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Abstract

Lattice Boltzmann methods provide a robust and highly scalable numerical technique in modern computational fluid
dynamics. Besides the discretization procedure, the relaxation principles form the basis of any lattice Boltzmann
scheme and render the method a bottom-up approach, which obstructs its development for approximating broad classes
of partial differential equations. This work introduces a novel coherent mathematical path to jointly approach the topics
of constructability, stability, and limit consistency for lattice Boltzmann methods. A new constructive ansatz for lattice
Boltzmann equations is introduced, which highlights the concept of relaxation in a top-down procedure starting at the
targeted partial differential equation. Modular convergence proofs are used at each step to identify the key ingredients
of relaxation frequencies, equilibria, and moment bases in the ansatz, which determine linear and nonlinear stability
as well as consistency orders of relaxation and space-time discretization. For the latter, conventional techniques
are employed and extended to determine the impact of the kinetic limit at the very foundation of lattice Boltzmann
methods. To computationally analyze nonlinear stability, extensive numerical tests are enabled by combining the
intrinsic parallelizability of lattice Boltzmann methods with the platform-agnostic and scalable open-source framework
OpenLB. Through upscaling the number and quality of computations, large variations in the parameter spaces of
classical benchmark problems are considered for the exploratory indication of methodological insights. Finally,
the introduced mathematical and computational techniques are applied for the proposal and analysis of new lattice
Boltzmann methods. Based on stabilized relaxation, limit consistent discretizations, and consistent temporal filters,
novel numerical schemes are developed for approximating initial value problems and initial boundary value problems
as well as coupled systems thereof. In particular, lattice Boltzmann methods are proposed and analyzed for temporal
large eddy simulation, for simulating homogenized nonstationary fluid flow through porous media, for binary fluid flow
simulations with higher order free energy models, and for the combination with Monte Carlo sampling to approximate
statistical solutions of the incompressible Euler equations in three dimensions.
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Figure 1.1: From application to numerical algorithm.

The lattice Boltzmann method (LBM) is an established numerical
technique [172] for the approximate solution of transport problems,
especially in computational fluid dynamics (CFD). Due to the com-
bination of discretization and relaxation limits, the LBM provides
distinct advantages in terms of parallelizability [158, 164, 265]. Pri-
marily for this reason, LBMs are well-suited for various applicative
scenarios [59, 116, 162, 190, 229] in CFD where good scalability
on high performance computing (HPC) machines is crucial. For ex-
ample, the feasibility of transient computer simulations of turbulent
fluid flow is drastically improved toward overnight runtime on an
industrial scale [181] via combining the LBM with implicit numer-
ical diffusion [232] or large eddy simulation (LES) in space [236]
and in time [233]. On industry relevant scales, the pairing of LBMs
with LES provides significant speedup over traditional methods such
as finite volume methods (FVM) [19, 115, 144, 181]. Moreover,
the intrinsically mesoscopic derivation of LBMs naturally allows
for thermodynamically consistent and stable method extensions for
approximating partial differential equations (PDEs) in general, and
particularly well in coupled initial boundary value problems (IBVPs)
for multiphysics applications. Highly efficient simulations of turbu-
lent [115], reactive, particulate [249] and thermal fluid flow models
[236], coupled radiative transport [93, 190] or melting and conjugate
heat transfer [94], as well as compressible fluid flows with strong dis-
continuities [54, 68, 145, 260] and crack propagation in linear elastic
solids [197] are realizable. In summary, even standard LBM formu-
lations offer an easy to implement and mostly second order accurate,
intrinsically matrix-free algorithm in space-time which is well-suited
for approximating PDE problems and, if optimized properly, also
capable of saturating [166, 167] modern-day HPC machinery.

1.1 Motivation and objectives

Meanwhile, the perspectives on LBMs are shifting. Initially being exclusively well-suited for CFD, the LBM is further
developed toward providing a standalone numerical method for approximating solutions to PDE systems in general.
Nonetheless, the relaxation principle of the LBM does come at the price of inducing a bottom-up method, standing
against conventional top-down discretizations applied for example, in finite difference methods (FDM) or FVM (see
Figure 1.1). This essential feature complicates the rigorous numerical analysis of LBMs. On the one hand, approaches
toward constructing LBMs exist (for example [50, 201–204, 270]), and several authors have contributed toward the aim
of rigor (for example [16, 64, 69, 76, 117, 138, 142, 143, 171, 250] and recently [26, 28, 91, 92, 113, 185, 215, 262]). On
the other hand, the limitations of analysis and scheme construction techniques for LBM formulations to approximate
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1 Introduction

specific PDEs persist. To the knowledge of the author, no coherent and constructive theory has been established, which
suggests an LBM for approximating any given PDE, where only the PDE itself is known. To this end, we formulate the
following objectives (OBJs):

(OBJ1) Top-down construction for LBMs from a targeted PDE,

(OBJ2) Convergence analysis of the combined limits in LBMs,

(OBJ3) Description of the kinetic information in LBMs,

(OBJ4) Establishment of novel LBMs for newly targeted PDEs.

The present work is thus motivated by the progress gained from trailblazing the combination of top-down construction
as well as relaxation limit consistent and stable discretizations as a coherent methodology for transforming the LBM
into a generically applicable solver for PDEs. To the knowledge of the author, (OBJ1–OBJ4) have not been addressed
in this combination and explicitness before.

1.2 Contribution

The main contribution of the present work is the introduction of a novel coherent mathematical path to specify and
approach the above-mentioned issues of constructability, and analysis of stability and limit consistency jointly for
various LBMs. The particular contributions (CTNs) to achieve the Objectives (OBJ1–OBJ4) are summarized as
follows:

(CTN1) Development of a constructive ansatz. A novel construction of LBMs is introduced, which highlights
the mathematical concept of relaxation in a top-down procedure starting at the target equation (TEQ).
Additionally, the notion of relaxation frequencies is extended toward relaxation functions, which are used
to pass through stability domains under the premise of upholding the correct limit toward the TEQ.

(CTN2) Application of modular convergence proofs. At each step within the ansatz, a stability and consistency
analysis is carried out to identify key ingredients within the constructive process that trigger certain
numerical features. To this end, we employ and extend techniques to include the relaxation limit at the
very foundation of the LBM.

(CTN3) Extensive numerical testing. TheLBM itself is intrinsically parallel, which allows for a drastic upscaling
of the number and quality of feasible computations. Based on this fact, we use large variations in the
parameter spaces of classical benchmark problems for the exploratory indication of novel methodological
insights.

(CTN4) Proposal and analysis of new models. We use the proposed methodology to obtain e.g. stabilized
relaxation, limit consistent discretizations, and target conforming temporal filters for developing novel
numerical schemes based on LBMs. The latter in turn are used for approximating initial value problems
(IVPs) and IBVPs as well as coupled systems thereof.

Consequently, the novel coherent LBM framework (see Figure 1.2) contributes to the unfolding and analysis of the
specific enforcing of numerical features, such as numerical dissipation, under the preservation of limit consistency
already at the level of construction for a vast range of applications.

Parts of this work have been published by the author in advance. Contribution (CTN1) first appears in [231], where the
constructive approach for obtaining an LBM limiting to a one-dimensional advection–diffusion equation is proposed.
The d-dimensional extension thereof with multiple relaxation times is proposed in [234]. In both publications
[231, 234], convergence proofs for the relaxation limit are carried out with respect to (CTN2), and stability notions for
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1.3 Structure
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Figure 1.2: Present contributions toward a coherent mathematical framework for LBMs.

uniform relaxation are given. Considering (CTN3), based on numerical observations, the notion of brute force stability
for LBM is proposed in [232], which is nonlinearity perceptive and includes discretization effects by construction.
Published results of Contribution (CTN4) are the proposal of the first temporal large eddy simulation with LBM
based on temporal direct deconvolution in [233] and a computational study including method extensions of free energy
LBMs with high order functionals [235]. In addition, applications of LBMs for several types of PDEs are published in
[59, 114, 116, 162, 190, 236]. A summary of the author’s publications, including preprints and open source software
is provided in Appendix B.

1.3 Structure

The realization of the high-level Contributions (CTN1–CTN4) to achieve the Objectives (OBJ1–OBJ4) forms the
content of this work. In Chapter 2, we introduce the mathematical models in the form of PDEs that are to be
approximated with LBMs. The advection–diffusion equation is used as a paragon throughout this work to highlight
the numerical analysis of the relaxation systems and the numerical schemes to be derived. Further, LBMs are
applied to approximate incompressible, filtered and homogenized nonstationary Navier–Stokes equations as well as
statistical solutions to incompressible Euler equations. Moreover, we approximate coupled Navier–Stokes–Cahn–
Hilliard equations for simulating binary fluid flow of immiscible components. All targeted PDEs are summarized in
Chapter 2, where possible extensions and novel interpretations thereof are discussed.

Based on the derived target PDEs, Chapter 3 establishes the numerical methodology of Contributions (CTN1–CTN4).
A constructive ansatz is proposed to obtain LBMs for a given d-dimensional hyperbolic-parabolic PDE in advection–
diffusion form. The procedure is divided into four steps: constructing a relaxation system, spectral decomposition
toward a transformed relaxation system, parameter choices conforming to discrete velocity Boltzmann equations, and
finally the relaxation limit consistent discretization that yields the lattice Boltzmann evolution equations on the space-
time grid. On each level, we analyze the current result with respect to convergence or conformity to the previous step
to unfold the mechanisms of the derivation. We modulate the relaxation frequencies to enforce numerical effects in the
LBM along the coupled relaxation–discretization limit toward the TEQ. Several novel numerical schemes are proposed
for the IBVPs to be approximated in the exploratory computations and numerical experiments presented in Chapter 4.

The numerical results in Chapter 4 contribute to (CTN3, CTN4) via the computation of advection–diffusion IVPs,
benchmark Navier–Stokes problems as well as coupled Navier–Stokes–Cahn–Hilliard systems within the parallel C++

3



1 Introduction

framework OpenLB1 [162] executed on Top500 HPCmachinery (e.g. HoreKa2). Specific results include the brute force
computation of stability sets and Fourier transformed relaxation functions in deterministic and stochastic Taylor–Green
vortex flows, the computational analysis of a novel temporal LES LBMs, the application of free energy LBMs to binary
shear and extensional flows, as well as benchmark computations with the homogenized LBM for fluid flow through
simplified porous media.

Appendix A lists the abbreviations and symbols used below. Since parts of this work are published in scientific journals
and as preprints, or are included in open source code releases, frequent references are made throughout the text. A
detailed overview is provided in Appendix B.

1 https://www.openlb.net.
2 https://www.scc.kit.edu/dienste/horeka.php.
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2 Mathematical Notations, Methods and Models

The present chapter states modeling assumptions and introduces the PDEs that are to be approximated with LBMs.
Besides the introduction, possible extensions and novel interpretations of the targeted PDEs in terms of mathematical
modeling are presented, supporting Contribution (CTN4). As it turns out, the relaxation mechanism at the very
foundation of any LBM demands the presence of transport terms in the targeted PDE. Thus, an initial modification
of the PDE is to be carried out to create the structure of a typical material derivative (additive partial derivatives with
first order in time and first order in space) on the left hand side. Here, we target only PDEs, which naturally show
this form. In addition, we recall the Boltzmann equation with a simplified collision operator. From a thermodynamic
perspective, the LBM can be derived via discretization on this mesoscopic level. In the present context, however, it is
more convenient to try circumventing the knowledge of the scale-bridging limit within Hilbert’s sixth problem for the
most part. Although it is found possible to remove the thermodynamic information in simple examples, a discussion
is hitherto inevitable and thus carried out as soon as the problem at hand becomes more complex. Finally, basic
dynamical systems theory is used to recall the notion of nonlinear stability in terms of Lyapunov functionals.

2.1 Partial differential operators

Let Ω ⊆ Rd be open and bounded, where d ∈ N, and let ΩT := Ω× I denote the space-time horizon, where I = (0, T ]

and T ∈ R>0. Further, let

ρ : ΩT → R, (x, t) 7→ ρ (x, t) (2.1)

be of class Cm with m > 0. A PDE of second order with the spatio-temporal unknown ρ is formed via (for the sake
of simplicity) homogeneously equating a partial differential operator (PDO)

F]
(
∇2

xρ,∇xρ, ∂ttρ, ∂tρ, ρ,x, t
)

= 0 in ΩT , (2.2)

with supplementary boundary and initial conditions, where ∂t denotes the partial derivative with respect to t. A
collection of several PDEs (2.2) with several unknowns is called PDE system [78].

Definition 2.1.1. Let F ε] component-wise denote a PDO such that

F ε] (ρε) = 0 in ΩT (2.3)

is the corresponding PDE system, which is dependent on a scaling parameter ε > 0. If the limit conditions for the PDE
system and its solutions, respectively

(i) lim
ε↘0

F ε] = (F],F
ar
] )T, (2.4)

(ii) lim
ε↘0

ρε = (ρ,ρar)T, (2.5)

hold true, then F ε] is called relaxation operator. In this case, (2.3) describes a relaxation system (RS).
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2 Mathematical Notations, Methods and Models

Remark 2.1.1. The superscripts ·ε denote artificially introduced ε-dependent instances of operators and variables,
respectively. One aspect of the present work deals with the constructive definition of these quantities such that the
obtained RS is in turn suitable to derive an LBM. The first aim is thus to design an RS via injecting the ε-dependence
into a given PDO F] through perturbative construction. In the following, the action of defining F ε] via introducing
artificial variables and perturbations to F] is occasionally called extension. The reverse action, passing to the limit
ε ↘ 0, is named contraction. Further, the superscript ·ar denotes remainder terms of the extension in the smallness
limit ε↘ 0.

We will frequently make use of the following special case.

Definition 2.1.2. Let

L (ρ) = −
d∑

i,j=1

aij (x, t) ∂xixjρ+

d∑
i=1

bi (x, t) ∂xiρ+ c(x, t)ρ (2.6)

define a linear second order spatial differential operator in transport form with diffusion. The coefficient functions a,
b and c map componentwise ΩT → R. The PDO

F] ∈ {Fell := L, Fpar := ∂t + L, Fhyp := ∂tt + L} (2.7)

is possibly elliptic, parabolic or hyperbolic, respectively, and thus is occasionally called generic below.

Unless stated otherwise, we assume that Ω = Rd and neglect the specific treatment of boundaries in this chapter.
Hence, if Ω is stated as an interval, the solutions to the PDE at hand are assumed to be periodic. By construction, the
PDE is similarly generic in terms of its generating PDO.

Example 2.1.1. With the previous definitions, the procedure we proposed in [231] leads from Fpar to a relaxation
operator

F εpar (ρε) = ∂tρ
ε + bε1∂xρ

ε + Sε [ρε − gε(ρε)] , (2.8)

where d = 1 and two artificial variables are introduced such that ρε = (ρε, φε, ψε)T and (2.3) forms a 3× 3 RS with
a relaxation matrix Sε and a generalized Maxwellian gε which are determined later. Moreover, a scalar, closed form
expression of F εpar,ρε(ρ

ε) = 0 in terms of ρε only is obtained via reverse insertion. The closed form allows the direct
identification of added perturbation terms compared to Fpar(ρ). For d > 1, the corresponding derivation is condensed
in [234] and extended in Chapter 3.

Remark 2.1.2. In case of ] ∈ {ell,hyp}, a preparative modification of the PDE in the sense of Definition 2.1.2
can be applied to bring it into parabolic form. For Fhyp, a substitution of the first order time derivative leads to a
parabolic formulation. In turn, the final numerical scheme then requires an additional approximation of the preparatory
substitution of ∂tρ (see for example [109, 170] in the context of LBMs). For approximating Fell with an LBM, either
an artificial time derivative has to be suppressed with correction terms or a modification of the equilibrium function is
required (see for example [49, 205]). We thus focus on PDEs in the form of Fpar below.

Since the smallness parameters akin to ε are essential in the present context, we use the following notation for
asymptotically bounding functions of ε.

Definition 2.1.3. Let g(ε) be a given real-valued function on an unbounded subset of R>0, which is asymptotically
positive (i.e. g(ε) > 0 for sufficiently large ε). Then, O(g(ε)) denotes the set of functions

O(g(ε)) = {f(ε) | ∃c1, c2, ε0 > 0: 0 ≤ c1g(ε) ≤ f(ε) ≤ c2g(ε) ∀ε ≥ ε0} . (2.9)

6



2.2 Targeted partial differential equations

Remark 2.1.3. Despite O(g(ε)) being a set [57], below we occasionally align with common practice via writing for
an exemplary real- or complex-valued function f(ε) that f(ε) = O(g(ε)) instead of f(ε) ∈ O(g(ε)). The equality sign
is motivated by the observation that, if f(ε) = O(g(ε)), then f(ε) is equal to g(ε) within a constant factor, such that
g(ε) is an asymptotically tight bound for f(ε). In the case that we are dealing with tensors, the notation O(·) is to be
understood as for each element.

2.2 Targeted partial differential equations

This section provides a summary of the PDEs which are to be approximated with LBMs. As stated above, solely PDEs
are targeted which have been transformed to, or naturally show the form of Fpar. In addition, we presently focus on
IVPs. Boundary conditions are discussed in Section 3.3 from an applicative point of view when setting up the complete
numerical method. Unless stated otherwise, we assume that Ω = Rd and neglect the specific treatment of boundaries in
this chapter. Starting with the advection–diffusion equation as a paragon, the complexity is increased to Cahn–Hilliard
equations and nonstationary Navier–Stokes equations. Moreover, we recall the Boltzmann equation with a simplified
collision operator to analyze its diffusive macroscopic limit. The latter is carried out in Section 2.3. Further below,
as a preparative part for Contribution (CTN4), we make use of homogenization (Section 2.5) and temporal filtering
(Section 2.4) to derive modified versions of the Navier–Stokes equations which are to be approximated with LBMs.
Also with respect to (CTN4), a coupled Navier–Stokes–Cahn–Hilliard model is configured, including existing free
energy functionals with novel higher order terms (Section 2.6). Lastly in Section 2.7, Lyapunov functionals are briefly
discussed for the purpose of nonlinear stabilization of the numerical method (see Section 3.2.7).

2.2.1 Advection–diffusion equation

Let ρ : ΩT → R ⊆ R, (x, t) 7→ ρ (x, t) denote the conserved variable of an IVP based on a scalar linear d-dimensional
advection–diffusion equation (ADE){

∂tρ (x, t) + ∇x · F (ρ (x, t))− µ∆xρ (x, t) = 0 in ΩT ,

ρ|t=0 = ρ0 (x) in Ω,
(2.10)

where F : R → Rd, ρ 7→ F (ρ) is smooth, Lipschitz continuous and possibly nonlinear in ρ, the solution ρ is sought
for to be periodic, and µ > 0 specifies a given diffusivity. Below we assume the form F (ρ) = uρ, where u ∈ Rd

denotes the convection speed. If not stated otherwise, let d ∈ {1, 2, 3}. We make the assumption that the initial
value ρ0 shares the periodicity of ρ, such that existence and uniqueness of bounded solutions to (2.10) are given by
nondegeneracy and thus uniform parabolicity (see [37, 196]).

2.2.2 Cahn–Hilliard equation

The convective Cahn–Hilliard equation (CHE) reads{
∂tφ (x, t) + ∇x · (φ (x, t)u (x, t)) = ∇x · (Mφ∇xµφ (x, t)) in ΩT ,

φ|t=0 = φ0 (x) in Ω,
(2.11)

where φ : ΩT → R denotes the order parameter,Mφ > 0 is the diffusivity, µφ defines the chemical potential, u ∈ R3

is a given velocity. The chemical potentials can be chosen according to different free energy models which are specified
further below. Supplied with a specific chemical potential and periodic boundary conditions, global well-posedness
and decay of solutions is proven in [278]. Further, when interpreted as a dynamical system the existence of a global

7
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and exponential attractor is proven [71, 72]. In case of a vanishing advection term (u = 0), all solutions converge
to an equilibrium due to the fact that the CHE admits a Lyapunov functional (in terms of a free energy functional)
[12, 101, 102]. Extensive reviews are provided by Miranville [191, 192].

2.2.3 Navier–Stokes equations

In the force-free, viscous case (ν > 0), incompressible Newtonian fluid flows can be described by the incompressible
Navier–Stokes equations (NSE)

divx (u) = 0 in ΩT ,

∂tu+ divx (u⊗ u)− ν∆xu+ ∇xp = F in ΩT ,

u|t=0 = u0 in Ω,

(2.12)

where divx(u) = ∇x ·u refers to the divergence operator. Under an additional inviscid flow assumption (1/Re ∼ ν →
0), (2.12) reduces to the incompressible Euler equations (EE), where Re = ucLc/ν is the Reynolds number defined
by the characteristic flow velocity uc and the characteristic domain length Lc. Below, we refer to (2.12) in both cases.
Here, u : ΩT → U := Rd, (x, t) 7→ u(x, t) is the flow velocity as a function of space and time, where d ∈ {2, 3},
and p : ΩT → R, (x, t) 7→ p(x, t) denotes the pressure acting as a Lagrange multiplier. The density is assumed to be
constant and F and p are rescaled accordingly. The initial data is defined by u0 : Ω → Rd which is assumed to be
weakly divergence-free and in L2 (Ω;U), i.e.

u0 ∈ L2
div (Ω;U) =

{
u ∈ L2 (Ω)

∣∣∣∣ divxu = 0,

ˆ
Ω

udx <∞
}
. (2.13)

The kinematic viscosity ν > 0 and the external forces F are given. In the case of Ω ⊂ Rd, system (2.12) is supplied
with boundary conditions to form an IBVP. Even under the premise of spatial periodicity (Ω = Rd), global in time
well-posedness of classical solutions to the 3D incompressible NSE has not been established yet.

The existence of weak solutions for d ∈ {2, 3} has been pioneered by Leray [177] andHopf [121]. Albeit the uniqueness
has been proven for d = 2, the uniqueness of such solutions to the incompressible NSE for d = 3 is still an open
problem [80]. Recent promising efforts have evolved around the concept of statistical solutions of incompressible NSE
[86, 87] in the sense of Young measures [105] and the inviscid limit toward statistical solutions of the incompressible
EE for ν ↘ 0 in (2.12) [48, 85]. Further, the notion of exponential attractors is usable for the incompressible NSE
[73–75]. Considering statistical solutions (defined as families of probability measures on the tensor products Uk for
k ∈ N), let u0 ∈ L2

div(Ω;U) and interpret (2.12) as a Liouville equation on a function space which defines the solution
as a mapping of time t ∈ I to a probability measure on L2

div(Ω;U) [86, 87].

Definition 2.2.1. A family of probability measures

µν = (µνt )0≤t≤T , on L2
div(Ω;U) (2.14)

is a statistical solution of (2.12) with initial data µν0 and fixed viscosity ν > 0, if the function

t 7→
ˆ
L2

div(Ω;U)

i(u) dµνt (u) (2.15)
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is measurable on [0, T ] for every i ∈ Cb(L2
div(Ω;U)) (bounded continuous functions on L2

div(Ω;U)), andµν satisfies
the additional conditions listed in [85, Definition 3.6 (b–d)], namely, a weak functional formulation of (2.12) for
cylindrical test functions, a strengthened mean energy inequality, and that the function

t 7→
ˆ
L2

div(Ω;U)

k
(
‖u‖2L2(Ω)

)
dµνt (u) (2.16)

is continuous at t = 0 from the right for any k ∈ C1 (R,R) nonnegative and nondecreasing with bounded derivative.

Remark 2.2.1. For the incompressible EE, a decay of the structure functions has been proved [173] to be implied
by the decay of time-averaged energy spectrum functions. Further, if a scaling assumption on the structure functions
is fulfilled, it has been proven that the statistical solutions of the incompressible NSE converge with ν ↘ 0 to the
statistical solutions of the EE [85, Theorem 4.8]. Based on that, in Chapter 4, the evaluation of energy spectra in
the sense of Kolmogorov’s theory (K41) [155, 156] is used to at least indicate, whether a computed sample is an
approximation of a weak solution to the incompressible NSE for d = 3. Moreover, if the sequence of expectations of
the energy spectra of several samples show an asymptotic power law in the sense of K41 theory for ν ↘ 0, we deduce
that a statistical solution the incompressible EE is approximated [85]. Further details are given in Section 4.3.5.

2.2.4 Bhatnagar–Gross–Krook–Boltzmann equation

Let Ω ⊆ Rd with d = 3 be a volume of rarefied gas which comprises many interacting particles. Via equalizing the
mass m ∈ R>0, we interpret the particles as point masses. The state of a one-particle system is assumed to depend
on position x ∈ Ω and velocity v ∈ Ξ at time t ∈ I = [t0, t1] ⊆ R with T ≥ t1 > t0 > 0, where Ω ⊆ Rd denotes
the positional space, Ξ = Rd is the velocity space, P := Ω× Ξ is the phase space, and the crossing R := Ω× Ξ× I
defines the phase-time tuple.

Definition 2.2.2. The probability density function

f : R→ R>0, (x,v, t) 7→ f(x,v, t) (2.17)

for the particles’ positions x ∈ Ω and velocities v ∈ Ξ at time t ∈ I defines the state of the dynamical system which is
governed by the Boltzmann equation (BE)(

∂t + v ·∇x +
F

m
·∇v

)
f = J(f, f) in R, (2.18)

where

f |t=0 = f0 in P (2.19)

supplements a suitable initial condition. The operator

J (f, f) =

ˆ
R3

ˆ
S2

|v −w| [f (x,v′, t) f (x,w′, t)− f (x,v, t) f (x,w, t)] dN dw (2.20)

models the collision, where dN is the normalized surface integral with the unit vector N ∈ S2 and (v′,w′)T
=

TN (v,w)
T result from the transformation TN that models hard sphere collision [14].
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Definition 2.2.3. Let f be given in the sense of (2.17). Then, via prefactored integration over Ξ = Rd, we define the
moments

nf :

{
Ω× I → R>0,

(x, t) 7→ nf (x, t) :=
´
Rd f(x,v, t) dv,

(2.21)

ρf :

{
Ω× I → R>0,

(x, t) 7→ ρf (x, t) := mnf (x, t),
(2.22)

uf :

Ω× I → Rd,
(x, t) 7→ uf (x, t) := 1

nf (x,t)

´
Rd vf(x,v, t) dv,

(2.23)

Pf :

{
Ω× I → Rd×d,
(x, t) 7→ Pf (x, t) := m

´
Rd [v − uf (x, t)]⊗ [v − uf (x, t)] f(x,v, t) dv,

(2.24)

pf :


Ω× I → R>0,

(x, t) 7→ pf (x, t) := 1
d

d∑
i=1

(Pf )i,i (x, t),
(2.25)

respectively as particle density, mass density, velocity, stress tensor, and pressure. Here and below, the moments of f
are indexed with ·f .

Notably, the absolute temperature θ is determined implicitly by an ideal gas assumption

pf = nfRθ, (2.26)

where R > 0 is the universal gas constant. To a dedicated order of magnitude in characteristic scales, the above
moments approximate the macroscopic quantities conserved by the incompressible NSE [107]. Equilibrium states f eq,
defined by

J(f eq, f eq) = 0 in R, (2.27)

exist [107]. Via the gas constant R = kB/m ∈ R>0 (where kB ∈ R>0 is the Boltzmann constant) and θ ∈ R>0, nf
as well as uf , the equilibrium state is found to be of Maxwellian form

f eq(x,v, t) :

R→ R,
(x,v, t) 7→ nf (x,t)

(2πRθ)
d
2

exp
(
− [v−uf (x,t)]2

2Rθ

)
.

(2.28)

Remark 2.2.2. We identify f eq/nf as d-dimensional normal distribution for v ∈ Rd with expectation uf and
covariance RθId. In this regard, the arguments of f eq regularly appear in terms of moments f eq(nf ,uf , θ) (see for
example [117, 143, 158, 171]).

Lemma 2.2.1. The moments ρf , uf and pf are conserved by collision.

Proof. From f eq/nf being a density function, we find

ρfeq
(2.22)
= m

ˆ
Rd
f eq(x,v, t) dv = mnf = ρf , (2.29)

ufeq
(2.23)
=

1

nfeq

ˆ
Rd
vf eq(x,v, t) dv = uf . (2.30)
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The covariance matrix of f eq/nf for a perfect gas (2.26), verifies the conservation of pressure

pfeq
(2.25)
=

1

d
m

ˆ
Rd

(v − ufeq)
2
f eq(x,v, t) dv =

1

d
m

ˆ
Rd

(v − uf )
2
f eq(x,v, t) dv =

1

d
mnf

d∑
i=1

Rθ = pf .

(2.31)

Definition 2.2.4. According to Bhatnagar, Gross and Krook (BGK) [31] we simplify the collision operator J in (2.18)
to

Q(f) := −1

τ
(f −M eq

f ) in R, (2.32)

where τ > 0 denotes the relaxation time between collisions, andM eq
f := f eq(x,v, t) is a formal particular Maxwellian

determined by nf and uf .

Remark 2.2.3. The conservation of both, ρf and uf , respectively (2.29) and (2.30), is upheld, since ln(M eq
f ) is a

collision invariant of Q (cf. [158, Theorem 1.5]).

Definition 2.2.5. With Q from (2.32) implanted in (2.18), the BGK–Boltzmann equation (BGKBE) reads(
∂t + v ·∇x +

F

m
·∇v

)
︸ ︷︷ ︸

= D
Dt

f = Q(f) in R, (2.33)

where D/(Dt) is referred to as material derivative, and f(·, ·, 0) = f0 sets a suitable initial condition. Here and below,
the variable f is renamed to obey (2.33) instead of (2.18).

Remark 2.2.4. The global existence of solutions to the BGKBE (2.33) has been rigorously proven in [207]. Weighted
L∞ bounds and uniqueness have later been established on bounded domains [208] and in Rd [193].

2.3 Diffusive limit

We connect the BGKBE (2.33) to the NSE (2.12) via diffusive limiting. To this end, a formal verification of the
continuum balance equations (2.12) for the moments ρf and uf in Definition 2.2.3 is conducted. It is to be noted that
parts of the following derivation are taken from [158] and [230]. Where possible, we make links to other approaches
which are based on similar ideas, irrespective of the order in time of publication. We also stress that neither the
derivation, nor the references follow the aim of completeness, but rather are meant to illustrate the scale-bridging from
the BGKBE toward the incompressible NSE only. The limiting is done in three steps [158, 230].

Step 1: Mass conservation and momentum balance. Let f? be a solution to the BGKBE (2.33). Multiplying
m×(2.33) and integrating over Ξ = Rd yields

∂tρf? + ∇x · (ρf?uf?) +

ˆ
Rd
F ·∇vf

? dv︸ ︷︷ ︸
=0

= −1

τ

(
ρf? − ρMeq

f?

)
︸ ︷︷ ︸

(2.29)
= 0

(2.34)

⇐⇒ ∂tρf? + ∇x · (ρf?uf?) = 0 in Ω× I, (2.35)
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where the force term nulls out (cf. [158, Corollary 5.2] with g = 1 and a = F in the respective notation). Dividing
by the formal constant ρf? , the conservation of mass in the NSE is recovered. To balance momentum, we integrate
mv×(2.33) over Ξ = Rd and obtain that

∂t (ρf?uf?) + ∇x ·Pf? + (ρf?uf? ·∇x)uf? + F = 0 in Ω× I. (2.36)

The derivation of (2.36) closely follows a standard procedure documented for example in [158, Subsection 1.3.1].
Finally, via (2.36)/ρf? a balance law of momentum in conservative form is recovered. Thus, when suitably determining
Pf? according to the assumption of incompressible Newtonian flow, the incompressible NSE appears as the diffusive
limit system.

Step 2: Incompressible limit. The incompressible limit regime of the BGKBE (2.33) is obtained via aligning
parameters to the diffusion terms [158, 230]. Let lf be the mean free path, c the mean absolute thermal velocity, and
ν > 0 a kinematic viscosity. Assuming that a characteristic length L and a characteristic velocity U are given, we
define the Knudsen number, the Mach number and the Reynolds number, respectively

Kn :=
lf
L
, (2.37)

Ma :=
U

cs
, (2.38)

Re :=
UL

ν
. (2.39)

These nondimensional numbers relate as

Re =
lfcs
ν

Ma

Kn
=

√
24

π

Ma

Kn
, (2.40)

via defining ν := πclf/8 and the isothermal speed of sound cs :=
√

3Rθ (see also [223] and references therein).

Definition 2.3.1. To link the mesoscopic distributions with the macroscopic continuum we inversely substitute cs with
an artificial parameter ε ∈ R>0 through

cs ← [ 1
ε
. (2.41)

Here, and in the following the symbol← [ denotes the assignment operator.

In the limit ε↘ 0, the incompressible continuum is reached, sinceKn andMa tend to zero while Re remains constant
[223]. Based on that, we assign

c =

√
8kBθ

mπ
←[
√

8

3π

1

ε
, (2.42)

lf ←[
√

24

π
νε (2.43)

and (2.42) unfold the relaxation time

τ =
lf
c
← [ 3νε2. (2.44)
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Definition 2.3.2. Consequently, we define the ε-parametrized BGKBE (2.33) as

D

Dt
f = − 1

3νε2

(
f −M eq

f

)
in R, (2.45)

where the ε-parametrized Maxwellian distribution evaluated at (nf ,uf ) is

M eq
f =

nf ε
d(

2
3π
) d

2

exp

(
−3

2
(vε− uf ε)2

)
in R. (2.46)

Lemma 2.3.1. The population distribution function solving (2.45) can be formally expressed as a power series in ε
around t, i.e.

f =

∞∑
i=0

(
−3νε2

D

Dt

)i
M eq
f in R. (2.47)

Proof. The BGKBE (2.45) transforms to

f = M eq
f − 3νε2

D

Dt
f in R. (2.48)

Repeating (D/Dt)(2.48) gives

D

Dt
f =

D

Dt
M eq
f − 3νε2

(
D

Dt

)2

f in R. (2.49)

The expression (2.49) substitutes (D/Dt)f in (2.48). Thus

f = M eq
f − 3νε2

D

Dt
M eq
f +

(
3νε2

D

Dt

)2

f in R. (2.50)

Subsequent repetition produces higher order terms and substitutions which proves the claim.

Remark 2.3.1. Up to lower order, equation (2.47) can also be obtained via Maxwell iteration [275] and references
therein. The derivation in [275] is however based on an initial Taylor expansion of the material derivative, whereas
the present formulation starts with repeated application of the material derivative. Further, similarities to classical
Chapman–Enskog expansion (see e.g. [265] and references therein) are present. Comparisons of several expansion
techniques for a discretized model BGKBE can be found for example in [45].

Step 3: Newton’s hypothesis. For a solution f? of (2.33) the remaining stress tensor Pf? in (2.36) has to fulfill
Newton’s hypothesis which is (in the present context) equivalent to

Pf?
!
= −pf?Id + 2νρDf? +O

(
εb
)

in Ω× I (2.51)

up to order b > 0, where the rate of strain is denoted by

Df =
1

2

[
∇xuf + (∇xuf )

T
]
. (2.52)

Due to the assumption that for ε ↘ 0, higher order terms become sufficiently small, if the order b is large enough.
This formally provides evidence for the recovery of the NSE in the diffusive limit. The following lemma illustrates the
argument.
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Lemma 2.3.2. With a cutoff at order b = 2 we obtain

P = pId − 2νρD. (2.53)

Proof. Equation (2.47) cut off at order b = 2, provides the ansatz

f? = M eq
f? − 3νε2

D

Dt
M eq
f? in R. (2.54)

Based on that, the stress tensor is computed by its definition (2.24). To keep the notation compact, f -indices at moments
of f are omitted below. First, the material derivative and (2.34) is used to obtain

D

Dt
M eq
f =

(
1

ρ

D

Dt
ρ+ 3ε2c · D

Dt
u− 3ε2

m
c · F

)
M eq
f

=

[
1

ρ
(∂t + v ·∇x) ρ+ 3ε2c · (∂t + v ·∇x)u− 3ε2

m
c · F

]
M eq
f

=

[
1

ρ
(−u ·∇xρ− ρ∇x · u+ v ·∇xρ) + 3ε2c · (∂t + v ·∇x)u− 3ε2

m
c · F

]
M eq
f

=

[
−∇x · u︸ ︷︷ ︸

=: af

+
c

ρ
·∇xρ︸ ︷︷ ︸
=: bf

+ 3ε2c · ∂tu︸ ︷︷ ︸
=: cf

+ 3ε2c · (v ·∇x)u︸ ︷︷ ︸
=: df

− 3ε2c

m
· F︸ ︷︷ ︸

=: ef

]
M eq
f (2.55)

in R, where

c := v − u (2.56)

defines the relative velocity. Plugging the derivative (2.55) into (2.54) gives

f = M eq
f

[
1− 3ε2ν (−af + bf + cf + df + ef )

]
in R. (2.57)

Second, the velocity integrals of terms af , bf , . . . , ef are individually evaluated. We use the symmetry of M eq
f and

thatM eq
f /n is a normal distribution with covariance 1/(3ε2)Id. In Ω× I and for any i, j, k, l ∈ {1, 2, ..., d} holds

m

ˆ
Rd
cicjM

eq
f dv =

ρ

3ε2
δij , (2.58)

m

ˆ
Rd
cicjckM

eq
f dv = 0, (2.59)

m

ˆ
Rd
cicjckvlM

eq
f dv =

ρ

9ε4
(δijδkl + δikδjl + δilδjk) . (2.60)

Hence, we obtain

m

ˆ
Rd
cicjafM

eq
f dv =

(
m

ˆ
Rd
cicjM

eq
f dv

)
∂xkuk

(2.58)
=

ρ

3ε2
∂xkuk, (2.61)

m

ˆ
Rd
cicjbfM

eq
f dv =

(
m

ˆ
Rd
cicjckM

eq
f dv

)
1

ρ
∂xkρ

(2.59)
= 0, (2.62)

m

ˆ
Rd
cicjcfM

eq
f dv =

(
m

ˆ
Rd
cicjckM

eq
f dv

)
3ε2∂tuk

(2.59)
= 0, (2.63)

m

ˆ
Rd
cicjdfM

eq
f dv =

(
m

ˆ
Rd
cicjckvlM

eq
f dv

)
3ε2∂xluk

(2.60)
=

ρ

3ε2
(δijδkl + δikδjl + δilδjk) ∂xluk, (2.64)

m

ˆ
Rd
cicjefM

eq
f dv =

(
m

ˆ
Rd
cicjckM

eq
f dv

)
3ε2

m
Fk

(2.59)
= 0. (2.65)
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2.3 Diffusive limit

Third, for any i, j ∈ {1, 2, ..., d}, the component Pij := (P)i,j can be computed inR. Reordering its terms, we achieve

Pij = m

ˆ
Rd
cicj

[
1− 3νε2 (−af + bf + cf + df + ef )

]
M eq
f dv

= pδij − 3νε2
[
− ρ

3ε2
∂xkuk + ∂xluk

ρ

3ε2
(δijδkl + δikδjl + δilδjk)

]
= pδij + νρ [δij∂xkuk − ∂xluk (δijδkl + δikδjl + δilδjk)]

= pδij − νρ
(
∂xiuj + ∂xjui

)
, (2.66)

which proves the claim.

Remark 2.3.2. Extending the formal result, the vanishing of higher order terms in the diffusive limit ε↘ 0 is rigorously
proven by Saint-Raymond [223] with notation ε instead of ε for the case Ω = R3 and an initial condition

fε(0,x,v) = M
(
1 + εg0

ε (x,v)
)

(2.67)

which is close to an absolute equilibrium

M(v) =
1

(2π)d/2
exp

(
−|v|

2

2

)
, (2.68)

with uf = 0, and ρf = 1 = Rθ and initial fluctuations g0
ε . There, solutions fε to the ε-scaled BGKBE are passed

to the limit, where the corresponding velocity moments ufε are consequently identified as limiting to Leray’s weak
solutions [177] of the incompressible NSE [223, Theorem 1.2]. It is to be noted that we adapted the initial wording
"hydrodynamic limit" from [223] toward the more generic term "diffusive limit" to underline the presence of diffusion
terms in the limiting equation. For the sake of clarity, we restate the main result of Saint-Raymond [223] in the present
notation below.

It is to be stressed that we neglect the additional temperature equation appearing in the limit via imposing an ideal gas.
Let the Hilbert space L2(Rd,M dv) be defined by the scalar product

(f, g) 7→
ˆ
Rd
f (v) g (v)M (v) dv, (2.69)

whereM dv is a positive unit measure on Rd which allows the definition of an average

〈ξ〉 :=

ˆ
Rd
ξ (v)M (v) dv (2.70)

over Ξ = R for any integrable function ξ.

Definition 2.3.3. For any pair (f, g) of functions which are measurable and almost everywhere nonnegative on the
phase space P, define the relative entropy

H (f | g) :=

ˆ
Rd

ˆ
Rd

(
f log

(
f

g

)
− f + g

)
dv dx ≥ 0. (2.71)

Based on that, we recall the following preparative result from [222]. Locally integrable functions on X ⊆ Rd and
Sobolev spaces based on L2 are denoted with

L1
loc (X) =

{
f : X → R

∣∣ ∀x ∈ X ∃r > 0: Br(x) ⊆ X ∧ f |Br(x) ∈ L1(Br(x))
}
, (2.72)

Hk(X) = W k,2(X) =
{
f ∈ L2(X)

∣∣ ∀|α| ≤ k ∃ weak derivative ∂αf ∈ L2(X)
}
, (2.73)
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2 Mathematical Notations, Methods and Models

respectively. The latter are Hilbert spaces and the dual of Hk(X) is denoted with H−k(X).

Theorem 2.3.1. Let ε > 0 and 0 ≤ f0
ε ∈ L1

loc(P) such that the entropy is bounded H(f0
ε | M) < ∞. Then there

exists a weak solution fε to (2.45) that is global and nonnegative, and fulfills

fε −M ∈ C
(
R>0, L

2 (P) + L1 (P)
)

(2.74)

and for all t > 0:

H (fε(t) |M) +
1

ε2ν

ˆ t

0

ˆ
Rd

ˆ
Rd
D (fε) (s) dv dx ds ≤ H

(
f0
ε |M

)
, (2.75)

where the dissipation D(fε) is defined by

D (fε) = (Mfε − fε) log

(
Mfε
fε

)
≥ 0. (2.76)

Additionally, the weak solution fulfills the moment integrated conservation laws (2.29), (2.30), and (2.31) at zeroth,
first, and second order, respectively [222].

Via a boundedness assumption in L2(P, dxM dv) of initial parametrized fluctuation data (g0
ε ) defined from

g0
ε =

1

ε

(
f0
ε

M
− 1

)
, (2.77)

a constantly prefactored entropy bound C0ε
2 is obtained and in turn weak compactness on (Mgε) holds in L1

loc(R>0×
Rd, L1(Rd)) [20, 223]. Within this setting, for 1 ≥ p ≥ ∞ we define

w − Lp :=

weak topology σ
(
Lp, Lp

′
)
, if p <∞,

weak-∗ topology σ
(
L∞, L1

)
, if p =∞,

(2.78)

to restate the following main result of [223].

Theorem 2.3.2. Let (g0
ε ) be a family of measurable functions on P which satisfy almost everywhere

1 + εg0
ε ≥ 0 (2.79)

and

H
(
M
(
1 + εg0

ε

)
|M

)
≤ C0ε

2, (2.80)

and with ∇x · u0 = 0 additionally fulfill that 〈
g0
εv
〉 ε↘0−−−−−−−⇀

w−L2(Rd)
u0. (2.81)

Further, let fε = M(1 + εgε) be a solution of (2.45). Then

∃ρ,u ∈ L∞
(
R>0, L

2
(
Rd
))
∩ L2

(
R>0, H

1
(
Rd
))

(2.82)

and we have weak convergence such that, modulo a zero-limiting subsequence (εn) holds

〈gε〉 ε↘0−−−−−−−−−−−⇀
w−L1

loc(R>0×Rd)
ρ, (2.83)
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2.4 Temporal filtering

〈gεv〉 ε↘0−−−−−−−−−−−⇀
w−L1

loc(R>0×Rd)
u. (2.84)

In addition, ρ and u are weak solutions of the incompressible NSE (2.12), where the pressure is determined from the
solenoidal condition [223].

2.4 Temporal filtering

In CFD, the filtering of the model equation provides an opportunity of generating significant simulation speedup
in comparison to approximating the unfiltered PDE as is with scale-resolving grid resolutions. As a technique for
approximating (2.12) in turbulent regimes (e.g. Re� 1000), the LBM has attracted increased attention due to efficient
scalability on large HPC machines, especially in combination with LES [3]. Several studies (e.g. see [133] and
references therein) have approved the applicability of LBMs to DNS and LES.

Based on space filtering and the standard Smagorinsky eddy viscosity, a first LES model for LBMs has been proposed
by Hou et al. [129] and has been extended for example by Dong et al. [67]. Subsequently, via Hermite expansion,
Malaspinas and Sagaut [184] have proposed consistent subgrid closures for the space-filtered BGKBE.

Apart from these classical results from spatial filtering, Pruett [211] has put forward several advantages of filtering the
time domain instead. For the purpose of temporal large eddy simulation (TLES), a temporal variant of the approximate
deconvolution model has been introduced. Moreover, due to the possibility of Eulerian time domain filtering of (2.12),
a temporal direct deconvolution model (TDDM) has been proposed by Oberle et al. [200]. Our work [233] pioneers
the usage of the TDDM in combination with LBMs and is part of Contribution (CTN4). Below, we recall the first
TLES LBM derivation based on consistently time-filtering the BGKBE1.

2.4.1 Time-filtered Navier–Stokes equations

The TDDM [200, 233] is based on an Eulerian time domain filtering

g (·, t; Θ) =

ˆ t

−∞
G (t′ − t; Θ) g (·, t′) dt′, (2.85)

where g : · ×I∞ → R is a time dependent function with other optional arguments and filtered version g,G is the filter
kernel, and the scalar Θ > 0 specifies the filter width. Note that we have extended the positive time horizon I to allow
values within the complete real line I∞ ⊆ R.

Proposition 2.4.1. Let the filter kernel be exponential, i.e.

G (t′ − t; Θ) =
1

Θ
exp

(
t′ − t

Θ

)
. (2.86)

Then, for an unfiltered quantity Υ, the differential form of the filter operation can be written as

∂tΥ =
Υ−Υ

Θ
. (2.87)

1 Parts of this section are reproduced from [233], Copyright (2022), with permission from the authors and Elsevier Inc.
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Proof. LetΥ (t) be a time-dependent function, where we suppressed other arguments in space for the sake of simplicity.
We recall the computations given in [200]. Let t̂ = t′ − t. Applying the time derivative to a time-filtered quantity
Υ (t; Θ) yields

∂tΥ (t; Θ)
(2.85)
= ∂t

ˆ 0

∞
G
(
t̂; Θ
)

Υ
(
t+ t̂

)
dt̂

=

ˆ 0

−∞
G
(
t̂; Θ
)
∂tΥ

(
t+ t̂

)
dt̂

=

ˆ t

−∞
G (t′ − t; Θ) ∂t′Υ (t′) dt′

= G (t′ − t; Θ) Υ (t′)
∣∣t
−∞ −

ˆ t

−∞
∂t′G (t′ − t; Θ) Υ (t′) dt′

(2.86)
= G (t′ − t; Θ) Υ (t′)

∣∣t
−∞ −

1

Θ

ˆ t

−∞
G (t′ − t; Θ) Υ (t′) dt′

= G (0; Θ) Υ (t)−
[

lim
t′→−∞

G (t′ − t; Θ) Υ (t′)

]
− 1

Θ
Υ (t,Θ)

(2.86)
=

1

Θ
Υ (t)− 1

Θ
Υ (t; Θ) . (2.88)

Definition 2.4.1. By simple rearrangement of (2.87) the filtering operation is reversed to

Υ = Υ + Θ∂tΥ. (2.89)

As proposed in [200], we refer to this process as (temporal) direct deconvolution.

Let Υ ∈ {u, p}. Hence, temporally filtering (2.12) with F = 0 results in [200]

divx (u) = 0, (2.90)
∂tu+ divx (u⊗ u)− ν∆xu+ ∇xp = −divx (T) , (2.91)

where u and p are the time-filtered velocity and pressure, respectively,

Tαβ = uαuβ − uαuβ (2.92)

is the temporal residual stress tensor and the tensor divergence of T is defined as

divx(T) = ∇x ·T =
(
∂xβTαβ

)
eα (2.93)

with eα being the αth unit vector. Note that here and below, we neglect stating the explicit dependence on the filter
width Θ of filtered quantities.

Proposition 2.4.2. The time evolution of the temporal residual stress tensor T is described by the ordinary differential
equation

∂tT = − 1

Θ
T + Θ (∂tu)⊗ (∂tu) . (2.94)
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2.4 Temporal filtering

Proof. Via direct deconvolution we obtain the time derivative of T as [200]

∂tTαβ = ∂tuαuβ − (∂tuα)uβ − uα (∂tuβ)

(2.87)
=

1

Θ
(uαuβ − uαuβ)− (∂tuα)uβ − uα (∂tuβ)

(2.89)
=

1

Θ
[(uα + Θ∂tuα) (uβ + Θ∂tuβ)− uαuβ ]− (∂tuα)uβ − uα (∂tuβ) . (2.95)

Rearranging terms proves the claim.

Remark 2.4.1. The equations (2.90), (2.91) and (2.94) form a closed system which compared to (2.12) features an
analytically tunable filter in time manifested in the coupling term T.

2.4.2 Time-filtered Bhatnagar–Gross–Krook–Boltzmann equation

In general, applying a filter operation to (2.45) with F = 0 results in [184]

D

Dt
f = −1

τ

[
f −M eq

f

(
f
)]

+
1

τ
R, (2.96)

where f : R→ R, (x, ξ, t) 7→ f (x, ξ, t) is the filtered version of f , and

R =
[
M eq
f −M

eq
f

(
f
)]

(2.97)

defines the residual.

Remark 2.4.2. Irrespective which function arguments are filtered, we can use (2.96) analogously for space and time
domain filtering.

Via Hermite expandingM eq
f to N th order, we obtain

R = w (ξ)

N∑
n=0

H
(n) (ξ) : R(n), (2.98)

where

H
(n) (ξ) = (−1)

n
(2π)

d
2 exp

(
ξ2

2

)
D

(n)

[
1

(2π)
d
2

exp

(
−ξ

2

2

)]
(2.99)

denotes the nth order multi-dimensional Hermite polynomial andD(n) being a tensor of rank n with entries

D(n)
α1...αn = ∂α1

. . . ∂αn (2.100)

for multi-indices αi = 1, . . . , d for all i = 1, . . . , n. Here and below, the symbol : denotes full tensor contraction in
terms of Hadamard multiplication (see Section 3.1.3) and subsequent summation of components. This yields an order
by order expression with increasing tensorial rank [184]. Hence, up to second order (N = 2) we obtain

R
(0) = 0, (2.101)

R
(1) = 0, (2.102)

R
(2) = Tsg + θsgId, (2.103)

19
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where Tsg and θsg are subgrid stress and subgrid temperature, respectively.

Remark 2.4.3. Due to an isothermal configuration, the second order truncation effectuates that θsg = 0. Injecting the
temporal residual stress as a subgrid stress Tsg ←[ T and interpreting the filtering residual as a forcing term on the
second moment, we obtain a diffusive limit toward the time-filtered NSE {(2.90), (2.91)} up to leading order. Upon
complete discretization, we obtain a lattice Boltzmann equation which is coupled to a discrete direct deconvolution
rule as outlined in Section 3.3.1.5.

2.5 Homogenization

For the mathematical modeling of fluid flow through porous media, the incompressible NSE (2.12) can be modified
to include the effects of the solid matrix on the fluid flow in the void. Various different mathematical models exist
([122, 198] and references therein). Here, we choose to recall the rigorous construction of porous media models
formulated in Allaire’s seminal works [4–11]. Therein, the geometrical perception of porous media as equidistant
perforations in flow domains is considered to construct model equations via homogenization. As a result, several
homogenization limits are derived, where the homogenized equations depend on the geometric configuration. We
distinguish between three classical cases of homogenization limits:

1. incompressible NSE,

2. Brinkman law (BL),

3. Darcy’s law (DL).

The respective limits in this categorization have been rigorously proved for the stationary [10] and nonstationary Stokes
[9] regime as well as for the stationary NSE [8] as starting points. Although suggested by Allaire, to the knowledge of
the author the validity of this distinction is not completely proven for the nonstationary NSE. Nevertheless, the works
of Mikelić [188, 189] and Feireisl et al. [82] cover the homogenization limit toward the BL and the DL in the non-
stationary case in a different framework. Other contributions also used this structural categorization [108, 154, 174].
Although these models are likely to be interconnected, rigorous proofs of the underlying relations are rare and limited
to linear and stationary settings. Exemplarily, Allaire [5] proved the compliance of a formally derived DL and the DL
derived via homogenization (low volume fraction limit). Further, Feppon [83] and Feppon et al. [84] proved high-order
homogenization limits for the Stokes equations in a unified procedure. To the knowledge of the author, the latter is the
first and only derivation covering all three classical cases together with the low volume fraction limit at once. It remains
to be stressed, that such unified studies have not been conducted for homogenizing the nonstationary NSE. Below, we
summarize proven results and formulate the corresponding hypotheses to complete the framework.

Besides the mathematically rigorous model derivation, application-based model construction has been found suitable
for fluid flow in porous media [111, 199, 238]. Typically, empirical observations and matching terms are used to
introduce model systems akin to Brinkman- [41], Forchheimer- [89], Darcy- [60], or mixed-type equations [198].
Depending on the characteristic scales of porosity in the application in question, the heuristically derived models can
correctly recover the flow physics or severely disagree with experiments [198]. However, due to the large variation
of involved spatial scales, the model equations often are numerically solved with highly parallelizable methods. For
example, Spaid and Phelan [238] have proposed an LBM for approximating Stokes and Stokes–Brinkman equations
as target models. The latter only apply to large obstacle sizes in the porous matrix and solely recover stationary flows.
To the knowledge of the author, no LBM has yet been employed to approximate the nonstationary void flow through
critically sized porous matrix structures. Additionally to the formal completion of a unified framework for several
regimes, we evaluate its applicability and isolate a single target PDE which holds in the critical regime and is then to
be approximated with LBMs. This process of model derivation and evaluation is part of Contribution (CTN4). Unless
stated otherwise, C and Cn are constants, where n ∈ N0.
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2.5 Homogenization

2.5.1 Geometric setup

(a) Subvolume of the porous media.

aϵ

ϵ

Y S ,i
ϵ

Y i
ϵ

(b) The ith cell.

Figure 2.1: Illustrations of the geometric model of a porous structure in d = 3 dimensions. The ith void cell is denoted with Y εi containing a
spherical matrix obstacle Y εS,i with radius aε. Each cell is cubic with side length ε.

