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Abstract—A key challenge in computing convolutional neural
networks (CNNs) besides the vast number of computations are
the associated numerous energy-intensive transactions from main
to local memory. In this paper, we present our methodical ap-
proach to maximize and prune coarse-grained regular blockwise
sparsity in activation feature maps during CNN inference on
dedicated dataflow architectures. Regular sparsity that fits the
target accelerator, e.g., a systolic array or vector processor,
allows simplified and resource inexpensive pruning compared to
irregular sparsity, saving memory transactions and computations.
Our threshold-based technique allows maximizing the number of
regular sparse blocks in each layer. The wide range of threshold
combinations that result from the close correlation between
the number of sparse blocks and network accuracy can be
explored automatically by our exploration tool Spex. To harness
found sparse blocks for memory transaction and MAC operation
reduction, we also propose Sparse-Blox, a low-overhead hardware
extension for common neural network hardware accelerators.
Sparse-Blox adds up to 5× less area than state-of-the-art accel-
erator extensions that operate on irregular sparsity. Evaluation
of our blockwise pruning method with Spex on ResNet-50 and
Yolo-v5s shows a reduction of up to 18.9% and 12.6% memory
transfers, and 802 M (19.0%) and 1.5 G (24.3%) MAC operations
with a 1% or 1 mAP accuracy drop, respectively.

Index Terms—structured activation pruning, sparse DNNs

I. INTRODUCTION

Deep Neural Networks (DNNs) have been successfully
deployed in numerous areas over the last decade, from image
classification, where they outperform human doctors [1], to
assistive robotics [2]. However, the growing computational
complexity and memory requirements of DNNs pose a se-
rious challenge to computing devices, especially to embedded
systems. To keep pace with the progress, non-Von Neumann
architectures like systolic arrays or vector processors, which
use dataflow computing paradigms, have established them-
selves. Energy savings are achieved by incorporating multiple
optimization techniques like quantization and pruning [3]–
[5]. However, combining high throughput and low energy
consumption is still a major challenge yet to be solved. Since
DNNs, especially Convolutional Neural Networks (CNNs),
have large memory requirements, intermediate results are
offloaded from local into off-chip memories. The largest share
of energy consumption originates from this offloading [6].

Nevertheless, many CNN feature maps show large sparsity
in activations [7] due to the rectifier activation function.
Activation pruning exploits this sparsity, by skipping oper-
ations that do not contribute to the result. However, sparse
values in activations of CNNs have a high irregularity [8]. To
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Fig. 1: Spex and Sparse-Blox: A tool and hardware extension
to increase and exploit regular blockwise sparsity in CNNs.

prune irregular sparsity, CNN accelerators have to implement
complex and area expensive element indexing or compression
mechanisms. In contrast, regular pruning mechanisms are
cheaper and easier to implement in hardware [9].

To increase and prune regular sparsity, we propose the
DNN accelerator extension Sparse-Blox and the corresponding
exploration tool Spex. Our approach divides each activation
feature map into blocks of a given dimension, compares each
block’s sum to a threshold, and then decides whether a block
can be pruned. As shown in Figure 1, our hardware-aware
optimization and exploration tool Spex aims to find beneficial
thresholds for each layer before deployment to the hardware.
Therefore, it automatically explores the search space of the
correlation between pruned sparse blocks and the network
accuracy. After threshold definition, the low-overhead hard-
ware extension Sparse-Blox applies our approach to common
DNN hardware accelerators. It enables pruning of entire blocks
in activations. This makes compression of sparse values and
skipping of MAC operations inexpensive in hardware and
saves off-chip memory transfers. Our code and examples are
provided to the public1.

In summary, our contributions are threefold:
• We present the tool Spex to find beneficial thresholds that

increase blockwise sparsity in activation feature maps.
• We propose the low-overhead pruning hardware extension

Sparse-Blox, adding 2.5–5.0× less area compared to
state-of-the-art activation pruning extensions.

• We evaluate our approach with different CNNs and ex-
ploration configurations. Exemplary, in ResNet-50 we can
reduce the operations by 19% and save 8.4 M memory
transfers (18.9%) with 1% accuracy drop.

