KIT | KIT-Bibliothek | Impressum | Datenschutz

Dataset: On the Similarity of Web Measurements Under Different Experimental Setups

Demir, Nurullah ORCID iD icon 1; Hörnemann, Jan; Große-Kampmann, Matteo; Urban, Tobias; Holz, Thorsten 2; Pohlmann, Norbert; Wressnegger, Christian ORCID iD icon 1
1 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)
2 Helmholtz-Zentrum für Informationssicherheit (CISPA)

Abstract:

Measurement studies are essential for research and industry alike to understand the Web's inner workings better and help quantify specific phenomena. Performing such studies is demanding due to the dynamic nature and size of the Web. An experiment's careful design and setup are complex, and many factors might affect the results. However, while several works have independently observed differences in the outcome of an experiment (e.g., the number of observed trackers) based on the measurement setup, it is unclear what causes such deviations.
This work investigates the reasons for these differences by visiting 1.7M webpages with five different measurement setups. Based on this, we build `dependency trees' for each page and cross-compare the nodes in the trees. The results show that the measured trees differ considerably, that the cause of differences can be attributed to specific nodes, and that even identical measurement setups can produce different results.


Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Forschungsdaten
Publikationsdatum 23.08.2023
Erstellungsdatum 07.03.2022 - 31.08.2022
Identifikator DOI: 10.35097/1719
KITopen-ID: 1000161615
Lizenz Creative Commons Namensnennung – Nicht kommerziell 4.0 International
Liesmich

This repository hosts the dataset corresponding to the paper "On the Similarity of Web Measurements Under Different Experimental Setups", which was published at the Proceedings of the 23nd ACM Internet Measurement Conference 2023.

Art der Forschungsdaten Dataset
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page