We geometrically model the flow through porous media via perforating the fluid domain with regularly arranged
obstacles (i.e. holes) of equal size [4, 6, 8, 11]. Let the domain Ω ⊆ RN , N ≥ 2 be redefined as an open, bounded,
and connected set. The boundary ∂Ω is assumed to be smooth of class C1. The domain Ω is covered with a regular
mesh of period ε > 0 (see Figure 2.1a), prescribing the cells Y εi = (0, ε)

d, for 1 ≤ i ≤ N (ε) (see Figure 2.1b), where

N (ε) = |Ω|ε−d (1 +O (1)) (2.104)

counts their number. Each cubical cell contains a solid spherical obstacle Y εS,i of size aε located in its center and a
complementary part filled with fluid

Y εF,i = Y εi \ Y εS,i. (2.105)

The overall fluid void is thus obtained via removal of the collective solid matrix, i.e.

Ωε = Ω \
N(ε)⋃
i=1

Y εS,i. (2.106)

Further, we assume that all obstacles are similar to a model obstacle Y mS of size aε. Under the assumption that aε � ε,
or equivalently

lim
ε↘0

aε
ε

= 0, (2.107)

we define the critical obstacle size

acrit
ε =

{
C0ε

d
d−2 for d ≥ 3,

e−
C0
ε2 for d = 2,

(2.108)

with 0 < C0 <∞ as well as the ratio

σε =


(

εd

ad−2
ε

) 1
2 for d ≥ 3,

ε
∣∣log

(
aε
ε

)∣∣ 12 for d = 2.
(2.109)
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Proposition 2.5.1. For a critical size acrit
ε , the ratio σε reaches the nonnegative constant homogenization limit

lim
ε↘0

σε =

{
(C0)

2−d
2 for d ≥ 3,

(C0)
1
2 for d = 2.

(2.110)

Proof. Injecting (2.108) into (2.109) completes the proof.

2.5.2 Homogenized stationary Navier–Stokes equations

In the case of independence of time, the incompressible fluid flow in Ωε is modeled by the stationary nonlinear
Navier–Stokes equations 

uε ·∇xuε − ν∆xuε = F −∇xpε in Ωε,

divxuε = 0 in Ωε,

uε = 0 on ∂Ωε,

(2.111)

where uε : Ωε → Rd denotes the velocity field, pε : Ωε → R is the scalar-valued pressure, F ∈ L2 (Ω)
d defines a given

force, and ν > 0 is a constant viscosity. Additionally, to comply with (2.106), we define the extension to Ω of a pair of
solutions (uε, pε) of (2.111) as

(ũε, p̃ε) =

(uε, pε) in Ωε,(
0, 1
|Cεi |
´
Cεi
pε dx

)
in each obstacle Y εS,i,

(2.112)

where Cεi denotes a control volume containing Y εS,i [8].

Based on the above definitions, Allaire [8, Corollary 1.4] proved homogenization limits for different obstacle sizes
expressed in the ratio (2.109). The results of homogenizing (2.111) are summarized in the following statements which
are recalled without proof. Let the index ·0 of a function space denote the classical vanishing trace operator, e.g. for
X ⊆ Rd let

H1
0 (X) =

{
f ∈ H1(X) | f |∂X = 0

}
. (2.113)

Theorem 2.5.1. According to the scaling of the obstacle size, we distinguish between three homogenization limits [8].

(i) If the obstacles are too small, i.e. limε↘0 σε = +∞, then (ũε, p̃ε) converges strongly in H1
0 (Ω)

d × L2 (Ω) /R
to (u, p), a solution of the stationary nonlinear NSE

u ·∇xu− ν∆xu = F −∇xp in Ω,

divxu = 0 in Ω,

u = 0 on ∂Ω.

(2.114)

(ii) If the obstacles have a critical size, i.e. limε↘0 σε = σ > 0, then (ũε, p̃ε) converges weakly in H1
0 (Ω)

d ×
L2 (Ω) /R to (u, p), a solution of the stationary nonlinear BL

u ·∇xu− ν∆xu+ ν
σ2 Mu = F −∇xp in Ω,

divxu = 0 in Ω,

u = 0 on ∂Ω.

(2.115)
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(iii) If the obstacles are too big, i.e. limε↘0 σε = 0, then the rescaled solution
(

ũε
σ2
ε
, p̃ε

)
converges strongly in

L2 (Ω)
d × L2 (Ω) /R to (u, p), the unique solution of the DL

u = 1
νM−1 (F −∇xp) in Ω,

divxu = 0 in Ω,

u = 0 on ∂Ω.

(2.116)

In all three regimes (i–iii), M is a d× d symmetric matrix, which depends only on the model obstacle Y mS .

The porosity matrix M, which inversely represents a permeability tensor, is computable via a model problem defined
locally around Y mS (see [8, Proposition 1.2] and [11, Proposition 1.3.2]). The following result, obtained from merging
[8, Proposition 1.2] and [11, Proposition 1.3.2], unfolds the computation of M.

Proposition 2.5.2. Let {ek}1≤k≤d denote the unit basis of Rd. Hence, the local model problem is defined for each k
as 

∇xqk −∆xwk = 0 in Rd \ Y mS ,

divxwk = 0 in Rd \ Y mS ,

wk = 0 on ∂Y mS ,

wk

{
→ ek for d ≥ 3

∼ ek log (|x|) for d = 2
as |x| → ∞.

(2.117)

The matrix M is then assembled through

M =


[´

Rd\YS ∇xwk ·∇xwj dx
]

1≤j,k≤d
for d ≥ 3,

4πId for d = 2.
(2.118)

Remark 2.5.1. Note that the standard derivation of the DL uses the assumption that the obstacle size aε = O(ε).
Presently, so far we have assumed a smaller obstacle size. Hence, the typical permeability tensor (often referred to as
K) is computed from a different model problem as the local model problem (2.117). Allaire [5] closely examines the
relation of permeability and porosity tensors, and states the following result.

Let the obstacle size be redefined as aε := δε = O (ε). Let ιεi define a linear homeomorphism, mapping each cell to
the unit cell Y = (0, 1)

d and allocating solid and fluid parts therein, YS = ιεi
(
Y εS,i

)
and YF = ιεi

(
Y εF,i

)
, respectively.

Hence, the unit cell Y now is split into a fluid part YF = Y \ YS and an obstacle YS which is of size δ > 0 due to ιεi
resembling a rescaling with a homothety factor of ε−1 [189]. The following theorem from [11] states the outcome of
the homogenization in this case.

Theorem 2.5.2. Let the case specific constant in [11, Theorem 1.2.5] be fixed at γ = 4 and β > 1 as given therein.
Then an extension (ũε, p̃ε) of the solution (uε, pε) of (2.111) exists, such that ũε converges weakly in L2 (Ω)

d to u,
and p̃ε converges strongly in Lq

′
(Ω) /R to p, for any 1 < q′ < β, where (u, p) is the unique solution of the DL

u = 1
νA (F −∇xp) in Ω,

divxu = 0 in Ω,

u = 0 on ∂Ω.

(2.119)
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In the DL (2.119), the porosity matrix A is defined by

A =

[ ˆ
YF

∇xvk ·∇xvj dx

]
1≤j,k≤d

, (2.120)

where for the canonical basis vector ek, 1 ≤ k ≤ d, of Rd, vk is the unique solution in H1
# (YF ) of the unit cell

problem 
∇xpk −∆xvk = ek in YF ,

divxvk = 0 in YF ,

vk = 0 on ∂ (YS) .

(2.121)

Further, the continuity in the low volume fraction limit (δ ↘ 0) is verified through the following theorem (Allaire [5,
Theorem 3.1]), which links the permeability tensor A (2.120) in the DL (2.119) to the porosity matrix M (2.118) in
the DL (2.116).

Theorem 2.5.3. Let (pk,vk) be the unique solution of the unit cell problem. Rescaling it, for x ∈ δ−1 (Y \ YS), we
can define

vδk (x) = δd−2vk (δx) , (2.122)
pδk (x) = δd−1pk (δx) . (2.123)

Further, let (qi,wi) be the unique solution of the local model problem. Then
(
pδk,v

δ
k

)
converges weakly to

d∑
i=1

(
eT
i M−1ek

)
(qi,wi) (2.124)

in
[
L2

loc

(
Rd \ YS

)
/R
]
×
[
H1

loc

(
Rd \ YS

)]d. Additionally, the low volume fraction limit for the permeability tensor
is given as 

lim
δ↘0

δd−2A (δ) = M−1, for d ≥ 3,

lim
δ↘0

1
| log δ|A (δ) = M−1, for d = 2.

(2.125)

Remark 2.5.2. With the above limiting systems, homogenized stationary equations are given for the complete range
of aε ≤ O (ε), where the sharp inequality is covered in Theorem 2.5.1 via (i–iii) and the equality in Theorem 2.5.2
provides a complementary case (iv).

2.5.3 Homogenized nonstationary Navier–Stokes equations

Let d ∈ {2, 3} and the model geometry be defined as above. The incompressible fluid flow, now being dependent on
time t ∈ I = (0, T ), is governed by the nonstationary nonlinear NSEε

∂tuε + ε4uε ·∇xuε − ε2ν∆xuε = F −∇xpε in Ωε × I,
divxuε = 0 in Ωε × I,
uε = 0 on ∂Ωε × I,
uε (x, 0) = u0,ε in Ωε,

(2.126)

whereuε : Ωε×I → Rd denotes the velocity field, pε : Ωε×I → R is the scalar-valued pressure, F ∈ L2(I;L2 (Ωε)
d
)

defines a given force, ν > 0 is a constant viscosity, and ∂Ωε is supposed to be sufficiently regular.
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2.5 Homogenization

Remark 2.5.3. Note that the individual terms of (2.126) are properly rescaled by prefactors of ε to ensure a non-
vanishing limit velocity [11].

Further, following [82], let 
u0,ε ∈ L2 (Ωε)

d
,

divxu0,ε = 0 in Ωε,

u0,ε · n = 0 on ∂Ωε,

(2.127)

where n is the outward pointing normal vector. In this configuration, at least one weak solution to (2.126) exists
[82], which is obtained in uε ∈ L2(I;H1(Ωε)

d) and pε ∈ H−1(I;L2
0(Ωε)), respectively [189]. To formulate the

evolutionary version of Theorem 2.5.1, the works of Feireisl et al. [82], Allaire [9], and Mikelić [188] serve as a basis.
Since only parts of the limit cases have been proven, we formulate the following conjecture.

Definition 2.5.1. Let 
∂tw

j − ν∆xw
j + ∇xπ

j = 0 in YF × I,
divxw

j = 0 in YF × (0, T ),

wj(x, 0) = ej in YF ,
wj = 0 on (∂YS\∂Y )× I

(2.128)

define a time-dependent unit cell problem [189], where wj is H1(Y )-periodic and πj is L2(Y )-periodic. The matrix
Ã(t) is then assembled through

Ãij (t) =
1

|Y |

ˆ
YF

wij (y, t) dy, (2.129)

for 1 ≤ i, j ≤ d.

Conjecture 2.5.1. Let (ũε, p̃ε) be a weak solution to (2.126). According to the scaling regimes of the obstacle size, we
distinguish between the following homogenization limits.

(i) If the obstacles are too small, i.e. limε↘0 σε = +∞, then (ũε, p̃ε) converges to (u, p), a solution of the
nonstationary nonlinear NSE

∂tu+ u ·∇xu− ν∆xu = F −∇xp in Ω,

divxu = 0 in Ω,

u = 0 on ∂Ω.

(2.130)

(ii) If the obstacles have a critical size, i.e. limε↘0 σε = σ > 0, then (ũε, p̃ε) converges in L2(Ω × I) and weakly
in L2(I;W 1,2

0 (Ω)) to (u, p), respectively, a solution of the nonstationary nonlinear BL
∂tu+ u ·∇xu− ν∆xu+ ν

σ2 Mu = F −∇xp in Ω,

divxu = 0 in Ω,

u = 0 on ∂Ω.

(2.131)
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(iii) If the obstacles are smaller than O (ε), but exceed the critical size, such that limε↘0 σε = 0, then a suitably
rescaled version of (ũε, p̃ε) converges to (u, p), the unique solution of the time-dependent DL

∂tu+ νMu = F −∇xp in Ω× I,
divxu = 0 in Ω,

u = 0 on ∂Ω.

(2.132)

(iv) If the obstacles are of size O(ε), then the rescaled solution (ε2ũε, ∂tp̃ε) converges in L2(I; Ω)d and weakly in
H−1(I;L2

0(Ω)), respectively to (u, p), the unique solution of the DL with memory
νu− Ã (t)u0 =

´ t
0

Ã (t− s) [F (s)−∇xp (s)] ds in Ω,

divxu = 0 in Ω,

u = 0 on ∂Ω.

(2.133)

Further, if the flow stabilizes after a finite period of time, the DL with memory (2.133) contracts for t → ∞ to
the classical DL (2.119) with

Aij =

ˆ ∞
0

Ãij (t) dt, (2.134)

for 1 ≤ i, j,≤ d.

In the regimes (i-iii), M is the same d × d symmetric matrix as in Proposition 2.5.2 and depends only on the model
obstacle Y mS . In case of (iv), Ã (t) is constructed from Definition 2.5.1.

Proof of cases (ii) and (iv). In contrast to the stationary case, only some of the limiting proofs in Conjecture 2.5.1 and
none of the interconnections of cases have been established yet. Hence we recall the available proofs only.
Case (ii). Feireisl et al. [82] consider obstacles of critical size smaller thanO (ε) and propose a differing methodology
to the one used by Allaire to pass to the limit equations. Via the techniques used therein, the above assumptions on the
shape and location of the obstacles can be loosened. The resulting homogenized equations however, are a BL which is
similar to the one obtained in the framework introduced above. Thus, the limit in case (ii) is proven.
Case (iv). Mikelić [189, Theorem 1.2 (with β = 4)] completely covers the present setting for this size of obstacles
which proves this case.

Remark 2.5.4. Cases (i) and (iii) are based on the conclusive evidence which has been stated for example in [6, 82]
that this extension is possible in a similar manner. Starting from the homogenization limits of the nonstationary Stokes
equations established in [9] could also be promising, since as stated in [6], the inclusion of a nonlinear advective term to
the Stokes equations resembles a compact perturbation of the ε-dependent stationary nonlinear NSE (2.111). It is also
notable that for case (iii), a proof for the homogenization of the evolutionary Stokes equations (without the nonlinear
advective term) is given in [9]. Concerning the low volume fraction limit which connects cases (iv) to (iii), the memory
effective terms of the DL with memory (2.133) might induce the time-dependency in the time-dependent DL (2.132).
Hence, an import of stationary effects and an additional solving for time-dependent eigenvalue problems in respective
cell spaces [5] might be insightful.

2.5.4 Applicability of the homogenized model

Assumption 2.5.1. To establish a connection to experimentally conforming model equations, we make the following
assumptions:
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2.5 Homogenization

1. According to [23, 189], the stabilization of the DL with memory (2.133) toward the classical DL (2.119) is
understood to happen in a short period of time. Hence, we assume a stabilized flow in case of obstacle sizes
which obey Conjecture 2.5.1 case (iv), i.e. the homogenization limit is constituted by an ordinary DL. Similarly,
we assume stabilization for case (iii). Typically this involves adding Brinkman terms (diffusion) or other
necessary features to the DL in case (iv). Though these artificial features are effective in the void and within the
porous–void interface, they are contracted to zero within the porous media under the necessary local assumptions
of highly viscous and stabilized (stationary) flow.

2. The porosity is determined to be constant in ΩT .

3. The medium is isotropic, which results in regular symmetric, hence diagonal or diagonalizable matrices M and
A. Further, we may thus reduce the matrixA orM−1 to its only eigenvalue, which yields a scalar multiplication.
Below we assume this simplification and unless stated otherwise, denote the single eigenvalue of A with A.

Remark 2.5.5. Assumption 2.5.1 explains the commonly formulated Brinkman equation [122, 198], which is con-
stituted by a classical DL plus a diffusion term. Neglecting the time-dependency in the BL derived above as well as
its inertial terms, results in a simplified equation which solely respects diffusion. To match the porous–void interface,
Spaid and Phelan [238] used such a Brinkman equation as a stationary limit for their simulations. A note in [238]
additionally states that far from the interface, and within the porous domain region, the governing equation reduces
again, to the classical DL [238]. It is however notable that along the stationary limit, the nonstationary solution to the
method in [238] is rather a BL as presently formulated, which was not further examined therein.

For d = 3 (see Figure 2.1b, σε describes the square root of the ratio of the cell volume to the obstacle diameter

σε =

(
ε3

aε

) 1
2

. (2.135)

We use the classical notion of porosity [122] to assess the above framework in terms of applicability.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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σ =
√

1/C

ε

σ
ε

(i): aε = O(ε4), NSE (2.130)
(ii) aε = O(ε3), nonstationary nonlinear BL (2.131)
(iii): aε = O(ε2), time-dependent DL (2.132)
(iv): aε = O(ε1), DL with memory (2.133)

Figure 2.2: Graph of ratio σε(ε) (2.135) for d = 3 and C = 1.

Proposition 2.5.3. For Conjecture 2.5.1(iv) we obtain the minimal porosity of ϕ ≈ 0.4764.

Proof. Recalling Conjecture 2.5.1, the size aε of the obstacles for d = 3 can be distinguished as follows. Let C > 0.

(i) Let aε = Cε4 = O
(
ε4
)
. Then σε =

(
1
Cε

) 1
2 ⇒ lim

ε↘0
σε = +∞.
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(ii) Let aε = Cε3 = O
(
ε3
)
. Then σε =

(
1
C

) 1
2 ⇒ lim

ε↘0
σε = σ > 0.

(iii) Let aε = Cε2 = O
(
ε2
)
. Then σε =

(
ε
C

) 1
2 ⇒ lim

ε↘0
σε = 0.

(iv) Let aε = Cε1 = O
(
ε1
)
. Then σε =

(
ε2

C

) 1
2 ⇒ lim

ε↘0
σε = 0.

The limits of σε for all cases are plotted in Figure 2.2 with a fixed constant C = 1. Subsequent to forming the porosity
parameter ϕ as the ratio of void and full domain, the injection of the magnitude approximation implies physical
reasoning for the specific homogenization limit equations. By definition, we obtain

ϕ =
|Ωε|
|Ω| =

∣∣∣∣∣Ω− N(ε)⋃
i=1

Y εS,i

∣∣∣∣∣
|Ω| = 1−

∣∣∣∣∣N(ε)⋃
i=1

Y εS,i

∣∣∣∣∣
|Ω| = 1− πa3

ε

6ε3
=


1− Cπ

6 ε9 in case (i),
1− Cπ

6 ε6 in case (ii),
1− Cπ

6 ε3 in case (iii),
1− Cπ

6 in case (iv)

(2.136)

−−−→
ε↘0

{
1 in cases (i-iii),
1− Cπ

6 in case (iv),
(2.137)

where | · | denotes the Lebesgue measure of the standard Euclidean space.

Remark 2.5.6. Proposition 2.5.3 frames the modeling possibilities of the presented approach, since the minimal
attainable porosity is similar to a square sphere packing [100, 198].

Remark 2.5.7. A lower porosity could be obtained by considering three-dimensional flow through two-dimensional
porous media, or by choosing three-dimensional obstacles in different arrangements [58, 198]. Whereas the former
becomes reasonable when modeling for example fibers as obstacles with a circular cross-section [17] and repeating
above calculations for d = 2, the latter renders rather complicated, due to the necessity of proving Conjecture 2.5.1
under loosened initial topological assumptions on the obstacles [82]. The question if all four cases would be retained
under a differentiability-breaking change of shape or cell-crossing shifts in location, remains to be answered.

Remark2.5.8. UnderAssumption 2.5.1we formulate a unifiedBL for caseConjecture 2.5.1(ii) below (Definition 2.5.2),
which depends on σ and formally limits

• either to the nonstationary nonlinear NSE in case (i) for σ →∞

• or (via rescaling the solution to ũ/σ2
ε ) to the stabilized DL in case (iii) and (iv) for σ ↘ 0.

Further, since the continuity in the low volume fraction limit [5] implies that M−1 is the limit of A, we use A in the
modified BL and, due to Assumption 2.5.1(3.), reduce it to its single eigenvalue A. In summary, the resulting model
equation is assumed to be valid for all herein considered porosities and permeabilities. We additionally motivate the
procedure of emulating all four regimes by recent observations that turbulence prevails for porosity values approaching
unity in aligned arrays of spheres [212].

Definition 2.5.2. Based on Conjecture 2.5.1, Assumption 2.5.1, Proposition 2.5.3 and Remark 2.5.8, we construct a
unified nonstationary nonlinear BL

∂tu+ u ·∇xu− ν∆xu+ ν
σ2A

−1u = F −∇xp in Ω,

divxu = 0 in Ω,

u = 0 on ∂Ω,

(2.138)
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which is used as a target PDE system for the LBM derivations and computer simulations further below in Chapters 3
and 4. Due to the unified perspective, the PDE system (2.138) is now referred to as homogenized NSE (HNSE).

2.6 Coupled systems

For the purpose of simulating fluid mixture flows [47] with diffuse-interface methods based on LBMs, we use coupled
PDEs akin to the Navier–Stokes–Cahn–Hilliard equations (NSCHE) as target systems. Taylor [245] established
experimental machinery to study the deformations of droplets induced by shear and extensional flow of binary fluids.
Here, the latter refers to a fluid mixture consisting of two components. The deformation of the interface is dictated
by the balance of surface tension and external forces. Once in favor of deformation, the droplet will break apart. The
breakup process can be modified in terms of the resulting droplet size distribution. This is of primary interest for
example in manufacturing processes, where the efficiency of creating emulsions is to be maximized [46, 257]. When
simulating multicomponent or multiphase flows with LBMs, the diffuse interfacial zone brings forth additional physics.
The added dynamics can be described by coupling the CHE to the NSE, where free energy models (FRMs) (e.g.
[224, 242]) offer consistent thermodynamics to derive the chemical potential µφ. The dynamics of a binary fluid can be
categorized among others into shear and extensional flows. A specific free energy LBM to approximate a coupled PDE
model for a simple binary fluid (equal density and viscosity) is described and tested for such dynamic configurations
further below (see Sections 3.3 and 4.6, respectively). Here, we derive the target PDE system. The ternary FRM by
Semprebon et al. [224] is simplified to obtain the target PDEs for binary fluid flow. Subsequently, we indicate its
asymptotic equivalence in the formal incompressible limit to the target equations of the FRM proposed by Kendon et
al. [150]. In addition, both models are extended to higher order FRMs for sharpening the diffuse interface2.

2.6.1 Free energy models

Definition 2.6.1. Let Ω ⊆ Rd. We define the free energy functional

Ψ(φ(x)) =

ˆ
Ω

(
fB + fI)(x, φ(x),∇xφ(x),∇2

xφ(x), . . . ,∇K
x φ(x)

)
dx, (2.139)

where fB : ΩT → R denotes the bulk free energy and fI : ΩT → R is the interfacial free energy. Here and below, we
occasionally suppress other arguments of the order parameter such as time.

Definition 2.6.2. The chemical potential µφ required for the CHE (2.11) is then computed by the functional derivative
δ· = δ/(δ·) of Ψ with respect to the order parameter φ(x), thus

µφ = δφΨ(φ) = ∂φ(fB + fI) +

K∑
k=1

(−1)
k∇k

x · ∂∇k
xφ

(fB + fI) . (2.140)

Definition 2.6.3. The thermodynamic pressure tensor Pth : R→ Rd×d is split into

Pth = Pch + P Id, (2.141)

where P : ΩT → R is the unscaled isotropic pressure andPch : ΩT → Rd×d is the partly anisotropic chemical pressure
tensor [150, 242].

2 Parts of this section are reproduced from [235], Copyright (2023), with permission from the authors and the American Institute of Mathematical
Sciences.
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Remark 2.6.1. The corresponding thermodynamics for multiphase and multicomponent flow can be modeled consis-
tently through Pchem. For single phase and single component flow, Pth reduces to P Id.

The FRM structure typically used for simulating multicomponent fluid flow with LBMs is based on the isothermal,
weakly compressible NSE coupled to the CHE for capturing the interface dynamics via Pth and µφ, respectively as

∂tρ+ divx(ρu) = 0 in ΩT ,

∂t(ρu) + divx (ρu⊗ u) = divx

{
η
[
∇xu+ (∇xu)T

]
+ η̃ (divxu) Id

}
− divxPth + F in ΩT ,

∂tφ+ divx(φu) = Mφ∆xµφ in ΩT ,

(2.142)

where ρ : ΩT → R denotes the density, u : ΩT → Rd is the fluid velocity, η > 0 is a dynamic viscosity, and the
factor η̃ = (ηB − 2η/3) ≥ 0 contains the bulk viscosity ηB ≥ 0. Complemented with respective initial and boundary
conditions, (2.142) forms a closed system. Additionally, to form the final FRM, definitions for Pth, µφ and F have to
be supplied.

Remark 2.6.2. Alternatively to the pressure-based thermodynamic coupling via Pth, for example to uphold the
pressure structure in the weakly compressible NSE for computational purposes, the thermodynamics can be injected
through the force field. Defining

F ← [ F th = F − divxPch (2.143)

and reducing Pth = P Id, will lead to a similar PDE system.

The FRM proposed by Kendon et al. [150] (KFRM) is based on the following definitions.

Definition 2.6.4. The KFRM defines the interfacial free energy between two continuous phases as

fK
I (φ) =

κ

2
|∇xφ|2 , (2.144)

where κ > 0 is a constant related to the mixture properties. The bulk free energy as

fK
B (φ) = −1

2
Aφ2 − 1

4
Bφ4 +

1

3
ρln (ρ) , (2.145)

where A > 0 is a model parameter.

Proposition 2.6.1. The chemical potential of the KFRM is

µK
φ (φ) = −Aφ−Bφ3 − κ∆xφ. (2.146)

Proof. We compute (2.140) from Definition 2.6.2 to obtain

µK
φ = ∂φ

(
fK

B + fK
I

)
−∇x · ∂∇xφ

(
fK

B + fK
I

)
= −Aφ−Bφ3 −∇x · ∂∇xφ

(κ
2
|∇xφ|2

)
. (2.147)

Definition 2.6.5. We define the divergence of the chemical pressure tensor for the KFRM as

divxPth,K =

= divxP
ch,K︷ ︸︸ ︷

φ∇xµ
K
φ +∇xP

30



2.6 Coupled systems

= −Aφ∇xφ+Bφ∇xφ
3 − κφ∇3

xφ+ ∇xP. (2.148)

For simplicity, we choose B = −A. Solving for µK
φ = 0 on a planar interface, we obtain the representative one-

dimensional profile

φ (x) = φ?tanh

(
x

ξK

)
, (2.149)

with the equilibrium values φ? = ±
√
A/(−B) = ±1 and the interface thickness

ξK =

√
2κ

A
. (2.150)

Remark 2.6.3. The bulk free energy fK
B depends on the chosen model for the components or phases. The gradient

of the order parameter φ ∈ [−1; 1] increases the total free energy across the interface. This results in an interface
minimization in order to minimize the overall free energy.

Via the deriving the excess free energy [150] the surface tension reads

σK =

ˆ +φ?

−φ?

{
2κ
[
fKB (φ)− fKB (φ?)

]} 1
2 dφ (2.151)

=
4

3
κ

(φ?)
2

ξK
(2.152)

=
4κ

3ξK
. (2.153)

The FRM proposed by Semprebon et al. [224] (SFRM) is based on the following definitions.

Definition 2.6.6. The SFRM defines the interfacial free energy between two continuous phases as

fS
I (φ) =

α2κ1

8
(∇xρ+ ∇xφ)2 +

α2κ2

8
(∇xρ−∇xφ)2, (2.154)

where κ1, κ2, α > 0 are constants related to the mixture properties. The bulk free energy as

fS
B (φ) =

κ1

32
(ρ+ φ)2(ρ+ φ− 2)2 +

κ2

32
(ρ− φ)2(ρ− φ− 2)2. (2.155)

Proposition 2.6.2. The chemical potentials of the SFRM are

µS
ρ =

δΨ

δρ
=
κ1

8
(ρ+ φ)(ρ+ φ− 2)(ρ+ φ− 1) +

κ2

8
(ρ− φ)(ρ− φ− 2)(ρ− φ− 1)

+
α2

4

[
(κ1 + κ2)(−∇2

xρ) + (κ2 − κ1)∇2
xφ
]

(2.156)

and

µS
φ =

δΨ

δφ
=
κ1

8
(ρ+ φ)(ρ+ φ− 2)(ρ+ φ− 1)− κ2

8
(ρ− φ)(ρ− φ− 2)(ρ− φ− 1)

+
α2

4

[
(κ1 + κ2)(−∇2

xφ) + (κ2 − κ1)∇2
xρ
]
. (2.157)
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Proof. We compute (2.140) from Definition 2.6.2 for both ρ and φ, respectively. The complete derivation is given
in [224].

Definition 2.6.7. We define the divergence of the chemical pressure tensor for the SFRM as

divxPth,S =

= divxP
ch,S︷ ︸︸ ︷

ρ∇xµ
S
ρ + φ∇xµ

S
φ +∇xP. (2.158)

An explicit definition of Pth,S is given in [224]. For simplicity, we choose κ2 = κ1. In terms of the concentration
fractions Cm of componentm = 1, 2, where

ρ = C1 + C2, (2.159)
φ = C1 − C2, (2.160)

a representative one-dimensional profile is obtained [224]

Cm (x) =
1 + tanh

(
x
ξS

)
2

, (2.161)

with the equilibrium values Ceq
m ∈ {0, 1} and the interface thickness

ξS = 2α. (2.162)

Via the deriving the excess free energy [224] the surface tension reads

σS =
α

6
(κ1 + κ2)

=
ακ1

3
. (2.163)

Remark 2.6.4. A mixture flow with three or more components can be realized in a straightforward extension of the
equation system (2.142) by adding a similarly coupled CHE (through pressure or force) for each additional order
parameter [224].

Proposition 2.6.3. In a formal incompressible limit, the KFRM is a special case of the SFRM.

Proof. With κ2 = κ1, the chemical potentials simplify to

µS
ρ =

κ1

4
(ρ− 1)

(
ρ2 − 2ρ+ 3φ2

)
− α2κ1

2
∆xρ, (2.164)

µS
φ =

κ1

4
φ
[
φ2 +

(
3ρ2 − 6ρ+ 2

)]
− α2κ1

2
∆xφ, (2.165)

respectively. Thus, the incompressible limit yields

lim
ρ→1

µS
ρ = 0, (2.166)

lim
ρ→1

µS
φ =

κ1

4
φ
(
φ2 − 1

)
− α2κ1

2
∆xφ. (2.167)

Identifying the parameters, we obtain

A =
κ1

4
, (2.168)
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κ =
α2κ1

2
, (2.169)

and thus ξS = ξK and σS = σK.

Remark 2.6.5. In the case of κ2 6= κ1, the incompressible limit yields the respective chemical potentials

lim
ρ→1

µS
ρ =

κ1 − κ2

8
φ
(
φ2 − 1

)
− α2 (κ1 − κ2)

4
∆xφ, (2.170)

lim
ρ→1

µS
φ =

κ1 + κ2

8
φ
(
φ2 − 1

)
− α2 (κ1 + κ2)

4
∆xφ, (2.171)

which frames the difference between the SFRM and the KFRM in terms of the tunability parameters κ1 and κ2

preceding the added thermodynamical pressure derivatives via the additional chemical potential with respect to ρ.
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Figure 2.3: Double-well bulk free energy potentials of (a) the KFRM and (b) the SFRM. For the purpose of illustration, the values are scaled around
null (f̃K

B = fK
B − ((1 − 10−3)/3)ρln(ρ) and f̃S

B = fS
B − (κ1 + κ2)/32) and cut off. The exemplary parameters A = 0.002,

B = −A, κ1 = 0.008 = κ2 are chosen.

Remark 2.6.6. Proposition 2.6.3 and Remark 2.6.5 underline the differences of the models, which take effect mostly
at density variations around unity. Whereas the bulk free energy potential of the SFRM is symmetric in the variations
in ρ (double-well with minima at ρ ∈ {0, 2}), the KFRM has a with ρ increasing potential in the bulk free energy.
Scaled versions of the double-well potentials of both models are visualized in Figure 2.3.

2.6.2 Higher order free energy models

Mass leakage, or more specifically volume loss of subcritical droplet sizes is known to be a fundamental mechanism
in diffuse interface CHE models akin to FRMs. Particularly in the context of LBM simulations, Zheng et al. [279]
proposed an estimate for the critical droplet radius such that any smaller droplet will vanish due to volume loss in a FRM
LBM multiphase flow simulation. Previous results, relating the spontaneous drop shrinkage to the interface thickness,
have been obtained for phase-field finite-element simulations by Yue et al. [271]. Shin et al. [227] have proposed a
remedy for the volume loss via increasing the polynomial order of the bulk free energy in φ. As a consequence of the
higher order leading terms in φ, the shape of the bulk free energy is steepened in the outer region near the minima
and flattened in between. The positive effect of this polynomial reshaping (see Figure 2.4) is based on the following
reasoning. The requirement φ = ±1 in the bulk depends on the comparably negligible volume of the interface. Hence,
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Figure 2.4: Double-well bulk free energy potentials of (a) the HKFRM and (b) the HSFRM, both form = 6. For the purpose of illustration, the
values are scaled around null (f̃HK

B = fHK
B − ((1− 10−3)/3)ρln(ρ) and f̃HS

B = fHS
B − (κ1 + κ2)/32) and cut off. The exemplary

parameters A = 0.002, B = −A, κ1 = 0.008 = κ2 are chosen.

only the bulk free energy should influence the energy minimization. Since this is not the case for nonplanar interfaces
(e.g. droplets), the free energy is also concentrated on the interface. Based on the finiteness of the bulk volume, it
is thus possible to reduce the total energy via shifting φ and shrinking the drop at the same time (cf. [271, Figure
1]). Henceforth, the energy exchange between bulk and interface moves its location causing a loss of volume when
deforming an initially equilibriated drop by shear or extensional flow. Numerically, a careful parameter choice or
adaptive discretization near the interface can ensure small ratios of interface width to drop radius a, i.e. small Cahn
numbers, and thus reduces the volume loss [271]. From amodeling perspective, the shape of the free energy determines
the strength of volume loss, which is minimized when using higher order polynomial bulk functionals. Thus, we extend
the approach of Shin et al. [227] to steepen the KFRM and the SFRM with a flexible higher order leading term.

Definition 2.6.8. For B = −A, the bulk free energy of the higher order KFRM (HKFRM) reads

fHK
B,m (φ) =

1

4
A (φm − 1)

2 − 1

4
A+

1

3
ρln (ρ) . (2.172)

Remark 2.6.7. The KFRM is a special case of the HKFRM with fHK
B,2 = fK

B .

Definition 2.6.9. The bulk free energy of the higher order SFRM (HSFRM) reads

fHS
B,m =

κ1

32

(
ρ+ φ

m
2

)2 (
ρ+ φ

m
2 − 2

)2
+
κ2

32

(
ρ− φm2

)2 (
ρ− φm2 − 2

)2
. (2.173)

Remark 2.6.8. The SFRM is a special case of the HSFRM with fHS
B,2 = fS

B.

Proposition 2.6.4. For κ1 = κ2 = 4, the HSFRM asymptotically leads to the bulk free energy model of Shin et
al. [227] in the incompressible limit.

Proof. Let κ1 = κ2, which yields

lim
ρ→1

fHS
B,m = lim

ρ→1

κ1

16

{[
φm +

(
3ρ2 − 6ρ+ 2

)]2 − (3ρ2 − 6ρ+ 2
)2

+ ρ2 (ρ− 2)
2
}

=
κ1

16
[φm − 1]

2
. (2.174)
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2.6.3 Navier–Stokes–Cahn–Hilliard equations

Taking into consideration the above, we construct the target equation which models incompressible binary fluid flow
and is approximated by the (K/S/HK/HS)FRM LBM in the diffusive limit. The chemical potential is chosen according
to Kendon et al. [150]

µφ = A
(
φ− φ3

)
− κ∆xµφ. (2.175)

Thus, for the incompressible NSE (2.12) we define a force term

F th = F − φ∇xµφ

= F − φ∇x

[
A
(
φ− φ3

)
− κ∆xφ

]
= F −Aφ

(
∇xφ−∇xφ

3
)

+ κφ∇3
xφ. (2.176)

The coupling term in the CHE (2.11) is then explicitly written as

Mφ∆xµφ = AMφ

(
∆xφ−∆xφ

3
)
− κMφ∆

2
xφ. (2.177)

Definition 2.6.10. The incompressible NSCHE for incompressible binary fluid flow reads

divx (u) = 0 in ΩT ,

∂tu+ divx (u⊗ u)− ν∆xu+ ∇xp+Aφ
(
∇xφ−∇xφ

3
)
− κφ∇3

xφ = F in ΩT ,

∂tφ+ u ·∇xφ−AMφ

(
∆xφ−∆xφ

3
)

+ κMφ∆
2
xφ = 0 in ΩT ,

u|t=0 = u0 in Ω,

φ|t=0 = φ0 in Ω,

(2.178)

together with appropriate boundary conditions.

2.7 Lyapunov functionals

For determining nonlinear stability of PDEs in terms of dynamical systems, Lyapunov functionals can be used. Let
I ⊆ R≥0 denote the time horizon and

d

dt
f(t) = Q(f(t)) (2.179)

denote a nonlinear autonomous system, where f : I → F ⊆ Rq and Q : F → Rq is locally Lipschitz (i.e. existence
of constants such that the bounded distance of points in F implies the distance of function evaluations at these points
being bounded). Let f? ∈ F denote an equilibrium point such that Q(f?) = 0. Without loss of generality, we
translate the equilibrium point to the origin f? = 0. Considering the stability of (2.179) at f? we use the following
definition from [151].

Definition 2.7.1. The equilibrium f? = 0 is
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• stable, if for each a > 0, there is b = b(a) > 0 such that

‖f(0)‖ < b⇒ ‖f(t)‖ < a ∀t ≥ 0, (2.180)

• unstable if it is not stable, and

• asymptotically stable if it is stable and b can be chosen such that

‖f(0)‖ < b⇒ lim
t→∞

f(t) = 0. (2.181)

Definition 2.7.2. A function V : F → R of class C∞ defined on a domain F ∈ Rq that contains the origin is called a
Lyapunov function, if

• V (0) = 0,

• V (f) > 0 if f 6= 0,

• d
dtV (f) ≤ 0 in F .

We restate Lyapunov’s stability theorem (see [151] and references therein).

Theorem 2.7.1. Let f? = 0 be an equilibrium point of (2.179). If there exists a Lyapunov function V for f?, then the
equilibrium point is stable. Further, if

d

dt
V (f?) < 0 in F \ 0, (2.182)

then f? is asymptotically stable.

Definition 2.7.3. A functional

H : f 7→ H [f ] , (2.183)

is called Lyapunov functional if H[f ] is a Lyapunov function.

Remark 2.7.1. The entropy defined in Boltzmann’sH-theorem plays the role of a Lyapunov functional (see e.g. [34]).
Moreover, the free energy functional used in the classical stationary CHE can be identified as a Lyapunov functional
which leads to well-posedness [33, 71] and the separation of components for t→∞.
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3 Numerical Methodology

Based on the target PDEs specified in Chapter 2, we now establish themethodology toward the Objectives (OBJ1–OBJ4)
introduced in Chapter 1. Embedded in the Contributions (CTN1–CTN4) this chapter particularly comprises1:

• A coherent framework for constructing LBM based on a given PDE,

• The numerical analysis of the scheme alongside its construction,

• The introduction of the notion of limit consistency,

• The proposal of LBM for PDE (systems) which in parts have not been approximated by it before,

• The definition of brute force stability.

The constructive ansatz for (CTN1) is proposed in Section 3.1 to obtain an LBM for a given d-dimensional parabolic
PDE Fpar = 0 in advection–diffusion form. As mentioned above (Remark 2.1.2), a preparative modification to bring
a generic PDE in the sense of Definition 2.1.2 into parabolic form is realizable. The proposed ansatz is separated in
four steps: constructing a relaxation system, spectral decomposition toward a transformed relaxation system, parameter
choices conforming to discrete velocity Boltzmann equations and finally the relaxation limit consistent discretization
which yields the lattice Boltzmann evolution equation on the space-time grid. The latter two form the content of
Section 3.2. On each level, we analyze the current result with respect to convergence to the previous step to unfold
the mechanisms of the derivation (CTN2). We modify the relaxation frequencies to enforce numerical stability of the
LBM along the coupled relaxation and discretization limit toward the TEQ.

It has to be stressed that rigorous convergence of the numerical schemes at the center of LBMs to several PDEs has
been previously proved in the literature. However, the focus and novelty of the present approach is modularity and
generality in terms of interchanging parts of the LBM (relaxation, discretization, equilibria) without affecting usability
of the approach for the evaluation of overall convergence up to leading order. The constraints which are necessary for
doing so are derived below.

In Section 3.3, the approximation of the target PDEs with LBMs is completed via summarizing the main ingredients
and adding initial, boundary and coupling methods to the bulk scheme. Concerning Contribution (CTN4), besides the
assembly of existing methodology, several novel numerical schemes are proposed for the IBVPs to be approximated in
the numerical experiments. Finally, preparing the latter, we sketch sample algorithms in terms of LBM collision kernels
and stability estimates for complex problems to incorporate grid effects, relaxation mechanisms and nonlinear terms
which leads to Contribution (CTN3). Parts of this chapter are already published by the author in [230–232, 234, 235].

1 Parts of this chapter have been published in advance and are reproduced from several sources: [231], Copyright (2020), with permission from the
authors and the Royal Society; [232], Copyright (2021), with permission from the authors and the Royal Society; [234], Copyright (2022), with
permission from the authors and Elsevier Ltd; [233], Copyright (2022), with permission from the authors and Elsevier Inc; [235], Copyright
(2023), with permission from the authors and the American Institute of Mathematical Sciences.
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3.1 Constructive design principles

This section describes the top-down construction of relaxation operators in the form of relaxation systems (RSs) for
the ADE (2.10) (see Figure 3.1). The procedure forms the main result of Contribution (CTN1). Whereas for the
model IVP (2.10), a rigorously converging RS is obtained, the other targeted PDEs (Section 2.2) require switching
to rather formal approaches in the case of nonlinear equilibria or nonuniform relaxation. In addition, as part of
Contribution (CTN2), the resulting RS is analyzed with respect to its closed form expression in the conserved variables,
the conditions and assumptions for its spectral transformation, rigorous convergence conditions involving the generic
Maxwellian on its right hand side, and with respect to linear stability for non uniform relaxation. Subsequent to
studying the relaxation limit, we derive lattice Boltzmann equations (LBEs) from RSs in Section 3.2. Thus, for a PDE
in the form of (2.10), we establish a novel coherent methodology from recalling, combining and extending the previous
results from Simonis et al. [230–232, 234]. Limits of the approach and future applications to more complex equation
systems are discussed in Chapter 5.

target
equation
(TEQ)

relaxation
system
(RS)

discrete
velocity
moment
system
(DVMS)

transformed
relaxation
system
(TRS)

discrete
velocity

Boltzmann
equation
(DVBE)

lattice
Boltzmann
equation
(LBE)

Sec.
3.1.1

Sec.
3.2.2

Sec.
3.1.3

Sec.
3.2.2

Sec.
3.2.1

Sec.
3.2.3

Figure 3.1: Schematic overview of the constructive approach (from left to right) proposed in [231]. Parts of this figure are reproduced from [231],
Copyright (2020), with permission from the authors and the Royal Society.

3.1.1 Constructing relaxation systems

Definition 3.1.1. Conforming to Definition 2.1.1, we denote a perturbed quantity with ·ε, i.e. a quantity which solves
the relaxation induced perturbed version of the PDE solved by · . A repeatedly exponentiation with ε corresponds to
repeated perturbation with relaxation terms.

Remark 3.1.1. With respect to the previous sections, we can interpret the action constructing a relaxation operator F ε]
via perturbation as a reverse homogenization or inverse relaxation limit. It becomes clear that the notion of top-down
construction in the present context needs to be envisioned in the metaphorical sense of constructing elements of
equivalence classes of RSs. Hence, the parameters of the obtained RSs are not unique by construction. This viewpoint
(in our version initially proposed in [231] and extended in [234]) that the relaxation mechanism adds another layer of
information which is present in – though not uniquely recoverable from – the macroscopic equation, independently
reappears in the literature on more or less discretized levels (e.g. see [28] and references therein).
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3.1 Constructive design principles

The commutative construction of an RS (or relaxation operator) pertaining to the TEQ (2.10) is based on a hyperbolic
conservation law

∂tρ+ ∇x · F (ρ) = 0 in ΩT , (3.1)

where ρ : ΩT → R, (x, t) 7→ ρ(x, t), ΩT = Ω × I ⊆ Rd × R≥0, and F : R → Rd, ρ 7→ F (ρ̂) is a component-wise
Lipschitz continuous real-valued function. Initial and boundary conditions are discussed further below.

Remark 3.1.2. It is to be noted that also for other TEQs than (2.10), e.g. described by a PDO F] different from Fpar,
the starting point should be a PDE of similar form. The first step in the construction of an RS should thus be to bring
the TEQ into an advection–diffusion (hyperbolic/parabolic) form and then to discard the diffusion terms which are to
be regained asymptotically in the relaxation limit.

Let α ∈ {1, . . . , d}. We denote with τ[, a
(1)
α , a(2)

α variable stability parameters which are to be determined later, γ > 0

and δ = 2(γ − 1), where [ is a tensor of flexible order. The latter are represented by the artificial variables introduced
below and are later linked to physical moment tensors (cf. [66, 232]). For the sake of clarity, we neglect consistent
notation of unambiguous arguments. To obtain a relaxation-based system of equations up to the first energy shell [148],
two subsequent steps are performed. Each step consists of

• the introduction of artificial variables (AV) and

• the addition of perturbation terms (AP),

respectively [231, 234].

Step 1. Starting from (3.1) we define the first artificial variables

AV : φα = Fα (ρ) (3.2)

and obtain ∂tρ+
d∑
k=1

∂kφk = 0,

0 = Fα (ρ)− φα,
(3.3)

which, by subsequent addition of perturbation terms to (3.2) for all α via

AP : εγτφ

(
∂tφ

ε
α +

a
(1)
α

εδ
∂αρ

ε

)
= Fα (ρε)− φεα, (3.4)

becomes a (d+ 1)× (d+ 1) RS ∂tρ
ε +

d∑
k=1

∂kφ
ε
k = 0,

∂tφ
ε
α +

a(1)α
εδ
∂αρ

ε = − 1
εγτφ

(φεα − Fα (ρε)) .

(3.5)

Step 2. We add a second set of artificial variables

AV : ψεα =
a

(1)
α

εδ
ρε (3.6)
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for all α, which yields 
∂tρ

ε +
d∑
k=1

∂kφ
ε
k = 0,

∂tφ
ε
α + ∂αψ

ε
α = − 1

εγτφ
(φεα − Fα (ρε)) ,

0 =
a(1)α
εδ
ρε − ψεα.

(3.7)

Adding a second set of perturbation terms to (3.6) for all α via

AP : εγτψ

(
∂tψ

εε
α +

a
(2)
α

εδ
∂αφ

εε
α

)
=
a

(1)
α

εδ
ρεε − ψεεα (3.8)

transforms (3.7) into a (2d+ 1)× (2d+ 1) RS
∂tρ

εε +
d∑
k=1

∂kφ
εε
k = 0,

∂tφ
εε
k + ∂αψ

εε
α = − 1

εγτφ
(φεεα − Fα (ρεε)) ,

∂tψ
εε
α +

a(2)α
εδ
∂αφ

εε
α = − 1

εγτψ

(
ψεεα − a(1)α

εδ
ρεε
)
,

(3.9)

in ΩT .

Definition 3.1.2. Compressing the above notation of (3.9), the RS reads

∂tρ
εε +

∑
α

Aα∂αρ
εε = − 1

εγ
S [ρεε − ρ̂εε] (3.10)

and governs the perturbed conservative variable

ρεε =


ρεε

φεε

ψεε

 ∈ R2d+1, (3.11)

where

Aα =


01×1 eT

α 01×d

0d×1 0d×d diag(eα)

0d×1 diag
(
a(2)α
εδ
eα

)
0d×d

 ∈ R(2d+1)×(2d+1) (3.12)

is diagonalizable by construction,

S = diag

(
1

τρ
11×1,

1

τφ
1d×1,

1

τψ
1d×1

)
∈ R(2d+1)×(2d+1) (3.13)

denotes the relaxation matrix with ra×b ∈ Ra×b being the all-r tensor of size a × b for a, b ∈ N and r ∈ R, and
eα ∈ Rd is the αth unit vector. The function

ρ̂εε : R→ R(2d+1)×(2d+1), ρεε 7→ ρ̂εε (ρεε) =


ρεε

F (ρεε)

a(1)

εδ
ρεε

 (3.14)
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3.1 Constructive design principles

is named equilibrium.

Remark 3.1.3. Since the equilibrium is solely dependent on ρεε. A suitable choice for the initial condition comple-
menting (3.10) is thus given by

ρεε (x, 0) = ρ̂εε|ρεε(x,0)=ρ0(x), in Ω. (3.15)

According to [27], this choice is natural with respect to the later derived LBM interpreted as multi-step finite difference
scheme.

Proposition 3.1.1. Together with (3.10), (3.15) forms a well-posed IVP [37].

Proof. A similar statement is proved in [37].

3.1.2 Closed equations and relaxation functions

Remark 3.1.4. The present ansatz enables both, constructing an RS and expressing the added relaxation terms as
higher order derivatives, for any conservation law akin to (3.1) and thus any PDE which is transformable into a similar
form. Further, via suitable rescaling, diffusion terms of the TEQ can be recovered.

We can a priori determine that the relaxation limit is governed by additional terms which null out when ε ↘ 0 with
specific prefactored orders. To do so, we formulate a closed equation in ρεε for two distinct settings:

(I) d ∈ N, F (ρ) is linear, S is independent on space and time,

(II) d = 1, F (ρ) is nonlinear, S is independent on space and time.

A third case is discussed in Remark 3.1.8 where d = 1, F (ρ) is nonlinear and S is space-time dependent.

Theorem 3.1.1. Let ρεε be smooth in space and time, let F be linear and let S be independent of space and time. The
RS (3.10) forms a closed equation for ρεε, namely

∂tρ
εε +

∑
α

Fα (∂αρ
εε)− ε2−γτφ

∑
α

a(1)
α ∂ααρ

εε = Rεε(I), (3.16)

where the relaxation remainder terms are

Rεε(I) = εγτφ

[
−
(

1 +
τψ
τφ

)
∂ttρ

εε − τψ
τφ

∑
α

Fα (∂αtρ
εε)− εγτψ∂tttρεε + ε2−γτψ

∑
α

a(2)
α ∂ααtρ

εε

]
. (3.17)

Proof. The proof is sketched in [234], where we have additionally used that for all α

∂αtFα (ρεε) = ∂t (F ′α (ρεε) ∂αρ
εε)

= F ′′α (ρεε) ∂tρ
εε + F ′α (ρεε) ∂αtρ

εε

= Fα (∂αtρ
εε) (3.18)

for linear F .

Remark 3.1.5. The remainder terms (3.17) in Theorem 3.1.1 (3.16) indicate that the relaxation limit is of orderO(εγ)

with respect to the ADE (2.10). In the formal limit ε → 0, the perturbation terms on the right-hand side of (3.16)
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vanish due to their prefactor εγ . Thus, the presence of the diffusion term in the limit equation depends on the scaling
exponent γ. In the case of γ = 2, formally µ is recovered in the limit through τ multiplied with the directionally
dependent factor a(α)

α .

Theorem 3.1.2. Let ρεε be of class C∞ in space and time, let F be nonlinear and let S be independent of space and
time. For d = 1, the RS (3.10) forms a closed equation for ρεε, namely

∂tρ
εε + ∂xFx (ρεε)− ε2−γτφa(1)

x ∂xxρ
εε = Rεε(II), (3.19)

where the relaxation remainder terms are

Rεε(II) = εγτφ

[
−
(

1 +
τψ
τφ

)
∂ttρ

εε − τψ
τφ
∂xtFx (ρεε)− εγτψ∂tttρεε + ε2−γτψa

(2)
x ∂xxtρ

εε

]
. (3.20)

Proof. We begin with d ∈ N and fix the dimension to unity later in the proof where we give reasons for the necessity
of doing so. To reduce the notation, we reorder the equation system (3.9) for any α into natural and artificial variables
to

∂tρ
εε = −

d∑
k=1

∂kφ
εε
k , (3.21)

Fα (ρεε) = (1 + εγτφ∂t)φ
εε
α + (εγτφ∂α)ψεεα , (3.22)(

ε−δa(1)
α

)
ρεε =

(
εγ−δτψa

(2)
α ∂α

)
φεεα + (1 + εγτψ∂t)ψ

εε
α . (3.23)

We recall the generalization of Schwarz’s theorem for symmetric partial derivatives of arbitrary order which allows us
to equate permutations in the ordering partial derivatives with respect to space and time. In the spirit of [231, 234], we
perform the inverse insertion from the last artificial variable to the initial conservation law for d ∈ N. For illustration
purposes, we display the following linear combination of (3.21)–(3.23) in tabular form (see Table 3.1). Conclusively,
the final row R1 in Table 3.1 reads(

∂t − εγ−δτφ
d∑

α=1

a(1)
α ∂αα − εγτφ∂tt − εγτψ∂tt − ε2γτφτψ∂ttt

)
ρεε

+

(
d∑

α=1

∂α + εγτψ

d∑
α=1

∂tα

)
Fα (ρεε) = −ε2γ−δτφτψ

d∑
α=1

a(2)
α ∂αααφ

εε
α . (3.24)

In the case of F (ρεε) being linear, the assumption can be made that the graph of φεε approximates the hyperplane
graph of the linear flux F . Based on that, higher order cross derivatives in spatial dimensions can be neglected [234]
for d ∈ N. In the setting of the present proof, the nonlinearity of F prevents this assumption for d 6= 1 due to

−tr (∇x (∇x (∂tρ
εε))) = tr (∇x (∇x (∇x · φεεα ))) (3.25)

⇔
d∑

α=1

∂tααρ
εε =

d∑
β=1

d∑
α=1

∂αββφα (3.26)

=

d∑
β=1

∑
α=β

∂αββφ
εε
α +

d∑
α=1
α 6=β

∂αββφα


=

d∑
α=1

∂αααφ
εε
α +

d∑
β=1

d∑
α=1
α 6=β

∂αββφα
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Table 3.1: Computation of closed equation in ρεε for Theorem 3.1.2. The nth row of (3.10) is denoted with Rn for n ∈ N. Equations for φεε and
ψεε are not shown in the last two steps.

