
International Journal of Solids and Structures 280 (2023) 112394

A
0
n

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier.com/locate/ijsolstr

A data-driven modeling approach to quantify morphology effects on
transport properties in nanostructured NMC particles
Matthias Neumann a,∗, Sven E. Wetterauer b, Markus Osenberg c, André Hilger c,
Phillip Gräfensteiner a, Amalia Wagner d, Nicole Bohn d, Joachim R. Binder d, Ingo Manke c,
Thomas Carraro e, Volker Schmidt a

a Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069 Ulm, Germany
b Institute for Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
c Institute of Applied Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
d Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
e Helmut Schmidt University/University of the Federal Armed Forces Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany

A R T I C L E I N F O

Keywords:
Digital twin
Effective tortuosity
FIB-SEM tomography
Finite element modeling
Nanostructured battery material
Stochastic 3D modeling
Transport in porous media

A B S T R A C T

We present a data-driven modeling approach to quantify morphology effects on transport properties in
nanostructured materials. Our approach is based on the combination of stochastic modeling of the 3D
nanostructure and numerical modeling of effective transport properties, which is used to investigate process-
structure–property relationships of hierarchically structured cathode materials for lithium-ion batteries. We
focus on nanostructured LiNi1∕3Mn1∕3Co1∕3O2 (NMC) particles, the nanoporous morphology of which has a
crucial impact on their effective transport properties (i.e, effective ionic and electric conductivity) and thus
on the performance of the cell. First, we develop a parametric stochastic model for the 3D morphology of the
nanostructured NMC particles based on excursion sets of so-called 𝜒2-fields. This model, which has only two
parameters, is then fitted to FIB-SEM image data of the NMC particles manufactured with different calcination
temperatures and different particle sizes. This way it is possible to generate digital twins of the NMC particles.
In a second step, measured 3D image data and corresponding digital twins are used as input for the numerical
simulation of effective transport properties. Based on the results obtained by these simulations, we can quantify
process-structure–property relationships. Overall, we present a methodological framework that allows for an

efficient optimization of the fabrication process of nanostructured NMC particles.
1. Introduction

Energy storage is one of the most important issues with regard
to the decarbonization of the power sector (Golombek et al., 2022).
This leads, in particular, to an increasing need for the development
of efficient new battery systems and the further optimization of ex-
isting systems. One promising approach to further improve the per-
formance of cathodes is the use of hierarchically structured active
materials, as proposed in Radin et al. (2017) for lithium-ion batteries
and in Zhao et al. (2018) for sodium-ion batteries. In Müller et al.
(2021) and Wagner et al. (2020), a detailed study of cathodes with
nanostructured LiNi1∕3Mn1∕3Co1∕3O2 (NMC) particles as active mate-
rial is presented, where differently prepared active material particles
are considered, varying both, the size of the particles forming the
aggregated nanoporous active material particles and the calcination
temperature to synthesize the aggregated particles. Based on 3D image
data, the influence of fabrication parameters on descriptors of the
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morphology and performance of cathodes, such as the experimentally
determined specific capacity, is quantified. Note that the 3D mor-
phology of cathodes is investigated on two different length scales,
namely the arrangement of the active material in the electrode (at
the micrometer scale) and the morphology of the nanoporous active
material particles (at the nanometer scale).

Since 3D imaging is costly and time consuming, only a small number
of tomographically measured samples can be studied. Thus, to quanti-
tatively investigate process–structure–property relationships based on
a few datasets of measured 3D images, a common approach is to
develop mathematical tools for the generation of model-based digital
twins of micro- or nanostructures observed by 3D imaging. For this
purpose, stochastic modeling of 3D morphologies (Chiu et al., 2013;
Jeulin, 2021; Schmidt, 2015) is combined with numerical modeling
of effective transport properties (Tjaden et al., 2018), it is possible to
study process–structure–property relationships based on modeling and
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simulation. Note that, in this context, we follow Kalidindi et al. (2022)
defining digital twins as ‘‘a high-fidelity in-silico representation closely
mirroring the form (i.e., appearance) and the functional response of a
specified (unique) physical twin’’. The physical twin, i.e., the micro- or
nanostructure under consideration, is first represented as a 3D image.
Second, the calibration of a parametric stochastic model to image
data builds the bridge between reality and the virtual space, since it
allows for the simulation of structures which are statistically mirroring
the appearance of the physical structure. Finally, model validation
regarding the functional response, which is given by effective transport
properties in this case, has to be performed to ensure that the model
creates digital twins.

Using methods of stochastic geometry, 3D models have been de-
veloped to generate digital twins of battery materials at the micro-
scale, i.e., for the arrangement of active material particles in the elec-
trode (Prifling et al., 2019; Westhoff et al., 2017, 2018). Furthermore,
on micro- and nano-scales, such modeling techniques have been used
to generate digital twins of the outer shell and inner polycrystalline
grain architecture of cathode particles for Li-ion batteries (Furat et al.,
2021). On both scales, the corresponding models have been fitted to
tomographic image data. Moreover, machine learning approaches have
recently been used for the data-driven generation of digital twins of
complex 3D morphologies, see Gayon-Lombardo et al. (2020), Kamrava
and Mirzaee (2022) and Xu et al. (2021). However, to the best of our
knowledge, there are no stochastic models available in the literature,
which allow us to statistically reproduce the 3D morphology of nanos-
tructured active material particles as digital twins. Filling this gap is the
main aim of the present paper, where our modeling approach is based
on excursion sets of random fields, see e.g. Section 6.6.3 of Chiu et al.
(2013). Note that this concept has been successfully applied to model
the 3D morphology of anode materials in lithium-ion batteries (Prifling
et al., 2021a) as well as of (three-phase) anode materials in solid
oxide fuel cells (Abdallah et al., 2016; Moussaoui et al., 2018, 2019;
Neumann et al., 2019a) and gas-diffusion electrodes (Neumann et al.,
2019b). In the latter cases, excursion sets of Gaussian random fields
have been used as modeling tool.

In the present paper, we consider so-called 𝜒2-random fields, like
in Prifling et al. (2021a), where we derive a new analytical formula
for the two-point coverage probability function that allows for an effi-
cient model calibration to image data. In particular, model calibration
is performed on the basis of 3D image data obtained by FIB-SEM
tomography (Holzer and Cantoni, 2012; Möbus and Inkson, 2007),
which represents the 3D morphology of (differently manufactured)
nanostructured NMC particles utilized already in Wagner et al. (2020).
The goodness of model fit is validated with respect to both, geometrical
descriptors as well as effective transport properties of samples of virtual
NMC particles drawn from the fitted particle model.

Note that effective transport properties of porous media are usually
determined by finite element modeling (FEM), which is extensively
used in the literature to investigate structure–property relationships of
electrode materials in fuel cells and batteries, see Section 3.2.1 of Zhang
et al. (2019) and the references therein. In the present paper, to com-
pute effective transport properties via FEM, the solid phase of simulated
NMC particles is represented as a union of sub-particles. Each of these
sub-particles is analytically described by spherical harmonics (Lang and
Schwab, 2015; Marinucci and Peccati, 2011), see also Feinauer et al.
(2015), where spherical harmonics have been used to describe the
outer shape of active material particles in electrodes of Li-ion batteries.
This way we get an analytical representation of the solid phase of
nanostructured active material particles, which is used as geometry
input for FEM.

Altogether, we develop a data-driven framework to investigate
process–structure–property relationships. In particular, we show that
regression formulas like those empirically derived in Neumann et al.
(2020), Prifling et al. (2021b, 2023) and Stenzel et al. (2016) are
2

appropriate to quantify the impact of 3D morphology on effective c
conductivity and effective diffusivity in the solid phase and pore
space, respectively, of nanostructured NMC particles. Furthermore, the
obtained results of effective transport properties can then be used
as homogenized input for simulations on the electrode scale. Note
that the computation of effective transport coefficients is required in
multiscale approaches to model and simulate electrochemical processes
on the macro-scale of the electrodes. A direct computation on the
nano-scale, especially for hierarchically structured electrodes, would
not be computationally feasible in practice. Thus, the present paper
supports in-depth studies on upscaling from the nano- to the macro-
scale and, in this way, it contributes to a better understanding of
process–structure–property relationships for hierarchically structured
battery electrodes through modeling and simulation, which is crucial
for further optimizing such materials.