1https://github.com/itiv-kit/dnn-model-exploration

https://github.com/itiv-kit/dnn-model-exploration


II. RELATED WORK

Pruning of weights (W) and input activations (IA) that
occurs in a structured or unstructured form has been explored
in multiple studies. Zhou et al. learned regular sparse pat-
tern to maximize the compression ratio and the performance
on GPUs [10]. They divided the number of operations and
parameters in a ResNet-50 by four, with only 2% accuracy
drop. Zhu et al. exploit structured sparsity with their FPGA-
based accelerator, showing that structured sparsity is much
more hardware friendly than irregular sparsity [9], especially
when weights are trained to show structured sparsity.

To efficiently utilize activation sparsity, hardware architec-
tures have to support activation pruning. Kim et al. demon-
strate a 6× speed up on VGG-16 [11] by skipping compu-
tations of sparse elements in input feature maps in hardware.
However, to save memory bandwidth, compression techniques
that pool zero activations have to be applied. E.g., Cnvlutin
by Albericio et al. [3] compresses sparse rows of feature
maps in hardware, demonstrating a 1.37× acceleration without
accuracy loss. SCNN [4] uses index-based compression for
significant energy and computation reduction, yielding a 2.7×
performance increase, however, they have to add 33% extra
area for encoding. STICKER [12] exploits W and IA sparsity
through different sparse operation modes, showing a small area
overhead and better performance. They report a total 5% area
share for their approach and are able to reduce the size of
buffers compared to reference works. SNAP [5] uses a novel
associative search and compression algorithm for unstructured
sparsity, demonstrating up to 3× less write back traffic and
a power efficiency of 3.61 TOPS/W. Although they can ben-
efit from many sparse computations, compression techniques
usually come with hardware and scheduling overheads.

III. OVERVIEW OF SPARSE-BLOX AND SPEX

Due to the fact that negative results of filters become zero af-
ter applying the commonly used Rectified Linear Unit (ReLU)
activation function, up to 80% sparse activations can be found
in recent CNNs [5]. Activation pruning leverages these zero
values by skipping corresponding MAC operations in the next
layer and compressing them to reduce memory offloading.
Especially, regular sparse pattern support compression and
computation reduction, e.g., using pooled sparse values the
computation of an entire 8×8 block of sparse inputs on an
8×8 weight stationary systolic array can be skipped. Our
hardware-centric approach enables inexpensive exploitation of
blockwise structured sparsity in CNNs. The general principle
of our blockwise pruning method is given in Figure 2. First,
an activation feature map is divided into smaller blocks that
match the target hardware accelerator. Since entire sparse
blocks are uncommon in out-of-the-box CNNs, we introduce
a threshold that is compared to the sum of each block to
determine whether a block can be pruned. The set of thresholds
achieving the best tradeoff between activation compression,
computation reduction and accuracy impact is determined in
advance by our exploration tool Spex. This beneficial set of
thresholds is loaded into our hardware extension Sparse-Blox
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Fig. 2: Exemplary scheme of operation, how our pruning flow
leverages blockwise sparsity in CNNs

that accumulates blocks and compares them with the threshold.
Both operations are inexpensive to implement in hardware.

A. Sparse-Blox Exploration Framework: Spex

Spex explores the design space of threshold combinations
for the best trade-off between created blocks and algorithm
accuracy. Figure 3 gives an overview of Spex. It takes a work-
load description which contains a pretrained neural network
reference model, the validation dataset required for accuracy
computation, and a description of the target hardware, i.e., the
block size. The centerpiece of Spex is a Genetic Algorithm
(GA) that systematically generates sets of thresholds. These
sets are then evaluated in a modified model implementing
Sparse-Blox’s blockwise pruning flow. For iterative optimiza-
tion, the resulting accuracy is fed back.

Spex is designed extendable and can work with any PyTorch
model or dataset. To evaluate the trade-off between increased
blockwise sparsity and model accuracy, Spex alters the Py-
Torch model by replacing layers with counterparts that apply
our blockwise pruning flow. Each layer is annotated with a
threshold value taken from the genome. To reflect the way
the inference is computed in hardware, we apply the im2col
transformation to convolutional layers to get a 2D matrix.
Fully connected layers do not require any further modification.
Other layer types might be added as well. During inference,
the modified forward function divides the activation matrix
into blocks, computes the sum of each, compares it with the
individual threshold, and sets them either to zero or leaves
them untouched. Each position of a changed block as well as
an average of the sum is stored for later evaluation. To speed
up the inference, Spex supports parallel execution on multiple
threads and HPC computing nodes.