[·]ρεε [·]Fα (ρεε) [·]φεεα [·]ψεεα linear combination

∂t 0 −
d∑

α=1
∂α 0

0 1 1
+εγτφ∂t

εγτφ∂α −εγτφ∂α(3.23)

ε−δa(1)
α 0 εγ−δτψa

(2)
α ∂α 1

+εγτψ∂t

∂t 0 −
d∑

α=1
∂α 0

−εγ−δτφa(1)
α ∂α 1 1

+εγτφ∂t

−ε2γ−δτφτψa(2)
α ∂αα

−ε2γτφτψ∂tα +εγτψ∂t(3.22)

ε−δa(1)
α 0 εγ−δτψa

(2)
α ∂α 1

+εγτψ∂t

∂t 0 −
d∑

α=1
∂α 0 +εγτψ∂t(3.22)

−εγ−δτφa(1)
α ∂α 1

+εγτψ∂t

1
+εγτφ∂t
+εγτψ∂t

−ε2γ−δτφτψa(2)
α ∂αα

+ε2γτφτψ∂tt

0

ε−δa(1)
α 0 εγ−δτψa

(2)
α ∂α 1

+εγτψ∂t

∂t 0 −
d∑

α=1
∂α 0 +

d∑
α=1

∂α(R2)

−εγ−δτφa(1)
α ∂α 1

+εγτψ∂t

1
+εγτφ∂t
+εγτψ∂t

−ε2γ−δτφτψa(2)
α ∂αα

+ε2γτφτψ∂tt

0

ε−δa(1)
α 0 εγ−δτψa

(2)
α ∂α 1

+εγτψ∂t

∂t

−εγ−δτφ
d∑

α=1
a

(1)
α ∂αα

d∑
α=1

∂α

+εγτψ
d∑

α=1
∂tα

εγτφ
d∑

α=1
∂tα

+εγτψ
d∑

α=1
∂tα

−ε2γ−δτφτψ
d∑

α=1
a

(2)
α ∂ααα

+ε2γτφτψ
d∑

α=1
∂ttα

0 +εγτφ∂t(3.21)
+εγτψ∂t(3.21)
+ε2γτφτψ∂tt(3.21)

∂t

−εγ−δτφ
d∑

α=1
a

(1)
α ∂αα

−εγτφ∂tt
−εγτψ∂tt
−ε2γτφτψ∂ttt

d∑
α=1

∂α

+εγτψ
d∑

α=1
∂tα

−ε2γ−δτφτψ
d∑

α=1
a

(2)
α ∂ααα 0 final R1
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6=
d∑

α=1

∂αααφ
εε
α . (3.27)

We thus set d = 1, which yields

d∑
β=1

d∑
α=1
α6=β

∂αββφα = 0, (3.28)

and induces that from R1 + ε2γ−δτφτψ
∑d
α=1 a

(2)
α ∂αα(3.21) we indeed obtain zeros in the third and fourth row of

Table (3.1) i.e. a closed equation in ρεε. Reordering the terms completes the proof.

Remark 3.1.6. We can extend the linear combination in Table (3.1) via repeated addition of

R1 +
(
ε2γ−δτφτψ

)k d∑
α=1

(
a(2)
α

)k
∂α(αα)k (R2) (3.29)

for k > 1, where we have performed k = 0 already. Consequently, all even spatial derivatives ∂(αα)nφα for n ∈ N
vanish and we are left with odd order ones prefactored by εk(2γ−δ) = ε2k. The present derivation hence abstracts the
observations made by Geier et al. [95, 96] from the recursive insertion of Taylor expanded collisions [120, 143] into the
collision scheme of a cumulant LBM. The abstraction is in terms of using mathematical relaxation and the derivation
of a closed form equation instead of kinetic arguments. On the present relaxation level (prior to discretization) the
repeated addition in terms of linear combinations generates the powers in ε similar to typical asymptotic expansion
terms.

Remark 3.1.7. Theorem 3.1.2 and its proof naturally suggest that in d > 1 the coupling of the RS (3.10) is strong in
the sense that a closed form in ρεε is not derivable by linear combination if F is nonlinear. Instead, the closed form is
solely asymptotically reachable with an infinite number of linear combinations through

R1 +

∞∑
k=1

(
ε2γ−δτφτψ

)k d∑
α=1

(
a(2)
α

)k
∂α(αα)k (R2)

+

∞∑
k=1

(εγτφ)
k
∂t(αα)k (3.21)

+

∞∑
k=1

(εγτψ)
k
∂t(αα)k (3.21)

+

∞∑
k=1

(
ε2γτφτψ

)k
∂tt(αα)k (3.21), (3.30)

and only up to nonvanishing cross derivatives of φεε akin to (3.25).

Remark 3.1.8. The results of Theorem 3.1.1 and Theorem 3.1.2 are based on relaxation times τ[ and prefactors a(i)
α

which, although being linked to for example nondimensional numbers and grid sizes, are assumed to be independent
of space and time for any α and i = 1, 2. Similarly, the (recursive) asymptotic expansion [95, 96] uses this assumption.
To the knowledge of the author, a similar consistency analysis up to high orders with space-time dependent relaxation
functions has not been established yet, is of paramount interest and is planned for future work. It is to be noted that, due
to the appearance of cross-derivatives and combined terms, the amount of algebra to arrive at a formula which includes
more than leading order is drastically increased already in the case of d = 1, F (ρ) being nonlinear and space-time
dependent S.
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3.1.3 Transformed relaxation system

The following transformation of the RS is motivated by decoupling its left hand side. At first, Hadamard operations on
and between tensors (see e.g. Reams [213]) and other notations are defined.

Definition 3.1.3. Let A = (Ai) ∈ Rn and B = (Bi) ∈ Rn be tensors of rank N ∈ N, where i = (i1, i2, . . . , iN ) ∈
NN and n = (n, n, . . . , n) ∈ NN are multi-indices.

1. The Hadamard product is defined as

A �B = (AiBi). (3.31)

2. The Hadamard inverse is defined as

A�−1 = (A−1
i ). (3.32)

3. Form ∈ R≥0, themth Hadamard power is defined as

A�m = (Ami ). (3.33)

Further, any exponent of a tensor and any operation between tensors preceded with � is to be performed entrywise.

Definition 3.1.4. The all-r tensor of size a× b for a, b ∈ N and r ∈ R is denoted with

ra×b ∈ Ra×b. (3.34)

Moreover, let eα ∈ Rd be the αth unit vector in Rd.

Definition 3.1.5. Let A = (Aij) ∈ Rn×n and a = (ai) ∈ Rn for n ∈ N. The diagonal operator

diag : Rn×n → R,A 7→ diag(A) =

n∑
i=1

(eT
i Aei)ei (3.35)

extracts the diagonal elements of a matrix into a correspondingly sized vector. Denoted with the same symbol,

diag : Rn → Rn×n,a 7→ diag(a) =

n∑
i=1

In(eT
i a)ei (3.36)

forms a quadratic matrix from argument vector entries as diagonal elements only, where In denotes the identity matrix
in Rn×n.

We can describe the modal matrix of Aα for all α as follows.

Definition 3.1.6. With χ(i)
α := a

(i)
α /εδ for i ∈ {1, 2} and any α, define

C(i) = diag
(
χ(i)

)
∈ GLd(R) (3.37)
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and the unified (i.e. the same for all α) diagonalizer

D =


11×d 11×1 11×d

−
(
C(2)

)� 1
2 0d×1

(
C(2)

)� 1
2

C(2) 0d×1 C(2)

 ∈ GL2d+1 (R) . (3.38)

Proposition 3.1.2. For any α, the matrix Aα can be diagonalized to its spectral counterpart

Ad
α := D−1AαD

= diag
(

(C(2))�
1
2 eα,01×1, (C

(2))�
1
2 eα

)
. (3.39)

Proof. Computing

D−1 =


0d×1 − 1

2

(
C(2)

)�− 1
2 1

2

(
C(2)

)�−1

11×1 01×d −
(
χ(2)

)�−1

0d×1
1
2

(
C(2)

)�− 1
2 1

2

(
C(2)

)�−1

 (3.40)

and multiplication with D−1Aα for all α gives the result.

Remark 3.1.9. The unified diagonalization is unique only up to permutation of diagonal entries of Ad
α and scalar

multiples of of the columns of D. We can thus formulate diagonalizations for all α

Aα = D1A
d,1
α D−1

1 = D2A
d,2
α D−1

2 , (3.41)

where D1 6= D2 and Ad,1
α 6= Ad,2

α .

We transform theRS (3.10) via spectral decomposition. The vectors g := D−1ρεε ∈ R2d+1 and ĝ := D−1ρ̂εε ∈ R2d+1

expressed in ρεε and ρ̂εε are inserted in (3.10), such that

∂tDg +
∑
α

Aα∂αDg = − 1

εγ
SD (g − ĝ) (3.42)

multiplied with D−1 from the left yields the following.

Definition 3.1.7. The vector

g = D−1ρεε (3.43)

obeys the transformed RS (TRS)

∂tg +
∑
α

Ad
α∂αg = − 1

εγ
D−1SD [g −G (g)] . (3.44)

Here, the functionG = G ◦ ι ◦ D is composed such thatG (g)
!
= D−1ρ̂εε, where the map ι : ρεε 7→ ρεε extracts the

nonartificial variables. Further, the linear map D : R2d+1 → R2d+1 is directly induced by D. Let

a = a(1) �
(
a(2)

)�−1

∈ Rd. (3.45)
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Based on the above, the generalized Maxwellian is defined as

G : [0, 1]× R→ R2d+1, (ε, ϑ) 7→ G (ε, ϑ) = (G1, . . . ,G2d+1)
T

(ε, ϑ) =


1
2

[
aϑ−

(
C(2)

)�− 1
2 F (ϑ)

]
(1− 1d×1 · a)ϑ

1
2

[
aϑ+

(
C(2)

)�− 1
2 F (ϑ)

]
 . (3.46)

Within the present framework, we can algebraically characterize the collision, the artificial variables, and the equilibrium
formulation. These features determine the relaxation limit of the RS and thus the limit equation of the nonartificial
(conserved) variables. Looking ahead, we anticipate to unfold also the inherited relaxation procedure for LBMs.

Remark 3.1.10 (Collision). The multi-relaxation-time (MRT) collision matrix reads

K = D−1SD

=


1
2

(
1
τφ

+ 1
τψ

)
Id 0d×1 − 1

2

(
1
τφ
− 1

τψ

)
Id(

1
τρ
− 1

τψ

)
11×d 1

τρ
11×1

(
1
τρ
− 1

τψ

)
11×d

− 1
2

(
1
τφ
− 1

τψ

)
Id 0d×1

1
2

(
1
τφ

+ 1
τψ

)
Id

 . (3.47)

It is notable that, compared to a single-relaxation-time (SRT) collision defined as

K̆ = D−1S̆D

= τ−1
ρ I2d+1, (3.48)

where S̆ := τ−1
ρ I2d+1, the MRT collision matrix shows nonzero off-diagonal blocks. The latter correlate nonequilib-

rium contributions

gneq = g −G (g) (3.49)

via prefactors from relaxation frequency sums. As a classic LBM staple, these relaxation effects are often tediously
derived from a BGKBE in moment form [55].

Remark 3.1.11 (AV space). The previously made choice of defining the AV (φεε andψεε) and adding the perturbation
terms in the constructive ansatz narrows the possibilities of defining the unified diagonalizer D. The latter in turn fixes
the appearance of the TRS in terms of Ad

α andG. In particular, we have that

colsp (D) = span

(⋂
α

E (Aα)

)
(3.50)

frames the choices for D, where E (Aα) is the eigenbasis of right eigenvectors of Aα.

Remark 3.1.12. Here, we limit our discussion to raw and orthogonal moment bases only, since the TRS is obtained
through eigendecomposition. In this setting, D can be chosen to have orthogonal rows in the case that Aα admits
orthogonal eigenvectors for example if Aα is normal for all α. The introduced methodology [234] differs from other
approaches such as moment-matching or Gauss–Hermite quadrature (see for example [185] and references therein).
The latter are based on thermodynamic concepts for example the recovery of Maxwellian equilibria to leading order.
In contrast to that, the present framework is mathematically generic. This allows for example the derivation of closed
equations (3.16) in special cases without expansions akin to Chapman–Enskog.
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3.1.4 Stability and convergence

Without loss of generality, the flux is normalized by F (0) = 0d×1 so that

G(ε, 0) = 0(2d+1)×1 ∀ε ∈ (0, 1] (3.51)

follows from (3.46). Additionally, we assume that Gi(ε, ·) is monotone, i.e. nondecreasing in N = {ϑ ∈ R : |ϑ| ≤
‖ρ0‖∞} for all i ∈ {1, 2, . . . , 2d+ 1}, which is called quasimonotonicity of G [37]. Based on the rigorous derivations
for classes of diffusive relaxation systems by Bouchut et al. [37], we can form the following convergence result
depending on the generalized Maxwellian and a sub-characteristic condition. Let q = 2d+ 1.

Lemma 3.1.1. The generalized Maxwellian G is a local Maxwellian function for equation (2.10) according to [37].

Proof. The conditions (M1–M4) given in [37] are verified. In particular, after some algebra we have that

(M1)

2d+1∑
i=1

Gi (ε, ϑ) = ϑ ∀ε ∈ (0, 1] ∀ϑ ∈ N , (3.52)

(M2)

2d+1∑
i=1

(
Ad
α

)
i,i
Gi (ε, ϑ) = Fα (ϑ) ∀α ∈ {1, 2, . . . , d} ∀ε ∈ (0, 1] ∀ϑ ∈ N , (3.53)

(M3)

2d+1∑
i=1

[√
εδ
(
Ad
α

)
i,i

] [√
εδ
(
Ad
β

)
i,i

]
Gi (0, ϑ) = µϑδα,β ∀α, β ∈ {1, 2, . . . , d} ∀ϑ ∈ N , (3.54)

(M4) lim
ε↘0
Gi (ε, ϑ) = Gi (0, ϑ) uniformly for ϑ ∈ N , for i = 1, 2, . . . , 2d+ 1,

(3.55)

where (M3) requires that
∑
α a

(1)
α = µ holds.

Definition 3.1.8. The TRS (3.44) is called relaxation stable if the stability parameters are chosen such that for all α
holds ∑

α

a(1)
α = µ, (3.56)

1 ≥
∑
α

aα, (3.57)

∑
α

aα ≥
∣∣∣∣∣∑
α

√
εδ

a
(2)
α

∂ρ (Fα (ρ))

∣∣∣∣∣ . (3.58)

Remark 3.1.13. The relaxation stability conditions all emerge from properties on G. Where (3.56) is necessary to
uphold the Maxwellian locality in (M1–M4), (3.57) and (3.58) ensure quasimonotonicity of G (see [37, Proposition
2.2]).

Proposition 3.1.3. Let τ[ = 1 for all [ ∈ {ρ, φ, ψ}, ρ0 ∈ L∞ (Ω) ∩ L1 (Ω) and choose relaxation stable variables
a(1),a(2). Initialize the TRS (3.44) with g (·, 0) = G (ε, ρ0), and let g ∈ C(I;L1

loc (Ω))q ∩ L∞ (Ω× I)
q denote its

solution. Then a bounded function g? exists, such that (along a subsequence)

lim
ε↘0

g = g? in C(I;L1
loc (Ω)). (3.59)

Further, ρ? = ι (Dg?) is the unique entropy solution to the TEQ (2.10).
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Proof. We identify the structure of the derived TRS (3.44) as a finite dimension diffusive BGK approximation of the
TEQ (2.10) such that with relaxation stability and G admitting the conditions (M1–M4), the solution g exists [37,
Theorem 2.1]. Then, the claim follows from [37, Theorem 3.1 and Theorem 4.1].

Remark 3.1.14. Albeit this result is rigorous, it does not treat the case that τ[ 6= 1 for some [ which is rather common
in practice. Hence, we slightly drift away from rigor and study the formal consistency as well as linear stability of the
relaxation limit.

Remark 3.1.15. Let d = 1. Based on the closed equation (3.19) we infer the following:

• The diffusion coefficient in the relaxation limit of the RS (3.10) can be altered via modifying τφ.

• Formally, the RS (3.10) is consistent of order O(εγ) to the TEQ (2.10).

• The diffusivity in the limit is not affected when τψ is modified within a certain bound. We can thus alter τψ to
modify the path we take toward the TEQ along ε↘ 0 in terms of consistency and stability.

To study the controlling mechanism of a relaxation time modification with respect to the limit ε↘ 0, we evaluate the
linear stability of the TRS (3.44) with nonuniform τ[.

Remark 3.1.16. At some point in the derivation, the dimension is fixed to d = 1 which is necessary to enable an
analytic derivation of the spectral radius of the amplification matrix derived below (see Corollary 3.1.2).

To obtain a relaxation time dependent linear stability notion in the sense of von Neumann (VN), we split

g = g + g̃ (3.60)

into a global equilibrium g (constant in space-time) plus its fluctuations g̃, respectively. The equilibrium is Taylor
expanded at the global state

G(g) =

∞∑
n=0

1

n!
[(∂g)

n
G (g)] g̃n

= G (g) + JG (g) g̃ +O
(
g̃2
)
, (3.61)

where JG (g) is the equilibrium Jacobian evaluated at the global equilibrium. We insert (3.60) and (3.61) in (3.44),
assume thatG(g) = g and neglect powers in fluctuations higher than two to obtain

∂tg̃ +
∑
α

Ad
α∂αg̃ = − 1

εγ
K (g + g̃ −G(g))

= − 1

εγ
K
[
g −G (g) + g̃ − JG (g) g̃ −O

(
g̃2
)]

= − 1

εγ
K [Iq − JG (g)] g̃. (3.62)

Fourier transforming the fluctuations gives

g̃ = ĝ exp(i(2πk · x− ωt)), (3.63)

where ĝ ∈ Cq denotes the Fourier transform of g̃ and is a vector of amplitudes for monochromatic waves [264],
k ∈ K ⊆ Rd denotes the wavevector and ω ∈ C. Insertion of ĝ into (3.62) yields an eigenvalue problem

Vĝ = ωĝ, (3.64)
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where the amplification matrix V ∈ Cq×q reads

V (k,F ,S) := diag
(

2π
(
k ·Ad

i

)
1≤i≤q

)
− i

εγ
K (Iq − JG (g)) , (3.65)

with

Ad
i = ((Ad

α)i,i)1≤α≤d ∈ Rd. (3.66)

Definition 3.1.9. The TRS (3.44) is termed von Neumann stable if the unit ball encloses the spectrum of V, i.e.

spec(V) ⊆ B1(0). (3.67)

Further, for given F we define the von Neumann stability set

S lin
F = {S | spec(V) ⊆ B1(0) ∀ k ∈ K} . (3.68)

We can further specify the amplification matrix by calculating the Jacobian JG(g).

Corollary 3.1.1. LetG be defined by (3.46). Then JG(g) is a projector (i.e. (JG)2(g) = JG(g)).

Proof. The columns of

JG(g) =


1
2

[
a−

(
C(2)

)�− 1
2 ∂g1F (g)

]
1
2

[
a+

(
C(2)

)�− 1
2 ∂g2d+1F (g)

]
(1− 11×q · a) · · · (1− 11×q · a)

1
2

[
a+

(
C(2)

)�− 1
2 ∂g1F (g)

]
1
2

[
a+

(
C(2)

)�− 1
2 ∂g2d+1F (g)

]
 ∈ R(2d+1)×(2d+1) (3.69)

sum up to 1, which completes the proof.

Corollary 3.1.2. Let d = 1. The TRS (3.44) admits the von Neumann stability set

S lin
F =

S = diag(1, τ−1
φ , τ−1

ψ )

∣∣∣∣∣ τ−1
φ =

ε2−γa(1)
1

µ
, τ−1
ψ ≤

εγ − 2πε

√
a

(2)
1 −

ε2−γa
(1)
1

µ

(
3∑
j=1

∣∣∣∣∣ εγ−1

2

√
a
(2)
1

∂F1

∂gj

∣∣∣∣∣+ 1

)
3
2

∣∣∣∣a(1)1

a
(2)
1

∣∣∣∣+ 1

 .

(3.70)

Proof. Let k ∈ K. We express some of the matrices appearing in (3.65) in block form such that

K =


K11 K12 K13

KT
21 K22 KT

23

K31 K32 K33

 , JG (g) =


J11 J12 J13

JT
21 J22 JT

23

J31 J32 J33

 , Π = diag
(

2π
(
k ·Ad

i

)
1≤i≤d

)
(3.71)
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gives (with slight evasion of tensor order highlighting) that

V =


Π11 − i

εγ

[
K11 −

∑
α

K1αJα1

]
Π12 − i

εγ

[
K12 −

∑
α

K1αJα2

]
Π13 − i

εγ

[
K13 −

∑
α

K1αJα3

]
Π21 − i

εγ

[
K21 −

∑
α

K2αJα1

]
Π22 − i

εγ

[
K22 −

∑
α

K2αJα2

]
Π23 − i

εγ

[
K23 −

∑
α

K2αJα3

]
Π31 − i

εγ

[
K31 −

∑
α

K3αJα1

]
Π32 − i

εγ

[
K32 −

∑
α

K3αJα2

]
Π33 − i

εγ

[
K33 −

∑
α

K3αJα3

]


(3.72)

=


Π1≤i≤d − i

εγ K11 −W+ −Λ+
d+1 − i

εγ K13 −U+

−Γ11×d Πd+1 − i
εγ

1
τψ
− Γ −Γ11×d

− i
εγ K31 −W− −Λ−d+1 Πd+2≤i≤2d+1 − i

εγ K33 −U−

 , (3.73)

where

Γ =
i

εγ
1

τψ

(
−1 +

∑
α

a
(1)
α

a
(2)
α

)
∈ C, (3.74)

Λ±i =
i

εγ

± 1

τφ

1

2

√
χ

(2)
α

∂Fα
∂gi
− 1

τψ

a
(1)
α

2a
(2)
α


1≤α≤d

∈ Cd, for 1 ≤ i ≤ 2d+ 1, (3.75)

Πm≤i≤n = diag
((

2πk ·Ad
i

)
m≤i≤n

)
∈ Rm−n+1, for 1 ≤ m ≤ n ≤ 2d+ 1, (3.76)

U± =
i

εγ

± 1

τφ

1

2

√
χ

(2)
α

∂Fα
∂gi
− 1

τψ

a
(1)
α

2a
(2)
α


1≤α≤3

d+2≤i≤2d+1

∈ Cd×d, (3.77)

W± =
i

εγ

± 1

τφ

1

2

√
χ

(2)
α

∂Fα
∂gi
− 1

τψ

a
(1)
α

2a
(2)
α


1≤α≤3
1≤i≤d

∈ Cd×d. (3.78)

Now fix d = 1. Thus U± = Λ±3 and W± = Λ±1 , such that

V(k, F,S) =


Π1 − i

εγK11 − Λ+
1 −Λ+

2 − i
εγK13 − Λ+

3

−Γ Π2 − i
εγ

1
τψ
− Γ −Γ

− i
εγK31 − Λ−1 −Λ−2 Π3 − i

εγK33 − Λ−3

 . (3.79)

In analogy to Corollary 3.1.1, we bound the sum of the absolute valued components in the ith row of V in (3.79) to

3∑
j=1

|Vij | ≤


|Πi|+

3∑
j=1

∣∣−Λ±j
∣∣ ∑
j∈{1,3}

∣∣− i
εγKij

∣∣ , if i = 1, 3,

|Πi|+
3∑
j=1

|−Γ|+
∣∣∣− i

εγτψ

∣∣∣ , if i = 2

(3.80)

≤ max
i∈{1,2,3}

|Πi|+
3∑
j=1

1

εγτφ

∣∣∣∣∣ 1

2
√
χ2

1

∂F1

∂gj

∣∣∣∣∣+
3

2

1

εγτψ

∣∣∣∣∣a(1)
1

a
(2)
1

∣∣∣∣∣+
1

εγ

(
1

τφ
+

1

τψ

)
(3.81)

≤ 2π

√
a

(2)
1

ε2(γ−1)
+

3∑
j=1

1

εγτφ

∣∣∣∣∣ 1

2
√
χ2

1

∂F1

∂gj

∣∣∣∣∣+
3

2

1

εγτψ

∣∣∣∣∣a(1)
1

a
(2)
1

∣∣∣∣∣+
1

εγ

(
1

τφ
+

1

τψ

)
=: b (3.82)
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for all i. We can infer from the Gerschgorin circle theorem that

rspec(V) = max
λ∈spec(V)

|λ| ≤ ‖V‖∞ ≤ b. (3.83)

Finally, from b ≤ 1 in Definition 3.1.9 we obtain an upper bound for the artificial relaxation frequency sψ = 1/τψ
reading

sψ ≤
εγ − 2πε

√
a

(2)
1 − 1

τφ

(
3∑
j=1

∣∣∣∣∣ εγ−1

2

√
a
(2)
1

∂F1

∂gj

∣∣∣∣∣+ 1

)
3
2

∣∣∣∣a(1)1

a
(2)
1

∣∣∣∣+ 1

. (3.84)

The claim follows from Theorem 3.1.2.

Remark 3.1.17. Albeit, the validity of the derived vonNeumann stability set (3.70) holds only in the sense of a nonsharp
bound, we have still proven that the stability of the relaxation limit can be consistently regulated via modulating τψ
within a certain regime.

3.2 Space-time-velocity discretization

The final step in the constructive ansatz (see Figure 3.1) is to discretize the TRS (3.44) in a consistent way in space and
time such that the relaxation limit is upheld. A priori identifying the parameters of the TRS (3.44) with typical ones
obtained from discrete velocity Boltzmann models yields an LBE on the space-time grid.

Based on the discretization, a second limit is introduced, which is analyzed with respect to both, consistency to the
relaxation limit running already in the background and to the targeted PDE. To the knowledge of the author, the former
notion (limit consistency) was initially motivated by Krause [158] and has been explicitly proposed for the first time in
[230]. The latter work of the present author is part of Contribution (CTN2). The second notion of consistency (LBE
to TEQ) is classical, and found to be implied if limit consistency is proved.

In addition to the consistency, stability is analyzed linearly in terms of von Neumann and the use of Lyapunov
functionals for nonlinear target PDEs is discussed. A third, new notion of nonlinear stability (brute force stability
[232]) is proposed, which includes grid effects by construction. Since the relaxation frequencies prefactor the relaxation
terms in the closed form of the RS (see Section 3.1), the influence on the convergence in the coupled limit is crucial.
This observation is outsourced in the proposal of a novel collision scheme which is based on flexible relaxation
times dependent on nondimensional numbers present in the targeted PDE. Additionally, the key ingredient (entropy
controlled relaxation) for nonlinear stability is isolated from the entropic MRT collision proposed by Karlin, Bösch
and Chikatamarla (KBC) [148] and paired with a computationally efficient discrete velocity set and equilibrium.

3.2.1 Discrete velocity models

In the following, a DdQq discrete velocity BGK–Boltzmann equation (DVBE) is derived classically from the
BGKBE (2.33) and its equivalence to the generic TRS (3.44) with specific parameter choices ¨is shown. This
equivalence then implies rigorous relaxation convergence of the DVBE to the TEQ by construction.

The top-down ansatz proposed in Section 3.1 is currently applied, proved for convergence, and further analyzed for the
case of the ADE (2.10) only. With increased complexity of the PDE to be approximated, thermodynamic information
based on the (diffusive) limit of the BGKBE (see Section 2.3) is necessary. Nevertheless, the other parts of the coherent
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3.2 Space-time-velocity discretization

framework (CTN2) are applicable, e.g. assessing linear stability for nonuniform relaxation based on understanding the
DVBE as an RS, irrespective of its derivation being top-down or bottom-up.

Classically, the DVBE is a result of reducing the velocity space Ξ of the BGKBE (2.33) to a countable finite set
Q := {ci}i=1,2,...,q ⊂ Ξ = Rd with #Q = q, which is abbreviated with DdQq. Examples of velocity sets are
sketched in Figure 3.2. Note that since our definition of the velocity set is only unique up to ordering of its elements,
we handle the numbering carelessly below. Let

(a)D1Q3 (b)D2Q5 (c)D3Q7 (d)D2Q9 (e)D3Q19

x

y

z

Figure 3.2: Discrete velocity setsDdQ(2d+1) for d = 1, 2, 3, respectively (a–c),D2Q9 (d) andD3Q19 (e). Coloring refers to the corresponding
energy shell, where orange, cyan and green denote zeroth, first and second order nodes, respectively.

w (c̃i) :=

(
2

3
π

) d
2

ε−dδ exp

(
3

2
c̃2
i

)
∈ O

(
ε−d
)

(3.85)

define a weight function for c̃i = εδ/2ci. Unless stated otherwise, we assume unity particle massm = 1 below.

Definition 3.2.1. For d ∈ N, the DdQ(2d+ 1) velocity set is defined through its elements

ci = ε−
δ
2

{
0d×1 if i = 1,

±eα∀α if i = 2, 3, . . . , 2d+ 1,
(3.86)

distributed on two energy shells. To each element, we attach a weight

wi = w

{
θ−d
θ if i = 1,

1
2θ if i 6= 1.

(3.87)

Unless stated otherwise, we use θ = 3 if d = 1, 2 and θ = 4 in case of d = 3.

Definition 3.2.2. The D2Q9 velocity set is defined through its elements

ci = ε−
δ
2


0d×1 if i = 1,

±eα∀α if i = 2, 3, . . . , 5,

(±1,±1)T, if i = 6, 7, . . . 9

(3.88)

distributed on three energy shells. To each element, we attach a weight

wi = w


4
9 if i = 1,

1
9 if i = 2, 3, . . . , 5,

1
36 if i = 6, 7, . . . , 9.

(3.89)
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Definition 3.2.3. The D3Q19 velocity set is defined through its elements

ci = ε−
δ
2


(0, 0, 0)

T if i = 1,

(±1, 0, 0)
T
, (0,±1, 0)

T
, (0, 0,±1)

T if i = 2, 3, . . . , 7,

(0,±1,±1)
T
, (±1,±1, 0)

T
, (±1, 0,±1)

T if i = 8, 9, . . . , 19,

(3.90)

distributed on three energy shells. To each element, we attach a weight

wi = w


1
3 if i = 1,

1
18 if i = 2, 3, . . . , 7,

1
36 if i = 8, 9, . . . , 19.

(3.91)

Definition 3.2.4. Based on DdQq, the ε-parametrized DVBE derived from (2.45) with BGK collision, generalized
scaling and multiple relaxation times reads

∂tf +

d∑
α=1

Vα∂αf = − 1

εγ
M−1SM (f − f eq (f)) in ΩT , (3.92)

where f : ΩT → Rq denote discrete velocity distribution functions, S = diag(s) is the relaxation matrix with
s = (1/τi)1≤i≤q and Vα = diag((ci)α)1≤i≤q . The moment matrix M and the truncated Maxwellian equilibria f eq

are dependent on the TEQ and specified below. If τi = τ for all i, the matrix M−1SM reduces to the SRT BGK
collision.

Remark 3.2.1. Notably the equilibrium formulation (2.46) used in the BGKBE is suitably expandable to yield a first
order truncated model which is similar to (3.92) (see for example [184]). For the case of D3Q19 a derivation of a
DVBE via velocity discretization of the ε-parametrized BGKBE and its consistency order in terms of ε is provided
in [158, 230]. The velocity discrete equation thus still limits toward the NSE for ε ↘ 0 and γ = 2, respecting the
convergence result in Theorem 2.3.2. Hence, similarly to the TRS, the DVBE can be seen as a perturbed system
providing the background limit which has to be taken account for in the discretization of space and time.

Definition 3.2.5. For the DdQ(2d+ 1) let

M =


11×1 11×d 11×d

0d×1 −ε− δ2 Id ε−
δ
2 Id

0d×1 ε−δId ε−δId

 (3.93)

define a rawmoment basism = Mf and set the relaxation times τ1 = 0, τα+1 = τ and τα+(d+1) = τk. The conserved
moment is defined as

ρf =

q∑
i=1

fi. (3.94)

Further, a first order truncation of the Taylor expanded Maxwellian equilibrium yields

f eq
i (x, t) :=

[wi
w
ρfi
(
1 + 3εδci · ufi

)]
(x, t). (3.95)
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Definition 3.2.6. For the D3Q19 DVBE approximating the incompressible NSE (2.12), the conserved moments and
the equilibrium read

ρfi(x, t) :=

q∑
i=1

fi(x, t), (3.96)

ufi(x, t) :=
1

ρfi(x, t)

q∑
i=1

cifi(x, t), (3.97)

f eq
i (x, t) :=

{
wi
w
ρfi

[
1 + 3εδci · ufi −

3

2
εδu2

fi +
9

2
ε2δ (ci · ufi)2

]}
(x, t), (3.98)

respectively.

Below, the parameter combination cs := 1/
√

3εδ is called lattice speed of sound. In the present work, we consider two
different moment bases for the D3Q19 velocity set. In both cases, the moment matrix M ∈ GLq(R) is constructed
with the mapping

mi = 〈φi,f〉 (3.99)

based on the standard inner product 〈·, ·〉 on Rq , where φi = (φij)j ∈ Rq are q vectorial representations of q linearly
independent polynomials in discrete velocity vector entries. The polynomials Pp1,p2,...,pd are constructed via generic
moments

ρΓp1,p2,...,pd =
〈(

(ci)
p1
1 (ci)

p2
2 · · · (ci)pdd︸ ︷︷ ︸

=Pp1,p2,...,pd (ci)

)
i
,f
〉
. (3.100)

The compression of φi as rows of a matrix defines

M = (Mi,j)i,j =
(
φij
)
i,j
∈ Rq×q, (3.101)

inducing an isomorphic mapm = Mf from population to moment space. Further, letW j = (W j
i )i ∈ Rq denote

the columns of M−1 which are linearly independent by construction. Table 3.2 summarizes the natural moments
constructed for D3Q19. Table 3.3 groups the moments into kinematic, shear, and kinetic types and assigns relaxation
frequencies to the each group. The former two are regarded as hydrodynamic moments. Table 3.4 summarizes
the orthogonal moments constructed for D3Q19 in a Gram–Schmidt process [66] and the corresponding relaxation
frequencies. Additionally, the relaxation frequency configurations proposed in [66] and [52] are given.

Remark 3.2.2. The natural moment basis (Table 3.2) comprises nonorthogonalized linearly independent monomials
(thus raw moments) except for Nxz , Nyz , and T . The additive redefinition of these moments is necessary to decouple
shear and bulk viscosity [55, Equation (40)]. The orthogonal moment basis initially proposed in [66] has to be reduced
to obtain the one in [52] (see for example [55]).

3.2.2 Discrete velocity stability and convergence

We prove linear stability for theDdQ(2d+ 1) DVBE. Since space and time are still continuous, the present stability is
solely with respect to the relaxation limit toward the TEQ. The first derivation is based on realizing that theDdQ(2d+1)

model is a special parameter configuration of the (2d+ 1)× (2d+ 1) TRS admitting a rigorous result from Bouchut
et al. [37]. The second derivation evaluates the stability structures [219] for the DdQ(2d+ 1) DVBE.
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Table 3.2: Summary of natural moments and physical tensor notation used in theD3Q19 MRT collision.

physical tensor moment

1 Γ0,0,0

ux, uy, uz Γ1,0,0, Γ0,1,0, Γ0,0,1

Nxz , Nyz Γ2,0,0 − Γ0,2,0, Γ0,2,0 − Γ0,0,2

Πxy , Πyz , Πxz Γ1,1,0, Γ0,1,1, Γ1,0,1

T Γ2,0,0 + Γ0,2,0 + Γ0,0,2

Qxzz , Qyzz , Qxxz , Qyyz , Qxxy , Qxyy Γ1,0,2, Γ0,1,2, Γ2,0,1, Γ0,2,1, Γ2,1,0, Γ1,2,0

Axy , Axz , Ayz Γ2,2,0, Γ2,0,2, Γ0,2,2

Table 3.3: Summary of relaxation frequencies and orders of physical tensors resembling natural moments in theD3Q19 MRT collision. Note that
moments of kinematic and shear type are considered to be hydrodynamic.

type tensor order relaxation frequency s

kinematic 1 0
sk = 0

u 1

shear N 2
sν = 2β =

2c2s
2ν+c2sΠ 2

kinetic
T 2 sT

sQ
sA

}
= s := βγ?

entropy
controlledQ 3

A 4

Table 3.4: Summary of moments and corresponding relaxation frequencies used inD3Q19 MRT formulations in [66], [52], and the present work,
respectively. The frequencies are in discrete form, where the lattice sound speed is denoted by cs and physical interpretations for the
tensors ρ, ρu, e, P , q, µ, ε, and Π are given in [66]. This table is reproduced from [232], Copyright (2021), with permission from the
authors and the Royal Society.

moment
type

physical
tensor

moment
order s̃ [66] ŝ [52] s (present)

hydro-
dynamic

ρ 0 0 0 0

ρux, ρuy, ρuz 1 0 0 0

e 2 1.19 1.19 or 2c2s
2ν+c2s

se

3Pxx, Pyy − Pzz, Pxy, Pyz, Pxz 2 2c2s
2ν+c2s

2c2s
2ν+c2s

sP

kinetic

qx, qy, qz 3 1.2 ŝq sq

µx, µy, µz 3 1.98 ŝµ sµ

ε 4 1.4 1.4 sε

3Πxx,Πyy −Πzz 4 1.4 1.4 sΠ

Let q = 2d+ 1 (see Figure 3.2) and α = 1, 2, . . . , d. Based on (3.91) we define a weight vector w = (wi)i. Further,
let vα = ((ci)α)i ∈ Rq denote the vectors comprising the αth components of ci ∈ Q which are linearly independent
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by construction and equal to ΓeT
α
. The rows of M (3.93) are thus generated by Γ01×d , vT

α and Γ2eT
α
. Let the velocity

model set be generalized by a variable speed λ > 0 such that Q ←[ λQ. By construction, we have that

v�nα =


1q×1, if n = 0,

λn−1vα, if n odd,
λn−2v�2α , if n even.

(3.102)

The structure relations for DdQ(2d+ 1) are given by

〈v�0α ,w〉 = 1, 〈v�1α ,w〉 = 0, 〈v�2α ,w〉 =
λ2

εδθ
, 〈v�3α ,w〉 = 0. (3.103)

Remark 3.2.3. From identification of ρf with the conservative variable in (2.10), the relations (3.103) can be used to
construct f eq based on the injection of the latter directly into the TEQ and removal of terms dependent on ε. Solving
the resulting linear system then leads to (3.95).

Proposition 3.2.1. The DdQ(2d+ 1) DVBE (3.92) is a special case of the (2d+ 1)× (2d+ 1) RS (3.10).

Proof. Comparing (3.92) to (3.44), equivalence of the DdQ(2d + 1) DVBE and the (2d + 1) × (2d + 1) TRS is
obtained via fixing the parameters

Aα = Vα, D = M, G = f eq, a(1) :=
λ2

θ
1d×1, a(2) := λ21d×1, F (ρ) = uρ. (3.104)

Proposition 3.2.2. The DdQ(2d+ q) DVBE (3.92) is formally consistent of order O(εγ) to the ADE (2.10).

Proof. The closed form (3.16) in Theorem 3.1.1 proves the claim. As discussed above (see Remark 3.1.6), an asymptotic
expansion or a truncation error analysis could have been applied to obtain the same result.

Theorem 3.2.1. Let τi = 1 for all i and ρ0 ∈ L∞ (Ω) ∩ L1 (Ω). Let F (ρ) = uρ be linear. If

dλ2

θ
= µ, (3.105)

θ ≥ d, (3.106)
dλ

θ
√
εδ
≥
∑
α

|uα|, (3.107)

then the solution f ∈ C(I;L1
loc (Ω))q ∩ L∞ (Ω× I)

q of the DdQ(2d+ 1) DVBE (3.92) with initial data f (x, 0) =

f eq(ρ0) converges (along a subsequence) to a bounded function

lim
ε↘0

f = f? in C(I;L1
loc (Ω)). (3.108)

Further, ρ? = ι (Mf?) is the unique solution to the TEQ (2.10) with periodic boundary conditions.

Proof. Proposition 3.2.1 directly implies that f eq is a generalized Maxwellian in the sense of (M1–M4). Additionally,
the DVBE is relaxation stable based on the given conditions (3.105), (3.106), (3.107), such that convergence to (2.10)
follows from Proposition 3.1.3 and [37].
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Remark 3.2.4. The parameter setting (3.104) additionally generates equivalence of the initially constructed RS (3.10)
to the moment system obtained from

〈v�0α , (3.92)〉, (3.109)
〈v�1α , (3.92)〉, (3.110)
〈v�2α , (3.92)〉, (3.111)

for all α. Hence, this moment summation reflects the reverse action of the spectral decomposition in Proposition 3.1.2.

Remark 3.2.5. With Proposition 3.1.3, we have verified rigorous structural stability of the TRS for uniform relaxation
τ[ = 1. Likewise, for the DVBE, (3.106) and (3.107) constitute rigorous stability conditions under the premise of
uniform relaxation. Similar conditions for linear stability in combination with positivity constraints on f have been
found sufficient for stability of LBMs by Hosseini et al. [124].

We make a cross-comparison to the stability structures proposed by Banda et al. [15] for the DVBE and extended by
Rheinländer [219] to a self-contained a priori stability notion for LBM. The pre-stability in [219] is used to obtain
structural stability for the DdQ(2d + 1) DVBE. The following derivations are simplified by the assumed linearity of
F , which transforms the collision to a linear map induced by its Jacobian. In the case that F is nonlinear and thus
isQ, the conceptual procedure [15] linearizes the collision around an equilibrium state to allow for stability structure
conditions. We recall the following definition from [219].

Definition 3.2.7. The collision operator

Q (f) = − 1

εγ
M−1SM (f − f eq (f)) in ΩT (3.112)

in (3.92) admits a pre-stability structure, if there exists H ∈ GLq (R) and p = (p1, . . . , pq)
T
, r = (r1, . . . , rq)

T ∈ Rq

such that {
HJQ = −diag (p) H,

HTH = diag (r) ,
(3.113)

where JQ denotes the Jacobian matrix ofQ(f).

Corollary 3.2.1. The DdQ(2d+ 1) collision operator (Definition 3.2.5), admits a pre-stability structure, if

θ > d and
dλ

θε
δ
2

>
∑
α

|∂ρFα|. (3.114)

Proof. The Jacobian matrix of the collision reads

JQ (f) = − 1

εγ
K (Iq − Jfeq (f)) , (3.115)

where with (3.46) holds that

JG (g) =


1
2

[
a−

(
C(2)

)�− 1
2 ∂ρF

]
· · · 1

2

[
a−

(
C(2)

)�− 1
2 ∂ρF

]
(1− 1d×1 · a) · · · (1− 1d×1 · a)

1
2

[
a+

(
C(2)

)�− 1
2 ∂ρF

]
· · · 1

2

[
a+

(
C(2)

)�− 1
2 ∂ρF

]

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Prop. 3.2.1
=


[

1
2θ1d×1 − ε

δ
2

2λ ∂ρF

]
· · ·

[
1
2θ1d×1 − ε

δ
2

2λ ∂ρF

]
θ−d
θ · · · θ−d

θ[
1
2θ1d×1 + ε

δ
2

2λ ∂ρF

]
· · ·

[
1
2θ1d×1 + ε

δ
2

2λ ∂ρF

]


= Jfeq (f) . (3.116)

Each column of Jfeq sums up to 1. Hence, the Jacobian matrix is a projector (cf. Corollary 3.1.1)

JfeqJfeq = Jfeq . (3.117)

Henceforth,

Y = diag

[ 1

2θ
1d×1 −

ε
δ
2

2λ
∂ρF

]T

,
θ − d
θ

,

[
1

2θ
1d×1 +

ε
δ
2

2λ
∂ρF

]T
 (3.118)

is a unique symmetrizer for Jfeq . Condition (3.114) implies that Y is positive definite. Via [219, Theorem 6,
Proposition 13] the definitions of H, p and r provide their respective existence which proves the claim.

Remark 3.2.6. Notably, the pre-stability structure conditions (3.114) differ from the relaxation stability conditions
(3.57) and (3.58) solely in the additional equality case. Thus, in case of uniform relaxation, the existence of a
pre-stability structure is a sufficient condition [219] for linear stability.

Remark 3.2.7. Below, we unfold the typical discretization of the LBM as a chaining of finite differences and Taylor’s
theorem. The thus induced shift in the relaxationmatrix leads to a stability structure under an additional condition on the
final relaxation frequencies. Stability bounds for space-time discrete evolution rules are specified below. Comparisons
between the linear equilibrium (3.95) and the second order truncated one (3.98) used for relaxation toward the ADE
(2.10) in the context of LBMs are provided for example in [53]. It is to be noted that the inclusion of equilibria akin to
(3.98) into the current framework would require using extended perturbation terms for in the constructive ansatz. Such
terms would in turn add more options for modulating the relaxation limit based on the right-hand side of the closed
form (3.16).

3.2.3 Space-time Discretization

To obtain the final numerical scheme, we apply a limit consistent discretization through chaining Taylor expansions
and finite difference operators2. The following derivation is part of Contributions (CTN1) and (CTN2), completing
the top-down construction in the former and upholding the overall convergence studied in the latter. The modular
character of the following discretization procedure has to be stressed. Any given TRS or DVBE with a previously
imposed scaling can be discretized in the following way to obtain an intrinsically parallel discrete evolution equation
which forms the centerpiece of the LBM and limits toward the TEQ. The two subsequent sections provide an order
analysis of the consistency as well as stability estimates for the here derived discretization.

Remark 3.2.8. For now, the limit consistency is with respect to the relaxation limit ε ↘ 0 passing the TRS (3.44) to
the targeted ADE (2.10). Compared to [230], we circumvent the path fromDVBE to the BGKBE by directly connecting
the DVBE to its macroscopic TEQ. The former pathway considering thermodynamic background information is treated
further below for the HNSE (2.138) as a target. Compared to previous approaches which regard the space-time and
velocity discretizations by separate methods, the distinct feature of the present methodology is thus manifested in its

2 Parts of this section are reproduced from [230], Copyright (2022), with permission from the authors.
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genericmodularity. Hence, we postulate and enable to use thermodynamic information only if necessary to approximate
the model PDE.

Remark 3.2.9. We motivate the following Definition 3.2.10 by comparison to existing approaches with the help of
Figure 3.3. The illustration is based on a given relaxation (or kinetic) limitAε → C for ε↘ 0 from a relaxation scheme

C Aε

Dh Bεh

h↘ 0

ε↘ 0

h↘ 0

ε↘ 0

ε =
h↘

0

Figure 3.3: Schematic concept of kinetic and relaxation limits. The limit PDE of the relaxation operator is denoted with C, the kinetic equation
or RS is denoted with Aε, the kinetic scheme or relaxation scheme is denoted with Bεh and the corresponding macroscopic scheme or
relaxed scheme is Dh. Here, h defines a space-time discretization. The diagonal limit Bεh 99K C for ε = h↘ 0 is the present focus.

Aε induced by a relaxation operator (Definition 2.1.1) to its limit PDE C which is the TEQ completed with artificial
equations F ar. Considering the space-time discretization of the relaxation scheme Bεh, the property of asymptotic
preserving defines whether a stable and consistent space-time discretization Dh exists in the macroscopic limit ε↘ 0

[113, 134, 137] (cf. Figure 3.3). If this is the case, the formal limit equality of equations

lim
h↘0

(
lim
ε↘0
Bεh
)

︸ ︷︷ ︸
=Dh

!
= lim
ε↘0

(
lim
h↘0
Bεh
)

︸ ︷︷ ︸
=Aε

= C (3.119)

should hold. In contrast to that, here the parameter ε is glued to the grid, i.e. ε← [ h, such that, in the context of LBMs
we work with the formal limit equality

lim
ε=h
h↘0

Bεh
!
= lim
ε↘0

(
lim
h↘0
Bεh
)

︸ ︷︷ ︸
=Aε

= C, (3.120)

rather than with (3.119). Drawing the analogy to limits and continuity of multivariate functions [88] (viaBεh = B(ε, h)),
we expect that other shapes of paths than ε = h can be used. In fact, the mapping function h← [ O(εα0) is analyzed in
[113]. The overall order α0 is the minimum of exponents from space4x and time4t discretization in the order of ε,
respectively, and leads to distinct features of the scheme Bεh. Presently, we focus on the order at which the limit point
is approximated by the diagonal path (ε = h). For the sake of completeness, we recall the abstract definition of limit
consistency below which is firstly introduced by the author in [230] and has been motivated by Krause [158]. Notably,
hybrid schemes have been derived e.g. by Klar [152], which are based on a DVBE but completed with an asymptotic
preserving discretization to achieve uniform functionality for all ranges in ε.

Definition 3.2.8. Let d ∈ N and X ⊆ Rd with a discretization Xh ⊆ X for any h ∈ R>0. Let U(X) and Wh(Xh)

denote Hilbert spaces on X and Xh, respectively, whereWh contains the grid functions of {vh : Xh → R}. Via

Aε = (Aε (·) = 0 in U)ε>0 , (3.121)
Bεh = (Bεh (·) = 0 inWh)ε>0,h>0 , (3.122)
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C Aε

Bεh

di
sc
re
tiz

at
io
n

ε↘ 0 with O(εr)

ε =
h↘

0

with O
(h r

+
h k

)

limit consistent
h↘ 0 with O(hk)

Figure 3.4: Schematic concept of limit consistency. Notation is similar to Figure 3.3. This figure is reproduced from [230].

families of PDEs are defined by continuous and discrete relaxation operators Aε and Bεh, respectively. Solutions to
instances of (3.121) and (3.122) are denoted with aε ∈ U for all ε > 0 and bεh ∈Wh for all ε, h > 0, respectively.

Conforming to Definition 3.2.8, we occasionally adopt the notation

C =
(
C (·) = 0 in Ũ

)
(3.123)

for a single PDE with a solution c in the Hilbert space Ũ(X).

Definition 3.2.9. Let Aε and C be given as in (3.121) and (3.123), respectively. The abstracted solution limit of a
solution aε to Aε toward a solution c to C for ε↘ 0 is denoted with

aε ⇀ c (3.124)

and defines convergence in the broadest sense (e.g. formal, weak or strong). The formal order r ≥ 0 of this convergence
is Aε(c) ∈ O(εr). The information of both, the formal PDE convergence and the solution convergence is compressed
in the notation

Aε ε↘0−−−⇀
O(εr)

C. (3.125)

Remark 3.2.10. Let Aε be an RS induced by the relaxation operator F ε] . Then C is the contraction limit (F],F
ar
] )T,

(2.4) in Definition 3.2.9. Similarly, the solution limit a ⇀ c is the relaxation limit of ρε to (ρ,ρar)T, (2.5) in
Definition 3.2.9.

Based on the abstracted but formally determined background limit in Definition 3.2.9, we propose the following
specialized notion of consistency.

Definition 3.2.10. Let Aε admit an abstracted solution limit of order O(εr) in ε↘ 0 to a solution c of a PDE system
C as in Definition 3.2.9. Then, Bεh is called limit consistent of order k > 0 to Aε in Wh(Xh), if for any fixed ε > 0

holds that

(i) Bεh(aε|Xh) ∈ O
(
hk
)
inWh , and

(ii) k ≥ r .

The residual expression Bεh(aε|Xh) is called truncation error.

61



3 Numerical Methodology

Lemma 3.2.1. Let Bεh be limit consistent of order k to Aε inWh(Xh). Then for any fixed ε > 0 we have

[
Bεh (aε |Xh) ∈ O

(
hk
)

inWh

]
⇐⇒ lim

h↘0
sup
x∈Xh

∣∣∣∣Bεh (aε|Xh) (x)

hk

∣∣∣∣ <∞. (3.126)

Proof. We interpret the operation

·|Xh : U →Wh, f 7→ f |Xh (3.127)

as an interpolation which is exact at the grid nodes of Xh. Let ε > 0 be fixed. Forming the local truncation error of
Bεh with respect to Aε, via insertion of the exact solution aε evaluated at the grid nodes [178], gives

Bεh (aε|Xh) = Khk +O
(
hk+1

)
, (3.128)

with a constantK <∞. Due to consistency, i.e. the local truncation nulling out for h↘ 0, we can limit

lim
h↘0
‖Bεh (aε|Xh)‖ = 0, (3.129)

where ‖·‖ := sup
x∈Xh

|·| defines a supremum norm onWh. Similarly, we have that

lim
h↘0

∥∥∥∥Bεh (aε|Xh)

hk

∥∥∥∥ = lim
h↘0

∥∥∥∥∥Khk +O
(
hk+1

)
hk

∥∥∥∥∥ = K +O(1) <∞. (3.130)

Remark 3.2.11. It is to be stressed, that the difference to classical consistency is with respect to the exact solution aε

being already parametrized in ε. Via the assignment of the artificial parameter ε ← [ h and the interpolation aε←[h|Xh
onto the grid nodes, the relaxation process is irreversibly coupled to the discretization. The process of discretization
has thus to be consistent to the relaxation to at least uphold its limit. If this is the case, the limit consistency implies
classical consistency with concatenated orders as described further below.

Remark 3.2.12. In Definition 3.2.10, we have purposely not specified the limit Aε ε↘0−−−⇀ C further. Dependent on the
situation at hand, this limit can be e.g. weak or strong. For example, the former is the case when approximating weak
solutions of the incompressible NSE (2.12) with the BGKBE (2.33) [223] in diffusive scaling. The latter is given when
using an RS (3.10) (or the corresponding BGK model, see Proposition 3.2.1), for the approximation of scalar, linear,
d-dimensional ADE (2.10). The limit can also be in terms of unique entropy solutions, if F is nonlinear [37].

Remark 3.2.13. Note that by Lemma 3.2.1, we have identified Bεh(aε|Xh) as the abstracted local truncation error

−T εh := Bεh (bεh)︸ ︷︷ ︸
=0

−Bεh (aε|Xh) (3.131)

(e.g. see [21, 178]) with an additional relaxation limit running in the background. As a consequence, demanding
stability seems natural to complete the convergence result.

Let the global error be defined by

Eεh = bεh − aε|Xh . (3.132)
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We cut off the Taylor expansion of Bεh(bεh) at aε|Xh given by

Bεh(bεh) =

∞∑
n=0

1

n!

(
∂bεh
)n
Bεh (aε|Xh) (Eεh)

n (3.133)

to obtain a linearized expression

JBεh (aε|Xh)Eεh = −T εh +O
(
‖Eεh‖2

)
, (3.134)

where JBεh(aε|Xh) denotes the Jacobian of the discrete relaxation PDOBεh at exact solutions aε of Aε evaluated on the
grid. The nonlinear terms are gathered in O(‖Eεh‖2). Following [178] we can define the following notion of stability
with respect to the linearized discretization.

Definition 3.2.11. For fixed ε, the linearized discrete relaxation PDO Bεh is stable in some norm ‖ · ‖Wh
onWh if its

inverse Jacobian at the exact solution evaluated at Xh is uniformly bounded for h ↘ 0 in the sense that there exist
constantsK > 0 and h0 such that ∥∥∥(JBεh (aε|Xh)

)−1
∥∥∥ ≤ K for all h < h0. (3.135)

Remark 3.2.14. In the context of the LBM, where Bεh is the lattice Boltzmann equation (LBE) for ε ← [ h, several
previous works derived bounds for linearized amplification matrices in the sense of von Neumann (e.g. [231]) and
proved weighted L2-stability [142] for linearized collisions which admit a stability structure. As a matter of fact,
nonlinear stability estimates for LBMs naturally involve the notion of entropy in a mathematical (relaxation) [43] or
thermodynamical [34] sense. To the knowledge of the author, coherent methodologies for evaluating the nonlinear
stability of LBMs for realistic IBVPs involving d ≥ 2 have not been established so far.