The rest of this paper is organized as follows. The materials under
consideration and the acquisition of 3D image data is described in
Section 2. The spatial stochastic model, which has been developed
for the 3D morphology of nanostructured NMC particles as well as
the structural segmentation of both, measured and simulated image
data, are presented in Section 3. This structural segmentation serves
as geometry input for the numerical transport simulations described
in Section 4. Process–structure–property relationships are discussed in
Section 5. Section 6 concludes.

2. Materials and imaging

2.1. Preparation of hierarchically structured active material

The preparation of hierarchically structured NMC111 active mate-
rial with three different secondary particle sizes and varying nanos-
tructure was performed by grinding, spray drying and calcination.
Therefore, NMC111 (Toda Kogyo Corp.) was ground in deionized water
with Darvan 821A dispersant (Vanderbilt Minerals) for around 5 h
in an agitator bead mill (LabStar LS1, Netzsch) with yttria-stabilized
zirconia beads (diameter: 0.2 mm) at 3000 rpm. The grinding process
was stopped at a mean particle size (considering the volume-weighted
median 𝑑50,3) of approximately 220 nm. Subsequently PEG400 (Sigma

ldrich) was added as dispersant, mixed thoroughly and the suspen-
ions was divided into two fractions of equal volumes. Spray drying was
erformed in a MobileMinor spray dryer from GEA at three different
eripheral speeds of the atomizer wheel to obtain varying secondary
article sizes. Therefore 1 bar (12 000 rpm), 2.7 bar (27 000 rpm) and
round 4.5 bar (39 000 rpm) nitrogen gas flow was set to drive the

atomizer wheel. Obtained spray-dried granules were sieved and three
fractions of secondary particle sizes, namely with 𝑑50,3-values of around
,14 and 37 μm were obtained. In order to obtain nanostructured
owders, which are denoted as Fine (F), Medium (M) and Coarse (C)
n the following, these granules were calcined at 850 and 900 ◦C for
5 h under pressured airflow (6 l∕min) at heating and cooling rates of 5
and 10 K∕min. Note that due to the manufacturing process, the size of
the secondary particles (F, M, and C) also influences the formation of
the morphology of nanopores within the secondary particles (Wagner
et al., 2020). In the present paper, we consider fine, medium and coarse
secondary particles calcined at 850 and 900 ◦C. In the following, these
samples are denoted by F850, M850, C850, F900, M900, and C900.

.2. FIB-SEM imaging

Focused ion beam-scanning electron microscopy (FIB-SEM) imaging
as performed for three-dimensional structural data acquisition. The
eiss Crossbeam 340 at the HZB CoreLab ‘‘Correlative Microscopy and
pectroscopy’’ was used for each measurement. Prior to ion milling,
ach sample (particles in bulk) was infiltrated with resin (EpoThin 2)
nd polished, resulting in resin cubes containing NMC-particles with
n average edge length of 1 mm. To ensure good conductivity, each

ube was coated with gold (Cressington Sputter Coater 108auto, 60 s).
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Fig. 1. 2D cross-section of greyscale image obtained by FIB-SEM tomography for a nanostructured active material particle with medium particle size and a calcination temperature
of 900 ◦C , where critical regions for the segmentation are highlighted in blue (a). The greyscale image is compared with the corresponding binarized image (b), where the solid
phase and the pore space are represented in white and black, respectively. Additionally, the solid phase is partitioned into sub-particles by means of the watershed algorithm (c),
which is used to represent the solid phase as a union of star-shaped sets given by spherical harmonics (d).
On each cube, FIB-SEM tomography was performed by serial sectioning
using Ga-ions (300 pA with 30 kV) and SEM imaging (3 kV SE2
detector). For most samples, an isotropic voxel size of 10 nm was
achieved, only for the sample F850◦, the first sample measured in this
series, a voxel size of 15 nm was reached. However, the larger voxel
size had no effect on the following statistical analysis.

Due to the high contrast between the resin and NMC, the use of
the automatic Otsu threshold algorithm (Otsu, 1979) was sufficient
for image segmentation, i.e. to classify each voxel either as pore or
solid. In Fig. 1, a comparison of a 2D cross-section of the greyscale
image and the corresponding segmented 2D cross-section is shown for
an active material particle with medium particle size and a calcination
temperature of 900 ◦C. Even if the samples are fully infiltrated with
epoxy, the 3 kV SE2 detector leads to minor transparency resulting in
slight shine-through artifacts. Nevertheless, the Otsu threshold provides
a good segmentation, even for critical regions, a few of which are
exemplarily highlighted by blue circles in Fig. 1a. Moreover, note
that without an infiltration of resin, more sophisticated algorithms
are necessary to appropriately segment FIB-SEM images of nanoporous
NMC particles (Osenberg et al., 2023). Data processing was performed
using the open source software ImageJ/Fiji (Schindelin et al., 2012).

3. Structural segmentation and stochastic 3D modeling

In Section 3.1, we first explain how the solid phase of aggregate
particles can be represented by a union of sub-particles using spherical
harmonics. This representation will be exploited later on for the numer-
ical simulation of effective transport properties, see Section 4. Then,
in Section 3.2, we present a spatial stochastic model, which has been
developed for the 3D morphology of nanostructured NMC particles as
described in Section 2. Note that the goodness of model fit is validated
with respect to both, geometrical descriptors and, in Section 5, effective
transport properties of samples of virtual NMC particles drawn from the
fitted particle models.

3.1. Representation of solid phase by spherical harmonics

Binarized 3D image data as described in Section 2 is given on a
voxel grid, i.e., for each voxel the image contains the information,
whether the voxel belongs to the solid phase or to the pore space of
the considered aggregate particle. To obtain an off-grid representation
of the nanostructure, the solid phase is represented by a union of
sub-particles, which are defined in the (continuous) Euclidean space
R3. For this purpose, we extract the sub-particles from 3D images by
means of the watershed algorithm described in Spettl et al. (2015)
and approximate them by series expansions with respect to spherical
harmonics (Lang and Schwab, 2015; Marinucci and Peccati, 2011).
It is important to note that the segmentation into sub-particles is a
3

methodological approach to obtain a lattice-free representation of the
solid phase (i.e., the union of all sub-particles), rather than a perfect
extraction of the real primary particles is aimed at. The benefit of an off-
grid representation for the numerical simulation of effective transport
properties is discussed in Section 4.2.

The representation of sub-particles by spherical harmonics leads to
star-shaped sets, i.e., there exists at least one point within the sub-
particle such that all points of the sub-particle can be connected to
this point by a straight line which is completely contained in the
sub-particle. However, the star shape of sub-particles obtained in this
way is far from being a restrictive model assumption. Typically, the
sub-domains of binary 3D images, so-called basins, determined by
a watershed algorithm can be nicely approximated by star-shaped
sets (Feinauer et al., 2015; Garboczi and Bullard, 2017), see also Fig. 1
for a visual comparison of binarized FIB-SEM image data (Fig. 1b) and
its representation as a union of star-shaped sets given by spherical
harmonics (Fig. 1d).