As exploration algorithm, we choose the well-established
NSGA-II [13] from the Pymoo library [14] to unify adjusta-
bility and performance on multi-objective problems. The GA’s
evaluation function tries to maximize both the created sparse
blocks and the validation accuracy. To determine the accuracy,
we can work with different evaluation metrics, e.g., Top-1 clas-
sification accuracy, intersection over union for segmentation
tasks or box average precision for object detection. A lower
accuracy constraint may be added to drop solutions that do
not meet the design requirements. Spex stops the GA, when
a feasible number of solutions is found. With the obtained
solutions, our tool generates various metrics to reveal insights
of the investigated CNN on the given hardware configuration,
like the Pareto optimal solutions or the threshold distribution.
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Fig. 3: Components and overview of Spex

B. Hardware Accelerator Extension: Sparse-Blox

The advantage of our sparsity approach becomes apparent
when it is integrated in a low-power CNN hardware accelerator
for embedded vision applications. Common accelerators like
systolic arrays leverage spatially independent computations in
CNNs by connecting hundreds of Processing Elements (PEs)
in a 2D mesh to reuse weights and input with neighboring
PEs. To utilize systolic arrays for inference, large matrices of
state-of-the-art CNNs have to be broken down into smaller
blocks. While processing these smaller blocks, our proposed
blockwise pruning scheme comes in.

Our hardware accelerator extension Sparse-Blox monitors
the magnitude of incoming activations and prunes an entire
block based on the previously determined threshold. Sparse-
Blox is inserted in between the data path of the PEs array
to the local memory, as shown in Figure 4. We only have
to add three components, while the other common parts of a
CNN accelerator are left untouched. The results of the PEs
are accumulated by an adder tree and then compared to the
configured threshold. If the sum is less than the threshold,
pruning happens. Now the result can be discarded and a ‘0’-
entry is stored in a dedicated cache and not in the local
memory. The cache entry represents the address of a sparse
block and requires only a fraction of the memory compared to
a whole block stored in local memory. Resulting free memory
can be used to reduce offloading of results or to prefetch the
next operands. If the result is above the threshold, matrix
results are stored to the local memory in the usual way.
Skipping the computation of a whole block happens as soon
as the PEs request data that is present in the dedicated cache.
On a cache hit, an entire block result can be defaulted to zero.
On a cache miss, the computation runs without modification.

IV. EVALUATION AND DISCUSSION

We perform extensive experiments with Spex to understand
the impact of various parameters on different workloads. This
understanding is crucial when activation pruning is ultimately
exploited later in the hardware accelerator. To cover various
hardware architectures, we look at block sizes of 8×8, 16×16
and 1×16 to represent embedded systolic arrays as well as
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Fig. 4: Envisaged Sparse-Blox hardware extension

vector processors. As workloads we choose ResNet-50 [15]
trained on ImageNet-1K [16] achieving a Top-1 classification
accuracy of 80.85% and Yolo-v5s [17] trained on COCO [18]
achieving a detection precision of 37.4 mAPval(50 : 95).
They represent demanding tasks that occur in embedded
vision, e.g., autonomous driving, and are ideal candidates
for optimization through Spex and Sparse-Blox to enable
application in energy and resource constrained embedded
environments. Before deploying on the target accelerator, we
analyzed over 100 individual configurations to determine the
best set of thresholds for each accelerator and workload.

A. Algorithm Constraints & Evaluation Setup

Since CNN accuracy decreases rapidly with too high thresh-
old values that prune too many features, we constrain the
exploration with an upper threshold limit that we determine
based on the distribution of activations. In all experiments, the
GA evaluates a population of 15 individuals over 25 genera-
tions, to equalize runtime and number of distinct solutions.
To allow the GA to break out of the initial population fast
and converge, we test different GA parameters and choose
a mutation factor of 30 and a crossover factor of 20 with a
probability of 0.9 for both.