Remark 3.2.15. Upon condition that the lattice Boltzmann discretizations are stable in some norm, limit consistency
can be used to infer classical consistency and hence convergence [178, 243] toward the target PDE . Below, the overall
notion of convergence is to be understood in terms of the kind of relaxation or kinetic background limit Aε ε↘0−−−⇀ C
only (e.g. formal, weak or strong).

Lemma 3.2.2. Let Aεh and Bεh be given as in Definition 3.2.10 and let

(i) Bεh be limit consistent of order k to Aε,

(ii) its underlying PDO Bεh be stable and linear in the sense of Definition 3.2.11.

Then we obtain an overall convergence result of solutions in the sense of

Bεh
(ε,h)↘(0,0)−−−−−−−−−−−→

O(εr)|Xh+O(εk)
C ≡

(
Aε ε↘0−−−⇀

O(εr)
C
)
◦
(
Bεh

h↘0−−−−→
O(hk)

Aε
)
, (3.136)

where the symbol ≡ denotes arrow equality irrespective of the nature of the mappings. Further, if ε = ι(h) via ι = id,
bεh converges at order r to c.

Proof. For fixed ε > 0, limit consistency of Bεh and the stability of Bεh imply classically [175] that

‖Eεh‖ =
∥∥∥− (JBεh (aε|Xh)

)−1
T εh +O

(
‖Eεh‖2

)∥∥∥
≤
∥∥∥(JBεh (aε|Xh)

)−1
∥∥∥ ‖T εh‖

≤ KO
(
hk
)

(3.137)
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and hence

bεh = aε|Xh +O
(
hk
)
. (3.138)

Similarly, from the background relaxation limit, we have that

aε = c+O (εr) . (3.139)

Combining (3.138) and (3.139) we obtain

bεh = c|Xh +O (εr) |Xh +O
(
hk
)
. (3.140)

Now let ε ←[ ι(h). Thus, since O(εr)|Xh are higher order terms interpolated on the grid nodes, we see that their
leading order in h is r. Conclusively, (3.140) becomes

bεh = c|Xh +O
(
ι(h)r + hk

)
= c|Xh +O

(
hmin{r,k}

)
= c|Xh +O (hr) , (3.141)

due to the limit consistent discretization.

Remark 3.2.16. Rheinländer [218, Corollary 3.4.] has rigorously proved second order convergence of zeroth moments
of aD1Q3 DVBE to the solution of a reaction–diffusion equation akin to (2.10) with equal scaling, zero flux (F = 0)
and an additional linear reaction term. Further, first and second order moments are proven to converge toward first and
second order spatial derivatives of the conserved variable. The convergence rates of the rescaled moments are also two,
provided the prefactor is ε−o, where o is the respective moment order. As already indicated in the closed form (3.24),
the convergence is of order O(ε2) for γ = 2 for ρεε. We thus anticipate the overall convergence of the below derived
LBE to be of second order in the grid parameters.

In regard to Definition 3.2.10 and above derived consequences, we provide limit consistent discretizations of the ε-
parametrized DVBE. In particular, we use finite differences and Taylor series to obtain a space-time discrete evolution
equation which defines the numerical scheme for periodic solutions. To implement the result of Lemma 3.2.2, we
further generalize the relaxation scaling when mapping the discretization of space and time to ε.

LetKi ∈ Rq denote the ith row of K and ĉj be the dimensionless integer discrete velocities. The ith component of
equation (3.92) reads

∂tfi +
1

σ̂(ε)
ĉi ·∇xfi = − 1

σ(ε)
Ki (f − f eq (f)) (3.142)

and defines the scaled component-wise material derivative

D

Dt
:= ∂t +

1

σ̂(ε)
ĉi ·∇x, (3.143)

where σ(ε), σ̂(ε) ∈ P(ε) are scaling monomials defined by

σ̂ : (0, 1)→ R, (ε) 7→ εŝ, (3.144)
σ : (0, 1)→ R, (ε) 7→ εs, (3.145)
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3.2 Space-time-velocity discretization

where s, ŝ ∈ N0. Note that we have suppressed the i-dependence of D/Dt for the sake of simplicity. The imposed
scaling of the RS (3.10) can be recovered via ŝ = δ/2 and s = γ.

Definition 3.2.12. Using the notation from Definition 3.2.8, let the ε-parametrized DVBE (3.142) define the family

Aε :=

(
D

Dt
f εi +

1

σ(ε)
Ki (f ε − f eq,ε (f ε)) = 0 in Ω× I ×Q

)
ε>0

, (3.146)

where Q denotes the velocity space DdQq with q = 2d+ 1 and i = 1, 2, . . . , q. Note that the conserved variables in
(3.146) now display an upper index ε to highlight the dependence on relaxation parameters.

Remark 3.2.17. Compared to our previous work [230], (3.146) is a generalized version of the classical discrete velocity
BGKBEwith first order equilibrium in both, the scaling as well as the moment-wise relaxation, albeit forDdQ(2d+1).

We synchronize the relaxation with the discretization limit with the help of the scaling function σ. A Cartesian grid
Ω4x ⊆ Ω with N + 1 nodes x per dimension is embedded. The largest cubic subdomain Ω̃4x ⊆ Ω4x dictates the
discretization intervals in space 4x = |Ω̃4x|1/d/N . To obtain an evolution rule on the space-time cylinder ΩT , the
discrete time interval is defined regularly as

I4t := {t = t0 + k4t | t0 ∈ I, k ∈ N} ⊆ I. (3.147)

Here and below, the parametrization obeys

4x ∼ σ̂ (ε) , (3.148)
4t ∼ σ (ε) . (3.149)

The positioning in the discrete velocity is set through

ciα =
σ̂ (ε)

σ (ε)
ciα for all α, (3.150)

where ciα ∈ {0,±1}, and provides an evolution rule through the discrete space-time cylinder connecting the corre-
sponding neighbors via ĉi = (ciα)1≤α≤d on up to two energy shells (|ĉi| ≤ 1 for all i). We can thus reduce the
arguments of f ε to time only as follows.

Definition 3.2.13. Let fhi denote a solution to the parametrized DVBE (3.146). For i = 1, 2, . . . , q and ζ ∈ R, we
define the ith population

f εi (t+ ζσ (h)) = f εi (·, t+ ζσ (h)) := f εi

(
x+ ζ

σ (h)

σ̂ (h)
ĉi, t+ ζσ (h)

)
(3.151)

for (x, t) in the discrete space-time cylinder Zh := Ω4x × I4t ⊆ Ω× I .

Based on the definition of space-time coupled population arguments (3.151), the grid conforming space-time coupling
(3.149), and the scaled material derivative (3.143), we project space onto time and consider Taylor expansions in the
temporal argument only. Let f ε be at least of class C3 with respect to D/Dt. Unless stated otherwise, O

(
h0 + ε0

)
=

O(1).

To derive the LBE, we approximate the DVBE (3.146) using three discrete points in time (t, t + σ(h)/2, t + σ(h))

(see Figure 3.5), where the midpoint t + σ(h)/2 is a ghost node for the derivation and cancels in the final evolution
equation of the scheme. Since the width of the stencil is linked to the relaxation scaling, limit consistency is implicitly
ensured.
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I

t t+ σ(h)/2 t+ σ(h)

Figure 3.5: Time steps used for the discretization. The final LBE operates on the green squares only. Red points are canceled in the derivation.

Definition 3.2.14. Let r : R → R, y 7→ r(y) denote a C∞-function and a ∈ R≥0 be a point on the nonnegative real
line. We define the following finite difference operations:

1. central difference

r′ (y) =
1

a

(
r
(
y +

a

2

)
− r

(
y − a

2

))
+O

(
a2
)
, (3.152)

2. forward difference

r′ (y) =
1

a
(r (y + a)− r (y)) +O (a) , (3.153)

3. Taylor’s theorem

r (y) = r (a) + r′ (a) (y − a) +O
(
|y − a|2

)
. (3.154)

Definition 3.2.15. Let q = 2d+ 1. To prevent trivial solutions let(
D

Dt

)j
f εi ∈ O(1) (3.155)

for all 1 ≥ i ≥ q and for j = 0, 1, . . . , æ̂. Let æ̂ = 3. For a given population f ε, we denote its moments with an
explicit selfsame index

ρfε = Mf ε. (3.156)

and realize with (3.38) that

ρfε = M1 · f ε ∈ O(1), (3.157)
φfε,α = Mα+1 · f ε ∈ O

(
σ̂−1(ε)

)
, (3.158)

ψfε,α = Mα+(d+1) · f ε ∈ O
(
σ̂−2(ε)

)
, (3.159)

whereMj denotes the jth row of the unified diagonalizer M of Vα.

Remark 3.2.18. Here, conservation of moments can thus be understood in terms of limiting values for ε ↘ 0

being nonzero which implies the order of magnitude O(1). The value of æ̂ will be unfolded further below (see
Proposition 3.2.4). Moreover, since (3.156) is a result of our constructive ansatz and thus doubly perturbed with ε,
we immediately observe the connection to Remark 3.2.16. Hence, the introduction of artificial variables implies the
necessity of rescaling the nonconserved moments to equalize the convergence order of (3.157), (3.158), and (3.159).

Proposition 3.2.3. The h-parametrized LBE

Bε← [h
h =

(
fhi (t+ σ (h))− fhi (t) +Ks

i

(
fh (t)− f eq,h (t)

)
= 0 in Zh ×Q

)
h>0

(3.160)
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can be derived as explicit evolution rule from the DVBE (3.146) using three points in time (t, t + σ(h)/2, t + σ(h))

only. Here,Ks
i denotes the ith row of the shifted collision matrix

Ks = M−1SsM, (3.161)

with the shifted relaxation matrix

Ss = diag

(
1

1
Sii

+ 1
2

)
1≤i≤q

. (3.162)

Proof. We evaluate σ(ε)× (3.146)|(x+(1/2)(σ(h)/σ̂(h))ĉi,t+(1/2)σ(h)) and proceed on the time domain only due to
(3.151). To remove the function evaluations on the ghost node t+σ(h) (cf. Figure 3.5), the finite difference operations
(3.152), (3.153) and (3.154) are linked up as follows. Let R(n)

t denote the nth remainder term for n ∈ N with respect
to the space-time discretization adhered according to the scaling functions σ̂ and σ. A central difference of (D/Dt)f εi
at the node t+ σ(h)/2 yields

σ (h)
D

Dt
f εi

(
t+

1

2
σ (h)

)
= f εi (t+ σ (h))− f εi (t) +R

(1)
t in ΩT , (3.163)

where

R
(1)
t ∈ O

(
σ(h)3

)
, (3.164)

provided that (D/Dt)3f εi ∈ O(1). Taylor’s theorem applied to f εi at t + σ(h)/2 with the expansion point t, and a
forward difference of (D/Dt)f εi at t gives

f εi

(
t+

1

2
σ (h)

)
= f εi (t) +

1

2
σ (h)

D

Dt
f εi (t) +R

(2)
t

= f εi (t) +
1

2
[f εi (t+ σ (h))− f εi (t)] +R

(3)
t (3.165)

in ΩT , where

R
(2)
t ∈ O

(
σ(h)2

)
, (3.166)

R
(3)
t ∈ O

(
σ(h)2

)
, (3.167)

provided that (D/Dt)2f εi ∈ O(1). At last, we apply Taylor’s theorem to the equilibrium to obtain

f eq,ε
i

(
t+

1

2
σ(h)

)
= f eq,ε

i (t) +
1

2
σ (h)

D

Dt
f eq,ε
i (t) +R

(4)
t (3.168)

= f eq,ε
i (t) +R

(5)
t , (3.169)

in ΩT . By construction f εi , (D/Dt)f εi ∈ O(1) (cf. Definition 3.2.15), thus

R
(4)
t ∈ O ((σ(h)) . (3.170)

We use (3.46) and (3.157) to see that (D/Dt)f eq,ε ∈ O(1). Hence, from the latter being prefactored by σ(h) in
(3.168), we have

R
(5)
t ∈ O ((σ(h)) . (3.171)
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As planned, we insert (3.151), (3.163), (3.165), and (3.168), in σ(ε)×(3.146)|(x+(1/2)(σ(h)/σ̂(h))ĉi,t+(1/2)σ(h)) to
obtain in matrix form

0 = σ(ε)
D

Dt
� f ε

(
t+

1

2
σ(h)

)
+ K

(
f ε
(
t+

1

2
σ(h)

)
− f eq,ε

(
t+

1

2
σ(h)

))
=
σ(ε)

σ(h)︸ ︷︷ ︸
σs

[
f ε (t+ σ(h))− f ε(t) +R

(1)
t

]
+ K

{
f ε(t) +

1

2
[f(t+ σ(h))− f(t)] +R

(3)
t − f eq,ε(t)−R(5)

t

}

=

(
σsIq +

1

2
K

)
[f ε (t+ σ(h))− f ε(t)] + K [f ε(t)− f eq,ε(t)] + K

(
R

(3)
t −R(5)

t

)
+ σsR

(1)
t︸ ︷︷ ︸

=:R̃t

, (3.172)

where

D

Dt
:= ∂t1q×1 +

d∑
k=α

Vα (∂α1q×1) ∈ Rq (3.173)

denotes the vector material derivative with Vα = Ad
α ∈ O(σ̂−1(ε)) from (3.39) and R(n)

t = R
(n)
t 1q×1. The

multiplication (σsIq + (1/2)K)−1×(3.172) yields

f ε (t+ σ(h))− f ε(t) +

(
σsIq +

1

2
K

)−1

K︸ ︷︷ ︸
:=Ks

[f ε(t)− f eq,ε(t)] = −R̃t. (3.174)

Using the Woodbury matrix identity [266] we have that

Ks =

[
(σsIq) + M−1

(
1

2
S

)
M

]−1

K

=

{
M−1 (σsIq)

−1
M− (σsIq)

−2
M−1

[
2S−1 + (σsIq)

−1
]−1

M

}
M−1SM

= M−1

[
(σsIq)

−1 − (σsIq)
−2
(

2S−1 + (σsIq)
−1
)−1

]
S︸ ︷︷ ︸

=:Ss

M. (3.175)

The precise order of magnitude of −R̃t in (3.174) is determined further below. From the present derivation, it is
obviously at least of order σ(h) which permits us to use (3.174) as an approximation of 0 for h ↘ 0. In case of
S = diag(Sii)1≤i≤q all operations in the shifted relaxation matrix Ss are Hadamard which yields

Ss = diag

(
1

σs
(
S−1
ii + 1

2σs

)) ∈ O(σ(h)

σ(ε)

)
. (3.176)

Finally, the assignment ε←[ h proves the claim.

3.2.4 Limit consistency

Proposition 3.2.4. For given h, µ > 0, let f ε denote a weak solution of the ε-parametrized DVBE (3.146) with the
conserved moment ρfε . Further, let

ρfε ∈ O(1) in Zh, (3.177)
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(
D

Dt

)j
f εi ∈ O(1) in Zh, for j = 0, 1, 2, 3, (3.178)

for i = 1, 2, . . . , q understood as functions of h. Then, the family Bε←[h
h of LBEs (3.160) is limit consistent of order

σ(h) to the ε-parametrized DVBE Aε (3.146) in Zh ×Q.

Proof. With (3.164), (3.166), (3.167), (3.170), (3.171), and (3.176), we asymptotically estimate (3.174)

f ε (t+ σ(h))− f ε(t) = −Ks [f ε(t)− f eq,ε(t)]− R̃t ∈ O
(
σ(h)

σ(ε)
+ σ(h) + σ(ε)σ(h)2

)
, (3.179)

which is consistent to Aε with order O(σ(h)) for fixed ε > 0. The relaxation consistency of O(σ(ε)) approves
Definition 3.2.10 and thus proves the claim.

Remark 3.2.19. At this point, we see that the notion of limit consistency is stronger than consistency in the classical
sense, due to the additional requirement on the order of the limiting process. Each limit (relaxation and discretization)
contributes individual stability and consistency estimates of which both have been proven for the relaxation process.
Consistency and limit consistency are proved for the discretization so far. Hence, the stability of the discretization limit
is analyzed below in order to prove the overall convergence.

3.2.5 Stability

To account for nonuniform and nonconstant relaxation frequencies, we use a linear von Neumann estimate on the
fully discrete scheme. As proposed by the author in [232], based on the notion of stability, we define stability sets
for the relaxation times which is part of (CTN2). The stability sets underline that the relaxation is and has to be
flexible to uphold both, stability via counteracting coarse resolutions and limit consistency through vanishing for
high resolutions. Further below, Lyapunov functionals are used to indicate nonlinear stability with respect to an
approximate equilibrium. Moreover, based on empirical observations for fine discretizations of parameter spaces in
numerical experiments (CTN3), a third notion of stability is proposed by the author in [232] (see Definition 3.3.8 and
Section 4.3.3).

Upon full discretization in space and time, the structure of the collision operator is upheld such that we can transfer the
notion of linear stability in the sense of von Neumann used for the TRS (see Section 3.1.4) onto the LBE (3.160). The
von Neumann analysis for LBEs has been pioneered by [240, 267]. Along the process from the TEQ toward the final
LBE, we have merged all limits according to ε ← [ h = 4x and (4x/4t) ∼ (σ̂/σ) and thus drop any corresponding
indices below such that any appearing f is understood as conserved quantity of the LBE (3.160). Recall that both, the
relaxation matrix Ss and thus Ks are now shifted as a result of the limit consistent discretization.

As before, a Taylor–Maclaurin expanded evolution equation is obtained via splitting the populations into global mean
and fluctuation

fi (x, t) = f + f̃ (x, t) (3.180)

into a global equilibrium f (constant in space-time) plus its fluctuations f̃ , respectively. The space-time discrete
equilibrium is Taylor expanded at the global state

f eq(f) =

∞∑
n=0

1

n!

[
(∂f )

n
f eq

(
f
)]
f̃n

= f eq
(
f
)

+ Jfeq

(
f
)
f̃ +O

(
f̃2
)
, (3.181)
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where Jfeq

(
f
)
is the equilibrium Jacobian evaluated at the global equilibrium state. We insert (3.180) and (3.181) in

(3.160), assume that f eq(f) = f and neglect powers in fluctuations higher than two to obtain

f̃ (t+4t)− f̃ (t) = f (t+4t)− f (t)

= −Ks
(
f + f̃(t)− f eq(f)(t)

)
= −Ks

[
f − f eq

(
f
)

+ f̃(t)− Jfeq

(
f
)
f̃(t)−O

(
f̃2(t)

)]
= −Ks

[
Iq − Jfeq

(
f
)]
f̃(t). (3.182)

We unfold the space-time scaling to Fourier transform the fluctuations

f̃(x, t) = f̂exp(i(2πk · x− ωt)), (3.183)

where the amplitudes f̂ ∈ Cq denote the discrete Fourier transform of f̃ and k ∈ K ⊆ Rd is the wavevector and
ω ∈ C. Insertion of f̂ into (3.182) and reordering terms yields an eigenvalue problem

Hf̂ = exp (−iω4t) f̂ , (3.184)

where the discrete amplification matrix appears as

H
(
k,f , s

)
= diag ((exp (−2πi4tk · ci))i)

[
Iq + Ks (s)

(
Jfeq

(
f
)
− Iq

)]
. (3.185)

Remark 3.2.20. The linearized equilibrium Jacobian Jfeq

(
f
)
is directly obtained for linear equilibria and can be

extended to nonlinear ones. For example for D3Q19, we obtain

(
Jfeq

(
f
))
i,j

=
wi
w

{
1 +

1

c2s
ci · cj +

1

2c4s

[
2 (ci · cj) (ci · u)− (ci · u)

2
]
− 1

2c2s
[2cj · u− u · u]

}
, (3.186)

where k ∈ K and cs = 1/
√

3σ̂(ε) and the f -dependency of Jfeq reduces to the background (mean) flow u.

Having fixed M due to the moment basis, H in (3.185) is to be determined by the wavevector k ∈ K, the mean flow u
and the relaxation frequency vector s. We define the following notion for von Neumann stability of the fully discrete
scheme [232].

Definition 3.2.16. Let the LBE (3.160) be determined by a moment basis M onDdQq. Further, let K ⊆ Rd and u be
given in advance. The scheme is termed von Neumann stable for s if the spectrum of H is enclosed in the unit ball, i.e.

spec (H) ⊆ B1 (0) . (3.187)

The set S containing relaxation frequency vectors which render the scheme von Neumann stable is called von Neumann
stability set.

Remark 3.2.21. With the linearized Jacobian (3.186) at hand, we might specify the stability set analytically such that
for all s ∈ S holds

rspec (H (k,u, s)) = max
λ ∈ spec(H)

|λ| ≤ 1 ∀ k ∈ K. (3.188)

However, when the spectral radius rspec has to be calculated for a q × q matrix with q ≥ 5 we consider numerical
approximations of rspec based on the QR algorithm instead (see Section 3.3.3).
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3.2.6 Convergence

Theorem 3.2.2. In case of diffusive scaling σ(h) = h2 and linear fluxF , solutions to the family of LBEs Bε← [h
h (3.160)

converge to a solution of the ADE C (2.10) with second order consistency and a truncation error O(4x2) = O(4t)
under the premise of von Neumann stability.

Proof. Lemma 3.2.2 gives strong convergence in the sense of

Bε←[h
h

(ε,h)↘(0,0)−−−−−−−−−−−→
O(εr)|Xh+O(εk)

C ≡ Bhh
(h,h)↘(0,0)−−−−−−−−→
O(h2)

C (3.189)

with ε2 ← [ h2 ∼ 4t ∼ 4x2.

Remark 3.2.22. Since the above derivation is modular, we can swap the background limit with any other relaxation
approximation which is stable and consistent of orderO(ε2) or less. In [230], we have used the methodology to obtain
limit consistency and thus convergence of the classical D3Q19 DVBE with a second order truncated equilibrium.
Below we provide consistent discretizations toward other TEQs in the form of homogenized NSE, CHEs and filtered
NSE. It is to be stressed that other approaches are available and rigorous convergence to ADEs, and NSE has been
proven in the literature. The present benefit is modularity and generality which allow to interchange parts of the LBM
(relaxation, discretization, equilibria) without affecting the validity of the framework to evaluate overall convergence
up to leading order.

3.2.7 Limit control

As elaborated in the previous sections, based on existing and present results, we have observed the freedom to modify
or even control the relaxation limit via scaling and relaxation frequencies. To be precise, we have explicated that,
whereas the consistency of the conservation relaxation dictates the overall limiting, the artificial relaxation provides
numerical correction terms provided that the order of discretization is large enough. Below, two options to control
the artificial relaxation frequencies contained in Ss are discussed. The first one (relaxation functions) is an extension
of previous results and developed by the author. The novel collision scheme is part of the Contributions (CTN3) and
(CTN4). The second modification is an established technique based on entropy control, which is however motivated
by thermodynamics and has thus received marginal attention in terms of numerical analysis so far. Both methods are
here used on a D3Q19 velocity set with a second order equilibrium limiting toward the incompressible NSE (2.12).

3.2.7.1 Relaxation functions for orthogonal moment collision

In [232] we provide numerical evidence that it is beneficial for classical MRT collision [66] (i.e. collision in a moment
space spanned by unweighted product orthogonal moments, see Table 3.4) to generalize the kinetic relaxation time
scaling to predefined self-tuning functions for automatically triggering certain numerical features.

This measure of defining the freely tunable kinetic relaxation times as relaxation functions, for example enables the
hybridization of MRT and SRT BGK collision along the incompressibility limit under diffusive scaling. In the spirit
of ghost Reynolds numbers proposed by Dellar [63], the fully discretized evolution rule should stream to a SRT BGK
collision scheme up to machine precision at some point in the limit h↘ 0. Dependent on the choice of the relaxation
functions, the specific interval within which a certain coincidence to the SRT BGK is reached should be flexible along
the limit. The thus obtained multi-relaxation-function (MRF) collision hence represents the activity of moving from a
fixed MRT setting toward the SRT BGK collision (see Figure 3.6). This specific feature is realized via contracting the
kinetic relaxation times toward the hydrodynamic one forMa→ 0.
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Further, as indicated in [233], we interpret the use of MRFs as implicit turbulence modeling via the definition of
hyperviscosities which are respectively connected to the kinetic moments. Hence, the sooner the additional higher
order moment viscosities vanish via contraction of the kinetic relaxation times to τ , the sooner the MRFs merge with
the SRT BGK collision scheme (see Figure 3.6). Up to that point in the limit, MRFs resemble variable MRTs and
offer the possibility to implicitly tune the properties of the LBM for the following specific reasons. Firstly, in terms
of purely numerical intentions, the stability region of the SRT BGK scheme can be exceeded without breaking the
thermodynamic limit consistency. Secondly, with regards to controlling the flow physics, specific features such as
turbulent flow quantities can be amplified or reduced.

NSE

MRTς9

Mς9

MRTς8

Mς8

MRTς7

Mς7

MRTς6

Mς6

BGK

B

M
a
→

0
MRF

ς → 0

Figure 3.6: Schematic view of diffusive scaling limits (Ma ∼ h ↘ 0) of LBM schemes (SRT BGK LBE and exemplary instances of n ∈ N
parametrized MRTςn LBE) toward the NSE, respectively. Dashed lines denote instability regions along the limit. The points B and
Mςn mark the (coarse resolution dependent [114, 267]) instability onset of the SRT BGK scheme and the (Mach induced [62, 114])
instability onsets of fixed MRTςn schemes, respectively. Solid lines specify stable configurations.

To uphold the SRT BGK collision limit toward the incompressible NSE, the hydrodynamic relaxation frequencies are
coupled to the bulk viscosity via

se =
2

2ν + c2s
, (3.190)

sP =
2

2ν + c2s
, (3.191)

where for theD3Q19 velocity set, the lattice speed of sound is cs = 1/
√

3. Note that the appearance of se and sP with
an additional sum is a result from the space-time discretization discussed in Section 3.2.3. The remaining relaxation
frequencies (which are also written in fully discrete form) are parametrized by a variable ς[, which is injected in(

1

s[
− 1

2

)
= 2ς[︸︷︷︸

=:ς̂[

(
1

sP
− 1

2

)
, (3.192)

and tracks the deviation of s[ from the viscosity connected relaxation frequency sP , where [ ∈ {e, q, µ, ε,Π}. Further,
the kinetic relaxation times are grouped by the order of their moments. In summary, the relaxation frequencies se, sq,µ,
and sε,Π vary with ς = (ςq,µ, ςe, ςε,Π)T ∈ {n ∈ N0 | 0 ≤ n ≤ 10}3, where ς → 0 limits to the SRT BGK collision.
The present relaxation functions used for the MRF collision are thus

s[ =


1

ς̂[

(
1
sP
− 1

2

)
+ 1

2

if ς[ > 0 (MRF mode),

sP otherwise (SRT BGK mode),
(3.193)
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such that in both modes the background limit toward the incompressible NSE is upheld via reduction to the SRT BGK
scheme based on suitable MRFs. The definition of the reduction point however is subject to current investigation and
so far is determined empirically from brute force stability results (see Section 4.3).

Remark 3.2.23. The above proposed relaxation functions introduce ghost Reynolds numbers [63] for each moment
order larger than one. These in turn act as controllable hyperviscosity prefactors [185, 264]. The scaling with respect
to the viscosity relaxation frequency sP is similar to the magic parameter used in the two-relaxation-time collision
scheme (see for example [103, 104]).

3.2.7.2 Entropic stabilizer for natural moment collision

The choice of the equilibrium population f eq can increase linear stability (see [123] and references therein). In addition,
a thermodynamically consistent equilibrium obtained fromminimizing anH-function can be used to guarantee isotropy
in compressible, trans- and supersonic flows. Since the isotropy of the equilibrium is up to the order of the discretization
[36], the second order truncated equilibrium is suitable for incompressible flows. Albeit this equilibrium does not obey
a classical global H-theorem [255], we can still use the local H-value as a basis of approximation. To improve the
relaxation stability in nonlinear regimes, we can modify the relaxation frequencies in Ss to be space-time dependent
functions. The grouping of relaxation frequencies given in Table 3.3 is similar to the KBC-N1 scheme proposed
in [36] albeit for being defined on D3Q19 which is computationally less demanding. For the sake of clarity, we
recall the classical derivation of KBC collision for entropic MRT LBMs on natural moments, i.e. all moments except
the ones which are responsible for shear and bulk viscosity decoupling are raw and thus based on monomials. Let
M = {ν, T,Q,A}. We split the population in additive modes separated in moment space [148, 149, 256]

f eq + fneq = f =
∑
[∈M

f[ =
∑
[∈M

f eq
[ +

∑
[∈M

fneq
[ . (3.194)

Via M−1, we have the inversion

fneq
[ =

∑
l∈L[
〈φl,fneq〉W l, (3.195)

where L[ ⊆ {1, 2, . . . , q} denotes the corresponding velocity indices of the vectorial entries of [ ∈M. Conforming to
[36, 148], we gather the post-collide nonequilibrium contribution of higher order moments

fneq
hom :=

∑
[∈{T,Q,A}

fneq
[ , (3.196)

such that, due to the diagonality of Ss, the LBE (3.160) becomes

fpoc(x, t) = f(x, t)−M−1SsMfneq(x, t)

= f(x, t)−
∑
[∈M

s[f
neq
[ (x, t)

= f(x, t)− sνfneq
ν (x, t)− sfneq

hom(x, t), (3.197)

where fpoc(x, t) denotes the post-collision state.

Definition 3.2.17. The higher order relaxation frequency s = βγ? is entropy controlled in the sense that the controller
γ? is computed to maximize the discrete entropy of the post-collision state.
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Recall that fneq
[ = f[ − fneq

[ , hence [148] the critical point which minimizes the Lyapunov functional (understood as
an H-function [146, 147])

H (fpoc) =

q∑
i=1

fpoc
i ln

(
fpoc
i

wi

)
, (3.198)

is reached under the condition of

q∑
i=1

fneq
hom,i ln

(
1 +

(1− s)fneq
hom,i + (1− sν)fneq

ν,i

f eq
i

)
!
= 0. (3.199)

Definition 3.2.18. The entropic scalar product forX,Y ∈ Rq with respect to f eq ∈ Rq is defined as

〈X|Y 〉 =

q∑
i=1

XiYi
f eq
i

. (3.200)

A truncation to first order in both terms of the enumerator of (3.199), results in an expression for the entropy
controller [36]

γ? =
1

β
−
(

2− 1

β

) 〈fneq
ν |fneq

hom〉
〈fneq

hom|f
neq
hom〉

, (3.201)

such that (3.199) is approximately fulfilled, in turn approximately minimizing the Lyapunov functional of the discrete
dynamical system defined by (3.160). Notably, a search for different Lyapunov functionals which ensure nonlinear
stability might lead to novel entropic stabilizer approximations (see [34, 128] and references therein).

3.3 Lattice Boltzmann methods

This section renders the LBM as a complete approximation technique to a given IBVP comprised by PDEs with
supplementary initial and boundary conditions. Based on the above analyzed LBEs for the bulk flow approximating
standard forms of the ADE, the NSE and the CHE, the scheme is complemented with modified equilibria for additional
terms, initial and boundary methods as well as coupling conditions between the equations.

Remark 3.3.1. At some points in the description of the numerical scheme it is essential to separate the evolution rule
(3.160) into two steps:

• Collision:

fpoc (x, t) = fprc (x, t)−Ks [fprc (x, t)− f eq,prc (x, t)] , (3.202)

• Streaming:

fpos

(
x+

σ(h)

σ̂(h)
ĉi, t+ σ(h)

)
= fprs (x, t) . (3.203)

As it turns out, the possibility of doing so is the most prolific feature of the LBM in terms of parallelizability which
allows to carry out all possibly nonlinear operations (collisions) locally at each node and all other nonlocal ones simply
as mere pointer shifts between the node storage (see for example [166, 194]). The population states in between these

74



3.3 Lattice Boltzmann methods

two steps are frequently called pre-/post-collision (prc/poc) and pre-/post-streaming (prs/pos) below. Obviously, if no
other computations are performed in between, fpoc = fprs and fpos = fprc.

3.3.1 Lattice Boltzmann equations

For each TEQ addressed in this work we summarize the final composition of the LBM (velocity set, moments and
equilibria) in the fully discrete form. Additionally, the shifted diffusion coefficient equation is provided. Unless stated
otherwise, τ denotes the relaxation time associated with the diffusion terms in the TEQ and all equations can be
approximated in any of the moment bases. In case no moment space is explicitly given, SRT BGK collision is applied
and also referred to as SRT. Missing thermodynamic information is derived or recalled where necessary. All of the
configurations below use the same evolution equation (3.160) except for additional forces and couplings, which are
introduced where required. We make no claim to exhaustiveness since, as stated in Section 3.1, an RS of a given TEQ
resembles a nonunique approximation. Occasionally, other options for LBM ingredients are given and referenced.

3.3.1.1 Lattice Boltzmann equation for advection–diffusion equations

From the constructive derivation above we have obtained a convergent scheme based on theDdQ(2d+ 1) stencil with
MRT collision and first order truncated equilibrium. Note that other velocity stencils and equilibria can be used to limit
toward the ADE as a TEQ [53]. In summary, here the ADE (2.10) is approximated by an LBM consisting of

• velocity stencil: DdQ(2d+ 1) (Figure 3.2);

• equilibrium: (3.95);

• moment space: raw moments (3.93) zeroth order conservation;

• diffusion coefficient:

µ = c2s

(
τ − 1

2

)
. (3.204)

Remark 3.3.2. When keeping the conservation order of the moments fixed and increasing the velocity stencil together
with the equilibrium truncation results in the same TEQ. The limit of this increase in velocity space approximation
order should lead to a continuous BGKBEwhich is exactly the thermodynamic information we successfully suppressed
in the derivation of the LBM for the ADE.

3.3.1.2 Lattice Boltzmann equation for Cahn–Hilliard equations

Let u be a given flow velocity. Based on substitution of the diffusive terms in the ADE, a relaxation approximation
of the CHE can be derived. It is possible (but not necessary [273]) to use a second order equilibrium. Since Swift et
al. [242] used a Taylor expanded LBE to match the terms in the CHE and the ternary model [224] is based on a similar
equilibrium structure, we adopt the second order truncation here. Further, also the KFRM can be approximated with
this structure, irrespective of the definition of the chemical potential µφ. Here, the CHE (2.11) is approximated by an
LBM consisting of

• velocity stencil: D2Q9, D3Q19 (Figure 3.2);
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• equilibrium:

f eq
i (x, t) =

{
wi
w

[
1

c2s
Γφµφ +

1

c2s
φfci · u−

1

2c2s
φfu

2
f +

1

2c4s
φf (ci · uf )

2

]}
(x, t) (3.205)

if i 6= 1, and otherwise

f eq
1 (x, t) = φf (x, t)−

∑
i 6=1

f eq
i (x, t) ; (3.206)

• moment space: zeroth order conservation

φf =

q∑
i=1

fi =

q∑
i=1

f eq
i ; (3.207)

• diffusion coefficient:

Mφ = Γφ

(
τ − 1

2

)
. (3.208)

3.3.1.3 Lattice Boltzmann equation for Navier–Stokes equations

In Section 3.2, we have constructed the LBE (3.160) from theADE (2.10) and recalled possible equilibrium formulations
and stencils, also leading to the NSE (2.12). Concerning the latter, we provide a similarly constructive derivation of
both, the velocity and the space-time discretizations in [230] based on a procedure by Krause [158]. Whereas
construction and convergence of LBMs for incompressible NSE has been carried out priorly for example by Junk et
al. [136, 140, 141] an explicit link to RSs and artificial compressibility has been made recently by Ruhi et al. [221].
Here, upon limit consistent discretization, the NSE (2.12) is approximated by an LBM consisting of

• velocity stencil: D2Q9, D3Q19 (Figure 3.2);

• equilibrium: (2.46);

• moment space: orthogonalmoments (Table 3.4), natural moments (Table 3.2), zeroth and first order conservation;

• diffusion coefficient:

ν = c2s

(
τ − 1

2

)
. (3.209)

3.3.1.4 Lattice Boltzmann equation for homogenized Navier–Stokes equations

For reasons of clarity, the novel scheme used for approximating the homogenized NSE (2.138) is derived after the
summary of its main LBM building blocks. The LBM to obtain (2.138) in the relaxation and discretization limit
is termed homogenized LBM (HLBM) and was initially proposed by Krause et al. [159] and revisited by Trunk et
al. [249] to efficiently simulate large numbers of arbitrarily shaped particles submersed in a viscous fluid. Removing
the particles inner (solid) and outer (fluid) region from the model, results in one coherent porous interface across the
domain of interest. It is to be stressed that, in the low Reynolds number regime, the HLBM applied to porous media
flows aligns with the model of Spaid et al. [238]. For other regimes however the HLBM approximates a different TEQ
in the present setting which is to be seen as a progressive advantage of the here proposed framework of analyzing LBM.
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Details are clarified in the derivation below. Upon limit consistent discretization, the homogenized NSE (2.138) is
approximated by the HLBM consisting of

• velocity stencil: D3Q19 (Figure 3.2);

• equilibrium:

f eq
i (x, t) :=

{
wi
w
ρf

[
1 +

1

c2s
dhci · uf −

1

2c2s
d2
hu

2
f +

1

2c4s
d2
h (ci · ufi)2

]}
(x, t) , (3.210)

where

dh =
(
1− τν4tK−1

)
(3.211)

is the lattice porosity;

• moment space: zeroth and first order conservation

ρf (x, t) =

q∑
i=1

fi(x, t) =

q∑
i=1

f eq
i (x, t) , (3.212)

dhuf (x, t) =
dh

ρf (x, t)

q∑
i=1

cifi(x, t) =
1

ρf (x, t)

q∑
i=1

cif
eq
i (x, t); (3.213)

• diffusion coefficient:

ν = c2s

(
τ − 1

2

)
. (3.214)

Below we make use of a formal thermodynamic background limit which is then successively discretized to obtain the
evolution rule which forms the basis of the HLBM for fluid flow through porous media.

Homogenized BGK–Boltzmann collision As common to classical derivations in LBMs, we start with the
mesoscopic viewpoint to formally assess the continuum limit toward the macroscopic TEQ. Apart from the procedure
itself being classical, to the knowledge of the author the results below are novel. Let K denote the single eigenvalue
of the permeability tensor A according to the Definition 2.5.2. All other definitions are similar as in Section 2.2.4,
Section 2.3 and Section 2.5, or follow the notation in [230].

Definition 3.3.1. Based on (2.28), the homogenized Maxwellian for the BGK collision (2.32) is defined as

M eq
f = f eq(nf , $uf , T ) (3.215)

with an additional prefactor called porosity control

$ = 1− ντK−1 (3.216)

in the velocity argument. For $ = 1, the collision reduces to the classical BGK operator (2.32).

For any ρf , uf , T and $ we obtain the zeroth, first and second order balance laws

ρMeq
f

= m

ˆ
Rd
M eq
f dv = m

ˆ
Rd
f eq(nf , $uf , T ) dv = ρf , (3.217)
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uMeq
f

=
1

nMeq
f

ˆ
Rd
vM eq

f dv =
1

nf

ˆ
Rd
vf eq(nf , $uf , T ) dv = $uf , (3.218)

pMeq
f

=
m

d

ˆ
Rd

(
v − uMeq

f

)2

M eq
f dv =

m

d

ˆ
Rd

(v −$uf )
2
f eq(nf , $uf , T ) dv = pf , (3.219)

respectively. Notably, the hydrodynamic first order moment ofM eq
f in (3.218) differs from the one of f eq due to the

prefactored porosity control $.

Definition 3.3.2. With the homogenizedM eq
f from (3.215) implanted in (2.32), the homogenized BGKBE (HBGKBE)

reads

D

Dt
f = Q(f) in R. (3.220)

Remark 3.3.3. In the present mesoscopic framework, the term homogenized refers to generalizing the BGKBE as a
special case for $ = 1 (via K →∞) to a broader validity where $ 6= 1. Below, we formally indicate that for $ < 1

the homogenized Maxwellian (3.215) leads to imposing a nonstandard hydrodynamic similarity of the HBGKBE to
the HNSE in the broadest sense of Hilbert’s sixth problem. The artificial case of $ > 1 is neglected hereafter.

Homogenized diffusive limit Analogously to Section 2.3, we relate the HBGKBE (3.220) to the HNSE (2.138)
in the sense of diffusive limiting. To this end, we formally verify that the assumed to be well-defined moments in
Definition 2.2.3 obey the balance equations of the HNSE. To verify Step 1 (Mass conservation andmomentum balance),
let f? be a solution to the HBGKBE (3.220). Multiplying (3.220) bym and integrating over the velocity space Ξ = Rd

yields the solenoidal constraint in (2.138) after division by the constant ρf? , where the force term vanishes when
applying [158, Corollary 5.2] with g = 1 and a = F in the respective notation. To balance momentum, we integrate
mv×(3.220) over the Ξ = Rd and obtain in ΩT that

∂t (ρf?uf?) + ∇x ·Pf? + (ρf?uf? ·∇x)uf? + F = −1

τ
(ρf?uf? −$ρf?uf?)

= −νK−1ρf?uf? . (3.221)

Besides the homogenization term on the right hand side, the derivation of (3.221) closely follows the procedure
recalled in Section 2.3. In the end, via (3.221)/ρf? we recover a balance law of momentum in conservative form
where the additional term −νK−1uf? is induced by the homogenization controlled equilibrium and corresponds
to −(ν/(σ2))A−1u under the above assumptions on the porous structure made in Section 2.5 and specifically in
Section 2.5.4. Hence, with a suitably defined Pf? conforming to the assumptions of incompressible Newtonian flow,
the HNSE (2.138) is reached in the diffusive limit. This incompressible limit regime of the HBGKBE (3.220) arises
from parameter alignment to diffusion terms. We thus extend the derivation given in [158, 230] for the classical
BGKBE to the HBGKBE.

Definition 3.3.3. As a consequence of the assignments made in Section 2.3, we reassign the porosity controller

$ ← [ 1− 3ν2ε2K−1 =: $ε, (3.222)

and define the ε-parametrized HBGKBE similarly to (2.45) as

D

Dt
f = − 1

3νε2

(
f −M eq

f

)
in R, (3.223)
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where the homogenized Maxwellian distribution evaluated at (nf , $εuf ) now reads

M eq
f =

nf ε
d(

2
3π
) d

2

exp

(
−3

2
(vε−$εuf ε)

2

)
in R. (3.224)

The HBGKBE (3.223) is accordingly transformed to

f = M eq
f − 3νε2

D

Dt
f in R. (3.225)

Repeating the material derivative through (D/Dt)(3.225) yields

D

Dt
f =

D

Dt
M eq
f − 3νε2

(
D

Dt

)2

f in R. (3.226)

The expression (3.226) serves to substitute (D/Dt)f in (3.225) which gives

f = M eq
f − 3νε2

D

Dt
M eq
f +

(
3νε2

D

Dt

)2

f in R. (3.227)

Repeating the above subsequently produces higher order terms and substitutions. The evolving sequence unfolds the
power series

f =

∞∑
i=0

(
−3νε2

D

Dt

)i
M eq
f in R. (3.228)

To complete the macroscopic limit the stress tensor Pf? in (3.221) has to be matched to (2.138) (Step 3: Newton’s
hypothesis), which for a solution f? to the HBGKBE (3.220) yields

Pf? = −pf?I + 2νρDf? +O
(
εb
)

in ΩT (3.229)

up to an order b > 0. Using (3.228), an approximation ansatz of the form

f? = M eq
f? − 3νε2

D

Dt
M eq
f? in R (3.230)

is chosen. As before, this choice is based upon the assumption that higher order terms are sufficiently small for ε→ 0

such that the order b in turn is large enough. To verify (3.229), we compute the stress tensor according to its definition
(2.24). In the following, f -indices at physical moment expressions are omitted for the sake of simplicity. At first, we
inject the material derivative and use the mass conservation to obtain

D

Dt
M eq
f =

(
1

ρ

D

Dt
ρ+ 3ε2$εc$ ·

D

Dt
u− 3ε2c$

m
· F
)
M eq
f

=

[
1

ρ
(∂t + v ·∇x) ρ+ 3ε2$εc$ · (∂t + v ·∇x)u− 3ε2c$

m
· F
]
M eq
f

=

[
1

ρ
(−u ·∇xρ− ρ∇x · u+ v ·∇xρ) + 3ε2$εc$ · (∂t + v ·∇x)u− 3ε2c$

m
· F
]
M eq
f

=

[
−∇x · u︸ ︷︷ ︸

=: af

+
c

ρ
·∇xρ︸ ︷︷ ︸
=: bf

+ 3ε2$εc$ · ∂tu︸ ︷︷ ︸
=: cf

+ 3ε2$εc$ · (v ·∇x)u︸ ︷︷ ︸
=: df

− 3ε2c$
m

· F︸ ︷︷ ︸
=: ef

]
M eq
f (3.231)
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in R, where

c := v − u, (3.232)
c$ := v −$εu, (3.233)

are relative velocities. Inserting the derivative (3.231) in (3.230) yields

f = M eq
f

[
1− 3ε2ν (−af + bf + cf + df + ef )

]
in R. (3.234)

Secondly, we evaluate the velocity space integrals of the individual terms af , bf , . . . , ef . To this end, we use the
symmetric properties ofM eq

f and the fact thatM eq
f /n is a normal distribution with covariance matrix 1/(3ε2)Id. In

ΩT and for any i, j, k, l ∈ {1, 2, ..., d} we verify that

m

ˆ
Rd
cicjM

eq
f dv = m

ˆ
Rd
c$,ic$,jM

eq
f dv −m

ˆ
Rd

(1−$ε)ui [2vj − (1 +$ε)uj ]M
eq
f dv

=
ρ

3ε2
δij − ρ (1−$ε)

2
uiuj

= pδij +O(ε4), (3.235)

m

ˆ
Rd
cicjckM

eq
f dv = m

ˆ
Rd
c$,ic$,jc$,kM

eq
f dv︸ ︷︷ ︸

= 0

+ ($ε − 1) ρui

[
1

3ε2
δjk − (1−$ε)

2
ujuk

]
+ ($ε − 1) ρuj

[
1

3ε2
δik − (1−$ε)

2
uiuk

]
+ ($ε − 1) ρuk

[
1

3ε2
δij − (1−$ε)

2
uiuj

]
=

∑
αβγ ∈

{ijk,jik,kij}

{
($ε − 1) ρuα

[
1

3ε2
δβγ − (1−$ε)

2
uβuγ

]}

= O(1), (3.236)

m

ˆ
Rd
cicjc$,kvlM

eq
f dv = ρ

{
1

9ε4
(δijδkl + δikδjl + δilδjk)

+ ($ε − 1)
2
uiuj

[
1

3ε2
δkl − (1−$ε)

2
ukul

]
+ ($ε − 1)$εuiul

[
1

3ε2
δjk − (1−$ε)

2
ujuk

]
+ ($ε − 1)$εujul

[
1

3ε2
δik − (1−$ε)

2
uiuk

]}
,

=
ρ

9ε4
(δijδkl + δikδjl + δilδjk) +O(1). (3.237)

The order estimates hold since, by construction $ε − 1 ∈ O(ε2). Hence, we obtain

m

ˆ
Rd
cicjafM

eq
f dv =

(
m

ˆ
Rd
cicjM

eq
f dv

)
∂xkuk

(3.235)
=

( ρ

3ε2
+O(ε4)

)
∂xkuk

=
ρ

3ε2
∂xkuk +O(ε4), (3.238)
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m

ˆ
Rd
cicjbfM

eq
f dv =

(
m

ˆ
Rd
cicjckM

eq
f dv

)
1

ρ
∂xkρ

(3.236)
= O(1), (3.239)

m

ˆ
Rd
cicjcfM

eq
f dv =

(
m

ˆ
Rd
cicjckM

eq
f dv

)
3ε2$ε∂tuk

(3.236)
= O(ε2), (3.240)

m

ˆ
Rd
cicjdfM

eq
f dv =

(
m

ˆ
Rd
cicjc$,kvlM

eq
f dv

)
3ε2$ε∂xluk

(3.237)
= 3ε2$ε∂xluk

[ ρ
9ε4

(δijδkl + δikδjl + δilδjk) +O(1)
]

(3.222)
= ∂xluk

ρ

3ε2
(δijδkl + δikδjl + δilδjk) +O(1), (3.241)

m

ˆ
Rd
cicjefM

eq
f dv = ρ ($ε − 1)Fkujδik

= O(ε2). (3.242)

Third and finally, each P-component Pij for i, j ∈ {1, 2, ..., d} is computable in R. Via reordering terms, we obtain

Pij = m

ˆ
Rd
cicj

[
1− 3νε2 (−af + bf + cf + df + ef )

]
M eq
f dv

= pδij − 3νε2
[
− ρ

3ε2
∂xkuk + ∂xluk

ρ

3ε2
(δijδkl + δikδjl + δilδjk) +O(1)

]
= pδij + νρ [δij∂xkuk − ∂xluk (δijδkl + δikδjl + δilδjk)] +O

(
ε2
)

= pδij − νρ
(
∂xiuj + ∂xjui

)
+O

(
ε2
)

(3.243)

and thus equivalently

P = pId − 2νρD +O
(
ε2
)
. (3.244)

which formally proves the approximate recovery of the HNSE (2.138) in the hydrodynamic limit.

Discrete velocity homogenized BGK–Boltzmann equation Based on the above derived formal limit, the
subsequent discretization in the velocity space yields, in the thermodynamic sense a moment approximation of the
HBGKBE and, in the present context, a relaxation approximation of the HNSE. We estimate the order of the discrete
velocity approximation in ε as follows.

Definition 3.3.4. From ε2×(3.223), we construct the family of HBGKBEs

F :=

(
ε2

D

Dt
f ε +

1

3ν

(
f ε −M eq

fε

)
= 0 in R

)
ε>0

. (3.245)

Since, in the present setting we instead aim at proving conformity of sequences of equations in the sense of limit
alignment under discretization the consistency in ε with respect to the TEQ can be interpreted as limit consistency
also in the velocity discretization [230]. To discretize the velocity space, let ε ∈ R>0, K and ν be fixed, and define
the discrete velocity set Q = {ci | i = 1, 2, . . . , q} ⊆ Ξ = Rd. Unless stated otherwise, we use D3Q19 as given in
Definition 3.2.3. We assume that a solution f ε to (3.223) exists and creates well-defined moments nfε and ufε . As
in the previous sections, the dependence of f ε on ε, carries over to nfε and ufε which are related to the macroscopic
targeted HNSE (2.138). Therefore, nfε ,ufε ∈ O(1) is assumed to hold by construction. Further, $ε ∈ O(1) and
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$ε− 1 ∈ O(ε2) via (3.222). Under the above conditions, we expandM eq
fε (x, t, ci) in (3.224) as Taylor series in ε such

that in R a second order partition yields

M eq
fε (x, t, ci) =

nfε(x, t)ε
d(

2
3π
) d

2

exp

(
−3

2
c̃2
i

)
exp

(
3ε$εc̃i · ufε(x, t)−

3

2
ε2$2

εu
2
fε(x, t)

)

=
nfε(x, t)ε

d(
2
3π
) d

2

exp

(
−3

2
c̃2
i

)[
1 + 3ε$εc̃i · ufε(x, t)−

3

2
ε2$2

εu
2
fε(x, t) +

9

2
ε2$2

ε (c̃i · ufε(x, t))2

]
︸ ︷︷ ︸

=: M̃eq
fε

+R
(0)
x,t,ci , (3.246)

where R(0)
x,t,ci ∈ O(εd+3) is the remainder term for each (x, t, ci) ∈ ΩT × Q. Where unambiguous, we drop the

corresponding indexes below. The prefactored discrete velocities c̃i := ciε do not depend on ε. With the weights
wi ∈ R>0 for i = 1, 2, ..., q we have that in ΩT

nfε =

q∑
i=1

wiM̃
eq
fε , (3.247)

nfε$εufε =

q∑
i=1

wiciM̃
eq
fε . (3.248)

This is a particular approximation in form of

ˆ
Rd
f ε dv = nfε =

q∑
i=1

wiM̃
eq
fε =

q∑
i=1

wiM
eq
fε +R

(1)
x,t

=

q∑
i=1

wi

(
f ε + 3νε2

D

Dt
f ε
)

+R
(1)
x,t

=

q∑
i=1

wif
ε +R

(2)
x,t (3.249)

and
ˆ
Rd
vf ε dv = nfεufε = nfε [$εufε − ($ε − 1)ufε ]

= nfε$εufε +R
(3)
x,t

=

q∑
i=1

wiciM̃
eq
fε +R

(3)
x,t

=

q∑
i=1

wiciM
eq
fε +R

(4)
x,t

=

q∑
i=1

wici

(
f ε + 3νε2

D

Dt
f ε
)

+R
(4)
x,t

=

q∑
i=1

(wicif
ε) +R

(5)
x,t1d×1, (3.250)

respectively. Based on wi ∈ O(ε−d) the product wi(D/Dt)f ε(x, t, ci) ∈ O(1) for all (x, t, ci) ∈ ΩT ×Q. Further,
recall from (3.246) thatM eq

fε is approximated by M̃ eq
fε with an error inO(ε3+d) for all (x, t, ci) ∈ ΩT ×Q. Henceforth,

with $ε − 1 ∈ O(ε2) and ci ∈ O(ε−1) by construction, we obtain for all (x, t) ∈ ΩT that
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• R(1)
x,t ∈ O(ε3),

• R(2)
x,t, R

(3)
x,t, R

(4)
x,t ∈ O(ε2), and

• R(5)
x,t ∈ O(ε).

