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Abstract
Over the past decades, discrete dislocation dynamics simulations have been
shown to reliably predict the evolution of dislocation microstructures for
micrometer-sized metallic samples. Such simulations provide insight into
the governing deformation mechanisms and the interplay between different
physical phenomena such as dislocation reactions or cross-slip. This work
is focused on a detailed analysis of the influence of the cross-slip on the
evolution of dislocation systems. A tailored data mining strategy using the
‘discrete-to-continuous (D2C) framework’ allows to quantify differences and
to quantitatively compare dislocation structures. We analyze the quantitative
effects of the cross-slip on the microstructure in the course of a tensile test and
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a subsequent relaxation to present the role of cross-slip in the microstructure
evolution. The precision of the extracted quantitative information using D2C
strongly depends on the resolution of the domain averaging. We also analyze
how the resolution of the averaging influences the distribution of total disloca-
tion density and curvature fields of the specimen. Our analyzes are important
approaches for interpreting the resulting structures calculated by dislocation
dynamics simulations.

Keywords: discrete dislocation dynamics, continuum dislocation dynamics,
coarse-graining, mesoscale, data analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

Dislocations are one-dimensional defects found in crystalline materials. They are the boundary
of an area over which relative slip occurred on defined slip planes [1]. The crystal lattice in the
vicinity of the dislocation core is distorted, which results in long-range stresses in the material.
Dislocation glide, i.e. the expansion or contraction of the slipped areas is their response to the
local stresses which is the sum of external loading and the stress field of other dislocation and
results in the plastic deformation of the crystal. But dislocations do not only interact via their
respective stress field. Their behavior is more complex and includes several types of topolo-
gical changes: dislocations can form junctions to lower their elastic energy (Frank’s rule [2])
or can change their glide plane through a process called cross-slip. This leads to complex
dislocation networks during straining of a specimen because, depending on individual dislo-
cation’s properties like slip plane and Burgers vector, these drivers of the topological changes
can be mobile or immobile. In this division of possible dislocation interactions, the process of
cross-slip is of the mobile sort and thereby provides an additional path for the material to relax
external loading. While it has been accepted that cross-slip significantly impacts the forma-
tion of the dislocation microstructure, the exact impact of cross-slip onto the actual dislocation
microstructure is yet to be quantified, especially as we are not able to arbitrarily ‘turn it on or
off’ in experiments.

Discrete dislocation dynamics (DDD) [3–5] allows to study the effect of particular mech-
anisms on the plastic deformation behavior due to dislocation propagation, e.g. how differ-
ent junction types contribute to the strain hardening behavior of face-centered cubic (FCC)
crystals [6–8]. Using DDD, the impact of cross-slip on the stress–strain curve and the total
dislocation density has been studied [9–11]. A common observation is that cross-slip results
in lower stresses and higher total dislocation densities for the same macroscopic strain when
compared to the same numerical experiments without cross-slip. Cross-slip was also identified
as one of two processes providing new dislocations [12]. Dislocation ‘network’ characterist-
ics were further studied in terms of the density of dislocation junctions [11]. Based on DDD
simulations, Xia et al [13] extracted cross-slip rates and used them to enhance a continuum
dislocation dynamics (CDD) model.

In the aforementioned work, the influence of cross-slip on the microstructure was only
considered in the sense of global densities of either the dislocations themselves or of junctions
formed by the dislocations. This work puts the focus on where dislocation microstructures are
affected by cross-slip during uniaxial tension loading and unloading of a cubiod specimen on
themicron scale. Recent studies of dislocationmicrostructures fromDDD simulations indicate
that, given a moderately high dislocation density, dislocation motion and therefore plasticity
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is a relatively local phenomenon [12, 14]. Therefore the study of where dislocations interact
is needed to contribute to the existing purely averaged approaches.

Another open question related to dislocation microstructures apart from the evolution is
the initial state of a simulation. Real specimen have an existing, physically consistent micro-
structure but simulations need to be initialized with a dislocation microstructure. Ideally, one
would use initial microstructures which are a statistically equivalent to real ones or at least
equivalent to microstructures. On a side note, this also raises the question of what a statist-
ically equivalent microstructure is and is connected to our second question. Although there
are several novel techniques and approaches for observing 3D structure of dislocations via
experiments [15–19], the precision of the state-of-art techniques is limited, therefore quant-
itative microstructure information can be accessed is insufficient to describe a complete dis-
location network of a microstructure. Furthermore, initializing the microstructures is also a
concern for CDD simulations where the initial variables other than the dislocation density are
less amenable to ‘guesswork’. Both DDD and CDD simulations require local statistics about
how density or curvature changes during the deformation path and exploring the role of the
cross-slip on those observables for a physically reasonable initialization of a microstructure.
This is another question we explore here via CDDfield variables obtained from coarse graining
of DDD simulations microstructures.

