all temperatures (Fig. S1).

10 Slip trace analysis, Fig. S2, confirms the operation of (111)[101] slip whose CRSS values  
 11 (determined from the 0.2% offset yield stress and the corresponding Schmid factor of  
 12 0.467) are plotted in Fig. 1 as a function of temperature, together with those for the  
 13 equiatomic Cr-Mn-Fe-Co-Ni HEA and Cr-Co-Ni MEA (Kawamura et al., 2021; Li et al.,  
 14 2022). The temperature dependence of CRSS is qualitatively similar in the three alloys:  
 15 it increases rapidly with decreasing temperature below room temperature but less so  
 16 above room temperature. There is a slight increase of CRSS with increasing temperature  
 17 between 873 K and 1273 K. The CRSS increases rapidly from 44-45 MPa at room  
 18 temperature to 99-102 MPa at 77 K, consistent with those (39-43 MPa at room  
 19 temperature and 96-99 MPa at 77 K) previously reported for single crystals of the  
 20 equiatomic Cr-Fe-Co-Ni MEA by Wu et al. (Wu et al., 2015). However, here, a dulling  
 21 of the temperature dependence of CRSS is observed below 77 K, unlike in Wu et al. where  
 22 tests below 77 K were not performed. This dulling effect at low temperatures (typically  
 23 below about 50 K) has been seen previously in dilute FCC solid-solution alloys such as  
 24 Cu-Al alloys (Kawamura et al., 2021), as well as in the Cr-Co-Ni MEA (Li et al., 2022),  
 25 and is believed to be due to the inertia effect (Granato, 1971; Schwarz et al., 1977). The  
 26 degree of dulling [defined here as the CRSS difference at 0 K between the extrapolated  
 27 curve (solid line) and dotted curve (drawn through the experimental data points), see inset  
 28 of Fig. 1] increases with increasing Cr content (i.e., in the order Cr-Co-Ni > Cr-Fe-Co-Ni  
 29 > Cr-Mn-Fe-Co-Ni). Above 873 K, a slight increase in CRSS is observed in the Cr-Fe-  
 30 Co-Ni MEA, accompanied by serrations in the stress-strain curves, Fig. S1, similar to  
 31 what has been previously reported in equiatomic Cr-Mn-Fe-Co-Ni and its subsets  
 32 (Kawamura et al., 2021; Li et al., 2022; Tsai et al., 2019). The increase in CRSS above  
 33 873 K is attributed to the Portevin-Le Chatelier (PLC) effect as in many FCC binary solid-  
 34 solution alloys. In FCC solid-solutions, the PLC effect is considered to originate from the  
 35 interaction between dislocations and solute atoms, which occurs when the deformation  
 36 temperature is high enough for atomic diffusion of solute atoms to occur at a speed  
 37 comparable to that of dislocations (Rodriguez, 1984; Tsai et al., 2019). Here, the increase

1 in CRSS increases with decreasing Cr content (i.e., in the order Cr-Mn-Fe-Co-Ni > Cr-  
 2 Fe-Co-Ni > Cr-Co-Ni). We suspect Mn and Fe play a role in the occurrence of the PLC  
 3 effect. However, the detailed mechanism behind the PLC effect in these alloys is not  
 4 known and is the subject of ongoing research.

5 To deduce the CRSS at 0 K, the experimentally obtained CRSS values are fitted with  
 6 the following conventional equation (Kocks et al., 1975; Wille et al., 1987; Wille and  
 7 Schwink, 1986),

$$8 \quad \tau(T) = \tau_{ath} + \tau_{th} \left[ 1 - \left( \frac{T}{T_a} \right)^{\frac{1}{q}} \right]^p \quad (1)$$

9 where  $T_a$  is the athermal temperature above which the CRSS becomes temperature-  
 10 independent (873 K for the Cr-Fe-Co-Ni MEA),  $\tau_{ath}$  is the athermal stress, i.e. CRSS at  
 11  $T_a$ ,  $\tau_{th}$  is the thermal stress, and  $p$  and  $q$  are fitting parameters. We only used CRSS  
 12 values obtained from above 77 K for the fitting to avoid interference from the inertia  
 13 effect at lower temperatures. The fitting results are tabulated in Table 1 and the fitted  
 14 curves are shown in Fig. 1. From the fitted curves, the CRSS at 0 K for the equiatomic  
 15 Cr-Fe-Co-Ni MEA is  $200 \pm 10$  MPa, which is higher than that ( $174 \pm 6$  MPa) for the Cr-  
 16 Mn-Fe-Co-Ni HEA and lower than that ( $225 \pm 7$  MPa) for the Cr-Co-Ni MEA (Kawamura  
 17 et al., 2021; Li et al., 2022). Thus, the CRSS at 0 K seems to increase with increasing Cr  
 18 content, as expected from the magnitudes of their MSADs (which will be discussed in a  
 19 later section). Interestingly, at the selected testing temperatures, the CRSS of the  
 20 equiatomic Cr-Fe-Co-Ni MEA is only a bit higher (near room temperature) and even a bit  
 21 lower than that of the equiatomic Cr-Mn-Fe-Co-Ni HEA, while the 0 K CRSS for the Cr-  
 22 Fe-Co-Ni MEA is much larger than that of the Cr-Mn-Fe-Co-Ni HEA. This is because a  
 23 crossover of the fitting curves for the temperature dependence of CRSS of the equiatomic  
 24 Cr-Mn-Fe-Co-Ni HEA and Cr-Fe-Co-Ni MEA occurs at a very low temperature. As we  
 25 described in Section 3.1.1 and 3.1.2, the dulling of the temperature dependence of CRSS  
 26 occurs below 77 K due to the “inertia effect” in the Cr-Fe-Co-Ni MEA so that the fitting  
 27 of the CRSS-temperature curves is performed only with the data points above 77 K where  
 28 the CRSS values are not affected by the inertia effect. However, no such dulling of the  
 29 temperature dependence of CRSS is observed, at least, until 10 K in the equiatomic and  
 30 non-equiatomic quinary Cr-Mn-Fe-Co-Ni HEAs in our previous work (Kawamura, et al.,  
 31 2021; Fan et al., 2023), albeit the reason is unclear yet. The fitting of the CRSS-  
 32 temperature curves is thus made with all the data down to 10 K for the Cr-Mn-Fe-Co-Ni  
 33 HEA. This indicates that the yield stress at finite temperatures does not represent the  
 34 intrinsic alloy strength (defined at 0 K in the absence of thermal activation); that is,

1 thermally activated dislocation motion contributes significantly to strength at finite  
 2 temperatures such as room temperature.

3

#### 4 **3.1.2. Strain-rate sensitivity of flow stress**

5 Strain-rate sensitivity of flow stress was measured for [123]-oriented single crystals  
 6 of the equiatomic Cr-Fe-Co-Ni MEA in the plastic strain range of stage I hardening at  
 7 temperatures between 9 K and room temperature (Fig. S1). The results are plotted in Fig.  
 8 2(a) which show that the flow stress increases with increasing strain rate at all  
 9 temperatures. When the data in Fig. 2(a) are differentiated, it shows that the strain-rate  
 10 sensitivity of flow stress increases with decreasing temperature up to 77 K and then  
 11 decreases rather rapidly with decreasing temperature, Fig. 2(b). The decrease observed  
 12 below 77 K is clear evidence for the inertia effect (Granato, 1971; Schwarz et al., 1977),  
 13 through which the dulling of the temperature dependence of CRSS occurs (Fig. 1).

14

#### 15 **3.1.3. Dislocation structures**

16 Fig. 3(a) shows typical dislocations observed in a [123]-oriented single crystal of the  
 17 Cr-Fe-Co-Ni MEA after compression to 2-3% plastic strain at room temperature. Long  
 18 and smoothly curved dislocations without any preferred orientations (edge or screw) are  
 19 observed in thin foils cut parallel to the (111) primary slip plane. As expected, cell  
 20 structures are not observed at such low strains. The planarity of dislocation structure is  
 21 indicative of low SFE. Indeed, dislocations widely dissociated into coupled Shockley  
 22 partial dislocations are clearly revealed by weak-beam dark-field microscopy (Fig. 3(b)).  
 23 From the dissociation widths measured here as a function of the angle ( $\theta$ ) between  
 24 dislocation line vector and Burgers vector, and the shear modulus of this alloy (Laplanche  
 25 et al., 2018), the SFE of the equiatomic Cr-Fe-Co-Ni MEA is evaluated to be  $20 \pm 4 \text{ mJ/m}^2$ .  
 26 Similar to our previous works on the Cr-Mn-Fe-Co-Ni HEA and Cr-Co-Ni MEA  
 27 (Kawamura et al., 2021; Li et al., 2022; Okamoto et al., 2016a), the extent of scatter in  
 28 dissociation widths at a given  $\theta$  is neither unprecedented nor unique but is comparable to  
 29 those in some pure FCC metals (Cockayne et al., 1971; Stobbs and Sworn, 1971). The  
 30 reader may refer to the paper (Okamoto et al., 2016a) for some more details of the method.  
 31 The deduced SFE ( $20 \pm 4 \text{ mJ/m}^2$ ) of our Cr-Fe-Co-Ni MEA is lower than that ( $27 \pm 4$   
 32  $\text{mJ/m}^2$ ) determined previously by weak-beam dark-field microscopy in polycrystalline  
 33 Cr-Fe-Co-Ni (Liu et al., 2018) and that ( $32.5 \text{ mJ/m}^2$ ) determined by neutron diffraction  
 34 in polycrystalline Cr-Fe-Co-Ni (Wang et al., 2018). Our equiatomic Cr-Fe-Co-Ni MEA  
 35 (this study) has a SFE that is in between that ( $30 \pm 5 \text{ mJ/m}^2$ ) of the Cr-Mn-Fe-Co-Ni HEA  
 36 (Kawamura et al., 2021) and that ( $14 \pm 3 \text{ mJ/m}^2$ ) of the Cr-Co-Ni MEA (Li et al., 2022),  
 37 all of which were determined using single crystals under similar experimental conditions

1 (weak-beam, dark field TEM). Previous work has indicated that Ni increases the SFE  
 2 while Cr and Co decrease the SFE with Cr being far more effective from the analysis of  
 3 SFE in various quinary Cr-Mn-Fe-Co-Ni HEAs and ternary Cr-Co-Ni MEAs (Bertoli et  
 4 al., 2021; Fan et al., 2023; Wang et al., 2023; Yan et al., 2023). We therefore suspect that  
 5 the decrease in SFE of the present three alloys is also due to the increase of Cr content,  
 6 albeit more studies in different MEAs are still required to make a definite conclusion.  
 7

### 8 **3.2 Tensile deformation behavior**

#### 9 **3.2.1. Stress-strain curves**

10 Tensile engineering stress-strain curves of [123]-oriented single crystals of the Cr-  
 11 Fe-Co-Ni MEA at room temperature and 77 K are shown in Fig. 4(a). From these, true  
 12 stress-strain curves were obtained and are shown in Fig. 4(b). At room temperature, stage  
 13 I (concave-upward shape accompanied by a moderate yield drop) extends to about 20%  
 14 plastic strain followed by stage II until failure occurs. The room-temperature CRSS (at  
 15 yielding) is 43 MPa, which is comparable to that obtained in compression (44-45 MPa),  
 16 indicating the absence of significant tension-compression asymmetry (Fig. S3), similar to  
 17 what was previously reported for Cr-Mn-Fe-Co-Ni and Cr-Co-Ni (Kawamura et al., 2021;  
 18 Li et al., 2022). Deformation twinning is not observed to occur at room temperature even  
 19 when stretched to failure (as confirmed by EBSD/SEM (Fig. S4) and TEM observations).  
 20 This is in contrast to polycrystals of the Cr-Fe-Co-Ni MEA in which room temperature  
 21 twinning was reported to occur in tension at a true stress of  $730 \pm 30$  MPa and true strain  
 22 of 0.212 (Wang et al., 2018) or  $860 \pm 20$  MPa true stress and 0.286 true strain (Naeem et  
 23 al., 2021). However, in both these works on polycrystals (Naeem et al., 2021; Wang et al.,  
 24 2018), the occurrence of twinning was deduced from stacking fault probability  
 25 determined from neutron scattering data and not by direct observation of deformation  
 26 twins.

27 At 77 K, the CRSS of single crystals of the Cr-Fe-Co-Ni MEA increases to 99 MPa,  
 28 which is again comparable to that (99-102 MPa) obtained at 77 K in compression in the  
 29 present study (Fig. S3). Stage I extends to more than 29% plastic strain with a concave  
 30 upward shape and a more pronounced load drop ( $\sim 24$  MPa at 77 K compared to  $\sim 5$  MPa  
 31 at room temperature). Similar stress-strain behavior in stage I has also been observed in  
 32 our previous work on [123]-oriented single crystals of the equiatomic Cr-Co-Ni MEA  
 33 (L. Li et al., 2022, 2023). In one of those studies (L. Li et al., 2023), we demonstrated a  
 34 lack of correlation between the magnitude of load drop and the degree of short-range  
 35 ordering. Here, we find a temperature dependence of the magnitude of load drop in stage  
 36 I, the explication of which needs further investigation in future studies.

37 In tensile stress-strain curves (Figs. 4(a) and (b)), an inflection point is clearly visible

1 in the 77 K curve after stage II work-hardening, accompanied by a sudden change in work  
 2 hardening rate (Fig. 4(c)). Interrupted tensile tests (Fig. 5(a)) confirm the inflection point  
 3 is due to the onset of deformation twinning on the (1̄1̄1) conjugate planes (Figs. 5(b)  
 4 and 5(d)) which propagates like a Lüders band from one end of the gauge section to the  
 5 other. This is the same behavior as we saw previously in [1̄23]-oriented single crystals of  
 6 the Cr-Mn-Fe-Co-Ni HEA and Cr-Co-Ni MEA tested at 77 K (Kawamura et al., 2021; Li  
 7 et al., 2022). The tensile loading axis at the inflection point is determined to be [1̄3,12,25]  
 8 (Fig. 5(c)). The extent of ‘overshoot’ of the tensile loading axis orientation beyond the  
 9 [001]-[1̄11] symmetry line during stage I and II straining is calculated to be 1.3°. Similar  
 10 overshoots occurred in the Cr-Mn-Fe-Co-Ni HEA at 3.7° (Kawamura et al., 2021) and in  
 11 the Cr-Co-Ni MEA at 4.7° (Li et al., 2022). This is inconsistent with the long-held belief  
 12 in FCC alloys that the extent of the tensile loading axis ‘overshoot’ is related inversely to  
 13 stacking fault energy.

14 From the inflection point in the true stress-strain curve of Fig. 4(b), the onset stress  
 15 for deformation twinning at 77 K is determined to be 615 MPa. Then, with the Schmid  
 16 factor (0.405) for the (1̄1̄1)[1̄21] conjugate twinning system at the loading axis  
 17 orientation of [1̄3,12,25], the onset twinning shear stress is calculated to be 249 MPa. This  
 18 twinning shear stress is comparable to that (274 MPa) from model prediction using the  
 19 calculated unstable stacking fault energy (Huang et al., 2018) and to that (281 ± 7 MPa)  
 20 experimentally determined for polycrystals of the Cr-Fe-Co-Ni MEA (axial stress divided  
 21 by the Taylor factor). However, the twinning shear stress of the Cr-Fe-Co-Ni MEA  
 22 (present study) is considerably lower than those of Cr-Mn-Fe-Co-Ni and Cr-Co-Ni MEA  
 23 experimentally determined in our previous works with [1̄23]-oriented single crystals at  
 24 77 K (343 and 482 MPa, respectively). This will be discussed further in section 4.2.

25 The plastic strains at failure, both at 77 K and room temperature, for the Cr-Fe-Co-  
 26 Ni MEA is in between those for the Cr-Mn-Fe-Co-Ni HEA and the Cr-Co-Ni MEA  
 27 (Kawamura et al., 2021; Li et al., 2022), so that it increases with decreasing SFE (i.e.,  
 28 with increasing Cr content) for these three alloys, consistent with the general trend in  
 29 FCC alloys.

