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Abstract

The people of Equatorial East Africa (EEA) are heavily reliant on rain-fed agriculture
for their livelihoods. For some of the countries, more than 35% of the GDP comes
from the agricultural sector. Moreover, this region’s communities are some of the most
vulnerable to impacts of extreme weather, such that accurate weather information is
crucial for the region. However, due to low skill, uptake of weather forecast information
is still low. The aim of this thesis is to improve the understanding of the quality of
forecasts over EEA by verifying them with the best available observations, with the
hope of improving the uptake and use.

To start with, the quality of satellite rainfall estimates (SREs) was evaluated to select
the most suitable product. SREs were the best option to use as the observation data set
given the sparsity of the rain gauge (RG) network over EEA. Five gauge-calibrated SREs,
namely, Integrated Multi-satellitE Retrieval for Global Precipitation Measurement (GPM;
IMERG), Tropical Rainfall Measuring Mission (TRMM) Multisatellite precipitation
Analysis (TMPA), Climate Hazard Infrared Precipitation with Stations (CHIRPS),
and Multi-Source Weighted-Ensemble Precipitation (MSWEP; v2.2 and v2.8), were
evaluated using a unique daily rainfall dataset from 36 stations across EEA for the
period 2001–18. Based on the results, the SREs reproduce the annual rainfall pattern
and seasonal rainfall cycle well, despite exhibiting biases in rainfall amount of up to
9%. For daily, pentadal and decadal rainfall accumulations, IMERG is the best product,
while MSWEPv2.2 and CHIRPS perform best at the monthly and annual time steps,
respectively. Rather disappointingly, all the SREs miss over 79% of daily extreme
rainfall events recorded by the rain gauges. From this analysis, IMERG was chosen as
the satellite observation going forward.

In the next step, ensemble reforecasts from European Centre for Medium-Range Weather
Forecasts (ECMWF) were validated and postprocessed using IMERG and RG data
for the period 2001–2018. The reforecasts were analysed from short to medium-range
time scales, and for a range of temporal aggregations, i.e., 24, 48, and 120 hours. The
skill was assessed using a reference forecast in the form of an extended probabilistic
climatology (EPC) derived from the observations. Results show that the reforecasts
overestimate rainfall, especially during the rainy seasons and over high altitude areas.
However, there is potential skill in the raw forecasts up to 14 days ahead. There is
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also an improvement of up to 30% in Brier score/continuous rank probability score
relative to EPC in most areas, especially the higher-altitude regions, decreasing with
lead-time. Aggregating the reforecasts enhances the skill further, likely due to reduction
in timing mismatches. However, for some regions of the study domain, the predictive
performance is worse than that of EPC, mainly due to biases in amount and dispersion
errors. Postprocessing the reforecasts using isotonic distributional regression (IDR)
considerably improves skill, increasing the number of grid-points with positive Brier
skill score (continuous rank probability score) by 82% (67%) at 1-day lead-time.

Finally, regime-based analyses were carried out to assess whether weather regimes
influence the rainfall and skill of the reforecasts relative to the reference forecast, EPC.
Specifically, the Madden-Julian Oscillation (MJO), Kelvin wave and the Indian Ocean
Dipole (IOD) were analysed. The results show that MJO and Kelvin waves strongly
modulate rainfall by ~5–7 mmd-1. The modulation is positive (negative) during the wet
(dry) phases. The modulation is mostly over Uganda and the East African Coast for
MJO and the Congo basin for Kelvin waves. The skill of the reforecasts is improved
during the wet phases for rainfall detection and accuracy of rainfall amounts. The IOD
also positively modulates rainfall and skill of the reforecasts during the positive, i.e.
wet, phase while doing the opposite during the dry phase. The work in this thesis
has highlighted the level of skill of ECMWF reforecasts, the benefit of postprocessing
forecasts, and the potential sources of predictability, serving as a basis for forecast
quality improvement over the region.
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Kurzfassung

Die Menschen in Äquatorial-Ostafrika (EWR) sind für ihren Lebensunterhalt in hohem
Maße von der Regenfeldwirtschaft abhängig. In einigen Ländern stammen mehr als
35% des BIP aus dem Agrarsektor. Darüber hinaus gehören die Menschen in dieser
Region zu denjenigen, die am stärksten von den Auswirkungen extremer Wetterereignisse
betroffen sind, so dass genaue Wetterinformationen für die Region von entscheidender
Bedeutung sind. Die Nutzung von Wettervorhersagen ist jedoch aufgrund der geringen
Fachkenntnisse nach wie vor gering. Ziel dieser Arbeit ist es, das Verständnis für die
Qualität der Vorhersagen in EWR zu verbessern, indem die Vorhersagen mit den besten
verfügbaren Beobachtungen überprüft werden, in der Hoffnung, die Akzeptanz und
Nutzung zu verbessern.

Zunächst wurde die Qualität der satellitengestützten Niederschlagsschätzungen (SREs)
bewertet, um das am besten geeignete Produkt auszuwählen. Aufgrund des spär-
lichen Netzes von Regenmessern (RG) im EWR waren SREs die beste Option für
die Verwendung als Beobachtungsdatensatz. Fünf mit Messgeräten kalibrierte SREs,
IMERG, TMPA, CHIRPS und MSWEP (v2.2 und v2.8), wurden anhand eines einzi-
gartigen täglichen Niederschlagsdatensatzes von 36 Stationen im gesamten EWR für
den Zeitraum 2001-18 bewertet. Die Ergebnisse zeigen, dass die SREs das jährliche
Niederschlagsmuster und den saisonalen Niederschlagszyklus gut wiedergeben, obwohl
sie Abweichungen von bis zu 9% bei der Niederschlagsmenge aufweisen. Für die tägliche,
pentadische und dekadische Niederschlagsakkumulation ist IMERG das beste Produkt,
während MSWEPv2.2 und CHIRPS bei den monatlichen bzw. jährlichen Zeitschritten
am besten abschneiden. Enttäuschend ist, dass alle SREs über 79% der von den Re-
genmessern aufgezeichneten täglichen extremen Niederschlagsereignisse nicht erfassen.
Aufgrund dieser Analyse wurde IMERG als künftige Satellitenbeobachtung ausgewählt.

In einem nächsten Schritt wurden die Ensemble-Vorhersagen des ECMWF für den
Zeitraum 2001-2018 validiert und mit IMERG- und RG-Daten nachbearbeitet. Die
Vorhersagen wurden auf kurz- bis mittelfristigen Zeitskalen und für eine Reihe von
zeitlichen Aggregationen (stündlich, 48 Stunden und 120 Stunden) analysiert. Der Skill
wurde anhand einer Referenzvorhersage in Form einer erweiterten probabilistischen Kli-
matologie (EPC) bewertet, die aus den Beobachtungen abgeleitet wurde. Die Ergebnisse
zeigen, dass die Vorhersagen die Niedershlagsmenge überschätzen, insbesondere während
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der Regenzeit und über hoch gelegenen Gebieten. Trotzdem können die Prognosen
bis zu 14 Tage im Voraus verbessert werden. In den meisten Gebieten, vor allem in
den höher gelegenen Regionen, ergibt sich eine Verbesserung von bis zu 30% der Brier
scores bzw. der Werte für die kontinuierliche Rangwahrscheinlichkeit im Vergleich zu
den EPC-Werten, die mit der Vorlaufzeit abnimmt. Die Aggregation der Vorhersagen
verbessert die Fähigkeit weiter, was wahrscheinlich auf die Verringerung der zeitlichen
Diskrepanzen zurückzuführen ist. Für einige Regionen des Untersuchungsgebiets ist die
Vorhersagequalitat jedoch schlechter als die des EPC, was hauptsächlich auf Verzerrun-
gen bei den Mengen- und Ausbreitungsfehlern zurückzuführen ist. Die Nachbearbeitung
der Vorhersagen mittels isotonischer Verteilungsregression (IDR) verbessert die Qualität
beträchtlich und erhöht die Anzahl der Gitterpunkte mit positivem Brier-Skill-Score
(kontinuierlicher Rangwahrscheinlichkeitsscore) um 82% (48%) bei einer Vorlaufzeit von
einem Tag.

Schließlich wurden regimebasierte Analysen durchgeführt, um zu beurteilen, ob Wet-
terregime die Niederschlagsmenge und die Fähigkeit der Vorhersage im Vergleich zur
Referenzprognose EPC beeinflussen. Im Einzelnen wurden die Madden-Julian Oszillation
(MJO), Kelvin-Welle, und der Indischer Ozeans Dipol (IOD) analysiert. Die Ergebnisse
zeigen, dass MJO und Kelvin-Wellen die Niederschläge um 5-7 mmd-1 verändern. Die
veränderung ist positiv (negativ) während der feuchten (trockenen) Phasen. Die verän-
derung findet durch die MJO hauptsächlich über Uganda und der ostafrikanischen Küste
statt. Und bei der Kelvin-Welle über dem Kongobecken. Die Qualität der Vorhersagen
verbessert sich während der feuchten Phasen bei der Erkennung von Niederschlag und
der Genauigkeit der Niederschlagsmengen. Die IOD beeinflusst die Niederschlagsmenge
und die Genauigkeit der Vorhersagen während der positiven, feuchten Phase positiv,
während sie in der trockenen Phase das Gegenteil bewirkt. Die Arbeiten in dieser Arbeit
haben den Grad der Genauigkeit der ECMWF-Vorhersagen, den Nutzen der Nach-
bearprozeddierung von Vorhersagen und die potenziellen Quellen der Vorhersagbarkeit
aufgezeigt und dienen als Grundlage für die steigerung der Vorhersagequalität für die
Region.
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1. Introduction

The countries in Equatorial East Africa (EEA; Fig. 1.1) are heavily reliant on rain-fed
agriculture. A large portion of these countries’ gross domestic product (GDP) comes
from agriculture with Burundi (Democratic Republic of Congo, DRC) having the highest
(lowest) percentage, 39.5% (19.7%) compared to a world average of 6.4% based on 2017
estimates (CIA World Factbook 2023). This makes the region one of the world’s most
vulnerable to weather and climate related extremes, mainly in the form of floods and
droughts. The IPCC (2022) estimates the region’s death rate due to these disasters is
15-fold more than that of the less vulnerable regions of the world, e.g., western Europe.
Currently, many countries in EEA are experiencing the longest and most severe drought,
leaving about 70 million people at risk of starvation and death (Toreti et al., 2022). On
the other hand, the most flood-prone regions of EEA have seen an increase in death
and displacement of people due to floods and landslides. The Centre for Humanitarian
Data (OCHA), estimates that between December 2019 and January 2020 alone, about
3.4 million people were affected in the region (OCHA, 2020). The number of people
affected will grow in the future given the rapidly increasing population of EEA. For
example, Uganda’s population alone is projected to almost double to about 70.5 million
by 2040 relative to the 2020 estimate (UBOS 2020). One important mitigation against
weather and climate related disasters is the provision of early warnings informed by
accurate weather and climate forecasts. Unfortunately, the potential of these forecasts
to save life and property has not yet been realized for EEA and Africa at large (Youds
et al. 2021).

One of the main reasons for the unrealised potential is the lack of skill of weather
and climate forecasts in the region. Vogel et al. (2018) demonstrated that, even after
postprocessing, daily rainfall forecasts from the European Centre for Medium-range
Weather Forecasts (ECMWF) and National Oceanic and Atmospheric Administratio
(NOAA) over Sub-Saharan Africa hardly beat climatology as a reference forecast. Haiden
et al. (2012) showed that a forecast with 1-day lead-time in the tropics (where most
of Africa lies) is equivalent to a 6-day lead-time forecast in the extra-tropics. These
deficiencies of the models replicating the amounts of rainfall in the tropics have been
partly attributed to inadequate parameterization of convection (e.g., Marsham et al.,
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Chapter 1. Introduction

Figure 1.1: Study area with the four regions; Uganda (black), Congo Basin (magenta),
Ethiopian Highlands (blue) and East African coast (red) demarcated. The shading
show the highly varying elevation of the study area as given by the Global Land
One-Km Base Elevation project (GLOBE). The map inset has the location of the 12
synoptic stations, grouped into four depending on the nearest 1.5° grid they fall in.
These stations are representative of western- (1–4), central- (5–8) and eastern-Uganda
(9–12)

2013; Birch et al., 2014; Vogel et al., 2018). Macleod et al. (2021) noted that using these
poor forecast to make decision leads to wrong actions almost 50% in Kenya.

Ongoing research and increasing computational resources, has improved the represen-
tation of climate drivers, e.g., Madden-Julian Oscillation (MJO), El Niño-Southern
Oscillation (ENSO), Indian Ocean Dipole (IOD), among others, in forecast models,
leading to improved predictability in the region, especially at sub-seasonal time scales
(de Andrade et al., 2021; Vitart et al., 2017; Li and Robertson, 2015). For EEA,
studies have shown that most of these drivers, e.g., MJO (Pohl and Camberlin, 2006a;
Specq and Batté, 2022) and IOD (Black et al., 2003; Wainwright et al., 2021), occur
over EEA, suggesting the weather may be more predictable in the region, since these
phenomenon are often well forecast in global models. However, these gains are not
homogeneous over the globe for a number of reasons, e.g., difference in geography (e.g.,
the complex topography of EEA in Fig. 1.1), climate, and quality of initial conditions
(or observations). Therefore, there is need to verify the skill of forecasts and calibrate
for any bias and dispersion errors.

A number of studies have verified different (re)forecasts over EEA (e.g., de Andrade et al.,
2021; Endris et al., 2021; Macleod et al., 2021; Stellingwerf et al., 2021). Reforecasts or
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hindcasts are forecast with initialisation and prediction dates in the past but usually
generated using the current operational forecast system. The verification studies generally
suggest that the forecasts over EEA are skillful at lead times of weeks to months.
Specifically, they found that; a) the reforecasts are more skillful over East Africa compared
to those of other regions in Africa (de Andrade et al., 2021), b) ECMWF reforecasts
generally performed best compared to reforecasts from other centres (de Andrade et al.,
2021; Endris et al., 2021), and c) the performance of the reforecasts varies spatio-
temporally. At daily time scales, Stellingwerf et al. (2021) also showed that the ECMWF
model performed best.

Although there is promising skill in the forecasts over EEA, it was noted earlier that
these forecasts have errors. For probabilistic forecasts, these are normally systematic
errors in form of biases and dispersion errors. These errors are nowadays remedied by
statistical postprocessing, which relies on past forecast-observation pairs to model the
distribution of rainfall and hence, correct the numerical model outputs. This technique
has been shown to work well, for example, Vogel et al. (2020) showed that, after
postprocessing using Ensemble Model Output Statistics (EMOS; Gneiting et al., 2005),
the forecast improved by an average of about 35%. Similar improvements were seen by
Stellingwerf et al. (2021), who showed that bias correction using quantile-to-quantile
mapping improved the skill of forecasts over Ethiopia.

The second cause of poor forecast skill in Africa is the low quality of observations. Z̃agar
(2017) noted that the quality or low number of observations (initial conditions) going into
the model determine its performance. However, in most African countries, data from
RGs, often considered as reference data, are spatially and temporally sparse, temporally
inconsistent, and in some cases of low-quality (e.g., Diem et al., 2014; Monsieurs et al.,
2018). In fact, the station network coverage across Africa has been shrinking over the
years (e.g., Asadullah et al., 2008; Dinku, 2019). Therefore, over Africa, hardly any RG
data is assimilated into the forecast systems.
Satellite rainfall estimates (SREs) have filled the spatio-temporal data gaps. However,
they are not without shortcomings. For example, IR-based techniques rely on a cloud
top temperature-precipitation relationship, which is often unsuitable for non-convective
precipitation (Kidd and Huffman, 2011) or non-precipitating cold cirrus shields (Young
et al., 2014). On the other hand, microwave-based satellites have been found to struggle
with retrieving rain from warm clouds (Dinku et al. 2010b; Monsieurs et al. 2018;
Maranan et al. 2020) and to overestimate rainfall in places where convective rainfall
dominates (Tian et al., 2009). Therefore, the SRE products used for validation of
forecasts must be chosen carefully, and validated prior to their use.

From the above discussion, its clear that EEA needs accurate weather and climate
information. One key pillar in the improvement of forecasts is validation. Besides
assessing the skill of forecasts, validation also enables model development and discovery
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of new sources of predictability. Most of the forecast validation studies done in this
region either considered longer temporal aggregations, did not postprocess the forecasts
(de Andrade et al., 2021; Endris et al., 2021), or used different post processing approaches
Stellingwerf et al. (2021). Therefore, this work fills the existing gap by validating raw
reforecast from ECMWF from short to medium-range time scales (i.e., 1–14 days ahead)
for 24-hour, 48-hour and 120-hour accumulations. The raw reforecast will also be
postprocessed and their skill evaluated. Additionally, the role of climate drivers in
forecasting will be explored in a regime-dependent approach. Before carrying out the
validation of the forecasts, identification of the right observation data sets is necessary.
Therefore, the major aims of this dissertation are to:

1. Identify the most suitable satellite rainfall estimates for validating the
forecasts over EEA.

2. Assess the skill of global ensemble forecast products over EEA.

3. Assess potential sources of rainfall predictability in EEA.

Chapter two provides a review of literature on the climate and weather of EEA, focusing
on rainfall and its variability. Focus is put on the local and global climate drivers that
bring about rainfall variability and the skill of global forecasts in this region. Chapter
three expounds on the research goals, providing the research questions to achieve the
goals. Next, results are presented starting with results of the validation of SREs in
Chapter four. The best performing product at short time steps (i.e., daily to decadal
accumulations) was used in the rest of the PhD project. In chapter five, results of
the analysis of the skill of forecasts are presented, followed by regime-dependant skill
analysis in Chapter six. Following the results chapters, the conclusions and outlook of
this thesis are given in chapters seven and eight, respectively.
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2. Background and literature review

In this chapter, the weather and climate of EEA and factors influencing it are discussed.
The first section deals with the topographical features of the regions. The mean state
and variability of the weather and climate resulting from the prevailing conditions of
the regional and global climate drivers is presented in the second section. In the third
section, the individual drivers are discussed, focusing on how they influence the weather
and climate and their influence on the performance of global weather and climate models.
Finally, in the fourth section, the historical and current status of forecasting in the
region is explored. Additionally, factors affecting the quality and uptake of weather and
climate forecasts are briefly introduced.

2.1 Topography of EEA

EEA has a complex topography (cf Fig.1.1); the region is dominated by the East African
Rift System (EARS) of the oldest and most well-defined rift valleys in the world. The
EARS starts from the Afar region in Ethiopia (Ethiopian rift) and splits into the western
branch in the Lake Albert region (the Albertine rift) and the eastern branch which
approximately bisects Kenya in a north-south line (Morley et al., 1999). The region has
some of the highest landforms on the continent; the Ethiopian highlands with heights
ranging between 1500 and 4550 m above sea level, the East African highlands where
mountains like, Kenya (5199 m), Kilimanjaro (5895 m), Elgon (4321 m), Rwenzori (5109
m) and the Virunga ranges (3058–4507 m) are found. On the other hand, some regions,
for example, the East African coast, Congo basin and South Sudan regions are low-lying,
being as low as 0 m above sea level. The region is also home to the largest in-land water
body in Africa, Lake Victoria, which spans three countries (i.e., Uganda, Kenya and
Tanzania). Given its shear size of ~69,000 square kilometers (UNEP, 2006), it is the
most significant lake both in terms of socio-economic and climatic significance. Other
major lakes in the region include, Albert, Edward, Kyogo, Kivu, Mweru, Tanganyika,
Malawi, Rukwa and Turkana. These lakes form what is referred to as the "African
Great Lakes" or the "Rift valley lakes".

The influence of topography on rainfall, and hence climate, of a region is well known. In
East Africa, Oettli and Camberlin (2005) showed that slope, exposure and elevation of
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the topography explained the variation of rainfall in the region. Based on the RegCM4
climate model, Ogwang et al. (2014) showed that a 25% decrease in elevation resulted in
a 19% reduction in October-November-December rainfall in East Africa. Lake Victoria
influences the local climate of the surrounding regions via its dominant land-lake breezes.
Given its direct influence on weather and climate, it can be expected that the skill of
forecasts is affected by the topography of a region. For example, over Lake Victoria,
Woodhams et al. (2018) showed that better representation of land-lake breeze dynamics
in the convection-permitting (CP) Met Office operational model resulted in a 20%
increase in hit rates for forecast of extreme precipitation relative to the global Met
Office model with the usual parameterized convection. Similar results were shown
by Cafaro et al. (2021). This shows that models that can effectively represent the
localised convection over the lake show superior skill. Models also seem to better
represent topographically-triggered convection over EEA. Moreover, over the East
African highlands, convection is often linked to large-scale triggers, such as the MJO
(Pohl and Camberlin, 2006a) which have higher predictability (e.g., de Andrade et al.,
2021; Vitart et al., 2017). On the other-hand, over flat low-lying areas and where
convective rainfall dominates, the rainfall is more stochastic (Satheesh et al., 2023), and
therefore, models fail to correctly represent this convection.

2.2 Climatology of EEA

2.2.1 Mean state

The climate of EEA varies significantly, both in space and time (e.g., Peel et al., 2007;
Nicholson, 2017; Seregina et al., 2018; Beck et al., 2018; Dunning et al., 2018). The
Koppen-Geiger climate classification from Peel et al. (2007) shows EEA has at least five
different climates, including tropical Savannah, arid desert and arid steppe being the
dominant types (Fig. 2.1). According to Nicholson (2017), these different climates are
as a result of; a) local topographical feature (e.g., Turkana channel, East African and
Ethiopian highlands, Lake Victoria and Red Sea trench, b) regional circulations features
(e.g., tropical easterly jet, low level westerlies, localised convergence, and Turkana jet),
c) remote forcing (e.g., Walker circulation, IOD, ENSO, MJO and global SSTs and d)
coastal influences (e.g., frictional uplift, Somali jet, coastal SSTs and sea breeze). Some
of these factors will be explained in the coming sections. EEA is heavily impacted by
severe drought, owing to the arid and semi-arid climate. For example, the region has
recently been plagued by the longest and most severe drought in recent times, stretching
for five rainy season between 2020 and 2022 (CHC, 2023). The largely dry climate of
eastern African is an anomaly for a region close to the equator (Griffiths and Landsberg,
1972). The subsiding arm of the Walker circulation, one of the major circulation features
in the region may partly explain this dryness (see Walker circulation explanation in
section 2.3.2). Nicholson (1996) suggests that thermally stable monsoon flows and stable
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air aloft are possible reasons. On average, most areas receive between 800–1200 mm of
rainfall annually (Nicholson, 2017).

Figure 2.1: The climate over Africa according to the Koppen-Geiger classification.
Taken from Peel et al. (2007).

2.2.2 Seasonal rainfall cycle over EEA

Rainfall in EEA is seasonal with the number of rainy seasons varying from one to three
depending on location. Larisa et al. (2021) delineated the regions receiving unimodal,
bimodal, and trimodal rainfall regimes (Fig. 2.2). The unimodal regime dominates the
northern part of region in the boreal summer from June to September(JJAS) and the
southern part during December to February (DJF) season. Although some regions have
a trimodal rainfall cycle, the third rainy season is mostly unstable. The occurrence
of these seasonal cycles is strongly influenced by the migration of the Inter-Tropical
Convergence Zone (ITCZ) through the year (e.g., Dunning et al., 2016; Nicholson, 018a;
Seregina et al., 2018). Because it is an area where the trade winds converge, the ITCZ
is generally an area with enhanced convective activity. In the boreal summer, when it is
located in the northern hemisphere, the rainfall peak is in the northern part of EEA,
hence the unimodal rainfall peaking at this time of the year. The reverse is true during
the boreal winter, when the mean location of the ITCZ is in the southern hemisphere,

11



Chapter 2. Background and literature review

single rainfall peak in the southern parts of EEA. Because the ITCZ crosses some
locations twice, during its northward and southward legs, these locations receive two
rainfall peaks, hence the bimodal rainfall cycles. Because of the gradual migration of
the sun, the length, start and end of seasons is different across EEA.

Figure 2.2: Number of rainfall seasons across EEA; yellow for unimodal, blue for
bimodal and orange for trimodal rainfall seasons based on CHIRPS and rain gauge data
(circles). Grids(gauges) with unstable number of seasons are hatched(black-dotted).
Taken from Seregina et al. (2018), Figure 6, © 2018 John Wiley & Sons, Ltd.

Fig. 2.3 shows the mean daily rainfall in each month over EEA with a gradual shift in the
location of maximum convection, following the ITCZ movement. Starting in January, the
rainfall maximum moves north-wards until July/August, when it is at the northernmost
location, e.g., over the Ethiopian highlands, South Sudan and Sudan regions. The
convective regions start to reverse direction in September, moving southwards. One of
the major circulations associated with this annual cycle is the trade winds, which occur
as southwest (SW) monsoons in the boreal summer and northeast (NE) monsoons during
the boreal winter. These winds are shown by the 850 hPa vectors from ERA5 in Fig.

12



2.2. CLIMATOLOGY OF EEA

2.3. During the summer, the sun is mainly over the northern hemisphere which creates a
low pressure region. Onshore southeasterly winds therefore move equator-wards before
bending to become southwesterlies after crossing the equator. This flow pattern is
associated with the Somali low level jet (Findlater, 1969), which is located between
1200–2400 m above sea level with a maximum speed of 25–50 ms-1. The jet starts from
the southern hemisphere as southeasterly flow and becomes southwesterly upon crossing
the equator. The Ethiopian highlands play a big role in confining the jet along the
Indian Ocean coast as it moves towards India where most of the moisture is dumped,
causing the intense "monsoon rains" over the Indian peninsular. In September, the
winds start to reverse in direction becoming northeasterly and then northwesterly after
crossing the equator.