More precisely, the star shape allows for an identification of each
sub-particle by a center 𝑥𝑐 ∈ R3 and a function 𝜓 ∶ [0, 𝜋] × [0, 2𝜋) →
(0,∞) on the unit sphere (given in polar coordinates). Then, for a
star-shaped sub-particle 𝑃𝑥𝑐 ,𝜓 ⊂ R3 identified by 𝑥𝑐 and 𝜓 it holds that

𝑃𝑥𝑐 ,𝜓 = 𝑥𝑐 + {𝑦 ∈ R3 ∶ 𝑟(𝑦) ≤ 𝜓(𝜃(𝑦), 𝜙(𝑦))}, (1)

where the vector (𝑟(𝑦), 𝜃(𝑦), 𝜙(𝑦)) ∈ (0,∞) × [0, 𝜋] × [0, 2𝜋) denotes the
polar coordinates of 𝑦 ∈ R3. Thus, the value 𝜓(𝜃, 𝜙) models the distance
from 𝑥𝑐 to the boundary of the set 𝑃𝑥𝑐 ,𝜓 ⊂ R3 in the direction given by
(𝜃, 𝜙).

Note that the radius function 𝜓 ∶ [0, 𝜋] × [0, 2𝜋) → (0,∞) considered
in Eq. (1) exhibits – under mild regularity conditions (Marinucci and
Peccati, 2011) – a representation as a series expansion with respect to
spherical harmonics (Lang and Schwab, 2015; Marinucci and Peccati,
2011). In particular, if 𝜓 is square integrable, then it admits the
representation

𝜓(𝜃, 𝜙) = lim
𝐿→∞

𝐿
∑

𝓁=0

𝓁
∑

𝑚=−𝓁
𝑐𝑚𝓁 𝑌

𝑚
𝓁 (𝜃, 𝜙), (2)

for all (𝜃, 𝜙) ∈ [0, 𝜋] × [0, 2𝜋), where the complex number 𝑐𝑚𝓁 ∈ C is
called a spherical harmonics coefficient of 𝜓 , and the function 𝑌 𝑚𝓁 ∶
[0, 𝜋] × [0, 2𝜋) → C denotes the spherical harmonics given by

𝑌 𝑚𝓁 (𝜃, 𝜙) =
( sin 𝜃

2

)𝑚
ei𝑚𝜙

√

(2𝓁 + 1)(𝓁 − 𝑚)
4𝜋(𝓁 + 𝑚)!

×
𝓁−𝑚
∑

𝑘=0

(𝑚 + 𝑙 + 𝑘)!
𝑘!(𝑚 + 𝑘)!(𝓁 − 𝑚 − 𝑘)!

( cos 𝜃 − 1
2

)𝑘
, (3)

for all integers 𝑚 and 𝓁 fulfilling 0 ≤ 𝑚 ≤ 𝓁. For −𝓁 ≤ 𝑚 < 0, we
define 𝑌 𝑚(𝜃, 𝜙) = (−1)𝑚 𝑌 −𝑚(𝜃, 𝜙). Given 𝜓 , the spherical harmonics
𝓁 𝓁
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coefficients 𝑐𝑚𝓁 ∈ C can be obtained via

𝑚
𝓁 = ∫

2𝜋

0 ∫

𝜋

0
𝜓(𝜃, 𝜙)𝑌 𝑚𝓁 (𝜃, 𝜙) sin 𝜃 d𝜃d𝜙, (4)

here 𝑌 denotes the complex conjugate of 𝑌 ∈ C.
To practically determine the star-shaped representation of sub-

articles extracted from 3D image data, we estimate the values of 𝑐𝑚𝓁
or all |𝑚| ≤ 𝓁 ≤ 𝐿 and truncate the series in Eq. (2) at 𝐿 = 10. For
his purpose, we proceed as in Feinauer et al. (2015), where a detailed
escription of estimating the spherical harmonics coefficients from 3D
mage data is given.

A quantitative comparison of volume fractions and specific surface
reas, which have been obtained for the solid phase of aggregate
articles using binarized 3D FIB-SEM image data and the corresponding
pherical harmonics representation, respectively, is given in Table A.1
or the six samples described in Section 2, see also Fig. A.1 of Ap-
endix A for a quantitative comparison of two-point coverage probabil-
ty functions. Considering these geometrical descriptors, binarized 3D
mage data and the corresponding spherical harmonics representation
icely coincide.

.2. Stochastic 3D model for the solid phase

We develop a parametric stochastic model for the 3D morphology of
he nanostructured NMC particles, which is based on excursion sets of
andom fields, where we use tools from stochastic geometry (Chiu et al.,
013) and mathematical morphology (Jeulin, 2021). In particular,
e consider excursion sets of so-called 𝜒2-fields with two degrees of

reedom to model the solid phase of the nanostructured active material
articles as described in Section 2. Note that we use 𝜒2-fields instead
f the commonly considered Gaussian random fields (Moussaoui et al.,
018, 2019; Neumann et al., 2019a), since it turned out that 𝜒2-fields
re more appropriate to fit constrictivity, i.e. bottleneck effects, of the
olid phase of the nanostructured NMC particles, see the results of
odel evaluation presented in Section 3.3 below.

To explain the notion of a 𝜒2-field with two degrees of freedom,
e consider two independent copies 𝑋1 and 𝑋2 of a motion-invariant,
.e. stationary and isotropic, Gaussian random field 𝑋 = {𝑋(𝑡), 𝑡 ∈ R3},
whose expectation function E𝑋 ∶ R3 → R and variance function 𝖵𝖺𝗋𝑋 ∶
R3 → [0,∞) fulfill E𝑋(𝑡) = 0 and 𝖵𝖺𝗋𝑋(𝑡) = 1 for each 𝑡 ∈ R3. Another
important characteristic of 𝑋 is its covariance function 𝜌𝑋 ∶ [0,∞) →
[−1, 1], which is given by 𝜌𝑋 (ℎ) = 𝖢𝗈𝗏(𝑋(𝑠), 𝑋(𝑡)) for each ℎ > 0, where
𝑠, 𝑡 ∈ R3 with |𝑠 − 𝑡| = ℎ. Due to the assumed motion invariance of
𝑋, the value of 𝜌𝑋 (ℎ) does not depend on the particular choice of 𝑠
and 𝑡. Moreover, note that motion-invariant Gaussian random fields are
uniquely determined by the expectation E𝑋(𝑜), where 𝑜 ∈ R3 denotes
the origin, and the correlation function 𝜌𝑋 . For further information
regarding Gaussian random fields, the reader is referred to Adler and
Taylor (2009) and Chiu et al. (2013).

Using the Gaussian random fields 𝑋1 and 𝑋2, we can define the
random field 𝑌 = {𝑌 (𝑡), 𝑡 ∈ R3} by putting 𝑌 (𝑡) = 𝑋2

1 (𝑡) + 𝑋2
2 (𝑡) for

each 𝑡 ∈ R3, where 𝑌 is called a 𝜒2-field with two degrees of freedom.
Note that, like the Gaussian random field 𝑋, the 𝜒2-field 𝑌 is uniquely
determined by the expectation E𝑋(𝑜) and the correlation function 𝜌𝑋
of 𝑋.

The solid phase of nanostructured active material particles is then
modeled by the (random) excursion set 𝛯 = {𝑡 ∈ R3 ∶ 𝑌 (𝑡) ≥ 𝜆} for
some 𝜆 > 0. In order to fit 𝜆 (and further model parameters) to the
3D image data described in Section 2, we use analytical relationships
between these parameters and geometrical descriptors which can easily
be extracted from 3D image data. For this purpose, we consider the
volume fraction 𝑝 = E𝜈(𝛯∩[0, 1]3) of the (motion-invariant) random set
𝛯, where 𝜈(𝛯 ∩ [0, 1]3) denotes the volume of the set 𝛯 ∩ [0, 1]3 ⊂ R3,
as well as its two-point coverage probability function 𝐶 ∶ [0,∞) →
[0, 1] defined by 𝐶(ℎ) = P(𝑠 ∈ 𝛯, 𝑡 ∈ 𝛯) for each ℎ = |𝑠 − 𝑡| ≥ 0.
4

nalogously to the invariance property of the covariance function 𝜌𝑋
Table 1
Estimated values for 𝑝, 𝜆 and 𝛼, computed from binarized 3D FIB-SEM image data.