30

### 31 3.2.2. Deformation fine structures

32 Fig. 6(a) shows a typical dark-field TEM image of deformation twins in a [1̄23]-  
 33 oriented single crystal of the Cr-Fe-Co-Ni MEA deformed to failure at 77 K. The thin foil  
 34 was cut perpendicular to the (1̄1̄1) conjugate twinning planes and the dark-field image  
 35 of Fig. 6(a) was formed by setting an objective aperture at the diffraction spot  
 36 corresponding to twins (see the inset diffraction pattern). Although some thick twins  
 37 (50~60 nm) can be occasionally seen, most of deformation twins are thin, around ten

1 nanometers in thickness, as shown in the thickness distribution histogram of Fig. 6(b).  
 2 The average twin thickness (16.3 nm) of the Cr-Fe-Co-Ni MEA is again between that  
 3 (20.1 nm, see Fig. S5) of the Cr-Mn-Fe-Co-Ni HEA and that (12.3 nm) of the Cr-Co-Ni  
 4 MEA (Li et al., 2022) obtained similarly from dark-field TEM images. Further atomic-  
 5 resolution STEM observations, Fig. 6(c), clearly reveal the existence of thin HCP layers  
 6 not only associated with twins but also isolated from twins. Histograms of twin and HCP  
 7 layer thickness distributions evaluated with atomic-resolution STEM images are shown  
 8 in Fig. 6(d). Twin thicknesses determined from atomic-resolution STEM images tend to  
 9 give smaller values when compared to those from dark-field TEM images, as thin matrix  
 10 layers (M) and thin stacking faults embedded in a twin (SF) can also be visible. But the  
 11 overall tendency is the same regardless of whether dark-field TEM images or atomic-  
 12 resolution STEM images are used as the source for measurement. The average twin  
 13 thickness (5.2 nm) of twins in the Cr-Fe-Co-Ni MEA is in between those of the Cr-Co-Ni  
 14 MEA (Li et al., 2022) and Cr-Mn-Fe-Co-Ni HEA. Thus the twin thickness increases with  
 15 increasing SFE, as has long been believed to be the case in FCC alloys (Christian and  
 16 Mahajan, 1995; Venables, 1964). Atomic-resolution STEM imaging also reveals,  
 17 however, that the average thickness (1.0 nm) of HCP layers in the Cr-Fe-Co-Ni MEA is  
 18 smaller than the 2.1 nm thick layers in the Cr-Co-Ni MEA (Li et al., 2022) and that such  
 19 HCP layers are rarely resolved in the Cr-Mn-Fe-Co-Ni HEA (Kawamura et al., 2021). In  
 20 contrast to the behavior of deformation twins, it appears that HCP layers become thicker  
 21 with decreasing stacking fault energy. This may be related to the stability of the HCP  
 22 phase with respect to the FCC phase.

23

#### 24 4. Discussion

##### 25 4.1. Thermally activated glide of dislocations

26 The activation volume ( $V$ ) for plastic deformation can be estimated from the strain  
 27 rate ( $\dot{\gamma}$ ) sensitivity of flow stress ( $\tau$ ) (Fig. 2) and the following conventional equation  
 28 (Butt and Feltham, 1978; Conrad, 1964),

$$29 V = kT \left[ \frac{\partial \ln \dot{\gamma}}{\partial \tau} \right]_T \quad (2)$$

30 where  $k$  is the Boltzmann constant,  $T$  is the absolute temperature. The calculated  
 31 activation volume of the Cr-Fe-Co-Ni MEA is plotted in Fig. 7(a) as a function of  
 32 temperature, together with those of the Cr-Mn-Fe-Co-Ni HEA (Kawamura et al., 2021)  
 33 and Cr-Co-Ni MEA (Li et al., 2022) for comparison. All three activation volumes  
 34 decrease with decreasing temperature. Above 77 K, the Cr-Co-Ni MEA exhibits the  
 35 lowest value of activation volume, followed by Cr-Fe-Co-Ni and Cr-Mn-Fe-Co-Ni in

1 decreasing order of Cr content. The particular interest of Cr arises from the fact that  
 2 although the Co and Ni contents also decrease in the three alloys, the MSAD (also misfit  
 3 volume and size misfit) of Cr is significantly larger than that of Co and Ni (Okamoto et  
 4 al., 2016b; Toda-Caraballo, 2017; Varvenne et al., 2016). Below 77 K, where dislocation  
 5 motion can be influenced by the inertia effect, the Cr-Co-Ni MEA exhibits the highest  
 6 value of activation volume, followed by Cr-Fe-Co-Ni MEA and Cr-Mn-Fe-Co-Ni HEA  
 7 in decreasing order of Cr content. This order is opposite to that above 77 K, but is  
 8 consistent with the order of the dulling of temperature dependence of CRSS (Fig. 1),  
 9 confirming that the latter is due to the inertia effect.

10 According to Butt et al. (Butt and Feltham, 1993; Butt, 1998), the temperature  
 11 dependence of activation volume of FCC solid solutions can be expressed with the  
 12 following equation,

$$13 \quad V = V_0 \exp\left(\frac{-mkT}{W_0}\right) \quad (3)$$

14 where  $V_0$  is the activation volume at 0 K,  $m$  is a constant around 27 and  $W_0$  is a material-  
 15 dependent constant. We fitted the deduced activation volumes above 77 K (to avoid the  
 16 inertia effect) to equation (3), and the results are shown in Fig. 7(b) and Table 1. The  
 17 activation volume at 0 K ( $V_0$ ) is the intercept with the vertical axis of Fig. 7(b). Not only  
 18 does this activation volume decrease with increasing Cr content in the three alloys, but  
 19 the activation volume at all temperatures below room temperature also decreases with  
 20 increasing Cr content, Fig. 7(c). This is consistent with the general view that the activation  
 21 volume is inversely correlated with the significance of the temperature dependence of  
 22 CRSS in FCC solid solution alloys. The fact that the activation volume increases with  
 23 increasing Cr content suggests that Cr is important in hindering dislocation motion in  
 24 these solid solution alloys.

25 The activation enthalpy ( $U$ ) for deformation can be estimated with the following  
 26 conventional equation (Li et al., 2022; Suzuki and Kuramoto, 1968),

$$27 \quad U = -k \frac{\ln \dot{\gamma}(\tau, T_2) - \ln \dot{\gamma}(\tau, T_1)}{\frac{1}{T_2} - \frac{1}{T_1}} \quad (4)$$

28 where  $T_1$  and  $T_2$  are two different absolute temperatures for deformation. We calculated  
 29 the activation enthalpy for deformation in Fig. 7(d) as a function of shear stress from the  
 30 strain rate ( $\dot{\gamma}$ ) sensitivity of flow stress ( $\tau$ ) (Fig. 2) for the alloys being considered here.  
 31 All three alloys have activation enthalpies of around 0.6-0.7 eV at shear stress levels  
 32 corresponding to the room-temperature values (when tested at a strain rate of  $1 \times 10^{-4} \text{ s}^{-1}$ ).  
 33 These activation enthalpies are similar to those of conventional FCC alloys at room  
 34 temperature (Suzuki and Kuramoto, 1968). This is consistent with the proposal by

1 Basinski et al. that a single mechanism governs the thermally activated motion of  
 2 dislocations in FCC solid solution alloys (Basinski et al., 1972).

3 Basinski et al. proposed the concept of ‘stress-equivalence’ according to which both  
 4 the temperature and strain-rate dependence of CRSS correlate with the magnitude of  
 5 solid-solution hardening rather than the type of solute or its concentration (Basinski et al.,  
 6 1972). Their work revealed that (i) the yield strength at 77 K ( $\sigma_{77K}$ ) is proportional to the  
 7 difference between the yield strength at 77 K and room temperature ( $\sigma_{298K}$ ) and (ii) the  
 8 activation volumes at 77 K and room temperature fall on their respective master curves  
 9 when plotted as a function of yield stress. We have confirmed that the concept of ‘stress-  
 10 equivalence’ holds true also for the three HEA/MEAs, as shown in Figs. 8(a) and (b),  
 11 respectively. This clearly indicates that all the three HEA/MEAs are strengthened by a  
 12 solid-solution hardening mechanism.

#### 13 4.2. CRSS at 0 K for FCC HEAs and MEAs

14 The main strengthening mechanism for the present Cr-Fe-Co-Ni MEA and also for  
 15 the Cr-Mn-Fe-Co-Ni HEA and Cr-Co-Ni MEA is solid-solution hardening, as discussed  
 16 above. We evaluate solid-solution hardening in these HEA/MEAs with the help of some  
 17 recent models proposed for solid-solution hardening in HEAs and MEAs. Toda-Caraballo  
 18 et al. proposed a model based on Gypen’s work in multicomponent systems that was extended  
 19 from Labusch’s theory (Gypen and Deruyttere, 1977a, 1977b; Labusch, 1970; Toda-  
 20 Caraballo and Rivera-Díaz-del-Castillo, 2015), in which solid-solution hardening arises  
 21 from the interaction between dislocations and solutes through atomic size misfit ( $\delta_n$ ) and  
 22 shear modulus misfit ( $\eta'_n$ ) of the solute  $n$ , as described by the following equations,

$$23 \quad \delta_n = \frac{\partial a}{\partial c_n} \frac{1}{a} \quad \text{and} \quad \eta'_n = \frac{\eta_n}{1 + 0.5|\eta_n|} \quad \text{with} \quad \eta_n = \frac{\partial \mu}{\partial c_n} \frac{1}{\mu} \quad (5)$$

24 where  $a$  is the lattice parameter, and  $\mu$  is the shear modulus. The CRSS at 0 K is then  
 25 calculated to be

$$26 \quad \tau_0 = \left[ \sum_n B_n^{3/2} c_n \right]^{2/3} \quad \text{with} \quad B_n = \mu \left( \eta_n^2 + \alpha^2 \delta_n^2 \right)^{2/3} Z \quad (6)$$

27 where  $Z$  is a fitting constant and  $\alpha$  is a parameter accounting for the difference in  
 28 interaction energy between screw/edge dislocations and solutes. Here,  $\alpha = 16$  is  
 29 adopted for the edge-dislocation/solutes interaction following earlier work (Jax et al.,  
 30 1970). Fig. 9(a) shows the results of our estimation for the two different contributions,  
 31 atomic size misfit and shear modulus misfit, to solid-solution hardening. In the present  
 32 HEA/MEAs, the atomic size misfit term (rather than the shear modulus misfit term) is  
 33 found to make a major contribution to solid-solution hardening with its contribution  
 34 increasing with increasing Cr content. Using the previously determined value of the  
 35 fitting parameter  $Z = 3.030$  for equiatomic Cr-Mn-Fe-Co-Ni HEA (Fan et al., 2023), we

1 calculated the 0 K CRSS for Cr-Fe-Co-Ni and Cr-Co-Ni and compared them to the  
 2 experimentally determined CRSS values, Fig. 9(b). The 0 K CRSS values predicted by  
 3 the Toda-Caraballo model are in reasonable agreement with experimental values.  
 4 However, it must be noted that so far no clear physical meaning has been given to the  $Z$   
 5 parameter and its value varies all over the place from  $Z = 3.030$  here, to 5 in Toda-  
 6 Caraballo et al. (Coury et al., 2018; Toda-Caraballo, 2017) for solid-solution alloys of the  
 7 Cr-Co-Ni system to 1.9, 1.4 and 0.8 for dilute Ag, Au and Cu binary FCC solid-solution  
 8 alloys, respectively (Jax et al., 1970).

9 Another parameter, the mean-square atomic displacement (MSAD), which is a  
 10 measure of the average displacements of the constituent elements from the ideal FCC  
 11 lattice positions, has been shown to correlate with the 0 K CRSS of FCC HEAs and MEAs  
 12 (Fan et al., 2023; Inui et al., 2022b; Okamoto et al., 2016b). Fig. 10(a) shows the MSAD  
 13 values for each of the constituent elements and their averaged values for the three  
 14 HEA/MEAs of interest here. A notable feature is that Cr exhibits the highest MSAD value  
 15 in all three alloys. As expected from the ‘intermediate’ Cr concentration in the Cr-Fe-Co-  
 16 Ni MEA, the average MSAD value of this alloy lies between those of the Cr-Mn-Fe-Co-  
 17 Ni MEA and the Cr-Co-Ni MEA. This agrees well with our previous work that the  
 18 contribution to MSAD ranks as Cr>Mn>Fe>Co>Ni within the quinary Cr-Mn-Fe-Co-Ni  
 19 alloy system, and both the MSAD of Cr and the averaged MSAD increase with increasing  
 20 Cr concentration (Fan et al., 2023). This is also consistent with the results in Fig. 9(a) that  
 21 Cr plays an important role in strengthening these HEA/MEAs. We therefore plotted the 0  
 22 K CRSS normalized by shear modulus  $\mu$  as a function of the square root of the averaged  
 23 MSAD normalized by the magnitude of Burges vector in Fig. 10(b). The 0 K shear moduli  
 24 were obtained by extrapolating the experimental temperature-dependent shear moduli  
 25 reported by Laplanche et al. (Laplanche et al., 2015, 2018). A good linear relationship is  
 26 observed, indicating that MSAD is a reasonable scaling factor to predict solid-solution  
 27 hardening in FCC HEA/MEAs. Additional work on single crystals of other equiatomic  
 28 quaternary and ternary MEAs is needed to establish the broader validity of this linear  
 29 correlation.

30

### 31 4.3. Deformation twinning

#### 32 4.3.1. Relation between twinning stress and stacking fault energy

33 Since the review article by Venables (Venables, 1964), it is generally believed that  
 34 the twinning shear stress ( $\tau_{\text{twin}}$ ) increases with increasing SFE in FCC alloys. An example  
 35 of this is shown at the bottom of Fig. 11(a) for Cu-base binaries. Recently, however,  
 36 Szczerba et al. reported the opposite trend for single crystals of binary Cu-Al solid-  
 37 solution alloys (Szczerba and Szczerba, 2017). The opposite trend was also reported for

1 polycrystals of Cr-Mn-Fe-Co-Ni, Cr-Fe-Co-Ni and Cr-Co-Ni (open symbols, top of Fig. 11(a)) (Laplanche et al., 2016, 2017; Naeem et al., 2021), although there is some  
 2 uncertainty in these results arising from grain size effects on the twinning stress.  
 3 Confounding effects of grain size can be avoided by considering [123]-oriented single  
 4 crystals and, in that case, the twinning shear stress of the Cr-Fe-Co-Ni MEA (present  
 5 study) is considerably lower than those of the Cr-Mn-Fe-Co-Ni HEA and the Cr-Co-Ni  
 6 MEA (Kawamura et al., 2021; Li et al., 2022), all determined at 77 K (solid symbols, top  
 7 of Fig. 11(a)). As shown in Fig. S6(a), the SFE (right Y axis) decreases monotonically  
 8 with the Cr concentration whereas a concave upward correlation is observed between the  
 9 twinning shear stress (left Y axis) and Cr concentration with the Cr-Fe-Co-Ni MEA of  
 10 0.25 Cr (atomic fraction) showing the minimum value for twinning stress. This  
 11 unexpected result clearly indicates that the twinning shear stress does not vary  
 12 monotonically with stacking fault energy, contrary to previous reports of binary FCC  
 13 solid-solution alloys (Christian and Mahajan, 1995; Venables, 1964) and polycrystals of  
 14 these FCC HEA/MEAs (Laplanche et al., 2017, 2016; Naeem et al., 2021).