Figure 2.3: Mean daily precipitation in eaach month of the year over EEA based on
IMERG-F precipitation for the period 2001–2018. The 10 m wind (vectors) based on
ERA5 Hersbach et al. (2020) for the period 1979–2020.
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2.3 Modes of Rainfall variability over EEA

Rainfall over EEA is highly variable. The variation happens within a day (diurnal
variation), within a season (intraseasonal variation), among seasons (seasonal variation)
and between years (interannual variation). As explained earlier, the number of rainy
seasons varies between one and three depending on the location. Additionally, the
amount of rainfall, onset, cessation and length of these seasons are spatio-temporally
variable (e.g., Nicholson, 2017; Seregina et al., 2018; Dunning et al., 2018). Within
specific locations and seasons, the rainfall received in different years substantially varies.
For example, Palmer et al. (2023) estimates that rainfall on average varies by about 30%
(60%) during the long (short) rain season in Eastern Africa Sahelian region. They also
noted that a maximum deviation of 355% from the long-term mean was reached in 1997.
These results are in line with those of Ogallo (1989) and Nicholson (1996) who found that
the short rain season has a greater variability compared to the long rain season. Even
the diurnal cycle of daily rainfall is different across the region. Camberlin et al. (2018)
showed that the diurnal cycle of rainfall is quite stable over EEA, with morning and
afternoon maxima along the East African Coast (EAC) and over land, respectively. The
quite stable states have been shown to be modulated on intraseasonal and interannual
time scales by MJO and IOD (Camberlin et al., 019b). The physical processes that
drive the rainfall variability, commonly termed ’climate drivers’ are explained in the
following subsections.

2.3.1 Madden-Julian Oscillation

The largest mode of intraseasonal rainfall variation is the Madden-Julian Oscillation
(MJO; Madden and Julian, 1971, 1972; Zhang, 2005). This planetary-scale disturbance
which propagates eastward at ~5 ms-1 is associated with convection and traverses the
tropics in 30–90 days (Zhang, 2005). The phenomenon was first discovered by Madden
and Julian (1971) who noticed opposite oscillations in zonal wind anomalies in the lower
(850hPa) and upper (150hPa) atmosphere. These oscillations were later shown to be
associated with enhanced convection where the zonal winds at low levels converged
and dry conditions where they were divergent. Because the MJO is active in different
locations at different times and brings either enhanced or suppressed convection, an
index was proposed to differentiate the location and associated effect of the MJO. The
Real-time Multi-variate MJO (RMM; Wheeler and Hendon, 2004) index, classifies the
MJO into eight phases depending on the location of enhanced convective activity (Fig.
2.4). The convection is enhanced over the western hemisphere and Africa in phases 1
and 8, Indian Ocean in phases 2 and 3, Maritime continent in phases 4 and 5, and the
western Pacific in phases 6 and 7, all the time propagating eastwards.

Several studies have shown that the MJO substantially modulates rainfall over East
Africa (e.g., Pohl and Camberlin, 2006a,b; Berhane and Zaitchik, 2014; Camberlin et al.,
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(a) (b)

Figure 2.4: (a) The RMM phase diagram showing the state of the MJO between Nov
2022 and February 2023. Source: Climate Data Guide; D. Shea. (b) Rainfall anomaly
during MJO events between 1979-2012 for November-March for each of the eight
phases. The green (brown) shading denotes above-average (below-average) rainfall.
The eastward propagation of the MJO can be infered from the eastward shift in the
blue shading. The phases are also labeled logically following the eastward propagation
of the rainfall modulation. Source: NOAA

2018; Specq and Batté, 2022; Vashisht and Zaitchik, 2022) and is the leading driver of
rainfall variability on a sub-seasonal scale (e.g., Specq and Batté, 2022; Palmer et al.,
2023). Berhane and Zaitchik (2014) and Vashisht and Zaitchik (2022) showed that the
most affected months are March and May in the long wet season and November–December
in the short wet season, while in April, the MJO is obscured. The MJO phases associated
with rainfall in East Africa, especially over the highland regions, are 2–4 (Pohl and
Camberlin, 2006a; Berhane and Zaitchik, 2014). These phases are actually coupled
with with heavy convection over the Indian Ocean (cf. Fig. 2.4). The rainfall over
East Africa in these phases is a result of the large scale convection envelopes over the
Indian Ocean resulting to westerly moisture advection. Pohl and Camberlin (2006a)
adds that phases 6–8, which lead to suppressed convection over the African/Indian
Ocean regions, lead to enhanced convection in the low-lying eastern and coastal regions
of EEA, owing to moisture advection from the Indian Ocean. Active MJO amplitudes
bring about either, wetter or drier than normal spells that can last up to three weeks
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(Vellinga and Milton, 2018). The strong wet spells are associated with early seasonal
rainfall onsets and extreme precipitation accumulations and this may account for up
to 44% of seasonal rainfall variation (Pohl and Camberlin, 2006b). Overall, during a
season, Vellinga and Milton (2018) note that the net effect of strong MJO activity is
increased rainfall owing to the fact that the relationship between MJO amplitude and
rainfall amounts is non-linear, as rain amounts are capped at zero.

The MJO has been linked to increased predictability of weather, leading to better
quality forecasts, especially at the subseasonal scale (e.g., Vitart et al., 2017; de Andrade
et al., 2021). de Andrade et al. (2021) showed that, for EEA, the MJO has the biggest
influence on the skill of the ECMWF reforecasts. They showed that the skill in weeks
3–4 improved most when the MJO-related rainfall variability was added in comparison
to other climate drivers. Additionally, Specq and Batté (2022) showed that models
do convert MJO information into better forecasts by increasing the hit rate of events
over Uganda. However, they also noted an increase in false alarm rate and misplaced
positions of the MJO signal. Given that EEA is one of the regions where MJO signals
are strongest, and that models have become better in predicting MJO signals (Vitart
et al., 2017), it is expected that the skill of forecasts is enhanced in this region compared
to other regions of Africa.

2.3.2 El Niño-Southern Oscillation and Indian Ocean Dipole

El Niño-Southern Oscillation (ENSO) is a periodic (3–7 years) mode of climate variability.
It is composed of two parts; a) fluctuation of sea surface temperatures (SSTs) of the
Pacific Ocean (El Niño), and b) oscillation of pressure gradient between eastern (Tahiti)
and western (Darwin) Pacific Ocean (Southern Oscillation). These two components of
ENSO were discovered separately. Walker (1925) noticed that the pressure gradient
between the eastern and western Pacific fluctuated back and forth on a large scale. This
fluctuation was later defined using an index, the Southern Oscillation Index (SOI; Chen,
1982), derived by standardizing the pressure difference between Darwin and Tahiti. The
negative (positive) phase of the SOI happens when the pressure at Darwin (Tahiti) is
above (below) normal. During a prolonged negative (positive) phase of SOI, the water
over the eastern pacific is abnormally warm (cold), what is now known as El Niño (La
Niña). The abnormal warming of water was first discovered by fishermen off the coast of
Peru who noticed that, every few years, the waters would warm up abnormally leading
to reduced fish catch. They termed this El Niño, mean boy child as the phenomenon
usually occurred around Christmas. They also noticed that in some years, the water
was abnormally cold, which they termed La Niña (which translates to girl child). It
was later discovered by Bjerknes (1966) that Oceanic and Atmospheric parts of ENSO
were coupled. Therefore, ENSO is a coupled Ocean-Atmosphere phenomenon and the
greatest mode of interannual climate variation.
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ENSO can be in either the El Niño, La Niña or neutral phase (Fig. 2.5) with different
implications on the weather in different locations. During normal conditions, SSTs in the
tropical east Pacific are cooler than those in the tropical western Pacific. The resulting
temperature gradient in the Ocean basin means cool air from the east blows toward the
warmer west Pacific. The air picks up moisture and leads to convection over the Maritime
Continent. This circulation is known as the Walker circulation, a term first introduced
by Bjerknes in 1960 in honour of Sir Gilbert Walker (Bjerknes, 1969). As shown in the
top panel of Fig. 2.5, this zonal circulation over the equatorial pacific is characterised by
surface flow from the western Pacific to the warm waters of the central Pacific leading
to the rising motion. At the upper level a returning, divergent flow completes the
circulation. Over EEA, the walker circulation is convergent (divergent) at the upper
(lower) level. The semi-aridity of most parts of EEA has been attributed to mainly
divergent flow at the surface (e.g., Nicholson, 2017) and the relatively stable atmosphere
(Yang et al., 2015). The importance of the Walker circulation is amplified when an El
Niño-Southern Oscillation (ENSO) occurs as explained in the next paragraphs.

Because of the easterly flow over the tropical Pacific during normal phase of ENSO,
warm water is pushed to the west and upwelling of cold water from deep in the ocean
off the coast of Peru. This leads to further cooling of the water over the east and
central Pacific. This feedback effect, known as the Bjerknes feedback, leads to the cool
phase of ENSO, the La Niña (the bottom panel of Fig. 2.5). In this phase, the rising
motion over the Maritime Continent is strengthened, while the opposite occurs over
EEA. Strengthening of the subsiding arm of the Walker circulation over East Africa
has been linked to drier conditions (Williams and Funk, 2011). Because of the pile up
of water in the west Pacific, the sea level is higher here than in the eastern Pacific. This
leads to weakening of the easterlies due to a higher pressure in the west. Consequently,
the warmer water from the west flows down-slope towards the eastern Pacific, increasing
the SSTs here. Warmer SSTs lead to rising motion which further lower the pressure,
hence, more westerly flow and warming of the SSTs. Just as in the La Niña phase, the
Bjerknes feedback keep the SSTs increasing. This results in anomalous warming of the
eastern Pacific, leading to the warm phase of ENSO, El Niño (middle panel of Fig. 2.5).
During this phase, the Walker circulation is shifted with reversed regions of subsidence
and ascent. Over EEA, there is a raising arm of the circulation, leading to enhanced
rainfall during this phase.

A related but different event, the Indian Ocean Diplole (IOD) occurs over the Indian
Ocean. The IOD refers to the periodic oscillation of the SST anomaly between two
areas (or poles, hence, dipole), the western (50°E–70°E and 10°S–10°N) and eastern
(90°E–110°E and 10°S–10°N) Indian Ocean (Palmer et al., 2023). This interannual
mode of variability was termed Indian Ocean dipole or Zonal mode (IOZM; Saji et al.,
1999; Webster et al., 1999). The positive and negative phases of the IOD occur when a
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Figure 2.5: Mean SSTs (shading) and Walker circulation (arrows) during the Neutral
(top), El Niño (middle) and La Niña phases of ENSO. Source: NOAA

temperature anomaly of 0.4°C above and below zero, respectively, is sustained for at
least three months. Like ENSO, the IOD is a coupled atmosphere-Ocean phenomenon
that happens over the Indian Ocean. The positive (negative) phase (Fig. 2.6) is
characterized by warmer (cooler) SSTs in the western (eastern) Indian ocean, anomalous
easterly (westerly) winds at the surface, leading to more (less) than normal rainfall
over East Africa (western Indian Ocean). As stated in Palmer et al. (2023), 1997, 2006,
2012, 2015 and 2019 (1996, 1998, 2010 and 2016) were positive (negative) IOD years.
The effect of the IOD rains is well documented. Hirons and Turner (2018) notes that
the positive phase of IOD leads to enhanced rainfall in the short rain season due to
anomalous low-level easterly wind flow across the equatorial Indian Ocean. The rainfall
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accumulation can be up to 2-3 times the normal and lead to floods like seen in 2019,
when one of the strongest IOD events on record occurred (Wainwright et al., 2021). On
the other hand, the negative IOD phase substantially reduces the amount of rainfall
during the short wet season (e.g., Black et al., 2003).

(a) (b)

Figure 2.6: Schematic of the IOD; a) positive phase and b) negative phase and their
impact on the Walker circulation. The shading is the SST anomalies (red and dark-blue
indicating warmer and cooler than normal) while the arrows indicate the state of the
Walker circulation. The Walker circulation is completely reversed in the opposite phases
Source: Australian Bureau of Meteorology; http://www.bom.gov.au/climate/iod/.

ENSO and IOD phenomena have similar dynamics, occur at the same time of year and
their phases are the same when both occur together in a given year. Both modify the
Walker circulation depending on the phase (cf. Figs. 2.5 and 2.6). Indeed, some people
have questioned if ENSO and IOD really are different phenomenon (e.g., Marchant et al.,
2007; Meyers et al., 2007). Whilst an El Niño can occur concurrently with a positive IOD
event, as was the case in 1982 and 1997 leading to more intense anomalies and effects
such as flooding (Webster et al., 1999; Wainwright et al., 2021), the latter also happens
in neutral ENSO years, for example the very extreme IOD event of 1961 and 2019 (Saji
et al., 1999; Wainwright et al., 2021). Indeed, Yamagata et al. (2004), suggested that
only one in three IOD events are related with ENSO. Hence, IOD and ENSO should
not be viewed as one and the same. The two are however interlinked, with IOD strongly
modulating the impact of ENSO on rainfall (MacLeod et al., 2021). The combined
occurrence and modulation leads to more extreme rainfall over EEA (Yamagata et al.,
2004; Bahaga et al., 2014), as was the case in 1997 when more than double the normal
climatological rainfall accumulation was seen in the short wet season (Wainwright et al.,
2021). On the contrary, in 2015, when a strong El Niño occurred but with a weak IOD
event, the rainfall anomaly was only about 50% above the climatology (Indeje et al.,
2000). Ogallo et al. (1988) also showed that almost 50% of seasonal rainfall variability is
due to ENSO. Overall, over EEA, ENSO and IOD are the leading drivers of interannual
rainfall variability. It has been shown that the influence of ENSO influences both the
short and long rains (Ogallo et al., 1988; Indeje et al., 2000; MacLeod et al., 2021),
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while the effect of IOD is felt only in the short rain season as it start in September
lasting up to January of the next year (Black et al., 2003; Shaaban and Roundy, 2017).
During the short rain season, if an El Niño and/or positive IOD event occur, the Indian
Ocean Walker cell is weakened (e.g., Nicholson, 2015; Jiang et al., 2021) enabling the
anomalous warming of SSTs over the western Indian ocean with a corresponding cooling
of SSTs over Southeast Asia. This leads to anomalous rising (sinking) of air over the East
Africa/western Indian Ocean (eastern Indian Ocean) resulting to enhanced (reduced)
rainfall over East Africa (Southeast Asia) (Palmer et al., 2023). Because the El Niño
may be followed by a La Niña event, ENSO mostly negatively impacts the long rains.
According to Funk et al. (2018), El Niño may be followed by warm western Pacific Ocean
which strengthen the Indian Walker cell, hence, suppressing rain over East Africa.

Because of their slow evolution, ENSO and IOD are usually quite well forecast by
most forecasting centres. Both numerical weather prediction and statistical forecasting
techniques have been applied to forecasts of these phenomenon (e.g., Wu et al., 2009;
Barnston et al., 2012; Lima et al., 2009; Wang et al., 2020; Zhao et al., 2020). The
fact that most models incorporate atmosphere-ocean interaction improves the models
performance (e.g., Wu et al., 2009; Barnston et al., 2012). Recently, machine learning
approaches have been explored to improve ENSO forecasts (e.g., Haoyu et al., 2023;
Ham et al., 2019; Liu et al., 2021).

2.3.3 Congo Air Mass

One of the major sources of moisture in Equatorial Africa is the Congo forest, the others
being the Indian Ocean and Lake Victoria (Finney et al., 2019). A westerly flow from
the Congo basin towards East Africa, referred to as the Congo air mass therefore brings
moisture to East Africa. The occurrence of westerlies is linked to the MJO, specifically
phases 2–4 (e.g., Pohl and Camberlin, 2006a; Hogan et al., 2014) suggesting that the
rains may be due to the MJO. However, as explained in section 2.3.1, phases 2–4 of
the MJO are associated with convection over Indian Ocean rather than over Africa,
suggesting an indirect link (Finney et al., 2019). This link can be explained by the
Matsuno-Gill response which suggests existence of anomalous westerlies to the west of
the MJO core (Matsuno (1966); Gill (1980).The existence of the westerly flow and its
rainfall modulation, especially over the East African highland has been suggested in
past studies (e.g., Pohl and Camberlin, 2006a; Berhane and Zaitchik, 2014; Finney et al.,
2019). Theses studies add that the coastal sides which lie on the leeward side are drier.
Finney et al. (2019) attributed the intense rainfall of 2018 to the Congo airmass and
suggest that up to 100% more rainfall can be recorded. However, they also noted that
the number of days with absolute westerly flow is small, reaching a maximum of 11% of
the days in July with two minima in April and November (see their Figure 3(c)). The
short rain seasons has less westerly days compared to the long wet seasons. Generally,
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on these days, the moisture flux and precipitation are enhanced over most parts of EEA
(Fig. 2.7).

Figure 2.7: Mean difference of atmospheric state on days with westerly moisture flux
compared to days with an easterly flux. ERA-Interim variables considered are: (a)
column-integrated westerly moisture flux and (b) precipitation. Taken from Finney
et al. (2019), Figure 7, © 2019 John Wiley & Sons, Ltd.

Because the westerlies explained above lead to variability of rainfall in EEA on subsea-
sonal time scale, they influence predictability of the weather. Finney et al. (2019) and
Walker et al. (2019) hypothesize that, since the short rain season has fewer westerly
days, it has a better predictability on seasonal time scale compared to the long season
with more westerly days. Finney et al. (2019) suggests that this is because the westerlies
are not a well-known weather driver as they occur on short time scales and over synoptic
scales. Although this explanation is contrary to the assertion that MJO has improved
the predictability in this region (e.g., Vitart et al., 2017; Vellinga and Milton, 2018;
de Andrade et al., 2021; Specq and Batté, 2022), the MJO forecasts are often not
accurate, putting its locations in wrong places and with biased intensities (e.g., Specq
and Batté, 2022).

2.3.4 Equatorial waves

The presence of propagating disturbances trapped to the equator, known as Equatorial
waves (EWs), were long suspected before Matsuno’s confirmation in 1966 (Ichiye, 1959;
Stern, 1963; Matsuno, 1966). These disturbances, which are synoptic-to-planetary-scale
(Knippertz et al., 2022), are often coupled with deep convection (Takayabu and Nitta,
1993; Takayabu, 1994; Wheeler and Kiladis, 1999) and therefore influence rainfall
variability over the tropics. While these waves are briefly introduced in the next
paragraph, a detailed description and derivation of EWs can be found in (e.g., Matsuno,
1966; Wheeler and Kiladis, 1999; Kiladis et al., 2009). In summary, the different waves
are based on the solutions to the shallow water equations solutions solved in Matsuno
(1966). With the assumptions of no background flow and that the Coriolis parameter
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f varies linearly with latitude y i.e., the β-plane approximation (f = βy), Matsuno
showed that the solutions for zonally propagating waves satisfy the relationship

K

√
ghe

β
( ω2

ghe
− k2 − k

ω
β) = 2n + 1, n = 0, 1, 2, ..., (2.1)

where; β and k are the frequency and wavenumber of the wave, respectively, g is
gravitational acceleration, he an equivalent depth and n is the number of meridional
modes (Kiladis 2009). The waves that satisfy the relationship are:

1. Equatorial Rossby (ER) waves with the dispersion relation

ωER ≈ −βk

k2 + (2n + 1)β/
√

ghe
. (2.2)

This is a westward moving wave acting on time scales of 30–100 days and is
obtained by setting n = 1 in Eq. 2.1. ER waves modulate precipitation, with
the shorter modes impacting the S2S (10–30 days) time scale Schlüter (019a).
Although the impact of ER on convection variability is less than that due to
the MJO and Kelvin wave, at off-equatorial locations like the Philippines and
Northern Australia its impact is highest (Wheeler and Kiladis, 1999).

2. Mixed Rossby-Gravity (MRG) waves which have the dispersion relation

ωMRG = k
√

ghe
1
2 ± 1

2(1 + 4β

k2√
ghe

)1/2, (2.3)

obtained when n = 0 in Eq. (2.1). They were first detected as low frequency waves
oscillations propagating westward in the lower stratosphere (Yanai and Maruyama,
1966).

3. Inertio-gravity (IG) waves which are eastward MRG waves, sometimes referred to
as eastward inertio-gravity (EIG) waves with the dispersion relation

ωIG ≈ ±[(2n + 1)β
√

ghe + k2ghe]1/2. (2.4)

4. Kelvin waves with the dispersion relation

ωKelvin =
√

ghek (2.5)

obtained when n = −1 in Eq. (2.1) and are eastward propagating. This wave is
almost equal in importance as the MJO in terms of causing convective variability.
The wave is faster, occurs more globally in longitude and its more confined and
centred on the equator (Wheeler and Kiladis, 1999).

As summarised in Knippertz et al. (2022), there are several methods of identifying EWs
in observations. They can be categorized into two major groups, namely; a) broad
filter windows that consider space only, such as, the 3D spatial projection using Hough
functions, 2D spatial projection using parabolic functions and 2D spatial projection

22



2.3. MODES OF RAINFALL VARIABILITY OVER EEA

using time-extended empirical orthogonal functions, and b) narrow filter windows
which consider time and space, like the frequency-wavenumber filtering using parabolic
functions, frequency-wavenumber filtering unsing Fast-Fourier transform and frequency-
wavenumber filtering using wavelets. For a detailed discussion and comparison of these
methods, the reader is referred to Knippertz et al. (2022). In this thesis, only the
Fast-Fourier approach following Wheeler and Kiladis (1999) is introduced and applied
in chapter 6. In this approach, 2D horizontal fields of de-seasonalized anomalies, for
example precipitation, outgoing long wave radiation (OLR) or some other suitable
weather variable is time-space filtered. The individual waves introduced above are
identified based on set k − ω power spectra thresholds. Schlüter (019a) summarised the
characteristic of the waves as shown in the Table 2.1. Following the thresholds above,

Table 2.1: Characteristics of the different EWs introduced above. The period T , the
planetary zonal wave number k, and the equivalent depth he can be used to filter the
waves. Adapted from Schlüter (019a) (Table 4.1). Used with permission

Acronym Wave Direction T (days) k h (m) Source
MJO Madden-Julian Oscillation Eastward 30 – 96 0 – 9 - Roundy and Frank (2004)
ER Equatorial Rossby wave Westward 9 – 72 1 – 10 1 – 90 Kiladis et al. (2009)

MRG Mixed Rossby-gravity wave Westward 3–8 1 – 10 8 – 90 Wheeler and Kiladis (1999)
Kelvin Kelvin wave Eastward 2.5 – 20 1 – 14 8 – 90 Wheeler and Kiladis (1999)
EIG Eastward inertio-gravity wave Eastward 1–5 0 – 14 12 – 50 Yasunaga and Mapes (2012)

the popular dispersion relationship in the zonal k − ω domain for the waves can be
plotted as shown in Figure 2.8 taken from Wheeler and Kiladis (1999).

Figure 2.8: a) Antisymmetric and b) symmetric power spectrum of OLR taken
between 15°N and 15°S. Thick black boxes are the regions of the wavenumber-frequency
domain used for filtering of the OLR dataset to retrieve the longitude-time information
of the convectively coupled tropical waves. The thin lines are the various equatorial
wave dispersion curves for the five different equivalent depths of h = 8, 12, 25, 50, and
90 m. Source: Wheeler and Kiladis (1999) © American Meteorological Society. Used
with permission.
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Because EWs are coupled to convection, they influence the variability of rainfall (e.g.,
Wheeler and Kiladis, 1999; Straub and Kiladis, 2002; Mekonnen and Thorncroft, 2016;
Schlueter et al., 019b; Ferrett et al., 2020; Ayesiga et al., 2021, 2022). The rate and
time step of modulation is different for each wave. In terms of influencing convection
variability, Wheeler and Kiladis (1999) ranks the MJO and Kelvin highest, followed by
ER, MRG and IG. Over the Sahel, Schlueter et al. (019c) find that at time scales of
7–20 days, the MJO and ER waves are the most important while Kelvin waves are the
dominate at 3-hourly to daily time scales explaining between 10–30% rainfall anomalies.
They also found that the EIG and MRG waves were relatively unimportant. Over EEA,
Mekonnen and Thorncroft (2016) showed that Kelvin waves influence the rainfall over
western and eastern equatorial Africa. Their findings are confirmed by Ayesiga et al.
(2021) who noted that Kelvin waves account for up to 5mm day-1 rainfall variation
and that the effect is more frequent in the MAM rain season. Unfortunately, studies
evaluating the ability of models to represent EWs paint a grim picture. Both Straub
et al. (2010) and Huang et al. (2012) showed that 75% of models in Coupled Model
Intercomparison Project phase 3 (CMIP3) did not adequately represent Kelvin waves.
However, with improvement in models in recent times, the deficiencies in representing
the EWs seem to be reducing as suggested by Yang et al. (2021). They found that
Met Office global forecast model has substantial skill up to day 4 and day 6 for Kelvin
and westward mixed Rossby–gravity (WMRG) waves, respectively. In conclusion, it is
recommended to monitor the day to day activity of EWs to improve the accuracy of
forecasts (e.g., Ayesiga et al., 2022).

2.4 Weather forecasting in EEA

2.4.1 Overview

Despite the improvement in weather forecasting in recent times, its benefits have not
been realised in the tropics (Youds et al., 2021).This is despite the fact that Africa is one
of the regions that urgently needs accurate weather information given her population is
heavily reliant of rain-fed agriculture. IPCC (2022) notes that the continent is among
the most vulnerable to extreme weather events. More optimistically, Parker et al. (2022)
suggest that the continent is about to see an upturn in quality and usage of weather
forecasts.

Weather forecasting is done for different forecast horizons, namely; nowcasting (usually
up to 6 hours ahead), synoptic and short-range severe weather prediction (1–5 days),
subseasonal-to-seasonal (2–6 weeks) and seasonal forecasting (months). All the forecasts
in these horizons are important and should be undertaken together.
The following sections discuss the synoptic and short-range forecast horizon which is
the horizon analysed in this work.
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2.4.2 Synoptic and short-to-medium range forecasting

This forecast horizon caters for 1–14 days lead time. The forecasts are typically generated
using numerical weather prediction (NWP) systems. Unfortunately over Africa, the
skill of forecasts from these models is poor, hardly beating climatology (Vogel et al.,
2018, 2020). Haiden et al. (2012) showed the gap between skill in the tropics and the
extra-tropics is huge, with a 1 day forecast in the former being equivalent to a 6 day
forecast in the latter. Over west Africa, it has been shown that a simple statistical
forecasts beats state-of-the-art NWP forecasts (Vogel et al., 2021; Satheesh et al., 2023).
To understand why the forecasts are bad over Africa, a brief background of NWP is
explained in the next paragraph.