Our study aims to perform a statistical characterization of discrete dislocation microstruc-
tures via CDD field variables. The reason of using continuous field variables is that CDD vari-
ables allow to base plasticity on dislocation-related measures: spatially resolved densities and
curvatures, while we can access only simple statistics such as average dislocation densities via
DDD simulations. In the following, we first introduce how we used large-scale DDD simula-
tions to generate dislocation microstructures in uniaxial tensile tests up to a strain of 0.6% and
subsequent unloading. We do this twice for each initial dislocation microstructure; once with
cross-slip and once without it. Subsequently, we summarize the so-called D2Cmethod [20, 21]
and use it to convert the discrete dislocation to continuous field data. In this study, the fields
which we make use of are total dislocation density and curvature fields. In general, the total
dislocation density is important for direct quantitative comparison of coarse-grained micro-
structures, while the latter carries topological properties of dislocation structures [22]. We
then make use of D2C to compare how dislocation microstructures that form with and without
cross-slip differ over the course of the loading and unloading. The statistics of the unloaded
dislocation microstructures are then analyzed and the resulting implications for initializing
simulations are discussed. Finally, we summarize and discuss the results.

2. Methods

2.1. DDD

Throughout this work, we use the DDD code described in Weygand et al [3, 23] to generate
dislocation microstructures similar to the ones ofMotz et al [9] and Stricker et al [12]. Material
parameters for FCC aluminum are used: The lattice constant is 0.4045 nm, shear modulus of
27 GPa, Poisson’s ratio is 0.347. The cuboid-shaped simulation box with free surfaces has a
volume of 5× 5× 5 µm3. Its axes align with the crystallographic axes of the material, i.e. the
x-axis is parallel to [1 0 0], the y-axis to [0 1 0], and the z-axis to [0 0 1].

The initial dislocation microstructure consists of dislocation loops with randomly selec-
ted radii between 2 µm to 8 µm such that their centers are in a volume that is four times the
size of the simulation box. This way, the simulation box comprises whole loops and segments
that end at its surfaces. Dislocations are uniformly drawn from all 12 possible slip systems.

3



Modelling Simul. Mater. Sci. Eng. 31 (2023) 075003 A Demirci et al

Figure 1. Examples of the dislocation microstructures observed for one realization
viewed along the tensile axis. The initial structure (left) evolves differently with (top
row) or without (bottom row) cross-slip. Evolved microstructures are shown at the peak
strain just before the relaxation (middle column) and at the end of the relaxation (right
column).

Subsequently, the system is allowed to relax, i.e. we evolve it in time without applied external
load until an equilibrium dislocation structure is reached. This process is tuned such that after
the relaxation, the total dislocation density of each initial dislocation microstructure is close to
1.15 · 1013 1/m2. We generated ten realizations. An example for the initial dislocation micro-
structure is shown in the left column of figure 1; further details can also be found in [24]. We
then perform tensile tests with these initial dislocation microstructures along the y-axis twice
for each realization, once with cross-slip and once without. Displacements are prescribed at the
top in positive y direction with a strain rate of 5000 s−1. The bottom surface is fixed (u= 0).
Snapshots of the dislocation microstructure are saved periodically during loading and sub-
sequent unloading: At a strain of about 0.6%, we stop the tensile test and allow the disloca-
tion microstructure to relax without external load. Examples for dislocation microstructures
at maximum strain and after relaxation are shown in the center and right column of figure 1,
respectively. The top row shows microstructures with cross-slip allowed, the bottom without.

2.2. Discrete-to-continuous method

Within the D2C method [20, 21], we treat each dislocation as a parameterized directed curve
C(t). t ∈ [a,b] in C(t) denotes the parameterization where a and b are the start and end positions
of the dislocations. In addition to the spatial location of all points of the curves in space, we
associate each curve with the Burgers vector of the dislocation that it represents. Then, treating
dislocations as curves allows us to conveniently compute quantities such as the tangent vector

ξ̂(t) =
C ′(t)

∥C ′(t)∥
(1)

and the unsigned curvature

k(t) =

√
∥C ′(t)∥2∥C ′ ′(t)∥2 − (C ′(t) · C ′ ′(t))2

∥C ′∥3
, (2)
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where C ′(t) and C ′ ′(t) denote the first and the second derivative of C(t) with respect to t. To
compute dislocation density fields •, we first discretize the domain Ω into n(V) subvolumes
Ωi. Within a subvolume, we may compute the quantity of interest via

•Ωi =
1
VΩi

∑
C

ˆ

C∈Ωi

f •C (t)∥C ′(t)∥dt, (3)

where VΩi denotes the volume of the subdomainΩi, and fC(t) denotes a function whose expres-
sion depends on the continuum field • to be computed. For example, if we use fC(t) = 1, we
obtain the total dislocation density ρ(0), and with fC(t) = kC(t)we obtain the curvature density,
denoted by q(0). For more details, see [25].