Finally, in ΩT we can classify

nfε −
q∑
i=1

wif
ε ∈ O

(
ε2
)
, (3.251)

ufε −

q∑
i=1

wicif
ε

q∑
i=1

wif ε
∈ O (ε) . (3.252)

Shortening the notation, we define for i = 1, 2, . . . , q and in ΩT that

f εi (x, t) = wif
ε (x, t, ci) , (3.253)

ρfε(x, t) =

q∑
i=1

f εi (x, t), (3.254)

ufε(x, t) =
1

ρfε(x, t)

q∑
i=1

cif
ε
i (x, t), (3.255)

M
eq

fε,i(x, t) =
wi
w
ρfε(x, t)

[
1 + 3ε2$ε ci · ufε(x, t)−

3

2
ε2$2

εu
2
fε(x, t) +

9

2
ε4$2

ε (ci · ufε(x, t))
2

]
. (3.256)

Definition 3.3.5. Multiplying the HBGKBE (3.223) with all weights wi and injecting the above definitions, we obtain
the discrete velocity HBGKBE as a system of q equations

D

Dt
f εi = − 1

3νε2

(
f εi −M

eq

fε,i

)
in ΩT , (3.257)

for i = 1, 2, . . . , q. The upheld parametrization with ε now generates the sequence of discrete velocity HBGKBEs

FG :=

(
D

Dt
f εi +

1

3νε2

(
f εi −M

eq

fε,i

)
= 0 in ΩT ×Q

)
ε>0

. (3.258)

Theorem 3.3.1. Suppose that for given ε, ν,K ∈ R>0, f ε is a solution of the HBGKBE (3.245) with moments nfε
and ufε and that for nfε ,ufε , wi D

Dtf
ε understood as functions of ε holds

nfε ∈ O(1) in ΩT , (3.259)
ufε ∈ O(1) in ΩT , (3.260)

wi
D

Dt
f ε ∈ O(1) in ΩT ×Q. (3.261)

Then, the sequence FG of discrete velocity HBGKBE (3.258) is limit consistent of order two to the sequence F of
HBGKBE (3.245) in ΩT ×Q, and for i = 1, 2, . . . , q´ the truncation error is

ε2
D

Dt
f εi +

1

3ν

(
f εi −M

eq

fε,i

)
∈ O

(
ε2
)

in ΩT ×Q. (3.262)

Proof. As a direct consequence of measuring the remainder terms which gives (3.251) and (3.252), the conditions in
Definition 3.2.10 are verified and complete the proof.
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Remark 3.3.4. Note that we can use the result of Theorem 3.3.1 to unfold the convergence ofFG to the HNSE (2.138).
In particular, via FG being limit consistent to F and the latter in turn converges toward the macroscopic target, we
obtain similar convergence information of the former. In the present case, the resulting convergence is formal, since
the background limit is formal only.

Homogenized lattice Boltzmannn equation As a last step within the derivation of HLBM, we completely
discretize the parametrized equations and verify that the limit consistency is preserved. By doing so, the parameter ε
is glued to the space-time grid resembled by h as described in Section 3.2. We aim for diffusive scaling only which is
why σ(ε) = ε2 = σ̂2(ε) holds for γ = 2. Let Ω be discretized by a regular (uniform Cartesian) grid Ωh with N + 1

nodes per dimension, such that for the largest cubic subdomain Ω̃h ⊆ Ωh ⊆ Ω we define 4x = |Ω̃h|1/d/N . Via
imposing the space-time coupling4t ∼ 4x2, we uphold a positioning constraint viα = ι4x/4t for ι ∈ {0,±1} (up
to three shells) and define the discrete time interval I4t := {t = t0 + k4t | t0 ∈ I, k ∈ N} ⊆ I . Here and below we
use the parametrization ε ← [ h ∼ 4x ∼ √4t. In contrast to Section 3.2, we glue the limit parameters first and then
discretize the equation, since we already fixed the scaling. This agrees also to the merged functioning of the limits (cf.
Figure 3.4).

Definition 3.3.6. Let Ωh × Ih × Q be constructed as above, and fh denote a solution to the HBGKBE (3.223).
Continuing from (3.253), for i = 1, 2, . . . , q we define the i-th population

fhi (t+ χh) = fhi (·, t+ χh) = fhi (x+ ciχh, t+ χh) (3.263)

on the space-time cylinder Zh = Ωh × Ih.

Let fh at least of class C3 with respect to D/Dt be a solution to the HBGKBE (3.223). We apply Proposition 3.2.3
under the assumption that (D/Dt)3fhi ∈ O(1) for i = 1, 2, . . . , q in terms of functions of h. We use the central
difference approximation

h2 D

Dt
fhi

(
t+

1

2
h2

)
= fhi

(
t+ h2

)
− fhi (t) +R

(6)
t in Zh. (3.264)

Taylor expanding fhi and forward differencing (D/Dt)fhi yields

fhi

(
t+

1

2
h2

)
= fhi (t) +

1

2
h2 D

Dt
fhi (t) +R

(7)
x,t

= fhi (t) +
1

2

[
fhi
(
t+ h2

)
− fhi (t)

]
+R

(8)
x,t (3.265)

in Zh. Under the assumption that (D/Dt)2fhi ∈ O(1), we deduce

• R(6)
x,t ∈ O(h6),

• R(7)
x,t ∈ O(h4), and

• R(8)
x,t ∈ O(h4) for (x, t) ∈ Zh.

To interpret the discrete moments as functions of h, we shift ρfh and ufh by h2/2, respectively in space-time.
Recalling the macroscopic diffusive limit (cf. (2.34) and (3.221)), (D/Dt)ρfh = 0 and (D/Dt)ufh = −νK−1ufh

directly follows for ε←[ h. Via (D/Dt)(3.251) and (D/Dt)(3.252), we have for (x, t) ∈ Zh that

D

Dt
ρfh = O(h2), (3.266)
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D

Dt
ufh + νK−1ufh = O(h), (3.267)

respectively. Taylor expanding both moments for (x, t) ∈ Zh leads to the respective approximations

ρfh

(
t+

1

2
h2

)
= ρfh (t) +

1

2
h2 D

Dt
ρfh (t) +R

(9)
x,t

= ρfh (t) +R
(10)
x,t , (3.268)

ufh

(
t+

1

2
h2

)
= ufh (t) +

1

2
h2 D

Dt
ufh (t) +R

(11)
x,t 1d×1

= ufh (t) +
1

2
νh2K−1ufh (t) +R

(12)
x,t 1d×1, (3.269)

with remainder terms R(9)
x,t, R

(10)
x,t , R

(11)
x,t ∈ O(h4) and R(12)

x,t ∈ O(h3). Multiplying $h×(3.269) in Zh gives

$hufh

(
t+

1

2
h2

)
=
(
1− 3ν2h2K−1

)
ufh (t) +

1

2
νh2K−1ufh (t) +R

(12)
x,t 1d×1

=

[
1−

(
3ν +

1

2

)
νh2K−1

]
︸ ︷︷ ︸

=:dh

ufh (t) +R
(12)
x,t 1d×1, (3.270)

where dh is referred to as lattice porosity [153]. We inject the latter into (3.256) and define

M
eq

fh,i(x, t) :=

{
wi
w
ρfh

[
1 + 3h2dhci · ufh −

3

2
h2d2

hu
2
fh +

9

2
h4d2

h

(
ci · ufh

)2]}
(x, t) , (3.271)

With the help of (3.268), (3.269), (3.270), and (3.271), we construct the homogenized latticeMaxwellian for (x, t) ∈ Zh
from discretization and shift as

M̂ eq
fh,i

(
x+ ci

1

2
h2, t+

1

2
h2

)
= M

eq

fh,i (x, t) +R
(13)
x,t . (3.272)

By construction, R(13)
x,t ∈ O(h4) for all (x, t) ∈ Zh.

Definition 3.3.7. We use Proposition 3.2.3 and the above derivations (3.263), (3.264), (3.265), (3.272), to construct the
homogenized lattice Boltzmann equation (HLBE) from three points in time for a space-time gridZh and i = 1, 2, . . . , q

via reordering (3.257)|(x+ci(1/2)h2,t+(1/2)h2) to

fhi
(
t+ h2

)
− fhi (t) = − 1

3ν + 1
2

[
fhi (t)−M

eq

fh,i (t)
]
. (3.273)

Consequently, the sequence of HLBEs reads

G :=

(
fhi
(
t+ h2

)
− fhi (t) +

1

3ν + 1
2

[
fhi (t)−M

eq

fh,i (t)
]

= 0 in Zh ×Q
)
h>0

. (3.274)

Theorem 3.3.2. Suppose that for given h, ν,K ∈ R>0, fh is a solution of the discrete velocity HBGKBE (3.258) with
moments ρfh and ufh and that for ρfh , ufh , fhi , (D/Dt)fhi , (D/Dt)2fhi , (D/Dt)3fhi understood as functions of h
holds that

ρfh ∈ O(1) in Zh, (3.275)
ufh ∈ O(1) in Zh, (3.276)
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fhi ,
D

Dt
fhi ,

(
D

Dt

)2

fhi ,

(
D

Dt

)3

fhi ∈ O(1) in Zh, (3.277)

for i = 1, 2, . . . , q, respectively. Then, the sequence G of HLBE (3.3.2) is limit consistent of order two to the sequence
FG of discrete velocity HBGKBE (3.258) in Zh ×Q.

Proof. Recall that we have already mapped ε ← [ h. Let fh be a solution of the HBGKBE (3.223) with well-defined
moments as specified above. Then, Theorem 3.3.1 dictates the truncation error with respect to velocity discretization

E(h) =
6ν

6ν + 1

[
h2 D

Dt
fhi +

1

3ν

(
fhi −M

eq

fh,i

)]
∈ O

(
h2
)

in ΩT ×Q. (3.278)

Considering E(h)|(x+ci(1/2)h2,t+(1/2)h2) and substituting (3.264), (3.265), and (3.272), unfolds

6ν

6ν + 1

{
h2 D

Dt
fhi

(
t+

1

2
h2

)
+

1

3ν

[
fhi

(
t+

1

2
h2

)
− M̂ eq

fh,i

(
t+

1

2
h2

)]}
≈ 6ν

6ν + 1

(
fhi
(
t+ h2

)
− fhi (t) (3.279)

+
1

3ν

{
fhi (t) +

1

2

[
fhi
(
t+ h2

)
− fhi (t)

]
−M

eq

fh,i(t)

})
= fhi

(
t+ h2

)
− fhi (t) +

1

3ν + 1
2

[
fhi (t)−M

eq

fh,i(t)
]
∈ O

(
h2
)

(3.280)

for i = 1, 2, . . . , q and for all (x, t) ∈ Zh.

Remark 3.3.5. Based on an application-oriented rationale for simulating porous media flow with a mathematical
model (2.138), we have constructed a limit consistent discretization leading to an HLBE (3.273) to approximate the
latter. The truncation errors of the governing parametrized equations are thus determined up to leading orders at each
level of discretization yielding limit consistency and thus (if the discretization is stable) convergence of order two and
one of the HLBE with respect to the pressure and velocity, respectively, of the HNSE 2.138. The validity of this limit
is based on formal arguments which are however well motivated. Interestingly, the convergence order for the pressure
is approved in numerical tests in Section 4.5.

3.3.1.5 Lattice Boltzmann equation for time-filtered Navier–Stokes equations

In [233] we propose for the first time a combination of the TDDM (2.89) developed in [200] and LBMs. The latter
are based on MRT collision with relaxation functions for orthogonal moments (see Table 3.4) to achieve the sought
for stabilization at coarse resolutions. The TDDM itself is paired with the LBM via consistently discretizing the
consistently filtered BGKBE (3.286) and coupling it through the subgrid stress at moment order two to the ordinary
differential equation for the temporal residual which is derived in Section 2.4.2. For the sake of completeness, we recall
our derivation proposed in [233] after summarizing the main ingredients of the LBM for the bulk flow3. Upon limit
consistent discretization, the temporally filtered NSE (2.90), (2.91) is approximated by the LBE (with an additional
residual term see (3.288)) consisting of

• velocity stencil: D3Q19 (Figure 3.2);

3 Parts of this section are reproduced from [233], Copyright (2022), with permission from the authors and Elsevier Inc.
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• equilibrium:

f eq
i (x, t) :=

{
wi
w
ρf

[
1 +

1

c2s
ci · uf −

1

2c2s
u2
f

+
1

2c4s

(
ci · uf

)2
]}

(x, t) ; (3.281)

• moment space: zeroth and first order conservation

ρf (x, t) :=

q∑
i=1

f i(x, t) =

q∑
i=1

f eq
i (x, t) , (3.282)

uf (x, t) :=
1

ρf (x, t)

q∑
i=1

cif i(x, t) =
1

ρf (x, t)

q∑
i=1

cif
eq
i (x, t); (3.283)

• diffusion coefficient (in the filtered TEQ):

ν = c2s

(
τ − 1

2

)
. (3.284)

Time-filtered discrete velocity BGK–Boltzmann equation Up to order two, theHermite expansion ofM eq
f =

f eq (x,v, t) (2.28) is given by

f eq
i

(
f
)

=
wi
w
ρf

[
1 +

1

c2s
ci · uf +

1

2c4s
H

(2)
i :

(
uf ⊗ uf

)]
, (3.285)

and aligns with the Taylor expansion leading to (3.98) or (3.246) such that (3.285) is equivalent to (3.281). Here, wi
specify the classical weights for D3Q19, cs denotes the corresponding lattice speed of sound and H(2)

i is the second
order multi-dimensional Hermite polynomial evaluated at ci for i = 1, 2 . . . , q. Note that the dependence of f eq

i on f
via the zeroth and first order moment summation for recovering the hydrodynamic conservative variables is now with
respect to the filtered conserved quantities ρ and u [184] (we neglect the moment index notation ·f ). Thus, the discrete
velocity approximation of (2.96) is analogously to (3.92) for the unfiltered NSE (2.12). With (2.103), the truncation
of the series expansion at order two, and the use of a D3Q19 velocity stencil, the time-filtered BGKBE (2.96) is
transformed to the scaled, filtered discrete velocity BGKBE (FDVBE)

∂tf +

d∑
α=1

Vα∂αf = − 1

εγ

{
K
[
f − f eq

(
f
)]
−K

(
1

2c4s
wiH

(2)
i : T

)
1≤i≤q

}
(3.286)

with γ = 2 and MRT collision. We define the discrete velocity subgrid remainder termR = R1≤i≤q with

Ri (x, t) =
1

2c4s
wiH

(2)
i : T (x, t) . (3.287)

Hence, we can form a closed system of equations, consisting of (2.94), (3.286), and (3.285).

Time-filtered lattice Boltzmann equation Finally, by limit consistent discretization of (3.286) as before on a
Cartesian grid with discrete time horizon (x, t) ∈ Zh = Ω4x × I4t we obtain the (in time) filtered LBE (FLBE)

f (x+4tci, t+4t) = f (x, t)−Ks
{[
f (x, t)− f eq (x, t)

]
+R (x, t)

}
. (3.288)

With the zeroth and first order moment summations leading to ρ and u, respectively, second order convergence in space
and first order in time under diffusive scaling is expected [172, 184] toward (2.90) and (2.91). In case of reduction to
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the SRT with Ks = 1/(τ + 1/2)Iq along the discretization and relaxation limit, the viscosity in the temporally filtered
TEQ is recovered by

ν = c2s

(
τ − 1

2

)
. (3.289)

The MRT collision matrix Ks (orthogonal moments, see Table 3.4) is introduced to stabilize the method for coarse
grid resolutions. Notably, the orthogonal moment basis M is defined as in [66]. However, we make the following
modifications according to the results obtained so far. To ensure limit consistency to the TEQ, the equilibriummoments
are consistent to SRT formulations (i.e. in terms of the notation of [66]: wε = 3, wεj = 17/2, wxx = 2). Additionally,
it has to be stressed that the present definition ofR is unrelaxed in contrast to [184]. The relaxation matrix S comprises
both, the hydrodynamic relaxation rates as proposed in [66] and the optimized kinetic relaxation frequencies proposed
in [52]. The essential difference in our work [233], is motivated by linear and brute force analysis [232] which yields
dynamic relaxation functions with respect to the lattice Mach number Ma. The necessity of this modification is
based on the following reasoning. The orthogonal MRT LBM [66] exhibits lattice Mach number instabilities found by
Dellar [63] and numerically studied for example in our work [114]. The instabilities can however be removed when the
kinetic relaxation parameters are defined as functions with a proper scaling. In [232], we found that also the optimized
third order relaxation frequencies proposed in [52] are Ma-dependent. Thus, a polynomial fit can be used to respect
this dependency [233]. As this procedure is dependent on the application and the discretization parameters used, we
provide the actual relaxation functions further below (see Section 4.4).

Discrete direct deconvolution with finite differences Conforming to the limit consistent discretization based
on Definition 3.2.14, we use finite difference approximations in time to compute the remainder term R (3.287). We
have proposed two versions in [233]. For a first order approximation of (2.94), the forward Euler method with forward
differenced time derivatives of u is used, which results in

T (x, t) =

(
1− 4t

Θ

)
T (x, t−4t) +

Θ

4t {[u (x, t)− u (x, t−4t)]⊗ [u (x, t)− u (x, t−4t)]} . (3.290)

Any unfiltered discrete variable Υ, for example solutions approximating the TEQ (2.12), can thus be easily recovered
via backward differencing the deconvolution rule (2.89) through

Υ (x, t) = Υ (x, t) +
Θ

4t
[
Υ (x, t)−Υ (x, t−4t)

]
. (3.291)

Remark 3.3.6. As initially motivated in Section 2.4, it is remarkable that both (3.290) and (3.291) are local in space
by construction which theoretically reduces the computational overhead of the turbulence model to a minimum. The
price to pay however is the additional memory storage in the implementation when increasing the discretization order
and requiring data from the previous timesteps. The memory consumption is hence directly correlated to the order
of the model discretization, such that an accuracy trade-off might be reasonable in actual applications. To match the
second order in time when not using diffusive scaling for the LBM, the residual stress formulation of the TDDM as
well as the deconvolution rule should be approximated with second order.

A second order consistent discretization of (2.94) can be obtained with the two-step Adams–Bashforth method (see
for example [178] and references therein). The derivatives of u at t− 24t and t−4t are approximated with second
order forward and central differences, respectively. We thus transform (2.94) into

T (x, t) =

(
1− 34t

2Θ

)
T (x, t−4t) +

4t
2Θ

T (x, t− 24t)

− Θ

24t

[
1

2
u (x, t)− 2u (x, t−4t) +

3

2
u (x, t− 24t)

]

88



3.3 Lattice Boltzmann methods

⊗
[

1

2
u (x, t)− 2u (x, t−4t) +

3

2
u (x, t− 24t)

]
+

3Θ

84t

[
u (x, t)− u (x, t− 24t)

]
⊗
[
u (x, t)− u (x, t− 24t)

]
. (3.292)

Using backward differences of second order for the deconvolution rule (2.89) gives

Υ (x, t) = Υ (x, t) +
Θ

4t

[
3

2
Υ (x, t)− 2Υ (x, t−4t) +

1

2
Υ (x, t− 24t)

]
(3.293)

for obtaining any unfiltered quantity Υ.

Remark 3.3.7. At the temporal boundary t = 0, the following procedure is used [233]. The equations (3.292) and
(3.293) are for t ≥ 24t only. Initially, for t = 0 the residual stress is null by construction. This is due to the fact that
filtered and unfiltered fields coincide [200] at t = 0. At the next timestep t = 4t, we use the first order approximations
(3.290) and (3.291) instead of (3.292) and (3.293), respectively. Still, locality in space is preserved.

FNSE FDVBE

NSE DVBE

FLBE

LBE

Θ↘0

ε↘0

Θ↘0

ε↘0

Θ↘0

h↘0

h,ε,Θ↘0

h,ε↘0

h↘0
h,ε↘0

Figure 3.7: Schematic concept for merging relaxation, discretization and filtering of PDE. The abbreviations denote: filtered NSE (FNSE) {(2.90),
(2.91), (2.94)}; filtered DVBE (FDVBE) {(3.286), (2.94)}; filtered LBE (FLBE) {(3.288), (3.293)}; NSE (2.12); DVBE (3.92);
LBE (3.160). The parameters are defined as ε for the relaxation scaling, h for the space-time discretization and Θ for the filter width.
The nature of arrows is hidden for the purpose of representation. The overall limit of the FLBE to the NSE is denoted as dashed line.

Remark 3.3.8. As a matter of fact, we have now added a third layer of limits to the already merged discretization and
relaxation (see Figure 3.7). The filtering of the TLES (in terms of the filter width) is now running on top of the RS
(in form of discrete velocities) and the LBE (in terms of discretization). To weakly converge in terms of equations and
solutions from the FLBE (2.96) to the incompressible NSE (2.12) we have to connect three single limit arrows now and
ensure that the overall order of consistency is still two in space. For spatial LES with direct NSE solvers, the matter of
error estimation has been quantitatively analyzed by Geurts et al. [98, 99] and convergence toward weak solutions in
the sense of Leray–Hopf has been rigorously proved by Berselli et al. [30]. For the present TLES nothing similar has
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been done yet to the knowledge of the author. We provide first experimental error estimates in [233], which indicate
the expected convergence when merging all limits accordingly, and summarize the results in Section 4.4.

3.3.1.6 Lattice Boltzmann equation for Navier–Stokes–Cahn–Hilliard equations

In [235] we use the SFRM [224] (see Section 2.6, Definition 2.6.6) and the novel HSFRM (see Section 2.6, Defini-
tion 2.6.9) to simulate shear and extensional flows of a binary fluid mixture with LBMs in two and three dimensions. To
that end, two populations are used, one for approximating the CHE which governs the order parameter and another one
for approximating the incompressible NSE with a forcing term which couples the PDEs (see below). The derivation of
the two LBEs for approximating to TEQs can be done separately involving a generic force term or jointly by considering
thermodynamics. In general, similarly to the single CHE, it useful to use a second order equilibrium [242] which
matches the discretization terms of the Taylor expanded LBE with the TEQ. Upon limit consistent discretization of the
DVBE for each population, the LBM approximating (2.178) in the incompressible limit consists of

• velocity stencil: D2Q9, D3Q19 for both fi and gi (see Figure 3.2);

• equilibria:

f eq
i (x, t) =

{
wi
w
ρf

[
1 +

1

c2s
ci · uf −

1

2c2s
u2
f +

1

2c4s
(ci · uf )

2

]}
(x, t) , (3.294)

geq
i (x, t) =


{
wi
w

[
1
c2s

Γφµφ + 1
c2s
φgci · uf − 1

2c2s
φgu

2
f + 1

2c4s
φg (ci · uf )

2

]}
(x, t) , if i 6= 1,

φg (x, t)− ∑
i 6=1

geq
i (x, t) , if i = 1;

(3.295)

• moment space: zeroth and first order (for fi) and zeroth (for gi) conservation, respectively

ρf (x, t) =

q∑
i=1

fi(x, t) =

q∑
i=1

f eq
i (x, t) , (3.296)

ρf (x, t)uf (x, t) =

q∑
i=1

cifi(x, t) +
1

2
F (x, t) =

q∑
i=1

cif
eq
i (x, t) +

1

2
F (x, t) , (3.297)

φg (x, t) =

q∑
i=1

gi (x, t) =

q∑
i=1

geq
i (x, t) ; (3.298)

• diffusion coefficients:

ν = c2s

(
τν −

1

2

)
, (3.299)

Mφ = Γφ

(
τMφ
− 1

2

)
. (3.300)

Forcing scheme The LBE with a general force term S reads

fi (x+ ci, t+ 1) = fi (x, t) + Ji (x, t) + Si (x, t) , for i = 1, 2, . . . , q. (3.301)
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Since the forcing term F th (2.143) based on the thermodynamic pressure tensor (2.141) is included into the LBE,
a second order consistent forcing scheme is required to uphold limit consistency. For example the classical forcing
method by Guo et al. [112] defines

Si (x, t) =

(
1− 1

2τν

)
wi

[
ci − uf (x, t)

c2s
+

(ci · uf (x, t))ci
c4s

]
· F (x, t) , for i = 1, 2, . . . , q. (3.302)

Via this structure, the parts to be interchanged for using a different FRMwould be the force term including the chemical
potentials and the second lattice. Further, ternary mixtures or flows with more components can be modeled by coupling
more CHEs to the NSE. The approximation with LBMs is thus realized via coupling one additional LBE per additional
component with the respective order parameter as zeroth moment.

3.3.2 Initial and boundary conditions

3.3.2.1 Initialization

As observed by several authors [27, 44, 186, 252, 254] in an ongoing scientific discourse, it is essential to supply the LBE
with initial conditions consistent to the target problem at hand. As proven above (see Proposition 3.1.3, Theorem 3.2.1),
the equilibrium initialization with the given target initial conditions leads to convergence of the relaxation limit which
agrees to the results in the literature. Due to the relaxation character of the LBM, the conserved quantities of the
TEQ at t = 0 are the only known initial data in general. Several techniques exist to align the a priori unknown initial
data of the constructed artificial variables (moments) with the conserved quantities. In the present work, if not stated
otherwise, we initialize the populations with

f (x, 0) = f eq (x, 0) in Ω. (3.303)

Sincewe consider solely nonstationary PDEs, at several occasions in numerical experimentswe align the nonequilibrium
part of the kinetic moments (and thus the nonequilibrium populations) through repeated collisions to the initial
conserved state preceding the actual simulation time horizon. The length of the process is bound by a variable
percentage of the final simulation time interval which yields a sufficiently diminished oscillation up to a feasible
tolerance in practice. Additionally, in the case of approximating fluid flow where an initial pressure function is given,
we use the same procedure to obtain a more accurate zeroth order moment density profile at the initial time. On top of
that, we use the method proposed by Mei et al. [186] and pressure correct the velocity in case of a solenoidal target.

3.3.2.2 Methods for imposing boundary conditions

Compared to the initialization methods, the treatment of boundaries in LBMs might be regarded as a self-standing
research field. Since this is not the focus of the presentwork, we provide only the necessary details on the implementation
of boundary conditions for the PDEs to be approximated. Krüger et al. [164] provide a comprehensive overview of
boundary methods and schemes in LBMs which serves as a main reference for the summary below. We separate
the methods in terms of their result in the relaxation limit, i.e. the macroscopic target condition on the respective
moment order. For the purpose of illustration, let the space-time cylinder ΩT be discretized with (4x,4t) for
(x, t) ∈ Zh ⊆ ΩT . All boundaries of the continuum are to be thought of as link-wise, i.e. the discretization is such
that the continuum boundary lies in between two grid nodes.
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Periodic boundary condition Let Ω ⊆ Rd define a cube of size L3, which, when periodically repeated, covers
the whole space. In case of the assumption that the specific solution ρ sought for in the target problem shares the same
periodicity, we have that

ρ(x, t) = ρ (x+ Lp, t) in ΩT , (3.304)

where p ∈ Rd describes the periodicity directions of Ω. The same rule is imposed onto the populations governed by
the corresponding LBE, such that the re-entry in the opposing domain side is given by

f(x, t) = f (x+ Lp, t) in ΩT , (3.305)

which transfers to all moments Mf .

Dirchlet condition for first order moments Let Ω ⊂ Rd with boundary ∂Ω and let xb ∈ ∂Ω denote the
boundary nodes in the discretization of Ω = Ω ∪ ∂Ω. For example in the case of a no-slip wall boundary for a fluid
continuum, a homogeneous Dirichlet condition

u = 0 on ∂Ω× I (3.306)

is successfully recovered by imposing a bounce-back rule (see [164] and references therein).

fpos

i
(xb, t+4t) = fprs

i (xb, t) , (3.307)

where fi denote the populations corresponding to ci = ci. Similarly, a nonhomogeneous Dirichlet boundary condition

u = uw on ∂Ω× I (3.308)

is obtained via

fpos

i
(xb, t+4t) = fprs

i (xb, t)− 2
wi
wc2s

ρf (xw, t) ci · uf (xw, t) , (3.309)

where xw = xb + 0.5ci4t is the wall location and uf (xw, ·) = uw(·). The method can be applied for slip wall
boundaries, inflows and outflows, or moving walls without mass flux. It is to be noted that in general, the standard
bounce-back boundary methods are second order accurate in space only in special scenarios, for example for straight
walls. Further details and method extensions are given for example in [164] and references therein.

Dirichlet condition for zeroth order moments A Dirichlet condition in the TEQ, e.g.

ρ = 0 on ∂Ω× I, (3.310)

can be imposed for the LBE via the anti-bounce-back rule

fpos

i
(xb, t+4t) = −fprs

i (xb, t) + 2
wi
w
ρf (xw, t)

[
1 +

1

2c4s
(ci · uf (xw, t))

2 − 1

2c2s
u2
f (xw, t)

]
, (3.311)

which is useful for example to realize pressure inflows or outflows, to set order parameters at domain boundaries or
predefine the temperature in thermal flows (see [164, 236] and references therein).

Bouzidi’s method for curved boundaries For approximating curved walls with second order accuracy (for an
exemplary application see [116]), the method by Bouzidi et al. [38] can be used. The method extends the half-way
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xg

xb

xf

∂Ω

Ω

xw

uw

ci ci
l

Figure 3.8: Illustration of a curved boundary layout [116].

implementation of the bounce-back boundary scheme. A linear interpolation recovers the approximate distance l to
the boundary in the ith direction. Effectively taking into account the shape of the object or wall, hence increases
the accuracy and theoretically retains second order for the boundary scheme also in this case. The post-streaming
populations are computed via

fpos

i
(xb, t+4t) =

2lfprs
i (xb, t) + (1− 2l) fprs

i (xf , t)− 2 wi
wc2s
ci · uf (xw, t) for l < 1

2 ,

1
2lf

prs
i (xb, t) +

(
1− 1

2l

)
fprs

i
(xb, t)− 1

l
wi
wc2s
ci · uf (xw, t) for l ≥ 1

2 .
(3.312)

A layout of grid nodes is sketched in Figure 3.8, where the indexed xg denotes the ghost node outside of the domain Ω

in ith direction. Note that the half-way bounce-back rule (3.308) is recovered for l = 1/2. An estimation of consistency
and a detailed discussion is given in [164] and references therein.

3.3.3 Postprocessing and other operations

Besides the LBE kernel with initialization and boundary schemes, the numerical experiments below require several ad-
ditional approximation methods. Among others, we need to approximate gradients, Fourier transforms and eigenvalues
to dense matrices of intermediate size O(q).

Gradients At several occasions within the approximation of the solution to the TEQ, gradients are to be approxi-
mated. Conforming to the discretizations used so far, we use finite differences of order two and higher. Exemplarily,
for postprocessing the computed velocity field in a turbulent flow simulation, central difference stencils of order eight
have been found suitable (by us [114, 232, 233] and others [97]). Hence, given an approximate solution u on Zh to
(2.12), we approximate its gradient with

∂βuα (x) =
1

4x

{
4

5
[uα (x+4xeβ)− uα (x−4xeβ)]

+
1

5
[uα (x− 24xeβ)− uα (x+ 24xeβ)]

+
4

105
[uα (x+ 34xeβ)− uα (x− 34xeβ)]

+
1

280
[uα (x− 44xeβ)− uα (x+ 44xeβ)]

}
+O

(
4x8

)
, (3.313)
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where the temporal argument is neglected for the purpose of illustration. As another example for a derivative of order
two, we compute the Laplacian finite difference operator of an order parameter φ in Zh as approximate solution to the
CHE (2.11) with a stable and isotropic d3-point stencil [210] of second order, e.g. on the D2Q9 lattice we use

∆xφ(x) =
1

4x2

{
1

2
[φ (x+4xe1) + φ (x−4xe1) + φ (x+4xe2) + φ (x−4xe2)]

1

4
[φ (x+4x(e1 + e2)) + φ (x−4x(−e1 + e2))

+ φ (x+4x(e1 − e2)) + φ (x−4x(−e1 − e2))]

− 3φ (x)

}
+O

(
4x2

)
. (3.314)

Finally, also in the time domain, we use backward difference formulas at least of order two to obtain approximations
of ∂t· for postprocessing turbulence quantities of interest (further descriptions are given in our work [233]).

Fourier transforms To approximate the energy, dissipation, and relaxation spectra in the turbulent flow simulations
in Chapter 4, we use component-wise discrete Fourier transforms. For example, given a computed vectorial quantity
Υ : Ω4x × I4t → Rd on the grid nodes x = (n1, n2, . . . , nd) and ni = 0, 1, . . . , N for all i, we compute the spatial
discrete Fourier transform according to

Υ̃α(k, t) =

(N−1)11×d∑
x=01×d

Υα(x, t) exp

(
−2πi

N
k · x

)
(3.315)

for all α = 1, 2, . . . , d, defined on the wave nodes k = (k1, k2, . . . , kd) with ki = 0, 1, . . . , N for all i. Due to the real
input symmetry, we mostly postprocess ki = 0, 1, . . . , bN/2c below.

Eigenvalue problems In Section 3.2.5, the vonNeumann stability of the collision operator defined by its linearized
amplification matrix H (see Definition 3.2.16) is determined through its spectrum. Since, H ∈ Cq×q and 3 ≤ q ≤ 19

in the present work, the eigenvalues have to be approximated. Moreover, the arguments ofH are provided in the form of
discrete parameter spaces (presently of the size O(102) up to O(107) each) and thus scale up quickly. As the matrices
are independent of each other for each parameter tuple, parallelizability is perfect when approximating the eigenvalues
separately. The present work employs a classical QR algorithm to compute the Schur decomposition of the matrix

H = QUQ−1, (3.316)

where Q ∈ Cq×q is unitary and U ∈ Cq×q is upper triangular. Hence, with a costs of O
(
q3
)
we obtain

spec(H) = spec(U) = diag(U) (3.317)

up to machine precision.

3.3.4 Implementation

Implementational details for the algorithms employed in the present work can be found in our publications [42, 59, 114,
116, 162, 190, 229–236] and code releases [160, 161, 165, 168]. Here, only a selection of methods is presented which
depart from the common LBM bulk kernel structure (stream and collide) due to additional features or coupling. We
thus document an advanced collision kernel, a coupled collision scheme, a single level Monte Carlo (SLMC) method
wrapper which treats the LBM as a black box, and two possibilities to obtain stability maps for three-dimensional
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artificial turbulence simulations. For the purpose of illustration, the notation in this section occasionally differs from
the above made definitions. Unless stated otherwise, all numerical methods are implemented in, or added as external
libraries to the open source C++ library OpenLB (releases 1.3, 1.4, 1.5, 1.6, or ongoing).

Entropy controlled kinetic moment relaxation The present work uses a KBC-N1 collision scheme [36],
which has to the knowledge of the author not been extensively used before on a reduced D3Q19 lattice with natural
moments combined with a second order truncated equilibrium. The here used kernel implementation is summarized
in Algorithm 1. A preliminary study is provided in [163]. The implementation of entropy control approximations is
ongoing research and other works treat this topic in more details. For example Wang [256] restated (3.201) in terms
of a least squares problem for entropy-controlling individual moment collisions and suggested a solution via matrix
decomposition. Moreover, various computational details of the entropic SRT and MRT collision models are discussed
in [135] and [244]. It is observable that, the implementation of the additional entropic scalar product in the collision
kernel does not add much load to the method and thus is expected to have a negligible impact on the overall scalability
of the LBM on several hundreds of graphical processing units (GPUs) [168].

Algorithm 1 Realization of entropic MRT collision (KBC-N1 [35]) in OpenLB [168]
procedure collideKBC-N1(f ) . Input: pre-collision f at local node (x, t)

compute hydrodynamic moments: (ρ,u)← (
∑q
i=1 fi,

∑q
i=1 cifi/ρ)

compute equilibrium f eq ← f eq (ρ,u) . (3.98)
compute nonequilibrium fneq ← f − f eq

compute all momentsm←m (f) . (3.99)
compute shear nonequilibrium populations fneq

ν ← fneq
ν (N,Π) . (3.195)

compute higher order nonequilibrium populations fneq
hom = fneq − fneq

ν . (3.196)
assign viscosity relaxation frequency β ← ω/2 . ω = 1/τ
compute entropy controller γ? ← γ? (β,f eq,fneq

ν ,fneq
hom) . (3.201)

local collision of fpoc ← fpoc (β, γ?,f ,fneq
ν ,fneq

hom) . Collide populations via (3.197)
return fpoc . Output: post-collision fpoc at local node (x, t)

end procedure

Free energy coupling The approximation for the NSE with a thermodynamic pressure tensor (2.142) together
with one coupled CHE (2.11) requires two LBEs for f and g, respectively. The computational steps implemented in
one collision (jointly on both lattices) are summarized in Algorithm 2. The present work illustrates the bulk solver
only and the initial and the boundary methods summarized in Section 3.3.2 are applied to impose boundary conditions
for the binary fluid mixture.

Von Neumann stability analysis To compute the Schur decomposition (3.316) and thus approximate the eigen-
values ofH via (3.317), the linear algebra package Eigen [110] is linkedwithOpenLB [165]. An exemplary computation
of linear stability maps for a given periodic PDE problem with a background flow of u ∈ Rd approximated with an
MRT LBM is pseudocoded in Algorithm 3. The algorithm describes the computation of von Neumann stability sets
spanned by kinetic relaxation times for approximating the incompressible NSE (2.12). Discrete parameter spaces are
given as input. The relaxation frequencies Ss ∈ S are to be scanned for all background flow directions B of interest
and for all flow configurations (N,Ma,Re) gathered in the spaceN×M×R with given initial data u0. Note that in
case of spatially inhomogeneous initial data, the mean flow is computed using the average ave(u0) which depends on
the actual problem configuration (see Chapter 4).
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Algorithm 2 FRM LBM bulk collision kernel (SFRM [224]) in OpenLB [168] (reproduced from [235])
procedure collideSFRM(f , g) . Input: pre-collision f and g at local node (x, t)

compute zeroth moments:
mixture density ρ←∑

i fi . (3.296)
order parameter φ←∑

i gi . (3.298)
compute potentials: µρ ← µρ(ρ, φ) and µφ ← µφ(ρ, φ) . (2.156), (2.157)
Guo forcing, via:
force F ← F (ρ, µρ, φ, µφ) . (2.143),(2.158)
velocity u← u(f , ρ,F ) . (3.297)
force term S ← S(u,F ) . (3.302)

compute equilibria: f eq ← f eq(ρ,u) and geq ← geq(φ, µφ,u) . (2.28) , (3.205)
local collision: fpoc ← fpoc(f ,f eq,S) and gpoc ← gpoc(g, geq) . (3.301), (3.160)
return fpoc, gpoc

end procedure . Output: post-collision fpoc and gpoc at local node (x, t)

Algorithm 3 Von Neumann stability estimation in OpenLB [168] as used in [232] for approximating (2.12)
procedure computeLinearStabilitySets(B, S, u0, N,M, R) . Input: scan parameters, flow configurations

load LBM structure from OpenLB: read in DdQq, M, f eq . e.g. Definition 3.2.3, Table 3.4, (3.98)
for Re ∈ R do

ν = 1/Re . normalized characteristic scales
forMa ∈M do

Uc = Macs . characteristic lattice velocity
for N ∈ N do
4κ = 2π/(N − 1) . wave space discretization length
for udir ∈ B do

compute Jacobian Jfeq(Ucave(u0)udir) . (3.186)
for Ss ∈ S do

compute Ks = M−1SM . (3.161)
for k ∈ K4κ do

compute prefactor diagonal A = diag((exp(−2π4tk · ci))i) . (3.185)
compute H = A[Iq + Ks(Jfeq − Iq)] . (3.185)
compute Schur decomposition H = QUQ−1 . (3.316)
store spec(H) = diag(U) . (3.317)
compute and store spectral radius rspec(H) = max(spec(H)) . (3.188)
compute ω = iln(spec(H))/4t . (3.184)
compute and store dispersion Re(ω) and dissipation Im(ω)

end for
compute maximum r?spec(H) = maxk(rspec(H)) . (3.188)

end for
store spectral radius tensor r?spec(H) ∈ Rdim(S)

end for
compute component-wise maximum r??spec(H) = maxudir

(r?spec(H))
store stability set S = {Ss ∈ S | (r??spec(H))i ≤ 1} . Definition 3.2.16

end for
end for

end for
return stability sets S for each configuration (Re,Ma,N) ∈ R×M×N

end procedure . Output: von Neumann stability sets
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Brute force stability The notion of linear stability is commonly used for analyzing the robustness of LBMs in
incompressible and compressible fluid flow configurations (see for example [54, 56, 124, 127, 264] and references
therein). For large Reynolds numbers however, nonlinear terms gain more influence on the stability, such that spectral
sampling [56] perturbs the result, even for discrete Fourier transformed data (3.315) resulting from nonlinear mean
flow information which is automatically scaled by cutoff [232]. Moreover, nonlinear terms of order two and higher
have been neglected from the Taylor expanded equilibrium in the first place such that H describes amplification from
linearized collision only. We thus introduce a purely numerical notion of stability in [232]. The procedure is based on
computing through numerical and physical parameter spaces of a chosen benchmark test with a highly parallel software
library. The obtained information is final in the sense that the scheme is completely discrete and implemented, yielding
a posteriori stability including all possible numerical and modeling nonlinearities.

Definition 3.3.8. Let the LBE (3.160) be determined by an orthogonal moment MRT LBM on DdQq. Let S be a
given scan parameter space for S andN×R1 ×R2 × . . .×RD be a given flow configuration, whereN contains the
resolutionsN and (Ri)1≤i≤D denotes a space tuple containing π-groups (Ri)1≤i≤D for a periodic benchmark setting
governed by the TEQ with a given initial condition (e.g. u0). Let ℘ denote a target length scale to be resolved in the
simulation. Unless a simulated characteristic quantity  = (℘) exceeds an upper tolerance

(℘) > tol, (3.318)

the simulation is called nondivergent. The scheme is called brute force stable for S and a given flow configuration, if
the LBM computation initialized with f eq(u0) is nondivergent until a given physical time step t = tend. The set S
containing relaxation frequency vectors which render the scheme brute force stable is called brute force stability set.

An exemplary computation of brute force stability maps for a given periodic PDE problem with a background flow of
u ∈ Rd approximated with an MRT LBM is pseudocoded in Algorithm 4. The algorithm describes the computation
of brute force stability sets spanned by kinetic relaxation times for approximating the incompressible NSE (2.12).
Discrete parameter spaces are given as input.

SLMC wrapper

LBM(1): evolve f (1)
0 in time

LBM(2): evolve f (2)
0 in time

...

LBM(M): evolve f (M)
0 in time

Post-processor

Figure 3.9: Schematic overview of SLMC LBM. Themth initial data sample is denoted with f (m)
0 .
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Algorithm 4 Brute force stability estimation in OpenLB [168] as used in [232] for approximating (2.12)
procedure computeBruteForceStabilitySets(S, u0, N, M, R) . Input: scan parameters, flow configurations

initialize LBM computation in OpenLB with u0, DdQq, M, f eq . e.g. Definition 3.2.3, Table 3.4, (3.98)
pass flow configuration as variable arguments
for Re ∈ R do

ν = 1/Re . normalized characteristic scales
forMa ∈M do

Uc = Macs . characteristic lattice velocity
for N ∈ N do

for Ss ∈ S do
for t ∈ [0, tend] do

for x ∈ Ω4x do
collide MRT at node x . (3.160), (3.202)

end for
evolve LBE in time (streaming) . (3.160), (3.203)
compute (℘)
if (℘) > tol then . (3.318)

store divergence point in time tdiv,1 = t in array tdiv,1 ∈ Rdim(S)

store error tdiv,2 = NaN in array tdiv,2 ∈ Rdim(S)

end if
if (t = tend) ∧ ((℘) ≤ tol) then

store stability point tdiv,1 = tend

compute error errLp((℘)) with respect to reference solution
store error tdiv,2 = errLp((℘))

end if
end for

end for
store stability set S = {Ss ∈ S | tdiv,1 ≥ tend} with error data tdiv,2 . Definition 3.3.8

end for
end for

end for
return stability sets S and error data for each configuration (Re,Ma,N) ∈ R×M×N

end procedure . Output: brute force stability sets

Stochastic method wrapper To compute approximated statistical solution candidates to the incompressible
NSE (2.12), a novel SLMC LBM is devised using a KBC-N1 kernel (see Algorithm 1) implemented in OpenLB as
a black box. The SLMC wrapper is built on scripting multiple executables with random input data to evolve highly
parallelized LBM instances (LBM(m) in Figure 3.9) on multiple central processing units (CPUs) and/or GPUs parallel
in time. This layout is necessary to meet the sample size of M = N also for high resolutions. The post-processor
then uses the output stack of the samples to compute statistical quantities from hydrodynamic moments. In Chapter 4
proof-of-concept computations are given for the Taylor–Green vortex benchmark. Based on previous observations (e.g.
[115]), the acceleration of time-to-solution gained from using LBMs implemented in OpenLB over traditional methods
(e.g. FVM), both on GPUs, is estimated to a factor of O(10) for this purpose.
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This chapter documents results of the Contributions (CTN3) and (CTN4) summarized in Chapter 1. Parts of this
chapter have been already published by the author in [59, 114, 162, 231–235]. Along the computation of test cases
with gradually increasing complexity, we make reference to the theoretical predictions of stability and consistency
derived in Chapter 3 as well as to the model extensions in Chapter 2. We first consider the stability of LBMs for the
approximation of PDEs with linear flux (2.10) in Section 4.1 and then move on in Section 4.2 toward consistency studies
for CHEs (2.11) which show higher complexity in the diffusion terms. Section 4.3 evaluates the methodology proposed
in Chapter 3 for linear and nonlinear stability when approximating the incompressible NSE with SRT, MRT, MRF
and KBC collision. The intrinsic parallelizability of LBMs allows for a drastic upscaling of the number and quality
of feasible computations. We outsource this feature via using HPC machines to brute force through parameter spaces
with the help of Algorithm 4. Exploratory indications of methodological insights are made for nonlinear stability and
confronted to the theoretical predictions of von Neumann stability. In addition, the KBC-N1 scheme is extensively
analyzed via the Fourier transformed entropy controller for the first time and then utilized as a sampling machine for a
proof of concept of the novel SLMC LBM. In Section 4.4, the numerical investigation of our recently proposed TLES
LBM [233] is presented with a focus on the experimental order of convergence (EOC) for the concatenated limits of
relaxation, discretization and time filtering in Section 3.3.1.5. Additionally, the HNSE (2.138) is approximated with
the above derived HLBM for fluid flow through porous media in Section 4.5. Finally we couple the LBM for the NSE
to the approximation of the CHE in the simulation of binary fluid flows in Section 4.6 which contains investigations of
the volume loss of small droplets with respect to grid resolutions and modeling assumptions. All results are produced
with the open source softwares OpenLB [162], Eigen [110] and ParaView [2]. Occasionally, MATLAB [132] is used
for data processing. The computations have been performed on several HPC machines at the Steinbuch Centre for
Computing (SCC) [239] at KIT, namely on bwUniCluster, bwUniCluster 2.0, ForHLR I, ForHLR II and HoreKa funded
by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education and
Research.

4.1 Advection–Diffusion equation

Let F (ρ) = uρ be linear and Ω ⊆ Rd. For periodic boundary conditions on ∂Ω covering Rd, analytical solutions
to (2.10) are known (see for example [195]) and thus used below for the computation of the EOC of the numerical
schemes derived above. Let x = (xα)α ∈ Ω4x ⊆ Ω = (−1, 1)

d and t ∈ I4t = (t0, tM ) ⊆ R>0. Unless stated
otherwise, we use SI units with the characteristic scales lc = 2[m] and uc = 2.5[m/s] and neglect further notation. We
study two examples1, where the first one obeys the assumptions made in the convergence Theorem 3.2.1 on the initial
data and the second one breaks it gradually with increasing the governing nondimensional Péclet number

Pe =
lcuc

µ
. (4.1)

1 Parts of this section have been published in advance and are reproduced from several sources: [231], Copyright (2020), with permission from
the authors and the Royal Society; [59], Copyright (2021), with permission from the authors and Elsevier Ltd; [234], Copyright (2022), with
permission from the authors and Elsevier Ltd.
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Example 4.1.1 (Smooth initial data). Together with the initial condition

ρ
(sm)
0 (x) =

d∏
α=1

sin (πxα) + 1, (4.2)

the ADE (2.10) forms an IVP which admits the smooth analytical solution

ρ
(sm)
? (x, t) =

[
d∏

α=1

sin (π [xα − uαt])
]

exp
(
−dµπ2t

)
+ 1. (4.3)

Example 4.1.2 (Nonsmooth initial data). Let d = 3. We form another IVP with the solution

ρ
(ns)
? (x, t) =

1√
4πµt

∑
k∈Z

exp

(
− [x− (x0 + uxt) + 2k]

2

4µt

)
+ 1, (4.4)

where x0 denotes the x-location of the peak at t = 0, which is the analytical solution to the ADE (2.10) with the initial
condition

lim
t↘0

ρ
(ns)
? (x, t) = X2 (x− x0) + 1, (4.5)

where

Xß(x) =

∞∑
i=−∞

δ(x− iß) (4.6)

denotes the Dirac comb for the period ß > 0. A proof of the limit is given in our publication [59]. To realize this
numerically, we initialize the LBE with a superposition of discretized Gaussian hills along the x-axis. As such, the
nondifferentiability is instantly smoothed out unless Peg ↗ ∞ where it persists. The numerical initialization is done
with f(x, 0) = f eq(ρ

(ns)
0 (x)), where

ρ
(ns)
0 (x) =


1√

4πµ4t + 1, if x ∈
(
−4x2 , 4x2

)
,

1, otherwise.
(4.7)

4.1.1 Relaxation stability prediction

In Section 3.2.2 we have derived relaxation stability bounds (3.107) for the DVBE which are sufficient for convergence
in Theorem 3.2.1. For a linear target PDE, the discretization respects these bounds. Inserting the parameters of the
present test case, we predict that

4xγ−1 ≤ d

θ
∑d
α=1 |uα|

(4.8)

is a relaxation stable discretization for uniform continuous relaxation frequencies. The continuous uniformity relates
to the discretized (shifted) relaxation by 1 = τcont ← [ τdisc + 1/2 such that the predicted relaxation bound is exact for
τdisc = 0.5. The latter finding was experimentally observed with the help of stability structures by Rheinländer [219].
Figure 4.1 visualizes the relaxation stability bounds for the first three spatial dimensions in case of τdisc = 0.5 and
diffusive scaling γ = 2. For γ = 1, relaxation stability is determined by the weights of the stencil only which also is
in agreement to the literature [219].
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(a) d = 1 (b) d = 2 (c) d = 3,4x = 0.15

Figure 4.1: Relaxation stability maps for LBM (see Theorem 3.2.1) approximating the d-dimensional ADE (2.10). The volume of the stability
octahedron (c) in u-coordinates grows inversely proportional to4x. Plot (a) is redrawn from [231], Copyright (2020), with permission
from the authors and the Royal Society.

4.1.2 Experimental order of convergence

We investigate the EOC of the DdQ(2d + 1) SRT LBM when approximating the ADE (2.10) for different parameter
settings. The parameter dependence of the recovery of different features in the TEQ in Example 4.1.1 is investigated.
The results are confronted to the predicted consistency and stability in Section 3.2. Further the effects of nonsmooth
initial data on the consistency for increasing Péclet numbers are isolated in Example 4.1.2.

4.1.2.1 Parameter dependence

In [231] we study several cases of TEQs which can be obtained from (3.160). Via setting the parameters accordingly,
we obtain either a diffusion equation (F = 0, τ > 0.5, γ = 2), a hyperbolic balance law (F 6= 0, τ = 0.5, γ = 1) or
the full ADE (2.10) (F 6= 0, τ > 0.5, γ = 2) in the discretization and relaxation limit. Exemplary solutions for each
target PDE are visualized in Figure 4.2. Both, the local error

(a) Diffusion equation (b) Hyperbolic balance law (c) Advection–diffusion equation

Figure 4.2: Exemplary computations with SRT BGK collision (images are downsampled for visualization) approximating (a) a diffusion equation
(F = 0, τ > 0.5, γ = 2), (b) a hyperbolic balance law (F 6= 0, τ = 0.5, γ = 1) or (c) the full ADE (2.10) (F 6= 0, τ > 0.5,
γ = 2). This figure is redrawn from [231], Copyright (2020), with permission from the authors and the Royal Society.

errLp(ti) =

(∑
x∈Ω4x

[ρ(x, ti)− ρ?(x, ti)]p∑
x∈Ω4x

[ρ?(x, ti)]
p

)1/p

(4.9)
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at time ti ∈ I4t and the global error

err =
1

M

M∑
i=1

errLp (ti) (4.10)

are given for p = 2 in Table 4.3, Table 4.4, and Table 4.5, where a dash denotes divergence due to instability. Error
plots of the local error at t̂ = 0.3 are provided in Figure 4.3.
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(b) Hyperbolic balance law
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Figure 4.3: Local in time error errL2 (t̂) plots at t̂ = 0.3 for several Péclet numbers or corresponding characteristic scales (·L denotes nondimensional
lattice units). Computations with SRT BGK collision approximating (a) a diffusion equation (F = 0, τ > 0.5, γ = 2), (b) a hyperbolic
balance law (F 6= 0, τ ↘ 0.5, γ = 1) or (c) the full ADE (2.10) (F 6= 0, τ > 0.5, γ = 2). This figure is reproduced from [231],
Copyright (2020), with permission from the authors and the Royal Society.

Exemplary discretization parameters are given in Table 4.1 for diffusive scaling and in Table 4.2 for acoustic scaling.
All other parameters used in the results are given in our publication [231]. The terminal time tM for err in (4.10) is set
(as in [231]) such that for each Pe in Table 4.1, the initial data ρ0 is diffused to an amplitude of

max
xn∈Ω4x

|ρ (xn, tM ) | ≤ 0.01. (4.11)

Moreover, the respective EOC is denoted with EOC and is calculated from the arithmetic mean of the convergence
speeds

EOCNi,Nj =
ln
(

err(Ni)

err(Nj)

)
ln
(
Nj
Ni

) (4.12)
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which are respectively obtained for two subsequent resolutions Ni < Nj with any error notion err(.) at a resolution ·
(see our publication [114]).

Table 4.1: Summary of LBM discretization parameters for diffusive scaling (·L denotes lattice units). Note that µ = µL and ω4x = 1/τ4x. This
table is reproduced from [231], Copyright (2020), with permission from the authors and the Royal Society.

diffusive scaling γ = 2 ω4x

N uL 4x 4t Pe = 13.3 Pe = 180 Pe = 1080

µ = 1.5 µ = 0.1 µ = 0.0185

50 4.00× 10−1 4.00× 10−2 1.60× 10−3 0.2 1.2 1.8

100 2.00× 10−1 2.00× 10−2 4.00× 10−4 0.2 1.2 1.8

200 1.00× 10−1 1.00× 10−2 1.00× 10−4 0.2 1.2 1.8

400 5.00× 10−2 5.00× 10−3 2.50× 10−5 0.2 1.2 1.8

800 2.50× 10−2 2.50× 10−3 6.25× 10−6 0.2 1.2 1.8

Table 4.2: Summary of LBM discretization parameters in acoustic scaling (·L denotes lattice units). Note that u = uL. This table is reproduced
from [231], Copyright (2020), with permission from the authors and the Royal Society.

acoustic scaling γ = 1 ω4x

N 4x 4t uL = 0.4 uL = 0.3

50 4.0× 10−2 4.0× 10−2 0.2 1.2 1.8 2.0

100 2.0× 10−2 2.0× 10−2 0.2 1.2 1.8 2.0

200 1.0× 10−2 1.0× 10−2 0.2 1.2 1.8 2.0

400 5.0× 10−3 5.0× 10−3 0.2 1.2 1.8 2.0

800 2.5× 10−3 2.5× 10−3 0.2 1.2 1.8 2.0

In general, the EOC results approve our predictions for the consistency of order two in space toward the diffusion
terms appearing in (2.10). Concerning the derived relaxation stability bound (4.8) (see Figure 4.1), we observe that
the instability onset prediction becomes sharper for τ4x ↘ 0.5 in Table 4.3 and Table 4.5. For example in Table 4.3,
the instabilities appear after t > 0.3 for a parameter combination of ω4x = 1.8 and 4x = 0.04 > 0.03. These
observations match the results in [219, 241].