2.4.2.1 Historical perspective

As summarised in Parker and Diop-Kane (2017), NWP grew from three factors, namely;
the historical behavior of observing the weather, theoretical principles in fluid dynamics
by scientists like Isaac Newton, Vilhelm Bjerknes and many others, and development in
computing resources. The first attempt to numerically produce weather forecasts was by
Lewis Fry Richardson (Richardson, 1922). His attempt was largely deemed a failure. He
did however demonstrated that the differential equations can be approximated as a set
of algebraic equations to show the tendency of weather fields in space. These tendencies
could then be extrapolated further in the future in small increments. His method was
mechanical and required a force of 64000 people to cover the weather over the globe,
signifying the need for a lot of computing power needed today by the state-of-art NWP
systems. Following further developments in the field, the first NWP using a computer
was produced by Charney, Fjortoft and von Neumann in 1950. Their model was based
on the barotropic and baroclinic dynamics laid down by Charney, Rosby and Eady in
1940, 1947 and 1949, respectively. Since then, NWP has seen rapid development thanks
largely to improvements in computing power and availability of observations.

2.4.2.2 NWP over Africa and the challenge of quality observational data

Over Africa, while the trajectory of development in NWP is similar to described above,
the skill of the forecasts is still poor. Many explanations for this have been suggested.
For example, Parker and Diop-Kane (2017) state that the mixed nature of weather
regimes in Africa, comprising of mid-latitude weather systems, equatorial rain forests
and deserts on different spatio-temporal scales make forecasting the weather a difficult
problem. NWP models are known to struggle in representing convectively-triggered
weather mainly because of poor parameterization (e.g., Marsham et al., 2013; Vogel
et al., 2018; Birch et al., 2014). Over Africa, convective rainfall is the most common
type. There is also the fact that the weather over Africa is highly variable, even at
subseasonal time scales (e.g., de Andrade et al., 2021).
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Because weather forecasting is an ‘initial condition problem’ (i.e., the observations and
first guess are very important), quality observations are needed to initialise the model.
Observations are also important for validation of the models which enables further
model development (Tompkins et al., 2005; Faccani et al., 2009; Bormann et al., 2019).
However, over Africa, quality and consistent observations are not available (Diem et al.,
2014; Monsieurs et al., 2018). In fact, the station network coverage across Africa has
been shrinking over the years (Asadullah et al., 2008; Dinku, 2019). Field campaigns
over Africa have shown that a high density of observations and high resolution models
improve the performance of NWP models (e.g., Faccani et al., 2009; Bormann et al.,
2019). As shown in Fig. 2.9, the continent has the fewest number of stations and the
lowest reporting frequency, implying that there is very little data to initialise the models
over Africa. Moreover, in their experiments with ECMWF system, Bormann et al.
(2019) showed that conventional observations, such as those from synoptic stations,
have the highest influence on the performance of the model compared to other types of
observations assimilated.

Figure 2.9: Active land surface stations (SYNOPs), December 2020. The colour gives
the frequency of reports received: grey - fewer than 2/day through to red - 24/day.
The WMO Integrated Global Observing System (WIGOS) is now encouraging the
global exchange of hourly reports. Source: ECMWF.

To remedy the lack of quality observations over Africa, most forecasting centres as-
similate satellite data. For rainfall, Satellite rainfall estimates (SREs) have filled the
spatiotemporal data gaps. In most cases, the SREs are derived from radiances in
the visible, infrared (IR), and microwave spectra measured by satellites. Singularly
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or in combination, these retrievals provide high-resolution rainfall estimates, with a
prime example being the Integrated Multi-satellite Retrieval for Global Precipitation
Measurement (GPM) (IMERG) V06B dataset (Huffman et al., 2020). However, SREs
are not without shortcomings. Despite having a wide field of view and high temporal
availability, IR-based techniques rely on a cloud top temperature-precipitation relation-
ship, which is often unsuitable for non-convective precipitation (Kidd and Huffman,
2011) or non-precipitating cold cirrus shields (Young et al., 2014). Microwave-based
satellites, in turn, have been found to struggle with retrieving rain from warm clouds
(Dinku et al., 010b; Monsieurs et al., 2018; Maranan et al., 2020) and to overestimate
rainfall in places where convective rainfall dominates (Tian et al., 2009).

Validations of SREs over EEA have revealed that; a) SREs struggle retrieving rainfall
over the complex topography of the region (e.g., Dinku et al., 010b; Diem et al., 2014;
Monsieurs et al., 2018; Ageet et al., 2022), b) the skill is better for products that are
calibrated with gauge data (e.g., Awange et al., 2015; Ageet et al., 2022), c) the rainfall
formation process also influences skill (Mccollum et al., 2000; Maranan et al., 2020).
Therefore, the SREs product used for validation of forecasts must be chosen carefully,
hence, the need to validate these products prior to their use.
Overall, to improve the synoptic and short-to medium range forecasts from NWP
systems, more observations have to be included. The better observation network over
Europe and America (Fig.2.9) partly explains the better skill of NWP forecasts over
the extratropics. With the introduction of Systematic Observations Financing Facility
(SOFF), WMO is trying to improve the global observation network, especially inplaces
such as Africa WMO (2023). Besides improving the observation network, Parker et al.
(2022) also recommend using convection-permitting models and ensembles to improve
rainfall forecasts from NWP among other solutions.
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3. Research questions

One of the fundamental shortcomings in the region that contributes to poor forecasts
is the low number and low quality of ground observation data sets (e.g., Maidment
et al., 2013; Diem et al., 2014). As shown by Nicholson et al. (018b) and and Dinku
(2019), the network of gauges has continuously shrunk over the years. Even where
observations are available, the data rarely makes it to the global telecommunication
system (GTS) on time to be assimilated into weather forecast models or included in the
gauge calibration of satellite rainfall estimates. Even model development is hindered
due to lack of quality data to do research. The next available option in recent times is
remotely sensed observations, especially in the form of SREs. However, as discussed
in the last two chapters, despite having an excellent spatio-temporal coverage, these
estimates have their shortcomings too. For example, SREs often retrieve rainfall in
places covered with non-precipitating cirrus clouds, especially in the IR channel (e.g.,
Young et al., 2014; Maranan et al., 2020). The microwave channel has been found to
struggle with retrieving warm rain (e.g., Monsieurs et al., 2018; Maranan et al., 2020)
while overestimating rainfall in regions where convective rainfall dominates, e.g., Lake
Victoria (Tian et al., 2009). Therefore, there is need to ensure that the most suitable
SRE is used for any research. As a result, the first research aim was to identify the
best performing SREs in the study region. This aim was addressed by answering the
following set of questions:

RQ 1a What is the best performing SRE over EEA at daily, pentadal, decadal,
monthly and annual time scales?

RQ 1b Does the performance of SREs vary spatially over EEA?

RQ 1c Are the SREs capable of retrieving extreme rainfall events over EEA and,
if so, which is the best product?

Having identified the most suitable SRE to use going forward, the next aim was to assess
the quality of global weather forecast products over EEA. Previous research shows that
skill is poor in the tropics (e.g., Haiden et al., 2012; Vogel et al., 2018, 2020). However,
the performance of forecasts is not homogeneous. Some studies have found that the
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skill, particularly over EEA is better compared to other regions of Africa (de Andrade
et al., 2021). This good skill is attributed to advances in computing and hence, more
data and complex models can be used. Recently, more sources of predictability have
been discovered, e.g., the MJO (Vitart et al., 2017; de Andrade et al., 2021). These
gains too are not homogeneous across the region and forecast products. Most studies
showed that the ECMWF forecast is the best-performing product over EEA, hence the
choice to use this model. Specifically, reforecasts were used, which have the benefit of
using the latest model-data assimilation system and a constant forecast system over
time. Given the questionable skill and global nature of the forecast products, they are
prone to errors in the form of miscalibration and generalisation (e.g., Vogel et al., 2020).
A common practice in weather forecasting is to postprocess the raw forecast to correct
for systematic biases. This process should be carried out by all National Meteorological
and Hydrological Services (NMHS) to ensure that the forecasts they issue are tuned to
the local conditions. The NMHS are slowly getting expertise to do this task and, with
computing resources becoming available and novel simple methods of postprocessing
like isotonic distributional regression (IDR; Henzi et al., 2021), we should expect better
forecasts in the near future. To achieve the second aim, the following set of questions is
asked:

RQ 2a Does the ECMWF deterministic reforecast correctly estimate the intensity
of rainfall over EEA?

RQ 2b Do the raw ensemble ECMWF reforecasts predict the correct occurrence
of a rainy day and rainfall amounts and are they better than a reference
forecast?

RQ 2c Do the reforecasts have any systematic biases and can postprocessing using
IDR alleviate the inadequacy?

RQ 2d Are there differences in the performance of the reforecasts over the different
topographical features of EEA?

Having ascertained the skillfulness or lack of skill of the reforecasts, it is instructive
to determine the sources of the observed performance. Weather has a predictability
limit which varies spatio-temporally. For example, although short-term local forecasts
are poor in the tropics, we know that the predictability limit is longer there compared
to the extratropics (Judt, 2020). This is due to existence of propagating signals, for
example EWs and MJO. Indeed, at the subseasonal and seasonal scales, the forecasts in
the tropics are relatively better compared to the short-to-medium range forecasts. From
the previous chapter, it is clear that the weather and climate of EEA is variable (e.g.,
Phillips and Mcintyre, 2000; Nicholson, 2017; Seregina et al., 2018). This variability is
controlled by the different weather and climate drivers previously explained. Although
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these drivers upset the normal pattern of the weather and climate, they are sources of
predictability. For example, the improved forecasts of the MJO in global models has
been credited for the leap in performance of forecasts over Africa. Since modes like
ENSO and IOD develop over months, they are usually accurately forecast, offering an
opportunity for improved forecasts. This therefore motivates the third research aim,
which is to assess whether the different weather regimes play a role in the skill of weather
forecasts. To achieve this aim, the following questions were asked:

RQ 3a Do EWs and the MJO modulate rainfall over EEA and by how much?

RQ 3b Do EWs and the MJO influence the skill of the ECMWF reforecasts over
EEA?

RQ 3c Does the IOD modulate rainfall over EEA? What is their influence on the
skill of ECMWF reforecasts?
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4. Quality of satellite rainfall estimates
over Equatorial East Africa

This chapter presents finding of the assessment of SREs against a relatively dense and
quality-checked gauge observation network. First, the study domain, datasets and
methods are explained in section 4.1. Then the results of the validation at multiple
spatio-temporal scales, i.e., regional and whole-domain, and annual, monthly, dekadal,
pentadal and daily aggregations are presented in section 4.2. The results of the analysis
of the SREs’ ability to retrieve extreme rainfall events, and hence, their feasibility for
estimating return periods of the extremes are also presented in this section. This chapter
ends with section 4.3 where the discussion and conclusion of the results herein were put
in broad perspective and compared with previous studies.

4.1 Study area, datasets and methods description

4.1.1 Study domain

The study focuses on Uganda and the surrounding areas (Fig. 4.1). The topography is
heterogeneous with elevation ranging from 375m to 5109m above mean sea level at Lake
Turkana in the Northeast and the peak of Mt. Rwenzori in the West, respectively. It is
also composed of a number of large inland lakes, mountains, parts of the Great East
African Rift Valley, and rivers. Most parts of the region exhibit two distinct rainfall
seasons (March–May and September–November), locally referred to as the ‘long rain
season’ and ‘short rain season’ with peaks in April and October, respectively (Nicholson,
2017; Seregina et al., 2018). Over Western Uganda, a transitional region between the
eastern and western equatorial Africa, the MAM and SON seasons form the short and
long rains, respectively (Diem et al., 2019). The northern part of the study area exhibits
a unimodal rainfall peak in May through August (Phillips and Mcintyre, 2000; Seregina
et al., 2018). As discussed in Nicholson (2017), the climate of the region is controlled
by three classes of factors; regional forcing features (e.g., Walker circulation, El Niño-
Southern Oscillation, Indian Ocean Dipole and Madden-Julian Oscillation), regional
circulation features (e.g., tropical easterly jet, low level westerlies and monsoons), and
local geographic factors (e.g., Lake Victoria, East African highlands). These factors
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inevitably lead to variability in rainfall and coupled with the heterogenous topography
present a challenge to satellite rainfall retrievals (e.g., Monsieurs et al., 2018; Coz and
van de Giesen, 2020).
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Figure 4.1: The study area with location and names of the rain-gauge stations used
in the study shown with blue circles. Data from stations with black cross in the centre
are not transmitted to the Global Telecommunication System (GTS). The major
lakes, rivers, and mountains, viz. Rwenzori in the west and Elgon in the east are also
indicated. The color shading shows the elevation from Global Land One-km Base
Elevation Project (GLOBE; Hartigan and Coauthors, 1999). The map inset highlights
the location of Uganda within Africa (red box). Taken from Ageet et al. (2022). ©
American Meteorological Society. Used with permission.

4.1.2 Datasets

4.1.2.1 Satellite estimates

We included eight satellite datasets in this validation study (Table 4.1). The temporal
resolutions of the datasets vary from 30-minute to daily, while the spatial resolutions
vary from 0.1°to 0.25°latitude-longitude grid boxes. They are described in the following
in more detail.

TMPA V07 (Huffman et al., 2007, 2018) is a multi-satellite precipitation product
with latencies of about 8 hours and about 2 months for the ‘real time’ and ‘final’
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Table 4.1: Summary of datasets used in the study. The period and re-gridded
resolution used in this study is given in parentheses in the ‘temporal coverage’ and
native resolution’ columns, respectively. Taken from Ageet et al. (2022). © American
Meteorological Society. Used with permission.

Dataset Full name Native
spacial
resolu-
tion

Temporal
resolution

Latenc Temporal
coverage

Reference

TMPA
34B42 v7

Tropical Rainfall
Measuring Mis-
sion (TRMM)
Multisatellite pre-
cipitation Analysis

0.25° 3-hourly 2 months January
1998–present
(2001–18)

Huffman
et al.
(2007),
Huffman
et al.
(2018)

TMPA-
RT
3B42RT
v7

47 877 230

IMERG Integrated Multi-
satellitE Retrieval
for GPM (Global
Precipitation Mea-
surement)

0.1°(0.25°) Half-
hourly

3.5 months June
2000–Present
(2001-
2018)

Huffman
et al.
(020b)

IMERG-E Integrated Multi-
satellitE Retrieval
for GPM (Global
Precipitation Mea-
surement)

0.1°(0.25°) Half-
hourly

4 hours June
2000–Present
(2001-
2018)

Huffman
et al.
(020c)

CHIRPS Climate Hazard
Infrared Precipita-
tion with Stations

0.05°/0.25° 3-hourly 2 months January
1981–Present
(2001-
2018)

Funk et al.
(2015)

MSWEP
v2.2

Multi-Source
Weighted-
Ensemble Pre-
cipitation V2.2

0.1°(0.25°) 3-hourly Irregular January
1979–Oc-
tober 2017
(2001-
2016)

Beck et al.
(2019)

MSWEPv2.8Multi-Source
Weighted-
Ensemble Pre-
cipitation V2.8

0.1°(0.25°) 3-hourly Irregular January
1979-
December
2020 (2001-
2018)

Beck et al.
(2019)
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runs, respectively. TMPA consists of PMW precipitation estimates, IR precipitation
estimates, and GPCP monthly precipitation. First, PMW estimates are calculated
using the Goddard Profiling (GPROF) Algorithm (Kummerow et al., 1996, 2001).
Then all available PMW estimates are combined and completed with MW-calibrated
IR data in case of existing gaps. Finally, monthly multi-satellite (MS) accumulations
are combined with Global Precipitation Climatology Centre (GPCC) monthly gauge
analysis to create a satellite-gauge (SG) monthly product (TMPA 3B43). A SG/MS
ratio is then calculated for each 0.25°and used to calibrate each 3-hourly field of the
month, producing the final 3-hourly product (TMPA 3B42).

IMERG V06B (Huffman et al., 2020) is a MS precipitation product with latencies of
about 4 hours, 14 hours, and 3.5 months for the ‘early’, ‘late’ and ‘final’ runs, respectively.
IMERG builds on the TRMM legacy and uses similar data inputs as TMPA, with the
GPM core observatory replacing the TRMM counterpart. The PMW estimates are
calculated using a more recent version of the GPROF algorithm. A seasonal GPCP
calibration is applied to the PMW estimates to yield 30-minute 0.1°×0.1°fields. These
fields are then spatiotemporally morphed to fill the gaps for areas without PMW
overpasses. This step results in the MS, half-hourly IMERG early and IMERG late
products (‘IMERG-E’ and ‘IMERG-L’ henceforth). IMERG-E contains only forward
morphing while IMERG-L has both forward and backward morphing. Monthly satellite-
gauge estimates are created by summing the half-hourly estimates for the month and
calibrating with GPCP monthly precipitation analysis. Finally, gauge calibration of
the half-hourly estimates is exercised in a similar fashion to TMPA to create the final
version of IMERG (‘IMERG-F’ hereinafter).

CHIRPS v2 (‘CHIRPS’ hereinafter) is a quasi-global dataset providing daily, pentadal
and monthly estimates (Funk et al., 2015). CHIRPS is based on a global monthly pre-
cipitation climatology (CHPclim), thermal infrared (TIR) Cold Cloud Duration (CCD),
and daily and monthly RG data. TIR CCD data created at a constant CCD temperature
threshold of 235, is locally calibrated using TMPA 3B42 pentadal precipitation. The
pentadal estimates are then multiplied by their corresponding CHPclim estimate to
produce Climate Hazard Infrared Precipitation (CHIRP). CHIRP is merged with gauge
data to produce CHIRPS on pentadal and monthly timesteps. The pentadal CHIRPS
is disaggregated into daily CHIRPS precipitation using daily CCD data.

MSWEP is a global precipitation dataset available from 1979 to October 2017 (MSWEPv2.2,
Beck et al., 2019) and until December 2020 in a recent update (MSWEPv2.8, Beck
et al., 021a). The dataset is created through weighted merging of gauge-, satellite-
and reanalysis-based precipitation products. The merging weights are determined by
assessing the performance of the input datasets individually against quality-controlled
gauge precipitation. The weighted merging results into a 3-hourly reference precipitation
dataset which is then calibrated using daily and monthly gauge precipitation to create
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MSWEPv2.2. Although the algorithm did not change substantially, changes in the
production of MSWEPv2.8 include a reduction to two underlying datasets from the five
used in MSWEPv2.2 and a reduction in the amount of gauge data used (Beck et al.,
021b).

4.1.2.2 Rain gauge rainfall

Besides quality issues, not nearly enough data is ingested into the GTS in our study
area. For this study, 24 of the 36 stations transmitted rainfall data to the GTS, and only
6 of these 24 stations had more than 50% of available daily data for the study period
(Fig. 4.2a). Benefitting from collaborations, the Karlsruhe African Surface Station
Database (KASS-D; Vogel et al., 2018) has many observations not reported to the GTS.
Figure 4.2b shows the full station ensemble and its data availability in KASS-D within
the study region. Hence, 12 non-GTS stations are available for the present analysis and
even the GTS reporting stations have much more complete data in KASS-D.

The quality control of the gauge dataset was carried out following two steps. First, the
timestamp was checked using a methodology similar to Beck et al. (2019) to ensure
a consistent treatment of the timestamp across all datasets. The datasets were then
analysed for suspicious outliers and zero values using a combination of techniques, e.g.,
using the ‘letter-value plot’ method in the python package “seaborn” and accumulation
curves.

4.1.3 Methods

4.1.3.1 Point-to-pixel comparison

A point-to-pixel approach is performed by comparing point gauge data to the closest
satellite pixel value (e.g., Monsieurs et al., 2018; Maranan et al., 2020). We recognize
the shortcomings of this approach given that gauges are highly localised and may not
be representative of a grid-box coverage. Engel et al. (2017) and Monsieurs et al. (2018)
demonstrate the shortcoming using grids with multiple RGs. We have not carried out
a similar analysis given our dataset has no grid boxes with more than one RG. We
instead retain the IMERG native resolution (0.1°) and compare it with the remapped
0.25°resolution to assess changes in the performance of SREs due to changes in resolution.
While interpolation of irregular station data to the SRE grids is recommended for satellite
validation studies (Maidment et al., 2013), we did not use this approach due to the
relatively low density of rain gauges and the complex topography. All the SREs are
re-gridded to the 0.25°resolution of TMPA using a first order conservative remapping
(Jones, 1999) to allow for a fair comparison of the SREs. Since gauge data is missing at
some stations for some days, we only used satellite data when gauge data were available
at a given station and day.
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Figure 4.2: Temporal availability of the gauge data used in the study with stations
reporting to the GTS (a) and the full dataset as obtained from KASS-D (b) for the
period 2000-2018. The GTS-stations subset has only 24 stations, identifiable by their
five-digit WMO station numbers while the full dataset obtained from KASS-D has
36. The blue-strips shading show daily data availability with the percentage for each
station during the period 2000–2018 indicated by the numbers on the right. Taken
from Ageet et al. (2022). © American Meteorological Society. Used with permission.

4.1.3.2 Validation metrics

This study employs some commonly used standard validation approaches (e.g., Ebert,
2007; Wilks, 2011). First, Quantile-Quantile (QQ) plots were used to compare the
distribution of rain rates. The ability of SREs to detect rainy days, defined here as
days with rainfall total of more than 0.2 mm, was assessed based on the contingency
table (Table 4.2) using dichotomous metrics, namely, probability of detection (POD),
probability of false alarm (POFA), bias in detection (BID), and Heidke skill score (HSS).
For analysis of extremes, we applied a threshold (95th percentile of the subset of rainy
days in the RGs) to differentiate between an “extreme” and “non-extreme” rainfall day.
Thus, a hit occurs when both the RG and SRE have a rainfall amount greater than the
threshold. The second group of metrics includes the Pearson’s correlation coefficient
(r), mean error (ME), percent bias (PB), mean absolute error (MAE) and root-mean
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square error (RMSE) to assess the SREs’ accuracy for rain rates using the subset of hits.
Additionally, the Nash-Sutcliffe coefficient of efficiency, E (Nash and Sutcliffe, 1970;
Legates and Mccabe, 1999) was used to assess the skill against climatology. The metrics
are summarised in Table 4.3.

Table 4.2: 2 x 2 contingency table for comparing the rainy days in gauge and satellite
estimate. A day is considered as rainy if 0.2 mm of rainfall or more is recorded.
Note that for the when a threshold is set, a wet day occur when an amount greater
than the set threshold was recorded. Taken from Ageet et al. (2022). © American
Meteorological Society. Used with permission.

Gauge ≥ 0.2mm Gauge < 0.2mm
Satellite ≥ 0.2mm Hit (H) False alarm (F)
Satellite < 0.2mm Miss (M) Correct rejection (R)

4.1.3.3 Spatio-temporal analysis

The validation was performed for individual stations to fully use the available gauge
data and for daily, pentadal, dekadal, monthly and annual aggregations. To reduce
randomness in some of the analyses, we reorganized the stations into groups. We
therefore used the non-hierarchical K-means clustering algorithm (Pedregosa et al.,
2012) to partition the stations into groups. This approach aims at placing the stations
in clusters such that the intra-cluster variance is minimized (Hartigan and Wong, 1979).
As noted by Cattani et al. (2016), K-means clustering is prone to subjectivity since the
maximum number of clusters has to be determined a priori. We used the ‘elbow’ method
(Thorndike, 1953; Zhang et al., 2016) which is based on the intra-cluster sum of squared
differences to determine the optimum number of clusters. For each station, a 30-day
running mean was applied over their respective Julian-day-of-year-based climatology
of rainfall. The resulting time series were then normalized with the maximum value
of the 30-day running mean at the respective stations to ensure that stations with
similar seasonal cycles are grouped together regardless of the amount of precipitation
received. For each cluster, the mean monthly rainfall of the satellite products and
RGs were computed by taking the average of the stations in that cluster. Additionally,
to investigate the influence of gauge calibration, we subset the data into two groups,
namely, GTS (stations with the highest percentage of data reported to the GTS) and
non-GTS (stations whose data is not reported to the GTS). In order to allow for a
comparison of stations subsets with different climatologies, we normalized the error
metrics (ME, MAE and RMSE) with the standard deviation of the respective RGs
before taking the mean over all stations in the subset.
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Table 4.3: Summary of the validation metrics used. H, F , M and R denote hits,
false alarms, misses and correct rejections, respectively. The xi, yi,x̄ and ȳ terms
represent the rainfall totals at the gauge for a given time, SRE rainfall totals for a
given time, the mean rainfall totals at gauge, and the mean rainfall totals of SRE,
respectively. The range and best possible score of each statistic is added in the first
column in square brackets and bold numbers, respectively.