B. Amount of Sparse Blocks and Savings during Inference

The most relevant finding of Spex’s exploration is the
amount of sparse blocks created with a given set of thresholds
and how this impacts the accuracy. More created sparse
blocks allow skipping more computations and are saving more
memory transfers during inference. For ResNet-50 and Yolo-
v5s, all feasible solutions and the Pareto front are shown
in Figure 5a and Figure 5b, respectively. Depending on the
application’s requirements, these solutions have to be evalu-
ated regarding acceptable accuracy degradation and leveraged
sparsity. The found correlation between created sparse blocks
and the drop in accuracy is not linear, but there are sweet
spots. For example, in the commonly used image classification
CNN ResNet-50, which has in total 345,400 8×8 block per
inference, Spex is able to create 51,642 (14.9%) new 8×8
sparse blocks with a usually acceptable accuracy drop of 1%.
Together with the already present sparse blocks, we can save
8.42 M or 18.9% memory transfers and 802 M or 19.04%
MAC operations in ResNet-50. For Yolo-v5s, with a total
of 156,880 8×8 blocks, 30,173 or 19.23% sparse blocks are
created with an accuracy drop of 1 mAP . In combination
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Fig. 5: Pareto optimal solutions, showing accuracy over the
amount of sparse blocks created.
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Fig. 6: Percentage of sparse blocks before and after sparsity
maximization through Spex with 1% accuracy drop.

with the already present sparsity, this saves in total 4.88 M or
12.6% memory transfers and 1.5 G or 24.31% MACs.

Besides 8×8 blocks, we investigate other block sizes, shown
in Figure 6. In general, smaller block sizes, e.g., 1×16 for
vector processors, result in more sparse blocks since feature
maps divided into smaller blocks store less information in a
block and hence are more robust to pruning. For example,
with 1×16 blocks in ResNet-50, we can prune over 30% of all
operations. Also, the number of created sparse blocks does not
scale linearly. For example, in ResNet-50 with 1% accuracy
drop, 11,133 or 12.64% sparse 16×16 blocks are created, but
only 231,688 or 16.56% 1×16 blocks.

C. Comparison to state-of-the-art Sparse DNN Accelerators

The claim of our approach is a straightforward integration
into common hardware accelerators while adding only little
area. To prove this claim, we show an area overhead com-
parison of Sparse-Blox to other CNN accelerators working
on activation sparsity in Table I. The reference overhead
is taken directly from the respective paper. To allow for a
good comparison, we added the components of Sparse-Blox,
a cache, an adder tree and the corresponding decision logic
to the reference accelerators. Since none of them are open-
sourced, we model each accelerator in Accelergy [19]. We

TABLE I: Area overhead comparison of Sparse-Blox against
other state-of-the-art sparse DNN accelerators

SCNN [4] STICKER [12] SNAP [5]

Sparsity module
Reference 24.8 % 4.76% 12.5 %
Sparse-Blox 4.95% 1.73% 4.81%

Overhead reduction 5.01× 2.75× 2.59×

match the size of sparse blocks to the organization of PEs in
the reference accelerators.

For the most recent works STICKER [12] and SNAP [5], we
can show an area overhead reduction of about 2.5×, and for
SCNN [4] even up to 5×. Since all three accelerators work
on different PE array dimensions and feature different sizes
of on-chip memories, which largely contribute to the area, we
give the relative numbers in the table for better comparison.
With SCNN’s 4×4 PE array, for example, we are able to find
a threshold combination that leverages 348,764 sparse blocks
in ResNet-50, resulting in 26.6% pruned sparsity with only
1% accuracy degradation. Considering the 3×7 PE arrays of
SNAP, about 312,000 or 24.1% of all blocks in ResNet-50
can be pruned. Looking at the area breakdown, the largest
portion of Sparse-Blox accounts for the cache, since it has
to hold all sparse block positions from one to another layer.
To have sufficient space the cache of our hardware extensions
for SNAP, STICKER and SCNN, can store up to 6,144, 512
and 8,196 16-bit block positions, respectively. Even if regular
activation sparsity may exploit slightly less sparsity compared
to irregular, comparing our approach to state-of-the-art DNN
accelerators, we can demonstrate a reduction in the number of
computations and memory transfers by on average 25%, but
with 5× less area overhead.

V. CONCLUSION

In this paper, we presented our hardware-centric approach
to increase regular blockwise activation sparsity in CNNs.
Therefore, we first introduced Spex an exploration tool to ana-
lyze the CNN workload and to maximize regular sparsity, and
secondly Sparse-Blox, a low-overhead accelerator extension to
enable pruning of sparse activation feature maps. Since prun-
ing has an impact on the accuracy, Spex evaluates the large
number of suitable threshold combinations in state-of-the-art
CNNs. Extensive experiments on CNN benchmarks, show that
we can reduce memory transfers and MAC operations by
around 30%. We compared Sparse-Blox with state-of-the-art
CNN accelerators, showing a 2.5–5× smaller area overhead.
With our demonstrated optimizations, we support vision tasks
in resource constrained embedded environments. Finally, we
made Sparse-Blox open-source for further research.
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