16 Szczerba et al. (Szczerba and Szczerba, 2017) proposed the following equation to  
 17 account for the decreasing twinning stress with increasing SFE in single crystals of binary  
 18 Cu-Al solid-solution alloys,

$$19 \quad \tau_{\text{twin}} = \tau_s + \frac{\gamma_{\text{isf}}}{b_{\text{twin}}} + \tau_D \quad \text{with} \quad \tau_D \propto \frac{1}{\gamma_{\text{isf}}} \quad (7)$$

20 where  $\tau_s$  is the CRSS for slip,  $\gamma_{\text{isf}}$  is the intrinsic stacking fault energy,  $b_{\text{twin}}$  is the  
 21 magnitude of the Burgers vector of the twinning dislocation, and  $\tau_D$  is the interaction  
 22 stress between twinning dislocation and forest dislocations (Wessels and Nabarro, 1971).  
 23 This equation implies that for deformation twinning to occur at  $\tau_{\text{twin}}$ , three barriers must  
 24 be overcome: the stress barrier for slip (first term), the stress barrier to nucleate a twinning  
 25 partial dislocation (second term), and the stress barrier to propagate a twinning partial  
 26 dislocation through forest dislocations (third term). It has been proposed that the third  
 27 term ( $\tau_D$ ) is inversely proportional to the stacking fault energy (Wessels and Nabarro,  
 28 1971). Equation (7) predicts that the twinning shear stress first decreases and then  
 29 increases with increasing stacking fault energy.

30 When the twinning stress at 77 K is considered in light of equation (7), the first term  
 31 corresponds to the CRSS at 77 K, while the second term can be calculated from the  
 32 stacking fault energy and the lattice constant. By subtracting the sum of the first and  
 33 second terms from the experimentally determined twinning stress, the third term can be  
 34 deduced. These three terms are plotted in Fig. 11(b) as a function of stacking fault energy  
 35 for the three HEA/MEAs (SFE decreases with increasing Cr content and is 30, 20 and 14  
 36 mJ/m<sup>2</sup> for the quinary, quaternary, and ternary alloys, respectively). These three terms are

1 also plotted in Fig. S6(b) as a function of Cr concentration to clearly indicate its effects.  
 2 The variation of the first term is too small to account for the concave-upward variation of  
 3 twinning stress with stacking fault energy seen Fig. 11(a). The second term increases with  
 4 increasing stacking fault energy (with decreasing Cr content (Fig. S6(b)), suggesting a  
 5 higher contribution at higher stacking fault energies (at lower Cr contents). The third term  
 6 decreases rather rapidly with increasing stacking fault energy (with decreasing Cr  
 7 content). This is consistent with what is proposed by Szczerba et al. (Szczerba and  
 8 Szczerba, 2017) ( $\tau_D$  inversely proportional to the stacking fault energy) and suggests a  
 9 higher contribution at lower stacking fault energies. The above analysis clearly indicates  
 10 that the decrease in twinning stress at lower stacking fault energies is due to the  
 11 contribution from the third term corresponding to the stress barrier for twinning  
 12 dislocations to propagate through the extended forest dislocations.

13 Obviously, the long-held belief that the twinning stress increases with increasing  
 14 stacking fault energy relies solely on the contribution of the second term of equation (7)  
 15 that involves only the intrinsic stacking fault energy ( $\gamma_{isf}$ ) and the magnitude of the  
 16 Burgers vector of the twinning dislocation ( $b_{twin}$ ). However, experimentally determined  
 17 twinning stresses with single crystals are known to vary (sometimes very significantly)  
 18 with the initial loading axis orientation so that plastic strain levels at the onset of  
 19 deformation twinning differ considerably even for the same material. This can also occur  
 20 if the stacking fault energy changes. Indeed, the plastic true strain at the onset of  
 21 deformation twinning decreases significantly from  $\sim 0.9$  for the Cr-Co-Ni MEA to  $\sim 0.7$   
 22 for the Cr-Fe-Co-Ni HEA, when [123]-oriented single crystals are deformed in tension at  
 23 77 K (Fig. 12). This is consistent with the experimental fact that the extent of overshoot  
 24 is not simply inversely related to stacking fault energy, as described in the section 3.2.1.  
 25 This clearly indicates that the twinning stress ( $\tau_{twin}$ ) cannot be determined only with  
 26 intrinsic materials parameters such as  $\gamma_{isf}$  and  $b_{twin}$  but it contains the contribution  
 27 from some extrinsic parameters that may be related, for example, to deformation history  
 28 prior to deformation twinning. We believe that this corresponds to the third term of  
 29 equation (7).

30

### 31 4.3.2. Twinning stress and comparison with some model predictions

32 Kibey et al. proposed a model for deformation twinning in FCC metals and alloys,  
 33 incorporating the generalized stacking fault energy (GSFE) calculated by first-principles  
 34 methods (Kibey et al., 2007a, 2007b, 2009). The model considers the total energy  
 35 associated with the Mahajan-Chin three-layer twin nucleus (Mahajan and Chin, 1973)  
 36 due to the (i) elastic energy of dislocations bounding the nucleus, (ii) misfit energy  
 37 associated with the twinning energy pathway (the integration of the GSFE) and (iii) work

1 done by applied shear stress. We estimated the twinning shear stress ( $\tau_{\text{twin}}$ ) of the present  
 2 three HEA/MEAs with the model by Kibey et al. (Kibey et al., 2007a, 2007b, 2009) using  
 3 the GSFE values of FCC HEA/MEAs calculated by Huang et al. (Huang et al., 2018), as  
 4 shown in Fig. 13. The experimentally-determined twinning shear stresses for the three  
 5 HEA/MEAs are plotted as a function of unstable twinning fault energy ( $\gamma_{\text{ut}}$ ) together with  
 6 data for some pure FCC metals. While the model successfully predicts the  $\tau_{\text{twin}}$  of some  
 7 pure FCC metals, it significantly underestimates the  $\tau_{\text{twin}}$  values of the present  
 8 HEA/MEAs (Fig. 13).

9 Huang et al. (Huang et al., 2018) then modified the model by Kibey et al. (Kibey et  
 10 al., 2007a, 2007b, 2009) by ignoring the contribution from the elastic energy of  
 11 dislocations bounding the nucleus and predicted the twinning stress for the equiatomic  
 12 Cr-Fe-Co-Ni MEA to be 274 MPa, which agrees well with the experimentally-determined  
 13 value (249 MPa) in the present study (Fig. 13). However, the model of Huang et al.  
 14 (Huang et al., 2018) underestimates the twinning shear stress for the equiatomic Cr-Mn-  
 15 Fe-Co-Ni HEA and Cr-Co-Ni MEA (Fig. 13). This may indicate again that the twinning  
 16 stress ( $\tau_{\text{twin}}$ ) cannot be determined only with intrinsic materials parameters such as  $\gamma_{\text{isf}}$   
 17 and  $\gamma_{\text{ut}}$  and contributions from some extrinsic parameters that are related to deformation  
 18 history prior to deformation twinning must be taken into account.

19

## 20 5. Conclusions

21 The plastic deformation behavior of single crystals of the equiatomic Cr-Fe-Co-Ni  
 22 MEA was investigated as a function of temperature and compared with the behaviors of  
 23 the Cr-Mn-Fe-Co-Ni HEA and Cr-Co-Ni MEA. The following conclusions are drawn  
 24 from the present study.

25 (1) The CRSS for  $\{111\} <1\bar{1}0>$  slip is 44-45 MPa and 99-102 MPa at room temperature  
 26 and 77 K, respectively, and do not exhibit any tension-compression asymmetry. A dulling  
 27 of the temperature dependence of CRSS, which may be due to the inertia effect, is  
 28 observed below 77 K. The CRSS at 0 K is estimated to be 200 MPa by extrapolating from  
 29 CRSS values above 77 K where the inertia effect is absent. This 0 K CRSS is in between  
 30 those of the equiatomic Cr-Mn-Fe-Ni-Co HEA and Cr-Co-Ni MEA (174 and 225 MPa,  
 31 respectively). These CRSS values agree well with predictions of the model of Toda-  
 32 Caraballo et al. and the MSAD model.

33 (2) Although the temperature dependence of CRSS at cryogenic temperatures is much  
 34 steeper for these HEA and MEAs than conventional binary FCC solid-solution alloys, the  
 35 activation enthalpy for deformation at room temperature in all cases falls within a narrow  
 36 range of 0.6~0.7 eV, indicating a likely similarity of thermally activated dislocation  
 37 motion regardless of whether they are HEA/MEAs or conventional binary alloys.

1 (3) The stacking fault energy of the equiatomic Cr-Fe-Co-Ni MEA estimated from the  
 2 separation distances between coupled Shockley partial dislocations is about  $20 \text{ mJ/m}^{-2}$ ,  
 3 which is in between those of the equiatomic Cr-Mn-Fe-Ni-Co HEA and Cr-Ni-Co MEA  
 4 ( $30$  and  $14 \text{ mJ/m}^{-2}$ , respectively) and is sufficiently low to account for the planar  
 5 dislocation arrays and the occurrence of deformation twinning at  $77 \text{ K}$ .  
 6 (4) Deformation twinning occurs at  $77 \text{ K}$  at a high plastic strain of about  $110\%$ . Twinning  
 7 occurs on conjugate  $(\bar{1}\bar{1}1)$  planes in the form of Lüders deformation after the tensile axis  
 8 overshoots to  $[\bar{1}3,12,25]$  at an onset twinning shear stress of  $249 \text{ MPa}$ . The relationship  
 9 between the twinning stress and stacking fault energy is not monotonic as previously  
 10 believed; rather, it has a concave upward shape with a minimum twinning stress at an  
 11 intermediate value of stacking fault energy.

12

### 13 Acknowledgements

14 This work was supported by Grant-in-Aids for Scientific Research on innovative  
 15 Areas on High Entropy Alloys through the grant number JP18H05450 and JP18H05451,  
 16 in part by JSPS KAKENHI (grant numbers JP18H05478, JP21H01651, JP21K18825 and  
 17 JP22H00262), the Elements Strategy Initiative for Structural Materials (ESISM) from the  
 18 Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (grant  
 19 number JPMXP0112101000), JST CREST (grant number JPMJCR1994), and JST Spring  
 20 (grant number JPMJSP2110). Dr. A. Equbal of Kyoto University is greatly acknowledged  
 21 for his help in experiment. HI and MH acknowledge the support from the Alexander von  
 22 Humboldt Foundation for their cooperative research conducted under the Humboldt  
 23 Fellowship of HI.

24

### 25 Reference

26 Bahramyan, M., Mousavian, R.T., Brabazon, D., 2020. Study of the plastic deformation  
 27 mechanism of TRIP–TWIP high entropy alloys at the atomic level. *Int. J. Plast.* 127,  
 28 102649. <https://doi.org/10.1016/j.ijplas.2019.102649>

29 Basinski, Z.S., Foxall, R.A., Pascual, R., 1972. Stress equivalence of solution hardening.  
 30 *Scr. Metall.* 6, 807–814. [https://doi.org/10.1016/0036-9748\(72\)90052-X](https://doi.org/10.1016/0036-9748(72)90052-X)

31 Bertoli, G., Otani, L.B., Clarke, A.J., Kiminami, C.S., Coury, F.G., 2021. Hall–Petch and  
 32 grain growth kinetics of the low stacking fault energy TRIP  $\text{Cr}_{40}\text{Co}_{40}\text{Ni}_{20}$  multi-  
 33 principal element alloy. *Appl. Phys. Lett.* 119, 061903.  
 34 <https://doi.org/10.1063/5.0057888>

35 Bracq, G., Laurent-Brocq, M., Varvenne, C., Perrière, L., Curtin, W.A., Joubert, J.M.,  
 36 Guillot, I., 2019. Combining experiments and modeling to explore the solid solution  
 37 strengthening of high and medium entropy alloys. *Acta Mater.* 177, 266–279.

1 <https://doi.org/10.1016/j.actamat.2019.06.050>

2 Butt, M.Z., Feltham, P., 1978. Solid-solution hardening. *Acta Metall.* 26, 167–173.  
3 [https://doi.org/10.1016/0001-6160\(78\)90213-4](https://doi.org/10.1016/0001-6160(78)90213-4)

4 Butt, M.Z., Feltham, P., 1993. Solid-solution hardening. *J. Mater. Sci.* 28, 2557–2576.  
5 <https://doi.org/10.1007/BF00356192>

6 Butt, M.Z., 1998. Investigation of the activation-parameters of low-temperature slip in  
7 cubic metals. *Czechoslov. J. Phys.* 49, 1177–1184.  
8 <https://doi.org/10.1023/A:1021126232107>

9 Christian, J.W., Mahajan, S., 1995. Deformation twinning. *Prog. Mater. Sci.* 39, 1–157.  
10 [https://doi.org/10.1016/0079-6425\(94\)00007-7](https://doi.org/10.1016/0079-6425(94)00007-7)

11 Cockayne, D.J.H., Jenkins, M.L., Ray, I.L.F., 1971. The measurement of stacking-fault  
12 energies of pure face-centred cubic metals. *Philos. Mag.* 24, 1383–1392.  
13 <https://doi.org/10.1080/14786437108217419>

14 Conrad, H., 1964. Thermally activated deformation of metals. *JOM* 16, 582–588.  
15 <https://doi.org/10.1007/BF03378292>

16 Coury, F.G., Clarke, K.D., Kiminami, C.S., Kaufman, M.J., Clarke, A.J., 2018. High  
17 Throughput Discovery and Design of Strong Multicomponent Metallic Solid  
18 Solutions. *Sci. Rep.* 8, 1–10. <https://doi.org/10.1038/s41598-018-26830-6>

19 Fan, Z., Li, L., Chen, Z., Asakura, M., Zhang, C., Yang, Z., Inui, H., George, E.P., 2023.  
20 Temperature-dependent yield stress of single crystals of non-equiautomic Cr-Mn-Fe-  
21 Co-Ni high-entropy alloys in the temperature range 10–1173 K. *Acta Mater.* 246,  
22 118712. <https://doi.org/10.1016/j.actamat.2023.118712>

23 Gali, A., George, E.P., 2013. Tensile properties of high- and medium-entropy alloys.  
24 *Intermetallics* 39, 74–78. <https://doi.org/10.1016/j.intermet.2013.03.018>

25 George, E.P., Curtin, W.A., Tasan, C.C., 2020. High entropy alloys: A focused review of  
26 mechanical properties and deformation mechanisms. *Acta Mater.* 188, 435–474.  
27 <https://doi.org/10.1016/j.actamat.2019.12.015>

28 George, E.P., Raabe, D., Ritchie, R.O., 2019. High-entropy alloys. *Nat. Rev. Mater.* 4,  
29 515–534. <https://doi.org/10.1038/s41578-019-0121-4>

30 Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., Ritchie, R.O.,  
31 2014. A fracture-resistant high-entropy alloy for cryogenic applications. *Science*.  
32 345, 1153–1158. <https://doi.org/10.1126/science.1254581>

33 Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., Ritchie,  
34 R.O., 2016. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at  
35 cryogenic temperatures. *Nat. Commun.* 7, 10602.  
36 <https://doi.org/10.1038/ncomms10602>

37 Granato, A. V., 1971. Dislocation Inertial Effects in the Plasticity of Superconductors.

1 Phys. Rev. B 4, 2196–2201. <https://doi.org/10.1103/PhysRevB.4.2196>

2 Gupta, A., Jian, W.-R., Xu, S., Beyerlein, I.J., Tucker, G.J., 2022. On the deformation  
3 behavior of CoCrNi medium entropy alloys: Unraveling mechanistic competition.  
4 Int. J. Plast. 159, 103442. <https://doi.org/10.1016/j.ijplas.2022.103442>

5 Gypen, L.A., Deruyttere, A., 1977a. Multi-component solid solution hardening: Part 1  
6 Proposed model. J. Mater. Sci. 12, 1028–1033. <https://doi.org/10.1007/BF00540987>

7 Gypen, L.A., Deruyttere, A., 1977b. Multi-component solid solution hardening: Part 2  
8 Agreement with experimental results. J. Mater. Sci. 12, 1034–1038.  
9 <https://doi.org/10.1007/BF00540988>

10 Hashimoto, N., Fukushi, T., Wada, E., Chen, W.-Y., 2021. Effect of stacking fault energy  
11 on damage microstructure in ion-irradiated CoCrFeNiMn concentrated solid  
12 solution alloys. J. Nucl. Mater. 545, 152642.  
13 <https://doi.org/10.1016/j.jnucmat.2020.152642>