Statistic Formula Description
POD, [0,1], 1

POD = H

H + M
(4.1)

Ability of the SREs
to correctly identify
rainy days

POFA, [0,1], 0
POFA = F

H + F
(4.2)

Proportion of rainy
days in the SREs that
were not observed in
RGs

BID, [-∞, +∞], 1
BID = H + F

H + M
(4.3)

Assesses whether the
SRE overestimates or
underestimates rainy
day frequency

HSS, [-∞, 1], 1

HSS = 2(HR − FM)
(H + M)(M + R) + (H + F )(F + R) (4.4)

Assesses the skill of
SREs compared to
random chance

r, [-1,1], 1
r =

∑n
i=1(xi − x̄)

∑n
i=1(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4.5)

Assesses the covari-
ance of the gauge
data with that of the
SRE

ME (mm), [-
∞, ∞], 0

ME = 1
n

n∑
i=1

(yi − xi) (4.6)

Measures the bias
and its direction (un-
derestimation or over-
estimation) by the
SREs

PB (%), [-∞, ∞], 0
PB = 100

1
n

∑n
i=1(yi − xi)

x̄
(4.7)

Assesses the ten-
dency of the SREs
to overestimate or
underestimate rain
rates relative to the
mean of the RGs

MAE (mm),
[0,∞], 0

MAE = 1
n

n∑
i=1

|(yi − xi)| (4.8)

Measures the error of
the SREs regardless
of direction

RMSE (mm),
[0,∞], 0

RMSE =

√√√√ 1
n

n∑
i=1

(yi − xi)2 (4.9)

Measures the error of
the SREs but assign-
ing more weight to
outliers

E, [-∞, 1], 1
E = 1 −

∑n
i=1(xi − yi)2∑n
i=1(xi − x̄)2 (4.10)

Assesses the skill of
the SREs relative to
climatology
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4.1.3.4 Extreme rainfall events analysis

Since hydrometeorological hazards are largely a result of extreme daily rainfall events,
the ability of satellites to capture these events is analysed. We define an “extreme
event” as daily rainfall totals exceeding the 95th percentile on rainy days in the RG
dataset. The extreme events thresholds were computed at individual stations and the
corresponding values for the SREs were obtained from the closest pixels. We also
analysed SREs’ suitability in simulating the return values of extreme event. Extreme
value models are used to study the behaviour of the tail of a distribution (Bommier,
2014), enabling the simulation of extreme values and their return periods. Similar to
Engel et al. (2017), we use the peak-over-threshold (POT) method to fit the generalised
Pareto distribution (GPD; Lemos et al., 2020) to the RG and SREs daily rainfall. The
GPD was fitted to the subsets of extreme events (i.e., >95th percentile) in the RG and
SREs data sets. The extremes in the SREs were obtained in a similar way to the RGs
extremes. To make the stations and all the rainfall products comparable, we normalized
the modelled return values with the RG-modelled return values at the stations, then
averaged over all stations for each data set. The normalized return values of the RG
data were taken as the reference for evaluating the SREs. The performance of SREs
was considered ‘satisfactory’ if the return value modelled using the SRE fall within the
standard deviation of the RG’s return value.

4.2 Results

While we present results of all the eight SREs products on the same figures and tables,
the comparison between the early products (IMERG-E and TMPA-RT) is discussed
separately, as is the comparison between the early and the respective final versions
(IMERG-F and TMPA). Furthermore, a separate analysis of the influence of different
spatial resolutions on the skill is conducted using IMERG-F at 0.25°and at its native
resolution 0.1°.

4.2.1 Annual scale

Based on RGs, the study area receives an annual average of 1217 mm with high spatial
variability. The wettest region is the eastern part and shorelines of Lake Victoria (Fig.
4.3). The Ugandan Ssese Islands are known to have more than 2000 mm yr-1 (Flohn and
Fraedrich, 1966) with a short-term measurement on the Tanzanian Nabuyongo Island in
the middle of the lake indicating the possibility of 3000 mm yr-1 (Flohn and Burkhardt,
1985). No rainfall data over the lake are available in the study period, only Bukoba at
the eastern shore with 1924 mm yr-1 indicates the wetness of this area. Other wet regions
are the Rwenzori and Elgon Mountains in western and eastern Uganda, respectively.
While no station is available in the Rwenzori mountain ranges for this study, amounts
of 2000–3000 mm yr-1 are reported (Eggermont et al., 2009). Buginyanya at Mt. Elgon
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at an elevation of 1845 meters receives an annual total of 2278 mm. From Mt. Elgon, a
wetter region with annual totals of more than 1200mm stretches northwestward across
the Lake Kyoga region in central Uganda to northwestern Uganda west of the Albert
Nile (Fig. 4.3; Basalirwa, 1995). The northeastern and southwestern parts of the study
area are located along the East African Rift Valley, an area locally known as the ‘cattle
corridor’, which are generally associated with drier semi-arid conditions. Here, rain
shadow effects are the likely causes of the low rainfall totals in low-elevation areas (e.g.,
Diem et al., 2014).

The satellite products generally reproduce the spatial pattern of annual rainfall, with
CHIRPS showing the best performance for most of the scores (Fig. 4.3 and Table
4.4). The correlations between the RGs and satellites’ mean annual rainfall totals are
high, with CHIRPS and MSWEPv2.2 having the highest correlation of 0.84, followed
by MSWEPv2.8 (0.82), IMERG-F (0.78), and then TMPA (0.75, Table 4.4). All the
satellite products are skilful in depicting annual rainfall totals with all of them having
an E value greater than 0.5. Although the patterns are relatively well reproduced, biases
do exist. For example, when averaged over all stations, IMERG-F overestimate the
annual rainfall by about 5%, while TMPA, CHIRPS, MSWEPv2.2 and MSWEPv2.8 all
underestimate annual rainfall by about 5%, 1%, 8% and 7%, respectively.

Table 4.4: Scores for annual rainfall totals (2001-2018, hence, total number of
observations, N = 648) for all the satellite products, except for MSWEPv2.2 (2001-
2016, hence, total number of observations, N = 576). The best performing final
product for each metric is given in bold font. Taken from Ageet et al. (2022). ©
American Meteorological Society. Used with permission.

Statistic/Product IMERG-F0.10ř IMERG-F-0.25° IMERG-E TMPA TMPA-RT CHIRPS MSWEPv2.2 MSWEPv2.8
r 0.77 0.78 0.75 0.75 0.74 0.84 0.84 0.82
E 0.57 0.59 -0.36 0.52 0.23 0.70 0.65 0.63

ME (mm yr-1) +57 +57 +349 -60 -214 -10 -99 -91
PB (%) 5 5 28 -5 -19 -1 -8 -7

MAE (mm yr-1) 208 200 402 218 300 171 169 193
RMSE (mm yr-1) 294 287 520 309 392 243 264 272

Two salient features in Fig. 4.3 are worthy of mentioning; the very high degree of
wetness of the IMERG products over Lake Victoria with values over 3600 mm yr-1 (Figs.
4.3a,b), corroborating the findings of Nicholson et al. (2021), and the sharp horizontal
discontinuity between the northern and southern parts of the lake in TMPA products
(Figs. 4.3d,e). While IMERG remedies the discontinuity likely with an improved land-
sea mask for the gauge calibration (see Fig. A.1), the overestimation with respect to
RGs and the other SREs might be related to a larger weight given to PMW retrievals
in IMERG that are known to overestimate rainfall in areas with deep convection (O
and Kirstetter, 2018; Nicholson et al., 2021). IMERG-E and TMPA-RT also show
quite high correlation values of 0.75 and 0.74, respectively, although the E value of
IMERG-E suggests a worse performance than climatology. Additionally, IMERG-E
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Figure 4.3: Mean annual rainfall totals for six satellite products (shaded) with mean
annual rainfall totals of the RGs annotated in the circles. The white contours are
isohyets of mean annual rainfall, labelled in black. The dashed black lines are country
boundaries while the solid black lines demarcate inland lakes. The values on the
top-left corners are the mean annual rainfall and the standard deviation taken over
the entire domain for the respective satellite product. All the products are re-gridded
to a 0.25°common grid. Taken from Ageet et al. (2022). © American Meteorological
Society. Used with permission.
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overestimates annual rainfall by 28% (349 mm yr-1), while on the other hand TMPA-RT
underestimates annual rainfall by 19% (214 mm yr-1). The large difference between
IMERG-E and TMPA-RT is likely due to a very significant difference in the algorithm
between IMERG and TMPA. These larger errors in the early products compared to
their respective final products underscore the importance of gauge calibration. Based
on the domain-averaged annual rainfall of the SREs , MSWEPv2.8 retrieves the least
annual rainfall of 997 mm with a standard deviation of 310 mm. The mean annual
rainfall is substantially less than that retrieved by MSWEPv2.2 (1125 mm). Moreover,
the r and E values show a decline in performance from MSWEPv2.2 to MSWEPv2.8
(Table 4.4).

4.2.2 Monthly time scale

Based on the elbow method (cf. Section 2c), the optimum number of clusters to be
used in the K-means clustering was found to be four. The names of the clusters given
in Fig. 4.4 were assigned based on the relative location of the majority of the stations
forming the clusters (i.e., ‘Northern’ (N-) cluster, ‘Central’ (C-) cluster, ‘Southwestern’
(SW-) cluster, and ‘Lake Victoria Basin’ (LVB-) cluster). The four clusters depict
different seasonal cycles (Figs. 4b–e). The N-cluster depicts a unimodal rainfall regime
with the starting from April to October with two small peaks in May and August.
These peaks are partly associated with the migration of the tropical rain belt during
its meridional transitions (Seregina et al. 2019). The remaining three clusters have
bimodal rainfall regimes. In the C-clusters the wet seasons run from March to June and
August to November, with peaks in April and October. In the SW- and LVB-cluster,
the first wet season occur from March to May, peaking in April. The second rainy
seasons are September–November and October–December, for the SW- and LVB-cluster,
respectively. The high overestimation of IMERG-E is clearly seen in all the clusters.

Generally, all the satellite products replicate the seasonal cycle well (Figs. 4.4b–e, A.2
and Table 4.5). The agreement between the RGs and the satellite products is evident
from the high correlation values of between 0.77 (TMPA) and 0.81 (MSWEPv2.2). All
the satellite products perform better than the reference RG-based climatology (i.e., E >
0; 0.58–0.65). Considering the final products only, IMERG-F overestimates monthly
rainfall by about 4%, while MSWEPv2.2, MSWEPv2.8, TMPA and CHIRPS tend
to underestimate rainfall by about 8%, 8%, 5% and 1%, respectively. The results for
this time scale also point to a decline in performance of MSWEPv2.8 compared to
MSWEPv2.2. The NRT products also reproduce the seasonality of rainfall in the study
areas, but the errors are larger compared to their respective final versions. IMERG-
E (TMPA-RT) overestimates (underestimates) monthly rainfall by about 28% (20%).
Overall, MSWEPv2.2 outperforms all the other products at this timescale.
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Figure 4.4: Result of the K-means clustering (a). Black-, green-, magenta- and
orange- coloured stations indicate the ‘Northern’ cluster (N-cluster), ‘Central’ cluster
(C-cluster), ‘Southwestern’ cluster (SW-cluster) and ‘Lake Victoria Basin’ cluster
(LVB-cluster), respectively. Some stations may be relatively far from their cluster,
e.g., the three SW cluster stations located at the shores of Lake Victoria. Manual
investigation showed the seasonal cycles of these stations match the SW cluster. Panels
(b)–(e) show the mean seasonal cycles of rain gauges and satellite products in the
four clusters for the period 2001–2018 (IMERG-F-0.1°, IMERG-F-0.25°, IMERG-E,
TMPA, TMPA-RT, CHIRPS and MSWEPv2.8) and 2001–2016 (MSWEPv2.2). Taken
from Ageet et al. (2022). © American Meteorological Society. Used with permission.

4.2.3 Daily, pentadal and dekadal time scales

All the SREs, except MSWEPv2.2 slightly overestimate the low rain rates whereas high
rainfall rates are largely underestimated. This is evident from the QQ plots in Fig.
4.5. MSWEPv2.8 visibly underestimates the higher rainfall rates compared to MSWEP
v2.2 but overestimates the low rain rates. Although MSWEPv2.2 is below the diagonal
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Table 4.5: Similar to Table 4.4, but for monthly rainfall (N = 7,776 for all SREs,
except MSWEPv2.2 with N = 6,912). Taken from Ageet et al. (2022). © American
Meteorological Society. Used with permission.

Statistic/Product IMERG-F0.10ř IMERG-F-0.25° IMERG-E TMPA TMPA-RT CHIRPS MSWEPv2.2 MSWEPv2.8
r 0.79 0.80 0.74 0.74 0.77 0.79 0.81 0.79
E 0.63 0.64 24 0.58 0.45 0.62 0.65 0.62

ME (mm yr-1) +4.8 +4.8 +30.3 -5.3 -20.4 -1.1 -8.8 -8.1
PB (%) 4 4 28 -5 -20 -1 -8 -8

MAE (mm yr-1) 34.8 34.4 50.2 36.2 42.0 35.1 31.0 34.9
RMSE (mm yr-1) 49.2 48.6 70.1 52.0 59.6 49.0 47.3 49.6

for almost all the percentiles, it has a better fit to the RG data. The distribution in
MSWEPv2.8 is likely strongly influenced by ERA5 (see Fig. A.3), given that their
patterns are similar.
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Figure 4.5: QQ plot of daily gauge rain rates against daily satellite rain rates in the
four clusters. The solid diagonal line is the 1:1 line (ideal fit). Note that the scales
are logarithmic and only hits are considered (days when both SRE and RG > 0.2
mm). Taken from Ageet et al. (2022). © American Meteorological Society. Used with
permission.

The ability of the final versions of the satellite products to correctly capture a rainy
day as reported in the gauges is generally good. This is illustrated by high POD values
ranging from 0.76 in TMPA to 0.97 in MSWEPv2.8 (Table 4.6). However, all the
products are prone to false alarms and tend to overestimate rainfall frequency (seen
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in Figs. 4.6b,c and Table 4.6). This corroborates results in Fig. 4.5, especially the
overestimation in occurrence frequency at the low rainfall rates. The false alarms
negatively influence the HSS, e.g., MSWEPv2.8 with the highest POFA has the lowest
HSS, and the reverse is true for TMPA. However, the skill of SREs in detecting rainy
days is better than random chance for all the products (HSS > 0). The native resolution
of IMERG (IMERG-F-0.1°), as expected, has a higher HSS of 0.47 compared to the
re-gridded 0.25°version (IMERG-F-0.25°) with a HSS of 0.43. This difference in skill is
about 9% and may be attributed to the reduction in POFA.

Table 4.6: Summary of skill score on daily, pentadal and dekadal time steps. We do
not calculate the POD, POFA, BID and HSS for pentadal, dekadal accumulations as
these metrics are less meaningful at these timescales compared to a daily timescale.
Similar to Tables 4 and 5, the bold number denote the best scores amongst the final
products. Taken from Ageet et al. (2022). © American Meteorological Society. Used
with permission.

Timestep Satellite Product POD POFA BID HSS r E ME (mm d-1) PB (%) MAE (mm d-1) RMSE (mm d-1)
Daily IMERG-F-0.1° 0.88 0.40 1.47 0.47 0.41 -0.04 -1.6 -16 7.6 12.4

IMERG-F-0.25° 0.93 0.44 1.65 0.43 0.43 0.06 -1.7 -18 7.3 11.8
IMERG-E 0.94 0.45 1.72 0.40 v0.41 -0.05 -0.1 -1 8.0 12.5

TMPA 0.76 0.36 1.19 0.47 0.35 -0.13 -2.3 -24 8.1 12.9
TMPA-RT 0.75 0.39 1.19 0.47 0.35 -0.07 -3.3 -35 7.8 12.6
CHIRPS 0.77 0.41 1.33 0.41 0.22 -0.14 -3.1 -33 8.2 13.0

MSWEPv2.2 0.88 0.40 1.47 0.47 0.43 0.02 -2.6 -27 7.0 12.0
MSWEPv2.8 0.97 0.50 1.97 0.29 0.37 0.07 -3.3 -35 7.0 11.8

Pentadal IMERG-F-0.1° 0.58 0.25 +0.6 1 14.1 20.6
IMERG-F-0.25° 0.60 0.31 +0.1 1 13.6 9.7

IMERG-E 0.56 0.04 +5.2 23 16.2 23.3
TMPA 0.53 0.16 -2.0 -8 14.9 21.8

TMPA-RT 0.52 0.15 -5.0 -22 14.6 21.9
CHIRPS 0.50 0.19 -1.4 -6 14.8 21.3

MSWEPv2.2 0.60 0.29 -2.4 -11 12.8 20.0
MSWEPv2.8 0.58 0.31 -2.8 -12 13.3 19.3

Dekadal IMERG-F-0.1° 0.68 0.42 +1.2 3 19.6 27.8
IMERG-F-0.25° 0.69 0.46 +1.2 3 19.0 26.9

IMERG-E 0.64 0.13 +10.4 26 24.0 34.0
TMPA 0.63 0.34 -2.5 -6 20.7 29.6

TMPA-RT 0.61 0.30 -7.9 -20 21.0 30.7
CHIRPS 0.63 0.38 -1.1 -3 20.4 28.9

MSWEPv2.2 0.69 0.45 -3.6 -9 17.8 27.0
MSWEPv2.8 0.67 0.45 -3.5 -9 18.8 27.1

Considering daily rain rates, the r values suggest a low to average agreement between the
satellites and gauge data (0.22 in CHIRPS to 0.43 in IMERG-F and MSWEPv2.2), while
the E values show the satellite products being comparable to (IMERG-F, MSWEPv2.2
and MSWEPv2.8) or worse than (TMPA and CHIRPS) climatology. All the products
underestimate the rainfall rates by 1.6 mm (IMERG-F) to 3.3 mm (MSWEPv2.8). The
fact that the underestimation is mostly in the higher rain rates is confirmed by the high
RMSE values (in the order of 12 mm day-1) for all the products. Overall, IMERG-F
emerges as the best product at a daily timescale followed by MSWEPv2.2 and TMPA,
CHIRPS and then MSWEPv2.8.
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Figure 4.6: Box plots showing the performance of the satellite products on a daily
timescale across all the stations. Each circle represents a station. The box is equivalent
to the interquartile range (IQR) while orange horizontal line is the median (50th
percentile). The lower and upper whiskers are equal to and (0.35th and 99.65th
percentiles), respectively. Circles beyond the whiskers are outliers and constitute 0.7%
of the data. Taken from Ageet et al. (2022). © American Meteorological Society. Used
with permission.

The performance of the satellite products significantly varies across the stations (Fig.
4.6) for a variety of reasons. One explanation is the varying weights applied in the
gauge-calibration of the SREs. The comparison of two subsets of stations: a) GTS (7
stations whose data is reported to the GTS and have >49% availability of daily data,
Fig. 4.2a), and b) non-GTS (stations which do not report to the GTS, hence, were not
used in the gauge-calibration) confirmed this assumption. The QQ plots (Fig. A.4)
show that in all the SREs, the distribution of rain rates for the non-GTS station differs
more substantially from that of the RGs compared to the GTS stations. On average,
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the performance of the SREs at the pixels closest to the GTS stations is better than
that at the pixels closest to the non-GTS stations for all the metrics (Fig. 4.7). The
standard deviation (light-red shading in Fig. 4.7) demonstrates that for any combination
of non-GTS stations, the performance of the GTS stations is always superior. It is
further argued here that the overall highest station-to-station variability observed in
most of the non-dichotomous (i.e., r, E, ME, MAE and RMSE) metrics for MSWEPv2.2
is most likely related to the strong weights of gauge observations in this product at grid
points close to the GTS stations. MSWEPv2.2 showed the highest spatial variability
for r, E, MAE and RMSE while IMERG-E showed the highest variability for ME (Fig.
4.6e–l). The disparities in performance at the GTS stations and non-GTS stations were
also largest in MSWEPv2.2. For example, based on Figure 4.7, there was a difference of
0.35, 0.5 and 0.21 for the r, E and HSS, respectively, in MSWEPv2.2 compared to, for
example, 0.11, 0.15 and 0.08 in IMERG-F for the same metrics. MSWEPv2.8 is also
substantially different from its predecessor, with smaller differences of 0.12, 0.17 and
0.06, respectively. The difference between the two versions of MSWEP may partly be
explained by the reduction in gauges used in the newer version due to stricter gauge
inclusion criteria (Beck et al., 021b).

The performance of the SREs in the different cluster varies (Fig. 4.8). The POD is
highest in MWSEPv2.8 (Fig. 4.8a), but the skill is degraded by the high rate of false
alarms (Fig. 4.8b). The correlation coefficient (Fig. 4.8d) is best in IMERG products,
followed by the MSWEP products. However, as seen previously, the variability in
performance is very large in MSWEPv2.2. The C- and SW-clusters exhibit correlation
values of about 0.32 while that of the LVB-cluster is substantially higher at 0.65 (Fig.
4.8d). This superiority in skill at the LVB-cluster is partly due to the fact that majority
of stations in this cluster are GTS stations. Products perform worst in SW-cluster with
the highest rate of false alarms and hence, lowest HSS for all the products (Figs. 4.8b,c).

As expected, aggregating daily rainfall totals to longer timescales improves the skill
in all the SREs (Table 4.6 and Fig. 4.9), since any errors due to time mismatches are
reduced. The r and E values of all the products improve considerably. For example, the
correlation value in CHIRPS increases from 0.22 to 0.50 moving from daily to pentadal
accumulations (Table 4.6). This is likely because CHIRPS is initially created at pentadal
timescale and then disaggregated into daily data (Funk et al., 2015). Generally, the
performance of the satellite products converges with longer timescale. The “Taylor
score” Taylor (2001), which combines the performance with respect to correlation
and standard deviation, increases (i.e., improves) with increasing timescale (Fig. 4.9).
IMERG products overestimate both pentadal and dekadal rainfall while the other
SREs underestimate rainfall at these time scales. All the products underestimate the
variability and amount of rainfall at a daily timescale (all points below the RG standard
deviation and the arrows point towards the centre, Fig. 4.9). IMERG-F performs best
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Figure 4.7: Metrics showing the performance of 7 stations with the highest percentage
of data reported to the GTS versus performance of station which never report their
data to the GTS (non-GTS). The red curve is the ensemble mean of all the possible 7
stations out of the 12 synoptic and the light red shading is the standard deviation.
The black line shows the performance of all the stations. Note that the normalized
version of ME, MAE and RMSE are preferred here because the station subsets being
compared are different. Taken from Ageet et al. (2022). © American Meteorological
Society. Used with permission.

at pentadal and dekadal timesteps for most of the metrics, followed by MSWEPv2.2
and MSWEPv2.8, CHIRPS and then TMPA.

4.2.4 Extremes and return periods

Due to variations in the rainfall climatology as seen in Sections 4.2.1 and 4.2.2, extreme
events are independently determined for individual stations. First, we considered the
daily rainfall totals above the 95th percentile of all rainy days at a given station as
“extreme”. The distribution of extreme events differs significantly between the RGs and
SREs for all the SREs (Fig. 4.10). All the points are below the diagonal meaning the
SREs fail to capture extreme rain rates in all the clusters. The deviation is largest in
MSWEPv2.8 and CHIRPS while IMERG-F and TMPA are the closest to the 1:1 line.
IMERG-E exhibits a better distribution than IMERG-F while TMPA-RT is worse than
TMPA. IMERG-F-0.1°performs better than the IMERG-F-0.25°as expected since coarse
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Figure 4.8: Statistics for the four clusters calculated by concatenating daily rainfall
totals for all the stations in a cluster for the period 2001–2018 (IMERG-F-0.1°, IMERG-
F-0.25°, IMERG-E, TMPA, TMPA-RT, CHIRPS and MSWEPv2.8) and 2001–2016
(MSWEPv2.2). All the correlations are statistically at 99% significance level. Taken
from Ageet et al. (2022). © American Meteorological Society. Used with permission.

graining averages extremes out. Next, we checked the distribution of extreme events in
the SREs (the 95th percentile of the individual SREs is taken as the thresholds) and
the corresponding values in the RGs (Fig. A.5). In this case, the points are above the
diagonal for the weaker extremes suggesting that the SREs overestimate these extremes.
However, at the stronger extremes, the plot moves below the diagonal pointing towards
a tendency of the SREs to underestimate the stronger extremes. Similar results were
shown by Monsieurs et al. (2018).

The performance of the SREs declines for extreme events for all the satellite products
at all stations in comparison to when the full dataset is used (cf. Fig. 4.6). The
ability of the satellites to detect extreme events decrease to a POD < 0.21 for all
final products (Table 4.7). The skill of the satellites is also reduced (lower HSS values
compared to Fig. 4.6 and Table 4.6) due to the increased POFA in all the products.
This is most pronounced in CHIRPS (Figs. 4.11b,d and Table 4.7). The satellites also
underestimate the frequency of extreme rainfall events (BID < 1). All the products
greatly underestimate the extreme rain rates (Fig. 5.10g) on the order of 26 mmd-1 (53%)
or more (Table 4.7). The skill is worse than climatology for all the products (Fig. 4.11f
and Table 4.7). The satellite estimates are weakly (0.06 - 0.26) correlated to the RGs
(Fig. 4.11e and Table 4.7). Overall, for the final version of the products, MSWEPv2.2
marginally emerges as the best product for extreme events, followed by IMERG, TMPA,
MSWEPv2.8 and then CHIRPS. However, as seen previously, the performance of
MSWEPv2.2 is highly variable suggesting the influence of the applied gauge weighting.
Comparing the final products of IMERG and TMPA with their respective early versions,
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Figure 4.9: Taylor diagrams showing the correlation coefficient, standard deviation,
centered RMSE and the Taylor score between gauge data and the satellite estimates
on: (a) daily; (b) pentadal; (c) decadal; and (d) monthly timescales. The scores
here are calculated by concatenating all the data for all the station for the individual
timescales. The red square marker on the horizontal axis is the reference (gauge)
dataset, and therefore, the closer a satellite product to the reference, the better it is.
The length of arrows represents the bias magnitude while the direction the sign of the
bias with arrows pointing towards (away from) the reference means underestimation
(overestimation). The bias shares the same axis as the CRMSE, and its magnitude
in mm is equivalent to the length of the arrow read off starting from the origin (red
square). The shading and blue contour indicate the Taylor score (combines correlation
coefficient and standard deviation, and ranges from 0 (worst) to 1(best)). Taken from
Ageet et al. (2022). © American Meteorological Society. Used with permission.
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Figure 4.10: QQ plots showing the distribution of extreme rainfall as recorded
by the RGs and the corresponding values in the SREs in the pixel closest to the
stations. Taken from Ageet et al. (2022). © American Meteorological Society. Used
with permission.

Table 4.7: Same as the section for daily accumulations in Table 4.5 but for daily
extremes events (rainfall amount > 95th percentile in rainy days subset of RGs).
Please note that the POD, POFA, BID and HSS are computed based on the extreme
threshold for the individual stations and this threshold is applied to the whole rainy-day
(>0.2 mm) subset. The rest of the metrics consider the extremes in the RGs and the
corresponding SREs values. The numbers in bold and italics font denote the best
scores amongst the final versions and scores when an early product outperform all
products, respectively. Taken from Ageet et al. (2022). © American Meteorological
Society. Used with permission.