2.3. Averaging and comparing dislocation microstructures

Discretizing dislocation microstructures within equal domains using a fixed discretization
scheme allows us to average and compare dislocation microstructures quantitatively.

The comparison of dislocation microstructures is carried out on two levels: field values
in subvolumes and whole simulations. First, we introduce a measure of deviation between the
field values in a subvolume. For the comparison of scalar fields we use the absolute difference:

DΩi(•Ωi ,◦Ωi) = |◦Ωi −•Ωi | (4)

where the fields from two separate dislocation microstructures (• and ◦), within a subvolume
are represented by •Ωi and ◦Ωi . For the comparison of two whole simulations (domains), we
use the weighted average absolute difference

DΩ(•,◦) = 1
VΩ

n(V)∑
i=1

DΩi(•Ωi ,◦Ωi)VΩi , (5)

where VΩ denotes the volume of the domain, and VΩi is the volume of a subvolume as intro-
duced earlier.

A set of fields, •, (either total dislocation density or curvature in this study) of dislocation
microstructures S = {•1,•2, . . . ,•n(S)} is extracted using the D2C method. The average value
of a field within a given subvolume Ωi is then computed via

⟨•⟩SΩi
=

1
n(S)

n(S)∑
j=1

•jΩi
. (6)

The mean absolute deviation (MAD) is used as a measure of how different the dislocation
microstructures within a set are to each other in terms of a selected field variable:

MAD=
1

n(S)

n(S)∑
j

∣∣DΩ
(
• j,⟨•⟩S

)∣∣ . (7)

Lower values indicate higher similarity within a set. But a comparison of values between dif-
ferent sets of dislocation microstructures is not meaningful as their average values of, e.g. the
total dislocation density, might be very different. To enable a comparison across microstruc-
ture, we first compute the domain average

⟨•⟩Ω =
1
VΩ

n(V)∑
i=1

•ΩiVΩi , (8)
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of our field quantity of interest and use it to compute the unitless coeffcient of variation (CV)
of the MAD

CV(MAD(S)) = MAD(S)〈
⟨•⟩SΩi

〉Ω . (9)

This measure of dispersion around the average can then be used to compare the deviation
of the microstructures of a set with the one of another set.

3. Results

The averaged tensile stress and averaged dislocation density over the plastic strain in the y-
direction for both simulation sets with and without cross-slip is shown in figure 2. The evalu-
ation of the average stress in figure 2(a) can be divided into three phases. In the first phase, the
average stress has the same steep increase for both cross-slip and without cross-slip cases. It is
mainly elastic deformation with the first indication of microplasticity. In the second phase, the
average stress increases linearly for both cases, but the slope is higher for without cross-slip.
The mismatch of the maximum plastic strain for two cases is because of the adaptive time
steps used in the simulations. The third phase is the relaxation phase where the stress drops to
zero due to the removal of load and followed by the small decrease in the plastic strain due to
the Bauschinger effect. These phases can also be tracked in figure 2(b): First, both cases show
similar increase in the average total density, then higher increase in the case of cross-slip is
observed. Finally, the density decreases in both of the cases during the relaxation phase.

The average evolution of the total dislocation density ρ(0)Ω of the whole domains Ω for both
with and without cross-slip is shown in figure 3(a). During the initial 0.2 µs, all microstructures
show the same small increase in total dislocation density irrespective of cross-slip or not. After
this initial stage, the total dislocation density increases more rapidly with cross-slip during
loading than without cross-slip. Upon releasing the external load after 1.3 µs, the dislocation
density initially drops sharply and then continues to decrease but at a much slower rate.

For a simpler comparison of the decrease in the density during relaxation, we show the
average total dislocation density normalized by the maximum density as a function of time
starting with the time of the external load release in figure 3(b). The initial relative decrease
in the average total dislocation density is comparable for all simulations. However, after about
0.1 µs we observe that no cross-slip leads to a larger decrease in the relative total dislocation
density compared to with cross-slip. While the former drops by about 15%, the latter only
decreases by little more than 10%.