14 Hua, D., Xia, Q., Wang, W., Zhou, Q., Li, S., Qian, D., Shi, J., Wang, H., 2021. Atomistic  
15 insights into the deformation mechanism of a CoCrNi medium entropy alloy under  
16 nanoindentation. Int. J. Plast. 142, 102997.  
17 <https://doi.org/10.1016/J.IJPLAS.2021.102997>

18 Huang, H., Li, X., Dong, Z., Li, W., Huang, S., Meng, D., Lai, X., Liu, T., Zhu, S., Vitos,  
19 L., 2018. Critical stress for twinning nucleation in CrCoNi-based medium and high  
20 entropy alloys. Acta Mater. 149, 388–396.  
21 <https://doi.org/10.1016/j.actamat.2018.02.037>

22 Inui, H., Kishida, K., Chen, Z., 2022a. Recent Progress in Our Understanding of Phase  
23 Stability, Atomic Structures and Mechanical and Functional Properties of High-  
24 Entropy Alloys. Mater. Trans. 63, MT-M2021234.  
25 <https://doi.org/10.2320/matertrans.MT-M2021234>

26 Inui, H., Kishida, K., Li, L., Manzoni, A.M., Haas, S., Glatzel, U., 2022b. Uniaxial  
27 mechanical properties of face-centered cubic single- and multiphase high-entropy  
28 alloys. MRS Bull. 1–7. <https://doi.org/10.1557/S43577-022-00280-Y>

29 Jax, P., Kratochvil, P., Haasen, P., 1970. Solid solution hardening of gold and other f.c.c.  
30 single crystals. Acta Metall. 18, 237–245.  
31 [https://doi.org/10.1016/0001-6160\(70\)90029-5](https://doi.org/10.1016/0001-6160(70)90029-5)

32 Kawamura, M., Asakura, M., Okamoto, N.L., Kishida, K., Inui, H., George, E.P., 2021.  
33 Plastic deformation of single crystals of the equiatomic Cr–Mn–Fe–Co–Ni high-  
34 entropy alloy in tension and compression from 10 K to 1273 K. Acta Mater. 203,  
35 116454. <https://doi.org/10.1016/j.actamat.2020.10.073>

36 Kibey, S., Liu, J.B., Johnson, D.D., Sehitoglu, H., 2007a. Predicting twinning stress in  
37 fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater. 55, 6843–

1 6851. <https://doi.org/10.1016/j.actamat.2007.08.042>

2 Kibey, S., Liu, J.B., Johnson, D.D., Sehitoglu, H., 2007b. Energy pathways and  
3 directionality in deformation twinning. *Appl. Phys. Lett.* 91, 181916.  
4 <https://doi.org/10.1063/1.2800806>

5 Kibey, S.A., Wang, L.L., Liu, J.B., Johnson, H.T., Sehitoglu, H., Johnson, D.D., 2009.  
6 Quantitative prediction of twinning stress in fcc alloys: Application to Cu-Al. *Phys.*  
7 *Rev. B* 79, 214202. <https://doi.org/10.1103/PhysRevB.79.214202>

8 Kim, J.K., Kim, J.H., Park, H., Kim, J.S., Yang, G., Kim, R., Song, T., Suh, D.W., Kim,  
9 J., 2022. Temperature-dependent universal dislocation structures and transition of  
10 plasticity enhancing mechanisms of the Fe40Mn40Co10Cr10 high entropy alloy. *Int.*  
11 *J. Plast.* 148, 103148. <https://doi.org/10.1016/j.ijplas.2021.103148>

12 Kocks, U.F., Argon, A.S., Ashby, M.F., 1975. Thermodynamics and Kinetics of Slip.  
13 *Prog. Mater. Sci.* 19, 1–291.

14 Kresse, G., Furthmüller, J., 1996. Efficient iterative schemes for ab initio total-energy  
15 calculations using a plane-wave basis set. *Phys. Rev. B* 54, 11169–11186.  
16 <https://doi.org/10.1103/PhysRevB.54.11169>

17 Labusch, R., 1970. A Statistical Theory of Solid Solution Hardening. *Phys. status solidi*  
18 41, 659–669. <https://doi.org/10.1002/pssb.19700410221>

19 Laplanche, G., Gadaud, P., Bärsch, C., Demtröder, K., Reinhart, C., Schreuer, J., George,  
20 E.P., 2018. Elastic moduli and thermal expansion coefficients of medium-entropy  
21 subsystems of the CrMnFeCoNi high-entropy alloy. *J. Alloys Compd.* 746, 244–255.  
22 <https://doi.org/10.1016/j.jallcom.2018.02.251>

23 Laplanche, G., Gadaud, P., Horst, O., Otto, F., Eggeler, G., George, E.P., 2015.  
24 Temperature dependencies of the elastic moduli and thermal expansion coefficient  
25 of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. *J. Alloys Compd.*  
26 623, 348–353. <https://doi.org/10.1016/j.jallcom.2014.11.061>

27 Laplanche, G., Kostka, A., Horst, O.M., Eggeler, G., George, E.P., 2016. Microstructure  
28 evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy.  
29 *Acta Mater.* 118, 152–163. <https://doi.org/10.1016/j.actamat.2016.07.038>

30 Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., George, E.P., 2017.  
31 Reasons for the superior mechanical properties of medium-entropy CrCoNi  
32 compared to high-entropy CrMnFeCoNi. *Acta Mater.* 128, 292–303.  
33 <https://doi.org/10.1016/j.actamat.2017.02.036>

34 Li, L., Chen, Z., Kuroiwa, S., Ito, M., Kishida, K., Inui, H., George, E.P., 2022. Tensile  
35 and compressive plastic deformation behavior of medium-entropy Cr-Co-Ni single  
36 crystals from cryogenic to elevated temperatures. *Int. J. Plast.* 148, 103144.  
37 <https://doi.org/10.1016/J.IJPLAS.2021.103144>

1 Li, L., Chen, Z., Kuroiwa, S., Ito, M., Yuge, K., Kishida, K., Tanimoto, H., Yu, Y., Inui,  
 2 H., George, E.P., 2023. Evolution of short-range order and its effects on the plastic  
 3 deformation behavior of single crystals of the equiatomic Cr-Co-Ni medium-entropy  
 4 alloy. *Acta Mater.* 243, 118537.  
 5 <https://doi.org/10.1016/j.actamat.2022.118537>

6 Li, Z., Ma, S., Zhao, S., Zhang, W., Peng, F., Li, Q., Yang, T., Wu, C.-Y., Wei, D., Chou,  
 7 Y.-C., Liaw, P.K., Gao, Y., Wu, Z., 2023. Achieving superb strength in single-phase  
 8 FCC alloys via maximizing volume misfit. *Mater. Today* 63, 108–119.  
 9 <https://doi.org/10.1016/j.mattod.2023.02.012>

10 Li, Z., Zhao, S., Ritchie, R.O., Meyers, M.A., 2019. Mechanical properties of high-  
 11 entropy alloys with emphasis on face-centered cubic alloys. *Prog. Mater. Sci.* 102,  
 12 296–345. <https://doi.org/https://doi.org/10.1016/j.pmatsci.2018.12.003>

13 Liu, D., Yu, Q., Kabra, S., Jiang, M., Forna-Kreutzer, P., Zhang, R., Payne, M., Walsh,  
 14 F., Gludovatz, B., Asta, M., Minor, A.M., George, E.P., Ritchie, R.O., 2022.  
 15 Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys  
 16 at 20 kelvin. *Science*. 378, 978–983. <https://doi.org/10.1126/science.abp8070>

17 Liu, S.F., Wu, Y., Wang, H.T., He, J.Y., Liu, J.B., Chen, C.X., Liu, X.J., Wang, H., Lu,  
 18 Z.P., 2018. Stacking fault energy of face-centered-cubic high entropy alloys.  
 19 *Intermetallics* 93, 269–273. <https://doi.org/10.1016/j.intermet.2017.10.004>

20 Mahajan, S., Chin, G.Y., 1973. Formation of deformation twins in f.c.c. crystals. *Acta  
 21 Metall.* 21, 1353–1363. [https://doi.org/10.1016/0001-6160\(73\)90085-0](https://doi.org/10.1016/0001-6160(73)90085-0)

22 Miao, J., Slone, C.E., Smith, T.M., Niu, C., Bei, H., Ghazisaeidi, M., Pharr, G.M., Mills,  
 23 M.J., 2017. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic  
 24 solid solution alloy. *Acta Mater.* 132, 35–48.  
 25 <https://doi.org/10.1016/j.actamat.2017.04.033>

26 Miracle, D.B., Senkov, O.N., 2017. A critical review of high entropy alloys and related  
 27 concepts. *Acta Mater.* 122, 448–511. <https://doi.org/10.1016/j.actamat.2016.08.081>

28 Naeem, M., He, H., Harjo, S., Kawasaki, T., Lin, W., Kai, J.J., Wu, Z., Lan, S., Wang,  
 29 X.L., 2021. Temperature-dependent hardening contributions in CrFeCoNi high-  
 30 entropy alloy. *Acta Mater.* 221, 117371.  
 31 <https://doi.org/10.1016/j.actamat.2021.117371>

32 Naeem, M., He, H., Zhang, F., Huang, H., Harjo, S., Kawasaki, T., Wang, B., Lan, S.,  
 33 Wu, Z., Wang, F., Wu, Y., Lu, Z., Zhang, Z., Liu, C.T., Wang, X.-L., 2020.  
 34 Cooperative deformation in high-entropy alloys at ultralow temperatures. *Sci. Adv.*  
 35 6, eaax4002. <https://doi.org/10.1126/sciadv.aax4002>

36 Nöhring, W.G., Curtin, W.A., 2019. Correlation of microdistortions with misfit volumes  
 37 in High Entropy Alloys. *Scr. Mater.* 168, 119–123.

1 <https://doi.org/10.1016/j.scriptamat.2019.04.012>

2 Okamoto, N.L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z.M.T., Matsunoshita,  
3 H., Tanaka, K., Inui, H., George, E.P., 2016a. Size effect, critical resolved shear  
4 stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi  
5 high-entropy alloy. *Sci. Rep.* 6, 35863. <https://doi.org/10.1038/srep35863>

6 Okamoto, N.L., Yuge, K., Tanaka, K., Inui, H., George, E.P., 2016b. Atomic  
7 displacement in the CrMnFeCoNi high-entropy alloy – A scaling factor to predict  
8 solid solution strengthening. *AIP Adv.* 6, 125008.  
9 <https://doi.org/10.1063/1.4971371>

10 Rodriguez, P., 1984. Serrated plastic flow. *Bull. Mater. Sci.* 6, 653–663.  
11 <https://doi.org/10.1007/BF02743993>

12 Schwarz, R.B., Isaac, R.D., Granato, A. V., 1977. Dislocation Inertial Effects in the  
13 Plastic Deformation of Dilute Alloys of Lead and Copper. *Phys. Rev. Lett.* 38, 554–  
14 557. <https://doi.org/10.1103/PhysRevLett.38.554>

15 Sohn, S.S., Kwiatkowski da Silva, A., Ikeda, Y., Körmann, F., Lu, W., Choi, W.S., Gault,  
16 B., Ponge, D., Neugebauer, J., Raabe, D., 2019. Ultrastrong Medium-Entropy  
17 Single-Phase Alloys Designed via Severe Lattice Distortion. *Adv. Mater.* 31,  
18 1807142. <https://doi.org/10.1002/adma.201807142>

19 Stobbs, W.M., Sworn, C.H., 1971. The weak beam technique as applied to the  
20 determination of the stacking-fault energy of copper. *Philos. Mag.* 24, 1365–1381.  
21 <https://doi.org/10.1080/14786437108217418>

22 Suzuki, H., Kuramoto, E., 1968. Thermally activated glide in face-centered cubic alloys.  
23 *Trans JIM.* 9, Suppl. 697–702.

24 Szczerba, M.J., Szczerba, M.S., 2017. Slip versus twinning in low and very low stacking-  
25 fault energy Cu-Al alloy single crystals. *Acta Mater.* 133, 109–119.  
26 <https://doi.org/10.1016/j.actamat.2017.05.011>

27 Toda-Caraballo, I., 2017. A general formulation for solid solution hardening effect in  
28 multicomponent alloys. *Scr. Mater.* 127, 113–117.  
29 <https://doi.org/10.1016/j.scriptamat.2016.09.009>

30 Toda-Caraballo, I., Rivera-Díaz-del-Castillo, P.E.J., 2015. Modelling solid solution  
31 hardening in high entropy alloys. *Acta Mater.* 85, 14–23.  
32 <https://doi.org/10.1016/j.actamat.2014.11.014>

33 Tsai, C.W., Lee, C., Lin, P.T., Xie, X., Chen, S., Carroll, R., Leblanc, M., Brinkman,  
34 B.A.W., Liaw, P.K., Dahmen, K.A., Yeh, J.W., 2019. Portevin-Le Chatelier  
35 mechanism in face-centered-cubic metallic alloys from low to high entropy. *Int. J.*  
36 *Plast.* 122, 212–224. <https://doi.org/10.1016/j.ijplas.2019.07.003>

37 Varvenne, C.C., Luque, A., Curtin, W.A., 2016. Theory of strengthening in fcc high

1 entropy alloys. *Acta Mater.* 118, 164–176.  
2 <https://doi.org/10.1016/j.actamat.2016.07.040>

3 Venables, J.A., 1964. Deformation twinning in fcc metals, in: Reed-Hill, R.E., Hirth, J.P.,  
4 Rogers, H.C. (Eds.), *Deformation Twinning*. Gordon and Breach Science Publishers,  
5 New York, pp. 77–116.

6 Wagner, C., Ferrari, A., Schreuer, J., Couzinié, J.-P., Ikeda, Y., Körmann, F., Eggeler, G.,  
7 George, E.P., Laplanche, G., 2022. Effects of Cr/Ni ratio on physical properties of  
8 Cr-Mn-Fe-Co-Ni high-entropy alloys. *Acta Mater.* 227, 117693.  
9 <https://doi.org/10.1016/j.actamat.2022.117693>

10 Wagner, C., Laplanche, G., 2023. Effects of stacking fault energy and temperature on  
11 grain boundary strengthening, intrinsic lattice strength and deformation mechanisms  
12 in CrMnFeCoNi high-entropy alloys with different Cr/Ni ratios. *Acta Mater.* 244,  
13 118541. <https://doi.org/10.1016/j.actamat.2022.118541>

14 Wang, X., De Vecchis, R.R., Li, C., Zhang, H., Hu, X., Sridar, S., Wang, Y., Chen, W.,  
15 Xiong, W., 2022. Design metastability in high-entropy alloys by tailoring unstable  
16 fault energies. *Sci. Adv.* 8. <https://doi.org/10.1126/sciadv.abo7333>

17 Wang, Y., Liu, B., Yan, K., Wang, M., Kabra, S., Chiu, Y.-L., Dye, D., Lee, P.D., Liu,  
18 Y., Cai, B., 2018. Probing deformation mechanisms of a FeCoCrNi high-entropy  
19 alloy at 293 and 77 K using in situ neutron diffraction. *Acta Mater.* 154, 79–89.  
20 <https://doi.org/10.1016/j.actamat.2018.05.013>

21 Wang, Z., Li, L., Chen, Z., Yuge, K., Kishida, K., Inui, H., Heilmaier, M., 2023. A new  
22 route to achieve high strength and high ductility compositions in Cr-Co-Ni-based  
23 medium-entropy alloys: A predictive model connecting theoretical calculations and  
24 experimental measurements. *J. Alloys Compd.* 170555.  
25 <https://doi.org/10.1016/j.jallcom.2023.170555>

26 Wei, D., Li, X., Schönecker, S., Jiang, J., Choi, W.M., Lee, B.J., Kim, H.S., Chiba, A.,  
27 Kato, H., 2019. Development of strong and ductile metastable face-centered cubic  
28 single-phase high-entropy alloys. *Acta Mater.* 181, 318–330.  
29 <https://doi.org/10.1016/j.actamat.2019.09.050>

30 Wei, D., Gong, W., Tsuru, T., Kawasaki, T., Harjo, S., Cai, B., Liaw, P.K., Kato, H.,  
31 2022a. Mechanical behaviors of equiatomic and near-equiatomic face-centered-  
32 cubic phase high-entropy alloys probed using in situ neutron diffraction. *Int. J. Plast.*  
33 158, 103417. <https://doi.org/10.1016/j.ijplas.2022.103417>

34 Wei, D., Gong, W., Tsuru, T., Lobzenko, I., Li, X., Harjo, S., Kawasaki, T., Do, H., Wung,  
35 J., Wagner, C., Laplanche, G., Koizumi, Y., Adachi, H., Aoyagi, K., Chiba, A., Lee,  
36 B., Seop, H., 2022b. Si-addition contributes to overcoming the strength-ductility  
37 trade-off in high-entropy alloys. *Int. J. Plast.* 159, 103443.