Parameter F850 F900 M850 M900 C850 C900

𝑝 0.46 0.68 0.52 0.60 0.62 0.70
𝜆 1.55 0.77 1.31 1.02 0.96 0.71
𝛼∕μm−1 7.28 4.63 6.01 4.27 5.47 3.49

of 𝑋 mentioned above, the value of 𝐶(ℎ) = 𝐶(|𝑡 − 𝑠|) does not depend
n the particular choice of 𝑡 and 𝑠. Moreover, the following formulas
re true. First, we make use of the fact that

= P(𝑜 ∈ 𝛯) = P(𝑌 (𝑜) ≥ 𝜆), (5)

ee Equation (6.34) in Chiu et al. (2013), and we exploit the following
elationship.

roposition 1. The two-point coverage probability function 𝐶 ∶ [0,∞) →
0, 1] of the random excursion set 𝛯 fulfills

(ℎ) = 2𝑝 − 1 + (1 − 𝜌2𝑋 (ℎ))
∞
∑

𝑗=0

𝜌2𝑗𝑋 (ℎ)

(𝑗!)2

(

∫

𝜆
2(1−𝜌2𝑋 (ℎ))

0
𝑡𝑗 exp(−𝑡)d𝑡

)2

, (6)

for each ℎ > 0.

To the best of our knowledge, so far relationships of the form given
in Eq. (6) are available in the literature only for the cases, when 𝑌 is
ither Gaussian or a 𝜒2-field with one degree of freedom, see Equations
6.158) and (6.160) in Chiu et al. (2013), respectively.

A proof of Proposition 1 is given in Appendix B. Note that for each
> 0, the value of 𝐶(ℎ) is monotonically increasing for increasing

alues of 𝜌𝑋 (ℎ) ∈ [0, 1]. This follows directly from a Slepian-type
esult for random variables, which can be represented as composi-
ions of random variables with elliptically contoured distributions, see
heorem 4.3 in Tong (1980). Due to this result, it is possible for
ach ℎ > 0, to numerically solve Eq. (6) for 𝜌𝑋 (ℎ) by the method
f bisection. This means that Proposition 1 allows for determining
he covariance function 𝜌𝑋 based on the knowledge of the two-point
overage probability function 𝐶, which can be directly estimated from
mage data as described in Chapter 6 of Ohser and Schladitz (2009).

.3. Calibration and validation of the stochastic 3D model

We now assume that the covariance function of 𝑋 has the form
𝑋 (ℎ) = exp(−𝛼2ℎ) for each ℎ > 0, where 𝛼 > 0 is some parameter.
hus, to calibrate the stochastic 3D model for the FIB-SEM image data
escribed in Section 2, we have to compute estimates of the model
arameters 𝜆 and 𝛼. First, in order to estimate 𝜆, we use Eq. (5). This
eads to the estimator

̂= 𝜒2
2,1−𝑝, (7)

here 𝜒2
2,1−𝑝 denotes the 1 − 𝑝 quantile of the 𝜒2-distribution with

wo degrees of freedom. Here 𝑝 denotes an estimator for the volume
raction 𝑝 = E|𝛯 ∩ [0, 1]3| of 𝛯, which is obtained by the so-called
oint-count method, see Section 6.4.2 in Chiu et al. (2013). Then, to
stimate 𝛼, we use the analytical relationship between 𝐶 and 𝜌𝑋 stated
n Proposition 1, where Eq. (6) is numerically solved for 𝜌𝑋 (ℎ) after
eplacing the two-point coverage probability 𝐶(ℎ) by an appropriately
hosen estimate 𝐶(ℎ). The values obtained in this way for the estimators
̂ and 𝛼 are provided in Table 1, together with the volume fractions
stimated from binarized 3D FIB-SEM image data for the six samples
escribed in Section 2.

Visual comparison of binarized 3D FIB-SEM image data with re-
lizations drawn from the stochastic 3D models, which have been
itted to the 3D FIB-SEM data, shows a quite good accordance, see
ig. 2. Furthermore, the fitted 3D models are quantitatively validated
y comparing geometrical descriptors of model realizations with those
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Fig. 2. Visual comparison between tomographic image data and simulated model realizations.
computed from the 3D FIB-SEM data. For this purpose, ten model real-
izations with a size of 4 μm × 4 μm × 4 μm are drawn from each of the six
model specifications fitted to the particle samples as described above.
Then, for each model specification, various geometrical descriptors are
computed for each of the then model realizations and, finally, averaging
over these ten realizations is performed.

To quantitatively validate the fitted 3D models, we investigate the
following geometrical descriptors of the nanostructured NMC particles.
In particular, we consider the volume fraction 𝑝 of the solid phase, as
well as the specific surface area 𝑆, which is estimated from discrete
3D image data as described in Section 5.2 of Ohser and Schladitz
(2009). Moreover, we consider the mean geodesic tortuosity 𝜏geod and
constrictivity 𝛽 of both, the solid phase and the pore phase. The notion
of mean geodesic tortuosity of a materials phase (solid or pores) is given
as the quotient of the expected length of shortest paths through the
material, which are fully contained in the phase under consideration,
divided by the thickness of the material. Note that mean geodesic
tortuosity is a purely geometrical descriptor, while the so-called effec-
tive tortuosity characterizing transport phenomena in a given structure
is considered in Sections 4.2 and 4.3. Beyond that there are many
different notions of tortuosity used in the literature. For an overview,
we refer to Holzer et al. (2023). The constrictivity 𝛽 is a descriptor for
the strength of bottlenecks effects, given as squared ratio of the width
of the typical bottleneck obtained from simulated mercury intrusion
porosimetry over the median of the continuous phase size distribution,
see e.g. Holzer et al. (2013) for details. A formal definition of mean
geodesic tortuosity and constrictivity in the framework of stationary
random sets can be found in Neumann et al. (2019a).

The values given in Table 2 show that the volume fraction of the
solid phase as well as mean geodesic tortuosities of pores and solid
are nearly identical when comparing the results obtained for model
realizations and tomographic image data, respectively. For the volume
fraction 𝑝 of the solid phase, this is not surprising since the parameter
𝜆 defining the level of the excursion set was fitted in order to match
the volume fraction, see Eq. (7). Mean geodesic tortuosity, however, as
well as specific surface area and constrictivity are not used for model
fitting. For the latter two descriptors, slight discrepancies between the
values obtained for model realizations and tomographic image data
can be observed, see Table 2. The specific surface area 𝑆 is slightly
5

Table 2
Values of geometrical descriptors computed from tomographic image data and
simulated model realizations, respectively.

Sample 𝑝 𝑆∕μm−1 𝜏geod (solid) 𝜏geod (pores) 𝛽 (solid) 𝛽 (pores)

F850 (data) 0.46 8.44 1.10 1.05 0.51 0.68
F850 (sim) 0.46 9.34 1.11 1.05 0.53 0.68

F900 (data) 0.68 5.75 1.05 1.13 0.61 0.55
F900 (sim) 0.68 6.23 1.05 1.11 0.61 0.63

M850 (data) 0.52 7.80 1.10 1.07 0.47 0.67
M850 (sim) 0.52 8.04 1.09 1.07 0.54 0.68

M900 (data) 0.60 5.27 1.07 1.09 0.55 0.58
M900 (sim) 0.60 5.82 1.07 1.09 0.57 0.66

C850 (data) 0.62 7.14 1.06 1.09 0.55 0.58
C850 (sim) 0.62 7.46 1.06 1.09 0.60 0.66

C900 (data) 0.70 4.72 1.05 1.12 0.53 0.52
C900 (sim) 0.70 4.66 1.05 1.12 0.62 0.61

overestimated by the models (except of the case with coarse particles
calcined at 900 ◦C), while the qualitative trend observed in tomographic
image data is reproduced, i.e., the values of 𝑆 become smaller with
coarser particles and the increase of calcination temperature from
850 ◦C to 900 ◦C. With respect to constrictivity, the goodness-of-fit
depends on the sample under consideration. While a nearly perfect fit
is obtained in the cases of F850 (solid and pores), F900 (solid), M850
(pores) and M900 (solid), slightly larger deviations are observed for the
other samples up to a relative error of 17% for M900 (pores). However,
it will be shown in Section 5.1 that despite of these deviations, the
numerically simulated effective conductivities of the solid phase and
the effective diffusivities of the pore space are in good agreement when
comparing the values obtained for simulated model realizations with
those for the corresponding 3D image data. We refer to Appendix C,
where we show that both, the SEM images as well as the sample sizes
of the virtual microstructures are representative.