3.1. Features of the dislocation microstructures

In the initial state, we observe the highest concentration of dislocations in the center of the
xz-plane with a noticeable drop-off within about 1 µm distance to the surface. Dislocations
align approximately perpendicular to the surface.

At maximum strain, the total density of the microstructure strongly depends on cross-slip.
In case without, we observe an increase of the density in the center portion of the xz-plane.
The depletion close to the free surface is similar to the initial microstructure. With cross-slip
we see an even stronger increase in the density in the center of the xy-plane as well as a higher
dislocation density closer to the free surfaces.
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Figure 2. Average stress and total dislocation density evaluation of the simulations over
the plastic strain. (a) Average stress along the tensile direction over plastic strain in the
same direction for the two sets of simulations with and without cross-slip. (b) Average
total dislocation density over plastic strain in the same direction for the two sets of
simulations with and without cross-slip.

Figure 3. Total dislocation density evaluation of the simulations over time. (a) Average
total dislocation density along the tensile direction over time for the two sets of sim-
ulations with and without cross-slip. (b) Average normalized total dislocation density
over time since the maximum strain for the two sets of simulations with and without
cross-slip.

Upon relaxation we observe a depletion of dislocation near the free surfaces in both cases.
However, with cross-slip a denser dislocation structure can be observed in surface-near regions
compared to without cross-slip.

4. Discussion

4.1. Influence of cross-slip on the dislocation microstructure

The prominent differences between dislocation microstructures with and without cross-slip are
higher total dislocation densities and dislocations present closer to the open surfaces. While
the former is evident from figure 3(a) and in line with similar numerical experiments [9–11],
we have only shown one realization per set in figure 1. By performing ensemble averages of
each set via equation (6), we investigate whether this is a general observation of considering
cross-slip or merely an outlier of the shown realizations. The average total dislocation density
for each set of dislocation microstructures further averaged along the y-direction is shown in
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Figure 4. Average total dislocation density per dislocation microstructure set further
averaged along the y-direction, i.e. the viewing direction of figure 1 and this figure. The
spatial discretization is 16 voxels along each direction.

figure 4. The normalized average total dislocation density fields with respect to the maximum
values of each specimen are given in figure A.1.

We can see that the higher probability of dislocations being present closer to the surface is
a feature in the set of simulations with cross-slip. The reason for this is the two-fold nature of
cross-slip with regards to dislocation motion. On the one hand, cross-slip enables dislocations
to move on a second glide plane in three dimensions instead of being confined to their glide
plane. On the other hand, the motion of the part of the dislocation where cross-slip occurred
is confined to the intersection line of the two slip planes on which it took place. Therefore,
the dislocation is restricted by the intersection of primary and cross-slip plane and only able
to move in one dimension at the cross-slip site. These two contributions result in more space
for dislocations to evolve but limited mobility, hence the dislocation density at the surface is
stabilized. This is beyond a simple scaling with the total dislocation density as discussed later
by evaluating the relative dislocation density evaluation in the regions close to the surface and
within the center region.

As the dislocations move, they act as obstacles for other dislocations and may also form
junctions that restrict the dislocation motion. To overcome these obstacles, dislocations can
cross-slip onto other slip planes. And while some segments of the dislocation might be able to
move on its new slip plane, the segment connected to the primary dislocation is not be able to
overcome other obstacles in this manner due to its reduced degrees of freedom. This effectively
means that cross-slip both adds a degree of freedom to the motion of dislocations overall at the
expense of limiting the motion of parts of the dislocation where the cross-slip originated from
and thereby also stabilizing the structure. In combination, more space is available for disloca-
tions to move with potentially more obstacles to get stuck at, even in the presence of attractive
image forces due to free surfaces. Therefore, cross-slip stabilizes dislocation densities close
to surfaces.

In combinationwith figure 3(b), we conclude that the stabilizing characteristics of cross-slip
affect the subsequent relaxation because the average relative decrease in the total dislocation
density is smaller for realizations with cross-slip.
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Figure 5. Average relative change in the total dislocation density per dislocation micro-
structure set further averaged along the y-direction, i.e. the viewing direction of figure 1
and this figure. Changes between the dislocation microstructures from their initial state
to the maximum strain state and from the latter to their relaxed state are depicted in the
left and right column, respectively. The spatial discretization is 16 voxels along each
direction.