1 <https://doi.org/10.1016/j.ijplas.2022.103443>

2 Wessels, E.J.H., Nabarro, F.R.N., 1971. A theory of unstable glide in the presence of a  
3 dense dislocation forest. *Acta Metall.* 19, 915–921. [https://doi.org/10.1016/0001-6160\(71\)90084-8](https://doi.org/10.1016/0001-6160(71)90084-8)

5 Wille, T.H., Gieseke, W., Schwink, C.H., 1987. Quantitative analysis of solution  
6 hardening in selected copper alloys. *Acta Metall.* 35, 2679–2693.  
7 [https://doi.org/10.1016/0001-6160\(87\)90267-7](https://doi.org/10.1016/0001-6160(87)90267-7)

8 Wille, T.H., Schwink, C., 1986. Precision measurements of critical resolved shear stress  
9 in CuMn alloys. *Acta Metall.* 34, 1059–1069. [https://doi.org/10.1016/0001-6160\(86\)90216-6](https://doi.org/10.1016/0001-6160(86)90216-6)

11 Wu, Z., Gao, Y.F., Bei, H., 2015. Single crystal plastic behavior of a single-phase, face-  
12 center-cubic-structured, equiatomic FeNiCrCo alloy. *Scr. Mater.* 109, 108–112.  
13 <https://doi.org/10.1016/j.scriptamat.2015.07.031>

14 Yan, J.X., Zhang, Z.J., Zhang, P., Liu, J.H., Yu, H., Hu, Q.M., Yang, J.B., Zhang, Z.F.,  
15 2023. Design and optimization of the composition and mechanical properties for  
16 non-equiatomic CoCrNi medium-entropy alloys. *J. Mater. Sci. Technol.* 139, 232–  
17 244. <https://doi.org/10.1016/j.jmst.2022.07.031>

18 Zhang, T.W., Ma, S.G., Zhao, D., Wu, Y.C., Zhang, Y., Wang, Z.H., Qiao, J.W., 2020.  
19 Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy  
20 alloy upon dynamic tension: Micromechanism and constitutive modeling. *Int. J.*  
21 *Plast.* 124, 226–246. <https://doi.org/10.1016/j.ijplas.2019.08.013>

22 Zhang, X., Gui, Y., Lai, M., Lu, X., Gu, J., Wang, F., Yang, T., Wang, Z., Song, M., 2023.  
23 Enhanced strength-ductility synergy of medium-entropy alloys via multiple level  
24 gradient structures. *Int. J. Plast.* 164, 103592.  
25 <https://doi.org/10.1016/j.ijplas.2023.103592>

26 Zhang, Z.J., Mao, M.M., Wang, J., Gludovatz, B., Zhang, Ze, Mao, S.X., George, E.P.,  
27 Yu, Q., Ritchie, R.O., 2015. Nanoscale origins of the damage tolerance of the high-  
28 entropy alloy CrMnFeCoNi. *Nat. Commun.* 6, 10143.  
29 <https://doi.org/10.1038/ncomms10143>

30 Zhang, Z.J., Sheng, H., Wang, Z., Gludovatz, B., Zhang, Ze, George, E.P., Yu, Q., Mao,  
31 S.X., Ritchie, R.O., 2017. Dislocation mechanisms and 3D twin architectures  
32 generate exceptional strength-ductility-toughness combination in CrCoNi medium-  
33 entropy alloy. *Nat. Commun.* 8, 14390. <https://doi.org/10.1038/ncomms14390>

34 Zhao, S., Stocks, G.M., Zhang, Y., 2017. Stacking fault energies of face-centered cubic  
35 concentrated solid solution alloys. *Acta Mater.* 134, 334–345.  
36 <https://doi.org/10.1016/j.actamat.2017.05.001>

37 Zunger, A., Wei, S.-H.S.-H., Ferreira, L.G., Bernard, J.E., 1990. Special quasirandom

1 structures. Phys. Rev. Lett. 65, 353–356.  
 2 <https://doi.org/10.1103/PhysRevLett.65.353>

5 **Figure Captions**

6 Fig. 1. Temperature dependence of CRSS for  $[\bar{1}23]$ -oriented single-crystals of the  
 7 equiatomic Cr-Fe-Co-Ni MEA from 10 K to 1373 K in compression at a strain  
 8 rate of  $1 \times 10^{-4} \text{ s}^{-1}$ . Results for the equiatomic Cr-Mn-Fe-Co-Ni HEA (Kawamura  
 9 et al., 2021) and equiatomic Cr-Co-Ni MEA (Li et al., 2022) are also plotted for  
 10 comparison.

11 Fig. 2. (a) The strain-rate sensitivity of flow stress measured at selected temperatures  
 12 for  $[\bar{1}23]$ -oriented single crystals of the equiatomic Cr-Fe-Co-Ni MEA. (b) The  
 13 gradient of the strain-rate sensitivity shown in (a) plotted as a function of  
 14 temperature.

15 Fig. 3. (a) TEM bright-field and (b) weak-beam dark-field images of the equiatomic Cr-  
 16 Fe-Co-Ni MEA deformed to about 2~3% plastic strain at room temperature. The  
 17 thin foil was cut parallel to the (111) primary slip plane. (c) Dissociation widths  
 18 of coupled Shockley partial dislocations plotted as a function of angle ( $\theta$ )  
 19 between the Burgers vector and dislocation line.

20 Fig. 4. (a) Engineering stress-strain and (b) true stress-strain curves for  $[\bar{1}23]$ -oriented  
 21 single crystals of the equiatomic Cr-Fe-Co-Ni MEA deformed to failure in  
 22 tension at 77 K and room temperature. (c) Work hardening rate for  $[\bar{1}23]$ -  
 23 oriented single crystals of the equiatomic Cr-Fe-Co-Ni MEA calculated from (b)  
 24 as a function of true strain.

25 Fig. 5. (a) Tensile engineering stress-strain curve for a  $[\bar{1}23]$ -oriented single crystal of  
 26 the equiatomic Cr-Fe-Co-Ni MEA deformed in tension at 77 K, in which the test  
 27 was repeatedly interrupted at points A-D for microstructure observations. (b)  
 28 EBSD orientation maps at the interruptions A-D with enlargements of the framed  
 29 areas shown on the right-hand side for C-D. (c) Stereographic projection of the  
 30 tensile-axis rotation during deformation. (d) Misorientation along the points X  
 31 and Y in frame D1 in (b), showing the existence of deformation twins.

32 Fig. 6. (a) Typical dark-field TEM image of deformation twins in a  $[\bar{1}23]$ -oriented  
 33 single crystal of the Cr-Fe-Co-Ni MEA deformed to failure at 77 K. The thin foil  
 34 was cut perpendicular to the  $(\bar{1}\bar{1}1)$  conjugate twinning planes. (b) Thickness  
 35 distribution histogram of twins measured with dark-field TEM images. (c)  
 36 Atomic-resolution STEM image of deformation twins in a  $[\bar{1}23]$ -oriented single  
 37 crystal deformed to failure at 77 K. (d) Thickness distribution histograms of

twins and HCP layers measured with atomic-resolution STEM images.

Fig. 7. (a) Temperature dependence of activation volume for deformation of single crystals of the three HEA/MEAs and (b) activation volumes of the three HEA/MEAs after fitting with equation (3). (c) Activation volumes plotted as a function of Cr content at selected temperatures. (d) The activation enthalpies for deformation estimated with the equation (4) plotted as a function of shear stress.

Fig. 8. (a) Difference between the yield stress at 77 K and that at room temperature plotted as a function of the yield stress at 77 K for FCC solid solutions and the three HEA/MEAs. (b) Activation volumes at 77 K and room temperature for FCC solid solutions and the three HEA/MEAs.

Fig. 9. (a) Contributions from the size misfit term and modulus misfit term to the 0 K CRSS estimated with equation (5) and (b) 0 K CRSS predicted with equation (6) and  $Z = 3.030$  for the equiatomic Cr-Fe-Co-Ni MEA (this study), the equiatomic Cr-Mn-Fe-Co-Ni HEA ([Kawamura et al., 2021](#)) and the Cr-Co-Ni MEA ([Li et al., 2022](#)).

Fig. 10. (a) MSAD for each of the constituent elements and averaged values for the three alloys. (b) Relation between the experimental 0 K CRSS and MSAD for the three HEA/MEAs. The 0 K CRSS and MSAD are normalized by the shear modulus and dislocation Burgers vector, respectively.

Fig. 11. (a) Relationship between the twinning shear stress at 77 K and stacking fault energy for  $\overline{1}23$ -oriented single crystals (solid symbols) and polycrystals (open symbols) of the equiatomic Cr-Mn-Fe-Co-Ni HEA and Cr-Fe-Co-Ni and Cr-Co-Ni MEAs, together with that reported previously for FCC solid-solution alloys. (b) The estimated contributions to the twinning shear stress from the three terms in equation (7) plotted as a function of stacking fault energy for the three HEA/MEAs.

Fig. 12. True strain at the onset of deformation twinning at 77 K plotted as a function of stacking fault energy for the three HEA/MEAs.

Fig. 13. Twinning shear stress of the three HEA/MEAs plotted as a function of unstable stacking fault energy calculated by Huang et al. (Huang et al., 2018): experimentally determined values for  $[\bar{1}23]$ -oriented single crystals (solid symbols), predicted values from models by Kibey et al. (Kibey et al., 2007a) (open symbols) and Huang et al. (Huang et al., 2018) (open with cross symbols). The data points for some pure FCC metals are also shown for comparison (Kibey et al., 2007a).

1 **Table 1** Cr content ( $c_{Cr}$ ) and experimental 0 K CRSS values ( $\tau_0$ ) for the equiatomic Cr-  
 2 Fe-Co-Ni MEA (this study), the equiatomic Cr-Mn-Fe-Co-Ni HEA (Kawamura et al.,  
 3 2021) and Cr-Co-Ni MEA (Li et al., 2022), determined by fitting the CRSS-temperature  
 4 curves with equation (1) using optimal parameters ( $T_a$ ,  $1/p$  and  $1/q$ ). The 0 K activation  
 5 volumes ( $V_0$ ) and material-dependent constant ( $W_0$ ) obtained by fitting the activation  
 6 volume-temperature curves of Fig. 7(a) with equation (3).

|                | $c_{Cr}$ | $\tau_0$<br>(MPa) | $T_a$<br>(K) | $1/q$ | $1/p$ | $V_0$<br>( $b^3$ ) | $W_0$<br>( $10^{-19}$ J) |
|----------------|----------|-------------------|--------------|-------|-------|--------------------|--------------------------|
| Cr-Mn-Fe-Co-Ni | 0.20     | 174               | 873          | 0.82  | 3.56  | 22.97              | 0.794                    |
| Cr-Fe-Co-Ni    | 0.25     | 200               | 873          | 0.50  | 2.20  | 21.87              | 0.966                    |
| Cr-Co-Ni       | 0.33     | 225               | 873          | 0.66  | 2.66  | 20.49              | 1.130                    |

## 10 Figure captions for supplementary figures

11 Fig. S1. Compressive stress-strain curves at selected temperatures for [ $\bar{1}23$ ]-oriented  
 12 single crystals of the equiatomic Cr-Fe-Co-Ni MEA. Compression tests were  
 13 usually started at a strain rate of  $1 \times 10^{-4} \text{ s}^{-1}$  to determine the yield stress and  
 14 then strain-rate sensitivity was measured by strain-rate jump tests as indicated  
 15 with arrows (at room temperature and below).

16 Fig. S2. Deformation markings observed on two orthogonal side surfaces ((a,c) ( $1\bar{1}1$ )  
 17 and (b,d) ( $54\bar{1}$ )) of [ $\bar{1}23$ ]-oriented single crystals deformed in compression at  
 18 (a,b) 77 K and (c, d) room temperature.

19 Fig. S3. Tensile and compressive stress-strain curves at 77 K and room temperature for  
 20 [ $\bar{1}23$ ]-oriented single crystals of the equiatomic Cr-Fe-Co-Ni MEA.

21 Fig. S4. EBSD orientation map of a [ $\bar{1}23$ ]-oriented single crystal of the equiatomic Cr-  
 22 Fe-Co-Ni MEA deformed in tension to failure at room temperature. There is no  
 23 indication that deformation twinning occurred.

24 Fig. S5. Twin thickness distribution in [ $\bar{1}23$ ]-oriented single crystals of the equiatomic  
 25 Cr-Mn-Fe-Co-Ni HEA deformed in tension to failure at 77 K measure from dark-  
 26 field TEM images (Kawamura et al., 2021).

27 Fig. S6. (a) The stacking fault energy (right Y axis) and the twinning shear stress at 77 K  
 28 (left Y axis) plotted as against Cr content for [ $\bar{1}23$ ]-oriented single crystals of  
 29 the equiatomic Cr-Mn-Fe-Co-Ni HEA and Cr-Fe-Co-Ni and Cr-Co-Ni MEAs.  
 30 (b) The estimated contributions to the twinning shear stress from the three terms  
 31 in equation (7) plotted as a function of Cr content for the three HEA/MEAs.

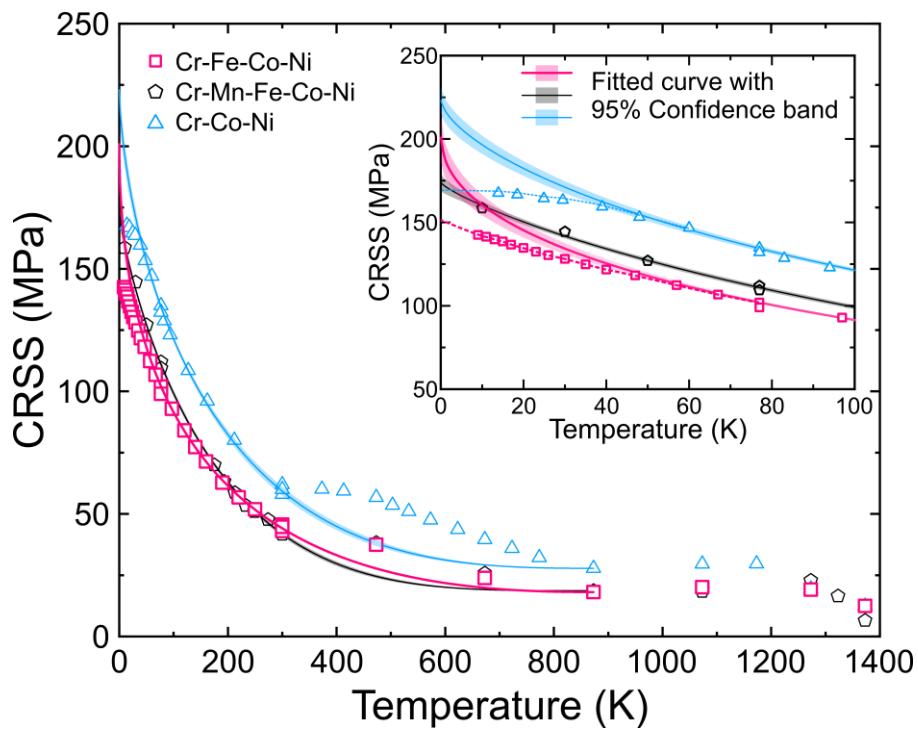



Fig. 1. Temperature dependence of CRSS for  $[\bar{1}23]$ -oriented single-crystals of the equiatomic Cr-Fe-Co-Ni MEA from 10 K to 1373 K in compression at a strain rate of  $1 \times 10^{-4} \text{ s}^{-1}$ . Results for the equiatomic Cr-Mn-Fe-Co-Ni HEA ([Kawamura et al., 2021](#)) and equiatomic Cr-Co-Ni MEA ([Li et al., 2022](#)) are also plotted for comparison.