Furthermore, the goodness-of-fit of the calibrated stochastic 3D
models is analyzed with respect to the two-point coverage probability
function 𝐶 ∶ [0,∞) → [0, 1]. More precisely, the centered two-point
coverage probability function 𝐶0 ∶ [0,∞) → [−1, 1] given by 𝐶0(ℎ) =
𝐶(ℎ) − 𝑝2 is considered. Note that the closer, the centered two-point
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Fig. 3. Centered two-point coverage probability functions for FIB-SEM image data and the average curve over 10 model realizations. The comparison is shown for all samples.
coverage probability 𝐶0(ℎ) is to zero, the less pronounced is the spatial
dependence of the events that 𝑠 ∈ 𝛯 and 𝑡 ∈ 𝛯 for points 𝑠, 𝑡 ∈ R3 of
distance ℎ = |𝑡 − 𝑠| > 0 from each other. In Fig. 3, one the functions
𝐶0 computed from tomographic image data are compared with the
average curve from 10 model realizations. There are slight deviations
for some samples. Nevertheless, keeping in mind that one and the same
model type (with only two parameters) is fitted to all six differently
manufactured samples, we consider the results in Fig. 3 as a good fit.

This justifies our parametric model choice for the covariance func-
tion 𝜌𝑋 , i.e., assuming that 𝜌(ℎ) = exp(−𝛼2ℎ) for ℎ > 0. Thus, it
can be ascertained that the 3D morphology of the nanostructured
active material considered in this paper can be nicely modeled by a
relatively simple stochastic 3D model with only two model parameters,
namely the level 𝜆 of the random excursion set 𝛯 and the parameter
𝛼 appearing in the covariance function of the underlying Gaussian
random field 𝑋.

4. Numerical modeling of effective transport properties

For hierarchically structured battery electrodes, where the 3D mor-
phology on different length scales influences the performance of the
cell, multi-scale approaches are exploited for numerical modeling. For
this purpose, effective transport properties of the micro- and nanoscale
are used as aggregated information for numerical modeling on the
macroscopic scale. For the materials considered in the present paper,
the effective diffusion coefficients of ionic and electric transport within
nanostructured NMC particles are crucial quantities on the nanoscale.
In the present paper, we focus on limitations of the electric transport
in the solid phase arising due to the nanopores and do not consider
the influence of the polycrystalline grain architecture, experimentally
investigated in Zahnow et al. (2021).

4.1. Intrinsic versus effective transport coefficients

There are different mathematical methods to determine effective
transport coefficients (Hlushkou et al., 2015; Joos et al., 2011; Willot
et al., 2014). A common approach is to scale the intrinsic transport co-
efficients. The scaling factors obtained in this way account for transport
processes within nanostructured active material particles being limited
by their morphology on the nanoscale. For example, the diffusion
of ions in the pore space is hindered, in comparison to a straight
path, by the windedness of transportation paths of ions through the
6

nanostructured active material particles. This effect is quantified by the
notion of mean geodesic tortuosity mentioned in Section 3.3. In the
present paper, we consider electric conduction in the solid phase and
ionic diffusion in the pores of nanostructured active material particles,
where the mathematical concepts of these two transport phenomena
coincide.

Note that the direct comparison of the flux of a transport problem
on two different length scales is a common approach to determine
the scaling factor corresponding to the effective transport coefficient
in the material phase under consideration, i.e., the pore space for
ionic diffusion in the electrolyte and the solid phase for the electric
conduction. For this, one needs to compute the flux on a domain 𝛺ref ⊂
R3, which is considered as the material phase (pores or solid) where
transport occurs. The domain 𝛺ref is assumed to be contained in a
rectangular cuboid 𝛺hom ⊂ R3, see Fig. 4. The cuboid 𝛺hom is then used
to solve the so-called homogenized problem, where the top, bottom and
side surfaces of 𝛺hom are denoted by 𝛤𝑢, 𝛤𝑑 and 𝛤0, respectively, see
Fig. 4.

The domain 𝛺ref is taken as reference volume of the nanostructure,
where the diffusion tensor is approximated by a diagonal tensor such
that each component is determined by solving a diffusion problem with
respect to a main transport direction. More precisely, this diffusion
problem for the nanostructure is treated by solving

∇ ⋅ (𝐷∇𝑢) = 0 in 𝛺ref , (8)

for 𝑢 ∶ 𝛺ref → R, where 𝐷 > 0 is the intrinsic transport coefficient
(of either electric conduction or ionic diffusion), and with Dirichlet
conditions in the main transport direction and no-flux conditions on the
rest of surfaces of 𝛺ref . For example, considering the main transport
along the (0, 0,−1)-direction from top to bottom, see Fig. 4, Dirichlet
boundary conditions apply to the top surface 𝛤𝑢 ∩𝛺ref and the bottom
surface 𝛤𝑑 ∩𝛺ref of 𝛺ref , i.e., 𝑢(𝑥) = 1 for 𝑥 ∈ 𝛤𝑢 ∩𝛺ref and 𝑢(𝑥) = 0 for
𝑥 ∈ 𝛤𝑑∩𝛺ref , and a Neumann condition of zero flux is applied to the rest
of the outer surface 𝛤0 ∩𝛺ref (and to the inner interface between solid
and pore phase, not shown in Fig. 4). Note that the solution 𝑢 ∶ 𝛺ref →
R of Eq. (8) describes the spatially resolved ion concentration or electric
potential in the material phase under consideration, in dependence on
whether ionic diffusion or electric conduction is considered.

To determine the effective transport coefficient 𝐷eff > 0, the flux
of the transport problem within the nanostructure is compared to the
flux of the homogenized problem, where the difference between these
two problems is just induced by the different domains. Recall that
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Fig. 4. Schematic representation of outer surfaces of the homogeneous volume 𝛺hom, where different boundary conditions are applied: Dirichlet boundary conditions to the top
and bottom surfaces (a), and a Neumann condition of zero flux to the side surfaces (b).
in Eq. (8) the nanostructure domain𝛺ref is considered, while for solving
the homogenized problem

∇ ⋅ (𝐷eff∇𝑤) = 0 in 𝛺hom, (9)

for 𝑤 ∶ 𝛺hom → R, the nanostructure is not taken into account.
However, similarly to the diffusion problem considered in Eq. (8), the
boundary conditions of Eq. (9) are Dirichlet conditions in the main
transport direction and the no-flux condition on the side surfaces of
𝛺h𝑜𝑚. The solution of the homogenized problem stated in Eq. (9) can
be determined analytically. If one is interested in transport along the
(0, 0,−1)-direction, the solution is given by 𝑤 ∶ 𝛺hom → R with 𝑤(𝑥) =
𝑥3∕𝐿, where 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R3 is the position vector and 𝐿 > 0
denotes the edge length of the cuboid 𝛺hom in (0, 0,−1)-direction, see
Fig. 4.