We now address how the change in density is spatially distributed within the specimens.
Figure 5 shows the average relative change in the total dislocation density for the two sets
of realization between the initial state and the maximum strain state, as well as between the
maximum strain state and the subsequent relaxed state.

With cross-slip, the relative increase is higher closer to the free surfaces. Without cross-slip,
we see an increase in the center and the regions close to the open surfaces of the sample while
there is decrease in the total dislocation density at the open surfaces.

During unloading, the largest relative decreases in the total dislocation density are observed
close to the surfaces. With cross-slip, the difference between the decrease close to the surfaces
compared to the one in the center of the sample is smaller compared to realizations without
cross-slip. Hence, we conclude that this further confirms the stabilizing effect of cross-slip.

4.2. Similarity of dislocation microstructures across sets

We show the relative mean absolute difference of two dislocation microstructure sets for the
total density over time for different spatial discretizations in figure 6. The data points in the
lines in figure 6 are calculated as follows:

∆ρ(0)(t) =

〈〈
|ρ(0)S0,j

(t)− ρ
(0)
S1,j

(t)|
〉S

Ωi

〉Ω

〈〈
ρ
(0)
S0,S1

(t)
〉S

Ωi

〉Ω
(10)

where ⟨•⟩SΩi
and ⟨•⟩Ω are defined in equations (6) and (8), respectively.S0,j andS1,j indicate the

specimen pairs, which have the same initial microstructures, from the set of samples without
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Figure 6. Relative mean absolute difference of the total dislocation densities between
the microstructures with and without cross-slip. Colors indicate the numbers of voxels
that are used to discretize the specimen for the computation of the continuum fields.

cross-slip (S0) andwith cross-slip (S1). The denominator calculates the average value by using
the density values of the subvolumes of all specimens to normalize the difference. Finally,
∆ρ(0)(t) is the relative mean absolute difference of two dislocation microstructure sets for the
total density at a given time step and discretization resolution.

Initially, there is no difference as we start from the exact same microstructures. Upon load-
ing and deformation of the sample we observe an increase in the relative mean absolute differ-
ence that strongly depends on the spatial discretization. Higher resolutions are more suitable to
show increasing differences between the structures with and without cross-slip as microstruc-
tures discretized with higher resolutions contains more information about the actual location
of the dislocations. The largest spread of the difference is observed at about 0.2 µs, which is
around the end of the elastic regime. Afterwards, the magnitude of the relative mean absolute
difference between the spatial discretizations decreases again. From this we may conclude that
the initial differences observed are primarily on a rather short length scale and therefore only
seen for high resolutions. As the plastic strain accumulates, the changes in the topology of
the dislocation microstructure cover a larger length scale and we observe an increase in the
difference for coarse spatial resolutions as well.

At about 1.3 µs a spike occurs. This coincides with the unloading for realizations without
cross-slip. While these realizations exhibit a rather severe and fast change in the dislocation
microstructure, the realizations with cross-slip show a more stable behavior.

4.3. Similarity of dislocation microstructures within each set

Weknow that differencesmaymanifest on different length scales from our previous discussion.
Thus, to study the similarity of realizations within each set, we show the CV of the MAD of
the total dislocation densities for different spatial discretizations in figure 7. The first thing to
note is that the CV values depend strongly on the discretization. Discretizations with higher
spatial resolution show larger dissimilarity overall. This stems from coarser discretizations
averaging over manymore microstructure features with less sensitivity for their actual position
in space. In contrast, finer discretized microstructures are more sensitive to the position of the
dislocation and therefore they are similar to each other when the dislocations do not match up
closely between different realizations.

10



Modelling Simul. Mater. Sci. Eng. 31 (2023) 075003 A Demirci et al

Figure 7. Coefficient of variation of the mean absolute deviation of total dislocation
density fields of each dislocation microstructure set over time for a spatial discretization
of 1, 16 and 34 voxels along each direction.

Figure 8. CV of the mean absolute deviation of total dislocation density fields of
each set of cross-slip considerations over time for different resolutions of the spatial
discretization.

Irrespective of the discretization, the dislocation microstructure sets exhibit the same CV
of the MAD in the beginning. This is due to the fact that realizations are using the exact same
initial structures and require some ‘incubation’ time of mainly elastic deformation until more
and more dislocations start to move. After about 0.1 µs, the samples’ behavior starts to differ
with the onset of plastic deformation. For 1 voxel along each direction, the realizations without
cross-slip are more similar to each other than the ones with cross-slip. The exception at around
1.3 µs comes from the staggered onset of the relaxation sequence for the realizations without
cross-slip. For higher spatial resolutions, this trend is reversed and the dislocation microstruc-
tures with cross-slip are more similar to each other than the ones without.