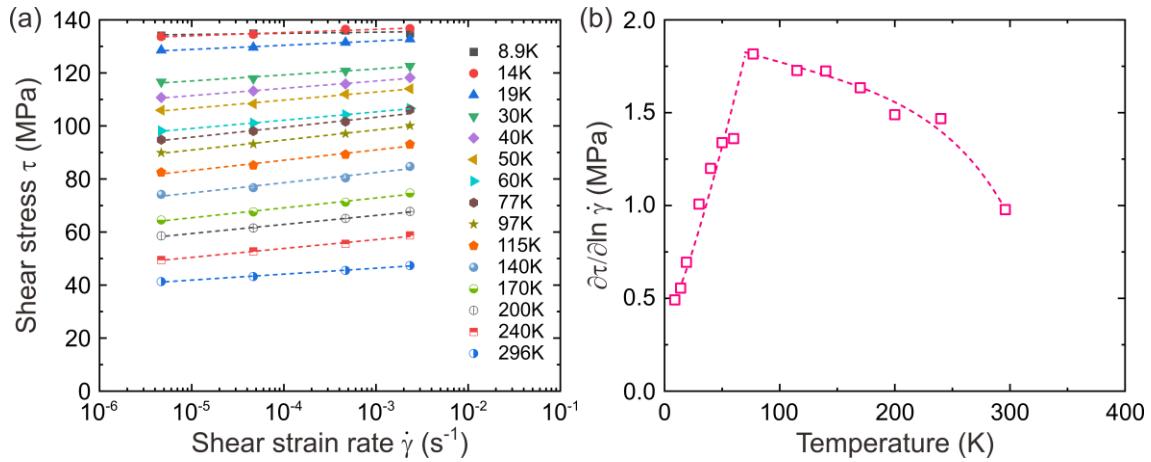



Fig. 2. (a) The strain-rate sensitivity of flow stress measured at selected temperatures for  $\bar{1}23$ -oriented single crystals of the equiatomic Cr-Fe-Co-Ni MEA. (b) The gradient of the strain-rate sensitivity shown in (a) plotted as a function of temperature.

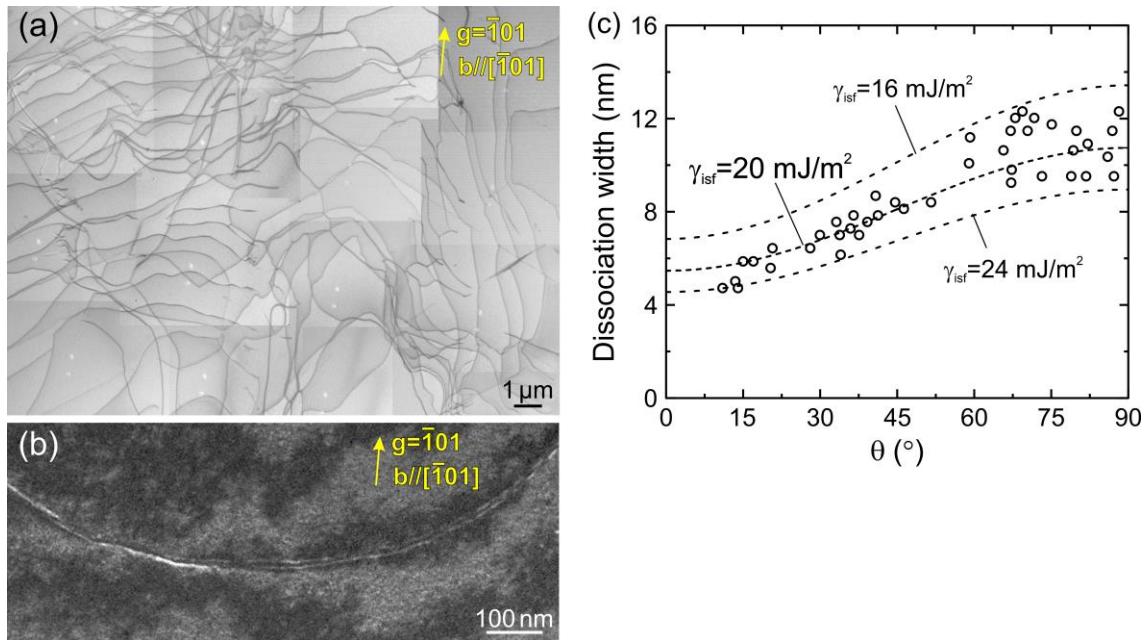



Fig. 3. (a) TEM bright-field and (b) weak-beam dark-field images of the equiatomic Cr-Fe-Co-Ni MEA deformed to about 2~3% plastic strain at room temperature. The thin foil was cut parallel to the (111) primary slip plane. (c) Dissociation widths of coupled Shockley partial dislocations plotted as a function of angle ( $\theta$ ) between the Burgers vector and dislocation line.

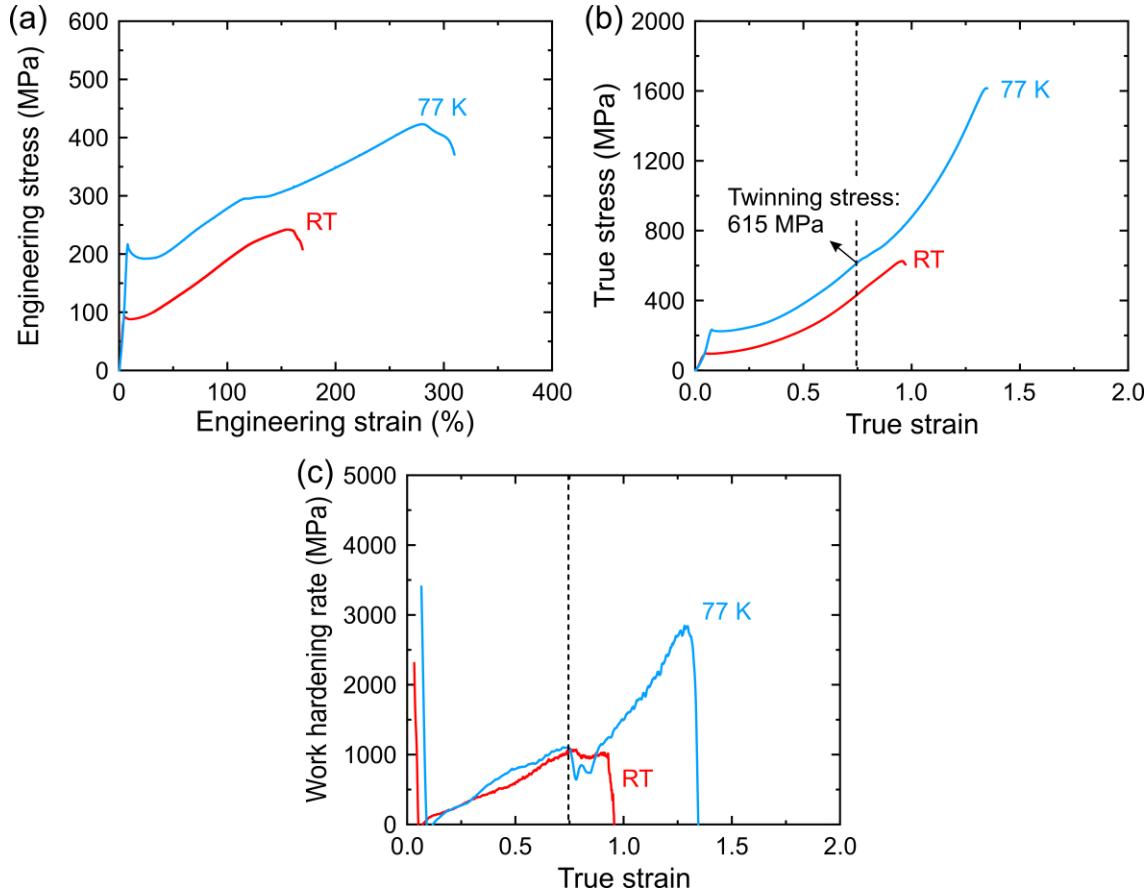



Fig. 4. (a) Engineering stress-strain and (b) true stress-strain curves for  $[\bar{1}23]$ -oriented single crystals of the equiatomic Cr-Fe-Co-Ni MEA deformed to failure in tension at 77 K and room temperature. (c) Work hardening rate for  $[\bar{1}23]$ -oriented single crystals of the equiatomic Cr-Fe-Co-Ni MEA calculated from (b) as a function of true strain.

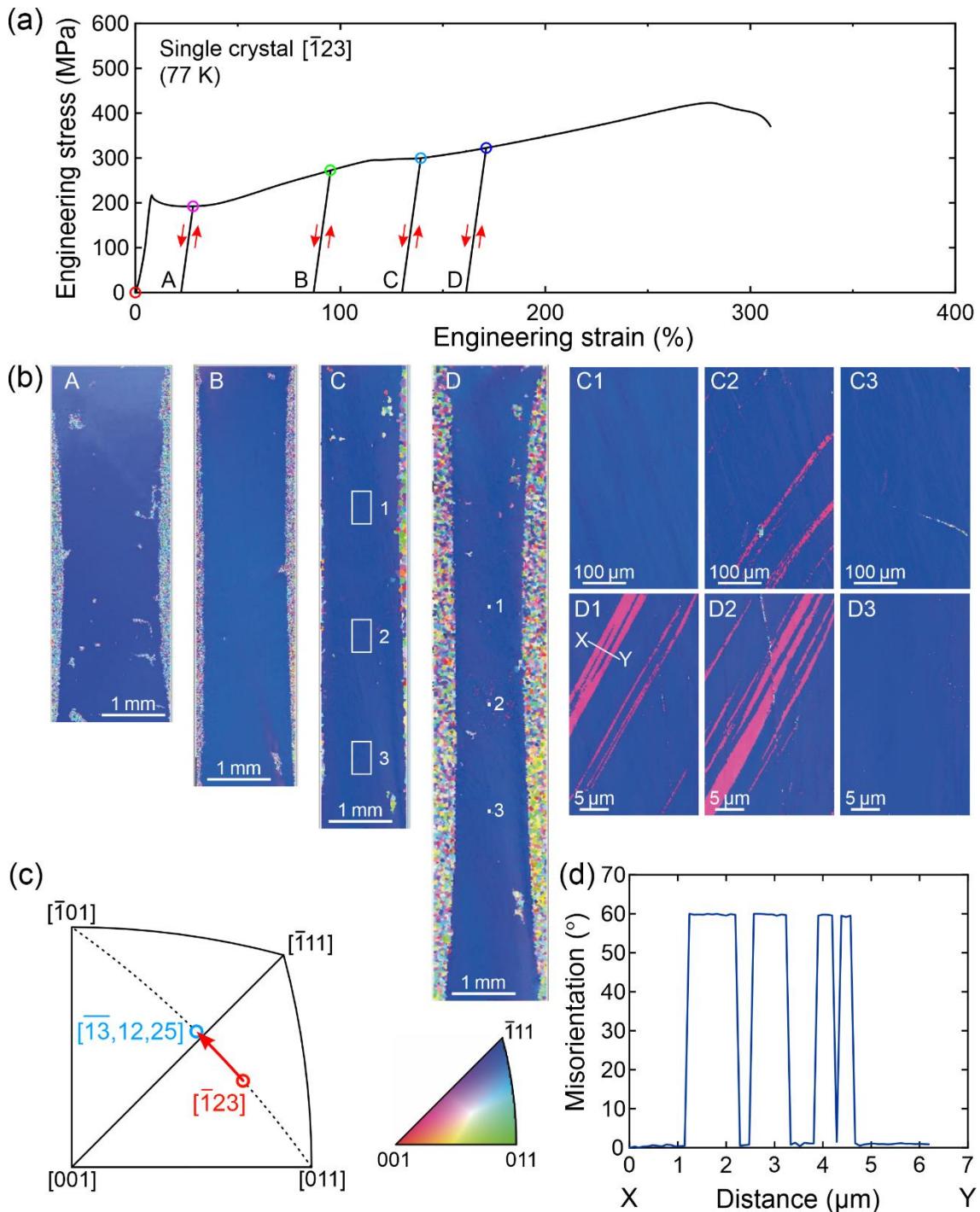



Fig. 5. (a) Tensile engineering stress-strain curve for a [1-23]-oriented single crystal of the equiatomic Cr-Fe-Co-Ni MEA deformed in tension at 77 K, in which the test was repeatedly interrupted at points A-D for microstructure observations. (b) EBSD orientation maps at the interruptions A-D with enlargements of the framed areas shown on the right-hand side for C-D. (c) Stereographic projection of the tensile-axis rotation during deformation. (d) Misorientation along the points X and Y in frame D1 in (b), showing the existence of deformation twins.

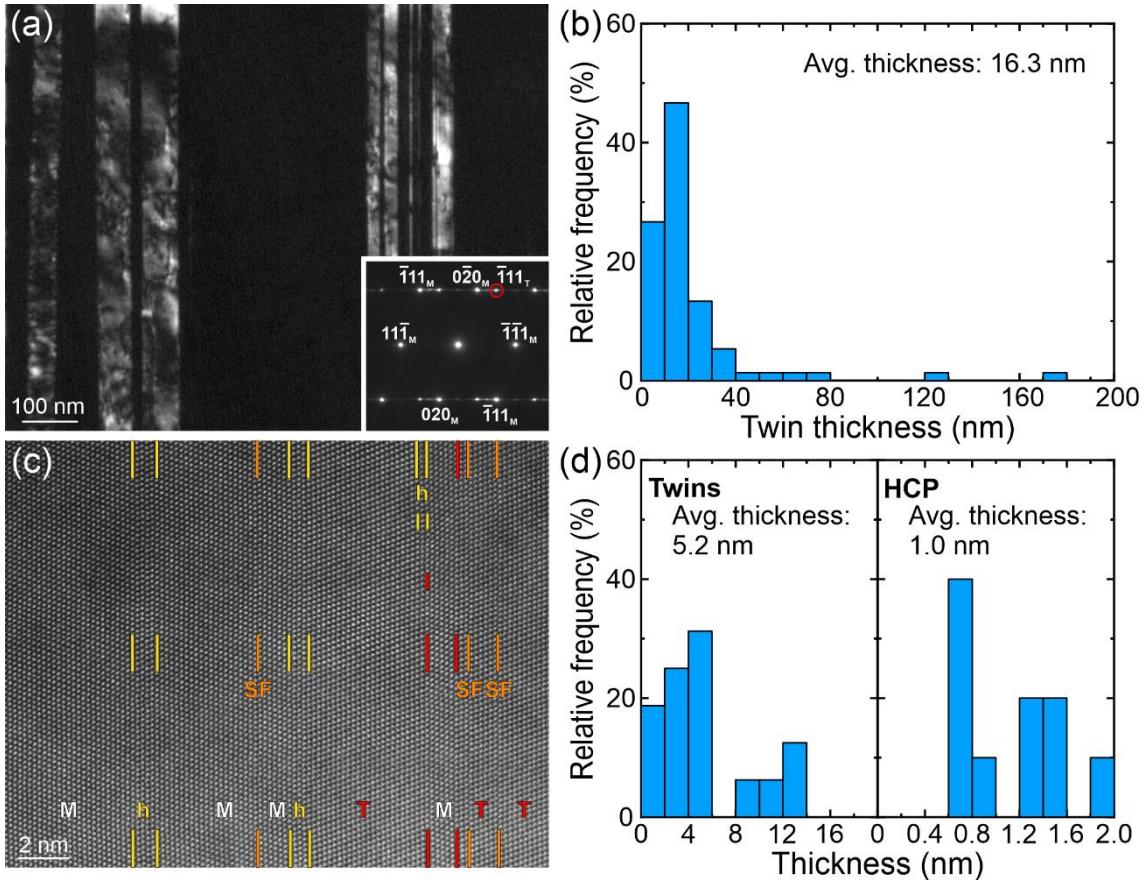



Fig. 6. (a) Typical dark-field TEM image of deformation twins in a  $[\bar{1}23]$ -oriented single crystal of the Cr-Fe-Co-Ni MEA deformed to failure at 77 K. The thin foil was cut perpendicular to the  $(\bar{1}\bar{1}1)$  conjugate twinning planes. (b) Thickness distribution histogram of twins measured with dark-field TEM images. (c) Atomic-resolution STEM image of deformation twins in a  $[\bar{1}23]$ -oriented single crystal deformed to failure at 77 K. (d) Thickness distribution histograms of twins and HCP layers measured with atomic-resolution STEM images.

