KIT | KIT-Bibliothek | Impressum | Datenschutz

Integrated System Built for Small-Molecule Semiconductors via High-Throughput Approaches

Wu, Jianchang; Zhang, Jiyun; Hu, Manman; Reiser, Patrick 1; Torresi, Luca 2; Friederich, Pascal ORCID iD icon 1,2; Lahn, Leopold; Kasian, Olga; Guldi, Dirk M.; Pérez-Ojeda, M. Eugenia; Barabash, Anastasia; Rocha-Ortiz, Juan S.; Zhao, Yicheng; Xie, Zhiqiang; Luo, Junsheng; Wang, Yunuo; Seok, Sang Il; Hauch, Jens A.; Brabec, Christoph J.
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle of Like dissolves like, we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electric properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production.


Volltext §
DOI: 10.5445/IR/1000161650
Veröffentlicht am 23.08.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000161650
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Umfang 18 S.
Vorab online veröffentlicht am 13.05.2023
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page