The evolution of the CV of the MAD for discretizations using 1 to 34 voxels along each
direction is shown in figure 8.

Darker colors indicate higher similarity between the dislocationmicrostructures of a set.We
observe the previously mentioned trend that a higher resolution results in a larger dissimilarity.

During the tensile test, we notice a tendency of the microstructures becoming more similar
to each other as the tensile tests progress, particularly for discretizations using more than 15
voxels along each direction. This trend is more pronounced for simulations with cross-slip. We
conclude that the spatial arrangement of the dislocation microstructure becomes increasingly
more similar over the course of the tensile test. Assuming that there are relatively stable and/or
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Figure 9. Probability density functions of the total dislocation density and the curvature
observed for the averaged steady state configurations of all evolved initial dislocation
microstructures discretized by 16 voxels in each axis. The top row is based on the abso-
lute values, the bottom row is normalized with the sample mean of each set.

favorable dislocation configurations that form during loading, the inclusion of cross-slip as a
degree of freedom explains why the similarity between realizations with cross-slip increases
more rapidly than that of the realizations without cross-slip.

4.4. Probability density functions for total density and line curvature

While the total density (where the average is taken by assuming only one voxel) is a field vari-
able that is commonly used for analyzing dislocation data, the lines’ curvature are often not
assessed for analyzes.With the D2C framework this can be easily done: themean curvature can
be directly computed from the curvature density and the total density, k= q(0)/ρ(0). Figure 9
shows the probability density functions of the total dislocation density, ρ(0), and the curvature,
k. The quantities are averaged over multiple realizations, then their probability density func-
tions are calculated via kernel density estimation.

When cross-slip is activated, we observe more even distribution of the total dislocation
density as the probability of low densities increases significantly in the case of without cross-
slip. However, the probabilities of the normalized total dislocation densities from the cross-
slip and without cross-slip cases become closer in terms of their values. In the distributions
of the curvature, the difference between the cases of with and without cross-slip is more pro-
nounced compared to the total dislocation density distributions. Moreover, when the curvature
values are normalized, the difference between two cross-slip cases becomes even larger in
terms of the values of the probabilities which in contrasts with what is observed when the
total dislocation density is normalized. For the simulations with cross-slip, a pronounced a
high probability density of curvature values of about 1.2⟨k⟩ becomes clearly visible. This
seems to be an aspect to be considered for initial field values for DDD or CDD simula-
tions. Furthermore, it might be a way of ‘testing’ if the simulation was run with cross-slip
enabled or not.
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Figure 10. Probability density distributions of the normalized total density for the dis-
cretizations by 8, 16, 24, and 32 voxels along each direction. The first and second row
show the results from simulations with cross-slip and without cross-slip, respectively.
The first and second columns show the results from simulations that are at the maximum
strain state and the subsequent relaxed state, respectively.

4.5. Effects of discretization on total density and line curvature distributions

We further investigate how the distribution of the total density and line curvature fields over
the domain changes for different discretizations. In figure 10, the probability density functions
of the normalized total dislocation density for different discretizations (8, 16, 24 and 32 voxels
along each axis) are shown. The comparison of the distributions for the discretizations with 16,
32, 40, 64 voxels along each axis is provided in figure B.1. Probability densities are calculated
by kernel density estimations, and we used the improved Sheather-Jones algorithm [26] to
decide on the optimum bandwidth values to represent the distributions accurately. Through
this, we plotted distributions as if theywere represented by histogramswith a very high number
of small bins.

The first notable observation is the occurrence of equally spaced fluctuations or oscilla-
tions in the distributions for each type of the specimen (with and without cross-slip) and state
of the simulation (maximum strain and relaxed) when specimens discretized with higher resol-
utions. The formation of the peaks in the total density distributions are due to the geometrical
reasons rather than the physical dislocation behavior or the crystallographic orientation of
the specimen: as we increase the resolution of the discretization, we are approaching a dis-
crete representation of the dislocation lines. Considering this together with a large number of
straight, diagonal lines in the simulation volume, the result is a high number of voxels that
contain the same total line length. We also notice that the spacing between the peak points are
inversely proportional to the volume of the voxels for each case in figure 10. This means that
the distribution of the total dislocation length in the voxels has peak points at the same values
for all discretizations as shown in figure 11. (see figure B.2 for the distributions in the case
of discretizations with 16, 32, 40, 64 voxels along each axis.) Geometrical reasons behind the
formation of the peaks are simply demonstrated in two-dimensional geometries in figure 12.
In figure 12(a), as the discretization becomes finer, the number of the subvolumes that have
the same length of the line (the subvolumes with thicker edges) increases. This leads to the
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Figure 11. Probability density distributions of the dislocation length in the voxels for the
discretizations by 8, 16, 24, and 32 voxels along each direction. l is the total dislocation
length in a voxel, and d= 5.0 µm is the specimen edge length, which is used for normal-
ization of the l values. The first and second row show the results from simulations with
cross-slip and without cross-slip, respectively. The first and second columns show the
results from simulations that are at the maximum strain state and the subsequent relaxed
state, respectively.