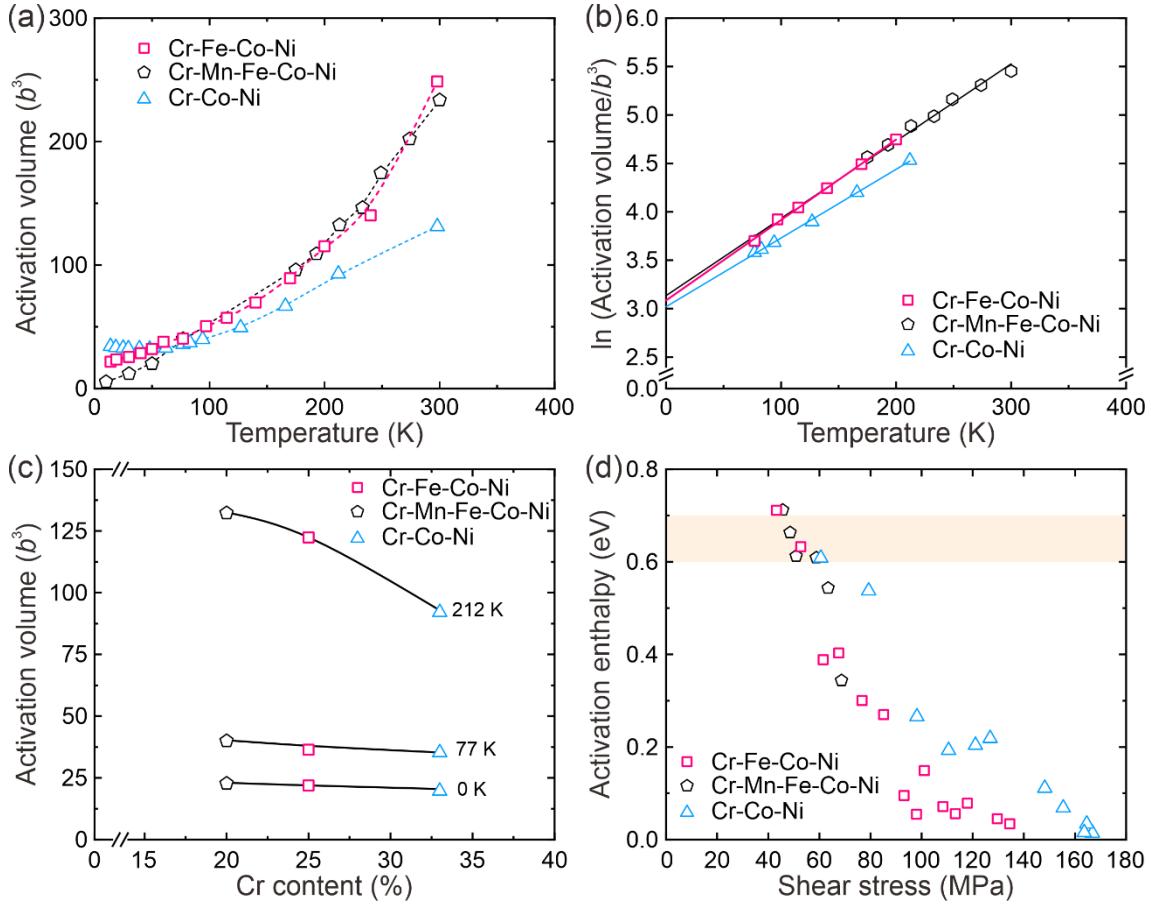



Fig. 7. (a) Temperature dependence of activation volume for deformation of single crystals of the three HEA/MEAs and (b) activation volumes of the three HEA/MEAs after fitting with equation (3). (c) Activation volumes plotted as a function of Cr content at selected temperatures. (d) The activation enthalpies for deformation estimated with the equation (4) plotted as a function of shear stress.

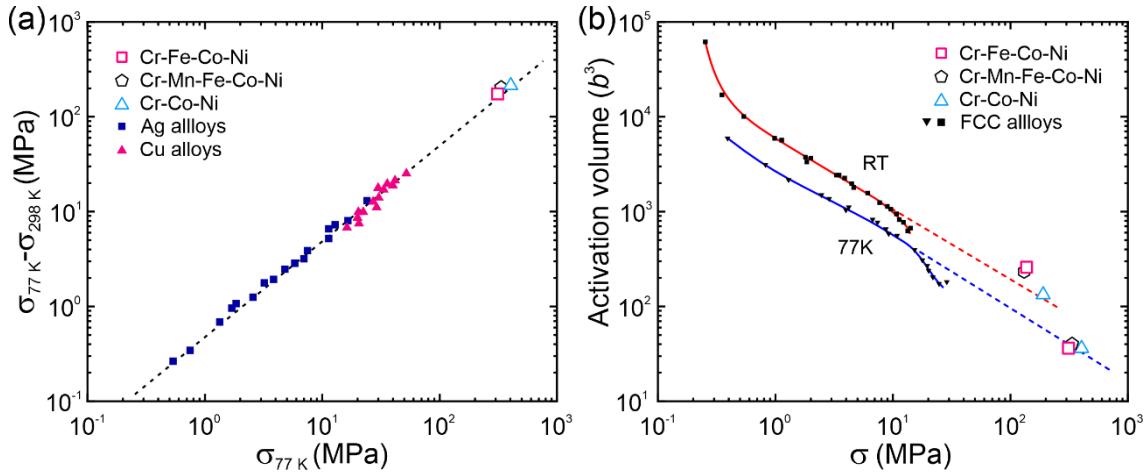



Fig. 8. (a) Difference between the yield stress at 77 K and that at room temperature plotted as a function of the yield stress at 77 K for FCC solid solutions and the three HEA/MEAs. (b) Activation volumes at 77 K and room temperature for FCC solid solutions and the three HEA/MEAs.

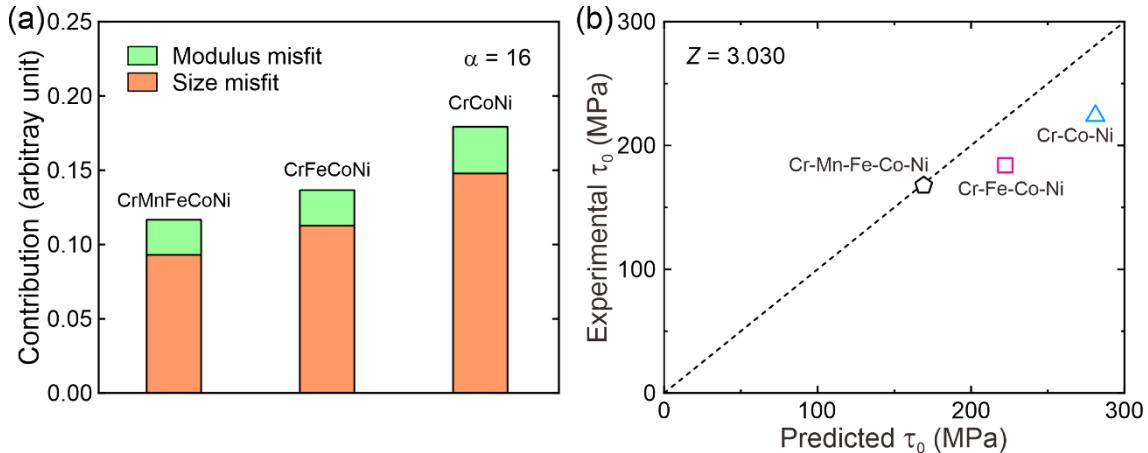



Fig. 9. (a) Contributions from the size misfit term and modulus misfit term to the 0 K CRSS estimated with equation (5) and (b) 0 K CRSS predicted with equation (6) and  $Z = 3.030$  for the equiatomic Cr-Fe-Co-Ni MEA (this study), the equiatomic Cr-Mn-Fe-Co-Ni HEA (Kawamura et al., 2021) and the Cr-Co-Ni MEA (Li et al., 2022).

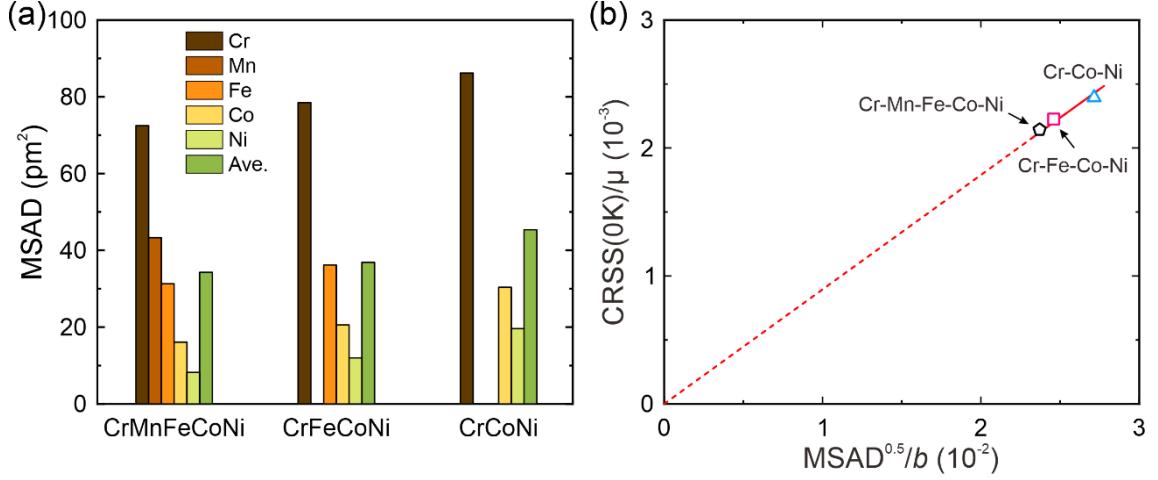



Fig. 10. (a) MSAD for each of the constituent elements and averaged values for the three alloys. (b) Relation between the experimental 0 K CRSS and MSAD for the three HEA/MEAs. The 0 K CRSS and MSAD are normalized by the shear modulus and dislocation Burgers vector, respectively.

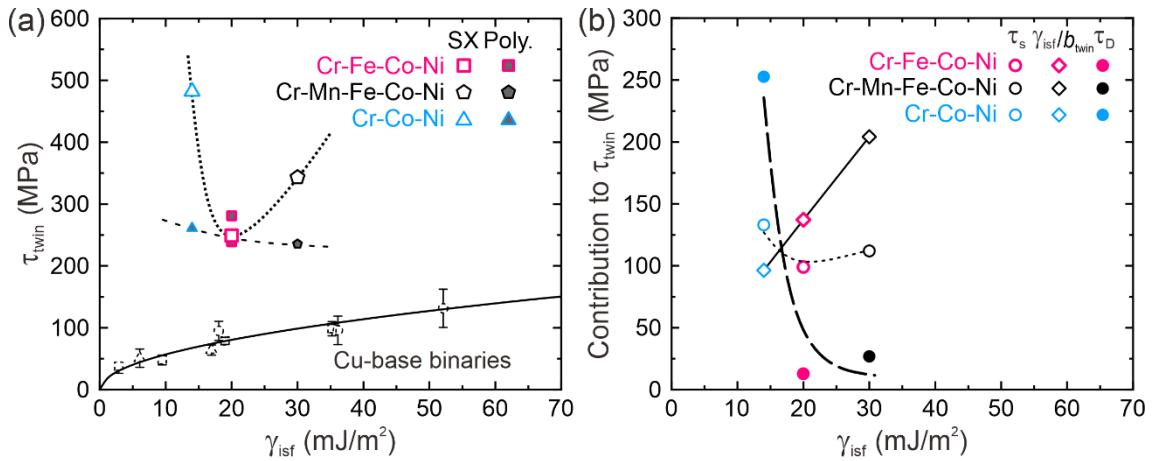



Fig. 11. (a) Relationship between the twinning shear stress at 77 K and stacking fault energy for  $[\bar{1}23]$ -oriented single crystals (solid symbols) and polycrystals (open symbols) of the equiatomic Cr-Mn-Fe-Co-Ni HEA and Cr-Fe-Co-Ni and Cr-Co-Ni MEAs, together with that reported previously for FCC solid-solution alloys. (b) The estimated contributions to the twinning shear stress from the three terms in equation (7) plotted as a function of stacking fault energy for the three HEA/MEAs.

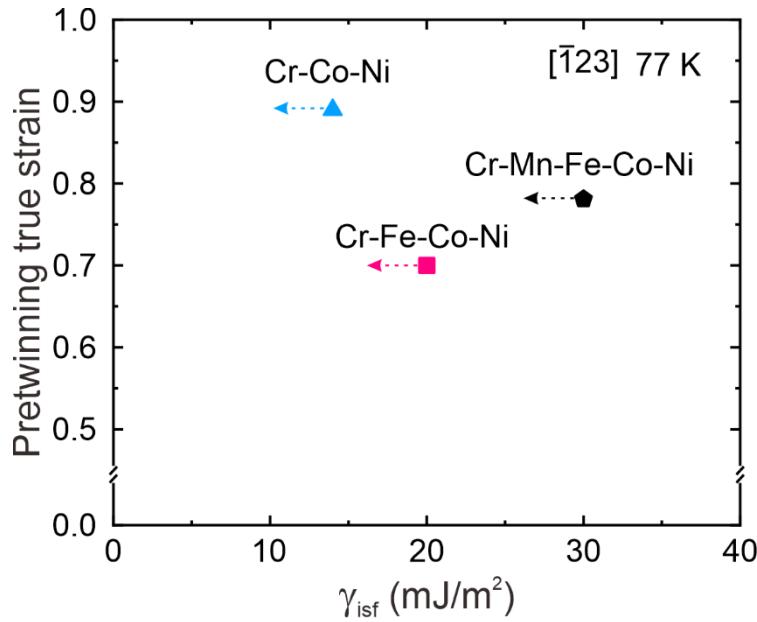



Fig. 12. True strain at the onset of deformation twinning at 77 K plotted as a function of stacking fault energy for the three HEA/MEAs.

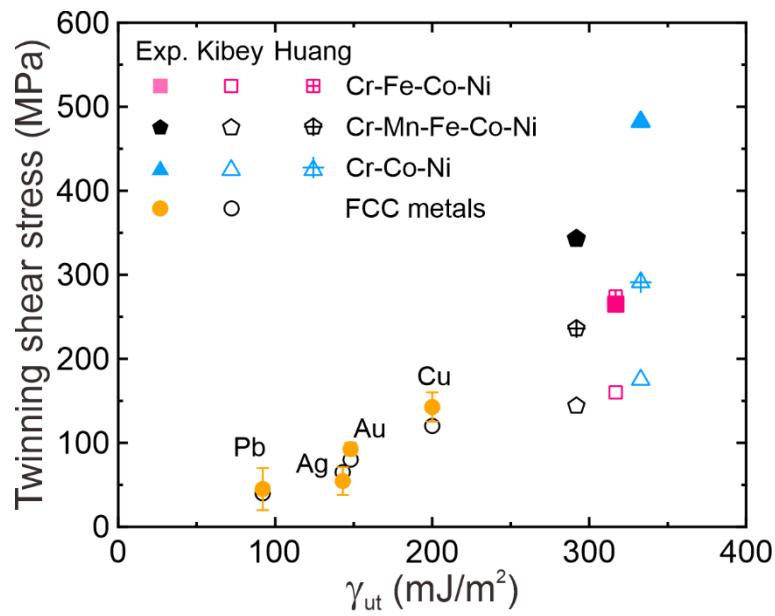



Fig. 13. Twinning shear stress of the three HEA/MEAs plotted as a function of unstable stacking fault energy calculated by Huang et al. (Huang et al., 2018): experimentally determined values for  $[\bar{1}23]$ -oriented single crystals (solid symbols), predicted values from models by Kibey et al. (Kibey et al., 2007a) (open symbols) and Huang et al. (Huang et al., 2018) (open with cross symbols). The data points for some pure FCC metals (Kibey et al., 2007a) are also shown for comparison.