Satellite Product POD POFA BID HSS r E ME (mm d-1) PB (%) MAE (mm d-1) RMSE (mm d-1)
IMERG-F-0.1° 0.18 0.70 0.59 0.19 0.18 -4.28 -28.9 -58 30.8 35.6
IMERG-F-0.25° 0.15 0.68 0.43 0.18 0.19 -4.28 -29.8 -61 30.9 35.5

IMERG-E 0.21 0.72 0.76 0.21 0.16 -3.78 -26.5 -53 29.1 34.1
TMPA 0.14 0.75 0.56 0.15 0.14 -5.07 -32.4 -62 34.0 38.6

TMPA-RT 0.10 0.72 0.37 0.13 0.14 -5.50 -35.3 -68 36.0 40.4
CHIRPS 0.02 0.81 0.12 0.03 0.06 -6.30 -38.7 -77 38.8 42.5

MSWEPv2.2 0.19 0.56 0.42 0.24 0.26 -4.32 -29.5 -59 30.5 35.7
MSWEPv2.8 0.03 0.55 0.07 0.05 0.15 -5.61 -36.2 -74 36.3 39.8
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IMERG-E is better than IMERG while TMPA-RT is worse than TMPA for extreme
events detection and accuracy. Indeed, considering all the SREs, IMERG-E emerges
best overall for extreme events, having the best scores in all but one metric evaluating
rain rates, the best extreme-events detection percentage (21%), and the lowest BID
(Table 4.7). This suggests that IMERG-E is best suited for extreme events analysis.
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Figure 4.11: Same as in Figure 4.7 but for extreme events. A hit occurs when both
the RG and SRE record rainfall exceeding the 95th percentile of rain-days subset of
the RG data. Taken from Ageet et al. (2022). © American Meteorological Society.
Used with permission.

With regard to rare events, modelled with the POT method, the performance of SREs
is spatially variable and the products generally underestimate the return values (Fig.
4.12 and Fig. A.6). Note that the return values are dependent on length and quality of
available data (results not shown). Therefore, we constrained the analysis to the period
covered by all products (2001–2018), except for MSWEPv2.2 (2001- 2016). Figure 4.12
illustrates that SREs perform satisfactorily at some stations, e.g., in Kitale (Fig. 4.12a)
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for MSWEPv2.2 and poorly in other stations. Apart from nine stations in MSWEPv2.2,
all SREs underestimate the return values at all other stations (see Fig. A.6). The
underestimation is most pronounced in CHIRPS, MSWEPv2.8 and TMPA-RT.
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Figure 4.12: Return values based on the POT method RG and the SREs for four
randomly select stations in the study area. The grey shading is the confidence bounds
of the return values modelled using RG data. Taken from Ageet et al. (2022). ©
American Meteorological Society. Used with permission.

Since this study has a strong focus on comparison between SREs, we converted the
absolute return values at each station to relative return value deviations in order to
make the return values comparable across the stations in different climates and datasets.
Considering the mean values, all the products always underestimate the return values
of extreme events except MSWEPv2.2 which overestimates after about 40 years (Fig.
4.13). The underestimation and overestimation of the return values at the shorter and
longer periods, respectively, coupled with a large standard deviation especially at long
return periods (Fig. 4.13h) does not allow for a conclusive statement about the general
usefulness of MSWEPv2.2 for the analysis of extreme rainfall. The performance of
IMERG is greatly affected by the coarse graining, since the native resolution performs
best amongst all products, but the coarse-grained version is only better than TMPA-RT,
MSWEPv2.8 and CHIRPS. The early product of IMERG also outperforms the final
product.
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Figure 4.13: Modelled relative return values of extreme events for all the satellite
estimates (a) and, b–h shows individual satellite product relative return value plus the
standard deviation across stations (shaded). For each dataset, the values are obtained
by taking the mean across all stations and time. Taken from Ageet et al. (2022). ©
American Meteorological Society. Used with permission.

4.3 Discussion and conclusions

We analysed the performance of four satellite products against daily RG data over
the complex topography of Uganda at multiple spatio-temporal aggregations for the
period 2001–2018 (except MSWEPv2.2, 2001–2016). Additionally, we compared the
early versions of IMERG and TMPA, both against each other and with their respective
final versions. The native resolution of IMERG was also validated to evaluate how
resolution affects the performance of satellite products. We included the two versions of
MSWEP in order to compare the change in performance of the latest version compared
to its predecessor. Since RG data was missing for some periods, we used satellite data
only at corresponding timesteps with available RG data. Two sets of metrics that assess
rainfall occurrence and accuracy of the rainfall totals were used. The suitability of the
products around extreme events was also tested using the same metrics. Additionally,
using the POT method, we assessed if the SREs can be used to simulate return values
of rare events for specified return periods. The main conclusions of this validation study
are:
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1. Generally, all the products reproduce the annual and seasonal rainfall pattern, but
the amounts are overestimated in IMERG by about 5% and underestimated by
TMPA, CHIRPS and MSWEP by between 5–8% (annually) and 1–9% (monthly).

2. IMERG outperforms the other products on daily, pentadal and dekadal timescales
followed by MSWEPv2.2, TMPA, and lastly CHIRPS. On monthly and annual
timescales, MSWEPv2.2 and CHIRPS, respectively, perform best. MSWEPv2.8
performs worse than its predecessor, MSWEPv2.2 for almost all the spatio-temporal
aggregations and for extremes.

3. The performance of the satellites is greatly reduced for southwestern part of
Uganda, mainly due to the high false alarm rate which degrades the skill.

4. The performance of the all the SREs is spatially variable for reasons mostly elusive
to the user. However, MSWEPv2.2 is a salient example where a high gauge
weight is capable of drastically improving the performance at gridpoints close
to the station, but the skill drops considerably in places away from the RGs
used in the calibration. Unless documented thoroughly, this can lead to serious
non-transparency of a SRE’s skill for the end-user.

5. Except for IMERG-E, all the products miss more than 80% of the daily extreme
events reported by the RGs and severely underestimate extreme daily rainfall
totals. The fact that IMERG-E outperform all the other products demonstrates the
potential of NRT products for operational applications such as floods assessment,
which need short latency products.

6. IMERG, IMERG-E, TMPA and MSWEPv2.2 show closest agreement with the
RGs for return values analysis while MSWEPv2.8, CHIRPS and TMPA-RT should
be avoided for this purpose. This is not surprising given that the SREs that are
the least suitable for modelling extreme events underestimate extreme rainfall
events most severely.

Good agreement of the products with RGs on a seasonal scale supports the findings in
Camberlin et al. (019a), Diem et al. (2014) and Asadullah et al. (2008) with similar
performance statistics and seasonal cycles which are largely controlled by the periodic
migration of the tropical rain belt Nicholson (2017); Seregina et al. (2018). Therefore,
SREs capture the drivers of synoptic seasonal rainfall over the study area well. The fact
that all the products used in the present study are gauge calibrated may have contributed
to the good performance (Awange et al., 2015; Dinku et al., 2018). Additionally, at
longer temporal accumulations, any errors due to time mismatches between the RG and
SREs data are reduced, which, in turn, improve the scores.

The superior skill of IMERG compared to the other SREs, especially at lower temporal
aggregations has been seen in other studies. For instance, Dezfuli et al. (017a), showed
that IMERG was better than TMPA in West and East Africa. In general, the good
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performance of IMERG can be explained by better performance of PMW sensors (Kidd
and Huffman, 2011; Bitew and Gebremichael, 2011) and improved spatio-temporal
resolution (Dezfuli et al., 017b). However, IMERG overestimates rainfall occurrence and
intensity compared to both the RGs and other SREs, especially over Lake Victoria. This
is attributed to the tendency of PMW sensor to overestimate rainfall in convectively active
regions (O and Kirstetter, 2018; Nicholson et al., 2021). The generally good performance
of MSWEPv2.2 agrees with those of Lakew et al. (2020). However, MSWEPv2.8 has a
weaker performance compared to MSWEPv2.2. This may stem from; a) the assignment
of large weights to ERA5, which has a tendency to rain too often at low rain rates, and
b) the reduction in the number of RG data used in gauge-calibration due to a more
stringent selection criterion (Beck et al., 021b). The superior performance of CHIRPS
compared to the other SREs at larger temporal accumulations corroborates the findings
of Dinku et al. (2018), Diem et al. (2019), and Camberlin et al. (019a) and may be due
to; (a) use of the gauge-satellite climatology, CHPclim which reduces mean biases, and
(b) the fact that gauge calibration is done at longer temporal resolutions (i.e., pentadal
and monthly).

SREs are known to show variable performances depending on different factors. Although
other factors like the gauge calibration and topography (e.g., Diem et al., 2014; Monsieurs
et al., 2018) play a significant role in the variability of the performance of SREs in
the study area, we specifically found for MSWEPv2.2 that the weight assigned to RGs
relative to the other data inputs during gauge calibration process had a significant
influence on how the product performed at a given grid point. This result corroborates
several studies (e.g., Awange et al., 2015; Camberlin et al., 019a) who also showed that
gauge calibration impacts the performance of SREs.

Major difficulties in capturing rainfall by SREs in the domain of the SW-cluster have
already been highlighted in Diem et al. (2014) and Monsieurs et al. (2018). The complex
topography partly accounts for the performance. Many parts of the region lie in a rain
shadow which causes false alarms. Additionally, compared to the other three clusters,
the SW-cluster is drier, hence, sub-cloud evaporation could be more frequent in this
region. Sub-cloud evaporation increases cases false alarms, and this has been previously
shown by Dinku et al. (010a) over the desert locust regions and Thiemig et al. (2012)
over the semi-arid Juba-Shabelle region.

Similar to studies by Monsieurs et al. (2018) over Western Uganda and Thiemig et
al. (2012) over African river basins, the performance for all the SREs declines for
extreme events compared to the whole dataset. This may be partly due to the fact that
PMW sensors may miss the short-lived intense rainfall events given their infrequent
overpasses. Additionally, being gridded products, SREs contain spatial averages and
hence, extremes may be smoothed out, which is not the case for the point measurements
at RGs. The better detection rate and reduced error in IMERG-E around extreme
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events compared to the other SREs points to the fact that gauge calibration introduces
some uncertainties in the final version of the SREs (Bitew and Gebremichael, 2011).
For most SREs, the calibration is initially done at a low temporal resolution, e.g.,
monthly for IMERG, before daily rainfall is rescaled accordingly. This in itself may be
problematic for daily extremes. However, for the NRT product of TMPA, results showed
overall poorer scores compared to the final version. The stronger underestimation of
TMPA-RT was also found by Monsieurs et al. (2018) and this was attributed to the
lack of gauge calibration. Unsurprisingly, the SREs with highest errors at the extreme
events (CHIRPS, TMPA-RT and MSWEPv2.8) had the highest error compared to the
RGs when applied for modelling the return period of extreme events.

Based on this study, care needs to be taken when using the SREs for a given application
in the studies as performances varied substantially. This variation stems from various
sources, e.g., gauge calibration, algorithms, data inputs and region considered. We are
also aware that the performances could also have been influenced by the availability and
quality of RG dataset. Also, given that the SREs ranking was different for individual
metrics, it is difficult to categorically say which product is the best. The SREs showed
great promise at the longer temporal aggregations given the high scores in most metrics.
Challenges remain for shorter time scales, especially over heterogeneous topography,
and extreme rainfall events. Despite these challenges, IMERG, TMPA and MSWEPv2.2
are the most suitable products among the tested SREs for hydro-meteorological disaster
applications as they provide the crucial information for a data sparse region like Uganda.
Validating the SREs with a denser gauge network may highlight the apparent regional
difference in performance even further and also enable the quantification of the influence
of the RGs on the results, if any.
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5. Skill of ECMWF reforecasts over EEA

In this chapter, the analysis of the ECMWF reforecast quality is presented. Like in the
previous chapter, the data sets and methods are briefly introduced in the first section.
Then results of the assessment of the skill of both the deterministic and probabilistic
forecasts are presented in section 5.2. The analysis was also done at regional and
whole domain spatial considerations and for 24-, 48- and 120-hour accumulations. The
improvement in skill after postprocessed the raw reforecasts are also presented. Finally,
in section 5.3, the discussion and conclusions are presented.

5.1 Data and Methods

5.1.1 Data

5.1.1.1 ECMWF rainfall hindcasts

The study uses precipitation reforecasts from the ECMWF model available from the
S2S prediction project database (Vitart et al., 2017). The reforecasts are generated
on the fly with respect to the near-real-time forecasts, initialized twice a week, have a
lead-time of 46 days, and spatial (temporal) resolution of 1.5° (6-hourly). The reforecats
used here were generated using the model version dates from 2020, which were based on
CY46R1 and CY47R1 cycles of the Integrated Forecasting System (IFS) model. For the
20-year period, 2000–2019, we have 105 initialization dates per year resulting from 2
forecasts in each of the 52.5 weeks. The reforecast is made up of 11 ensemble members
(1 control and 10 perturbed).

5.1.1.2 Satellite rainfall estimates

The first set of precipitation observations used for the verification of the reforecasts are
satellite rainfall estimates, specifically, the final daily product of Integrated Multisatellite
Retrieval for Global Precipitation Measurement (GPM) v6B (IMERG; Huffman et al.,
2020). Being a satellite-based product, IMERG was chosen because it offers a more
complete spatio-temporal coverage for the data sparse regions like EEA (Diem et al.,
2014; Dinku, 2019) compared to ground-based observation, e.g., rain gauges or radars.
Moreover, it has been shown to be among the best performing products for this region
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at daily to monthly time scales (Ageet et al., 2022). IMERG is available from June 2000
to date at a temporal resolution of 30 minutes and a spatial resolution of 0.1°. Since
the reforecasts are available at a spatio-resolution of 1.5°, IMERG rainfall estimates are
regridded to the same resolution using first-order conservative remapping (Jones, 1999).

5.1.1.3 Rain gauge rainfall

Additionally, in-situ rainfall observations from rain gauges in Uganda available from
the Karlsruhe African Surface Station-Database (KASS-D; Vogel et al., 2018) are used.
Because of the relatively coarse resolution of the gridded products, the analysis with
gauges was done at nearest grid-points, with a requirement that the grid-point is nearest
to at least four stations. Additionally, the stations considered should have at least 95%
daily data availability in the period of study. Three grid-points satisfied all the above
conditions. Due to their location, we named these grid-points, Lake Victoria, Lake
Kyoga and western Uganda regions (Fig. 1.1). The period 2001–2018 offered the most
complete record and was therefore used for the analysis. The mean of the stations
at a grid-point was used for the validation of the forecasts. Because the daily gauge
rainfall in this region is accumulated from 06 UTC for 24 hours until 06 UTC of the
following day. The reforecast and IMERG rainfall were aggregated to match the gauges
accumulation period and all the analyses was done for the common period of 2001–2018.

5.1.2 Methods

5.1.2.1 Verification methods

Forecast verification primarily assesses how ’well’ a forecasting system predicts the
target variable based on the observed values. Because the goodness of a forecast may
depend on more than one attribute and the purpose of the verification (Murphy, 1993),
a single verification method is not sufficient to assess the predictive performance of
the forecast. Hence, several methods should be taken into account. To assess different
aspects of the ECMWF hindcasts, we assess the ensemble both in probabilistic and
deterministic terms, the latter in form of the ensemble median. While the ensemble is
used to assess the predictive performance of the hindcasts in terms of scores, calibration
and discrimination, the ensemble median is used to assess the accuracy and bias of a
point forecast derived from the ensemble, which we refer to as a deterministic forecast.
Further, we derive probability forecasts for the occurrence of rainfall from the ensemble
by calculating the fraction of ensemble members that predicts rainfall. The different
metrics are briefly explained below.

For the deterministic forecast, the mean error (ME) is computed as the mean difference
between the ensemble median of the hindcasts and the observations, with positive
(negative) values indicating overestimation (underestimation). Additionally, the mean
absolute error (MAE) is computed for different rainy day thresholds (i.e., when the
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observations have a precipitation accumulation of more than a given threshold value),
in this case from 0 up to 10 mm, to show how the error changes for higher rain rates.
If fi and oi are the point forecast and observation at time i, and N is the sample size,
then the metrics above are defined as:

ME = 1
N

N∑
i=1

(fi − oi), (5.1)

MAE = 1
N

N∑
i=1

|fi − oi|. (5.2)

To assess the discrimination ability or the potential prediction ability of probability
forecasts for occurrence of rainfall, the receiver operating characteristic (ROC) curve
and area under the ROC curve (AUC) are suitable tools (Wilks, 2011). The ROC
curve is generated by plotting the hit rate against the false alarm rate at different
probability thresholds. The hindcasts have no discrimination ability if the curve falls on
the diagonal and a perfect discrimination is obtained if the curve passes at the top-left
corner. The area under the diagonal and the curve gives the AUC, with values between
0 (no discrimination) and 1 (perfect discrimination). By comparing to a reference, EPC
(EPC15, hereafter, as observations in a ±15 days-window around the date of interest are
considered), we compute the the so-called AUC skill (AUCS) like in Walz et al. (2021).
For every forecast date, we generated the EPC15 by taking past observations on this
date and the 30 days around it, yielding an ensemble of 527 members (i.e., 31 members
times 17 years). Details and code to compute the EPC is given in Walz et al. (2021).

Most probabilistic forecasts do not quantify the forecast uncertainty adequately meaning
they are miscalibrated or unreliable (Wilks, 2011). To check the reforecasts for calibration,
we use standard tools from forecasting methodology (Gneiting and Katzfuss, 2014).
Rank histograms are used to assess the calibration of the ensemble forecasts, probability
integral transform (PIT) histograms are used for the postprocessed forecasts and EPC15.
Note that the PIT histograms for EPC15 are calculated as described in Vogel et al.
(2018), Vogel et al. (2020) and Schulz and Lerch (2022). Both rank and PIT histograms
can be interpreted analogously, where a flat histogram corresponding to a uniform
distribution indicates that the forecast are calibrated while a U-shaped (hump-shaped)
histogram indicates underdispersed (overdispersed) hindcasts, that is, the forecasts are
overconfident (underconfident). The calibration of probability forecasts is checked via
reliability diagrams, which show the calibration curve that plots the conditional event
probability of the dichotomous event against the associated forecast probabilities. If
the curve is close to the diagonal, the forecast is said to be calibrated or reliable. Here,
we use a new approach which ensures Consistency, Optimality, Reproducibility and is
based on the pool-adjacent-violators (PAV) algorithm (CORP; Dimitriadis et al., 2021).
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A major advantage of this approach is that it generates ’optimally binned, reproducible,
and statistically consistent reliability diagrams’ (Dimitriadis et al., 2021).

A quantitative evaluation of the forecast performance is done using proper scoring rules,
which yield the best scores (in expectation) when we forecast the ’true’ underlying
distribution of the observation (Gneiting and Raftery, 2007; Wilks, 2011). For assessing
probability forecasts of rainfall occurrence, the most common metric is the Brier score
(Brier, 1950), while for the rainfall amounts, the continuous rank probability score
(Gneiting and Raftery, 2007) is used. The mean Brier score (BS) for a sample of size N

is defined as

BS = 1
N

N∑
i=1

(pi − yi)2, (5.3)

where pi is the probability forecast at time i and yi the corresponding observation, which
takes the value 1 for rainfall occurrence and 0 elsewise. If Fi is the cumulative distribution
function (CDF) of a precipitation forecast at time i, and oi is the corresponding
observation, the mean continuous rank probability score (CRPS) of a sample of size N

is defined as

CRPS = 1
N

N∑
i=1

∫ ∞

−∞
[Fi (x) − 1 (x ≥ oi)]2 dx. (5.4)

Both scores are negatively oriented meaning that smaller values indicate superior
predictive performance. The CRPS is in the unit of the observation, mm, in this
case. For scores of a method, the corresponding skill scores, i.e., Brier skill score
(BSS) and continuous rank probability skill score (CRPSS) were computed relative
to EPC15. Negative skill scores indicate that the method performs worse than the
reference forecast, a skill score 0 that equal performance and a positive skill score that
the method outperforms the reference with 1 corresponding to perfectly forecasting the
observed values. For detailed discussion of these, and the other metrics used in this
manuscript, we refer the reader to Schulz and Lerch (2022).

To investigate the sources of the strengths and weaknesses of the forecast, we use the
CORP approach to decompose the BS in a miscalibration (MSC), discrimination (DSC)
and uncertainty (UNC) component. MCB quantifies the degree of miscalibration of
the forecasts (smaller values are preferred), while DSC evaluates the ability to discern
between events and non-events (larger values are better), and finally UNC which is
purely based on the observation indicates how difficult the forecasting problem is. To
check if any observed differences in performance between the reforecasts and EPC15
are significant, we applied the (2-sided) Diebold-Mariano test (DM test; Diebold and
Mariano, 1995) to forecast-EPC15 score pairs (BS or CRPS) at each grid-point. The DM
test checks the hypothesis whether the (raw or postprocessed) reforecasts and EPC15
have the same expected score, that is, equal predictive performance. Because we are
testing multiple grid-points independently, there is need to account for possibility of
the false discovery rate (Wilks, 2016). We therefore applied a Benjamini and Hochberg
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(1995) procedure which controls the proportion of falsely rejected hypothesis at a chosen
significance level, 0.05 in this case.

5.1.2.2 Postprocessing

In order to remove or reduce systematic errors of the ensemble forecasts such as biases
and dispersion errors, methods from statistical postprocessing are typically used to
correct for them (see, e.g., Gneiting et al., 2005; Vannitsem et al., 2018; Schulz and
Lerch, 2022). Here, we apply the non-parametric isotonic distributional regression
(IDR; Henzi et al., 2021) method. The method assumes an isotonic relationship (i.e.,
an increase of the predictor variable yields an increase of the predictand) between
the forecasts and observation. In this case the ensemble members were used as the
predictors, following the componentwise partial order. The advantages of this approach
over other postprocessing methods such as EMOS are that; 1) it is a generic method
that can be applied directly as it does not require any prior conditioning or tuning, and
2) it estimates a flexible data-driven forecast distribution based only on the assumption
of isotonicity. The method has also been shown to be work well in other postprocessing
applications (e.g., Maier-Gerber et al., 2021; Schulz and Lerch, 2022).

For the postprocessing, the data were divided into a training and test set. As noted by
Henzi et al. (2021), IDR being a non-parametric method, requires quite a large training
period for the model to sufficiently learn the forecast-observation relationship. We
therefore divided the data into 17 years of training, and one year for testing. Although
we use a local approach, whereby we train and apply the the model for each grid-point
separately, data from the eight grid-points surrounding the grid-point of interest are
incorporated for training the model. This increased the size of the training data set and
is reasonable, given the similarity in rainfall climatology of neighboring grid-points.

5.1.2.3 Spatio-temporal considerations

Because the performance of the forecast varies with lead-time and is influenced by the
underlying topography, we assess the forecasts at different temporal aggregations and in
four different locations in the region (cf. Fig. 1.1) and for different temporal aggregations.
The different regions are; a) Uganda, characterized by a mixture of mountains, large
water bodies and flat land, b) the Congo Basin, a vast area of mainly low-lying and
forested region, 3) East African Coast, a coastal region along the shores of the Indian
Ocean, and 4) Ethiopian highlands. For the temporal aggregations, we consider 24-hour,
48-hour and 120-hour accumulations, and increasing lead-time, that is, 1–14 days ahead.
The longer aggregations are important to certain economic sectors. For example, to
farmers, the exact timing of rain may not be so crucial but how much rain falls in a
particular period is more important. A seasonal perspective was also analysed given
that the region has distinct dry and wet seasons.
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5.2 Results

In the first part of the results section, we present the analysis based on IMERG
observations, starting with the deterministic and then probabilistic verification. The
analysis against gauges will be presented at the end of the section.

5.2.1 Deterministic verification

As shown in Fig. 5.1, the study domain has four distinct seasons; December-January-
February (DJF), March-April-May (MAM), June-July-August (JJA) and September-
October-November (SON). The mean seasonal daily rainfall intensity (dotted-blue
contours) show the rainfall maximum in the south in DJF, north in JJA and in the
vicinity of the equator in MAM and SON. The highest mean daily rainfall is 8 mm day-1

over Lake Victoria in MAM, in the southwestern part of the domain in DJF, and over
the Ethiopian highlands in JJA. During each season, some land grid-points, especially
in northern part of the domain, are dry, defined here as any grid-point with annual mean
daily rainfall of less than 1 mm day-1. These grid-points are masked out in Fig. 5.1 and
were excluded in the subsequent analysis. The reforecasts are biased, with overestimation
of rainfall over mountainous regions and underestimation in low-lying regions. In JJA
when the seasonal rains are concentrated north of the equator, there is an overestimation
of ∼6 mm day-1 over the Ethiopian highlands (Fig. 5.1c) while in the DJF season the
overestimation is predominant over the elevated terrain south of the equator accordingly.
A feature independent of the season considered is the overestimation over highlands and
mountains, e.g., the mountainous Congo-Uganda/Rwanda boarders and Mt. Kilmanjaro
in all the seasons (Fig. 5.1). However, when the errors are normalized with their seasonal
means, the overestimation in the rainy seasons scale down. Rather, there are large
normalized mean absolute errors (NMAE) in the dry seasons (see Fig. A.7), probably
due to higher frequency of very low rainfall intensities (>0.2 mm) in IMERG. The
accuracy of the reforecast reduces with increase in rainy day threshold (see Fig. 5.1e).
In all the seasons, the absolute MAE increases from a mean of 3–4 mm for a rainy day
threshold of >0 mm day-1, reaching about 7.5–8 mm day-1 at a threshold of >10 mm
day-1, depending on the season. The absolute error initially sharply raises from the
initial value reaching ∼5 mm at a threshold of 1 mm day-1, then continues increasing
almost linearly, but at a lower rate. The largest inaccuracy is recorded in JJA, followed
by MAM, DJF and SON, based on the domain-averaged MAE and NMAE. These biases
can be partially attributed to model deficiencies. However, caution should be exercised
here because the observation data set, IMERG, has been known to exhibit a dry bias
over high altitudes topography and for high intensity rain rates (O and Kirstetter, 2018;
Ageet et al., 2022), possibly accounting for the larger biases.

