KIT | KIT-Bibliothek | Impressum | Datenschutz

Automated Feature Engineering for Time Series Data

Li, Keyi 1
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Feature engineering for time series data, a critical task in data science, involves the transformation or encoding of raw data to create more predictive input features.This paper introduces a novel web framework designed to automate the labor-intensive and expertise-demanding process of time series feature engineering. The framework comprises advanced methods for automated feature extraction and selection, providing a wide range of application possibilities. A Bayesian Optimization strategy is also integrated to identify optimal features and model parameters for specific datasets, thereby enhancing prediction performance. The paper thoroughly explores the framework's design principles and operational procedures, along with validation of its effectiveness across different domains using real-world datasets.


Volltext §
DOI: 10.5445/IR/1000161671
Veröffentlicht am 25.08.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Hochschulschrift
Publikationsdatum 01.08.2023
Sprache Englisch
Identifikator KITopen-ID: 1000161671
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 71 S.
Art der Arbeit Abschlussarbeit - Bachelor
Prüfungsdaten 01.08.2023
Referent/Betreuer Zhao, Haibin
Huang, Yiran
Beigl, Michael
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page