The fluxes 𝐽nano, 𝐽hom ≥ 0 of the two problems described above are
then given by

𝐽nano = 𝐷 ∫𝐴
𝜕𝑢(𝑥)
𝜕𝑛

2(d𝑥) and

𝐽hom = 𝐷eff ∫𝐴
𝜕𝑤(𝑥)
𝜕𝑛

2(d𝑥) = 𝐷eff
2(𝐴)
𝐿

,
(10)

where 2 denotes the two-dimensional Hausdorff measure, 𝐴 ⊂ 𝛺ref
is an arbitrary planar section of the domain 𝛺ref orthogonal to the
(0, 0,−1)-direction with area 2(𝐴) > 0, and 𝑛 = (0, 0,−1) denotes the
unit normal vector to this planar section. Note that the specific choice
of the planar cross section 𝐴 ⊂ 𝛺ref is arbitrary due to the divergence
theorem, since the solutions of Eqs. (8) and (9) are divergence-free and
no-flux conditions are applied on the inner and side surfaces of 𝛺ref and
𝛺hom, respectively. By identifying the fluxes 𝐽nano and 𝐽hom, i.e., putting
𝐽hom = 𝐽nano, we get that

𝐷eff = 𝐽nano
𝐿

2(𝐴)
. (11)

4.2. Numerical computation of the effective transport coefficient using level
sets

The effective transport coefficient 𝐷eff as described in Section 4.1
is computed by numerically solving Eq. (8), where we use the finite
element method on a regular grid. For this purpose, the domain 𝛺 of
7

eff
the material phase under consideration is represented by a union of sub-
particles, where the outer shell of each sub-particle is approximated by
a series expansion with respect to spherical harmonics, see Section 3.1.
Then, for each sub-particle 𝑃𝑥𝑐 ,𝜓 ⊂ R3 with center at 𝑥𝑐 ∈ R3 and
radius function 𝜓 , we consider the (centered) distance function 𝜑𝑥𝑐 ∶
R3 → R given by 𝜑𝑥𝑐 (𝑥) = |𝑥 − 𝑥𝑐 | − 𝜓cart (𝑥) for each 𝑥 ∈ R3, where
𝜓cart (𝑥) = 𝜓(𝜃, 𝜙) is the value of the radius function 𝜓 at 𝑥 ∈ R3 and
the angles (𝜃, 𝜙) ∈ [0, 2𝜋) × [0, 𝜋] denote the spherical coordinates of
𝑥 (with respect to the reference point 𝑥𝑐). Note that 𝑥 ∈ R3 belongs
to the inner part or the boundary of 𝑃𝑥𝑐 ,𝜓 if 𝜑𝑥𝑐 (𝑥) < 0 or 𝜑𝑥𝑐 (𝑥) = 0,
respectively. Therefore, the sub-particle 𝑃𝑥𝑐 ,𝜓 can be represented by a
level set, i.e.,

𝑃𝑥𝑐 ,𝜑 = {𝑥 ∈ R3 ∶ 𝜑𝑥𝑐 (𝑥) ≤ 0}. (12)

A particular advantage of the level-set approach described above,
based on spherical harmonics expansions of the radius functions of
the sub-particles constituting the domain 𝛺ref , is the possibility to
arbitrarily adjust the grid size (as long as computationally feasible)
when numerically solving Eq. (8). Moreover, this approach can be used
for the generation of locally adapted mesh grids as an input for the
finite element method (Carraro et al., 2021; Landstorfer et al., 2021).

To construct a computational grid for solving Eq. (8) on the nano-
scale, a subdivision of the domain 𝛺hom into a regular uniform hex-
ahedral grid is performed. In our case, this grid coincides with the
voxel grid given by the image data. Based on the values of the distance
functions 𝜑𝑥𝑐 evaluated at the nodes of this grid, an approximation of
the domain 𝛺ref representing the nanostructure is defined. However,
there can be cells of the grid where the distance function 𝜑𝑥𝑐 vanishes
on a set of points within the cell, for some sub-particle 𝑃𝑥𝑐 ,𝜓 . These cells
are assigned to a given material phase (pores or solid) if the major part
of their volume belongs to that material phase.

Now, inserting the numerical solution 𝑢 ∶ 𝛺ref → R of Eq. (8) into
Eq. (10), the flux 𝐽hom and, using Eq. (11), the effective transport coef-
ficient 𝐷eff can be computed. However, instead of 𝐷eff , the notion of
effective tortuosity (denoted by 𝜏eff in the following) is frequently used
in multiscale models, like in the-well known pseudo-two-dimensional
(P2D) Doyle–Fuller–Newmann model (Newman and Tiedemann, 1975),
where 𝜏eff can easily be expressed by 𝐷eff via the relationship

𝜏eff =
𝜀 𝐷. (13)
𝐷eff
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Here 𝜀 denotes the volume fraction of the material phase under consid-
eration, i.e., 𝜀 = 𝑝 and 𝜀 = 1 − 𝑝 when transport in the solid phase and
the pore space, respectively, is considered. Thus, using Eqs. (10), (11)
and (13), the effective tortuosity 𝜏eff can be computed, where

eff = 𝜀𝐷
2(𝐴)
𝐿𝐽nano

and, equivalently, 𝜏eff = 𝜀
2(𝐴)

𝐿 ∫𝐴
𝜕𝑢(𝑥)
𝜕𝑛 2(d𝑥)

.

Note that the solution 𝑢 ∶ 𝛺ref → R of Eq. (8) does not depend on the
intrinsic transport coefficient 𝐷, since 𝐷 is assumed to be constant, i.e.,
not location-dependent. Thus, from the latter representation formula
for 𝜏eff , it can be concluded that 𝜏eff also does not depend on 𝐷.

4.3. 𝑀-factor for predicting the microstructure influence on effective trans-
port

Besides the effective transport coefficient 𝐷eff and the effective
tortuosity 𝜏eff , there still is a third quantity, which can be used to
characterize transport processes in porous media. This is the so-called
𝑀-factor, see e.g. Holzer et al. (2023), which is the ratio of effective
over intrinsic conductivity, when the solid phase is considered, and the
ratio of effective over the intrinsic diffusivity in the case of the pore
space. Formally, the 𝑀-factor 0 ≤𝑀 ≤ 1 is given by

𝑀 =
𝐷eff
𝐷

or, equivalently, 𝑀 = 𝜀
𝜏eff

. (14)

n Stenzel et al. (2016), an empirically derived relationship between
he 𝑀-factor and three morphological descriptors (volume fraction 𝜀,
ean geodesic tortuosity 𝜏geod and constrictivity 𝛽) of the transporting
hase has been investigated, where the predictor

̂ =
𝜀1.15 𝛽0.35

𝜏4.39geod

(15)

of the 𝑀-factor defined in Eq. (14) is considered. A detailed discussion
of the predictive power of the quantity 𝑀 given in Eq. (15) is provided
n Neumann et al. (2020), see also Prifling et al. (2021b) and Prifling
t al. (2023).

Although the (simulated) 3D morphologies, on the basis of which
q. (15) has been derived in Stenzel et al. (2016), differ from those
f nanostructured active materials, it turns out that the predictor 𝑀

given in Eq. (15) is also suitable for the 3D morpohologies considered
in the present paper. Moreover, the 𝑀-factor can be used to evaluate
the stochastic 3D model introduced in Section 3.2, by comparing the
effective transport coefficients computed for tomographic image data
and simulated 3D nanostructures of NMC particles, see Section 5.

5. Process–structure–property relationships

This section is devoted to process–structure–property relationships
of nanoporous NMC particles. First, we validate the stochastic 3D model
introduced in Section 3.2 in terms of effective transport properties,
see Section 5.1. Then, in Section 5.2, we show that previously derived
structure–property relationships (Neumann et al., 2020; Stenzel et al.,
2016) are valid to quantify the influence of the 3D morphology of
the nanostructured active material on its effective conductivity and
effective diffusivity. Finally, in Section 5.3, we discuss the influence of
manufacturing parameters (particle size and calcination temperature)
on effective transport properties.