Supplementary figures for

**Plastic deformation of single crystals of the equiatomic Cr-Fe-Co-Ni medium entropy alloy – a comparison with Cr-Mn-Fe-Co-Ni and Cr-Co-Ni alloys to understand effects of Cr concentration**

Le Li<sup>1</sup>, Zhenghao Chen<sup>1</sup>, Koretaka Yuge<sup>1</sup>, Kyosuke Kishida<sup>1</sup>, Haruyuki Inui<sup>1</sup>, Martin Heilmaier<sup>2</sup>, Easo P. George<sup>3,4</sup>

<sup>1</sup>Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

<sup>2</sup>Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Engelbert-Arnold-Strasse 4, 76131 Karlsruhe, Germany

<sup>3</sup>Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA

<sup>4</sup>Institute for Materials, Ruhr University Bochum, 44801 Bochum, Germany

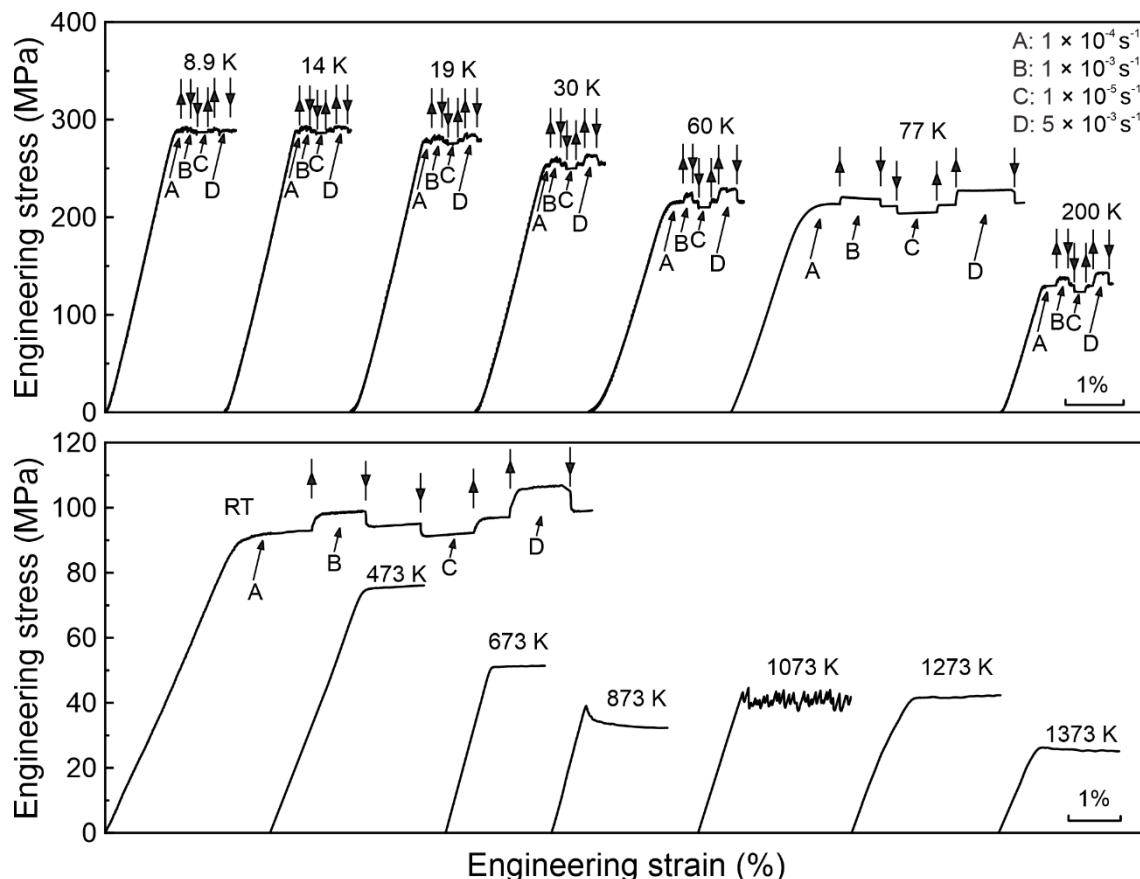



Fig. S1. Compressive stress-strain curves at selected temperatures for  $[1\bar{2}3]$ -oriented single crystals of the equiatomic Cr-Fe-Co-Ni MEA. Compression tests were usually started at a strain rate of  $1 \times 10^{-4} \text{ s}^{-1}$  to determine the yield stress and then strain-rate sensitivity was measured by strain-rate jump tests as indicated with arrows (at room temperature and below).

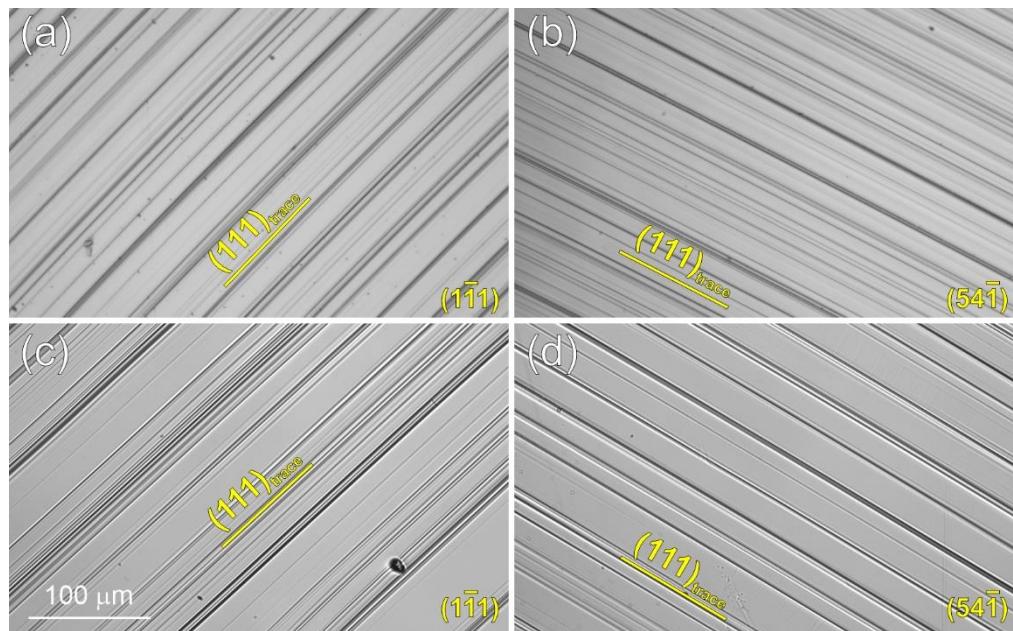



Fig. S2. Deformation markings observed on two orthogonal side surfaces ((a,c)  $(1\bar{1}1)$  and (b,d)  $(54\bar{1})$ ) of  $[1\bar{2}3]$ -oriented single crystals deformed in compression at (a,b) 77 K and (c, d) room temperature.

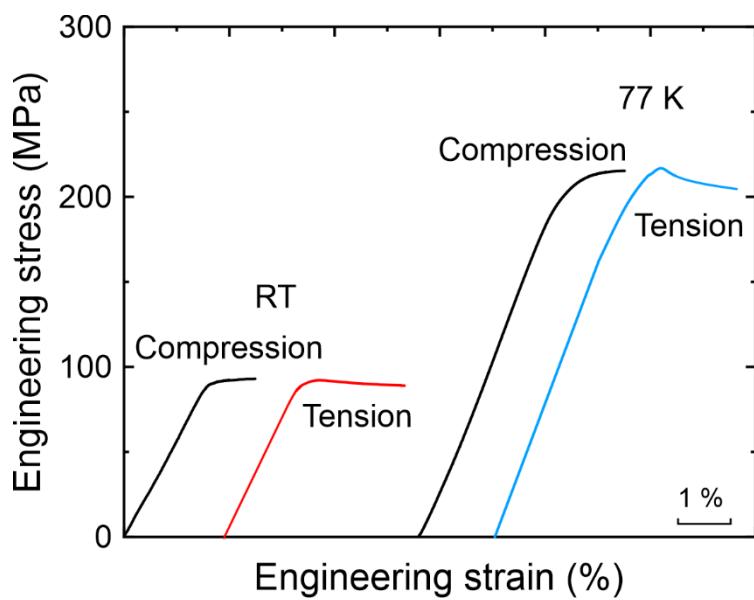



Fig. S3. Tensile and compressive stress-strain curves at 77 K and room temperature for  $[1\bar{2}3]$ -oriented single crystals of the equiatomic Cr-Fe-Co-Ni MEA.

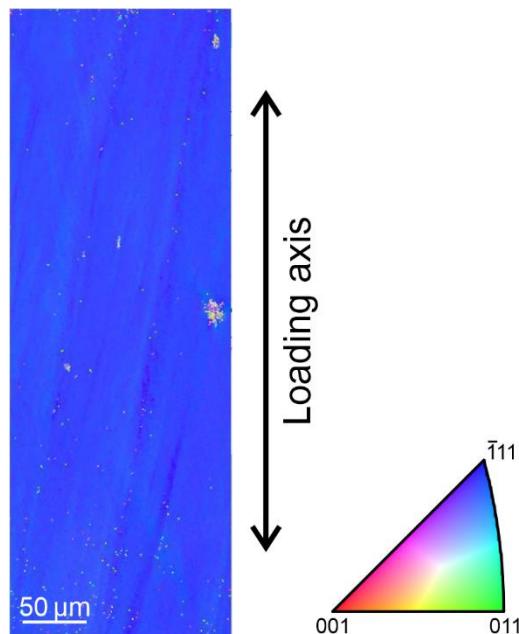



Fig. S4. EBSD orientation map of a  $[\bar{1}23]$ -oriented single crystal of the equiatomic Cr-Fe-Co-Ni MEA deformed in tension to failure at room temperature. There is no indication that deformation twinning occurred.

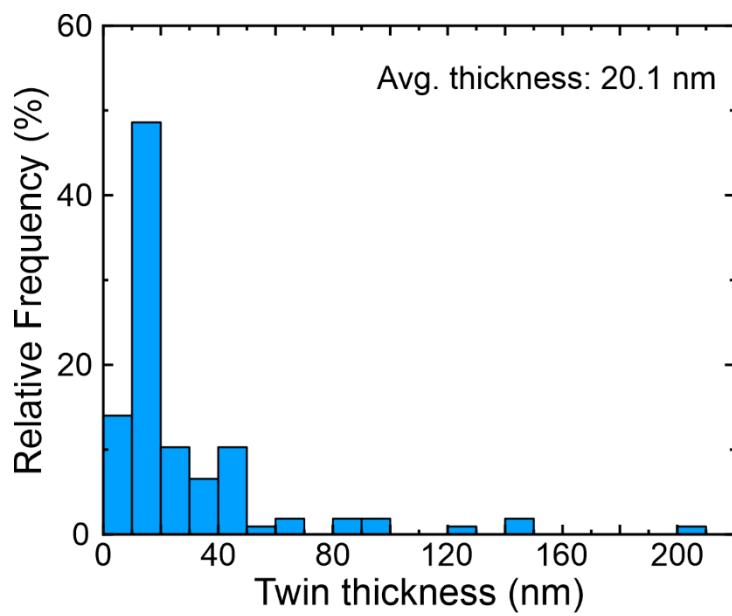



Fig. S5. Twin thickness distribution in  $[\bar{1}23]$ -oriented single crystals of the equiatomic Cr-Mn-Fe-Co-Ni HEA deformed in tension to failure at 77 K measure from dark-field TEM images ([Kawamura et al., 2021](#)).

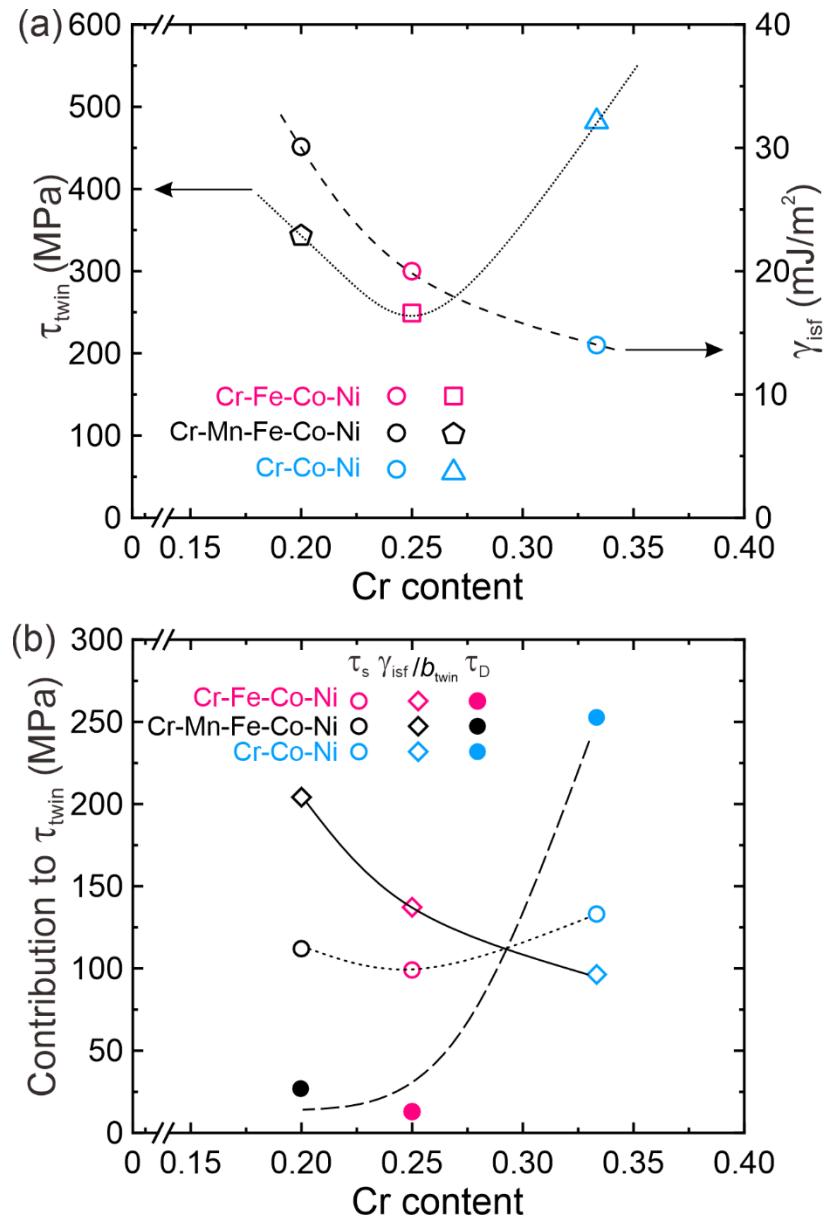



Fig. S6. (a) The stacking fault energy (right Y axis) and the twinning shear stress at 77 K (left Y axis) plotted as against Cr content for  $[\bar{1}23]$ -oriented single crystals of the equiatomic Cr-Mn-Fe-Co-Ni HEA and Cr-Fe-Co-Ni and Cr-Co-Ni MEAs. (b) The estimated contributions to the twinning shear stress from the three terms in equation (7) plotted as a function of Cr content for the three HEA/MEAs.