In case that the flux is nulled, the consistency to the diffusion equation of order two is upheld, which is in agreement
with Weiss [258] who analyzed the Goldstein–Taylor model (formally equivalent to θ = 0, hence a D1Q2 DVBE).
It is to be noted that all conducted computations with zero flux and nonzero diffusion are stable which was expected
from the theoretical predictions, since (4.8) becomes4x <∞. The latter yields unconditional relaxation stability for
ω4x ∈ (0, 2).

For approximating a hyperbolic conservation law (F 6= 0, µ = 0, γ = 1), the corresponding simulation parameters
(see Table 4.2 and Simonis et al. [231]) yield first order convergence to the TEQ for 0 < ω4x < 2 (see Table 4.5
and Figure 4.3b). Similar observations are documented for the D1Q2 LBE by Junk et al. [139]. The present results
suggest that, though the overall EOC < 1.0 in Table 4.5 for ω4x = 0.2, the convergence speeds for two subsequent
resolutions approach a value of 1.0 with increasing N . Plotted results in [231] approve the asymptotic alignment of
the error curve for ω4x = 0.2 with a first order reference line. In the case of zero diffusivity and γ = 1, the relaxation
parameter has to be used as a prefactor nulling out the respective terms of O (4x) in the closed form equation (3.16).
The fully discrete version of the closed form yields a prefactor τ4− 0.5 in terms the shifted relaxation time τ4x [139],
which grows inversely linear for ω4x ↘ 0 and thus for small but nonzero ω4x counteracts the first order along the
discretization limit 4x ↘ 0. This modified factor is precisely nulled out for ω4x = 2 which is responsible for the
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sudden jump to second order convergence (from left to right in Table 4.5 and for ω4x ↗ 2 in Figure 4.3b). As a result
of the combined relaxation and discretization, dependent on the PDE to target and the size of the velocity stencil used
for its approximation with MRT LBMs, other relaxation times can also be used to cancel approximation terms. Several
lines of research consider this topic in the literature see for example [103], or [95, 96] and references therein.

Table 4.3: Numerical errors of LBM computations in diffusive scaling to approximate the advection–diffusion equation (2.10) (F 6= 0 linear,
τ > 0.5) measured in terms of global error err until terminal time tM , local error errL2

(
t̂
)
at t̂ = 0.3, and experimental order of

convergence EOC. This table is reproduced from [231], Copyright (2020), with permission from the authors and the Royal Society.

Pe = 13.3 Pe = 180 Pe = 1080

N errL2

(
t̂
)

err errL2

(
t̂
)

err errL2

(
t̂
)

err

50 5.98× 10−2 9.94× 10−2 7.07× 10−2 1.13× 10−1 1.31× 10−2 —
100 9.64× 10−3 2.48× 10−2 1.69× 10−2 1.88× 10−2 3.20× 10−3 1.88× 10−2

200 1.95× 10−3 5.83× 10−3 4.21× 10−3 4.31× 10−3 8.02× 10−4 4.32× 10−3

400 4.57× 10−4 1.42× 10−3 1.05× 10−3 1.05× 10−3 2.01× 10−4 1.05× 10−3

800 1.12× 10−4 3.55× 10−4 2.63× 10−4 2.63× 10−4 5.04× 10−5 2.63× 10−4

EOC 2.26 2.03 2.01 2.18 2.00 2.05

Table 4.4: Numerical errors of LBM computations in diffusive scaling to approximate the diffusion equation (2.10) (F = 0, τ > 0.5, γ = 2),
measured in terms of global error err until terminal time tM , local error errL2

(
t̂
)
at t̂ = 0.3, and experimental order of convergence

EOC. This table is reproduced from [231], Copyright (2020), with permission from the authors and the Royal Society.

µ = 1.5 µ = 0.1 µ = 0.0185

N errL2

(
t̂
)

err errL2

(
t̂
)

err errL2

(
t̂
)

err

50 9.18× 10−3 2.41× 10−2 4.23× 10−4 1.95× 10−4 7.32× 10−4 3.52× 10−4

100 1.73× 10−3 6.47× 10−3 1.08× 10−4 4.98× 10−5 1.86× 10−4 8.98× 10−5

200 3.96× 10−4 1.59× 10−3 2.72× 10−5 1.25× 10−5 4.71× 10−5 2.26× 10−5

400 9.64× 10−5 3.96× 10−4 6.86× 10−6 3.17× 10−6 1.18× 10−5 5.69× 10−6

800 2.38× 10−5 9.89× 10−5 1.72× 10−6 7.95× 10−7 2.97× 10−6 1.43× 10−6

EOC 2.14 1.98 1.98 1.98 1.98 1.98

Table 4.5: Numerical errors of LBM computations in acoustic scaling to approximate the hyperbolic conservation law (2.10) (F 6= 0, µ = 0,
γ = 1) or the full ADE (2.10) (F 6= 0, µ > 0, γ = 1) , measured in terms of global error err until terminal time t̂M = 8.12, local
error errL2

(
t̂
)
at t̂ = 0.3, and experimental order of convergence EOC. This table is reproduced from [231], Copyright (2020), with

permission from the authors and the Royal Society.

uL = 0.4 uL = 0.3

ω4x = 0.2 ω4x = 1.2 ω4x = 1.8 ω4x = 2.0

N errL2

(
t̂
)

err errL2

(
t̂
)

err errL2

(
t̂
)

err errL2

(
t̂
)

err

50 2.43× 10−2 3.84× 10−1 3.74× 10−3 4.88× 10−2 1.05× 10−3 1.05× 10−2 1.59× 10−4 7.66× 10−4

100 1.72× 10−2 2.52× 10−1 1.85× 10−3 2.56× 10−2 3.92× 10−4 — 3.96× 10−5 2.27× 10−4

200 1.04× 10−2 1.48× 10−1 9.25× 10−4 1.31× 10−2 1.76× 10−4 — 1.00× 10−5 5.75× 10−5

400 5.69× 10−3 8.14× 10−2 4.61× 10−4 6.63× 10−3 8.25× 10−5 — 2.54× 10−6 1.44× 10−5

800 2.97× 10−3 4.28× 10−2 2.30× 10−4 3.33× 10−3 3.98× 10−5 — 6.40× 10−7 3.63× 10−6

EOC 0.75 0.79 1.00 0.96 1.18 — 2.02 1.93
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4.1 Advection–Diffusion equation

4.1.2.2 Dependence on initial data

In another batch of numerical tests, we approximate solutions to Example 4.1.1 and Example 4.1.2, both for d = 3.
For the purpose of illustration, the solutions are visualized for exemplary configurations in Figure 4.4 and Figure 4.5,
respectively.

(a) t = 0 (b) t = 0.16 (c) t = 0.48 (d) t = 0.8

0 1 2

ρ

Figure 4.4: Approximated solution to Example 4.1.1 with resolution N = 200 for Pe = 100. Parts of this figure are reproduced from [59],
Copyright (2021), with permission from the authors and Elsevier Ltd.

(a) t = 0 (b) t = 0.32 (c) t = 0.64 (d) t = 0.92

1 5 10

ρ

Figure 4.5: Approximated solution to Example 4.1.2 with resolutionN = 200 for Pe = 1000.

The following computations were executed on at most four nodes comprising two Intel Xeon Platinum 8368 CPUs
and four NVIDIA A100-40 GPUs each. The EOC is evaluated with specific choices of ΩT , u, µ, and ρ0 for
the ADE (2.10) with linear flux. The results are published for the D3Q19 velocity stencil in [59] and the D3Q7

velocity stencil in [234]. We average the relative L2-error with respect to the analytical solution ρ? in the interval
(t0, tM ) = (0, 1.52) ⊆ I to compute the global error err. Several parameter configurations (N,Pe) ∈ N × P are
computed, whereN = {2n× 25 : n ∈ {0, 1, . . . , 5}} andP = {10n : n ∈ {2, 3, 4, 5}}. Hence, a series of grid Péclet
numbers

Peg =
Pe

N
(4.13)

and Courant numbers

Co = (uc4t)/4x (4.14)
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is tested. Figure 4.6 shows the results in the parameter spaces N × P under diffusive scaling. By construction, the
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Figure 4.6: Errors of D3Q7 SRT LBM approximating (2.10) with smooth (sm) and nonsmooth (ns) initial data. This figure is reproduced from
[234], Copyright (2022), with permission from the authors and Elsevier Ltd.

spatio-temporal grid size is4t = 4x2 = (lc/N)2. We use convection speeds of u(sm) = uc1d×1 and u(ns) = ucex
and a single relaxation time τ conforming to the Péclet number in the TEQ. In the chosen parameter spaces, the Courant
number sequences over Co = 0.5n × 0.2 with n ∈ {0, 1, . . . , 4} and the grid Péclet number passes several orders
of magnitudes Peg ∈ [O(10−1),O(103)]. For the smooth IVP, Figure 4.6 approves the EOC of two, as predicted in
Section 3. The nonsmooth initialization however yields a reduction to first order accuracy at Peg & 102. A further
increase Peg ↗ 104 in the nonsmooth case, yields a larger error contribution which eventually also breaks the EOC
of one. For a further increase of Peg, the nonsmooth initial data exits the function space in Lemma 3.1.3. Thus we
expect a blowup due to delayed smoothing. Our results with D3Q19 in [59] approve this observation. Therein, we
suggest remedies to obtain stable solutions via using a combination of upwind and central finite differences of second
order with an artificial diffusivity correction.

4.2 Cahn–Hilliard equation

In the present work, we interpret the CHE (2.11) as a diffuse interface model for the approximation of moving contact
lines [272] between several fluid components. The approximation of the sharp interface is generally assumed to be of
order O(Ch), where

Ch =
ξ

lc
(4.15)

denotes the Cahn number, ξ is the interface thickness and lc is the characteristic length. Unless stated otherwise, we
assume lc = a, where a is the radius of a bubble or droplet of one fluid component submersed in the surrounding
fluid component. For the purpose of clarity, we use lattice units, where time, space and the remaining quantities in
the π-groups are nondimensionalized such that the grid spacing is one in every dimension. The term normalized
corresponds to a physical analogue which is fixed irrespective of refinement in grid spacing. To numerically test the
convergence toward a sharp interface of the SFRM LBM used in the coupled simulations further below, we compute
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4.2 Cahn–Hilliard equation

u0

(a) Geometric setup

x

φ

(b) Cross section profile of φ0

Figure 4.7: (a): Static (u = 0) and moving interface (u = u0) simulation setup, where the white circle denotes φ = 0. The velocityu0 is constant
and boundaries are periodic. (b): Cross section of the interface at y = 0 with profile of initial order parameter φ = φ0 (dashed line).
Scales differ for the purpose of representation.

a series of tests for static and moving circular interfaces in two dimensions forming a solution to (2.11). Here, the
velocity u is fixed and the Laplacian in the chemical potential is approximated with the stencil in (3.314). The circular
interface in the benchmark test is initialized with a tanh-profile

φ0(x) = tanh

(
1

ξ

[√
(x1 − c1)

2
+ (x2 − c2)

2 − a
])

, (4.16)

where x = (x1, x2)T ∈ Ω, and c = (c1, c2)T ∈ Ω and r ∈ R are the center and the radius of the circular interface,
respectively, as illustrated in Figure 4.7. The computational domain is set to Ω4x = [−0.5, 0.5]d, where d = 2, the
radius of the interface is set to 0.25 and the D2Q9 velocity stencil is used. The interface width is dependent on the
discretization via ξ = 24x, such that Ch ↘ 0 if 4x ↘ 0. To recover the diffusion terms in the CHE (2.11), we use
diffusive scaling 4t ∼ 4x2. The relaxation frequencies are set to unity as is commonly done in the literature (see
[164] and references therein).
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(b) Approximation error

Figure 4.8: (a): Order parameter approximated with the SFRM LBM after 40 normalized timesteps for subsequent resolutions N . (b): Relative
approximation error errL2 with respect to tanh-profile within normalized time interval t ∈ [1, 50].

4.2.1 Sharp interface limit consistency

Similarly to previous observations we have made thus far in this work, the sharp interface limit can be regarded as a
third limit on top of the relaxation and the discretization. Since the lowest order is provided by the interface sharpening,
we analyze the results in terms of consistency toward this limit. The procedure of approximating the sharp interface
in the limit instead of a diffuse one, aligns with the conclusions in terms of physical validity of numerical results in
[157, 272]. For techniques to even enforce a sharpening of the interface within the numerical algorithm the reader is
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referred to [214, 216, 217]. Here, we compute the advection of a circular profile in two dimensions with the SFRM
(see Definition 2.6.6) based on aD2Q9 LBE. To assess the difference of the numerical order parameter with respect to
the analytical tanh-profile φ0 for a static interface (u = 0), we compute the time-dependent errors errLp for p = 2 at
normalized time t = 40 for several resolutions and visualize it together with the φ-profile in Figure 4.8. The interface
sharpening is clearly visible. The order of approximation in N toward the sharp interface (which results from the
tanh-profile sharpening with Ch ↘ 0) is plotted in Figure 4.9a and asymptotically limits to one. We additionally
observe that the error toward the analytical tanh-profile increases at first and then stagnates, which agrees with common
knowledge in the literature that the interface develops after an initial period of time.

102 103
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N
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errL2(t̂)

O(N−1)

O(N−2)

(a) Approximation error to exact tanh-profile for u = 0.
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errL2(t̂) for u = 0

errL1(t̂) for u = u0

errL2(t̂) for u = u0

O(N−1)

O(N−2)

(b) Approximation error to SFRM LBM withN = 400.

Figure 4.9: Normalized time of error measurements is t̂ = 40. (a): Time local error errpL
(
t̂
)
of φ with respect to the initial analytical tanh-profile

for circular interface for accuracy prediction toward sharp interface. (b): Time local error errpL
(
t̂
)
of φ with respect to highest tested

resolutionN = 400 for consistency prediction of discretization.

To assess the portion of limit consistent error terms added by the discretization and relaxation, we compute an additional
time-dependent errL2 with respect to the highest tested resolutionN = 400 and plot it in Figure 4.9b. The error is half
an order shifted in magnitude but seems to bend toward O(N−2). We can explain this observation with the fact that
our discretization is of order two limit consistent to the interface sharpening Ch ↘ 0. Further, moving the interface
diagonally across the domain with u = u0 results in another error contribution from the approximation of the flux,
which shows however the same trend in bending toward the order of discretization. Figure 4.10 shows sample profiles
warped by φ-values for u = u0. The typical set in period of the interface thickness in approximations of the CHE
is observable and should be evaluated as a positive effect in our case. Although initialized with a two-lattice-spacing
interfacial width, the profile becomes sharper with time until a smaller interface thickness is reached asymptotically
which produces the error increase in Figure 4.8 for the static case. Additionally, we observe that the location of the
interface reaches an asymptotic limit for a certain amount of cycles passing through the domain with increasing N .
Furthermore, the interface is tilted less toward the movement direction with increased N , which is also a commonly
observed artifact for refining coarse grids. Overall, the qualitative features shown in Figure 4.10 underline the data
gathered in the EOC plots above and numerically approve the limit consistency of relaxation, discretization and interface
sharpening.

4.3 Navier–Stokes equations

In this section we evaluate the methodology introduced in Chapter 3 for approximating the incompressible NSE (2.12)
with LBMs using SRT, MRT, MRF and KBC collision (e.g. Algorithm 1). Specifically, we compute EOC results as
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(a) t̂ = 0,N = 50 (b) t̂ = 12,N = 50 (c) t̂ = 36,N = 50

(d) t̂ = 0,N = 100 (e) t̂ = 12,N = 100 (f) t̂ = 36,N = 100

(g) t̂ = 0,N = 200 (h) t̂ = 12,N = 200 (i) t̂ = 36,N = 200

(j) t̂ = 0,N = 400 (k) t̂ = 12,N = 400 (l) t̂ = 36,N = 400

−1 0 1
φ

Figure 4.10:Warped order parameter φ from SFRM LBM simulations of moving circular interfaces (u = u0) at fixed normalized timesteps
t̂ = 0, 12, 36 (column-wise) which comprise several cycles of reaching the initial interface location for several resolutions N =
50, 100, 200, 400 (row-wise). The colorbar is cut off for the purpose of representation.

well as linear and nonlinear stability sets for the latter schemes. To obtain nonlinear stability information including
the grid effects, we outsource the intrinsic parallelizability of LBMs via using HPC machines to brute force through
parameter spaces with the help of Algorithm 4. The exploratory results are contrasted with the theoretical predictions
of von Neumann stability (Algorithm 3). Further, the KBC-N1 scheme is analyzed via Fourier transforming the kinetic
relaxation parameter. We finally use the scheme on a computationally feasible configuration to sample statistical
solutions to the incompressible NSE (2.12) along the inviscid limit towards the EE with a novel SLMC LBM.
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4.3.1 Taylor–Green vortex flow

Let d = 3. Due to the partly universal character of turbulent scales, an investigation of decaying homogeneous
turbulence (DHIT) in simplified geometries serves as a natural testbed for numerical schemes. In a typical scenario,
a periodic initial velocity field solution to (2.12) on a cubic flow domain is evolved in time based on the numerical
method at hand. Besides the testing of the method, insights to the complexity of turbulent flows in a cleaned setting
can be obtained when using a sufficiently accurate, robust and reliable scheme in a highly resolved configuration. Since
pseudo-spectral (ps) direct numerical simulation (DNS) methods have been used for this very purpose and are the most
reliable tool for computing DHIT, we use reference computations from the literature produced with akin methodology
to evaluate the accuracy of the presented LBM derivates. As an initial solution to the incompressible NSE (2.12),
the Taylor–Green vortex (TGV) flow has been extensively studied in the past for a multitude of purposes by various
authors (for example [39, 40, 52, 61, 79, 81, 97, 144, 206, 246, 247]) including the present one [114, 162, 232, 233].
Besides the incompressible regime, TGV simulations serve as benchmark cases in stratified flows [261], in coupled
magnetohydrodynamic systems [106] or in turbulent reacting flows [1]. After a laminar large-scale vortex initialization,
the convective terms in the NSE produce successively smaller structures [40, 79] which induces vortex-stretching and
an eventual energy cascade as proposed by Kolmogorov [155, 156]. It has been observed that already at a Reynolds
number of Re ≥ 1000, the turbulent flow becomes nearly isotropic with a deletion of initial memory [79], and a power
law asymptotic appears in the energy spectrum. Although we occasionally refer to this observation below as artificial
turbulence, since it differs from a more realistic spectral initialization via randomized modes, we will abstain from
a consistent classification throughout the text. Further, instead of spectral random initial conditions, a randomized
version of the TGV initialization is proposed below. This random artificial turbulence eludes any realistic interpretation
but instead serves as a purely mathematical example for a statistical solution of the incompressible NSE [105].

For the present purpose, we define the TGV flow on a domainΩ = [0, 2πlc]3 with computationally periodic boundaries.
Together with the assumption of uniform characteristic length lc = 1m and characteristic velocity Uc = 1m/s, we
reduce

Re =
1

ν
(4.17)

for simplicity and neglect further notation of units from now on. The deterministic initial TGV velocity field reads
[39, 114]

u (x, 0) =


Ucsin

(
x
lc

)
cos
(
y
lc

)
cos
(
z
lc

)
−Uccos

(
x
lc

)
sin
(
y
lc

)
cos
(
z
lc

)
0

 . (4.18)

Further, let ρc denote the characteristic density. Conforming to the solenoidal condition in (2.12), the initial pressure

p (x, 0) = p∞ +
ρcU

2
c

16

[
cos

(
2x

lc

)
+ cos

(
2y

lc

)][
cos

(
2z

lc

)
+ 2

]
, (4.19)

where p∞ labels a reference pressure, can be used in the LBM initialization routine due to the weak compressibility
appearing as error terms in the LBM along the diffusive limit. To visualize the energy cascade already apparent at low
Reynolds numbers, the energy and dissipation spectra (defined further below) are computed with the spectral element
method (SEM) code Nek50002 for Re = 800 and plotted in Figure 4.11.

2 Nek5000, 2019, Argonne National Laboratory, Illinois. Available: https://nek5000.mcs.anl.gov.
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Figure 4.11: DNS results of the TGV flow computed with SEM (N = 127, Re = 800). Energy spectrum E (κ, t) and dissipation spectrum
D (κ, t) plotted over time t and wavenumber κ. This figure is reproduced from [233], Copyright (2022), with permission from the
authors and Elsevier Inc.

4.3.2 Turbulence quantities

We compute an approximate weak solution field u to (2.12) via evolving the LBM in space-time initialized with (4.18)
(and optionally (4.19)). The quality of approximation in terms of accuracy toward pseudo-spectral reference results
or in terms of consistency to a high resolution LBM simulation is judged below with respect to several turbulence
quantities computed from u. These quantities of interest are continuously defined by the kinetic energy

k (t) =
1

|Ω|

ˆ
Ω

1

2
u (x, t) · u (x, t) dx (4.20)

and the enstrophy
ζ (t) =

1

|Ω|

ˆ
Ω

r (x, t) · r (x, t) dx, (4.21)

where the vorticity field r = ∇x × u denotes the curl of the velocity, the total dissipation rate

εtot (t) = −dk(t)

dt
(4.22)

and the resolved dissipation rate

εres (t) = 2πνζ(t). (4.23)

The difference of the latter two yields the model dissipation rate

εmod = εtot − εres, (4.24)

which isolates the artificial dissipation injected by the method in an underresolved setting [79]. If no abbreviation is
used in the index, ε = εtot. The maximum vorticity magnitude

ω(t) = max
x∈Ω
‖r(x, t)‖2 (4.25)
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is used tomeasure the recovery of initial peak regions (IPR) [247]. Further, we compute the instantaneous nondirectional
energy spectrum

E (κ, t) =

‹

S(κ)

1

2
Φ(k, t) dS(κ) ≈

∑
k∈Nd

κ−1<|k|≤κ

1

2
Φ(k, t) (4.26)

and with it, the dissipation spectrum
D (κ, t) = 2νκE (κ, t) (4.27)

on spherical wave shells S(κ) = {k ∈ K : |k| = κ}, where κ is the scalar wavenumber and

Φ(k, t) = ‖ũ(k, t)‖22 (4.28)

squares the spatially Fourier-transformed velocity

ũ (k, t) =
1
√

2π
d

ˆ
Rd
u (x, t) exp (−ik · x) dx. (4.29)

The latter is approximated by (3.315) as discussed in Section 3.3.3 and spatial gradients are finite differenced with
eighth order (see (3.313)) unless stated otherwise. The above quantities are classical and have been studied extensively
in the literature. In addition, motivated by [163], we propose the following novel quantity to specifically measure the
relaxation in wave-time and with it, the entropic stabilization.

Definition 4.3.1. The instantaneous discrete control spectrum is defined as

C (κ, t) =
∑
k∈Nd

κ−1<|k|≤κ

1

2
Ψ(k, t), (4.30)

where

Ψ(k, t) = |γ̂?(k, t)| (4.31)

denotes the absolute value of the discrete Fourier transformed wave-time dependent entropy control

γ̂?(k, t) =

(N−1)11×d∑
x=01×d

γ?(x, t) exp

(
−2πi

N
k · x

)
. (4.32)

As γ? defines a relaxation function of the grid nodes x and the time steps t, the control spectrum (4.30) is occasionally
called relaxation spectrum below.

4.3.3 Linear and brute force stability

The contribution of the present section to (CTN3) is a pilot study of brute-forcing methodological insights on HPC
machines and contrasting the results to classical predictions. The contribution to (CTN4) is that, based on these
exploratory insights, method development is accelerated. Specifically, we compute stability sets for orthogonal moment
MRT LBMs in [232]. On the one hand, the results are used to investigate the capabilities of classical von Neumann
techniques for the stability analysis of MRT LBMs applied to artificial homogeneous isotropic turbulence (HIT). On the
other hand, the results indicate possible relaxation functions for the novel MRF scheme (see Section 3.2.7.1) which for
example provides a background stabilization for advanced turbulence models since numerical dissipation is minimized.

112



4.3 Navier–Stokes equations

On a third hand, the latter underpins the natural availability of a posteriori error measurements as a distinct advantage
of computing through a grid of parameters with the actual method itself rather than a linearized version.

In the following3, stability sets are computed for an orthogonal moment MRT LBM (see Table 3.4) on D3Q19 when
approximating the NSE (2.12). The choice of the kinetic relaxation times for MRT LBMs is frequently researched from
several perspectives such that the present investigation only covers a small part of topics which open up in this context.
The here used MRT model is known to diverge for constant relaxation times in diffusive scaling [63] which makes an
investigation thereof interesting from the present perspective. In addition to the von Neumann stability (Algorithm 3),
brute force stability (Algorithm 4) is used to scan large parameter spaces for the tunable relaxation frequencies. The
motivation for using and comparing both notions is as follows.

The convergence criteria for the continuous RS (3.10) (see Proposition 3.1.3) and thus for the DVBE (3.92) are based
on uniform relaxation (see Section 3.1.4 and Section 3.2.2, respectively). The stability structures in turn only take
the consistency condition s = (1/τ)1q×1 ∈ (0, 2)q for the hydrodynamic relaxation frequencies into account (see
Definition 3.2.7 and Corollary 3.2.1), also for MRT collision operators [219]. Hence, using linearized von Neumann
stability (Definition 3.2.16) is a natural choice to determine if the global error is bounded for nonuniform relaxation.
Approving this observation, von Neumann stability has been used extensively in the recent years [125, 126, 185, 263,
264] to extract characteristic features of the numerical method for specific ranges of nondimensional numbers.

There are two main points of concern which generate demand for analyzing the discrepancies between linear stability
predictions and overall brute force stability data from simulations. Firstly, the targeted PDE (2.12) is nonlinear such
that the linearized amplification matrix (3.185) might be a very rough approximation to the actual propagation of initial
data through the scheme. In particular for largeRe, the nonlinear terms become disruptive for stability, which is unseen
by the linearized notion. Second, the mapping from the spatial grid to wave space acts as a normalization, which
obstructs the investigation of mesh dependent instabilities with von Neumann stability [56, 240, 267].

In [232] we detect grid-dependent instabilities for relaxation time tuning along diffusive scaling of orthogonal moment
MRT LBMs. A comparison of von Neumann stability and the results obtained with brute force computations highlights
the deficiencies of the former in the present setting. With the help of the latter applied to parametrized relaxation
frequency tuning, the effect of the grid resolution on the overall stability is empirically documented. In summary, a
sequence of more than 2.2 × 104 numerical experiments is conducted to further unfold LBM theory via outsourcing
its parallelizability with the help of highly scalable implementations.

As a measure of accuracy, the temporal L2-error norm

errL2 (ε) =

√∑m
n=0 |ε? (tn)− ε (tn)|2∑m

n=0 |ε? (tn)|2
(4.33)

of the total dissipation rate ε(t) is used. Here, the reference solution ε? (t) in (4.33) is taken from the pseudo-spectral
results of Brachet et al. [40]. Let the LBE (3.160) be determined by an orthogonal moment basis on D3Q19 (see
Table 3.4) and a second order truncated equilibrium (3.98).

Brute force stability The parameter spaces and the divergence criterion in Definition 3.3.8 are set as follows (see
[232, Algorithm 3.1]). The parameter space configuration is s ∈ S, Re ∈ R,Ma ∈M and N ∈ N. Let ℘ denote the

3 Parts of this section have been published in advance and are reproduced from [232], Copyright (2021), with permission from the authors and
the Royal Society.
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Kolmogorov length scale [155, 156, 209]. Then the brute force stability results are based on computing the TGV flow
initialized with (u0, p0) until t = 20s. Unless the simulated dissipation rate (4.22) exceeds the upper bound

εmax > tol = 2
ν3

℘4
, (4.34)

indicating divergence, the MRT LBM is termed brute force (BF) stable for the parameter configuration if the final time
step is reached.

Von Neumann stability The parameter spaces and other quantities in Definition 3.2.16 are set as follows. The
mean flow u is specified below and k ∈ K = [−π, π]

3 denotes the wavevector. Further, let s ∈ S, Re ∈ R and
Ma ∈ M be a given configuration. According to Definition 3.2.16, the VN stability results are based on computing
the spectral radius rspec (H) via approximating the eigenvalues of (3.65) (see Algorithm 3). The MRT LBM is termed
von Neumann stable for s, if rspec (H) ≤ 1.

As before, we use physical SI units without further notation. In the case that the explicit specification of lattice units is
necessary, we continue with the notation ·L. Since several spaces have to be discretized, the term resolution exclusively
refers to the number of grid points N per dimension in the discrete physical space Ω4x. The (lattice) Mach number is
defined asMa = uL/cs, where uL is the dimensionless characteristic lattice velocity.

4.3.3.1 Third order moment relaxation and comparison of stability notions

In the following numerical experiments, the third order relaxation frequencies sq and sµ are varied in [0, 2] with
a precision of 0.05. All other components of S are set according to s = s̃ (see Table 3.4). The simulations for
BF stability are carried out with N = 64, where N is the spatial resolution per dimension and with a Reynolds
number Re = 1600. Since we expect divergence of the scheme related to the Mach number [63], the sequence
Ma ∈M = {0.3, 0.2, 0.1, 0.05} is computed. The BF results from Algorithm 4 are then cross-compared with the VN
stability estimation gained from approximating rspec = H with the corresponding parameter choices in H (3.185).
The LBM simulations in this section are carried out with OpenLB [161, 162] on a maximum of 75 nodes with two
deca-core Intel Xeon E5-2660 v3 each.

In Figure 4.12 the data obtained from the BF computations is assembled to stability maps for each Ma ∈ M, which
show the following characteristic features:

1. A shift and a contraction of the BF stability area dependent on the decreasing lattice Mach number (see
Figures 4.12a, 4.12b, 4.12c, 4.12d) are visible. Two different instability regions are formed. Whereas one region
of divergence is vanishing toward (sq, sµ)→ 0 with decreasingMa, the other is growing from (sq, sµ) = (2, 2)

toward the center of the relaxation frequency domain.

2. The bottom row in Figure 4.12 indicates that the accuracywithin theBF stable region also renders a transformation
with decreasingMa (see Figures 4.12e, 4.12h, 4.12g, 4.12h). The minima of the error measurement are located
along a line at sq ≈ 0.5 for Ma = 0.3 in Figure 4.12e. Whereas this minimal error strip is shifted to the left
and thinned out for smaller lattice Mach numbers, a second minimal region appears around (sq, sµ) ≈ (2, 0.5)

atMa = 0.05 in Figure 4.12h.

Since the computations are underresolved, the dissipation rate is overall reduced compared to the DNS reference (see
also [114] for several collision schemes). This implies that a small dissipation rate error for fixed s ∈ S indicates a
small amount of numerical dissipation being added by the scheme.

The VN stability sets are evaluated with respect to the capability of reproducing the above observations made from
Figure 4.12. The eigenvalues of H for Algorithm 3 are computed are approximated with the C++ template library
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Figure 4.12: Top row (a–d): BF stability maps (Algorithm 4) for Re = 1600 and N = 64, where the pixel resolution of each map is 41 × 41,
one pixel equals one TGV computation with the MRT LBM (Table 3.4), and coloring refers to maximal stable computation time tend.
Bottom row (e–h): Corresponding BF error maps, with the same map resolution as above (only BF stable configurations shown).
Coloring refers to the logarithm of errL2 (ε) over the interval t ∈ [0, 10]. For all subfiguresMa = 0.3, 0.2, 0.1, 0.05, respectively,
from left to right. White squares denote s̃ used in the classical MRT formulation [66]. The optimized MRT LBM [52] comprising
ŝ is plotted as white circles. The optimized value forMa = 0.05 is obtained by a polynomial fit through ŝq and ŝµ for largerMa,
respectively. This figure is reproduced from [232], Copyright (2021), with permission from the authors and the Royal Society.

Table 4.6: List of specifiers for scan regions of the VN stability maps plotted in Figure 4.14. Note that b ∈ B denotes the mean flow variation in the
first octant (4.35) and ave (u0) accounts for scaling via the averaged TGV initial flow field magnitude (4.36). This table is reproduced
from [232], Copyright (2021), with permission from the authors and the Royal Society.

specifier background flow u tested wavevectors K′

x-directional u = (uL, 0, 0)T k‖u
orthogonal u = (uL, uL, uL)T/

√
3 k⊥u

parallel u = (uL, uL, uL)T/
√

3 k‖u
κ-partial u = (uL, uL, uL)T/

√
3 k ∈ κK = [−κπ, κπ]

3

full u = (uL, uL, uL)T/
√

3 k ∈ K
octant u ∈ {uLb | b ∈ B} k ∈ K

scaled octant u ∈ {ave(u0)uLb | b ∈ B} k ∈ K

Eigen [110]. Based on that, Algorithm 3 is then embedded in OpenLB. The configuration parameter spaces as well
as the space S spanned by the discretized relaxation frequency intervals to be tested, are load balanced with existing
routines in OpenLB.

As a first step, predefined regions of K, are scanned for a fixed background flow with respect toMa. The wave space
resolution is set to NK = 257 grid points per dimension. Notably, a further increase in the number of discretization
points did not lead to visible changes in the results. Several pairings of background flows and wavevectors are
summarized in Table 4.6. The Nyquist–Shannon sampling theorem [225] allows to reduce the computational effort of
the full wave space scans (see Table 4.6) via cutting the necessary wavevector values by half along kz = 0.

The specifier octant refers to a scan over the full wave space with an additional variation of the background flow
direction. The latter is realized as follows. Let B4χ,4θ denote the first octant of the unit sphere [13, 22]

B =

{(√
1− χ2 cos (θ) ,

√
1− χ2 sin (θ) , χ

)T

∈ R3

∣∣∣∣ χ ∈ [0, 1] , θ ∈
[
0,
π

2

]}
, (4.35)
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Figure 4.13: (a) Schematic visualization of B4χ,4θ (elements are denoted with black dots). The discretization steps are 4χ = 0.1 and
4θ = π/20. The set comprises normalized vectors b = (bx, by , bz)T for the mean flow variation used in the (scaled) octant
specifier according to Table 4.6. (b) Schematic visualization of V4p (elements are denoted with black dots). The number of points on
the whole sphere is p = 8.88× 102. The set comprises normalized vectors v = (vx, vy , vz)T. Figure (a) is reproduced from [232],
Copyright (2021), with permission from the authors and the Royal Society.

discretized with 4χ and 4θ. The presently used discretization is given in Figure 4.13a and equidistantly parts the
intervals for χ and θ. A second option of discretizing the unit sphere with is visualized in Figure 4.13b, where the
whole sphere is first spiraled with a chosen discretization [22, Algorithm 4] and then chunked. The tests of both options
favor the first one (Figure 4.13a) due to the regular inclusion of discretization points on the boundary. Nonetheless, the
spiral method creates a better distribution of points over the surface and hence should be used when the initial mean
flow is more randomly directed.

Finally, the specifier scaled octant denotes an additionally scaled mean flow on top of the configuration octant. The
scaling is based on the ratio

ave (u0) =

´
Ω
‖u0‖2 dx

|Ω| max
x∈Ω

‖u0‖2
. (4.36)

For the specifiers octant and scaled octant, the maximum spectral radius

r∗∗spec (H) = max
b∈B

max
k∈K′

rspec (H)︸ ︷︷ ︸
= r∗spec(H))

, (4.37)

is extracted. Here, K′ ⊆ K denotes the respective scan region (see Table 4.6).

The maps produced with Algorithm 3 for the specifiers in Table 4.6 are plotted in Figure 4.14 and 4.15. For the purpose
of representation, the coloring refers to an individually normalized spectral radius

r̃spec (H) =
rspec (H)− 1

max
sq,sµ

rspec (H)− 1
, (4.38)

where the normalization is done perMa and specifier.

The observations we made in [232] are summarized as follows. The stability regions obtained with the x-directional
scan (Figures 4.14a, 4.14b, 4.14c, 4.14d) significantly differ from the remaining ones in Figure 4.14 which are based
on a three-dimensional mean flow (see Table 4.6). In particular, whenMa is small enough in the x-directional scan,
the optimized MRT LBM relaxation frequencies [52] (white circles) and the classical ones [66] (white squares) are
VN stable. Further, the optimization of ŝ for variable Ma tracks a specific range of r̃∗spec (H)) (see x-dir. row from
left to right in Figure 4.14). In contrast to that, both (s̃ and ŝ) lie in a VN unstable domain when considering the
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Figure 4.14: From top to bottom, row-wise: VN stability maps (Algorithm 3) for Re = 1600 and NK = 257 with scan regions according
to Table 4.6: x-directional (a–d), orthogonal (e–h), parallel (i–l), κ-partial (m–p), full (q–t). From left to right, column-wise:
Ma = 0.3, 0.2, 0.1, 0.05, respectively. Coloring refers to respectively normalized spectral radius approximation r̃∗spec(H) (4.38).
White squares denote s̃ used in the classical MRT formulation [66]. The optimized MRT LBM [52] comprising ŝ is plotted as white
circles. Note that the optimized value forMa = 0.05 is obtained by a polynomial fit through ŝq and ŝµ for largerMa, respectively.
This figure is reproduced from [232], Copyright (2021), with permission from the authors and the Royal Society.

full scan (Figures 4.14q, 4.14r, 4.14s, 4.14t). Hence, the x-directional scan used for example in [51, 52] to optimize
MRT LBM versions for the TGV flow, is less reliable for being a valid indicator of VN stability in a three-dimensional
setting. Nevertheless, the VN stability region for a full scan as well as the BF stability region in Figure 4.12 indicate
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Figure 4.15: From top to bottom, row-wise: VN stability maps (Algorithm 3) for Re = 1600 and NK = 257 with scan region octant (a–d) and
scaled octant (e–h) according to Table 4.6. From left to right, column-wise: Ma = 0.3, 0.2, 0.1, 0.05, respectively. Coloring refers to
respectively normalized spectral radius approximation r̃∗∗spec(H). White squares denote s̃ used in the classical MRT formulation [66].
The optimized MRT LBM [52] comprising ŝ is plotted as white circles. Note that the optimized value forMa = 0.05 is obtained by a
polynomial fit through ŝq and ŝµ for largerMa, respectively. This figure is reproduced from [232], Copyright (2021), with permission
from the authors and the Royal Society.

that the polynomially fitted relaxation pair (ŝq, ŝµ) upholds a certain distance to the increasing instability region when
decreasingMa.

Several options of reducing the number of necessary eigenvalue computations within K for a three-dimensional mean
flow were suggested in the literature [228, 268, 269], for example via computing solely parallel or orthogonal wave
paths. The corresponding VN stability maps are shown in Figures 4.14i, 4.14j, 4.14k, 4.14l and Figures 4.14e, 4.14f,
4.14g, 4.14h, respectively.

Whereas the orthogonal scan highly overestimates the stability compared to the BF results, the parallel configuration
isolates the accuracy line that was detected by BF (cf. bottom row in Figure 4.12, especially 4.12e). More precisely,
the increased normalized spectral radius (e.g. r̃∗spec (H)) ≈ 0.6 at sq ≈ 0.5 in Figure 4.14i) approves the above stated
conjecture that predicts decreased numerical dissipation within this region (cf. Figure 4.12e). Additionally, the parallel
scan reproduces a second region which exhibits increased VN instability, but is larger and differing in shape from
the BF instability. It is further notable, that for Ma = 0.05 (Figure 4.14l), the VN stability set (i.e. where strictly
rspec (H) ≤ 1 holds) detected by the parallel scan is located within the interval (sq, sµ) ∈ (0.5, 2)× (0, 0.25) and is
much smaller than the BF stable region (cf. Figure 4.12d).

Testing a third reduction of the wave space, the κ-partial scan for κ = 0.5 (see Figures 4.14m, 4.14n, 4.14o, 4.14p)
indicates that a major portion of the VN instability located within the lower right region of the map is added in the
remaining wave space section K \ κK. The added portions particularly include the error minimal line as well as the
(with Mach decrease) growing instability region. From this, we may imply the following.

First, the suggestion in [52] for transferring the cutoff wavenumber within the TGV flow directly onto the value of
π/2 seems to be not applicable. Instead, the cutoff wavenumber for a given resolution is mapped to π. This is
reasonable in regard to the projection from physical k/4x ∈ (1/4x)K = [−N/2, N/2]

3 to grid-normalized (i.e.
nondimensionalized) k ∈ K = [−π, π]

3, initially described in [267]. As stated therein, this relation between resolution
dependent and continuous wave space prevents the use of the linear VN analysis for investigating mesh dependent
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instabilities in numerical simulations. The present observations conform to the spectral sampling mentioned in [56].
Second, the VN stability map provides theoretical evidence that the instability of the classical MRT scheme [66] roots
in the increased spectral radius of its linearized version, which exclusively becomes effective in high wavenumbers and
further, can be prevented by tuning certain relaxation times along withMa→ 0 (see e.g. [63]).

Considering the full scan (Figures 4.14q, 4.14r, 4.14s, 4.14t) and the additional octant variation of the mean flow
(Figures 4.15a, 4.15b, 4.15c, 4.15d), the latter reproduces a fair amount of the BF instability vanishing toward
(sq, sµ) = (0, 0) with Ma → 0 in terms of shape, if r̃∗∗ (H) ≈ 0.5 is interpreted as stability bound. In contrast to
that, the appearing BF instability (cf. Figures 4.12a, 4.12b, 4.12c, 4.12d) is recovered marginally by both scans across
the complete wave space.

Figures 4.15e, 4.15f, 4.15g, 4.15h visualize the change of the VN stability maps with the scaled octant specifier for
decreasing Ma. Compared to any of the preceding scan regions, this most adapted configuration, which scans all
possible variations with an additionally fitted mean flow magnitude, recovers the highest amount of features with
respect to BF stability (Figure 4.12). In particular, forMa = 0.05 the instability region appearing in the BF stability
map (Figure 4.12d) is fairly reproduced in shape.

Finally, it can be stated that reduced scans are suitable to detect specific spectral features of the numerical method.
However, for reproducing the structure of the BF stability in a fully three-dimensional flow problem, solely the
computation through the complete wave space together with a directionally varying background flow of conforming
magnitude reaches at most acceptable quality.

4.3.3.2 Brute force stability of second, third and fourth order relaxation

The above comparison provides evidence, that the VN stability maps are less reliable than the BF results in the present
test case. Particularly due to the observation that the VN stability maps solely include wave space normalized grid
dependence, we conduct further BF computations to examine the relaxation frequency influence on the stability.

The BF computations (Algorithm 4) below are parametrized by a variable ς[, which is injected in (3.192) and measuring
the deviation of s[ from sP , where [ ∈ {e, q, µ, ε,Π}. Thus, with the following TGV simulations, we compute through
possible MRF ranges and determine if the current set of relaxation frequencies contained in S is overall stable.
Additionally, the error according to (4.33) is computed.

Table 4.7: Exemplary relaxation parameters calculated with (3.192) for Re = 1600, Ma = 0.05, N = 128, where sP = 1/τP with τP =
0.50109 according to Table 4.8. This table is reproduced from [232], Copyright (2021), with permission from the authors and the Royal
Society.

ς[ τ[ s[

0 0.50109 1.99563

1 0.50218 1.99128

2 0.50437 1.98264

3 0.50875 1.96559

4 0.51750 1.93234

5 0.53500 1.86912

6 0.57001 1.75432

7 0.64003 1.56240

8 0.78007 1.28192

9 1.06015 0.94326

10 1.62030 0.61716
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(a)Ma = 0.4,N = 32 (b)Ma = 0.4,N = 64 (c)Ma = 0.4,N = 128

(d)Ma = 0.2,N = 32 (e)Ma = 0.2,N = 64 (f)Ma = 0.2,N = 128

(g)Ma = 0.1,N = 32 (h)Ma = 0.1,N = 64 (i)Ma = 0.1,N = 128
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Figure 4.16: BF stability maps (Algorithm 4), only stable configurations shown) of ς-parametrized MRT LBM computations for TGV flow
simulations withRe = 1600,Ma = 0.4, 0.2, 0.1, 0.05 (from top to bottom), andN = 32, 64, 128 (from left to right). The Cartesian
x-, y-, and z-coordinate axes correspond to ςq,µ, ςe, and ςΠ,e, respectively, and are shown for the interval [0, 10]3. One map contains
113 TGV computations visualized as voxels. Coloring refers to errL2 (ε) over the interval t ∈ [0, 10]. Black cubes denote stable ς
configurations such that errL2 (ε) is minimal. Black spheres indicate the corresponding origins ς = 0, i.e. SRT BGK configurations.
This figure is reproduced from [232], Copyright (2021), with permission from the authors and the Royal Society.
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Table 4.8: LBM discretization parameters for TGV flow simulations at Re = 1600, where τP = 1/sP . This table is reproduced from [232],
Copyright (2021), with permission from the authors and the Royal Society.

Ma

N
32 64 128

τP 4x 4t τP 4x 4t τP 4x 4t
0.4 0.50213 0.20268 0.04680 0.50434 0.09973 0.02303 0.50875 0.04947 0.01142

0.2 0.50106 0.20268 0.02340 0.50217 0.09973 0.01151 0.50437 0.04947 0.00571

0.1 0.50053 0.20268 0.01170 0.50108 0.09973 0.00575 0.50218 0.04947 0.00285

0.05 0.50026 0.20268 0.00585 0.50054 0.09973 0.00287 0.50109 0.04947 0.00142

An example calculation of the thus tested relaxation frequencies for a specific combination of Re, Ma, and N is
summarized in Table 4.7. To reduce the computational costs of a full variation of the five tunable relaxation frequencies
(four kinetic ones plus one hydrodynamic), we group them by the order of their moments. In summary, the relaxation
frequencies se, sq,µ, and sε,Π vary with ς = (ςq,µ, ςe, ςε,Π)T ∈ {n ∈ N0 | 0 ≤ n ≤ 10}3, where ς = 0 corresponds to
SRT BGK collision. With this procedure we introduce ghost Reynolds numbers [63] for each moment order larger than
one. Hence with the scan over the parameter space induced by ς , we test values of possible ghost Reynolds numbers,
which in terms of (3.192) appear as controllable bulk viscosities [62] and hyperviscosities [185, 264]. Based on that,
three-dimensional BF stability maps are obtained and gathered in Figure 4.16, where the x-, y-, z-coordinate axes
correspond to ςq,µ, ςe, ςε,Π, respectively.

The BF computations compiled in Figure 4.16 are carried out for Re = 1600, and comprise several values for Ma
and N to obtain a scan over acoustic scaling (AS) as well as diffusive scaling (DS). The general numerical and flow
parameters are given in Table 4.8. Note that column-wise reading of Table 4.8 and Figure 4.16 corresponds to refining
the grid according to AS, whereas (τP ,4x,4t)-triples read along diagonal (Ma,N)-pairs obey DS, respectively.
The variety of numerical effects visualized in Figure 4.16, can be summarized along the parameter changes through
Table 4.8 as follows.

1. AS (Ma = const, N → ∞): The visible volume of the BF stability map increases on average (except for
Ma = 0.4) and is moved collectively to the origin (i.e. the SRT BGK configuration). Whereas the top regions
(toward ς = (10, 10, 10)

T) are roughly similar in shape, distinct features of each map are located around the
origin of the parameter space. The error minimum shifts to the SRT BGK configuration. The translation toward
the origin is observed for all testedMa.

2. Ma → 0, N = const: For individual resolutions, the visible volume of the BF stability map increases on
average, where its form is contracted toward the origin in the ςε,Π-direction and elongated in the ςq,µ-direction.
Although a variation in the clustering of the error minimal cubes is observable forN = 32 (Figures 4.16a, 4.16d,
4.16g, 4.16j), for N > 32 the minimum location is less scattered on average.

3. DS (Ma ∼ 1/N → 0): As a composition of the two previous parameter scalings, the DS features error minima
near SRT BGK collision as well asMa-dependent shrinkage of the BF stability region in the ςε,Π-coordinate and
an overall movement to the origin. For large N , the error minimum is located on average at minimal distance to
the SRT BGK parameters with diminishing correlation to the change inMa. In contrast to that, small N lead to
largerMa-correlated clustering of the error minimum.

In general, Figure 4.16 provides evidence that the error minimum is highly correlated to the minimum distance from
the SRT BGK point. For low resolutions, this correlation weakens and can be outsourced to move within the stability
region while upholding minimal error magnitudes. With the increase of resolution, the clustering of the error minimal
cubes around the SRT BGK location decreases and indicates an increase of correlation strength. Interestingly, for
N ≥ 64 a second region with decreased error magnitudes appears (see Figures 4.16b, 4.16c, 4.16e, 4.16f, 4.16h,
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4.16i, 4.16l). Since this region is adjacent to error maxima, we assume numerical artifacts as a reason. Alternatively,
according to the above reasoning, decreased numerical dissipation might be another possible cause. Nevertheless,
throughout all tested parameter configurations, the error minima are located within the nearest distance region to the
SRT BGK configuration. Taking all observations into account, we conclude that the least numerical dissipation is
injected when choosing stable relaxation frequencies as near to SRT BGK parameters as possible, in DS as well as AS.
For very coarse resolutions, the possibilities of stabilizing the method with numerical dissipation while keeping the
error constant are increased. In contrast to that, for increasing resolutions, the error minimization will inevitably lead
to the SRT BGK origin where also the numerical dissipation is minimized via reduction of hyperviscosities.

Considering solely the shape of the BF stability regions, a shift as well as a change of the overall box size is observed
when comparing Ma-sequences for individual N . The range of BF stable values for ςq,µ increases with Ma → 0,
whereas the possible choices of ςε,Π decrease. Further, the stability range for ςe seems to be marginally affected by
the change inMa for small N , where theMa-influence increases with decreasing N . In summary, for a DS approach
– first and second diagonal, i.e.: Figures 4.16a, 4.16e, 4.16i, and Figures 4.16d, 4.16h, 4.16l, respectively – the BF
stability map contracts in ςε,Π-direction and shifts toward the SRT BGK point with increasing N [63].

However, even with the inclusion of artificial viscosity scaling into the parametrization of kinetic relaxation frequencies,
the BF stability map still shifts in position dependent on N . Especially when using coarse resolutions, the distance
to the SRT BGK configuration becomes crucial. This indicates that the ghost Reynolds numbers for controlling the
hyperviscosities can be amended by resolution dependent relaxation functions to automatically stay in the stability
region in a three-dimensional turbulence simulation.

4.3.3.3 Empirical multiple relaxation function collision

Based on the data obtained with the BF and VN computations and visualized in Figures 4.12, 4.15, 4.16, we construct
two MRF collision schemes. For the first scheme, the third order relaxation frequencies sµ and sq are dynamically
defined via extrapolating the values ŝµ and ŝq from [52] (which where optimized by the k-1% dispersion-error rule)
over a range ofMa ∈ [0.3, 0). The extrapolation is based on the dependency onMa observed above and uses the origin
as a fourth point. The resulting functions

ŝpf3
µ (Ma) =

200

3
Ma3 − 45Ma2 +

71

6
Ma, (4.39)

ŝpf3
q (Ma) = 35Ma3 − 53

2
Ma2 +

17

2
Ma (4.40)

are plotted in the parameter space M×S in Figure 4.17a. The such obtained MRF collision scheme is further tested
and used as background stabilization for the TLES simulations in Section 4.4. It is to be noted that this variant still
contains constant relaxation frequencies, which are affecting stability up to negligible orders only. Consistency however
has to be ensured via additional means of creating a reduction point toward SRT BGK collision.

The second MRF scheme is based on the minimal error configurations within the computed BF stability sets shown
in Figure 4.16. This version is fully consistent toward SRT BGK collision and thus toward the TEQ. Polynomial fits
through the error minima from the BF stability sets over the second, third and fourth order relaxation are visualized in
Figure 4.17b. The mean exponents ς are obtained from averaging over the minimal error exponents along the diffusive
scaling paths in the computed parameter grid (see Table 4.8). Due to the intended hybridization to an SRT BGK scheme
which is found to be stable from N = 128 onwards for Re = 1600, null points in ς are added at N = 256, 512, 1024

in the polynomial fit. The resulting relaxation function exponents are

ςpf3
q,µ(N) = −2.50× 10−8N3 + 4.33× 10−5N2 − 2.07× 10−2N + 2.65, (4.41)
ςpf3
e (N) = −7.11× 10−8N3 + 1.21× 10−4N2 − 5.65× 10−2N + 6.85, (4.42)
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µ , ŝpf3

q )

(a) Individual third order

0 100 200

0

5

10

N

ς

ςq,µ
ςe
ςε,Π

ςpf3
q,µ

ςpf3
e

ςpf3
ε,Π

ς = 0

(b) Grouped second, third and fourth order

Figure 4.17: (a) Third order polynomial fit (·pf3) through relaxation frequency prefactors ŝq and ŝµ dependent on the Mach number. (b) Third
order polynomial fit (·pf3) throughMa-averaged errL2 (ε)-minimal ς-configurations ς in diffusive scaling.

ςpf3
ε,Π(N) = −4.91× 10−8N3 + 8.52× 10−5N2 − 4.09× 10−2N + 5.31. (4.43)

To render the empirically derived MRF definitions grid-independent for a given bulk flow with a predefined Reynolds
number, the lowest stable resolution should be determined and used as the reduction point to the SRT BGK mode.
Assuming that the stability sets computed above are transferable to wave space, a similar argument as for VN stability
can be used to draw an analogy between increasing the Reynolds number at fixed resolution and vice versa. The effect
on the computed relaxation functions is to be determined in future studies.

Table 4.9: Dissipation rate error minima εmin and corresponding orderwise relaxation pairs ς = (ςq,µ, ςe, ςε,Π)T for MRT LBM simulations of
the TGV flow at Re = 1600.

Ma

N
32 64 128

ςT errL2 (ε) ςT errL2 (ε) ςT errL2 (ε)

0.4 (1, 7, 4) 8.04× 10−2 (0, 4, 3) 6.64× 10−2 (0, 2, 0) 2.96× 10−2

0.2 (3, 3, 5) 8.38× 10−2 (1, 4, 3) 5.03× 10−2 (0, 0, 1) 2.54× 10−2

0.1 (0, 7, 4) 8.16× 10−2 (6, 3, 3) 4.84× 10−2 (0, 0, 1) 2.51× 10−2

0.05 (3, 7, 4) 8.18× 10−2 (0, 4, 3) 4.62× 10−2 (0, 0, 1) 2.52× 10−2

Concerning accuracy, the error map with errL2(ε) with respect to the reference DNS results [40] of the parameter
grid (Table 4.8) is shown in Figure 4.18. The corresponding values are given in Table 4.9. As directly observable,
the EOC is around one. Notably, the MRF scheme as defined above is neither intended to improve the convergence
order nor to even show such a behavior for coarse grids. Instead, the aim is to ensure the underresolved stability of
the scheme and to reduce the error of the dissipation rate to a minimum at the same time. Hence, for low resolutions
the error is smaller than for using constant relaxation frequencies, which in turn reduces the second order EOC visibly
to first order (see e.g. Figure 4.18). Due to the hybridization, this construction is expected to increase the EOC to
second order automatically as soon as the SRT BGKmode region is reached for high enoughN compared to the lowest
stable configuration with respect to the Kolmogorov scale. Additionally, a clean estimation of the convergence order
cannot be expected due to the difference in the methodology and way of computation with respect to the reference
DNS (see [114] for a detailed discussion). In summary, the most prolific advantage of the proposed MRF collision is
the increased accuracy in addition to its stability for coarse grids. Compared to previous observations made with for
example, constant relaxation MRT LBMs, two-relaxation-time LBMs, regularized LBMs, entropic equilibria or with
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Figure 4.18: Orthogonal moment MRT LBM (see Table 3.4) error landscape of errL2 (ε)-minimal relaxation frequency configurations ς listed
in Table 4.9 and denoted with black cubes in Figure 4.16. Diffusive scaling (DS) and generic scaling (GS) determines the scaling
function σ = hγ via γ = 2 for DS and γ ∈ {1, 2} for GS, respectively, where DS1 starts at (N = 32,Ma = 0.4) and DS2 starts at
(N = 32,Ma = 0.2).