5.1. Validation of the stochastic 3D model in terms of effective transport
properties

Recall that in order to compute the 𝑀-factor for tomographic image
data and virtual (simulated) nanoporous NMC particles, we represent
their solid phase as a union of sub-particles, the outer shell of which is
given by a series expansion with respect to spherical harmonics as de-
scribed in Section 3.1. Doing so, we obtain an analytical representation
8

o

of the nanostructured active material. Based on this representation, for
each of the six samples F850, M850, C850, F900, M900, and C900, the 𝑀-
actors of the solid phase and the pore space are numerically computed
or tomographic image data and for five model realizations drawn
rom the correspondingly calibrated stochastic 3D model described in
ection 3.2.1 For this purpose, FEM has been used as described in
ection 4.2, where, in total, we consider 36 datasets for six different
cenarios, defined by particle size and calcination temperature.

In Fig. 5, the results are compared which we obtained for the
-factors computed on tomographic image data and on virtual nanos-

ructures, respectively, for both, solid phase (Fig. 5a) and pore space
Fig. 5b). It can be observed that the 𝑀-factors of the model real-
zations reproduce those of the tomographic image data quite well.
hus, this comparison further validates the stochastic 3D model and,

n particular, complements the validation performed in Section 3.2 by
eans of morphological descriptors. The additional model validation

n terms of effective transport properties also shows that the deviations
bserved for constrictivity (see Table 2) are relatively small such that
he fit of the 𝑀-factor is still good. On the other hand, note that there is
ome variability within the 𝑀-factors computed for the five realizations
f each sample. However, this variability is small enough such that
here is no major overlap between the 𝑀-factors of different samples.
his shows that the representative volume element has been chosen

arge enough in order to distinguish between the different samples in
erms of effective transport properties.

.2. Predicting the 𝑀-factor from morphological descriptors

A comparison of geometrically predicted and numerically computed
-factors for solid phase and pore space of the 30 model realizations

s given in Fig. 5c and d, respectively, where the geometrical predictor
̂ is determined by means of Eq. (15). It turns out that the quality of
he predictor 𝑀 is quite good, which shows that Eq. (15) is suitable
or a larger class of 3D morphologies than the one originally used
n Stenzel et al. (2016), where the prediction formula given in Eq. (15)
as been derived. As a further result in this direction, it has been shown
n Neumann et al. (2018) that Eq. (15) leads to good predictions for the
ffective diffusivity in porous silica.

.3. The influence of manufacturing parameters on effective transport prop-
rties

Fig. 5 also shows the influence of parameters of the manufacturing
rocess on effective transport properties. For a fixed particle size, an
ncrease of the calcination temperature leads to an increase of the

-factor computed for the solid phase. The difference between the 𝑀-
actors computed for calcination temperatures of 850 ◦C and 900 ◦C,
espectively, is the greater the finer the particles are. An analogous
ehavior is observed for the 𝑀-factors of the pore space, which show
qualitatively opposite trend compared to the 𝑀-factors of the solid

hase. A more detailed discussion of the influence of manufacturing
arameters, which goes beyond transport properties within nanostruc-
ured active material particles, can be found in Wagner et al. (2020).
n particular, it is shown there that the 𝑀-factor of the solid phase has

stronger influence on the electrode performance than the 𝑀-factor
f the pore space. Among the cathodes considered in the present work,
hose with coarse active material particles also have a larger specific
apacity than those cathodes with fine active material particles (in
ddition to the larger 𝑀-factors of the solid phase). Moreover, their
pecific capacity is larger than that of a reference cathode fabricated
ithout nanostructuring, see Figure 3 in Wagner et al. (2020). It is

1 Here we use five of the ten realizations, which have been drawn from the
tochastic 3D model, see Section 3.3. Recall that these realizations have a size
f 4 μm × 4 μm × 4 μm.
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Fig. 5. Comparison of model realizations and tomographic image data in terms of numerically computed 𝑀-factors for solid phase (a) and pore space (b). The data points with one
and the same color correspond to the different model realizations (five per sample) drawn from the correspondingly calibrated stochastic 3D model. Comparison of geometrically
predicted and numerically computed 𝑀-factors for solid phase (c) and pore space (d) of the 30 model realizations.
important to note that for performance indicators such as specific
capacity, the spatial arrangement of all active material particles and
the binder-additive phase within the electrode also plays a crucial role.
Detailed investigations with respect to the influence of the binder-
additive phase in lithium-ion batteries can be found, e.g., in Hein et al.
(2020) and Prifling et al. (2022).

6. Conclusion

In the present paper, we have developed a data-driven model-
ing approach to efficiently investigate process–structure–property re-
lationships of nanostructured active material particles for cathodes in
lithium-ion batteries. For this purpose, a stochastic 3D nanostructure
model with only two parameter has been developed which allows
for the generation of digital twins of differently manufactured active
material particles, the morphology of which is resolved by FIB-SEM
tomography. Model validation is performed by comparing model real-
izations with image data in terms of morphological descriptors not used
for model fitting. Even if slight deviations with respect to constricitivity
are observed for some samples, the overall fit is good.

Moreover, when using finite element modeling to compute effective
transport properties of the considered materials, we observe a nearly
perfect match between model realizations and image data regarding
effective conductivity of the solid phase and effective diffusivity in the
pore space. In addition to the performed model validation, we show
that structure–property relationships, which have been established for
other types of morphologies in previous publications (Neumann et al.,
2020; Stenzel et al., 2016), are also valid for the nanostructured active
material particles investigated in the present paper. Considering the
9

Table A.1
Comparison of volume fractions and specific surface areas, computed from binarized
3D FIB-SEM image data and the corresponding spherical harmonics representation,
respectively.

Sample Volume fraction Surface area per unit volume/μm−1

Image data Spherical harmonics Image data Spherical harmonics

F850 0.4636 0.4768 8.445 8.365
F900 0.6821 0.6970 5.754 5.976
M850 0.5241 0.5378 7.810 7.868
M900 0.6038 0.6196 5.269 5.407
C850 0.6237 0.6371 7.149 7.230
C900 0.6988 0.7143 4.737 4.579

Table A.2
Standard deviation 𝜎𝑝̂ of the estimators for volume fractions of the solid phase computed
via the two-point coverage probability function.

Sample F850 F900 M850 M900 C850 C900

𝜎𝑝 1.2 ⋅ 10−3 4.0 ⋅ 10−3 2.8 ⋅ 10−3 4.4 ⋅ 10−3 2.8 ⋅ 10−3 7.3 ⋅ 10−3

absolute values of effective conductivity of the solid phase and effective
diffusivity in the pore space, we observe that the impact of increasing
the calcination temperature from 850 ◦C to 900 ◦C becomes less pro-
nounced with an increasing particle size. In future work, a variation
of the parameters of the stochastic 3D nanostructure model can be
used to generate a large data basis of virtual nanostructured active
materials which allows, e.g., to efficiently study the impact of porosity
on effective transport properties by means of numerical simulation.
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Table A.3
Standard deviation of estimators for geometrical descriptors computed from simulated model realizations.