Figure 12. Discretization of a straight line in two-dimensions. (a) Demonstration of
the increase in the number of pixels that contain the same length with an increasing
resolution of discretization. The pixels plotted with thicker edges contain the same line
length in all discretizations. (b) Representation of the pixels that contain ‘two particular’
values of the line length (light gray and dark gray).

formation of local peak values in the distributions plots. Apart from this, the discretization of
one line results in paired subvolumes with respect to the contained length (cf the highlighted
pixels by light and dark gray in the figure 12(b)). This leads to the formation of multiple peak
points in the distributions.

For the same level of discretization, more pronounced fluctuations are observed without
cross-slip. In other words, the total density fields of the specimens with cross-slip are less
sensitive to the discretization as compared to the ones without cross-slip. The lower sensitivity
to the discretization is desirable for continuous field data since we can access more information
by increasing the resolution before the discrete information starts to dominate the distribution.
The difference in sensitivity between the cases with and without cross-slip is another result
of the stabilizing effect of cross-slip, which was already mentioned in the previous analyzes.
For both specimens, we do not observe a significant difference between the distributions of
the maximum strain state and the relaxed state.
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Figure 13. Cumulative density distributions of the normalized total density for the dis-
cretizations by 18 different number of voxels along each direction. The first and second
row show the results from simulations with cross-slip and without cross-slip, respect-
ively. The first and second columns show the results from simulations that are at the
maximum strain state and the subsequent relaxed state, respectively.

In addition, observing strong fluctuations at finer resolutions than 16 voxels for the case
without cross-slip and 24 for the case including cross-slip is in line with the conclusions in [25]
as the authors proposed the average dislocation spacing as a lower limit for the voxel size due
to the physical considerations. The reason is that for both numbers of voxels the voxel sizes are
smaller than the average dislocation spacing. Although we capture more differences in very
high resolutions between microstructures, domains discretized with a voxel size larger than
average dislocation spacing are not greatly affected by geometrically induced distortions in
the distributions.

To show the effect of the discretization based on a larger range of resolutions, we calculated
cumulative density functions to improve readability. In figure 13, the cumulative distributions
are shown for 18 different discretizations. The step-function-like shape of the distributions
corresponds to the fluctuations in probability density functions, and they are less pronounced
with cross-slip. In figure 14, we further show cumulative density distributions for the line
lengths. There, fluctuations are observed at the same values of the line length for each dis-
cretization. This is consistent with the observation of the spikes which occur at the same val-
ues at each discretization in the probability density distributions of normalized line length
values.

We repeat the previous analysis for the normalized line curvatures, which are obtained
by averaging over multiple realizations, and the comparison of these distributions for
18 different discretization levels are shown in figure 15. We can see the effect of the
cross-slip on the curvature distributions on the relaxed states of the specimens: the peak
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Figure 14. Cumulative density distributions of the dislocation length in the voxels for
the discretizations by 18 different number of voxels along each direction. l is the total
dislocation length in a voxel, and d= 5.0 µm is the specimen edge length, which is
used for normalization of the l values. The first and second row show the results from
simulations with cross-slip and without cross-slip, respectively. The first and second
columns show the results from simulations that are at the maximum strain state and the
subsequent relaxed state, respectively.

Figure 15. Probability density distributions of the normalized curvature for the discret-
izations by 18 different number of voxels along each direction. The first and second row
show the results from simulations with cross-slip and without cross-slip, respectively.
The first and second columns show the results from simulations that are at the maximum
strain state and the subsequent relaxed state, respectively.
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is closer to the median of the data sample in the case of cross-slip. The effect on
the shapes of the curves is demonstrated in figure C.1 by the skewness values of the
distributions.

Hence, the deduction, from section 4.3, that cross-slip has an effect on the curvature
distribution shape is also true for different discretizations. Similar to our observations for the
total density distributions, we do not observe a significant change in the curvature distributions
after the load is removed at the maximum strain state both for the specimen with cross-slip
and without cross-slip.