SRT BGK collision [114], in the stable region before the reduction point, the accuracy measured in errL2(ε) increased
by an average factor of O(10) for the resolutions N = 64, 128 (cf. [114, Table 6.3 and 6.4]). It is thus found to be
crucial to tune the kinetic relaxation times of MRT LBMs before its usage with constant values. Once tuned, the
stability and accuracy increase comes at the price of virtually no computational overhead apart from the additional
moment–population mapping for the collision phase. Whereas the here presented methodology of a prioriVN stability
is found suitable for linear stability in the bulk flow domain, it is currently not covering wall-bounded flows, where the
boundary conditions determine the convergence of the solver. The second methodology of a posteriori BF stability
is by construction (under the premise of the availability of modern HPC resources and efficient parallel software)
applicable to any test configuration, for example also canonical wall-bounded turbulence. The notion of BF stability
is planned to be used for the prediction of nonlinear stability of LBMs for simulating complex flows as well as for the
approximation of other mathematical models based on coupled PDEs.

4.3.4 Spectral effects of controlled relaxation

Besides the definition of relaxation functions with respect to nondimensional parameters (see Section 3.2.7.1 and
Section 4.3.3.3), a space-time dependency can be imposed to enforce stability. The present section studies the
effect of an entropy controlled relaxation of higher order moments on the turbulence quantities of the TGV flow
summarized above (see Section 4.3.2). TheKBC-N1 collision scheme [36] (Algorithm 1) is usedwith aD3Q19 velocity
stencil (Definition 3.2.3) and natural moments (Table 3.2). Besides validating the implementation of Algorithm 1 in
OpenLB [162], the present results contribute to (CTN3) and (CTN4) in terms of the explicit computational analysis of
spectral properties of the space-time dependent relaxation. For this purpose, we recompute and extend the preliminary
study in [163] and carefully analyze the produced results. Hence, for the first time, numerical effects of the entropy
maximization through controlled higher order moment relaxation frequencies are analyzed in wave space via Fourier-
transforming not only the flow quantities but also the entropy controller. Below, we compute a total of 27 simulation
runs and post-process each flow field via computing the kinetic energy, the enstrophy, the total dissipation rate and
maximum vorticity. Additionally, the entropy controller activation throughout the space-time domain is measured in
terms of mean and variance. At last, the energy and control spectra at a sequence of discrete time steps of the KBC-N1
scheme are contrasted to energy spectra of the SRT BGK scheme to isolate the nonlinear stabilization mechanisms.
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4.3.4.1 Discretization parameters and reference solutions

The parameter spaces used in the following computations are summarized in Table 4.10. To cover acoustic (AS)
and diffusive scaling (DS) for three Reynolds numbers Re = 1600, 3000, 6000, the tested Mach numbers Ma =

0.2, 0.1, 0.05 are paired with all resolutionsN = 32, 64, 128. The tested resolutions resemble an underresolved setting
with a grid Reynolds number Re4 = Re/N = O(100) on purpose which typically leads to divergence of the SRT
BGK scheme in the standard formulation.

Table 4.10: Parameter grid for the numerical experiments with KBC-N1 on D3Q19 with natural moments (Table 3.2), entropy controlled relax-
ation (3.201) and truncated equilibrium (3.98).

N 4t Ma
τ

Re = 1600 Re = 3000 Re = 6000

32
2.34× 10−2 0.2 0.501068 0.500570 0.500285
1.17× 10−2 0.1 0.500534 0.500285 0.500142
5.85× 10−3 0.05 0.500267 0.500142 0.500071

64
1.15× 10−2 0.2 0.502171 0.501158 0.500579
5.75× 10−3 0.1 0.501085 0.500579 0.500289
2.87× 10−4 0.05 0.500543 0.500289 0.500146

128
5.71× 10−3 0.2 0.504376 0.502334 0.501167
2.85× 10−3 0.1 0.502188 0.501167 0.500582
1.42× 10−4 0.05 0.501094 0.500583 0.500292

The LBM results are assessed in terms of an error computation with respect to a psDNS reference solution4. The error
computation below is done for Re = 1600 only. For Re = 3000, the DNS data from [233] computed with the SEM
(Nek5000) is used for qualitative comparison.

4.3.4.2 Integral turbulence quantities

Simulations of the TGV flow are computed with the KBC-N1 LBM for the parameter grid in Table 4.10. The
obtained flow fields approximate weak solutions to (2.12). To assess the quality of approximation, each flow field
is post-processed via computing the kinetic energy (4.20), the enstrophy (4.21), the total dissipation rate (4.22) and
the maximum vorticity (4.25). Concerning the latter for the TGV flow at high Reynolds numbers, Thantanapally et
al. [247] have observed that the maximum vorticity shows a single separated peak at t ≈ 6.5 after an initial virtually
inviscid phase. This isolated peak region (IPR) is followed by a series of sub-peaks with similar magnitude. For
Reynolds numbers smaller than Re = 5000, the IPR is shifted forward in time. For example at Re = 800 the separated
peak is observed at t ≈ 7. Hence, the computed vorticity is expected to recover an isolated peak in the IPR ranging in
[6, 7]. For Re = 1600, the psDNS reference [61] provides kinetic energy, enstrophy and total dissipation rate results
for comparison.

Figures 4.19, 4.20, 4.21 visualize the integral turbulence quantities computed for Re = 1600, 3000, 6000, respectively,
with the Mach numbers and resolutions summarized in Table 4.10. The only stable SRT BGK results are obtained with
the configurations N = 128 withMa = 0.2, 0.1, 0.05 for Re = 1600. A higher Reynolds number or lower resolution

4 The presently used grid-converged reference solution (see for example [61, 253]) has been produced with a dealiased psDNS on 5123

spatial grid points with a three-step Runge-Kutta scheme for time integration at 4t = 1.0 × 10−3. The data can be downloaded at
http://www.as.dlr.de/hiocfd/spectral_Re1600_512.gdiag. For simplicity, we will refer to [61] for this reference solution below.
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led to divergence of the SRT BGK scheme used for the TGV flow. In contrast to that, all computations with KBC-N1
are stable and convergent.

The present results suggest that the reasonable stability boundRe4x = O(10) of the SRTBGKLBM for approximating
the incompressible NSE (2.12) [164] is removed or at least drastically increased by the entropy controlled relaxation of
kinetic moments. This observation has been predicted by Lyapunov stability for a suitable equilibrium formulation. The
novelty in the present results is the numerically indicated validity for the computationally more efficient configuration
with a second order truncated Maxwellian and D3Q19. As Re4x increases further, accuracy is however still not
preserved. For very coarse resolutions (N = 32), the kinetic energy is overpredicted (see Figures 4.19a, 4.19b, 4.19c,
4.20a, 4.20b, 4.20c, 4.21a, 4.21b, 4.21c), which shifts the total dissipation rate forward in time (see Figures 4.19g,
4.19h, 4.19i, 4.20g, 4.20h, 4.20i, 4.21g, 4.21h, 4.21i). It is remarkable however, that the shapes and magnitudes
of both curves are well recovered. This is not the case for the enstrophy and the maximum vorticity, which are heavily
reduced, see Figures 4.19d, 4.19e, 4.19f, 4.20d, 4.20e, 4.20f, 4.21d, 4.21e, 4.21f and Figures 4.19j, 4.19k, 4.19l,
4.20j, 4.20k, 4.20l, 4.21j, 4.21k, 4.21l, respectively. In addition, for decreasing the Mach number at fixed resolution,
the reduction of enstrophy and vorticity increases (see Figures 4.19d, 4.19e, 4.19f, 4.20d, 4.20e, 4.20f, 4.21d, 4.21e,
4.21f and Figures 4.19j, 4.19k, 4.19l, 4.20j, 4.20k, 4.20l, 4.21j, 4.21k, 4.21l). The enstrophy reduction has also
been reported by Geier et al. [97, Figures 2 and 3] for the K15 regularized cumulant LBM with unit relaxation times.
In the above studies for the BF and VN stability, a Mach decrease under constant resolution even led to instabilities
(Section 4.3.3.1). Remarkably, the error minimized MRF scheme does not show this effect and instead decreases the
error with Mach decrease (see Section 4.3.3.2 and Figure 4.18). Another noticeable feature of the results for N = 32

are strong oscillations of the total dissipation rate in the initial time steps t < 5 (see Figures 4.19g, 4.19h, 4.19i,
4.20g, 4.20h, 4.20i, 4.21g, 4.21h, 4.21i). The oscillations vanish for larger resolutions, which has been just recently
observed also by [187]. Here, the effects are present for both SRT BGK and KBC-N1 collision. Notably, the derivative
of the kinetic energy is approximated with second order central differences, where the oscillations are independent
on the edge stencil. The root of these numerical artifacts is investigated currently, and meanwhile attributable to the
initialization procedure (3.303).

All of the observed effects vanish with increasing resolutions according to DS and the numerical KBC-N1 solution
visibly approximates the DNS reference. Particularly the IPR of the maximum vorticity is rendered increasingly
pronounced already at N = 64, 128. In summary, all tested integral turbulence quantities are approximated very well
measured against the very coarse resolutions. In regard to the limit consistent approximation, the reduction of the
entropy controller in the relaxation limit as well as the EOC of the total dissipation rate are further discussed below.

4.3.4.3 Entropy controller statistics

The relaxation function defined by the entropy controller (3.201) is measured in each time step of the simulation in
terms of a statistical distance from the SRT BGK value γ? = 2. To this end, we compute the mean controller via
averaging over all nodes in space

γ?(t) =
1

|Ω4x|
∑

x∈Ω4x

γ?(x, t). (4.44)

The spatial average γ? is then further processed to compute the root-mean-square error in the form of the variance

Jγ?K(t) =
1

|Ω4x|
∑

x∈Ω4x

[
γ?(t)− γ?(x, t)

]2
. (4.45)

The mean and the variance of γ? computed in all simulations with the parameters summarized in Table 4.10 are plotted
in Figure 4.22. The asymptotic decrease of |2 − γ?| for increasing N is clearly visible for all Reynolds numbers (cf.
Figures 4.22a, 4.22b, 4.22c, Figures 4.22d, 4.22e, 4.22f, and Figures 4.22g, 4.22h, 4.22i, respectively). In addition,
the variance Jγ?K decreases with increasing resolution. Notably, the configuration where the SRT BGK relaxation is
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Figure 4.19: Integral turbulence quantities of KBC-N1 and SRT BGK collision for Re = 1600 at several resolutionsN = 32, 128, 256 and Mach
numbersMa = 0.2, 0.1, 0.05.

stable (N = 128) still shows γ? 6= 2. However, for increasing Re at fixed N andMa an increase in |2− γ?| is visible,
where the effect is more pronounced for large N . Similarly to the correlation of Re and |2 − γ?|, the latter decreases
with decreasing Ma. In summary, the stabilization via γ? according to (3.201) is more active for large Re and large
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Figure 4.20: Integral turbulence quantities of KBC-N1 and SRT BGK collision for Re = 3000 at several resolutionsN = 32, 128, 256 and Mach
numbersMa = 0.2, 0.1, 0.05.

Ma and vanishes in the smallness limit of both. The point in time, where the entropy controller is most active in terms
of the steepness of |2− γ?| is visibly matching with the divergence point of the SRT BGK collision (see for example
Figure 4.21a) on the one hand, and with the first peak region of the maximum vorticity (see for example Figure 4.21j)
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Figure 4.21: Integral turbulence quantities of KBC-N1 and SRT BGK collision for Re = 6000 at several resolutionsN = 32, 128, 256 and Mach
numbersMa = 0.2, 0.1, 0.05.

on the other. The connection of γ? to the latter seems even more natural when comparing the shape of the slopes.
The entropy controller seems to track the vorticity and in case of low resolutions compensate its effect within the flow
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Figure 4.22: Spatial mean (4.44) and standard deviation (4.45) of KBC-N1 entropy controller γ? (3.201) for TGV flow simulations at several
Reynolds number Re = 1600, 3000, 6000 and Mach numbersMa = 0.2, 0.1, 0.05.

field, similarly to a turbulence model. In addition, an exemplary EOC computation of the entropy controller statistics
at t ≈ 5.1 in DS yields ∣∣2− γ?(t)∣∣ = O

(
N1.34

)
, (4.46)

|Jγ?K(t)| = O
(
N1.61

)
, (4.47)

which suggests convergence with order larger than one of the KBC-N1 relaxation understood as an MRF model toward
the SRT BGK configuration. The crucial difference to classical explicit turbulence models with a grid coupled filter
width is with respect to the order of viscosity. The relaxation functions only affect kinetic moments uncoupled from
the viscosity. Since the latter in turn appear as higher order gradients in the closed form equation for the conserved
moments, the KBC-N1 scheme is rather interpretable as a consistent, space-time adaptive hyperviscosity model.
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4.3.4.4 Computational spectral analysis

Due to the apparent energy cascade along the vortical scales in DHIT for large Re, the above observed similarity
between the entropy controller mean value and the maximum vorticity motivates the novel Definition 4.3.1 of the
control spectrum (4.30) and its computational analysis. For the latter, all time dependent flow fields obtained with the
computational parameter grid (Table 4.10) are Fourier transformed. The control spectrum C(κ, t) is computed over
the discrete wavenumber range at several points in time, which results in an array of three-dimensional data sets also
for the energy spectra E(κ, t) of the KBC-N1 solution and the SRT BGK solution. For DS, this data is visualized as
waterfall plots in the Figures 4.23, 4.24, 4.25 for Re = 1600, 3000, 6000, respectively.
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Figure 4.23: Energy spectra (4.26) and control spectra (4.30) for KBC-N1 scheme (left and middle column) as well as energy spectra (4.26)
for SRT BGK collision (right column) of the TGV flow simulations at Re = 1600 in DS (top to bottom) for (Ma,N) ∈
{(0.2, 32), (0.1, 64), (0.05, 128)}. The red circles denote the values of the spectra at the respective cutoff wavenumber κc = N/2.

The activity of the entropy controller on particular wave lengths as well as its effect on the energy spectrum are
observed for all tested Reynolds numbers and discretization parameters along DS. For small κ and initial times, C(κ, t)

is minimal on average. With increasing wavenumbers, the control spectrum increases as well, which approves the
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Figure 4.24: Energy spectra (4.26) and control spectra (4.30) for the KBC-N1 scheme (left and middle column) as well as energy spec-
tra (4.26) for SRT BGK collision (right column) of the TGV flow simulations at Re = 3000 in DS (top to bottom) for
(Ma,N) ∈ {(0.2, 32), (0.1, 64), (0.05, 128)}. The red circles denote the values of the spectra at the respective cutoff wavenumber
κc = N/2.

above observed correlation of the entropy controller γ? and the maximum vorticity ω. Similarly to the power law
E(κ, ·) = O(κ−5/3) predicted by Kolmogorov [155, 156], the relaxation spectrumC(κ, ·) reaches an asymptotic shape
toward the end of the simulated time horizon. The shape of course differs from the one of the energy spectra and
scales inversely. For the most resolved configuration (Re = 1600, N = 128), where the SRT BGK relaxation is stable
(Figures 4.23i), the control spectrum landscape in κ and t is mostly flattened (see Figures 4.23g, 4.23h). In addition,
the wave-time averaged magnitude of the control spectra decreases heavily with increasing the resolution. Notably,
the correlation between the maximum vorticity and the entropy controller mean over time reappears for the largest
wavenumbers in each grid configuration (the visible edge of the waterfall marked in red). At the cutoff wavenumber
κc, the slope of the energy spectrum E(κc, t) over time has substantial similarity to the maximum vorticity curve in
Figures 4.19, 4.20, 4.21. Likewise, the control spectrum C(κc, t) tracks the initial vorticity minimum and upholds
an asymptotically constant level as soon as the IPR is reached. The above observed reduction to SRT BGK collision
in the sense of an MRF scheme is thus also observed for Fourier transformed quantities. Further, the influence of

132



4.3 Navier–Stokes equations

100

101 0
10

2010−10

10−6

10−2

κ t

E (κ, t)

(a) Energy spec. KBC-N1,Ma = 0.2,
N = 32

100

101 0
10

2010−10

10−6

10−2

κ t

C (κ, t)

(b) Control spec. KBC-N1, Ma=0.2,N =
32

100

101 0
10

2010−10

10−6

10−2

κ t

E (κ, t)

(c) Energy spec. SRT BGK,Ma = 0.2,
N = 32

100

101 0
10

2010−10

10−6

10−2

κ t

E (κ, t)

(d) Energy spec. KBC-N1,Ma = 0.1,
N = 64

100

101 0
10

2010−10

10−6

10−2

κ t

C (κ, t)

(e) Control spec. KBC-N1,Ma = 0.1,
N = 64

100

101 0
10

2010−10

10−6

10−2

κ t

E (κ, t)

(f) Energy spec. SRT BGK,Ma = 0.1,
N = 64

100

101 0
10

2010−10

10−6

10−2

κ t

E (κ, t)

(g) Energy spec. KBC-N1,Ma = 0.05,
N = 128

100

101 0
10

2010−10

10−6

10−2

κ t

C (κ, t)

(h) Control spec. KBC-N1,Ma = 0.05,
N = 128

100

101 0
10

2010−10

10−6

10−2

κ t

E (κ, t)

(i) Energy spec. SRT BGK,Ma = 0.05,
N = 128

Figure 4.25: Energy spectra (4.26) and control spectra (4.30) for KBC-N1 scheme (left and middle column) as well as energy spectra (4.26)
for SRT BGK collision (right column) of the TGV flow simulations at Re = 6000 in DS (top to bottom) for (Ma,N) ∈
{(0.2, 32), (0.1, 64), (0.05, 128)}. The red circles denote the values of the spectra at the respective cutoff wavenumber κc = N/2.

the entropy controlled stabilization is found to be connected to the underresolved vorticity via being maximal at large
wavenumbers near the cutoff.

For the purpose of cross-comparing the energy spectra produced by the SRT BGK and the KBC-N1 relaxation,
Figure 4.26 shows waterfall sections at the latest stable time steps of the SRT BGK simulations before divergence
occurs. Only DS parameter configurations are shown for each Reynolds number. The reduction of the magnitude of
the control spectrum is clearly visible (row-wise, left to right). For highly resolved settings, the control spectrum is
thus expected to be constantly zero in machine precision as already indicated by the convergence of |2 − γ?| ↘ 0.
Additionally, a common intersection point of the control spectrum and the energy spectrum of the KBC-N1 scheme at
the respective cutoff wavenumber for almost all shown parameters is observed. The only exception for this observation
is the configuration where the SRT BGK collision is stable (Figure 4.26c) and the intersection point is shifted to smaller
κ < κc. For this less underresolved setting the production of smoothed energy and control spectra for both collision
schemes is also noticeable. In conclusion, the asymptotic power-law form of all three spectra is well pronounced and
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suggests that the control spectrum approximates C(κ, ·) = O(κ5/3) for a further refinement of the space-time mesh
and an inverse increase of the Reynolds number at the same time.
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Figure 4.26: Computed energy spectra E(κ, t) and control spectra E(κ, t) of KBC-N1 and energy spectra E(κ, t) of SRT BGK plotted
at the last stable SRT BGK time step, respectively for several Re = 1600, 3000, 6000 (top to bottom) in DS (Ma,N) ∈
{(0.2, 32), (0.1, 64), (0.05, 128)} (left to right).
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4.3.4.5 Experimental order of convergence

The convergence of the KBC-N1 LBM is experimentally studied via computing the time dependent relative error

err(εtot(t)) =
|εtot(t)− ε?tot(t)|

|ε?tot|
(4.48)

and the temporalL2-error errL2(εtot) (4.33) with respect to the psDNS solution [61]. Figure 4.27 visualizes the strong
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Figure 4.27: Time dependent error of total dissipation rate err(εtot) of the KBC-N1 schemewith respect to the psDNS reference [61]. Discretization
parameters are chosen from Table 4.10 in DS, hence (Ma,N) ∈ {(0.2, 32), (0.1, 64), (0.05, 128)}. Only a subsequence of time
steps t ∈ [0.1, 19.7] is shown with a step size of4t = 0.2.

temporal dependence of the error values for discretization parameters in DS. Figure 4.28 plots the section lines of for
several resolutions in one plane. The error behavior is visibly more structured in before and in the IPR (t ∈ (0, 7)). The
peak region of the total dissipation rate (t ≈ 9) induces a very pronounced disturbance of the error landscape. A second
increased error region in this sense is located from t ≈ 14 onwards. These observations indicate that a time averaged
error of an integral quantity might not be representative for the error behavior in subintervals in the time domain. The
effect of the temporal variation in the error magnitude on the EOC is visible in Figure 4.29. The time dependent EOC
oscillates between superquadratic and even divergence in the region around the peak of the total dissipation rate. Still,
on average the EOC ranges between one and two. Table 4.11 gives sample data for the local in time EOC and the EOC
computed with the L2-error.

The present observation of local in time second order spatial accuracy of the KBC-N1 LBM toward the incompressible
NSE solution approximated with a psDNS matches the results from Bösch et al. [36]. In the latter, a local consistency
error to high resolution SRT BGK results has been computed and found to be of second order for initial time steps
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Figure 4.28: Time dependent error of total dissipation rate err(εtot(t)) of the KBC-N1 scheme with respect to the ´psDNS reference [61].

135



4 Numerical Experiments

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

t

E
O
C

(t
)

EOC(t) KBC-N1
EOC(t) = 2

EOC(t) = 1
IPR [247]

Figure 4.29: Time dependent EOC of total dissipation rate err(εtot) of KBC-N1 with respect to psDNS reference [61].

Table 4.11: Sample error data of the KBC-N1 scheme with respect to the psDNS reference [61] with computed EOC values locally EOC(t) (for
dedicated points in time t1 = 1, t2 = 6, t3 = 11, t4 = 16) and on average EOC for t ∈ [0.1, 19.8].

err(εtot(t)) errL2(εtot)

(N,Ma) t = t1 t = t2 t = t3 t = t4 t ∈ [0.1, 19.8]

(32, 0.2) 3.75× 10−1 1.00× 100 3.35× 10−1 2.46× 10−1 3.97× 10−1

(64, 0.1) 1.33× 10−1 2.63× 10−1 1.39× 10−1 2.53× 10−2 1.41× 10−1

(128, 0.05) 4.30× 10−2 5.18× 10−2 5.40× 10−2 1.86× 10−2 4.95× 10−2

EOC(t) 1.56 2.13 1.31 1.86 —
EOC — — — — 1.50

t < 1. In contrast to that, the present work shows a local and an averaged accuracy error toward the actually targeted
PDE (2.12). It thus becomes clear from the present results, that averaging the error over time results in an order
reduction by approximately 0.5. The variation of magnitude in the peak region of the computed total dissipation rate is
exemplarily responsible for the error reduction. We attribute this time delay in the approximation of the time dependent
total dissipation rate to the consistency reduction of the SRT BGK collision to first order in time in DS. Nonetheless,
based on the numerically observed consistency of order two in [36], and the here measured local and averaged accuracy,
it can be concluded that the space-time dependent relaxation functions for the kinetic moments increase the stability
drastically and do not overly affect the EOC.

4.3.5 Computation of statistical solutions

Computing statistical solutions to the incompressible NSE (2.12) and the incompressible EE (ν ↘ 0) with numerical
simulations poses an extreme challenge due to the tremendous number of floating point operations required and the
thus drastically increased energy-to-solution. Applying SLMCmethods to evolve a sufficiently large number of random
samples of u0 in time with a deterministic solver brings forth a quickly increasing amount of computations. Several
approaches have been made to meet this challenge. Combined with multi level Monte Carlo (MLMC) methods, a
finite difference discretization of the vorticity form of the incompressible NSE for d = 2 with periodic boundaries
has been proposed in [176]. In [18], statistical solutions of the incompressible NSE for d = 2 with boundaries are
computed with SLMC and an H(div)-based finite element method. Statistical solutions to the incompressible EE for
d = 2 with periodic boundaries have been approximated successfully in [173] via combining MC with a deterministic
spectral hyperviscosity method. The implementation of these methods for periodic incompressible flows has been
extended to d = 3 within the framework azeban5 [220]. Besides, statistical solutions of two-dimensional compressible
NSE have been approximated with hp-MLMC and discontinuous Galerkin methods [24]. Further, in [25] methods of
uncertainty quantification (UQ) for approximating the three-dimensional compressible NSE have been implemented

5 Tobias Rohner, azeban: a spectral viscosity method, https://github.com/TobiasRohner/azeban (Accessed April 2023)
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for the execution on HPC machines. For the computation of three-dimensional statistical solutions to the compressible
EE, a combination of the FVM with SLMC, MLMC and quasi-randomized Monte Carlo (QMC) methods [183] is
published in the open-source numerical framework Alsvinn [182]. To the knowledge of the author, LBM has not been
used before to compute statistical solutions of incompressible NSE in three dimensions.

Although in general, combinations of LBM with both, intrusive and nonintrusive methods, have rarely been studied in
the past, the few obtained results are throughout promising. For example, an LBM is proposed in [276] to approximate
Galerkin projected stochastic convection–diffusion equations. The scheme offers rigorous weighted L2-stability and
applicability to stochastic problems with complex boundaries. In [274] a probabilistic collocation method has been
combined with LBM to efficiently obtain statistical properties for fluid flows through porous media. A reduction of
the computational effort by ≥ O(100) compared to SLMC LBM is reported for 2D flow simulations. Further, in
[251] newly developed sparse quadrature and cubature rules are used in stochastic collocation methods combined with
LBM for 2D cavity flows. Compared to SLMC, the reduced parameter grids show spectral convergence, achieving
comparable performance to Smolyak sparse grid procedures.

Above, primary numerical evidence is given that the entropic estimate of the KBC collision successfully detects and
counteracts high wavenumber spectral energy overloads and thus nonlinearly stabilizes the LBM. Additionally, the
data-based convergence of integral turbulence quantities is approved up to second order when successively increasing
resolutions in diffusive scaling. These advantages over the standard SRT BGK collision combined with the near-to-
perfect parallelizability of LBM [166], render the KBC-N1 scheme a promising approach for computing statistical
solutions explicitly for d = 3.

Hence, in the present work, the KBC-N1 LBM is used for the fist time in an SLMC method to approximate statistical
solutions to the three-dimensional incompressible EE. The latter is achieved via computing a sequence of sample
solutions to the incompressible NSE (2.12) for increasing but fixed values of viscosity ν > 0. The approximate sample
solutions to (2.12) are obtained via statistically perturbing periodic TGV flow initial conditions and evolving them in
time via the KBC-N1 LBM. If a power law in the energy spectrum is observed, we deduce that a weak solution is found
for a deterministic sample initial condition. Conclusively, if the power law is also observed for an array of M = N

samples, this hypothetically implies that the second order structure functions of the statistical solution obey a scaling
hypothesis as well. Thus, according to [85], we should approximate a strong (hence unique) statistical solution to the
three-dimensional EE if Re→∞. Recalling Definition 2.2.1 which states that a periodic statistical solution to (2.12)
(Foiaş and Prodi [86, 87]) for fixed ν > 0 is a family of probability measures µν = (µνt )0≤t≤T on L2

div(Ω;U) with
initial data

µν0 ∼ P
(
L2

div(Ω;U)
)
. (4.49)

This initial distribution can be used with the solution operator St to compute the push-forward measure Stµν0 . In the
present work, the probability measure µν is approximated with M samples u(m), where m = 1, 2, . . . ,M , of mesh
resolution N for t ∈ I via

µνt ≈ µN,Mt :=
1

M

M∑
m=1

δu(m)(t), (4.50)

where u(m) is obtained from evolving independent and identically distributed (IID) initial data u(m)
0 of (2.12) in time

with LBM, and δu(m)(t) is the Dirac measure (unit mass) at u(m)(t).

The novel SLMC LBM prototype is implemented in OpenLB as arranged in Figure 3.9. Even though SLMC methods
are computationally most expensive for UQ, it has been suggested [183] that for the particular purpose of computing
statistical solutions of fluid flows governed by the NSE or the EE, whether compressible or incompressible, improve-
ments such as QMC, or MLMC are not superior in terms of the ratio of convergence speed and computational effort.
It is thus natural to use highly scalable methods akin to LBMs as the black box in a nonintrusive framework. Below,
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a numerical experiment setup contained in the azeban repository6 [220] is computed with an LBM for the first time.
The results serve as proof of concept that the KBC-N1 LBM is a suitable option for this purpose.

The TGV flow initial condition u0 ∈ Rd (4.18) is perturbed with 8d IID random variables

Xα,i,j,k ∈ U[−w,w] (4.51)

to obtain a randomized TGV (RTGV) initial velocity field

u0 = u0 + s ∈ Rd, (4.52)

where the αth perturbation in s = (sα)1≤α≤d is

sα =
1

8

∑
(i,j,k)∈{0,1}3

Xα,i,j,kai (2x) aj (2y) ak (2z) , (4.53)

with

ai (x) =

{
sin (x) , if i = 0,

cos (x) , if i = 1.
(4.54)

The computational domain is still Ω = [0, 2π]d and the support parameter of the uniform distribution is set to
w = 0.025. Given this uncertainty in the initial data, we drawM samples{

u
(m)
0

∣∣∣ m = 1, 2, . . . ,M
}
∼ µν0 (4.55)

and Leray project each onto its solenoidal part Pdivu
(m)
0 via the projection operator

Pdiv :

{
L2(Ω;U)→ L2

div(Ω;U),

u 7→ Pdivu = ∇x ×ψ,
(4.56)

where the splitting

u = ∇xφ+ ∇x ×ψ (4.57)

contains ψ ∈ H(curl,Ω) and φ ∈ H1(Ω). Using the Fourier transform û of u, we replace the classical Poisson solver
with an algebraic modification

Pdivû =

(
1− k ⊗ k|k|2

)
· û (4.58)

in wave space k ∈ K and Fourier invert the result. All initial samples are thus Fourier transformed, Leray projected,
Fourier inverted, consistently initialized and evolved in time with the deterministic KBC-N1 LBM until t = T to obtain{

u(m)(t)
∣∣∣ m = 1, 2, . . . ,M

}
∼ µN,Mt . (4.59)

Figure 4.30 highlights the random perturbation in the Q-criterion [131] of a single sample RTGV flow field, where

Q =
1

2

(
‖D‖22 + ‖N‖22

)
(4.60)

6 https://github.com/TobiasRohner/azeban
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(a) t = 0 (b) t ≈ 2 (c) t ≈ 4 (d) t ≈ 6
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Figure 4.30: Time evolution of Q-criterion (Q = 0.1) colored by |u(m)| of one RTGV flow sample computed with the KBC-N1 LBM for
Re = 10240, resolutionN = 256, andMa = 0.0125.
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is computed with the spectral norm ‖ · ‖2 of the rate of strain (2.52) and its antisymmetric counterpart

N =
1

2

[
∇xu

(m) −
(
∇xu

(m)
)T
]
. (4.61)
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Figure 4.31:Mean (solid lines) and standard deviation (shaded areas) of compensated energy spectra of the RTGV flow field at several Reynolds
numbers and time steps, computed with the novel SLMC LBM.

Figure 4.31 shows mean E(·) and variance Var(·) of the compensated energy spectra

Ec = C−1
Kolε

−2/3(t)κ5/3E (κ) (4.62)

for four consecutive Reynolds numbers Re = 20N in DS, where N = 32, 64, 128, 256. The K41 constant [155, 156]
is CKol = 1.5, and the dissipation rate is taken from the deterministic inviscid high-resolution simulations by Fehn
et al. [81]. Via connecting the Reynolds number and the grid resolution per spatial dimension, an inviscid limit is
superimposed for N →∞. The amount of samples is chosen asM = N . An extended terminal time T > 30, which
is larger than the commonly used values for benchmarking, results in fully developed small scales and a smooth energy
cascade (see cyan squares in Figure 4.32).

Moreover, from Figure 4.31, it becomes evident that a sufficiently long simulation time horizon is necessary (T ≥ 30)
to propagate the initial perturbation s through the spectrum. The latter in turn shows an asymptotic trend toward the
K41-predicted inertial subrange. Due to [173, Theorem 4.4, Remark 4.4, Remark 4.5] with β = 5/6 in the respective
notation, we have that

ET (µνt , κ) =

ˆ T

0

ˆ
L2

div

E(κ) dµνt (u) dt . κ−2β ⇒ S2 (T, r) . rβ−1/2, if 1 < 2β < 3, (4.63)

where S2(T, r) is a global structure function of order two (see for example [173] and references therein). Hence, in
case of approximating the local structure functions of second order with S2

r,t(µ
N,M
t ), it is conjectured that a similar

scaling will appear. In turn, a statistical solution of the incompressible Euler equation is approximated as ν ↘ 0. In
conclusion of the present energy spectrum decay for randomized initial data, the above results suggest that the SLMC

140



4.4 Time-filtered Navier–Stokes equations

100

101

0

20

10−10

10−6

10−2

κt

E
(κ
,t
)

(a) Sample energy spectrum

100

101

0

20

10−10

10−6

10−2

κt

C
(κ
,t
)

(b) Sample control spectrum

Figure 4.32: Sample spectra of (a) energy (4.26) and (b) control spectra (4.30) of the RTGV flow at Re = 1280 computed with the KBC-N1 LBM
for (Ma,N) = (0.1, 64). The red circles denote the values of the spectra at the respective cutoff wavenumber κc = 1/N . The cyan
squares denote the spectra at t = T ≈ 31.

LBM is well-suited for computing statistical solutions to three-dimensional incompressible fluid flows. Forthcoming
research will put in evidence the structure function decay and provide runtime comparisons to conventional solvers.

4.4 Time-filtered Navier–Stokes equations

This section summarizes the results from Simonis et al. [233] that are obtained from conducting benchmark tests for
artificial DHIT to evaluate the quality of the proposed TLES LBM (see Section 3.3.1.5) with respect to DNS results
with SEM 7. The numerical experiments are based on approximating the incompressible NSE (2.12) with deterministic
TGV flow initial data (4.18).

4.4.1 Reference data

In the following, a high resolution DNS with the SEM, resolving the appearing scales, serves as a reference. The
simulations denoted with SEM were performed using the spectral element code Nek5000. The solver employs third
order backward differentiation formulas in time and a spatial discretization which depends on the chosen polynomial
order [65]. Two Reynolds numbers are tested,Re = 800 andRe = 3000, respectively. The discretization for the former
is based on 18 spectral elements in each coordinate direction with a polynomial order of seven, which equals a number
ofN = 127 grid points. For the second tested Reynolds numberRe = 3000, the resolution of the reference SEM DNS
is N = 351 in each coordinate direction, consisting of 50 elements and a polynomial order of seven. Both reference
simulations use a time step size of 4t = 0.001. Figure 4.11 exemplarily visualizes the time-dependent spectra of
energy and dissipation for Re = 800 computed with SEM DNS. The sampling rate of the kinetic energy is 0.05. The
time dependence of the TGV flow in terms of spectral properties is clearly evident. It is also notable that, due to the
low Reynolds number, the majority of dissipation takes place within the low to intermediate wavenumber region (see
Figure 4.11b).

7 Large parts of the text, figures and tables in this Section are reproduced from [233], Copyright (2022), with permission from the authors and
Elsevier Inc.
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4.4.2 Model calibration

To scrutinize the numerical behavior of the TLES LBM proposed in Section 3.3.1.5, a parameter study is conducted.
The observed effects of the temporal filter for varying lattice Mach number and filter width are categorized below.
Therefor, εtot, εres, εmod, E, and D are evaluated for a Reynolds number of Re = 800. If not stated otherwise, all
quantities are deconvolved according to (3.291). For clarity, Table 4.12 summarizes a selection of conversion factors
for the TLES LBM used in the present work. All LBM computations are carried out with OpenLB [161, 162] on at
most 75 nodes with two Intel Xeon E5-2660 v3 each.

Table 4.12: Summary of TLES LBM discretization parameters. This table is reproduced from [233], Copyright (2022), with permission from the
authors and Elsevier Inc.

N uL Ma 4x 4t τ

Re = 800 Re = 3000

64

0.11547 0.2 0.09973 0.01154 0.50434 0.50116

0.08660 0.15 0.09973 0.00864 0.50326 0.50087

0.05776 0.1 0.09973 0.00576 0.50217 0.50058

0.04330 0.075 0.09973 0.00432 0.50163 0.50043

0.02887 0.05 0.09973 0.00288 0.50109 0.50029

128

0.11547 0.2 0.04947 0.00571 0.50875 0.50233

0.08660 0.15 0.04947 0.00428 0.50656 0.50175

0.05776 0.1 0.04947 0.00288 0.50438 0.50117

0.04330 0.075 0.04947 0.00214 0.50328 0.50088

0.02887 0.05 0.04947 0.00144 0.50219 0.50058

4.4.2.1 Filter width

Let

Θ = Θ̃4t, (4.64)

where Θ̃ > 0 denotes the dimensionless filter width. To calibrate the model, we test a sequence of Θ̃ = 5, 10, 20, 40

in the MRT LBM TLES with a fixed Mach number ofMa = 0.1 and a resolution of N = 64 for the TGV flow with
Re = 800.

The resulting effects on dissipative properties and spectral energy recovery are plotted in Figures 4.34 and 4.33,
respectively. For Θ̃ = 5 the impact of the TLES on the dissipation rate is marginally visible when comparing Figures
4.34a and 4.34b. Also the spectral properties of underresolved DNS (UDNS) and TLES are similar for the smallest
investigated filter width. Nevertheless, a slight increase of εmod shortly after the initialization is evident. In case of
Θ̃ = 10, 20, the peak of εtot approaches the reference DNS solution, see Figures 4.34c and 4.34d. At the same time,
the model dissipation rate oscillations in the initial time zone accumulate until a complete overdrive, which proceeds
with time, is visible for Θ̃ = 40 (Figure 4.34e). Conclusively it can be stated that for Θ̃ > 10 the dissipation rate
oscillations are clearly unphysical. The effects also project to wavespace, where a respective increase within the energy
(Figure 4.33a) as well as the dissipation spectrum (Figure 4.33b) appears at high wavenumbers κ & 30. Further,
Figure 4.33 suggests that for Θ̃→ 40 the model draws energy from the inertial range and transports it to small scales.
Hence, increasing the filter width leads to a larger amount of energy injection into the dissipation range.
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Figure 4.33: Energy spectrumE (κ) (a) and dissipation spectrumD (κ) (b) at t = 9 for the TGV flowwithRe = 800. Computations forMa = 0.1

and N = 64 with the LBM as UDNS and TLES with Θ̃ = 5, 10, 20, 40 in comparison to the SEM DNS with a corresponding
resolution ofN = 127. This figure is reproduced from [233], Copyright (2022), with permission from the authors and Elsevier Inc.

0 10 20
0

5 · 10−3

1 · 10−2

t

ε
( t

)

(a) LBM UDNS

0 10 20
t

(b) LBM TLES Θ̃ = 5

0 10 20
t

(c) LBM TLES Θ̃ = 10

SEM DNS εtot

LBM εtot

LBM εres

LBM εmod

0 10 20
0

5 · 10−3

1 · 10−2

t

ε
( t

)

(d) LBM TLES Θ̃ = 20

0 10 20
t

(e) LBM TLES Θ̃ = 40

Figure 4.34: Total, resolved and model dissipation rate for the TGV flow withRe = 800. Computations forMa = 0.1 andN = 64 with the LBM
as UDNS (a) and TLES with Θ̃ = 5, 10, 20, 40 (b-e, respectively) in comparison to the SEM DNS with a corresponding resolution of
N = 127. This figure is reproduced from [233], Copyright (2022), with permission from the authors and Elsevier Inc.

Conclusively, since the spectra remain close to the UDNS, initial oscillations are kept in a reasonable intensity and the
dissipation rate peak is a closer match than without the model, the filter width is set to Θ̃ = 10 for all following LBM
TLES runs.
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4.4.2.2 Lattice Mach number dependency

We test the method for a range ofMa = 0.05, 0.075, 0.1, 0.15, 0.2 to investigate the dependency on the timestep size
which changes along the Mach number variation. Due to the fact that orthogonal moment MRT LBMs exhibit lattice
Mach number instabilities [63, 114], the free parameters of the MRT scheme are modified toward the MRF collision
as proposed in Section 3.2.7.1 to obtain stable results. The optimized third order relaxation frequencies proposed by
Chávez-Modena et al. [52] areMa-dependent [232]. To respect this dependency, a polynomial fit is used as described
in Section 4.3.3.3, assigning the corresponding value for each of the testedMa to the third order relaxation frequencies.
Overall, the here used relaxation frequencies are at second order se = 1.19 (static) and sP = 2c2s/(2ν + c2s) (shear
viscosity conforming to (3.289)), third order sq(Ma) = ŝpf3

q (Ma) and sµ(Ma) = ŝpf3
µ (Ma) (dynamic relaxation

functions (4.40) and (4.39), respectively), and fourth order sε = sΠ = 1.4 (static). A detailed analysis of the such
obtained model is given above (Section 4.3.3 and Section 4.3.3.3) and in [232].
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Figure 4.35: Energy spectrumE (κ) (a) and dissipation spectrumD (κ) (b) at t = 9 for the TGV flow withRe = 800. Computations forN = 64

with the LBM TLES (Θ̃ = 10) forMa = 0.05, 0.075, 0.1, 0.15, 0.2 in comparison to the SEMDNS with a corresponding resolution
ofN = 127. This figure is reproduced from [233], Copyright (2022), with permission from the authors and Elsevier Inc.

Figure 4.36 summarizes the dissipation rate changes along the variation of Ma. Spectral energy and dissipation are
visualized in Figure 4.35. Tracking the previous observations for the filter width variation, we detect an amplification
of the dissipation rate oscillations at t → 0 with increasing Ma (see e.g. Figure 4.36d). Though a similar effect of
analogously increasing energy and dissipation in high wavenumbers is shown in Figure 4.35, the spectral quantities are
less affected by varyingMa.

In contrast to the unphysical oscillations for increasingMa, the lowest evaluated Mach number causes clearly negative
model dissipation. This behavior roots in the model’s compensation of an unphysically increased resolved dissipation
rate for t > 10 (see Figure 4.36a). The fact that the model is applied to the TGV flow, where the effective Mach
number decreases with time underlines the statement. The lowest tested Mach number which does not exhibit an
overly increased dissipation rate tail isMa = 0.1. Another argument for choosingMa rather smaller than the usually
incompressible enough value of 0.3 is constituted by the fact that we obtained an expression for the residual stress T

from the filtered incompressible NSE in the first place. Contrary to this, for fixed discretization, the LBM forms a
moment hierarchy which approximates the weakly compressible NSE [184], solely reaching the incompressible limit
under DS [172], i.e. diminishing the Mach number via4t = O(4x2) along4x→ 0 (see Section 3).

As a compromise between the computational effort, which increases with decreasing Mach number, and the circum-
stances addressed above, we fixMa = 0.1 for the following simulations.
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Figure 4.36: Total, resolved and model dissipation rate for the TGV flow with Re = 800. Computations for N = 64 with LBM TLES (Θ̃ = 10)
forMa = 0.05, 0.075, 0.1, 0.15, 0.2 (a-e, respectively) in comparison to the SEMDNS with a corresponding resolution ofN = 127.
This figure is reproduced from [233], Copyright (2022), with permission from the authors and Elsevier Inc.

4.4.2.3 Deconvolution of filtered quantities

Figure 4.37 gives an overview of all computed quantities in filtered and deconvolved form. With respect to the
observations above (already in Section 4.3.4.2), it becomes clear that the initial dissipation rate deviation in Figure 4.37a
roots in the LBM itself and is amplified by the turbulence model. In particular, despite initializing the velocity field,
pressure and strain rate with respective populations, the intrinsic feature of LBMs applied to a nonstationary TEQ –
transporting initialization errors with time throughout the whole simulation – remains present. Consequently, the first
order finite differences in the evolution equation for T (3.290) as well as in the discrete deconvolution (3.291) act as
amplifiers for initialization errors of LBMs. The intensifying initial time oscillations with increased Mach numbers
are also in line with this argument. A largerMa increases4t as well as the compressibility error, and consequently the
initialization error [186]. In turn, larger filter widths amplify that error and lead to higher deviation at early timesteps.

Except for the initial dissipation rate oscillations and the corresponding spectra deviations at the highest wavenumbers
κ ≈ 30, onlymarginal differences are observable in Figure 4.37. Within the remaining region of resolved wavenumbers,
the deconvolved and filtered spectra of energy (Figure 4.37b) and dissipation (Figure 4.37c), respectively, are overall in
close agreement.

4.4.3 Comparison to the spectral element method

The Reynolds number is increased to Re = 3000 to reach the turbulent regime and shift the dissipation to higher
wavenumbers. The optimal parameters for the LBM TLES with respect to above investigations where set to Θ = 10

andMa = 0.1.
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Figure 4.37: Dissipation rates εtot (t), εres (t), εmod (t) (a), energy spectrumE (κ) (b) and dissipation spectrumD (κ) (c) (at t = 9) for the TGV
flow with Re = 800. Computations for N = 64 with the LBM TLES (Θ̃ = 10) forMa = 0.1. Deconvolved and filtered quantities
in comparison to the SEM DNS with a corresponding resolution ofN = 127. This figure is reproduced from [233], Copyright (2022),
with permission from the authors and Elsevier Inc.

A comparison to the recently proposed SEM TLES [200] is conducted. The only modification compared to the
implementation in [200] is the regularization term. As expected, relaxing the unfiltered velocity fields to the filtered
ones within the regularization, introduces a phase lag. Although its effect is negligible in statistically stationary test
cases, it proved to be severe for the results of the TGV flow due to its transient nature. This effect can be prevented
by using the regularization term from the temporal approximate deconvolution method [211]. In this term, the filtered
fields are relaxed to their filtered approximate deconvolution.

To find common ground for both methods, the respective number of elements was chosen such that the overall resolution
of the SEM closely matches the number of Cartesian gridpoints of the LBM. The resolution N = 64 of the UDNS
and the TLES with the SEM consists of nine spectral elements in each coordinate direction and a polynomial order of
seven. The parameters used for the SEM TLES comprise the filter width Θ = 104t and the regularization parameter
χ = 4.0, with a time step size of4t = 0.005. In contrast to that, the resolution N = 127 of the UDNS and the TLES
combined with the SEM consists of 18 spectral elements in each coordinate direction and a polynomial order of seven.
The parameter choices for the SEM TLES in this case are Θ = 104t, χ = 2.0, and 4t = 0.005. Below, both, the
underresolved DNS (denoted as UDNS) results and the TLES computations, for the SEM as well as the LBM, are
cross-compared with respect to the reference high resolution SEM DNS.

4.4.3.1 Underresolved direct numerical simulation

Figure 4.38 summarizes dissipation rates, energy spectrum and dissipation spectrum for the TGV flow computed
without turbulence model with the LBM and the SEM as UDNS for resolutions ofN = 64 andN ≈ 128, respectively.

Figure 4.38a gathers the dissipation rates εtot, εmod and εres computed with the LBM and εtot computed with the SEM,
respectively. The total dissipation rates in the initial region of both methods are similar for each resolution. However,
the peak region is underpredicted by the LBM in contrast to the SEM results. This effect is less pronounced for
N ≈ 128. ForN = 64 the SEM seems to detect the dissipation rate peak better in terms of magnitude and narrowness
around t = 9. Within the remaining time interval both methods show a certain variance from the DNS reference, where
the LBM overpredicts and the SEM underpredicts the dissipation rate. For N = 128, the LBM approaches the peak
magnitude of the dissipation rate and closely matches the slope in the time interval subsequent to the overpredicted
plateau at t ≈ 13. Similarly, the SEM closely follows the DNS roughly up to t ≈ 10, and deviates from the reference
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dissipation rate in the plateau region. However, the SEM also varies from the reference DNS in the final time interval
by first underpredicting and then overpredicting the slope.

The qualities of each methods for the recovery of the energy spectrum can be observed in Figure 4.38b. Within the low
wavenumber region, the SEM produces more accurate results than the LBM. This difference vanishes when increasing
the resolution. In the high wavenumber region for N = 64, the SEM produces an energy pile-up, whereas the LBM
predicts an early onset of the dissipation range with low energy levels. Increasing the resolution to N ≈ 128 the
SEM bends the pile-up toward the DNS which substantially increases the approximation quality. The energy spectrum
recovered by the LBM still exhibits an early decay though its onset is shifted from κ ≈ 20 (forN = 64) to κ ≈ 50 (for
N = 128).

For the dissipation spectra plotted in Figure 4.38c similar effects are visible. The characteristic differences between the
methods in terms of a pile-up with the SEM versus an early energy dissipation with the LBM are clearly apparent for
N = 64. The increased resolutionN ≈ 128 still exhibits a separation of curves at higher wavenumbers. Up to κ ≈ 40

both methods closely follow the DNS reference, where the LBM slightly overpredicts the DNS dissipation spectrum
for κ & 25. Afterwards, the SEM dissipation spectrum still roughly matches the reference slope with a diminished
pile-up at the highest captured wavenumbers, whereas the LBM triggers an early onset of flattening.

Overall, both, the LBM and the SEM, recover the tested quantities remarkably well in comparison to results computed
with other methods but similar resolutions found in the literature [79, 90]. Distinct attributes can be observed which
root in the derivation of each method and leave scope for specific improvements or additional features.

4.4.3.2 Temporal large eddy simulation

Figure 4.39 summarizes the dissipation rates, as well as the energy spectra and the dissipation spectra for the TGV
flow computed with TLES based on the LBM and the SEM for resolutions of N = 64 and N ≈ 128, respectively.
With respect to the dissipation rates plotted in Figure 4.39a, the LBM TLES recovers the formation of a distinct peak
around t ≈ 9 already at a resolution of N = 64, although with slightly differing magnitude. In contrast to that, the
SEM exhibits a distorted crown within the peak region. As expected, initial time oscillations are clearly visible for the
LBM. The SEM shows similar but far less pronounced issues. The dissipation rate tail is overpredicted by the LBM
and slightly underpredicted by the SEM. Increasing the resolution to N ≈ 128, both methods closely follow the DNS
reference up to t ≈ 9. Afterwards, the LBM fails in capturing the plateau subsequent to the peak region, but aligns
again with the reference slope for t & 13. The SEM overpredicts and then underpredicts the DNS reference within this
region.

Comparing the energy spectra in Figure 4.39b for N = 64, the distinct features of each method reappear, i.e. the SEM
forms an energy pile-up at high wave-numbers, wheres the LBM induces an early energy dissipation in that region.
Again, these effects shift and decrease with an increased resolution of N ≈ 128. The dissipation spectra produced
with the TLES (see Figure 4.39c) also exhibit similar properties as for UDNS. Nevertheless, a trend toward a closer
match of the DNS reference is visible. The dissipation pile-up of the SEM TLES is less distinctive compared to the
SEM UDNS. Analogously, the LBM TLES flattening is slightly shifted upwards compared to the LBM UDNS.

Overall, themost prominent differences between the LBMTLES and the LBMUDNS can be observed in the dissipation
rates. Comparing UDNS and TLES results with the LBM forN = 64 (Figure 4.38a vs Figure 4.39a, left respectively),
we notice a sharpening effect of εtot in the peak region toward the DNS reference. This observation can be linked to
εmod, which forms a peak closer to the reference peak at t ≈ 9 with the TLES than with the UDNS. At the same time,
the resolved dissipation rate εres appears to be smoother for the TLES LBM than for the UDNS LBM. Similarly, the
SEM TLES results show better agreement with the DNS values for εtot than the SEM UDNS data.

Hence, for both methods, the TLES evidently improves the dissipation rate recovery, while upholding or slightly
enhancing the good approximation of DNS reference energy and dissipation spectra. This improvement can be traced
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(a) Dissipation rates of SEM UDNS and LBM UDNS withN = 64 (left) andN ≈ 128 (right).
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(b) Energy spectrum of SEM UDNS and LBM UDNS withN = 64 (left) andN ≈ 128 (right).
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(c) Dissipation spectrum of SEM UDNS and LBM UDNS withN = 64 (left) andN ≈
128 (right).

Figure 4.38: Dissipation rates εtot (t), εres (t), εmod (t), energy spectrumE (κ) and dissipation spectrumD (κ) (at t = 9) for the TGV flow with
Re = 3000. Computations for N = 64 (left column) and N = 128 (right column) with the LBM UDNS forMa = 0.1 compared
to the SEM UDNS with the number of spectral elements corresponding to a resolution of N = 64 and N = 127, respectively.
The resolution of the reference SEM DNS corresponds to N = 351. This figure is reproduced from [233], Copyright (2022), with
permission from the authors and Elsevier Inc.

back to the injection of model dissipation rate. After comparing the MRT LBM results of the UDNS and the TLES,
we can numerically approve that the employed MRT LBM UDNS, already acts as an implicit LES on its own via
introducing hyperviscous terms. The model dissipation rate for N = 64 in Figure 4.38a which makes approximately
half of εtot underpins this observation.
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(a) Dissipation rates of SEM TLES and LBM TLES withN = 64 (left) andN ≈ 128 (right).
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(b) Energy spectrum of SEM TLES and LBM TLES withN = 64 (left) andN ≈ 128 (right).
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(c) Dissipation spectrum of SEM TLES and LBM TLES withN = 64 (left) andN ≈ 128
(right).

Figure 4.39: Dissipation rates εtot (t), εres (t), εmod (t), energy spectrumE (κ) (at t = 9) and dissipation spectrumD (κ) for the TGV flow with
Re = 3000. Computations for N = 64 (left column) and N = 128 (right column) with the LBM TLES (Θ̃ = 10) forMa = 0.1
compared to the SEMTLESwith the number of spectral elements corresponding to a resolution ofN = 64 andN = 127, respectively.
The resolution of the reference SEM DNS corresponds to N = 351. This figure is reproduced from [233], Copyright (2022), with
permission from the authors and Elsevier Inc.