Sample 𝜎𝑝 𝜎𝑆∕μm−1 𝜎𝜏geod (solid) 𝜎𝜏geod (pores) 𝜎𝛽 (solid) 𝜎𝛽 (pores)

F850 (sim) 2.5 ⋅ 10−3 1.5 ⋅ 10−2 2.3 ⋅ 10−3 8.3 ⋅ 10−4 1.1 ⋅ 10−2 2.3 ⋅ 10−3

F900 (sim) 6.4 ⋅ 10−3 6.1 ⋅ 10−2 2.2 ⋅ 10−3 5.5 ⋅ 10−3 1.1 ⋅ 10−2 1.3 ⋅ 10−2

M850 (sim) 3.3 ⋅ 10−3 2.0 ⋅ 10−2 3.4 ⋅ 10−3 2.0 ⋅ 10−3 1.5 ⋅ 10−2 1.2 ⋅ 10−2

M900 (sim) 4.8 ⋅ 10−3 3.4 ⋅ 10−2 2.8 ⋅ 10−3 3.9 ⋅ 10−3 2.0 ⋅ 10−2 1.4 ⋅ 10−2

C850 (sim) 3.6 ⋅ 10−3 3.8 ⋅ 10−2 2.0 ⋅ 10−3 3.4 ⋅ 10−3 1.4 ⋅ 10−2 4.0 ⋅ 10−3

C900 (sim) 8.9 ⋅ 10−3 6.8 ⋅ 10−2 2.6 ⋅ 10−3 7.1 ⋅ 10−3 3.3 ⋅ 10−2 2.7 ⋅ 10−2
S
P
{

𝐶

M
b
i
f

P

For the samples considered in this study, it has been shown in Wag-
er et al. (2020) that coarse particles lead to the best specific capacity.
he modeling and simulation approach developed in the present paper

s a further step towards an in-depth investigation of hierarchically
tructured cathode materials using detailed morphological information
n the nanometer scale. In particular, the effective transport properties
f nanostructured active material particles determined in the present
aper can be used as an input for models on the electrode scale with ho-
ogenized properties of active material particles (Danner et al., 2015;

chmidt et al., 2021), which, in turn, provides input for models on
he macro-scale as the P2D-model. With such an up-scaling, modeling
nd simulation can then also be used to study relationships between
arameters of the manufacturing process and performance indicators
uch as the specific capacity.

Note that the original P2D-model (Doyle et al., 1993) uses an
ffective transport coefficient at the electrode level and an intrinsic
ransport coefficient for the active material particles, since the latter
re not considered porous. As a possible application of our approach,
e consider the extension of the P2D-model published in Lueth et al.

2015), where the active material particles themselves are porous. This
odel has two effective transport coefficients, one for the electrode

cale and one for the nanostructured active material particles. The
ffective conductivity of the electrodes, which can be measured while
onsidering the particles arrangement and their nanostructure, cannot
e used to separate the effect of the internal porosity of the active
aterial particles. The latter affects the behavior of the nanostructured

ctive material particles and is visible in the measurements shown
n Wagner et al. (2020). The separate quantification of the effective
onductivity at the electrode and particle scales shows that the elec-
ronic conduction inside the nanostructured active material particles
ecomes the limiting transport process and explains the influence of
he manufacturing parameters, namely calcination temperature and
article size. The additional efforts to determine the properties of
he nanostructured active material particles as made in the present
aper, together with the simulations of their behavior, can increase the
dentifiability and validity of P2D-models.
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Appendix A. Validation of approximation by spherical harmonics
expansions

We provide a quantitative validation of the spherical harmonics
approximation of the solid phase, as described in Section 3.1. For this
purpose, we compare the nanostructure descriptors volume fraction
and specific surface area (Table A.1) as well as the centered two-
point coverage probability functions (Fig. A.1) of binarized image
data with the corresponding discretization of the spherical harmonics
representation. For the discretization, we use the same voxel size as
in the underlying FIB-SEM data. For a definition of the respective
nanostructure descriptors, see Sections 3.2 and 3.3.

Appendix B. Proof of Proposition 1

For any 𝜆 > 0 and 𝑡 ∈ R3 with |𝑡| = ℎ, we have

𝐶(ℎ) = P(𝑜 ∈ 𝛯, 𝑡 ∈ 𝛯)

= P(𝑌 (𝑜) ≥ 𝜆, 𝑌 (𝑡) ≥ 𝜆)

= 1 − 2P(𝑌 (𝑜) < 𝜆, 𝑌 (𝑡) ≥ 𝜆) − P(𝑌 (𝑜) < 𝜆, 𝑌 (𝑡) < 𝜆)

= 1 − 2P(𝑌 (𝑜) < 𝜆, 𝑌 (𝑡) ≥ 𝜆) − 2P(𝑌 (𝑜) < 𝜆, 𝑌 (𝑡) < 𝜆)

+ 2P(𝑌 (𝑜) < 𝜆, 𝑌 (𝑡) < 𝜆) − P(𝑌 (𝑜) < 𝜆, 𝑌 (𝑡) < 𝜆)

= 1 − 2P(𝑌 (𝑜) < 𝜆) + P(𝑌 (𝑜) < 𝜆, 𝑌 (𝑡) < 𝜆).

ince the random field 𝑌 = {𝑌 (𝑡), 𝑡 ∈ R3} is stationary, we can express
(𝑌 (𝑜) < 𝜆) by means of the volume fraction 𝑝 of the excursion set
𝑡 ∈ R3 ∶ 𝑌 (𝑡) > 𝜆}, namely P(𝑌 (𝑜) < 𝜆) = 1 − 𝑝. Thus,

(ℎ) = 2𝑝 − 1 + P(𝑌 (𝑜) < 𝜆, 𝑌 (𝑡) < 𝜆). (16)

oreover, since the random vector (𝑌 (𝑜), 𝑌 (𝑡)) follows the law of a
ivariate 𝜒2

2 -distribution, its (joint) probability distribution function
s given by Equation (4.2) of Gunst and Webster (1973). Using this
ormula, we finally get that

(𝑌 (𝑜) < 𝜆, 𝑌 (𝑡) < 𝜆) = (1 − 𝜌2𝑋 (ℎ))
∞
∑

𝑗=0

𝜌2𝑗𝑋 (ℎ)

(𝑗!)2

(

∫

𝜆
2(1−𝜌2𝑋 (ℎ))

0
𝑡𝑗 exp(−𝑡)d𝑡

)2

,

(17)

where 𝜌𝑋 ∶ [0,∞) → [−1, 1] with 𝜌𝑋 (ℎ) = 𝖢𝗈𝗏(𝑋(𝑜), 𝑋(𝑡)) is the
covariance function of the underlying Gaussian random field 𝑋 =
{𝑋(𝑡), 𝑡 ∈ R3}. Plugging Eq. (17) into Eq. (16) completes the proof.
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Fig. A.1. Comparison of centered two-point coverage probability functions computed from binarized 3D FIB-SEM image data (blue) and the corresponding spherical harmonics
representation (red).
Appendix C. Representativity of image data and virtual structures

We provide additional information related to the representativity
of the considered image data and the sampling window, used for
generating the virtual nanostructures. First, we compute the standard
deviation 𝜎𝑝 of the volume fraction of the solid phase estimated from
tomographic image data by means of the estimated two-point coverage
probability function. Here we make use of Equation (6.83) in Chiu et al.
(2013), which reads as

𝜎2𝑝 = 1
𝜈(𝑊 )2 ∫𝑊 ∫𝑊

𝐶0(|𝑥 − 𝑦|) d𝑥 d𝑦,

where 𝜈(𝑊 ) denotes the volume of the observation window 𝑊 ⊂ R3

and 𝐶0 denotes the centered two-point coverage probability function.
This can be simplified to

𝜎2𝑝 = 1
𝜈(𝑊 )2 ∫R3

𝐶0(|𝑥 − 𝑦|) 𝜈((𝑊 − 𝑧) ∩𝑊 ) d𝑧. (18)

Plugging in the estimator 𝐶0, which is directly obtained by the estima-
tors 𝐶 and 𝑝, we compute an estimator for 𝜎𝑝 for each sample. Here
the integral in Eq. (18) is approximated by a sum. The corresponding
values are given in Table A.2.

Moreover, Table A.3 shows the standard deviations of the estimators
of all geometrical descriptors computed from 10 model realizations
as discussed in Section 3.3. Note that the standard deviations of both
estimators for the volume fraction of the solid phase, computed from
tomographic and simulated image data, are reasonably close to each
other and that the standard deviations of the estimators of all remaining
descriptors are at least one order of magnitude smaller than their mean
values given in Table 2.
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