Despite these positive biases, we see many grid-points with zero or weak bias, indicating
low biases at these points. The fact that the model mostly overestimates rainfall during
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the rainy season also suggests that it captures the seasonal cycle of the rainfall, putting
rainfall in the right locations, albeit with wrong amounts and/or frequency. On the
other side, the model underestimates precipitation in some locations, especially over
low lands like the Congo Basin in all the seasons. This can be explained by the fact
that the model struggles to represent convective rainfall at the mesoscale, often leading
to frequent low intensity rainfall (Marsham et al., 2013; Birch et al., 2014; Vogel et al.,
2018).

Figure 5.1: Seasonal mean daily rainfall bias of the hindcasts compared to IMERG
(a–d). The mean error is computed for only hits, i.e., days when both the hindcasts
and IMERG recorded 0.2 mm or more of rainfall. The dotted blue contours represent
the daily mean seasonal rainfall computed from the IMERG. Note also that dry
grid-points (seasonal mean daily rainfall amounts less than 1 mm day-1) are masked
out shown by the grey shading. (e) shows the variation of the mean seasonal absolute
error with rainy day threshold. The absolute error is also computed for only hits, i.e.,
both IMERG and the reforecast have rainfall greater or equal to the threshold. The
thresholds used in (e) is 0–10 mm day-1 at 0.2 mm intervals. Taken from Ageet et al.
(2023), submitted to Weather and Forecasting.
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5.2.2 Probabilistic verification

5.2.2.1 Raw reforecasts

Over the entire study period, the reforecasts are able to distinguish between rain and
non-rain events at 0.2 mm rainy day threshold up to 14 days ahead for some grid-points
(Fig. 5.2). The curves in ROC plot are to the left of the diagonal (Fig. 5.2a), with
shorter lead-times being the furthest to the left. This implies that the discrimination
ability of the hindcasts decreases with lead-time, since the model gradually drifts away
from the truth as memory of the initial conditions is eroded with time. EPC15 (black
curve) competes favorably with the model, with the equal and higher AUC score after
day two and three, respectively. The AUC computed as the area between the diagonal
and the curve in Fig. 5.2a, and consequently the AUCS computed relative to EPC15
(Fig. 5.2b–c) confirms the potential skillfulness of the hindcasts in most parts of the
study domain. At 1-day lead-time, most of the grid-points have positive AUCS with
the strongest values over Uganda, the Ethiopian highland and the southwestern regions.
The distribution of the AUCS has an almost southwest–northeast orientation with the
better scores over the elevated terrain (cf. Fig. 1.1). Arguably, the model has a better
ability to represent orographically triggered precipitation over highlands. Furthermore,
but likely of secondary importance, moist static instability over the highlands is not high
such that more moisture and higher instability needs to be present, e.g., from larger
scale convection signals such as MJO (Pohl and Camberlin, 2006a). This means that
over the highlands, the triggers of convection are at larger scales, which are known to
have better predictability (e.g., Vitart, 2017; de Andrade et al., 2021; Specq and Batté,
2022), improve the model performance. Over the low-lying regions like the Congo Basin,
a low convective inhibition (CIN) and medium convective available potential energy
(CAPE) environment, there are more stochastic triggers which the model largely fails
to represent (A. R. Satheesh, 2023, in review). The AUCS deteriorates with increase
in lead time (Fig. 5.2c,d). The positive AUCS especially at day one has also been
previously shown in Walz et al. (2021), although they used the operational forecasts
from the earlier version of ECMWF model.

The raw reforecasts have skill in predicting rainfall occurrence relative to EPC15
depending on the time of the year and location (Fig. 5.3a–d and Table 5.1). The
hindcasts are able to capture a rainy day in most grid-points in MAM, being up to 40%
better than the EPC15. The strongest positive BSS lies along the northeast–southwest
stretch in the study domain confirming the potential skill previously seen (cf. Fig. 5.2).
In DJF and JJA, most grid-points especially in the locations of maximum seasonal
rainfall occurrence have negative BSS values, i.e. the ECMWF model performs worse
than EPC15 in predicting a rainy day. This is most likely linked to the fact that the
hindcast have a tendency to overestimate the frequency of precipitation during the rainy
season (cf. Fig. 5.1). In SON, the model fails to correctly forecast rainy days along
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Figure 5.2: Full domain-averaged receiver operating characteristic (ROC) curve (a)
for day 1 (green curve), day 5 (blue curve), day 10 (red curve) lead-times and EPC15
(black curve) at a rainy day threshold of 0.2 mm. (b)–(d) are the area under the curve
skill (AUCS) computed relative to EPC15. As before, dry grid-points are masked out.
Taken from Ageet et al. (2023), submitted to Weather and Forecasting.

the East African Coast (EAC) at all the grid-points. Indeed, in all the seasons, the
BSS is mostly negative along the coast. This may be due the model’s deficiencies in
reproducing the sea-land breeze effect, although caution should be exercised here since
IMERG struggles retrieving warm rain along the Coast (Vogel et al., 2020). Based
on the DM test, the ability of the raw hindcasts to detect rain or no-rain events is
significantly different from that of the EPC15 in only 38%, 43%, 31% and 34% of
the grid-points in DJF, MAM, JJA and SON, respectively (Table 5.1). Taking the
percentage of grid-points with positive BSS values into consideration, we conclude that,
although the BS improves for many grid-points relative to EPC15 in all the seasons,
with the exception of JJA, the scores are not significantly better in all the grid-points.

The performance of the full distribution of the raw reforecast relative to EPC15 is
assessed using CRPSS values shown in Fig. 5.3e–h. The performance of the reforecasts
varies spatio-temporally and is generally superior to EPC15, however, the CRPSS are
weaker than the BSS values for the same seasons and grid-points. In a few places,
e.g., along the Coast, the CRPSS values are higher than the BSS values, similar to the
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Table 5.1: Percentage of grid-points where the BSS and CRPSS are positive (Skill)
and the score of the reforecasts is significantly different from that of EPC15 (DM) for
each of the seasons. The table corresponds to results shown in Fig. 5.3. Taken from
Ageet et al. (2023), submitted to Weather and Forecasting.

BSS CRPSS

Skill (%) DM (%) Skill (%) DM (%)

DJF 69 38 74 38
MAM 65 43 70 33
JJA 22 31 33 29
SON 53 34 47 22

general observation in Vogel et al. (2020), who also found that the ECMWF operational
model performed better for rainfall amounts. The CRPSS is again best in the DJF
and MAM seasons where most of the grid-points having positive values. However, the
scores are not significantly different from those of EPC15 in most grid-points (Table 5.1).
The worst performance is seen in the JJA season with most of the grid-points having
negative CRPSS values. The weaker performance for the CRPSS compared to BSS for
the same places, e.g., southwest of the domain and Congo basin in MAM suggest that
the reforecast can differentiate between a rainy day, but has biases in the intensities.
The opposite is true for some locations like over the western boarder of Tanzania in
DJF.

Figure 5.3: BSS and CRPSS of raw hindcast relative to EPC15. The skill scores are
calculated for each of the four seasons and only for wet (>1.0 mm day-1 in the season)
grid-points. The blue dashed contours represent the mean daily rainfall amounts in the
season. The hatching shows grids where the hindcasts are not significantly different
from EPC15 based on the BS/CRPS values according to the DM test. Taken from
Ageet et al. (2023), submitted to Weather and Forecasting.
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The reforecasts are miscalibrated, as shown in the underdispersed histograms (Fig. 5.4a).
The observation frequently rank lowest or highest in comparison to the ensemble, i.e.,
the observation falls outside of the ensemble range more often than expected. The
miscalibration can also be seen in the reliability diagrams for probability forecasts of
rainfall occurrence (Fig. 5.4d). The reforecasts are overconfident, that is, when the
event happens less (or more) frequently than expected when forecasting high (or low)
probabilities. As expected, EPC15 is well calibrated (Fig. 5.4b and e) with the PIT
histograms being uniformly distributed and the calibration curve following the diagonal
almost perfectly.

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Rank histogram at lead-time of one day for the raw ensemble reforecast
(a), and the PIT for the reference forecast (b) and IDR-postprocessed reforecast (c) for
the period 2001–2018. The lower row plots are the corresponding reliability diagrams.
CEP in the y-label stands for conditional event probability. Taken from Ageet et al.
(2023), submitted to Weather and Forecasting.

Figure 5.5a–c shows the CORP decomposition of the raw BS. The worst MCB is in
parts of Eastern Kenya and the around Mt. Elgon area. Mt. Kilimanjaro region and
southeastern Ethiopia also have relatively high MCB values. The best DSC is in the
southeastern parts of the study domain, stretching from central Tanzania to southern
Congo. The model also has relatively high discrimination ability in the northern region,
parts of southern Sudan and Ethiopia. The Congo basin features the lowest, i.e. worst,
DSC values in the study region, explaining the lower AUCS values discussed earlier.

71



Chapter 5. Skill of ECMWF reforecasts over EEA

Figure 5.5: Decomposition of the CORP score into the miscalibration (MCB),
discrimination (DSC) and uncertainty (UNC) components for raw (a–c) and IDR-
postprocessed (d–f) reforecasts. The dry area (grey shading) are masked out as before.
Note that the DSC and UNC for raw and postprocessed reforecasts are equal as
postprocessing only corrects for miscalibration in a forecast. Taken from Ageet et al.
(2023), submitted to Weather and Forecasting.

5.2.2.2 Postprocessed reforecasts

Generally, postprocessing using the IDR method reduces the miscalibration. The
underdispersion is substantially reduced and the curve is closer to the diagonal in the
reliability diagram (Fig. 5.4c,f). Hence, the BSS and CRPSS of the reforecasts improve
in almost all the grid-points in all the seasons (Fig. 5.6a–h and Table 5.2). The BSS
values are considerably better, especially in MAM, reaching 0.5 in some areas, e.g., the
Ethiopian highlands, eastern Uganda and southeastern Congo. The scores are again
mostly higher at elevated terrain whereas over the flatter regions, especially the Congo
forest basin, they are still low and not significantly different from those of the EPC15.
The performance is also better in SON, with only a few areas having high negative
BSS values, e.g., over mountainous regions in Uganda (Elgon and Rwenzori), the raised
areas in the southeast of Kenya and the mountains over the Rwanda/Burundi-Congo
borders. In DJF and JJA seasons, the performance is lower compared to the other two
seasons. This is clear at the southeastern Congo and the eastern parts of Tanzania in
DJF, where we see high negative BSS values. The same can be seen in JJA over the
Ethiopian highlands. A detailed analysis of these two regions revealed frequent cases of
’forecast busts’ (almost all ensemble members forecasted rain but it did not rain). These
busts resulted in very high BS values for these days, which negatively skewed the BSS
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Table 5.2: Same as in Table 5.1 but for the postprocessed reforecasts. The table
corresponds to results shown in Fig. 5.6a–h. Taken from Ageet et al. (2023), submitted
to Weather and Forecasting.

BSS CRPSS

Skill (%) DM (%) Skill (%) DM (%)

DJF 81 60 91 61
MAM 95 83 84 63
JJA 66 26 64 20
SON 88 56 73 35

in these areas. The reduction in hatched grid-points further highlights the improvement
after postprocessing in all the seasons, although to a very small extent in JJA.

The skill with respect to the CRPSS of the postprocessed reforecasts for rainfall amounts
also improved (Fig. 5.6e–h). Similar to the BSS, the CRPSS is better in the DJF and
MAM and worst in the JJA. Contrary to the BSS in the DJF season, CRPSS around
the Southeastern Congo and the eastern boarder of Tanzania is positive. This means
that the model is superior in forecasting rainfall amounts than matching rainy days in
these parts of the study domain. This feature of the model could be important for some
applications like agriculture where the focus is not really on the timing but rather the
amount of rainfall in a particular area. In MAM and SON seasons, the lower scores over
low-lying areas like the Congo basin region is also apparent. Despite the improvement,
the DM test suggests that the performance is not significantly different from that of
EPC15 in most grid-points, especially in JJA and SON (Table 5.2). Of note also is
that the largest gains in skill after postprocessing is in regions like the EAC which
initially have a high degree of miscalibration (cf. Fig. 5.5a, d). For places like the Congo
basin where the source of error was the low discrimination ability, the benefit of the
postprocessing is almost zero (Fig. 5.6i–p) as DSC was not affected by postprocessing
(cf. Fig. 5.5b, e).

Just like in the raw reforecasts, not all the positive BSS and CRPSS are significantly
better than the EPC15, given the higher percentages for ’skill’ compared to the ’DM’
column (Table 5.2). Directly comparing Tables 5.1 and 5.2, there is an average im-
provement of 82% (67%) in the number of grid-points with positive BSS (CRPSS) after
postprocessing. Similar improvements were seen in Vogel et al. (2020) for rainfall occur-
rence over the tropics. The number of grid-points where the reforecasts are significantly
different from EPC15 also increased by an average of 50% and 45% for BSS and CRPSS,
respectively. This increase coupled with the positive anomalies in Fig. 5.6i–p, implies
that the absolute values of the BSS and CRPSS are also generally improved relative to
EPC15.
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Figure 5.6: (a)–(h) are just like in Fig. 5.3 but for IDR postprocessed reforecasts.
(i)–(p) is the difference between the postprocessed and raw reforecast. Taken from
Ageet et al. (2023), submitted to Weather and Forecasting.

From Table 5.3, the best BS (CRPS) performance is in DJF (JJA) season for the
raw and postprocessed forecasts and EPC15. The generally better scores in the dry
seasons does not necessarily translate to better skill. This is highlighted by the worst
skill scores relative to EPC15 in the JJA season (e.g., cf. Table 5.1). Indeed in JJA,
even after postprocessing, the BS of the reforecast is only equal to the score of EPC15,
highlighting the limited predictability in this season. Only in DJF and MAM are the raw
reforecasts either equal or better than the EPC15, and the scores are further improved
after postprocessing. In SON, even though the scores are initially worse than those of
the reference forecast, the situation is reversed after postprocessing.

5.2.2.3 Spatio-temporal variation of skill

The skill scores of the ensemble hindcasts vary with location and lead-time (Fig. 5.7).
In all the regions (cf. Fig. 1.1), the performance of the reforecasts for occurrence and
amounts for 24-hour accumulations degrades with lead-time as expected. Both of the two
approaches used here; a) counting the number of grid-points with positive BSS/CRPSS,
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Table 5.3: Domain averaged mean seasonal BS and CRPS of raw, IDR-postprocessed
corresponding to Fig. 5.3. The numbers in bold (italic) font are the best (worst)
scores for each seasons. Taken from Ageet et al. (2023), submitted to Weather and
Forecasting.

BS CRPS (mm day−1)

DJF MAM JJA SON DJF MAM JJA SON

Raw 0.11 0.15 0.16 0.16 1.81 2.04 1.70 2.06
EPC15 0.11 0.16 0.12 0.15 1.91 2.12 1.56 1.97

IDR 0.08 0.13 0.12 0.12 1.68 1.89 1.53 1.86

and b) displaying the absolute BSS/CRPSS with boxplots, show this characteristic of
the model. We also see the improvement after postprocessing with the skill scores of
the postprocessed (red color) being higher than that of the raw reforecasts (black color)
in all the regions (Fig. 5.7). In terms of absolute skill score, we find that, although
the postprocessing improves the BSS and CRPSS for all the regions, the median scores
(yellow line in the box plots) are low positive or negative values, highlighting the poor
performance of forecasting systems in the tropics. For some regions, the skill scores
are always negative, e.g., EAC for rainfall occurrence detection and Congo basin for
rainfall amounts. This worrying level of skill in the tropics has previously been shown
by Haiden et al. (2012) and Vogel et al. (2018, 2020).

The best skill scores for both occurrence and amounts of rain are over the Ethiopian
highland, followed by the Uganda region. These two regions have relatively higher
altitudes, consistent with earlier results which suggested the model performed best over
high altitude areas. Over the Congo basin, the results for occurrence, especially for the
postprocessed reforecasts is positive up to day five (based on the median scores in the
box plots) and over 50% of the grid-points have positive BSS up to day six (Fig. 5.7b).
However, for rainfall amounts, the skill scores are always negative after day one (Fig.
5.7f). This region, as explained earlier, is one where the model notably underestimated
rainfall and has poor discrimination ability. The performance at the EAC is the worst
being negative all the time for the raw reforecats. After postprocessing, this region
shows a large improvement in BSS, being positive up to day eight (Fig. 5.7c, g). The
fact that raw reforecast in this region had the highest miscalibration explains this high
improvement after postprocessing. Similar plots to Fig. 5.7 for higher accumulation of
rainfall, i.e., 48-hour and 120-hour (Figs. A.8 and A.9), show a similar trends in the
different regions. It is worth noting that with larger aggregation, the BS (CRPS) values
get better (worse) as the occurrence mismatches (absolute errors) reduce (grow) (Table
S2 in the Suppl. Mat.).
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Figure 5.7: Progression of the BSS and CRPSS over lead-time for 24-hour accu-
mulation of rainfall for the four regions (cf. Fig. 1.1) in EEA. The line plots show
the percentage of grid-points with positive skill scores relative to all the grids in
the particular region, with the black and red being for the raw and postprocessed
reforecasts, respectively. The box plots show the distribution of the actual skill scores
in the region, with yellow line denoting the median skill score for the raw reforecast
with the red line denotes the median skill score of the postpreocessed reforecast. There
are 12, 63, 8 and 24 grid-points in the Uganda (UG), Congo basin (CN), East African
Coast (EAC) and Ethiopian highlands (ETH), respectively. Taken from Ageet et al.
(2023), submitted to Weather and Forecasting.

Generally, longer temporal aggregations of precipitation show better BSS values (Fig.
5.8a). This is expected as the error due to time mismatches is gradually reduced.
However, it should be noted that this is not the case in all regions, for example over
Uganda and Ethiopian highlands, where the skill scores of the 120-hour raw and
postprocessed reforecasts rank lowest in performance (Fig. A.10). Similar findings
were seen in Vogel et al. (2020), especially in dry areas. They reasoned that 5-day
accumulations increased the number of 5-day dry periods in the observation while
doing the opposite in the forecasts. We concur with their reasoning that accumulating
precipitation for longer time range increases the observation-reforecast mismatches for
that accumulation in some regions. Similarly, the model’s ability for rainfall amounts
also generally improves with increase in the temporal aggregation (Fig. 5.8b).
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Figure 5.8: Pecentage of grid-points with positive BSS and CRPSS in the raw and
postprocessed reforecast for 24-hour, 48-hour and 120-hour accumulation of rainfall
averaged over the whole study domain for the period 2001–2018 and increasing lead-
time. Note that the x-axis is in "24-hour" interval. For the longer aggregations, the
data points lie in the middle of the 24-hour ticks, e.g., day1-2 accumulation data point
is located at 1.5 days (the middle point of day1–day2) and day1–5 accumulation data
point is at 2.5 days (middle point of day1–day5). Taken from Ageet et al. (2023),
submitted to Weather and Forecasting.

5.2.3 Assessment based on conventional rain gauges

Because rain gauge measurements are often regarded as the ’truth’, we analyse the
performance of the reforecast against available gauge data over Uganda. Three grid-
points (cf. Fig. 1.1) satisfied the set conditions and the stations used are listed in Table
S1 in the supplement. The statistical methods applied are similar to those used in the
previous section.

The ensemble forecast more often than not predict occurrence of a rainy day with
certainty, i.e., probability of precipitation (PoP) value of 1.0, especially for the Lake
Victoria region (Fig. 5.9). Based on the ensemble mean, it rains more in the ensemble
reforecast than in IMERG and the gauges (numbers in the top-left of Fig. 5.9). For most
days, the observations agree on occurrence of rain (highest frequency of grey shading).
However, IMERG has a higher frequency of rainy days compared to the gauges (higher
frequency of blue- compared to red-shaded days). This is further highlighted in the
reference forecasts; the EPC15 based on IMERG (blue dotted lines) has higher PoP
values compared to the EPC15 based on gauges (red dotted lines) in all the three regions.
Despite the difference in magnitude of the PoP, both reference forecasts reproduce well
the annual seasonal cycle of the rainfall in the different regions.

Postprocessing using IDR modifies the PoP of the forecast, bringing the values towards
the EPC15 curves. The IMERG-based postprocessed forecast (green line) shows very
little difference though, with most days having PoP value of 1.0, especially during
the rainy seasons in the Lake Victoria region. The similarity between the raw and
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Figure 5.9: Probability of precipitation (PoP) for 24-hour rainfall accumulation
evaluated at three grid-points with four gauges (cf. inset of Fig. 1.1) at a rainy-day
threshold of 0.2 mm for the different data sets; EPC15 created from IMERG (blue
dotted line) and gauges (red dotted line), IDR-postprocessed forecasts using IMERG
(green line) and gauge (orange line) observations, and the raw ensemble forecast (black
dots). The shading shows when a rainy day was observed in the gauge only (red),
IMERG only (blue) and in both gauge and IMERG (grey). The numbers on the top
left corner are the counts of the rainy days in the gauge, IMERG and the ensemble
mean. Note that only the first 100 out of the 105 reforecast in the year are shown.
Taken from Ageet et al. (2023), submitted to Weather and Forecasting.

postprocessed forecasts may be due to the fact that, just like in the reforecasts, it rains
very frequently in IMERG too, i.e., 87%, 77% and 89% of the time in Lake Victoria, Lake
Kyoga and western Uganda regions, respectively, for the year 2001. The gauge-based
postprocessing (orange line) modifies the raw forecast to a larger extent compared to
IMERG, likely because of the larger differences between the occurrence and amounts of
precipitation in the observation and the forecast. We also note that the observation and
forecast converge with increase in the number of stations at a grid-point. Note that here
we show only the PoP of 2001 as it is representative of the other years (i.e., 2002–2018).

The BSS and CRPSS of the raw and postprocessed forecasts is variable in the three
regions, with one common characteristic, that is, the depreciation with lead-time (Fig.
5.10). The best (worst) skill scores are depicted in the Lake Kyogo (Lake Victoria)
region for both occurrence and amount of rainfall. The scores are positive, especially
the BSS in Lake Kyoga and western Uganda regions, being 35% better than EPC15 at
1-day lead-time. The reforecast perform better for rain occurrence detection compared
to accuracy of amounts (i.e., BSS > CRPSS). The CORP decomposition of the BS
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shows that the miscalibration of the raw forecasts is worst for the Lake Victoria region
and the discrimination ability of the forecast is best in the Lake Kyoga region (Fig.
A.11). After postprocessing, the largest improvement in BSS/CRPSS is unsurprisingly
seen in the Lake Victoria region because IDR mainly reduces the miscalibration which
was largest in this region. In Lake Kyoga and western Uganda, the improvement are
smaller due to the initially low miscalibration in these regions.
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Figure 5.10: Skill scores for raw (solid lines) and IDR postprocessed (dashed lines)
reforecasts for 24- (blue line), 48- (green line) and 120-hour (red line) rainfall accumu-
lation in the three regions of Uganda relative to EPC created with gauge precipitation
data. Taken from Ageet et al. (2023), submitted to Weather and Forecasting.

5.3 Discussions and Conclusions

The study evaluated the skill of rainfall reforecasts from ECMWF against IMERG
and gauge observations over EEA for the period 2001–2018. The analysis was done
on multiple spatio-temporal aggregations. The reforecasts were analyzed using several
verification methods in deterministic and probabilistic terms. The ME and MAE were
used to assess the bias and accuracy in the deterministic forecasts, while BS and CRPS
assessed the predictive performance of the ensemble reforecast. The reliability diagrams,
ROC curves and AUC values were used to asses calibration and discrimination ability of
the reforecasts. The skill was assessed using the BSS, CRPSS and AUCS, all computed
relative to EPC15. Further, the raw reforecasts were postprocessed to correct the
miscalibration, and the resulting forecasts were evaluated using the same verification
methods as for the raw reforecasts. The main findings of the study are as follows:

1. The reforecasts are biased, with overestimation of rainfall amounts over moun-
tainous regions. This overestimation is more pronounced during the rainy season.
Moreover, the absolute error increases in all seasons with increase in the rainy
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day threshold. The overestimation of rainfall observed in the ECMWF hindcasts,
especially during the rain seasons and over raised topography agrees with other
past studies. de Andrade et al. (2021) and Endris et al. (2021) also showed
overestimation over most parts of Africa and Greater Horn of Africa, respectively.
They also noted that the overestimation was most pronounced during the rainy
season. Overestimation was also shown by Stellingwerf et al. (2021) over Ethiopia,
especially for the higher intensity amounts, although they used the ECMWF
operational forecasts. As pointed out earlier, the overestimation may not be solely
due to model errors since IMERG has also been shown to underestimate warm
rain in this region.

2. The raw reforecasts are potentially skillful, being able to discriminate between
events and non-events up to day 14, depending on location. This potential skill is
translated into positive skill, especially over land with positive BSS and CRPSS,
depending on location, lead-time and temporal aggregation. The improvement of
the raw reforecasts relative to EPC15 of about 30% (i.e., BSS and CRPSS values of
0.3) in some areas. However, the BS and CRPS values are largely not significantly
different from those of the EPC15. The fact that ECMWF reforecasts are skillful
confirms results from previous studies which showed that precipitation in this
region has higher predictability compared to other regions in Africa and the model
is better compared to other models over the region (de Andrade et al., 2021). We
also note that the skill is dependent on the season, being best in the DJF and
MAM, followed by SON and worst in JJA. This temporal dependence of skill has
also been shown by other verification studies in the region (e.g., de Andrade et al.,
2021; Endris et al., 2021). We also see that although the skill for rainfall amounts
(CRPSS) is highest in the MAM and SON, the magnitude is lower than that of
the BSS in corresponding seasons. However, we also note that on average, about
47% (44%) of the grid-points had negative BSS (CRPSS) relative to EPC15. This
low or negative skill supports findings in the tropics (Haiden et al., 2012; Vogel
et al., 2018, 2020).