5. Conclusion

We studied the impact of cross-slip on the evolution of dislocation microstructures, which
are obtained by DDD simulations, using continuum field variables obtained by D2C method.
We found that cross-slip leads to more homogeneous and stable dislocation microstructures
within which dislocations are able to remain stable closer to free surfaces. Cross-slip also
results in more similar dislocation microstructures. These findings indicate that the disad-
vantage of larger computational complexity when including cross-slip in DDD simulations
might be offset by requiring fewer realizations to capture statistical aspects of dislocation
microstructures.

The finding that the dislocation microstructure close to surfaces changes significantly is
important for analyzing dislocations experimentally via non-destructivemethods. These obser-
vations are influenced by the surface and any conclusions drawn from such observations about
the impact of dislocation arrangements must be made carefully. In order to provide better
heuristics on the actual changes near the surface, however, we have to perform further ana-
lyzes that consider only surface near regions by taking alignment of the surfaces with respect
to the loading direction into account, which is out of the current scope of our work presented
here.

Our analyzes for the effects of discretization resolution shows that discretized domains with
high resolutions contain too much discrete information which is not in line with the intention
of obtaining continuous field data. We observed a lower bound for the resolution by the dislo-
cation density distributions: a voxel length should not be smaller than the average dislocation
spacing. In addition, cross-slip has an impact on the formation as the peaks are present in
coarser discretizations when cross-slip is not activated. This is simply because of the fact that
in the microstructures with cross-slip, the total dislocation density increases more and results
in lower average dislocation spacing which allows smaller voxel sizes. The fluctuations are
important geometrical artifacts that have to be considered in continuum field data calculations
as the they can lead to misjudgments of further analyzes and hidden calculation errors in CDD
simulations.

From a broader perspective, the outcomes of our study are:

• We established amethod of descriptive statistics for systems of curved dislocations. By using
the CDD field variables as descriptors for certain microstructural aspects we indirectly could
leverage the fact that CDD is based on a statistical coarse graining of systems of discrete
dislocations. In other words, our descriptors are strongly based on physics which make them
easily interpretable.
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• We demonstrated that using these descriptors it is possible to investigate and
to discuss situations that otherwise can only be approached by eyeballing or
through very coarse measures. In particular the fact that curved dislocations behave
entirely different from straight dislocations (one of the reason why 3D DDD
is such an important method) could so far not properly be accounted for or
leveraged.

• All of this is a step towards parameterizing and validating continuum simulations
methods, ranging from gradient based models up to multislip CDD methods of
various complexity. Furthermore, in the context of continuum model development,
we have now a methodology that helps us to infer how, e.g. additional terms
concerning dislocation multiplication could be included. This, however, is still a
significant undertaking, which can not be presented in the present manuscript
as well.

• Last but not least, a similar analysis can also be done with experimental data (at least to
some extent). For example, in [19], we extracted the dislocation geometry from in-situ
TEM experiments, converted them using D2C and used in particular the curvature to
understand details of the ‘energy landscape’ of high-entrop alloys. Thus, D2C can also
be seen as a tool to bring experiments and simulations closer together. Furthermore, D2C
method has a potential to be extended for providing information on the mechanical fields
of a microstructures in the simulations, however it is out of the scope of the current
study.
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Appendix A. Total dislocation density fields

Figure A.1. Normalized average total dislocation density per dislocation microstructure
set further averaged along the y-direction, i.e. the viewing direction of figure 1 and this
figure. The spatial discretization is 16 voxels along each direction. Each averaged spe-
cimen is normalized by their maximum value of the densities.

Appendix B. Probability density distributions of total dislocation density

Figure B.1. Probability density distributions of the normalized total density for the dis-
cretizations by 16, 32, 40 and 64 voxels along each direction. The first and second row
show the results from simulations with cross-slip and without cross-slip, respectively.
The first and second columns show the results from simulations that are at the maximum
strain state and the subsequent relaxed state, respectively.
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Figure B.2. Probability density distributions of the dislocation length in the voxels for
the discretizations by 16, 32, 40 and 64 voxels along each direction. l is the total dislo-
cation length in a voxel, and d= 5.0 µm is the specimen edge length, which is used for
normalization of the l values. The first and second row show the results from simulations
with cross-slip and without cross-slip, respectively. The first and second columns show
the results from simulations that are at the maximum strain state and the subsequent
relaxed state, respectively.

Appendix C. Curvature density distribution skewness

Figure C.1. Skewness values calculated from the curves of the curvature distributions
for each discretization resolution.
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