4.4.4 Numerical error quantification

The mesh convergence of UDNSs with theMRT LBM for the TGV flow under acoustic scaling (AS) up to a measurable
compressibility error has been investigated by Haussmann et al. [114]. Following up the work, the present investigations
predict the accuracy of the MRT LBM with the proposed TLES and link the activity of the model to an error extracted
from the energy spectrum. The results of the experimental numerical analysis are gathered in Figure 4.40.
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Besides the classical evaluation of a turbulence model based on nonanalytic graphical observations, a possible tool for
measuring its accuracy is suggested by Geurts et al. [99]. The accuracy prediction is based on the subgrid activity

s (N, t) =

∣∣∣ε(N)
mod (t)

∣∣∣∣∣∣ε(N)
tot (t)

∣∣∣ , (4.65)

where ε(N)
· (t) denotes the respective dissipation rate portions for a resolution N at time t. Note that we reframe the

notions introduced in [99] specifically for the classical Smagorinsky model according to the observations for the present
TDDM. Subsequently, the accuracy of a run with resolution N is compiled into a time dependent L2-error over the
resolved wavenumbers κ with respect to the energy spectrum E(N) (κ, t), i.e.

errL2 (N, t) =

√√√√∑c
i=2

∣∣E(N) (κi, t)− EDNS (κi, t)
∣∣2∑c

i=2 |EDNS (κi, t)|2
, (4.66)

where κc = κc (N) denotes the cutoff wavenumber for the respective resolution.

The subgrid activity s (N, t) of the MRT LBM TLES and the MRT LBMUDNS are plotted over time t for a resolution
sequence of N = 24, 48, 64, 96, 128, 192 in Figure 4.40a and Figure 4.40b, respectively. The specific data at time
t = 9 is compiled in Figure 4.40c. The parameters for the spatial refinement obey AS with a constant Mach number
Ma = 0.1 and the filter width is chosen as Θ̃ = 10. Exemplary parameter settings forN = 64 andN = 128 are listed
in Table 4.12. Apart from the artifacts discussed in Section 4.4.2.2 which are clearly visible in Figures 4.40a, 4.40b –
namely the initialization errors at the beginning of the simulated time interval and the negative model dissipation rate
values at its end – the subgrid activity is monotonically decreasing on average when the resolution is increased. This
suggests a consistently vanishing subgrid contribution toward DNS level resolutions for the present TLES. Due to its
time discretization dependence, the temporal filter width Θ is affected by increasing the temporal resolution along the
spatial one during AS. The effect of this coupling is clearly visible in Figure 4.40c.

It is notable that, when refining the grid via AS, the subgrid activity of both simulation techniques with the MRT LBM
is diminished with increasing (up to presumably second) order. Further, comparing Figure 4.40a and Figure 4.40b
we observe solely shape differences within the artifact-free region t ∈ (5, 15), whereas the general magnitude of the
subgrid activity with and without explicit turbulence model remains approximately equal. Again, the above mentioned
interpretation of MRT LBMs as a stand-alone implicit turbulence models seems natural and is strongly supported by
the data compiled in Figure 4.40c.

To isolate the previously observed dissipation injection at the peak region of εtot (t), the energy spectra produced by
the MRT LBM with and without TLES are evaluated at t = 9, see Figure 4.40d and Figure 4.40e, respectively. Within
the dissipation regime for the highest wavenumbers, a slight increase of the slope produced by the TLES compared to
the UDNS result can be observed for all resolutions. The corresponding errors are computed according to (4.66) and
are gathered in Figure 4.40f by plotting errL2 (N, t = 9) over the subgrid activity s (N, t = 9). For lower resolutions
N ≤ 64 an accuracy order of two is evident. Increasing the resolution, the second order accuracy in terms of errL2 (N)

is diminished until an error plateau is reached.

Since the error plateau appears for both, the UDNS and the TLES, a further characterization is required. As a first
investigation of isolating the impact of the TLES on LBMs, Figure 4.40i visualizes the relative deviation of the MRT
LBM TLES from its UDNS counterpart in terms of subgrid activity and energy spectrum error. For both quantities,
a clear diminishing trend is observable. Whereas the subgrid activity deviation shows a linear regression slope of
approximately O(N−0.47), the regression slope of the energy spectrum error deviation exhibits a much clearer order
O(N−0.83).

150



4.4 Time-filtered Navier–Stokes equations

0 5 10 15 20

0

0.5

1

N

t = 9

t

s(
N
,t

)

(a) Subgrid activity for LBM TLES

0 5 10 15 20

0

0.5

1

N

t = 9

t
s(

N
,t

)
(b) Subgrid activity for LBM UDNS

101 102

10−1

100

N

s(
N
,t
=

9)

LBM TLES
LBM UDNS

O(N−2)

O(N−1)

(c) Subgrid activity at t = 9

101 102
10−6

10−5

10−4

10−3

10−2

κ

E
( κ

)

(d) Energy spectrum of LBM TLES at t = 9

101 102
10−6

10−5

10−4

10−3

10−2

κ

E
( κ

)

(e) Energy spectrum of LBM UDNS at t = 9

10−1 100
10−1

100

s (N, t = 9)

er
r L

2
( N
,t
=

9)

LBM TLES
LBM UDNS

O(s2)

O(s1)

O(s0)

(f) Energy spectrum error at t = 9

20 40 60 80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

κ̃ =
κmax

c
κc
κ

∣ ∣ ∣ E
(N

) (
κ)
−E

D
N

S
( κ

)∣ ∣ ∣
|ED

N
S

( κ
) |

(g) Local energy spectrum error of LBM TLES
at t = 9 over normalized wavenumber κ̃,
where κmax

c denotes the cutoff wavenumber
of the maximum resolutionN = 192.

20 40 60 80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

κ̃ =
κmax

c
κc
κ

∣ ∣ ∣ E
(N

) (
κ)
−E

D
N

S
( κ

)∣ ∣ ∣
|ED

N
S

( κ
) |

(h) Local energy spectrum error of LBM
UDNS at t = 9 over normalized wavenum-
ber κ̃, where κmax

c denotes the cutoff
wavenumber of the maximum resolution
N = 192.

101 102
10−4

10−3

10−2

10−1

N

rd
(N
,·)
=

∣ ∣ ∣ ·T
L

E
S

(N
)−
·UD

N
S

(N
)∣ ∣ ∣

|·UD
N

S
(N

) |

rd(N, errL2 )
rd(N, s)
LR rd(N, errL2 )
LR rd(N, s)

O(N−1)

(i) Relative deviation rd of LBM TLES
from LBM UDNS in terms of subgrid
activity and energy spectrum error at
t = 9 with respective linear regressions
(LR).

LBM TLES or UDNS N = 24 LBM TLES or UDNS N = 48 LBM TLES or UDNS N = 64
LBM TLES or UDNS N = 96 LBM TLES or UDNS N = 128 LBM TLES or UDNS N = 192
SEM DNS N = 351

Figure 4.40: Subgrid activity and energy spectrum error measurements for a sequence of resolutions N = 24, 48, 64, 96, 128, 192. The LBM
TLES runs with Θ̃ = 10 and the LBM UDNS computations are carried out withMa = 0.1 for the TGV flow at Re = 3000. This
figure is reproduced from [233], Copyright (2022), with permission from the authors and Elsevier Inc.
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Further, the overall magnitude of the energy spectrum error plateau is almost doubled compared to the dissipation
rate error values obtained in [114]. Figures 4.40g, 4.40h gather additional information on the energy spectrum error
composition in terms of normalized wavenumbers κ̃. Within the regime up to approximately 75% of the resolved
wavenumbers, the error is on average consistently diminished with an increasing resolution. Opposed to that, the
remaining 25% up to the cutoff wavenumber form an asymptotically constant error contribution and perturb the error
measurement due to the dissipation rate tail. Hence, we expect that advanced analysis techniques (e.g. [98]) could be
employed to focus on certain wavenumber ranges.

In summary, the information compressed in Figures 4.40g, 4.40h, 4.40i suggests that the presence of numerical
dissipation within the underlying method renders the experimental error analysis of the compound methodology,
including the TLES, rather difficult. Nevertheless, we can state that, along the limit toward the error bound of the
MRT LBM with AS [114], the TLES consistently looses its model effectiveness represented by the subgrid activity. In
terms of a temporal subgrid resolution defined as } = 4t/Θ, the present work proves that with } = 0.1 being fixed
as a constant, the solution to the incompressible NSE is approached by the proposed MRT LBM TLES up to a known
combination of errors. Since the error plateau similarly appears for theMRT LBMUDNSwe conclude that, besides the
dissipative nature of LBMs, the compressibility defect [114] represents the main contribution of the energy spectrum
error. A consistency error investigation with respect to the total dissipation rate is provided in 4.4.5. However, the
complete interaction of all possible roots of errors near the DNS level remains to be clarified in future studies.

4.4.5 Scaling, consistency and experimental order of convergence

Since we aim at approximating the incompressible NSE, DS is mathematically consistent in the relaxation limit and
reduces the accuracy in time to first order (4t ∼ 4x2) with respect to the TEQ (see [120, 143, 250]). In contrast to
that, AS suggests spatio-temporal accuracy orders of two (since 4t ∼ 4x), but prevents convergence as soon as the
constant compressibility error plateau is reached (see theoretically [120] and numerically [114]). According to this fact,
a second order TDDM discretization should be more consistent in underresolved configurations and AS.Whereas a first
investigation of this conjecture is provided below, the detailed analysis is deferred to future studies. Moreover, despite
AS being nonconvergent, it is employed in the present study due to its common usage in underresolved applications
with limited parameter spaces. Thus, the above investigations include numerical tests for the AS-typical error behavior
which was previously documented in [114].

Nevertheless, from a mathematically rigorous point of view, the LBM as a numerical method to approximate the
incompressible NSE is restricted to DS, which hence implies accuracy of second order in space and first order in
time, and henceforth in this case renders the first order discretization of the TDDM (deconvolution and residual stress
calculation) reasonable.

To investigate and verify these statements, the modular LBM combinations of SRT and MRT collision as UDNS
and with the TDDM finite difference discretization of first (TLESo1) and second order (TLESo2), respectively, are
compared in terms of error measurements alongAS andDSwith respect to a Kolmogorov scale resolving high resolution
simulation (SRT LBMwithN = 512 and parameters according to Table 4.13). The validity of the highly resolved SRT
LBM as DNS was numerically proven in [114] with respect to reference results obtained with pseudo-spectral methods.
Note that, due to the observations made in [97], within the present work spatial velocity gradients are computed with
eighth order central differences (3.313). Furthermore, (4.22) is approximated with second order central differences.
The simulations are carried out on a maximum of 264 nodes with two Intel Xeon Platinum 8368 processors each.

Figure 4.41 gathers the results of resolution dependent computations of the total dissipation rate error

errεtot (N) =

√√√√√∑m
i=1

∣∣∣ε(N)
tot (ti)− εDNS

tot (ti)
∣∣∣2∑m

i=1

∣∣εDNS
tot (ti)

∣∣2 (4.67)
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for each tested modification, where [t1, tm] = [0.1, 20] is discretized to equidistant time intervals of size 0.1, and
εDNS
tot refers to the total dissipation rate computed with the high resolution SRT LBM. The corresponding discretization
parameters are summarized in Table 4.12. Via linear regression, approximate EOC slopes are obtained from errεtot (N)

for the overall stable subsequence N = 64, 128, 256 (see Table 4.14).

Table 4.13: LBM discretization parameters used in Figure 4.41. This table is reproduced from [233], Copyright (2022), with permission from the
authors and Elsevier Inc.

N scaling Ma τ 4x 4t

32 DS/AS 0.1 0.50106 0.20268 0.01170

64
AS 0.1 0.50217 0.09973 0.00575

DS 0.05 0.50108 0.09973 0.00287

128
AS 0.1 0.50437 0.04947 0.00285

DS 0.025 0.50109 0.04947 0.00071

256
AS 0.1 0.50878 0.02463 0.00142

DS 0.0125 0.50109 0.02463 0.00017

512 DS 0.00625 0.50110 0.01229 0.00004
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Figure 4.41: EOC comparison for TGV flow computations atRe = 800with modular LBM combinations of SRT orMRT collision without (UDNS)
and with TLES with TDDM finite difference discretization of first (TLESo1) and second order (TLESo2), respectively. Only stable
configurations are included. Total dissipation rate errors are calculated according to (4.67) with respect to high resolution reference data
from the SRT LBM run at N = 512 andMa = 0.00625. AS (left) and DS (right) are based on a respective sequence of resolutions
N = 32, 64, 128, 256 starting atMa = 0.1 and conforming to Table 4.13. This figure is reproduced from [233], Copyright (2022),
with permission from the authors and Elsevier Inc.
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Table 4.14: Regression slopes O(N− · ) of EOC comparison (cf. Figure 4.41) computed with errεtot (N) for N = 64, 128, 256. This table is
reproduced from [233], Copyright (2022), with permission from the authors and Elsevier Inc.

method AS DS

SRT UDNS 1.70 1.80

SRT TLESo1 1.78 1.83

SRT TLESo2 2.11 2.07

MRT UDNS 1.52 1.09

MRT TLESo1 1.63 1.17

MRT TLESo2 1.81 1.20

In advance of discussing Figure 4.41 and Table 4.14, the statistical nature of EOC results for turbulent flow test
cases without (known) analytical solution for all times has to be recalled. The rationale of this statement is based
on several aspects, for example that the EOC computation via regression slopes is prone to interference by statistical
outliers. Hence, in order to uphold a mathematical viewpoint, the perception of data obtained from such numerically
experimental validations should remain rather fuzzy than accurate up to specific decimal places.

Nevertheless, considering the results compiled in Figure 4.41, the following observations can be made. Firstly,
comparing the SRT error results of the largest tested resolution N = 256 for AS and DS, we deduce that the
compressibility error plateau is only marginally pronounced, which matches the observations in [114] where the DNS
level for the present setting has been approximated to N ≈ 313. This feature of the results proves the choice of an
incompressible turbulence model for a weakly compressible method reasonable when using Ma ≤ 0.1. Secondly,
despite using MRT collision reduces the EOC (see Table 4.14), it yields a stability gain for highly underresolved
settings (here N = 32) in comparison to the SRT BGK scheme. Additionally, with the help of dynamic relaxation
frequencies, the present MRT formulation is stable for all tested Mach numbers. Still, unexpectedly, the usage of MRT
collision lowers the EOC in DS compared to AS by about 0.5 (see Table 4.14). This is not the case for the SRT LBM.
We interpret the effect as a consequence of choosing specific sets of relaxation frequencies which modify numerical
dissipation, reduce the error for a fixed resolution, and thus yield crooked error curves. Moreover, the reduced EOC
indicates that the present kinetic relaxation frequencies might be suboptimal with respect to a filtered TEQ. Thirdly, it
has to be stressed that the TLES consistently improves the EOC in contrast to the UDNS for all tested methods and
scalings. The positive impact of the model is larger for AS than for DS, which is likely due to theMa reduction during
DS. Further, the model effectiveness increases with the discretization order.

In summary it can be stated that, when using the MRT scheme with AS to ensure stability throughout a broad sequence
of resolutions, the proposed concept of TLES for LBMs significantly and consistently increases the EOC.

4.5 Homogenized Navier–Stokes equations

The HLBM derived in Section 3.3.1.4 by limit consistent discretization is numerically tested for several specific
configurations. To study the limit composition of homogenization, relaxation, and discretization, the results of the
present HLBM for porous media are compared to fully resolved simulations with the HLBM for particulate flows
proposed by Krause et al. [159] and revisited by Trunk et al. [249]. An example visualization of the solid matrix
arrangements in the conducted tests is provided in Figure 4.42 (see Figure 4.42a, 4.42b).
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4.5.1 Porous Poiseuille flow

The geometric arrangement of the porous matrix consists of an array of equally sized spheres. Complemented with the
solid matrix, the fluid void fills the cuboidal domain Ω = [0, 2.5] × [0, 1] × [0, 1]. The numerical setup in the inner
domain conforms to the mathematical model for homogenization from Section 2.5. Additionally, for all simulations, a
quadratic duct flow profile [259] in the yz-plane

ux(y, z) =
16a2

νπ3
(−∂xp)

∞∑
i=1

i mod 2=1

(−1)
i−1
2

[
1− cosh

(
iπz
2a

)
cosh

(
iπb
2a

)] cos
(
iπy
2a

)
i3

(4.68)

is approximated and used as an inlet velocity at x = 0, where a = b = 0.5. The outflow at x = 2.5 comprises a
pressure boundary only and at the side walls no slip conditions are set for the velocity field. Based on firstly, the regular
sphere packing for aε = ε which allows to study the model problem without loss of generality (see Section 2.5) and
secondly, the x-directional inflow in the resolved simulations, the following statements can be made [198]. Within the
model problem, for a given porosity, (2.136) simplifies to an expression for the sphere radius

aε =

[
3

4π
(1− φ) |Y εi |

] 1
3

. (4.69)

We recall Ergun’s [77] equation

−∂xp =
βνρ

a2
ε

(1− φ)2

φ3
ux +

αρ

aε

(1− φ)

φ3
ux |ux| , (4.70)

with α = 1.75 and β = 150, where the superficial velocity us describes the average flow speed through the empty
void in x-direction. Via (4.70), the pressure drop 4p ≈ L∂xp over the domain in x-length L (including the resolved
matrix) is connected to the porosity. Similarly, we can deduce a suitable permeability for the lattice porosity (3.211)
via the Carman–Kozeny relation

K =
a2
εφ

3

β̃(1− φ)2
, (4.71)

where β̃ = 180 is obtained from a fit to experimental results [198]. Forchheimer’s prediction for taking a quadratic
drag into account reads

∇xp = −νρK−1u− cFK−
1
2 ρ|u|u. (4.72)

Combining (4.70), (4.71), and (4.72), suggests β ≈ β̃. The dimensionless form-drag constant hence obeys the
expression

cF = αβ̃−
1
2φ−

3
2 . (4.73)

4.5.2 Consistency of the pressure difference

The following computations with the present HLBM for fluid flow through porous media are contrasted to the
reference values from the resolved simulations via (4.70) and (4.71). A parameter grid comprised by the values
(K,N) ∈ K×N = (2.7× 10−4, 4.0× 10−2)× (21, 105) is used with a Reynolds number of Re = 1 with respect to
the duct height. The Mach number is reduced along DS which leads to a minimum ofMa = 1.6× 10−3 forN = 105.
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(a) Porous matrix with spheres of radius a(1)
ε (b) Porous matrix with spheres of radius a(2)
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Figure 4.42: Exemplary streamlines of u computed with HLBM simulations through homogenized (e) and resolved (c,d) regular arrangements of
spheres (a,b), respectively.

The quantitative assessment of the simulation is given in Figure 4.43 and Table 4.15. A relative consistency error of
the computed pressure drop

err4p(N) =

∣∣4p(N) −4p?
∣∣

|4p?| (4.74)

is extracted, where p? is the result with the highest resolution. Based on that, the pressure drop prediction for respective
permeabilities is studied for consistency. Figure 4.43a visualizes the computed pressure differences with respect to
the permeability computed from (4.71). Compared to the resolved simulation for N = 105, the HLBM results show
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the expected smoothed curve due to the geometric homogenization of the porous matrix. The consistency error of the
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Figure 4.43: (a) Pressure difference for Poiseuille flow through rectangular duct with a regular sphere matrix simulated with present HLBM for
several resolutions and permeabilities and particle-resolved HLBM [159, 249]. (b) Consistency error err4p(N) landscape of the
pressure drop4p computed with HLBM for several permeabilitiesK and resolutionsN .

HLBM approximation toward the highest resolution is plotted in Figure 4.43b. The dependency on the permeability
eigenvalueK is clearly visible. Whereas for largeK, the error decreases on average, smaller permeabilities result in an
increased EOC(K). The latter is summarized in Table 4.15. We observe the expected EOC of order two on average,

Table 4.15: Consistency error of the pressure drop4p computed with HLBM for several permeabilitiesK, and resulting EOC values.

K
err4p(N)

EOC(K)

N = 21 N = 42 N = 63 N = 84

7.02× 10−4 5.28× 10−1 7.86× 10−2 2.47× 10−2 7.55× 10−3 2.43

1.09× 10−3 2.78× 10−1 4.76× 10−2 1.51× 10−2 4.61× 10−3 2.37

2.51× 10−3 1.02× 10−1 1.93× 10−2 6.14× 10−3 1.85× 10−3 2.34

2.80× 10−3 9.10× 10−2 1.73× 10−2 5.50× 10−3 1.66× 10−3 2.34

4.38× 10−3 5.84× 10−2 1.15× 10−2 3.69× 10−3 1.12× 10−3 2.32

1.00× 10−2 3.38× 10−2 7.87× 10−3 2.82× 10−3 9.33× 10−4 2.11

1.12× 10−2 3.27× 10−2 7.88× 10−3 2.88× 10−3 9.64× 10−4 2.08

4.02× 10−2 4.21× 10−2 1.35× 10−2 5.68× 10−3 2.06× 10−3 1.82

which matches the limit consistency predictions from Section 3.3.1.4. Notably, each simulation is ran until stationary
convergence is observed and the flow conditions are in the Stokes regime. Simulations with increased Reynolds
numbers to computationally recover all terms in the approximated HNSE (2.138) are planned in future research.
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4.6 Navier–Stokes–Cahn–Hilliard equations

In Section 4.6, the HSFRM is derived as a higher order extension of the SFRM and formally linked to the binary
KFRM in the incompressible limit. The LBE, discretizing the (H)SFRM for approximating solutions to (2.178) is
given in Section 3.3.1.6. Below, numerical experiments with the thus obtained (H)SFRM LBM are conducted8.

The dynamic effects on an immisciblemixture of two components can be abstracted into shear- and extension-dominated
flows. For these two types of dynamic mixture flows, the (H)SFRM LBM is implemented and tested with a simplified
binary fluid composition (equal density and viscosity). To this end, two classical configurations are digitally twinned:
a parallel-band device for binary shear flow and a four-roller apparatus for binary extensional flow. The free energy
LBM and the test cases are implemented in the open-source parallel C++ framework OpenLB (see Algorithm 2 for
the collision kernel) and evaluated for several nondimensional numbers. In particular, deformation as well as breakup
phenomena are distinctively assessed to determine the models applicability for more complex applications.
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−uw
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(a) Binary shear flow

ab
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−urot urot

−uroturot
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l

l

(b) Binary extensional flow

Figure 4.44: Geometric setup of numerical test cases for binary flow in two dimensions. Scales differ for the purpose of representation. This figure
is reproduced from [235], Copyright (2023), with permission from the authors and the American Institute of Mathematical Sciences.

To assess the capability of the FRM LBM for recovering shear and extensional binary flows, we emulate Taylor’s
parallel-band and four-roller devices [245] by means of numerical simulations in two dimensions (2D). The former
is also tested for three dimensions (3D). The geometric setup of the 2D simulations is sketched in Figure 4.44. All
computations are done with OpenLB release 1.4 [161] on several HPC machines, using for example up to 16 nodes
with five quad-core Intel Xeon E5-2609v2 cores each, or a maximum of 75 nodes with respectively two deca-core Intel
Xeon E5-2660v3.

The deformation of the C1 droplet

D =
L−B
L+B

, (4.75)

where L is the longer axis halved andB the shorter one, is measured via intrinsic functors of OpenLB [162]. In case of
a horizontally measured inclination angle θ = 0◦, an interpolation along the space directions recovers the location of

8 Parts of this section are reproduced from [235], Copyright (2023), with permission from the authors and the American Institute of Mathematical
Sciences.
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the interface. If a simultaneous deformation and inclination of the droplet occurs, L and B are approximated through
concentric circles and θ can be computed at the respective intersection points with the interface.

Though essential differences between 2D and 3D deformations are known [237], certain nondimensional regimes still
allow a side-by-side comparison. Based on that we compare the FRM LBM solutions to 3D reference computations
[157, 179] and analytical predictions [226, 245].

4.6.1 Volume loss of small droplets

The extensions of both, the SFRM and the KFRM with the higher order free energy functional approach by Shin et
al. [227] is proposed in Section 2.6.2. Via using higher orders in leading powers of the order parameter in the free
energy functional, we obtain the HSFRM and the HKFRM (see Definition 2.6.9 and Definition 2.6.8, respectively),
where the connection of both in the formal incompressible limit is upheld also for higher orders. In [227], a higher-order
free energy polynomial settingm > 2 counteracts the vanishing sub-critical sized droplets via penalizing the steepness
near the minima of the double-well potential. Conclusively, a positive recommendation is given toward m = 6, while
m� 6 results in nonphysical effects on the interface shape. Based on (2.173), let

−2 −1 0 1 2

−1

0

1

x

φ

m = 2, t = 1
m = 2, t = 5
m = 2, t = 10
m = 6, t = 1
m = 6, t = 5
m = 6, t = 10

Figure 4.45: Static droplet test case in 2D computed with the SFRM LBM. The order parameter φ is plotted over the cross section y = 0 for the
free energy functional Ψ(m) withm = 2 andm = 6 at several time steps. This figure is reproduced from [235], Copyright (2023),
with permission from the authors and the American Institute of Mathematical Sciences.

Ψ(m) =

ˆ
Ω

(
fHS

B,m + fS
I

)
dx (4.76)

denote the free energy functional for the HSFRM. To investigate the effects of the higher order polynomial in fHS
B,m

for the present HSFRM LBM, the modified Ψ(6) is evaluated against the standard SFRM LBM Ψ = Ψ(2) in a static
2D test case where a circular droplet (φ = 1) is immersed in a quadratic domain filled with the other component
(φ = −1). The velocity field and the external forces are nulled out. The droplet has a radius of a = 20 with an interface
thickness ξ = 2.27 which results in Ch = 0.1135 and thus is prone to strong shrinkage. Figure 4.45 visualizes the
cross section of φ at different time steps. In the case of m = 2, we observe that the order parameter reaches a shifted
value of φ ≈ −1.027 at the center of the droplet, as well as a decreased value in the surrounding fluid region. This
observation agrees well with results from Komrakova et al. [157] who identified the so-called contamination to be
caused by residual diffusion of the interface. It is to be stressed that, though the higher order polynomial with m = 6

corrects the unwanted shift from the local minima and prevents the contamination, the shrinkage of the droplet is still
present and seems to even be increased for larger times. Thus, a recommendation for using the proposed HSFRM can
only be made for simulations where the size of the droplets also after a possible breakup remains above the threshold
of the critical radius. Presently, to capture breakup also at coarse resolutions under the trade-off against more diffuse
interfaces we usem = 2 unless stated otherwise. For this configuration, the approximation of a sharp interface solution
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is numerically approved in Section 4.2 above. Further development and a detailed numerical analysis of the higher
order FRM for dynamic multicomponent fluid flow is planned for future research.

4.6.2 Binary shear flow

We define the nondimensional Reynolds number, capillary number, Péclet number, and Cahn number, respectively as

Re =
γa2ρ

η
, (4.77)

Ca =
aγη

σ
, (4.78)

Pe =
γaξ

MφA
, (4.79)

Ch =
ξ

a
, (4.80)

where γ, a, η, σ, ξ are shear rate, droplet radius, dynamic viscosity, surface tension, interface thickness, respectively,
and A = 3σ/(2ξ) is a mobility parameter. The ratios of viscosity and density of the components are unity and time is
understood as normalized via t = γt.
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Figure 4.46: Deformation and inclination of a droplet in 2D and 3D binary shear flow simulated with the SFRM LBM and compared to reference
results for varying capillary numbers. This figure is reproduced from [235], Copyright (2023), with permission from the authors and
the American Institute of Mathematical Sciences.

Steady state validation In the case ofCa < Cac, the droplet deforms until it reaches a steady state. ForRe = 0.1,
Pe = 0.43, and Ch = 0.0379, Ca is varied over the interval (0.02, 0.6). The results are plotted in Figure 4.46b and
agree well with the literature for small Ca. Refining the mesh over several droplet radii in lattice units a = 30, 64, 128,
indicates convergence to the reference results and allows to simulate validly for higher Ca. Notably, in the transition
regime toward Cac, the droplet tilts and deforms toward an elongated thread and falls back into the stationary shape.
This physical effect leads to an increased difference in results for lower grid resolutions.

Breakup The breakup occurs for a = 30 approximately at Cac ∼ 0.7 (2D) and Cac ∼ 0.42 (3D). Three different
categories are commonly observed [32, 277], namely

(i) pseudo steady-state Ca ∼ Cac,

(ii) end-pinching Cac < Ca < 2Cac, and
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(a) t = 8

(b) t = 14

(c) t = 15

(d) t = 18.8

(e) t = 19.4

(f) t = 20.4

Figure 4.47: Droplet breakup in 2D binary shear flow atCa = 3.5 computed with the SFRM LBM. ComponentsC1 (red) andC2 (blue) are plotted
at normalized time steps.

(iii) capillary wave breakup Ca > 2Cac.

However, the bounds between these regimes are not sharp, such that the droplet may pass through multiple types during
the breakup process. Due to differences between 2D and 3D droplet deformations, Cac in 2D is significantly larger
than in 3D. The latter agrees well with the literature [157], and so does the breakup scenario (see Figure 4.48). In 2D
for Ca = 5Cac at Re = 1, Pe = 0.2 and a = 40 we observe end-pinching as well as a capillary wave breakup (see
Figure 4.47).
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(a) t = 3

(b) t = 26.25

(c) t = 27.5

(d) t = 30

(e) t = 32.25
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Figure 4.48: Droplet breakup in 3D binary shear flow computed with the SFRM LBM at normalized time steps for Re = 0.0625, Ca = 0.42,
Ch = 0.0379, Pe = 0.43. This figure is reproduced from [235], Copyright (2023), with permission from the authors and the
American Institute of Mathematical Sciences.
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4.6.3 Binary extensional flow

The sizing of the four-roller device ensures a uniform extension rate ε [118] which now replaces γ [29, 119, 248] in
the π-group. For fixed Re = 0.0625, Ch = 0.57, Pe = 0.1 and Ca ∈ [0.01, 0.3] the droplet is observed to break for
Ca > 0.25.
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3D Hoang and Park [119]
3D Hsu and Leal [130]

Figure 4.49: Deformation of a droplet in 2D binary extensional flow simulated with the SFRM LBM and comparison to 3D reference results for
varying capillary numbers. This figure is reproduced from [235], Copyright (2023), with permission from the authors and the American
Institute of Mathematical Sciences.

Steady state validation The droplet radius is set to a = 20, which corresponds to a ratio of 40 between
domain length and radius. Figure 4.49 summarizes the deformation in the subcritical capillary regime. For Ca =

0.01, 0.02, 0.04 the droplet shows little to no deformation. Beginning atCa = 0.05 the deformation becomes significant
and increases rapidly with increasing Ca and with a considerably faster rate than in the shear flow. Our simulation
results and the reference data from [119, 130] agree from the perspective of an overall trend but differ at individual
values. Based on the same reasoning as above, we conclude that a 3D extensional flow produces a higher deformation
at lower Ca than in 2D.

Breakup Figure 4.50 visualizes a breakup for Ca = 0.42. At first, the droplet stretches into a long thread of equal
width with rounded ends. Instead of end-pinching, the droplet breaks by overstretching, forming several sub-satellite
droplets. After the droplets exceed the rollers’ gap, their velocity declines and the tails retract quickly. Despite the
successful reproduction of these phenomena, the results show heavy satellite shrinkage due to the high domain-droplet
ratio. The apparent shrinkage of sub-critical droplets is further discussed in Appendix 4.6.1.
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(a) t = 0.25 (b) t = 1.25
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Figure 4.50: Droplet breakup in 2D binary extensional flow simulated with the SFRM LBM at normalized time steps forRe = 0.0625,Ca = 0.42,
Ch = 0.057, Pe = 0.43. This figure is reproduced from [235], Copyright (2023), with permission from the authors and the American
Institute of Mathematical Sciences.
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The main result of the present work is the introduction of a novel coherent mathematical framework to analyze the
constructability, stability and limit consistency of LBMs (see Chapter 3, specifically Sections 3.1 and 3.2). The
relaxation principles of the LBM render the method a bottom-up approach. To advance the LBM into a generic
methodology for approximating broad classes of PDEs, this relaxation limit must be retained at all steps in its
construction. For the example of an advection–diffusion equation in d dimensions, the novel constructive ansatz offers
a completely top-downmathematical path from the PDE toward the final LBE, which forms the centerpiece of the LBM.
Modular convergence arguments are used at each step to further analyze the key ingredients of relaxation frequencies,
equilibria, and moment bases in the ansatz. Hence, complementary to the rigorous procedure for the simple ADE,
necessary LBM ingredients to approximate other PDEs are analyzed by means of possibly nonrigorous but pragmatic
and expedient methodology. Specific results either being a consequence of the novel framework, or complementing it,
are summarized below. Additionally, the contributions are assessed with respect to the initially formulated objectives,
and future research directions are given.

5.1 Summary

In Section 3.1, the contraction limit of the relaxation terms added in the constructive ansatz is analyzed in detail.
For uniform relaxation, existing rigorous results can be used to prove the convergence of the constructed RS to the
entropy solution of the nonlinear advection–diffusion equation in d dimensions (Proposition 3.1.3). Nonuniform
relaxation with MRT collision is analyzed in terms of linear von Neumann stability, which forms the basis for the
definition of stability sets used for example, in Corollary 3.1.2. In Section 3.2, the presently used discrete velocity
models and moment spaces are summarized. As a main contribution, the second order limit consistent discretization
of the constructed and spectrally decomposed RS is proposed. The procedure is based on chaining finite difference
operators and Taylor expansions on three neighboring time steps to consistently derive an LBE with MRT collision and
generic scaling. At each level of discretization, the error contribution on top of the relaxation limit is isolated. The
method is contrasted with other approaches such as asymptotic preserving notions. Stability and convergence is proven
linearly, as commonly done for finite difference discretizations. Based on the composition of limits, the notion of limit
consistency is introduced to track both, the respective and joint order of approximation. Extensions for nonlinearly
stabilized collisions in terms of entropy controlled relaxation are discussed and combined with a computationally
efficient velocity stencil and equilibrium. Additionally, the MRF collision is proposed as a complete abstraction of the
relaxation times to space-time dependent functions. In Section 3.3, existing LBEs for the here approximated PDEs are
summarized and novel LBEs are proposed, for example, to approximate the temporally filtered NSE. Additionally, in
Section 3.3.4, algorithmic concepts for LBM-based extensive computations to numerically observe analytically unseen
stability and for computing statistical solutions of the NSE and the EE with LBMs are devised.

Preceding to the numerical analysis, in Chapter 2, mathematical models are derived in the form of PDEs. The focus is
placed on PDEs with convection and advection terms in the broadest sense, where existing models are revisited and in
parts newly derived. Exemplary for the latter, higher order free energy functionals are used for binary fluid flow models
in Section 2.6.1, and the homogenization of the nonstationary incompressible NSE in various regimes is assessed from
the viewpoint of applicability in Section 2.5.
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Complementary to deriving the mathematical models, constructing the LBM and the numerical analysis thereof,
Chapter 4 documents an array of numerical experiments. The combination of the intrinsic parallelizability of LBMs
with the platform-agnostic and scalable open source framework OpenLB enables in-depth computational tests. The
approximation of various PDEs with LBMs is computationally analyzed in terms of stability, consistency, and accuracy.
The top-down constructed LBM for advection, pure diffusion, or with both features in the targeted PDE is numerically
tested in Section 4.1. The theoretical stability bounds are approved for smooth and nonsmooth initial data in up to
three dimensions and in several ranges of grid normalized nondimensional numbers. The additional limit toward a
sharp interface solution of the CHE is computationally analyzed and observed for a periodic droplet movement in two
dimensions in Section 4.2. The overall second order convergence in space is indicated. In Section 4.3, deterministic
and statistical TGV solutions of the incompressible NSE are approximated with various LBMs. Existing and novel
schemes are extensively tested in terms of stability and convergence over large range of parameter configurations. In
particular, advanced relaxation with the KBC collision is spectrally analyzed on the basis of Fourier transforming
both, the hydrodynamic target quantities and the kinetic relaxation frequencies. Primary numerical evidence is given
that the entropy controller detects and counteracts spectral energy overloads at high wavenumbers where an inverse
K41 power law is observed in the relaxation spectrum. The time dependent EOC toward a pseudo-spectral resolved
reference solution is found to be unaffectedly of second order in the maximum vorticity peak region, even for the
presently used truncated polynomial equilibrium. Moreover, from the numerically observed stability on a broad range
of parameter scans, empirical relaxation functions are proposed for MRF collision, which retains an error minimum in
terms of the total dissipation rate computed in artificial three-dimensional turbulence. Finally, statistical solutions to the
incompressible EE are approximated along the low viscosity limit. A randomized TGV initialization is used to impose
uncertainty into the flow field. For the computed range of configurations, the convergence of the mean and variance of
compensated energy spectra is indicated. In addition to the computational analysis of several LBM collision schemes,
theoretical insights are computationally explored. This work provides an investigation of the capabilities of classical
von Neumann techniques for the stability analysis of MRT LBMs based on orthogonal moments. A comparison of
theoretically derived linear stability to numerically observed computations through several parameter spaces reveals
the spectral sampling of grid effects in the former. The latter in turn indicates that the dissipation error is minimal
within regions of nonlinear stability sets for hyperviscous configurations that are near the SRT BGK configuration.

The numerical experiments include a pilot study on the first LBM TLES with SRT and MRF collision in Section 4.4.
The proposed LBM TLES is based on the closure of the FDVBE with the TDDM and found suitable for increasing
the EOC in terms of accuracy to SEM DNS reference solutions of artificial DHIT. A numerical calibration is carried
out by investigating the interplay of the lattice Mach number affecting the MRT LBM and the filter width, which
characterizes the TLES. Capabilities of the novel methods with respect to turbulence quantity recovery are assessed
and a good agreement to the DNS reference data is found. An error measurement with respect to the energy spectrum
is conducted and linked to the subgrid activity. Additionally, the consistency of the LBM paired with first and second
order multistep finite difference discretizations of the TDDM toward the DNS regime is numerically confirmed.

In Section 2.5, the characteristic regimes of the homogenization of the nonstationary NSE with specific porosities
are merged into one homogenized NSE, which is approximated by the HLBM for fluid flow through porous media.
Based on an application-oriented rationale, the porosity range recoverable by the mathematical model is dictated by the
maximal sphere packing for the nonvanishing obstacle case. The here proposed HLBM is derived with limit consistent
discretization from approximating the homogenized nonstationary NSE in Section 3.3.1.4. The present scheme is
found to reduce to an existing one for simplified flow configurations. The numerical tests in Section 4.5 approve the
approximation of the pressure difference with second order consistency in a porous Poiseuille flow through a square
duct.

The implementation of classical experimental setups for binary extensional and shear flows with the SFRM LBM in
OpenLB allows for the computational modeling of stationary states and breakup mechanisms of droplets and bubbles
in two and three dimensions. In Section 4.6, Taylor’s parallel-band and four-roller devices are digitally twinned and
used for the validation of the numerical scheme when approximating an NSCHE system that models a binary mixture
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flow. To the author’s knowledge, this work is the first application of LBMs for simulating a four-roller apparatus.
Characteristic deformations for steady states and breakup scenarios in critical capillary regimes are captured, and
the known volume loss of small droplet-domain ratios is observed and circumvented with suitably fine meshes. The
known differences between two and three-dimensional droplet deformations and good agreement to reference results
are observed.

Conclusively, the modifications of scaling and relaxation parameters as well as specific moments and equilibria to
cause the limit of the LBM to distinct TEQs are theoretically analyzed and excessively tested in this work. Options
that finally yield control over the relaxation terms appearing in the PDE, which is to be approximated are proposed
(relaxation functions) and discussed (entropy control) together with numerical procedures for the indication and analysis
of such. In summary, a novel coherent framework is built from a combination of a constructive ansatz (CTN1), modular
convergence proofs (CTN2), and the enablement of extensive numerical tests (CTN3). This framework allows for the
analysis and construction of new schemes (CTN4) and contributes to unfolding and analyzing the specific enforcing of
numerical features for example numerical dissipation under the preservation of limit consistency of LBMs already at
the level of construction for a vast range of applications.

5.2 Limitations and outlook

The progress gained from trailblazing the combination of top-down construction and relaxation limit consistent and
stable discretizations in a coherent methodology, motivated this research in the first place. Thus, it contributes toward
the transformation of the LBM to a generically applicable solver for various classes of PDEs. Looking back, the
objectives stated in Chapter 1 have been reached, namely: (OBJ1) Top-down construction for LBMs from a targeted
PDE, (OBJ2) Convergence analysis of the combined limits in LBMs, (OBJ3) Description of the kinetic information
in LBMs, (OBJ4) Establishment of novel LBMs for newly targeted PDEs. Nevertheless, the conducted research also
brings forth the limitations of the proposed methodology. Below, these limitations are summarized and serve as a basis
for suggesting further research directions.

• The present work focuses on approximating PDEs, which are already in – or have been transformed to –
transport form consisting of (∂t + ∇x·) with optional diffusion or higher order derivatives in space. Several
studies (for example [49]) have shown that adapting the equilibrium function is beneficial for approximating
nontransport PDEs (without ∂t) where otherwise, the time derivative must be numerically suppressed. As the
change in equilibrium is merely a change in the added perturbation terms in the proposed ansatz (see Section 3.1),
categorizing the appearance of these terms would enable a unified construction for PDEs of second order at least.

• As a matter of fact, the equilibria used for example, in approximations for the CHE or for nontransport PDEs
typically require a null velocity where the equilibrium function is specialized and differs from the remaining
velocity space. Since by construction, the relaxation system introduces an optional rest velocity, the present
methodology serves as a first step in this direction.

• Including arbitrary equilibrium formulations besides the generalized Maxwellian form, would in turn allow for
formulating new collision schemes, which are optimal in terms of stability and consistency for approximating
nontransport PDEs. To the knowledge of the author, apart from classical MRT schemes, advanced collision has
rarely been studied for approximating PDEs of nontransport type with LBMs.

• This work contains stability analyses of uniform and nonuniform relaxation, in terms of both, linear theoretical
and nonlinear numerical techniques (see Chapter 3). Whereas linear theoretical analysis is useful for simplified
problems and proving the stability of the scheme for classical convergence results, nonlinear numerical obser-
vations are found to be crucial for applicative insights on the scheme taking into account all sources of errors.
Needless to say, nonlinear Lyapunov stability yields a third notion for analyzing nonuniform relaxation and
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enables to adaptively stabilize underresolved flow simulations with hyperviscosity. However, to handle boundary
induced instability in approximating IBVPs involving complex PDEs, the method of numerically observing sta-
bility is unrestrictedly applicable. Forthcoming research should combine the techniques to analyze and propose
solutions to numerical instabilities at the domain boundary when approximating IBVPs with LBMs.

• For targeted PDEs akin to the NSE, the thermodynamic information is helpful to consistently couple additional
multiphysics to the relaxation limit. Thus, removing the thermodynamic parts of the LBM completely to enable
better analyzability will introduce new challenges in modeling for additional terms or couplings. Further,
the methods for including boundary conditions into LBMs benefit from the coarse-grained information from
mesoscopic or even microscopic levels of modeling. These challenges could for example be approached by
extending established theory from kinetic equations toward mathematically generic relaxation specifically in the
context of LBMs.

• Presently, the limit consistent discretization is carried out with second order accuracy. In principle, whereas a
higher order discretization is reachable, the limit consistency with respect to relaxation still must be ensured.
Higher order discretizations have been proposed (see for example [70]) and should be included in the constructive
ansatz.

• Although not combined yet, the proposed methodology of time filtering for LBMs is naturally compatible
with computing statistical solutions, which are a result of random spatial perturbations in the initial data. It
is conjecturable that the benefits from direct deconvolution of the temporally filtered variables will allow for
filtering statistical turbulence quantities in a controllable and consistent way, similar to the deterministic case.
Based on that, an improvement in coarse grid computations with a stabilized TLES LBM would reduce the
time-to-statistical-solution. Additionally, with respect to limit consistent discretization in the scaling coupled
space-time domain, the construction of an LES in space and time might reveal improved consistency toward the
TEQ.

• Since the computation of statistical solutions to the NSE and EE in three dimensions is presently performed
with SLMC LBMs only, the question for advanced UQ methodology to be paired with the LBM is immediately
raised. MLMC or QMC, or at best both [169], should be used along with LBMs to allow for high resolution
simulations of statistical solutions involving more complex initial distributions and boundaries. Additionally,
intrusive approaches should yield advantages when used with LBMs compared to discretizing the modified target
PDEs containing nonlinear gradient terms in the transport part (which is not the case for LBMs).

• Here, the HLBM for fluid flow in porous media is numerically tested for stationary flows only. Since the limit
toward the nonstationary HNSE is uncovered in Section 3.3, numerical tests for turbulent flows in mathematical
porous media models are planned. Future studies should additionally involve model extensions in terms of taking
porosity gradients [58] or anisotropic permeability tensors [17] into account.

• Albeit sharpening the diffuse interface considerably, the proposed HSFRM LBM with higher order free energy
functionals (see e.g. Section 2.6.1) still does not completely solve themodel-intrinsic problem of the CHE in terms
of volume loss. Remedies to this observation have been proposed for direct NSCHE discretization with finite
differences [180] and are transferable to LBMs. Along with the higher order free energy functionals, correction
terms should be included to turn the FRM LBM into an approximation for the conservative CHE. Moreover,
model extensions to nonuniform viscosity and density ratios as well adaptive discretizations are necessary to
reach the complexity of industrial applications.

In summary, the here established explicit combination of mathematical modeling, numerical analysis and computational
experiments (see Figure 1.2) is found to be essential for the proposal and investigation of novel LBMs for PDEs.
Considering the mathematical modeling, an advanced conceptualization of models is required, which are firstly,
mapping accurately from the problem at hand, and secondly come with suitable structures and well-behaved properties
to be optimally approximated with LBMs. Although the numerical analysis of the LBM has brought up several
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rigorous contributions already, a unifying coherent path for pragmatic usage on any given PDE problem, including
boundary conditions, is still to be established. Albeit the intrinsic structure of LBMs enables remarkable scalability of
simulations on contemporary HPC machines, this feature is not outsourced yet. To this end, the most prolific advantage
of the LBM – its parallelizability – must be applied not only to approximate the PDE at hand but also to analyze the
method itself with the help of sustainably developed and optimized software. Furthermore, such obtained robust and
computationally efficient collision kernels are valuable modular pieces to be embedded into and thus accelerate larger
computational data structures. This work is a first step into all three of the above directions, and is hoped to serve as a
starting point for future research on transforming the LBM into a modern, efficient and robust solver for large classes
of PDEs.
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A Acronyms and Symbols

Some of the frequently used acronyms and symbols are summarized below. The list raises no claim to completeness.
For the purpose of readability, symbols are renamed occasionally. In this case, the definition or notation is explicitly
stated within the respective section and is mostly used therein.

Frequently used acronyms

Acronym Definition Page

LBM lattice Boltzmann method p. 1
CFD computational fluid dynamics p. 1
HPC high performance computing p. 1
LES large eddy simulation p.1
FVM finite volume method p. 1
PDE partial differential equation p. 1
IBVP initial boundary value problem p. 1
FDM finite difference method p. 1
HPC high performance computing p. 1
OBJ objective p. 2
CTN contribution p. 2
TEQ target equation p. 2
IVP initial value problem p. 2
PDO partial differential operator p. 5
RS relaxation system p. 5
ADE advection–diffusion equation p. 7
CHE Cahn–Hilliard equation p. 7
NSE Navier–Stokes equations p. 8
EE Euler equations p. 8
K41 Kolmogorov’s theory in [155, 156] p. 9
BE Boltzmann equation (BE) p. 9
BGK Bhatnagar–Gross–Krook [31] p. 11
BGKBE Bhatnagar–Gross–Krook–Boltzmann equation p. 11
TLES temporal large eddy simulation p. 17
TDDM temporal direct deconvolution model [200] p. 17
BL Brinkman law p. 20
DL Darcy’s law p. 20
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HNSE homogenized Navier–Stokes equations p. 29
NSCHE Navier–Stokes–Cahn–Hilliard equations p. 29
FRM free energy model p. 29
KFRM free energy model of Kendon et al. [150] p. 30
SFRM free energy model of Semprebon et al. [224] p. 31
HKFRM higher order KFRM p. 34
HSFRM higher order SFRM p. 34
LBE lattice Boltzmann equation p. 38
AV introduction of artificial variables p. 39
AP addition of perturbation terms p. 39
TRS transformed relaxation system p. 46
MRT multi-relaxation-time p. 47
SRT single-relaxation-time p. 47
VN von Neumann p. 49
KBC Karlin–Bösch–Chikatamarla [148] p. 52
DVBE discrete velocity BGK-Boltzmann equation p. 52
MRF multi-relaxation-function p. 71
HLBM homogenized LBM p. 76
HBGKBE homogenized BGKBE p. 78
FDVBE filtered DVBE p. 87
FLBE filtered LBE p. 87
SLMC single level Monte Carlo p. 94
GPU graphical processing unit p. 95
CPU central processing unit p. 98
EOC experimental order of convergence p. 99
DNS direct numerical simulation p. 110
SEM spectral element method p. 110
BF brute force p. 114
AS acoustic scaling p. 121
DS diffusive scaling p. 121
IPR initial peak region [247] p. 125
MLMC multi level Monte Carlo p. 136
UQ uncertainty quantification p. 136
QMC quasi-randomized Monte Carlo p. 137
UDNS underresolved DNS p. 142

Frequently used symbols

Symbol Definition Page

x ∈ Ω spatial coordinate, where Ω ⊆ Rd denotes an Euclidean space domain p. 5
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d ∈ N spatial dimension p. 5
t ∈ I temporal coordinate, where I ⊆ R≥0 denotes a time horizon p. 5
ΩT = Ω× I space-time cylinder p. 5
ρ(x, t) conserved variable, zeroth order moment (e.g. density) p. 5
Cm class ofm times differentiable functions p. 5
F] partial differential operator p. 5
F ε] relaxation operator depending on scaling parameter ε > 0 p. 5
ε > 0 smallness parameter tending to zero p. 5
∂· = ∂

∂· partial derivative with respect to · p. 5
·ar remainder terms in the relaxation limit ε↘ 0 p. 6
L(ρ) linear second order partial differential operator p. 6
] ∈ {ell,par,hyp} type of partial differential operator p. 6
O(·) set of functions with order of magnitude in terms of · p. 6
·0 e.g. initial value at (t = 0) of a function · of t p. 7
F (ρ) flux function p. 7
µ,Mφ > 0 diffusivity p. 7
φ(x, t) order parameter p. 7
µφ(x, t) chemical potential p. 7
u flow velocity p. 8
divx = ∇x· divergence operator p. 8
p pressure (rescaled with density, i.e. times 1

ρ ) p. 8
ν > 0 kinematic viscosity p. 8
Re Reynolds number p. 8
L2

div(Ω, U) divergence-free functions in L2(Ω;U) p. 8
µν statistical solution to the Navier–Stokes equations p. 8
f(x,v, t) probability density function p. 9
R = Ω× Ξ× I phase-time space p. 9
·f moments (integration over Ξ) of f p. 9
v particle velocity in Ξ ⊆ Rd p. 9
F (x, t) external force field p. 9
Q(f) Bhatnagar–Gross–Krook collision operator p. 11
D
Dt material derivative p. 11
·? denotes a solution to e.g. a partial differential equation p. 11
·eq (Maxwellian) equilibrium of · p. 10
Kn Knudsen number p. 12
Ma Mach number p. 12
P pressure tensor p. 14
L1

loc(X) locally integrable functions on X p. 15
Θ > 0 temporal filter width p. 17
T temporal residual stress tensor p. 18
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σε homogenization ratio p. 21
ϕ porosity of solid matrix in fluid void p. 28
Ψ(φ) free energy functional p. 29
·ε, ·ε perturbed variable p. 38
α stability parameters in the constructive approach for relaxation systems p. 39
γ > 0 scaling parameter p. 39
δ = 2(γ − 1) scaling parameter p. 39
Aα transport matrix in the relaxation system p. 40
S relaxation matrix p. 40
τ· relaxation time contained in S p. 40
Rεε remainder terms of the relaxation within the closed form of an RS p. 41
� Hadamard operations on and between tensors p. 45
diag diagonal matrix and diagonal of a matrix p. 45
D unified diagonalizer for several matrices p. 46
·d diagonalized version of matrix · p. 46
g = D1ρεε transformed variable of the TRS p. 46
G generalized Maxwellian p. 47
K = D−1SD collision matrix in the TRS p. 47
·neq = · − ·eq nonequilibrium contribution of a variable · p. 47
J· Jacobian matrix of a vector-valued function · p. 47
V amplification matrix for the TRS p. 50
S stability set containing stable configurations of S p. 50
s· = 1

τ·
relaxation frequency contained in S p. 52

DdQq discrete velocity set of dimension d and size q p. 53
ci discrete velocity contained in DdQq p. 53
q number of discrete velocities contained in DdQq p. 53
wi weight for the ith velocity in DdQq p. 53
f = (fi)

T
1≤i≤q discrete velocity distribution function vector, population vector p. 54

M moment matrix p. 54
Vα discrete velocity matrix in αth direction p. 54
f eq truncated Maxwellian equilibrium p. 54
Wj jth column of M−1 p. 55
γ? entropy controller for kinetic moment relaxation p. 56
C abstract TEQ (to be approximated) p. 60
Aε abstract TRS (to be discretized) p. 60
Dh abstract discrete scheme for TEQ (to be extended) p. 60
Bεh abstract relaxation scheme (discrete and extended) p. 60
Eεh global error of Bεh with respect to C p. 62
h artificial discretization parameter p. 64
ε←[ h assignment operator mapping h to ε p. 64
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σ(ε), σ̂(ε) scaling monomials in ε p. 64
4x,4t discretization intervals in space and time p. 65
N number of discretization points or intervals per coordinate direction p. 65
Zh discrete space-time cylinder p. 65
Ks = M−1SsM shifted collision matrix with shifted relaxation matrix Ss p. 67
R

(n)
· nth remainder term with respect to discretization in ·, where n ∈ N≥0 p. 67

D
Dt vector material derivative p. 68
H discrete amplification matrix p. 70
k ∈ K wavevector in wave space p. 70
·poc post-collision value of · p. 74
dh lattice porosity in HLBM p. 77
$ porosity control p. 77
F family/sequence of HBGKBEs p. 81
FG family/sequence of discrete velocity HBGKBEs p. 83
G family/sequence of HLBEs p. 85
Pe Péclet number p. 99
errLp (ti) local in time, spatial Lp error p. 101
err global error (averaged) p. 102
Ch Cahn number p. 106
k, ζ, r, ε·, w kinetic energy, enstrophy, vorticity, dissipation rate, maximum vorticity p. 111
E, D, C energy spectrum, dissipation spectrum, control spectrum p. 112
EOC(t) time dependent experimental order of convergence p. 136
Ca capillary number p. 160
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Parts of this work have already been published in journals and software releases. The references are given in the main
body where applicable. For the sake of completeness, own publications are also summarized below. First authorship
indicates at least major contribution and else positions denote up to major contributions.
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