3. The reforecasts are subject to biases and calibration errors. Postprocessing using
IDR substantially reduces the miscalibration, hence boosting the skill with a
50% improvement relative to EPC15 for most grid-points especially for rainy day
occurrence in MAM, DJF and SON seasons. Past studies suggested and showed
the benefit of postprocessing (Vogel et al., 2018, 2020; Schulz and Lerch, 2022).
We also find that postprocessing the reforecast using IDR considerably improved
the BSS and CRPSS over EEA by an average of 82% and 67%, respectively. The
largest improvements occur in regions with the highest miscalibration.

4. The analysis against gauges confirms overconfidence of the reforecasts and the
improvement after postprocessing. However, it is clear that rainfall in the model
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and IMERG occurs more frequently compared to the gauges. Increasing the gauge
network helps reduce the bias, pointing to the common problem of point versus
gridded data sets comparisons. In our case, we saw an improvement in skill when
the number of gauges was increased. We used four gauges in a grid-point which is
far from ideal given the 1.5°×1.5° resolution of the reforecasts. However, given
the general lack of good and consistent gauge networks in this region, the four
gauges in a grid-point is a fair number and provided valuable insights into the
skill of the reforecasts.

5. The skill of the reforecasts varies spatially in the study domain, supporting findings
of Endris et al. (2021) and de Andrade et al. (2021). The analysis at the different
regions revealed that the best performance was over the raised areas of Ethiopian
highlands and Uganda. This is partly due the model being able to represent
orographically triggered rainfall, and the fact that the convection here is often
connected to larger scale signals like MJO (e.g; Pohl and Camberlin, 2006a) which
have higher predictability (e.g., Vitart, 2017; de Andrade et al., 2021; Specq and
Batté, 2022). The lowest skill scores were over the East African Coast, mainly due
to the poor calibration. Over Congo basin, the skill was also poor, owing to the
low discrimination ability of the model. The low skill at low-lying regions like the
Congo basin has been seen been attributed to the model’s struggle to represent
convective rainfall (Marsham et al., 2013; Birch et al., 2014; Vogel et al., 2018).
The rainfall triggers are stochastic (A. R. Satheesh (2023), in review), limiting
the predictability. We acknowledge that although the poor skill especially at the
coast is partly due to the model struggles, it has been suggested that IMERG, the
observation struggle with warm rain retrieval at the Coast (Vogel et al., 2020),
and over high altitudes like mountains over East Africa (e.g., Diem et al., 2014;
Monsieurs et al., 2018; Ageet et al., 2022). The analysis against gauges over the
Uganda domain further highlight how variable the performance of forecasts can
be even over small domains. This apparent variation in skill emphasizes the need
for validation studies to ascertain how the model performs in specific regions and
not generalize.

This study has highlighted that raw reforecast have skill especially over high altitude
areas which is potentially beneficial to meteorological services in the region. However,
because the forecasts are biased and uncalibrated, postprocessing is necessary if the
forecasts are to offer more meaningful information. Here we used only one reforecast
from the ECMWF centre as this has been shown to be the one of, if not the best, in
the region. However, studies have suggested that using multi-forecast ensemble mean
provides the best outcome (Stellingwerf et al., 2021). This would have the benefit of
increasing the ensemble size, especially for reforecasts which often have a limited number
of members (e.g., only 11 in our case), hence, increase the spread of the reforecast. We
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also tested one novel postprocessing approach, other classical approaches like ensemble
model output statistics (EMOS) or Bayesian model averaging can also be applied.
Additionally, machine learning approaches have the potential to further improve the
quality of the postprocessed forecasts with the ability to incorporate more information
than ensemble forecasts of precipitation (Schulz and Lerch, 2022). Given the coarse
resolution of the reforecast, it would also be interesting to see how the skill compares if
more stations than the four stations used here are included in a grid-point. Studies like
Macleod et al. (2021), de Andrade et al. (2021) and Specq and Batté (2022) have shown
that skill is regime-dependant in this region. As a next step, we intend to stratify the
skill shown here based on known sources of predictability in the region, namely, MJO,
IOD and Kelvin waves.
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6. Influence of climate drivers on
forecast skill

6.1 Overview

Based on the results of verification of the skill of the ECMWF reforecast in the previous
chapter, it is clear that the performance of the forecasts varies spatio-temporally. It
is also clear that the EEA region’s weather and climate may be modified by a range
of climate drivers. As suggested in the literature review chapter, these drivers account
for the variation in both amounts and frequency of rainfall, and likely the skill of the
forecasts too. It is therefore tempting to investigate the role the drivers play in rainfall
modulation. More importantly, for a forecasting perspective, the stratification of skill
based on prevailing weather and climate drivers may indicate sources of predictability
which may be utilisable by forecast users.
In this chapter the influence of climate drivers on the rainfall received at different regions
of EEA, and consequently on the forecast skill seen in the previous chapter is analysed.
This chapter is meant as a preliminary, but not exhaustive investigation of the role of
climate drivers on variability in the rainfall amount received (based on observations)
and skill scores of the reforecasts computed in the previous chapter.

The methods used will be introduced in the next section, then the results will be
presented and explained in section 6.3. Finally, conclusions and discussion section wraps
up the chapter.

6.2 Methods

6.2.1 Wave Filtering

Because EWs propagate zonally in space and time, they can be tracked along the
longitude-time spectrum. The propagation is often displayed in a Hovmoeller plot. In
this work, four waves types; MJO, Kelvin, MRG and ER have been filtered using the
wavenumber-frequency (i.e., space-time 2D domain) filtering technique proposed by
Takayabu (1994) and Wheeler and Kiladis (1999). The steps followed are summarised
as follows; first, the field to be filtered, IMERG in this case is de-seasonalised to remove
the first three harmonics and avoid aliasing (Wheeler and Kiladis, 1999; Knippertz et al.,
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2022), the symmetric and antisymmetric components are then computed by adding
and subtracting the signals in the corresponding latitudes in the two hemispheres and
divided by two, next, the 18-years field (de-seasonalised IMERG) is broken into 96-days
segments that overlap by two months. For each segment, the mean and linear trend
are removed and the data tapered by zeroes to avoid signal leakage. The segmentation
above in turn avoids data loss due to tapering. In the next step, complex FFTs are
performed in longitude for each latitude and each time, followed by further FFTs to
obtain k − ω for each latitude. The k − ω are averaged for all the segments before
summing over all the latitudes gives a smooth background spectrum. To obtain the
peak power of the individual waves (cf. Fig. 2.8), an inverse FFT is performed taking
into consideration only the Fourier coefficients of the specific waves (see Table 2.1) while
setting the other windows to zero. Details of the method can be found in Wheeler and
Kiladis (1999).

6.2.2 Local phase-amplitude diagrams and creating composites

In order to characterised the waves at each location and time, indices are developed,
such as the commonly used global RMM index of Wheeler and Hendon (2004). Although
this method has the advantages of showing signal propagation of the MJO with minimal
noise (Schlueter et al., 019b), they may not precisely depict the behavior of the signal
at specific locations. Therefore, local phase-amplitude indices are generated for the
different longitude points of interest using the method introduced in Riley et al. (2011)
and has since been applied in many other studies (e.g., van der Linden et al., 2016;
Schlueter et al., 019b). The filtered fields, which are usually normalised, are plotted
against their local time derivatives. Based on the phase angle and amplitude on a given
day, composites of data are constructed. The composites are constructed for each of the
eight defined phases, with phase 5 (phase 1) having positive (negative) anomalies, hence
they are termed wet (dry) when the filtered field is precipitation (IMERG in this case).
Phases three and seven are neutral, while the rest are transitional phases. A phase is
said to be inactive when the amplitude is less than one standard deviation (Schlueter
et al., 019b). Plotting a scatter displays the transition of the wave in a circle across the
different phases over a period of time. The track followed is especially smooth and clear
for the slow moving signals like the MJO.

6.2.3 Rainfall modulation

To assess the modulation of rainfall by the EWs, composites of rainfall data is created
based of the local phases described in the previous section. Only dates when the phase
is active (amplitude >1) are considered. After creating the composites of IMERG data,
the data is further split into the different seasons (i.e., DJF, MAM, JJA and SON).
The seasonal anomalies are plotted for the whole domain to show which areas have
enhanced or reduced rainfall for a given EW during a specific phase. The mean daily
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rainfall anomalies for each of the four regions demarcated in Fig. 1.1, i.e., Uganda (UG),
Congo Basin (CN), East African Coast (EAC) and the Ethiopian highlands (ETH) are
computed in order to quantify the modulation.

6.2.4 Regime-dependent skill

After assessing the modulation of rainfall by the EWs, their impact on the capability
of ECMWF reforecast to predict rainfall over EEA is analysed. To ensure that results
are robust, only waves that strongly modulate rainfall are considered for this analysis.
Secondly, the analysis is done for locations where the modulation is strongest for a given
wave. Just like in the previous section, composites of the skill score (BSS and CRPSS)
in different active phases of the waves are analysed. The skill scores used are those
computed in chapter five.

6.2.5 Role of the Indian Ocean Dipole

In a similar fashion to the waves, the role of the IOD in modulations of rainfall over EEA
is briefly analysed. Moreover, since IOD and ENSO have a large co-variability, with the
former contributing most of the variability during fall an early winter (IPCC, 2021).
Therefore, by assessing IOD, ENSO is implicitly assessed. The daily rainfall accumulation
and reforecast skill scores are stratified into days of positive, neutral and negative IOD
index. Because IOD predominantly affects the short rains in SON over East Africa (e.g.,
Black et al., 2003), only this season is considered for this analysis. The IOD indices are
taken from NOAA website (https://stateoftheocean.osmc.noaa.gov/sur/ind/dmi.php).
During the period considered in this work (i.e., 2001–2018), the negative phase of the
IOD happened in only two years (2010 and 2016). Therefore, the analysis was done for
two SOND seasons, i.e., two years (2006 and 2015) with positive, two years (2009 and
2008) of neutral and the two years of negative IOD indices.

6.3 Results

6.3.1 Wave filtering

Figure 6.1 shows the propagation of the waves in the MAM season of 2002 based on
filtered IMERG daily rainfall for the latitude band 15°S and 15°N. This year and season
were chosen because the MJO amplitude over EEA was high in 2002, and MAM is the
most important rainy season across most of EEA. The MJO and Kelvin wave propagate
eastwards, while the MRG and ER propagate westwards (not shown). The MJO is
the slower moving signal at a speed of about 7 ms-1, while the Kelvin wave is faster,
propagating at about 12 ms-1. Both the MJO and Kelvin wave modulate rainfall quite
strongly, with the anomalies ranging between -10–12 mm d-1 and -15–18 mm d-1 for
MJO and Kelvin, respectively. These characteristics of the individual waves seen here
agree with what is known from theory (e.g., Matsuno, 1966; Takayabu and Nitta, 1993;
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Wheeler and Kiladis, 1999) and what has been shown in multiple studies of MJO and
EWs activity (e.g., Schlueter et al., 019b; Knippertz et al., 2022; Yang et al., 2021).
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Figure 6.1: Hovmoeller plots of IMERG daily rainfall filtered for MJO (a), and
Kelvin wave (b) during the MAM season of 2002. The filtering is done using the
wavenumber-frequency approach of Wheeler and Kiladis (1999). The anomalies are
computed against the de-seasonalized 2001–2018 climatology. The blue (red) shading
imply increased(suppressed) rainfall at the specific longitude and date. The blue and
black dotted lines drawn at 23°E and 33°E are points over EEA and where the local
phase-amplitude diagram are based. These two points represent Uganda and Congo,
respectively.

Figure 6.2(a) shows the propagation of the MJO through the eight phases defined at
longitude 33°E. During the MAM season of 2002, the MJO was mainly active, with
its amplitude being greater than one standard deviation most of the days. The wave
is mostly in the positive (negative) phase in April (May). The impact of the wave on
rainfall amount received can be seen in Fig. 6.2b, whereby there is a positive (negative)
anomaly in the order of 10 mm d-1 during phase 5 (phase 1) which is the wet (dry)
phase (Riley et al., 2011; Yasunaga and Mapes, 2012; van der Linden et al., 2016;
Schlueter et al., 019b). Although studies like Berhane and Zaitchik (2014) and Vashisht
and Zaitchik (2022) suggested that the impact of MJO is suppressed during April, this
was contrary in 2002 with the highest modulation seen in this month. One possible
explanation for this discrepancy could be the fact that these studies used the global
RMM indices (Wheeler and Hendon, 2004). But could also be simply due to the fact
that MJO varies monthly but also annually (Suhas and Goswami, 2010). Similar plots
can be made for the Kelvin wave. However, because it is a fast moving signal, the points
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are random and do not smoothly trace a track for daily data as in the case of MJO.
With shorter temporal accumulations, e.g., 3-hourly or 6-hourly, the Kelvin wave track
is slightly smoother as can be seen in Yang et al. (2021) (their Fig. 10).

(a) (b)

Figure 6.2: a) Local MJO phase diagram for filtered IMERG rainfall at 33°E (black
dotted line in Fig. 6.1) against the time derivative at 33°E. The time period considered
is the same, MAM season of 2002. The corresponding modulation of rainfall at this
point during the period is shown in (b). Phase 5 (mostly occurred in April) is wet
while phase 1 (mainly in May) is dry.

6.3.2 Rainfall modulation by equatorial waves

Following the phases identified in the previous section, composites of IMERG rainfall
were constructed to analyse how the waves modulate rainfall amounts in the region.
Because of its importance, mainly the results of the MAM season are shown. Results
for the other seasons are shown where necessary.
Figure 6.3 shows the rainfall anomalies in MAM for composites of the dates falling in
the different MJO phases defined at 33°E (the black line in Fig. 6.1). The composites
are based on the whole 2001–2018 period. Note that only dates when the MJO is active
are considered, giving between 113 and 160 days in a single phase. It can be seen that
the rainfall anomaly varies quite a lot with location and phase. During phases 1–3, the
region is largely drier than normal while in phases 4–6 most areas, especially in the
eastern part of the study domain are wetter than normal. The peak positive (negative)
anomaly is in phase 2 (phase 5). The anomalies vary from more about -4 to 6 mm d-1

based on regional daily averages (numbers in bottom left corner of Fig. 6.3). During
the wet phase, the highest modulation is over the East African Highlands, consistent
with finding of Pohl and Camberlin (2006a), Pohl and Camberlin (2006b), Berhane and
Zaitchik (2014), and Vellinga and Milton (2018). These previous studies also explain
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that during the wet phase of the MJO, moisture from the Indian Ocean is advected
towards East Africa leading to enhanced convection. The propagation of the MJO
eastward can be inferred from phase 3 through to phase 7 (Fig. 6.3).

Figure 6.3: Rainfall anomalies of MAM rainfall in the eight phases of MJO defined
at 33°E. The numbers at the top right corner are number of days available in a given
phase indicated at the corresponding top-left corner. The numbers at the bottom left
are region-averaged daily rainfall anomalies.

Similarly, Figure 6.4 also shows rainfall modulation but by the Kelvin wave. The local
phases are determined at 23°E (the blue line in Fig. 6.1), which represents Congo, for
the same period, i.e., MAM season of 2002. Similar to MJO, each phase has between
124 and 150 days. Phase 5 is the wet while phase 1 is dry. The fact that Kelvin wave
modulates rainfall supports findings of Mekonnen and Thorncroft (2016) and Ayesiga
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et al. (2021). The later noted that the Kelvin wave modulates rainfall by as much as 5
mm d-1. These values are comparable to the results achieved here (maximum of 7 mm
d-1 over Congo). One stand out characteristic of the Kelvin wave over the region is that
its impacts on rainfall variability is very strong and localized. By eye and comparing
the numbers in the average regional anomalies (numbers in the lower-left corner), the
difference in modulation over the Congo compared to other regions, and the MJO (cf.
Fig. 6.3) are large. Ayesiga et al. (2022) showed that the Kelvin wave has one of its
peak activity at 10°-20°E, longitudes were Congo partly lies, the second peak being over
the Indian Ocean. Since the Kelvin wave is more constrained to the equator compared
to the other EWs, it is not very important at off-equator locations like ETH.

Figure 6.4: Same as Fig. 6.3 above, but for Kelvin wave phases defined at 23°E
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Rainfall modulation by the MJO and Kelvin waves happens in other rainfall seasons
too (Fig. 6.5). Clearly the waves are dominant in different locations; the Kelvin wave
being stronger over Congo basin while the MJO over Uganda and the EAC.
In MAM, the MJO affects rainfall in all regions, with the smallest rate of modulation
being over the Ethiopian highlands (red line). This is perhaps not surprising given
that MJO is also centred at the equator where its strongest impacts are felt. The
peak modulation is generally in phase 5 (also seen in the Fig. 6.3) when daily rainfall
accumulation deviate by as much as 5 mm d-1. This variation concurs with what has
been reported in previous studies. Pohl and Camberlin (2006b) estimated that 44% of
rainfall variability during the wet season can be attributed to MJO. During the JJA
season, MJO seems to have less impact on rainfall. This is consistent with studies of
Berhane and Zaitchik (2014) and Vashisht and Zaitchik (2022) which also showed that
the MJO is mostly pronounced in March, May, and November–December months.

The Kelvin wave strongly modulate rainfall over Congo (magenta lines) in all seasons
in equal measure. This is agreement with Ayesiga et al. (2022) who showed that the
Kelvin wave is active all year round. The rainfall increases by ~7 mm d-1 during phase
5 and decreases by ~5 mm d-1 in phase 1 compared to the climatology. Again, these
values are similar to the 5 mm d-1 modulation in Ayesiga et al. (2022). The effect of
Kelvin waves on rainfall is smallest over the Ethiopian highlands, most likely due to
its being further away from the equator. Similarly over the EAC, the effect is small,
except in the MAM season when rainfall is reduced by ~2.5 mm d-1 in phase 4. Over
Uganda, the Kelvin wave modulates rainfall substantially, especially in the wet seasons.
The highest modulation is in MAM when rainfall is modulated by as much as 5 mm d-1

in either directions depending on the phase (Fig. 6.5f).

6.3.3 Variation in reforecasts skill

Having confirmed that EWs, specifically, the MJO and Kelvin waves modulate rainfall,
the next logical step is to assess their influence on the skill of reforecasts. To do this,
the skill calculated in the previous section is composited in a similar fashion to IMERG
rainfall in the previous section. Given the reforecasts analysed were initialised twice
weekly, fewer dates per phase, i.e., between 26 and 42 days per season. Like for the
rainfall modulation, only days when the waves are active (>one standard deviation) are
considered.

Figure 6.6 shows variation of the BSS amd CRPSS with the phase of MJO and Kelvin
wave defined at 33°E longitude. In all the seasons, the wet phases have higher scores for
rainfall occurrence (Fig. 6.6a–d) compared to the dry phases. The best skill scores are
in phase 5, the phase where the highest positive modulation of rainfall happens. The
Kelvin wave does not vary skill of rainfall occurrence in this location (blue line is almost
flat). The improved BSS values for MJO are likely due to the increased frequency of
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Figure 6.5: Variation of rainfall anomalies averaged over the four regions in EEA
during the different phases of MJO and Kelvin wave. Note that the phases are defined
at locations where the wave impact is stronger compared to other regions in the study
domain, i.e., 33°E and 23°E for MJO and Kelvin wave, respectively.

rainfall occurrence, which in turn increases the hit rate, hence, improved Brier scores.
After postprocessing (dotted lines), the skill improves in all the phases with the highest
improvement also in the wettest phases, further strengthening the argument made in
the previous sentence. Averaging the scores over all the seasons gives a general picture.
The predictability of rainfall occurrence is improved over Uganda region when the wet
phase of the MJO prevails. On average, the difference in BSS between the wet and
dry phase is ~0.2. Similar findings where shown by Specq and Batté (2022) who also
found that the MJO improved the predictability of rainfall occurrence. They found that
this improvement was due to an increase in the hit rate resulting from a higher rainfall
intensity. Also of note is the generally better scores in DJF and JJA seasons, consistent
with the results in chapter five of this thesis.

The skill for rainfall amounts assessed using the CRPSS (Fig. 6.6e–h) shows that the
MJO does not have an obvious influence on skill. The score is largely the same in all
the seasons (almost flat red line in the bottom raw). This could be because most likely
the increase in rainfall intensity seen IMERG in Figure 6.5 is matched in the reforecasts.
However the Kelvin wave seems to vary the CRPSS. A closer look reveals that the skill
is best in phase 4, when the rainfall is negatively modulated by the Kelvin wave over
Uganda (cf. Fig. 6.5e–h, the black line). This suggests the reduced rainfall during phase
4 of the Kelvin wave over Uganda means, lower biases, hence higher CRPSS. The skill
changes by a maximum of ~0.15 between the dry and wet phases.
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Figure 6.6: Composites of the BSS and CRPSS during the eight phases of MJO
(red line) and Kelvin wave (blue) line, with the phases locally determined at the 33°E
(black line) in Fig. 6.1. The solid lines are the raw skill and dotted lines for the
postprocessed skill scores.

Figure 6.7 shows the influence of the MJO and Kelvin wave on skill scores over Congo
area (23°E). The Kelvin wave is more dominant over this region compared to the other
EWs and MJO, confirming the results in section 6.3.2. For rainfall occurrence, the
BSS (Fig. 6.7a–d) also is better in phases where rainfall is enhanced. The maximum
positive rainfall anomaly and skill, both occur in phase 4. This strengthens the results
seen in Figure 6.6, and the suggestion that enhanced rainfall means more frequent
rainfall in both the reforecasts and observation that result into heightened hit rate. One
striking observation here is the fact that contrary to expectation, postprocessing does
not improve the score during the wet phase. Score for the postprocessed reforecasts
are better during the dry phase, although the anomaly is almost zero. A possible
explanation could be that over the Congo basin, miscalibration was minimal (cf. Fig.
5.5). Because IDR only corrects for miscalibration of the forecast, postprocessing does
not improve the reforecasts in this region. The better skill in the raw reforecast could
possibly be because the postprocessing process included eight surrounding grids to train
the model at specific grids, which may have introduced error instead.
The CRPSS pattern is similar to that of the BSS for the Kelvin wave at the Congo
location too (Fig. 6.6). Again, the MJO does not modulate the CRPSS, supporting
the early suggestion that the influence of MJO over the Congo basin is less pronounced
compared to that of the Kelvin wave.
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Figure 6.7: Same as Fig. 6.6 but for the phases drawn at 23°E (blue line in Fig. 6.1.

6.3.4 Impact of Indian Ocean Dipole on Reforecasts skill

As explained in Chapter two, rainfall varies at interannual time scales too. IOD has been
cited as one of the variability modes responsible. Figure 6.8 shows rainfall anomalies
and reforecasts skill in the three phases of the IOD. Only the short rainy season (defined
as September–December, SOND, for this analysis) since it is the one most impacted by
IOD (e.g., Black et al., 2003; Hirons and Turner, 2018).

The IOD modulated rainfall in EEA (first column), especially over UG and the EAC
(Figs. 6.8a,g). During the positive phase (blue shading), there is a positive anomaly
in the SOND rainfall while during the negative IOD phase, the rainfall is reduced. In
the neutral phase, the rainfall anomaly is in between that of the positive and negative
phases. Similar findings have previously shown the role of IOD in rainfall modulations
(e.g., Black et al., 2003; Hirons and Turner, 2018; Wainwright et al., 2021; de Andrade
et al., 2021). For example de Andrade et al. (2021) found that rainfall in the SON
season is correlated to IOD, while Wainwright et al. (2021) show that the extreme
rainfall that caused floods over East Africa between October 2019 and January 2020
were as a result of a strong IOD event. Over the Congo basin, the impact of IOD is
very negligible. This could be because this region is relatively far away from the Indian
Ocean, hence, the moisture advection inland does not reach the region. Over Ethiopia,
the IOD may also be relatively insignificant given that median of the rainfall anomalies
in the three phase lie almost perfectly along zero (Fig. 6.8j).
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The second and third columns show the BSS and CRPSS composites for the three IOD
phases, respectively. The skill scores are for the raw reforecats that were computed in
the previous chapter. The BSS values in the two regions where the rainfall was visibly
modulated, i.e., UG and EAC better during the positive phase. Just like for the cases
of Kelvin wave and MJO, the enhanced frequency most likely leads to a higher hit rate
during this phase, hence, enhancing the BSS. On the other hand, the skill is worse for
the negative phase in both locations. de Andrade et al. (2021) found that IOD improves
reforecasts associations over EEA during the SON season. However, they also note
that when the influence of interannual modes of variability (i.e., IOD and ENSO) was
removed, the forecast still performed well, implying that forecast quality does not solely
depend on these modes of variability.
The CRPSS values also vary, being worse in the positive phase and better in the negative
phase. Just like for the MJO and Kelvin wave, the wet phase increases the frequency
and intensity of rainfall, which in turn increases the error between the reforecasts and
observations on days with enhanced rainfall. These results despite the small sample,
suggest that the IOD leads to variation of the reforecasts skill.

6.4 Discussion and Conclusions

This chapter analysed the role of climate drivers, specifically, EWs, the MJO and IOD
on the skill of rainfall forecasts over EEA. The ability of the drivers to modulate rainfall
was first analysed. Then the impact of the drivers on reforecasts skill was considered.
IMERG rainfall accumulations and skill computed in the previous chapter were stratified
based on the different phases of the climate drivers. MJO and EWs were identified
by filtering IMERG daily rainfall using the wavenumber-frequency spectrum method
of Wheeler and Kiladis (1999). Then the local phases at two locations in EEA were
defined.
The influence of IOD on the rainfall and skill of reforecast was also tested. The results
are limited to checking the variation of the rainfall and skill already computed in the
previous chapter and not doing a detailed diagnostic analysis of regime-dependent skill
which is beyond the scope of this project. Findings from this analysis are summarised
as follows:

1. EWs activity prevails over EEA at different time scales and with varying effects.
The waves modulate rainfall intensity and frequency at different levels, with the
most prominent being MJO and Kelvin waves. The fact that these two are most
dominant over EEA is in line with theory. The MRG and ER are antisymmetric
and relatively further away from the equator (e.g., Matsuno, 1966; Wheeler and
Kiladis, 1999) and therefore, compared to the MJO and Kelvin wave, have relatively
smaller impacts in most areas in EEA. The MJO modulate the rainfall up to ~5
mmd-1 mostly over the Eastern sector of the study domain, i.e., UG and EAC
regions. This is also in line with previous studies like Pohl and Camberlin (2006a),
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Figure 6.8: Variation of rainfall anomalies (first column) and raw reforecasts skill
(BSS in the second column and CRPSS in the last column) by IOD. The modulation
was analysed for the four regions in EEA.

Pohl and Camberlin (2006b) and Berhane and Zaitchik (2014) among others
which also showed that MJO mainly enhances convection over the East African
highlands. The Kelvin wave on the other hand is more dominant over the Congo
basin region. The wave has a stronger impact on rainfall, causing variations of ~7
mmd-1. Additionally, the wave brings similar effects on the rainfall in all seasons,
unlike MJO which is mostly inactive in JJA season. This rainfall modulation
by the Kelvin wave has also been seen in previous studies (e.g., Mekonnen and
Thorncroft, 2016; Ayesiga et al., 2021, 2022). The fact that the Kelvin wave is
active in all seasons was also shown in Ayesiga et al. (2022).
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2. The MJO and Kelvin waves influence the skill of reforecasts over EEA. Despite
the limited sample size, it can be seen that the skill scores for rainfall detection
(i.e., BSS) are higher during the wet phases of both the MJO and the Kelvin wave.
This could be linked to the fact that during the wet phase, the frequency of rainfall
occurrence is overall increased for a given sample size of dates. Hence the hit rate
is increased which translates to higher BSS values, with the difference between
the wet and dry phase being ~0.2. Similar results were seen in Specq and Batté
(2022). Other studies have also cited MJO as a source of predictability in EEA
(Macleod et al., 2021; de Andrade et al., 2021). It has also been recommended
that continuously monitoring the Kelvin wave activities over the region may be
beneficial to forecast accuracy (Ayesiga et al., 2022).
During the dry phases (1–3 and 8) of the MJO, rainfall is reduced in most parts
of EEA. The dry conditions mean the bias is small and hence the CRPSS values
are higher. On the contrary, because of lower hit rate, the BSS values are lower.

3. The IOD also modulates rainfall over EEA. The modulation is lower than that
seen for MJO and Kelvin wave, hardly reaching 4 mmd-1. The fact that only
two years for each of the three phases of the IOD were available, and the IOD
indices in the years considered here were not the strongest, may have obscured
the influence of the IOD. However, the fact that even with these limitations,
for Uganda and East African Coast, there was some level of modulation, which
supports the general agreement that IOD modulate rainfall in the region (Black
et al., 2003; Hirons and Turner, 2018; Wainwright et al., 2021; de Andrade et al.,
2021).
In regards to the reforecasts, although not obvious, over Uganda and the East
African Coast, there is a tendency of better BSS values during the positive phase.
The CRPSS values on the other hand are worse during this phase. These findings
confirm what is observed with the MJO and Kelvin waves, that the wet phases of
the climate drivers improve rainfall detection while increasing the bias. Because the
IOD develops slowly over time, it is usually well predicted by weather forecasting
systems, and this could be another possible explanation for improved skill.

This chapter has highlighted the influence of climate drivers on rainfall variability
over EEA which in turn drives variability in the skill of the model forecasts. It seems
that when the positive phase of the driver prevails, the models have a better rainfall
prediction ability but the bias for rainfall amount increases. This information can be
useful to forecasters. Moreover, some of the drivers analysed here, MJO and Kelvin
waves propagate eastwards. Therefore, monitoring their progression should be done
to increase the forecast skill of the region. Additionally, the results suggest that the
importance of the different drivers varies spatio-temporally with the MJO dominant
over Uganda and the East African highlands, the Kelvin wave dominant over Congo and
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the IOD influencing rainfall and forecast skill over the coastal areas and Uganda region.
This study only highlighted modulation of rainfall and variation of skill when different
phases of three weather phenomenon prevail. The study does not analyse in details
the mechanisms responsible for the improved or reduced skill of the reforecasts in these
phases. Future work could be to do a detailed diagnostic analysis of rainfall and skill
variation as a result of these climate drivers. Moreover, since these drivers do not
operate in singularity (e.g., de Andrade et al., 2021), doing composites of more than
one climate driver as done in Vigaud et al. (2018) and also analysing other drivers like
the Congo air mass may yield more robust results. Finally, the nature of reforecsats,
issued only twice in a week means that only a one third of total number of days in a
year are available for analysis. If these are further selected by season and state of the
climate driver (selected only if active), the sample size shrinks even further.

97



Chapter 6. Influence of climate drivers on forecast skill

98



7. Conclusions and Outlook

The EEA region is a region which is heavily reliant on rain-fed agriculture for the
socio-economic livelihood of its population. The region is highly vulnerable to weather
and climate extremes which, in recent decades, have increased both in intensity and
frequency. This makes weather and climate information very crucial for this part of the
world. However, it is also true that the skill of the forecasts is poor and their uptake
is low. Although there are a lot of efforts toward reversing this scenario, for now, the
enormous potential of weather and climate information has not been realised in Africa.
This work therefore aimed at contributing to efforts to improve forecasts by validating
the forecasts over the region using the best available observation data sets, IMERG and
rain gauges. In particular, a comprehensive analysis of the skill of SREs and reforecasts
at different spatio-temporal aggregation was performed. Here, a summary of the main
findings and suggestions for future work are given .

7.1 Conclusions

The first aim of this work was to find the best SRE for EEA. Three questions were asked
to address this aim. These questions are answered in chapter four and are summarised
as follows:

RQ 1a What is the best performing SRE over EEA at daily, pentadal,
decadal, monthly and annual time scales?
First a thorough quality check of gauge data from around Uganda. This
quality control resulted into a unique clean and consistent rainfall data
set composed of 36 stations for the period 2002–2018, which enabled a
comprehensive evaluation of the SREs.
On the annual and seasonal time scales, CHIRPS and MSWEPv2.2 were
the best products. In general, all the SREs reproduce the annual patterns
and seasonal cycle of rainfall, albeit overestimating the annual totals in the
range of 1–9%. This result supports findings in previous studies such as
Camberlin et al. (019a), Diem et al. (2014) and Asadullah et al. (2008).
The reason for this good agreement between SREs and ground observations
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can be explained by the fact that the seasonal migration of the ITCZ is
well-captured in the products (e.g., Nicholson, 2017; Seregina et al., 2018).
Additionally, all the products use gauge observation for calibration (Awange
et al., 2015; Dinku et al., 2018).
At the daily, pentadal and decadal time scales, IMERG showed the best
performance followed by MSWEPv2.2, TMPA and then CHIRPS. Dezfuli
et al. (017a) also showed that IMERG was better than its predecessor
TMPA. They explained that the good performance of IMERG is due to
a better spatio-temporal resolution. It should be noted that, despite its
generally better performance, IMERG overestimates rainfall over regions
where convective rainfall dominates, e.g., Lake Victoria. This is because,
the PMW estimates which are the major component used in IMERG, tend
to overestimate convective rainfall (Tian et al., 2009).

RQ 1b Does the performance of the SREs vary spatially over EEA?
The performance of the SREs substantially varies with location, mainly
due to topography. For example, over southwestern Uganda, a hilly region
punctuated by valleys, the SREs struggled. Over the flatter areas of northern
Uganda, they performed better. The fact that SREs struggle over high
altitude areas like mountains has also been reported in Diem et al. (2014)
and Monsieurs et al. (2018). In southwestern Uganda particularly, a higher
false alarm rate accounted for the poor skill due to the region being located
in a rain shadow. Secondly, and perhaps a salient reason to many people, the
gauge density used for calibration, the weight assigned to these gauges and
their location, influence the spatial skill distribution, as seen mostly in the
results of MSWEPv2.2. In regions with higher gauge densities, and where
a higher gauge weight relative to the other data sources was used when
creating MSWEPv2.2, it was significantly better than where few stations
were available or low weights were applied to the gauge data. Therefore, it
is very important for SREs creators to supplement the rainfall data with
supplementary information regarding the data inputs used to create the
SRE.

RQ 1c Are the SREs capable of retrieving extreme rainfall events over
EEA and, if so, which is the best product?
The SREs struggle to retrieve extreme rainfall over the region. Indeed,
all the products, with the exception of the early version of IMERG, miss
80% of extreme daily rainfall accumulation. This substantially affects their
suitability for application like modelling return periods of very extreme
events. Products like MSWEPv2.8, CHIRPS and the early version of
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TMPA are not recommended for this purpose in this region given that
they consistently ranked worst for ability to retrieve extreme rainfall events.
Thiemig et al. (2012) and Monsieurs et al. (2018) found similar results over
African river basins and western Uganda, respectively. Possible explanations
for the poor performance of the SREs in retrieving extreme rainfall are; a)
the fact that passive microwave sensors do not record continuously over
a particular region, hence they may miss short-lived intense rainfall due
to the infrequent overpass, and b) SREs are often smoothed fields and
therefore the extreme rainfall may be averaged out. The fact that the early
version of IMERG performed best in retrieving extreme rainfall makes a
case for studies like Bitew and Gebremichael (2011), which suggested that
calibration, often done for the final version of SREs, does introduce errors.
Most times the calibration is done at monthly time scales before rescaling
to daily values, which could be a source of errors.

From the above answers, it is clear that validation of SREs before they are used is
crucial. As demonstrated above, no single product consistently outperformed the others
in all regions of the study domain and/or time scales. At the shorter aggregation time
scales, IMERG generally outperformed all the other SREs assessed here, hence it is
chosen for validating the ECMWF reforecasts. The fact that it also ranked best for
extreme rainfall events makes it an even stronger candidate.

In chapter five, results answering questions aimed at achieving the second aim of this
work were presented. The findings are:

RQ 2a Does the ECMWF deterministic reforecast correctly estimate the
intensity of rainfall over EEA?
The deterministic reforecast, here, taken to be the ensemble median, over-
estimated the next day rainfall accumulation over raised areas, especially
in the rainy seasons. The overestimation increases with a higher rainy day
threshold, meaning that the error grows as the rainfall intensities become
more extreme. Over low-lying regions such as the Congo basin, the refore-
casts underestimated rainfall. Similar findings but for weekly time scales,
were reported in de Andrade et al. (2021) over the same region and by
Stellingwerf et al. (2021) over the Ethiopian highlands. However, over the
raised areas of EEA, IMERG also struggled retrieving rainfall. This may
imply that the overestimation by the reforecast may partly be attributable
to errors in the observation data set. The fact that the overestimation
happens during the wet season is considered positive, as it demonstrates
that the model puts rainfall in the right places, albeit with some errors.
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RQ 2b Do the raw ensemble ECMWF reforecasts predict the correct
occurrence of a rainy day and rainfall amounts and are they better
than a reference forecast?
Over most land grid-points, the reforecasts correctly predicted the next day
rainfall based on a 0.2 mm rainfall occurrence threshold. There is a 30%
improvement in the detection rate compared to a reference forecast, EPC.
The fact that the ECMWF model has positive skill in this region has been
shown by other studies (e.g., de Andrade et al., 2021; Endris et al., 2021;
Stellingwerf et al., 2021). However, when tested using the DM test, the
performance of the model was not significantly different from that of EPC.
Just like the deterministic reforecast, the performance varies with season,
MAM and DJF posting the best BSS and CRPSS values, followed by SON,
and the worst performance seen in JJA. The model seems to perform better
in predicting rainfall occurrence compared to rainfall amounts, i.e., BSS
> CRPSS values for the same grids. The performance degrades with lead
time as expected. This is because, with longer lead times, the model loses
the memory gained from the initial conditions. Moreover, the model also
performs better for longer rainfall accumulations (i.e., 48-hour and 120-hour
accumulations) since any error due to temporal mismatches are reduced.
This level of skill in the models can be attributed to the better representation
of climate drivers like MJO (de Andrade et al., 2021; Vitart et al., 2017).
However for some grids, the performance of the reforecast was worse than
that of the reference forecast. Such performance supports findings of Haiden
et al. (2012) and Vogel et al. (2018) which showed poor skill in global models.
The poor model performance has mainly been linked to inadequacy of the
convection parameterization (e.g., Marsham et al., 2013; Birch et al., 2014;
Vogel et al., 2018) and the stochasticity of convection in regions like the
Congo basin (Satheesh et al., 2023).

RQ 2c Do the reforecasts have any systematic biases and can postpro-
cessing using IDR alleviate the inadequacy?
The reforecasts have biases and are overconfident. Postprocessing using
IDR substantially reduced the miscalibration. For many grid-points, the
improvement was 50% over the reference forecast, especially in the two
rainy seasons and DJF dry season in both the BS and CRPS. Counting the
number of grids with positive skill reveals that the postprocessing improved
the BSS (CRPSS) by 82% (48%). Similar improvements were seen by Vogel
et al. (2020) over West Africa. Postprocessing using the rain gauge data
shows similar results.
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RQ 2d Are there difference in the performance of the reforecasts over
the different topographical features of EEA?
The skill was generally better over high altitudes compared to the low-lying
regions. There was a northeast-southwest orientation of enhanced skill which
coincides with the location of the Ethiopian Highlands, Uganda and the
southern Congo/western Tanzania. These regions have a relatively higher
altitude in the study domain. This performance suggests that the model
correctly represents orographically triggered rainfall. Studies like Pohl and
Camberlin (2006a) also suggest that precipitation over these regions is
linked to climate drivers like the MJO, which increase the predictability
of the rain in these regions. Over the low-lying regions, specifically the
Congo Basin, the model has a very low discrimination ability. Moreover,
rainfall here is very convective and stochastic (Satheesh et al., 2023), hence
the model struggles to correctly represent it. This, together with the
well-known convection parameterization struggles of numerical weather
prediction models, magnifies the problem. Again, the analysis against
gauges over three location in Uganda reinforced this result.

Clearly there is positive skill for many land grid points, but also regions and times with
very poor skill. This underlines the variable nature of skill in the tropics. The next
logical question is: what leads to skillfulness or no-skill in the reforecast? As discussed
in the literature (chapter two), there are several climate drivers which modulate rainfall
in EEA. These, despite bringing about variability, also offer opportunity for forecasting.
Therefore, the last aim of this work was to assess the influence of different weather
regimes on the skill of forecasts over EEA. Specifically, the role of EWs including the
MJO. The research questions to achieve this third goal were answered in chapter six. A
summary is given below:

RQ 3a Do EWs and the MJO modulate rainfall over EEA and by how
much? The rainfall over EEA is variable at multiple time scales. The
EWs, specifically the Kelvin wave and MJO, play a key role in bringing
about this variability. The MJO is mainly strong in the eastern part of the
study domain, i.e., Uganda and the East African coast where, it modulates
rainfall by ~5 mmd-1 in either direction. The Kelvin wave on the other
hand is more dominant over the western part of the study domain, mostly
over the Congo basin, with a stronger modulation of ~7 mmd-1 in either
direction. The Kelvin wave over Congo is active almost all year round,
unlike the MJO that seems to be muted in the JJA season. The analysis of
the waves over the region mostly agreed with theory laid out in Matsuno
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(1966) and other related literature. The results also largely agree with
previous studies that analysed the waves over this region (e.g., Pohl and
Camberlin, 2006a,b; Berhane and Zaitchik, 2014; Vellinga and Milton, 2018;
Vashisht and Zaitchik, 2022; Ayesiga et al., 2021; Finney et al., 2019; Specq
and Batté, 2022).

RQ 3b Do EWs and the MJO influence the skill of the ECMWF refore-
casts over EEA? The activity of the climate drivers influences the skill of
the reforecasts. During the wet phases of the MJO and Kelvin waves, both
the BSS and CRPSS are better. This is because, with enhanced rainfall
frequency, the hit rate is improved which translates to higher BSS during
the wet phases (Specq and Batté, 2022). During the dry phases, the picture
is reversed with the scores being worse. However, the influence of these
waves is variable over EEA, with MJO (Kelvin waves) being dominant over
Uganda and EAC (Congo). This in agreement with past studies which
showed MJO is most dominant over the East African highlands (e.g., Pohl
and Camberlin, 2006a). Ayesiga et al. (2022) previously showed the strong
influence of Kelvin waves over the Congo.

RQ 3c Does the IOD modulate rainfall over EEA? What is its influence
on the skill of ECMWF reforecasts? The IOD modulate rainfall,
especially over Uganda and the East African Coast areas. During the
positive phase, the IOD brings more rains to these regions and consequently
better BSS and worse CRPSS values. This is consistent with previous
studies (e.g., Black et al., 2003; Wainwright et al., 2021). In the negative
phase, the reverse is true. These regions are drier and the BSS tends to get
worse while the CRPSS improves. However, the modulation for IOD is less
pronounced than that seen for the MJO and Kelvin wave.

7.2 Outlook

This thesis provided a comprehensive verification of ECMWF reforecasts over EEA,
verifies SREs, and quality checked rain gauge data for selected stations over Uganda.
Additionally, the study explores how the performance of reforecats varies when climate
drivers prevail over the domain. The results shed light on the current state of forecast
quality over EEA, giving a basis for improvement of skill. Although the verification was
comprehensive, some aspects of the forecasts skill could not be analysed as they were
beyond the scope of this study. Therefore, the following are suggested for future work
aimed at improving forecast quality:

Analysis based on finer resolution data should be done to assess variability at more
localised scales. This work is based on reforecsast data that are initialised daily and
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archived on 1.5°×1.5°grid-spacing and initialised only twice weekly. Moreover all data
sets in the S2S database have fewer ensemble members (11 for ECMWF) compared to
the operational forecasts. These few members limit the assessment of uncertainty in the
reforecasts. Therefore, the spatio-temporal resolution does not allow identification of
small-scale variation. With the computing resources getting cheaper, it is likely that
the resolution of reforecast data in the S2S data base could get higher. Another option
is to repeat the study using operational forecasts which have a higher spatio-temporal
resolution (0.25°×0.25°) and more members (currently 100) to better assess uncertainty.
The coarse resolution limited analysis with gauge data. Only four grid cells had a
reasonable number (in this case, a minimum of four) of gauges within them, validation
of the reforecasts with gauges was performed at only four grid points. An option could
be a field campaign where several gauges could be set up in order to increase the gauge
density for more robust results. Given the high variability of the rainfall and reforecast
skill, an analysis with higher resolution data would allow even finer forecast differences
to be identified, enabling improved forecasts for local weather.

The idea of multi-model forecast ensembles is one which has been suggested to improved
forecast skill (e.g., Stellingwerf et al., 2021). In this study, only ECMWF reforecasts
have been analysed. Although the reasoning behind this choice is sound, i.e., it has been
found to outperform forecast products from other forecasting centres in the region (e.g.,
de Andrade et al., 2021; Stellingwerf et al., 2021; Endris et al., 2021), it may not be the
best for all the desirable forecast attributes. Moreover, the small ensemble size problem
is dealt with if a multi-model ensemble is used. This would increase the ensemble spread
and reduce uncertainties. The obvious limitation to this approach would be how to
reconcile the different model characteristic, such as, different ensemble sizes, different
forecasting techniques used (e.g., some forecasts are produced on the fly while others
are fixed) and temporal resolution differences. However, reasonable solutions can be
found. For example in de Andrade et al. (2021), the smaller ensemble size (7) of the
NCEP model compared to ECMWF (11) was solved by including perturbed ensemble
members from one day after forecast initialization.

Further work can also consider using more than the one postprocessing method used in
this study. In this study, the advantage of postprocessing was shown at all time scales
and regions. A recent simple technique, IDR, was used mostly due to its simplicity and
it did not require prior determining of predictors (Henzi et al., 2021). Moreover, it was
shown to be competitive when compared to other postprocessing methods (Maier-Gerber
et al., 2021; Schulz and Lerch, 2022). However, it is not perfect, for example it would
not do well if the data sample is small. IDR needs a long training data set to train
the model. Therefore, testing other postprocessing approaches, for example, EMOS
or Member-by-Member postprocessing is recommended as future work. Additionally,
machine learning approaches can be tested over this region. In recent times, machine
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learning in weather forecasting has rapidly developed, supported by cheaper computing
resources. Schulz and Lerch (2022) showed that machine learning approaches resulted
in the best scores compared to classical postprocessing methods over Europe.

In this study, the regime-dependant skill analysis only focused in assessing if the skill
varies depending on specific prevailing climate drivers, specifically, MJO, Kelvin waves
and the IOD. The first step for further research would be to expand the climate drivers
by considering other climate drivers in the region. For example, since IOD and ENSO
covary, ENSO could be used to extend the assessment of the these modes of variability
to DJF when the impact of IOD has vanished. The Congo airmass is another candidate
at short to medium-range time scales, as well as the influence of topographical features
(Lake Victoria and the highlands). The current study already highlighted the role of
topography on skill, with better skill generally over higher altitude areas compared to
the low-lying areas. However, the differences were not quantified. A detailed study of
these features could be done. Lake Victoria has been shown to be a significant feature
in terms of weather modification mainly due to its strong lake-land breezes (Woodhams
et al., 2018). Exactly how it influences the skill could be analysed. Even for the drivers
analysed in this thesis, a diagnostic analysis was not done. Future work should focus
on looking at what mechanism and dynamics of these drivers lead to the reduced or
improved skill during specific phases. Finally, although the influence of climate drivers
was assessed individually, they do not occur exclusively. For example, most times and
ENSO and IOD occur at the same period to cause devastating effects as was the case in
1998. In this study, all the EWs and MJO were present in the MAM season of 2012,
which could allow generating composites of combinations of these drivers.

As a final step, most of the work shown in this thesis and other research carried out in
universities and research centres is not effective if not shared with the forecast users,
especially the National Meteorological and Hydrological Services (NMHS) in Africa.
Clearly there is predictability of weather over Africa, but this is localised. Forecasters
can benefit from this information and improve their forecasts. They can also learn the
systematic biases in the model products they use. Moreover, this study also highlighted
the data challenge over Africa which may encourage the NMHSs to be more willing
to share their data, which more often than not will not reach the GTS in time to be
assimilated in the model.
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Appendix: Figures
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Figure A.1: The mean monthly gauge-relative weights (GRWs) (2001-2018) within;
(a) IMERG and (b) TMPA. For both products the GRWs over almost all the pixel in
Uganda but L. Victoria are the same. In IMERG over L. Victoria, the GRW follows
the coastline, but this is not the case in TRMM. This difference over Lake Victoria
can be clearly seen in the anomaly plot (c). This largely accounts for dipole seen over
the lake in Fig. 3(d;e) in the manuscript.
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Figure A.2: Seasonal cycles of the 36 stations used in the study for the different
datasets. In all the stations and for all the data sets, the seasonal cycles are generally
well replicated. However, IMERG-E overestimates rainfall in almost all the stations,
especially during the rainy seasons (i.e., MAM and SON). At Buginyanya station, all
the SREs substantially underestimate monthly rainfall.
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Figure A.3: Q-Q plots for MSWEPv2.2 and MSWEPv2.8 and the in-put datasets
(IMERG-L and ERA5) used to create MSWEPv2.8 showing the distribution of the
rain rates.
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Figure A.4: Q-Q plots comparing the distribution of rain rates in GTS and non-GTS
stations for each of the SRE. The plots shows that the distribution of rainfall rates
in SREs differs from that of the RGs with the subsets of non-GTS stations differing
more severely than the GTS stations.
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Figure A.5: QQ plots showing the distribution of extreme rainfall (rainfall amount
greater than the 95th percentile of subset of rainy days subset) recorded by the SREs
at the pixel nearest to the RGs.
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Figure A.6: Same as Fig. 4.12in the main text, but for all the stations.

Figure A.7: Same as Fig. 5.1 in the main text but for normalised mean absolute
error (NMAE).

128



-1

-0.5

0

0.5

1

BS
S

UG_BSS

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-11
11

-12
12

-13
13

-14
0

20
40
60
80

100

+v
e 

BS
S

 g
rid

s (
%

)

Raw refcsts.
IDR postprocessed refcst.

-1

-0.5

0

0.5

1
CN_BSS

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-11
11

-12
12

-13
13

-14
0

20
40
60
80

100
-1

-0.5

0

0.5

1
EAC_BSS

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-11
11

-12
12

-13
13

-14
0

20
40
60
80

100
-1

-0.5

0

0.5

1
ETH_BSS

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-11
11

-12
12

-13
13

-14
0

20
40
60
80

100

-1

-0.5

0

0.5

1

CR
PS

S

UG_CRPSS

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-11
11

-12
12

-13
13

-14

Lead time (days)

0
20
40
60
80

100

+v
e 

CR
PS

S
 g

rid
s (

%
)

-1

-0.5

0

0.5

1
CN_CRPSS

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-11
11

-12
12

-13
13

-14

Lead time (days)

0
20
40
60
80

100
-1

-0.5

0

0.5

1
EAC_CRPSS

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-11
11

-12
12

-13
13

-14

Lead time (days)

0
20
40
60
80

100
-1

-0.5

0

0.5

1
ETH_CRPSS

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0
10

-11
11

-12
12

-13
13

-14

Lead time (days)

0
20
40
60
80

100

Figure A.8: Same as Fig. 5.7 in the main text but for 48-hour rainfall accumulation.
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Figure A.9: Same as Fig. 5.7 in the main text but for 120-hour accumulation.

0

20

40

60

80

100

%
 o

f g
rid

s p
os

iti
ve

 C
RP

SS

UG domain
Raw 24-hour Calibrated 24-hour Raw 48-hour Calibrated 48-hour Raw 120-hour Calibrated 120-hour

CN domain EAC domain ETH domain

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Lead time (days)

0

20

40

60

80

100

%
 o

f g
rid

s p
os

iti
ve

 C
RP

SS

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Lead time (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Lead time (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Lead time (days)

Figure A.10: Same as Fig. 5.8 in the main text but for the different regions.
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Figure A.11: CORP score decomposition for the grids used in the gauge analysis.
The columns represent the raw and postprocessed versions of the reforecasts, while
the rows are for the CORP score, miscalibration, discrimination and the uncertainty,
respectively.
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